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1 One-dimensional BEC - important parameters

The atomic motion is cooled down below the transverse vibrational energy h̄ω⊥, but the motion in
z-direction is free.
⇒ condition for 1D: kBT � h̄ω⊥.
Reduced dimensionality leads to an absence of long-range order.
⇒ quasi-condensate

1.1 Description as Luttinger Liquid

Describe the low energy 1D fluid as a Luttinger Liquid with the local fluctuation field Π(x) and the
phase ϕ(x) the Hamiltonian can be obtained as

H ≈ h̄2

2m

∫
dx
[
vJ (∆ϕ(x))

2
+ vN (∆Π(x))

2
]

with the sound velocity of density fluctuations vs =
√
vNvJ =

√
κ
mρ0

.

⇒ in 1D there are always fluctuations which destabilize the BEC. correlation function:〈
Ψ†(x)Ψ(0)

〉
∝ x−

1
η

with the correlation exponent η = 2
√

vJ
vN

.

In 1D the correlation function decays algebraically in the size of the system.

1.2 Different regimes in a one-dimensional BEC

fig. cartoon of 1D atom distributions. In the strongly interacting
regime (TG-regime), the single particle wave functions are spatially
distinct. 

At low temperatures, there are different regimes described
by the parameter γ:

γ =
mg1D

h̄2n1D

with the coupling strength g1D and the 1D-density n1D.
Here, low density corresponds to the high interacting
regime, which is the reverse in 3D.

• BEC (γ � 1, weakly interacting regime)

• quasi-condensate

• Tonks-Girardeau gas (γ � 1, strongly interacting
regime)

2 Theoretical description

2.1 Tonks-Girardeau gas, γ →∞
Condition, that the interparticle interactions have an im-
penetrable core: Ψ(x1,...,xn) = 0, if xi = xj .

⇒ ΨB
0 =

∣∣ΨF
0

∣∣
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2.2 How is the interaction?

Pseudo-potential

Up(r) = gδ(r)

(
∂

∂r
r

)
For low velocities the scattering amplitude can be approximated to f(kz) = − 1

1+ikza1D
for the one-

dimensional δ-potential

U1D(z) = g1Dδ(z) with g1D = − h̄2

ma1D

With this coupling strength g1D the potential U1D produces the same phase shift as the pseudo-
potential UP ⇒ now it is possible to have a pure one-dimensional description.

2.3 Exact analysis of the interacting bose gas by Lieb and Liniger

The Schrödinger equation for N particles reads− h̄2

2m

N∑
i=1

∂2

∂x2i
+ g1D

∑
<i,j>

δ(xi − xj)

Ψ = EΨ

Using the Bethe ansatz

Ψ(x1,....,xN ) =
∑
P

a(P )ei
∑
n kP (n)xn

this problem can be solved exactly. Prop-
erties like the chemical potential µ or the
potential and kinetic energy per particle v
and t can be calculated (figure). For
γ → ∞ the properties show fermi-like val-
ues and the system is in the Tonks-Girardeau
regime.

3 Experimental relaization

Two independent light traps: blue-detuned
crossed beam pairs confine nearly zero temper-
ature 87Rb atoms in an array of parallel tubes
(figure). The red-detuned trap weakly confines
them along the tubes. So it is possible to mea-
sure the BEC for different values of γ and the
gas can be made either BEC-like or TG-like.

fig: scheme illustrating the experiment. the blue-detuned crossed 
beam pairs form the 2D lattice that strongly confines atoms in 1D 
tubes. The red-detuned beams trap the atoms axially
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