Imbalanced BCS-BEC crossover

Joachim Krauth

18. 06. 2013

www.learner.org

C. A. R. Sa de Melo, Physics Today, 45-50 (2008).

Outline

- Polaron problem
- 2 Superfluidity for fermions in imbalanced situations
- FFLO correlations in the partially polarized phase

Polaron problem

- Polaron is a quasi-particle composed of a charge (e^-) and its polarization field
- For example the interaction between an electron and a lattice
 → leads to a deformation of the lattice

Kittel, Einführung in die Festkörperphysik, Oldenbourg Wissenschaftsverlag (2005).

- We can describe this problem with a free quasi particle with effective mass m^{**} and self energy E_0
- Hamiltonian of free particle (V = 0 with effective mass m^*) for fermions

$$H_f = -\frac{\hbar^2}{2m^*} \Delta \tag{1}$$

Hamiltonian of harmonic oscillator (atoms)

$$H_{ho} = \hbar\omega \sum_{q} b_{q}^{\dagger} b_{q} \tag{2}$$

Hamiltonian of e⁻-phonon interaction

$$H_{WW} = \hbar \sum_{q} \left(g_q e^{iqx} b_q + g_q^* e^{-iqx} b_q^{\dagger} \right) \tag{3}$$

Fröhlich Hamiltonian

• Fröhlich Hamiltonian for polarons:

$$H_{polaron} = H_f + H_{ho} + H_{WW} = -\frac{\hbar^2}{2m^*} \Delta + \hbar\omega \sum_w b_q^{\dagger} b_q + \hbar \sum_q \left(g_q e^{iqx} b_q + g_q^* e^{-iqx} b_q^{\dagger} \right)$$
(4)

 Blackboard calculation to derive the effective mass and the self energy of the polaron

Results of blackboard calculation

• Energy of polaron E_k :

$$E_{k} = -\hbar\omega\alpha + \frac{\hbar^{2}k^{2}}{2m^{*}}\left(1 - \frac{\alpha}{6}\right) \tag{5}$$

• Selfenergy *E*₀:

$$E_0 = -\alpha\hbar\omega \tag{6}$$

- \rightarrow Energy offset
- Effective mass m**

$$m^{**} = m^* \left(1 + \frac{\alpha}{6} \right) \tag{7}$$

 \rightarrow Heavy electron

Polaron problem

- Mobile impurity can also be a single spin-↓ fermion in a Fermi sea of spin-↑ fermions
- Polaron is limiting case of a strong imbalanced Fermi gas

What happens for more polarons

• Two component (\uparrow,\downarrow) 2D model with short range interaction described by:

$$H = \sum_{\mathbf{k}\sigma} (\epsilon_{\mathbf{k}\sigma} - \mu_{\sigma}) c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \frac{g}{\Omega} \sum_{\mathbf{k},\mathbf{k'},\mathbf{q}} c_{\mathbf{k'}\uparrow}^{\dagger} c_{\mathbf{k'}\downarrow} c_{\mathbf{k'}+\mathbf{q}\downarrow} c_{\mathbf{k}-\mathbf{q}\uparrow}$$
(8)

with

$$\begin{split} \epsilon_{\mathbf{k}\sigma} &= \mathbf{k}^2/2m_\sigma \text{ the single particle energy,} \\ \mu_\sigma \text{ the chemical potential,} \\ \Omega \text{ the system area and} \\ \mathbf{g} \text{ the contact interaction parameter} \end{split}$$

• No interaction between spins of same species (Pauli blocking)

- For weak interaction: density fluctuations of the Fermi sea
 - \rightarrow Polaron state
- Polaron ground state for weak interaction regime:

$$|P\rangle = \alpha_0 c_{0\downarrow}^{\dagger} |N\rangle + \frac{1}{\Omega} \sum_{\mathbf{k}, \mathbf{q}} \alpha_{\mathbf{k} \mathbf{q}} c_{\mathbf{q} - \mathbf{k} \downarrow}^{\dagger} c_{\mathbf{k} \uparrow}^{\dagger} c_{\mathbf{q} \uparrow}$$
(9)

- For increasing interaction the impurity binds a ↑ fermion to build a molecule
- The polaron state separates into two branches of different polarons:
 - ightarrow low-energy polarons which interacts attractively with the Fermi gas
 - ightarrow a metastable excited repulsive polaron at intermediate binding energy
- With RF spectroscopy both branches are detectable

Polaron state

- Theoretical results of polaron dispersion relation for increasing binding
- For weak binding $\epsilon_B \ll \epsilon_F$ we have a well defined quasi-particle at small momenta
- For intermediate binding a new repulsive polaron state rises with higher energy due to the repulsive interaction with the Fermi sea
- For strong binding both polaron branches are well separated and repulsive polaron becomes stable quasi-particle

R. Schmidt, et al., Physical Review A, **85**, 021602 (2012).

Polaron state

R. Schmidt, et al., Physical Review A, 85, 021602 (2012).

- Properties of polaron for varying interaction parameter $\eta = \ln(k_F a_{2D})$ with the 2D scattering length $a_{2D} = \hbar/\sqrt{m\epsilon_B}$
- Continuous crossover with shifting of spectral weight Z to the repulsive polaron branch with increasing binding
- Good agreement with perturbation results (dashed lines) in both limits

Summary of polaron problem

A. Schirotzek et al., Phys. Ref. Lett. 102, 230402 (2009).

 Depending on interaction strength we get either a polaron or molecule state

Summary of polaron problem

- In 3D: Polaron state for weak interaction, for increasing interaction the impurity \downarrow forms a dimer (molecule) with a \uparrow
- In 2D the situation is less clear because of enhanced quantum fluctuations
- Possible polaron to molecule transition
- In 1D there is no transition between polaron and molecule

Spin-imbalanced Fermi gas

- We can form molecules so we want to have a look on superfluidity in these imbalanced systems
- Fermi gas with different numbers of up (N_{\uparrow}) and down (N_{\downarrow}) spins
- Explore interplay between magnetism and superfluidity
- Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) proposed a pairing of fermions with finite momentum
- Normally in superconductor fermions pair to Cooper pairs (CP) which have k = 0 momentum

Pairing

• Normal Cooper-pairs, $\mathbf{k}_{pair} = \mathbf{0}$

- $\bullet |\mathbf{k}_{F_{\uparrow}}| \neq |\mathbf{k}_{F_{\downarrow}}|$
- ullet Finite momentum ${f k}_{\it pair}=Q
 eq {f 0}$

- What is the dependence of \mathbf{k}_{pair} on $P=\frac{N_{\uparrow}-N_{\downarrow}}{N}$?
- Pair density of balanced gas peaks in zero momentum
- What is expected in the case of an imbalanced situation?

Exact numerical DMRG results in 1D

Using the Hubbard model Hamiltonian

$$H_0 = -t \sum_{i=1\sigma}^{L-1} \left(c_{i\sigma}^{\dagger} c_{i+1\sigma} + h.c. \right) + U \sum_{i=1}^{L} n_{i\uparrow} n_{i\downarrow}$$
 (10)

Fourier transformation of Green functions is the momentum distribution function

$$n_k^{pair} = \frac{1}{L} \sum_{lm} \exp[ik(l-m)] \rho_{lm}^{pair}$$
 (11)

Exact theoretical DMRG results in 1D

A. E. Feiguin, et al., Springer Verlag Berlin Heidelberg (2012).

• $\mathbf{k}_{pair} = Q$ has a linear dependence on P:

$$Q = k_{F_{\uparrow}} - k_{F_{\downarrow}} = \pi n P \tag{12}$$

Exact theoretical DMRG results in 1D

A. E. Feiguin, et al., Springer Verlag Berlin Heidelberg (2012).

• Highest density shifts to higher momenta for increasing P

Exact theoretical DMRG results in 1D

A. E. Feiguin, et al., Springer Verlag Berlin Heidelberg (2012).

Decreasing density for increasing P

FFLO phase

- Predicted, but has not been experimentally observed in any system
- Magnetism accommodated by pairing with finite momentum
- Magnetism is expected to have interplay with paring
 - \rightarrow easier to measure than pairing
- Fulde and Ferrell said that pairs form with finite momentum
- Larkin and Ovchinnikov proposed related model in which the superconducting order parameter oscillates in space
 - \rightarrow Can be interpreted as an interference pattern between condensates with opposite momenta

FFLO experiment

- Two spin mixture of ultracold ⁶Li atoms trapped in 1D tubes
- \bullet Transverse confinement of fermions with trapping potential frequency ω_\perp
- Strictly 1D: only lowest energy state is occupied $\epsilon_F \ll \hbar \omega_\perp$
- External magnetic field to enhance the attractive 1D interactions
- Hamiltonian (Gaudin-Yang-model):

$$H = -\frac{\hbar^2}{2m} \left(\sum_{i=1}^{N_{\uparrow}} \frac{\partial^2}{\partial x_j^2} + \sum_{i=1}^{N_{\downarrow}} \frac{\partial^2}{\partial y_j^2} \right) + g_1 \sum_{i,j=1}^{N_{\uparrow}, N_{\downarrow}} \delta\left(x_i - y_j\right)$$
(13)

Why 1D and not 3D?

- In 1D we have an exact solution of the problem (Bethe ansatz)
- 1D Fermi gases with tunable interaction and arbitrary values of imbalance have been experimentally realized
- No FFLO phase predicted in 3D

 \rightarrow Hope to observe FFLO phase experimentally in 1D

Different phases in 1D

- Partially polarized core
- Surrounding wings either completely paired or fully polarized

Phase diagramm

Chemical potential

$$\mu = \frac{1}{2}(\mu_1 + \mu_2) \tag{14}$$

Effective magnetic field

$$h = \frac{1}{2}(\mu_1 - \mu_2) \tag{15}$$

Polarization

$$P = \frac{N_{\uparrow} - N_{\downarrow}}{N} \tag{16}$$

- μ decreases from the center to the edge of the tube, h stays constant
- Vertical arrows show FFLO phase surrounded by either fully polarized or fully paired phase

Effective magnetic field

Y. Liao, et al., Nature 467, 567-569 (2010).

Y. Liao, et al., Nature 467, 567-569 (2010).

- Black curve shows n_{\uparrow} of state $|1\rangle$, blue n_{\downarrow} of state $|2\rangle$ and red $2(n_{\uparrow}-n_{\downarrow})$
- Low P leads to PP core and fully paired wings (picture a,b)
- At $P = P_c$ we have just one phase (PP) (picture c)
- At high P we get a fully polarized wings (picture d)

- No experimental proof of these phases
- Probably fully paired phase is normal phase, because no superfluidity observed
- People are trying to find superfluidity to proof the existence of this phase

Correlation function

 Superfluid order of the ground state follows from the pair correlation

$$\rho_{ij}^{\textit{pair}} = \langle c_{i,\uparrow}^{\dagger} c_{i,\downarrow}^{\dagger} c_{j,\uparrow} c_{j,\downarrow} \rangle \tag{17}$$

- Describes the tendency for singlet pairing as a function of separation x = i j
- Correlation function of normal BCS theory decays monotonically

Kittel, Einführung in die Festkörperphysik, Oldenbourg Wissenschaftsverlag (2005).

Predictions from bosonization

 Imbalanced situation: oscillating superfluid correlation function:

$$|\rho_{ij}^{pair}| \sim |\cos(Qx)|/x^{\Delta(p)}$$
 (18)

• Balanced situation: correlation exponent Δ_{SS} for singlet pairing defined by:

$$\rho_{ij}^{pair} \sim |i - j|^{-\Delta_{SS}} \tag{19}$$

Predictions from bosonization

- For attractive interaction in balanced gases we get $\Delta_{SS} < 1$ \rightarrow decays very slowly
- Imbalanced: correlation exponent of $\Delta_{SS}(p) = \Delta_{SS}(p=0) + 1/2$
- Thus the correlation function decays faster for imbalanced gases
- In 1D the long-range order is destroyed by quantum fluctuations
- Shown by numerical investigations (Hubbard model) using DMRG or QMC methods

Summary FFLO phase

- CP with finite momentum
- Superfluidiy is oscillating in space
 - \rightarrow different than in normal BCS
- Mean field theory predicts: Superfluidity low \leftrightarrow high magnetism
 - \rightarrow It is believed that also magnetism is oscillating
 - → Theoretical results are not proofed yet!

Problems of FFLO phase detection

- It is difficult to cool down fermions because of interaction
- 1D it is even harder, enhanced quantum fluctuations
- ullet Orbital pair breaking must be suppressed in superconductor o Use of organic or heavy-fermion superconductors

Proposals for the experimental observation of FFLO phase

- Unlike normal BCS, FFLO state allows single particle excitations even at T=0 corresponding to unpaired particles
- These excitations produces distinct features in the RF spectra at negative energies
- Provide a signature of oscillations of the order parameter that is distinguishable from the usual pairing signatures at positive energies
- In RF spectroscopy, the internal state of one of the components (\uparrow or \downarrow , energy ω_{\updownarrow}) is coupled to a third internal state (final state, energy ω_f) by an RF pulse.

• Number of particles transferred from the initial to the final state can be observed and gives the spectrum $J_{\updownarrow}(\delta)$ as a function of the detuning δ

$$\delta = \omega_{rf} - (\omega_f - \omega_{\uparrow}) \tag{20}$$

M. Reza Bakhtiari et al., Phys. Ref. Lett. 101, 120404 (2008).

Proposals for the experimental observation of FFLO phase

- Excite spin-dipole modes with time dependent potentials and measure the response
- If oscillation are in resonance with excitation a dramatic response would indicate FFLO correlation
- One could make time-of-flight measurement to observe the velocity distribution of the condensate
- Characteristic signature of pairs with finite momenta: maximum of $n_{pair}(k)$ is at $k \neq 0$

Conclusion

- Polaron results: heavier particle, because of interaction with lattice
- Description of spin down particle in Fermi sea of spin up particles as quasi particle
- Polaron to molecule transition possible

A. Schirotzek et al., Phys. Ref. Lett. 102, 230402 (2009).

Conclusion

- In imbalanced situation we get different phases depending on the polarization of the gas
 - \rightarrow Partially polarized phase
 - \rightarrow Fully polarized phase
 - → Completely paired phase
- 1D systems necessary
- FFLO signature: $k_{pair} \neq 0$
- FFLO phase predicted but experimentally yet not observed, but there are promising suggestions

