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Several applications of Rydberg atoms

Quantum computation: 1- and
2-Qubit operations
Photon detection due to high
sensitivity to extern fields
Quantum simulations
Biological issues:
Foerster-resonance
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Definition of a Rydberg atom
Characteristics

Definition

Rydberg atom has at least 1
electron far away from its core
(compared to ground state
electrons)
High principle quantum number
n, typically n ≥ 20
Correspondence principle
applicable, which leads to Bohr
model (H-atom-like)
Rydberg atoms show
exaggerated properties
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Estimated Properties - Scaling with n

Size r = a0 ·n2 ∼ n2

Energy E = −ER
n2 ∼ n−2

Level spacing ∆E ∼ n−3

Geom. cross section σ = πr2 ∼ n4

Dipole moment d = e · r ∼ n2

Polarizability α = d2

∆E ∼ n7

vdW parameter C6 = −(d1·d2)2

∆E ∼ n11

Radiative lifetime ∼ n3
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Definition of a Rydberg atom
Characteristics

Quantum defect

Approximation valid, if
High-n-electron sees attractive
Coulomb-potential with 1
elemental charge
Inner shell electrons screen core

High distances (high n), high
angular momenta → low spatial
overlap between electron
wavefunctions → Alkali atoms
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Definition of a Rydberg atom
Characteristics

Quantum defect

Effects of low angular momenta and
high spatial overlap respectively:

Penetration of inner shells leads
to higher charges and greater
forces
Passing electron polarizes
ion-core: Induced
dipole-charge-interaction
l-degeneracy is lifted

Empirical energy equation:

EB =−
ER,2

(n−δn,l )2 (1)
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Stark effect and ionisation

Application of a static, external electric field shows

Linear Stark effect for
degenerate states (high l)
∆E = d ·E
Quadratic Stark effect for
non-degenerate states (low l)
∆E =−1

2 |α|E
2

Ionisation at high electric fields
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Ionisation

60003000-6000 -3000 0

Rb(35s)

position / az 0

-200

-400

-600

-800

-1000

0
po

te
nt

ia
le

ne
rg

y/
cm

-1

maximum
barrier zb

|E |=
πε0E 2

R
e3

1
n4 (2)

13 / 37



Motivation
Definition and characteristics

Interactions
Experimental realisation
Universal scaling theory

Rydberg Phase Gate

External electric field
Interaction with radiation
Dipole and van der Waals interaction
Pair states
Collectivity

Atom-Light Interaction

Assuming a 2-level atom with dipole approximation:

Ĥ = Ĥatom + Ĥlight + Ĥinteraction (3)

Ĥa =
p̂2

2m + h̄ω0 |e〉〈e| (4)

ĤL = h̄ωL(â†â +
1
2) (5)

Ĥi =−d ·E (r , t) (6)

Ultracold, frozen atom → neglect kinetic energy
Semiclassical picture → neglect quantisation of light field
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Atom-Light Interaction

Atom-light interaction of a single atom:

Ĥ =− h̄∆

2 (1−σz) + h̄Ωσx (7)
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Dipole-dipole interaction
Consider two H-atoms in
Born-Oppenheimer approximation

Ĥint =
e2

R +
e2∣∣∣~R +~rB−~rA

∣∣∣− e2∣∣∣~R +~rB

∣∣∣− e2∣∣∣~R−~rA

∣∣∣
(8)

Expanded for R � a0 in ri
R gives

Ĥint =
1

R3 [~dA ~dB−
3(~dA ·~R)(~dB ·~R)

R2 ] =
C3
r3

(9)
Strong, long range interaction due to d ∼ n2

Permanent dipoles for l ≥ 4, for lower l only in external fields
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van der Waals interaction

Perturbation theory with dipole Hamiltonian:

E1 =
〈

ψ0

∣∣∣ Ĥint

∣∣∣ψ0
〉

= 0 (10)

Assuming a two level atom with 〈e |di |g〉= d√
3

E2 =

(∣∣∣〈g
∣∣∣ Ĥint

∣∣∣e〉∣∣∣)2

Eg −Ee
=

4d4

9
1

Eg −Ee

1
R6 =−C6

r6 (11)
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Pair states

Consider two Rydberg atoms in state
|s〉, energy difference gives system
|ss〉, |p′p〉 with
∆ = (Es −Ep)− (Ep′−Es). Then
Ĥ = (

0 U(r)
U(r) ∆

)
with U(r) =

~d1·~d2
r3 gives the new

eigenenergies

E± =
∆

2 ±
√

(
∆

2 )2 + U(r)2 (12)

s

p

Eb

p´

∆

p´s

p´p
ss

bare states pair states

sp

Ep
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Pair states

E± =
∆

2 ±
√

(
∆

2 )2 + U(r)2 (13)

Case 1: U(r)�∆ Dipole interaction: E± = C3
r3

∆ = 0→ Förster-resonance
Case 2: ∆� U(r) Taylor expansion leads to: E± = ∆± U(r)2

∆
van der Waals interaction → Rydberg blockade
Case 3: U(r)≈∆→ Crossover
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Förster resonance

Non-radiative coupling ns + ns ←→ np + np′
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Crossover
Since there’s a transition from van der Waals to dipole-dipole
dominated region at U(r)≈∆, one can define a crossover distance

C3
r3
C

= ∆ (14)
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Rydberg blockade

spatial dependant energy shift
compare to line (saturation)
broadening
no other Rydberg atom in
blockade sphere → sort of
lattice order
strong interaction rB � rparticle ,
typically 103particles

sphere

Z C6
r6
B

= ZC6n2
r =
√

Nh̄ΩR (15)

rb atomic distance

E

g,r

r,r

g,g

R

rb
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Collectivity
Laser acts on bunch of atoms:
|0〉= |g1,g2, ...gN〉
Superatom:
|1〉= 1√

N ∑
N
i=1 |g1,g2, ..., r , ...,gN〉

One atom excitation:
h̄Ω0 =

〈
g
∣∣∣ ĤLaser

∣∣∣ r〉
h̄ΩC =

〈
0
∣∣∣ ĤLaser

∣∣∣1〉= h̄
√

NΩ0

c)a) b)
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Using N(r) =
ng (r)
nR (r) and blockade radius:

nR(r) = (
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2
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Method

Requirements
Sufficiently intense and narrow laser for coherent evolution
within natural lifetime. Intensity to overcome low dipole
matrix elements and coherence for full Rabi oscillations
Detection via field ionisation → fast ion detection (most
common)
Low temperatures to fulfill frozen gas approximation, low
black body radiation, no collisions, low Doppler shift
(counterpropagating lasers)
Excitation from ultracold gas or BEC
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Experiment

Selection rules: Conservation of
angular momentum
Effective 2-level system due to
large detuning δ ; 5p not
populated
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Universality
Rydberg atoms

Universality

tool to describe system without knowing microscopic details
macroscopic behaviour is dominated by long-range physics
critical phenomenom, f.e. near critical point of 2nd order
phase transition
only one characteristic length scale ξ

critical exponents are universal
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Universality
Rydberg atoms

Example: Ferromagnet

T > TC demagnetized,
rotational symmetry
TC > T symmetry lose, order
parameter ~M
conjugate field H, reduced
temperature t = T

TC
−1,

diverging length scale ξ ∼ 1
tν

H = 0: M ∼ tβ ; t = 0: M ∼ H 1
δ

powers of H, t: universal critical
exponents

PM

critical

region

FM

H

T

TC
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Rydberg atoms

Ĥ =− h̄∆

2 ∑
i

(1−σ
(i)
z ) +

h̄Ω

2 ∑
i

σ
(i)
x + C6 ∑

j<i

P(i)
rr P(j)

rr

|ri − rj |6
(16)

with P(i)
rr = |ri〉〈ri |= 1−σ

(i)
z

2

order parameter: Rydberg
fraction f =

〈
P(i)

rr
〉

= NR
Ng

diverging length scale
ξ = aR

ag
= 1

ag

√
C6

h̄ΩN

’conjugate field’
α = h̄Ω0

C6n2
g

= couplingstrength
interaction

t=̂∆′ = h̄∆
C6n2

g
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Rydberg atoms

Second order phase transition for 1� α between pure ground
state (paramagnetic) and arranged Rydberg atoms in crystal
(ferromagnetic)

ξ diverges for α → 0
∆′ = 0: system independant of
microscopic details
α = 0: f ∼∆′κ ; ∆′ = 0: f ∼ αν

κ,ν universal scaling exponents
in critical region, i.e.
1� α,1�∆′
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f R
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Quantum Computation and Rydberg atoms

quantum computation requires coherent manipulation of large
number of coupled quantum systems
storage of information in collective excitations of many-atom
ensembles
single atom absorption cross-section generally low

→ make use of
collective behaviour of Rydberg excitations
Rydberg blockade control and strong interaction
well developped techniques (cooling, trapping, ...)
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Rydberg storage and switch
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Two-level dynamics

(
|g(t)〉
|r(t)〉

)
=

(
cos(θ(t)) −i · sin(θ(t))

i · sin(θ(t)) cos(θ(t))

) (
|g(0)〉
|r(0)〉

)
with θ(t) =

√
N
∫ t

0
Ω(τ)

2 dτ

Population transfer via π-pulse: π =
∫

Ωf (τ)dτ

Arbitrary manipulation from known state to final state possible
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Phase Gate

Realisation of a phase gate (total phase shift of π):

|g ,e〉 →π |r ,e〉 →∆t= φ

U(r) |r ,e〉 →π |e,g〉
or |g ,g〉 →π |r ,g〉 →2π (−1) · |r ,g〉 →π |g ,g〉
Error sources: Dephasing, double excitation
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Conclusion

Rydberg atom H-like behaviour (Bohr atom, quantum defect)
and extraordinary properties
Interactions in picture of two level atom
Experiment
Quantum critical behaviour, universality and phase diagram
Examples of quantum computation with Rydberg atoms
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