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Motivation

Bose-Einstein condensation

Velocity distribution of atoms for different
temperatures1

Heat capicity of an ideal Bose-Einstein gas2

Superfluidity

Vortices in a rotating BEC1 4He heat capicity2
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Interaction of electrons via exchange of a phonon2 Heat capicity of a superconducter resulting from the
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Motivation

Superconductivity

Interaction of electrons via exchange of a phonon2 Heat capicity of a superconducter resulting from the
Ginzburg-Landau theory2

Is it possible to simulate solid state physics

with cold gases?
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Motivation

Properties of alkaline-earth
metals:

Two valence electrons

Fermionic and bosonic
isotopes
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⇒ Two key features:

Ultranarrow doubly forbidden transition between the ground
state 1S0 and the state 3P0

Fermionic isotopes show almost perfect decoupling of the
electronic angular moment J and the nuclear spin I for these
two states



An optical lattice clock Cold alkaline-earth fermions in optical lattices Limits of the two-orbital Hamiltonian Conclusion

Outline - Alkaline-earth SU(N)

1 An optical lattice clock
Time definition and clock quantities
The clock transition
Optical lattices

2 Cold alkaline-earth fermions in optical lattices
Bloch functions
Wannier functions
Second quantized Hamiltonian
Two-orbital Hamiltonian

3 Limits of the two-orbital Hamiltonian
Kugel-Khomskii model (KKM)
Kondo lattice model (KLM)

4 Conclusion



An optical lattice clock Cold alkaline-earth fermions in optical lattices Limits of the two-orbital Hamiltonian Conclusion

Time definition and clock quantities

The second is the duration of 9 192 631 770 periods

of the radiation corresponding to the transition

between the two hyperfine levels of the ground state

of the caesium 133 atom.4

The oscillator is characterized by the Q-factor:

Q =
ν0

δν

The fractional instability is given by the Allan deviation:

σ ≈ 1

Q
√
Nat · τ
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Time definition and clock quantities

Possible improvements:

Switching from a transition with radio-frequency νRF (109Hz)
to one with higher frequency, e.g. optical frequency νOF

(1014 Hz)

Using a transition with a small linewidth δν

Cooling atoms to eliminate Doppler-broadening
(δνDoppler = − v

c
ν0) and to increase the investigation time

Trapping atoms in an optical lattice to interrogate them
simultaneously

⇒ Cs atomic clock: σ = 10−15

⇒ Optical lattice clock: σ = 10−18
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Strontium level scheme

Level scheme for a strontium optical lattice clock5
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Selection rules

Dipole allowed transitions:

∆n = arbitrary

∆l = ±1

∆J = 0,±1

J = 0 9 J ′ = 0

with linearly (∆mJ = 0) and circularly (∆mJ = ±1)
polarized light

p ss +-

m

m´=m m´=m+1m´=m-1
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Selection rules

Dipole allowed transitions:

∆n = arbitrary

∆l = ±1

∆J = 0,±1

J = 0 9 J ′ = 0

with linearly (∆mJ = 0) and circularly (∆mJ = ±1)
polarized light

For atoms with strong LS-coupling:

∆S = ±1
∆L = 0,±1,±2

⇒ Transitions between singlet and triplet states are allowed

p ss +-

m

m´=m m´=m+1m´=m-1
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The 1
S0 -

3
P0 transition

The clock transition 1S0 → 3P0 is doubly forbidden

Transition from a spin-singlet to a spin-triplet state

J = 0 → J ′ = 0

S
1

0

P
3

0
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Hyperfine interactions admixe the 3P1-state

Typical linewidth ≈ 10mHz
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The 1
S0 -

3
P0 transition

The clock transition 1S0 → 3P0 is doubly forbidden

Transition from a spin-singlet to a spin-triplet state

J = 0 → J ′ = 0

Fermionic isotope (87Sr,I = 9
2 ):

Hyperfine interactions admixe the 3P1-state

Typical linewidth ≈ 10mHz

Bosonic isotope (88Sr,I = 0):

No hyperfine interactions → transition is strongly suppressed
3P1-state can be admixed by an external magnetic field

S
1

0

P
3

0
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Strontium level scheme

Level scheme for a strontium optical lattice clock5
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Optical lattices

Superposition of two laser beams
with wavelength λL

Atoms experience an optical
potential:

V (y, r) = −α(ωL)E
2
Le

−2( r
w(y)

)2
cos

2πy

λL

2

1D optical lattice scheme 5

Dipole force
Fdip = −∇V (y, r)

points to

the intensity maxima for red detuned light (λL ≥ λR)

the intensity minima for blue detuned light (λL ≤ λR)
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Stark effect

Atomic energy levels get split and
shifted due to an external electric
field

The Zeeman effect is the magnetic
analogue

The resulting clock frequency is:
Stark map for 13 ≤ n ≤ 16 of hydrogen6

ν = ν0 − [αe(ωL)− αg(ωL)]
E2

L

4h
+O(E4

L)

with the polarizability

αa(ωL) =
∑

b

|〈a|D · ǫ|b〉|2
Eb − Ea − ωL

+
∑

b

|〈a|D · ǫ|b〉|2
Eb − Ea + ωL
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Magic Wavelengths

Light shifts for the 1S0- (blue line) and 3P0- (red line) states depending on the lattice laser frequency5

The polarizabilities are the same for both clock states
(αe(ωL) = αg(ωL))

The ac-Stark effect is canceled out

Both states experience the same trapping potential
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Blue and red magic lattices

Red magic lattice:

Atoms get trapped in areas of
high laser intensities

Higher order light shifts can not
be neglected

Reduction of laser intensity
→ spectral line broadens and
collision rate increases
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Blue and red magic lattices

Red magic lattice:

Atoms get trapped in areas of
high laser intensities

Higher order light shifts can not
be neglected

Reduction of laser intensity
→ spectral line broadens and
collision rate increases

Blue magic lattice:

Atoms get trapped in areas with
low laser intensities

Contributions of higher order
light shifts can be neglected
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Bloch functions

The optical lattice potential is periodic

VL(r) = VL(r + aj)

with the lattice vector a = {aα} and
aj = {njaα|nj = 0,±1, ...}

Solutions for periodic potentials are Bloch functions

φnk(r) = fnk(r)e
ik·r

where fnk(r) = fnk(r + aj)

The quasimomentum k corresponds to the Brillouin zone

B = {k : − π

aα
≤ kα ≤ π

aα
}
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Wannier functions

For strong localization the Wannier
functions

ωnj(r) =
1√
NL

∑

k

φnk(r)e
−ik·aj

can be used as a basis

Orthonormality:

∫

ω∗
mi(r)ωnj(r)dr = δmnδij

Real:

ωnj(r) = ω∗
nj(r)

Completeness:

∑

nj

ωnj(r)ω
∗
nj(r

′) = δ(r−r′)

Periodicity:

ωn(r) = ωn(r − aj)
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Hamiltonian for trapped fermions in a 2D-lattice

Fermionic alkaline-earth atoms trapped in the lowest band of
an optical 2D-lattice are described by:

H =
∑

αm

∫

d3rψ†
αm(r)[− ~

2

2M
∇2 + Vα(r)]ψαm(r)

+ ~ω0

∫

d3r[ρe(r)− ρg(r)] +
g+eg + g−eg

2

∫

d3rρe(r)ρg(r)

+
∑

α,m<m′

gαα

∫

d3rραm(r)ραm′(r)

+
g+eg − g−eg

2

∑

mm′

∫

d3rψ†
gm(r)ψ†

em′(r)ψgm′(r)ψem(r)
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Two-orbital single-band Hubbard Hamiltonian

The resulting Hamiltonian is

H =−
∑

〈j,i〉α,m

Jα(c
†
iαmcjαm + h.c.)

with the energies
Jα: Tunnelling between two neighbouring

lattice sites
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Two-orbital single-band Hubbard Hamiltonian

The resulting Hamiltonian is

H =−
∑

〈j,i〉α,m

Jα(c
†
iαmcjαm + h.c.) +

∑

j,α

Uαα

2
njα(njα − 1)

with the energies
Jα: Tunnelling between two neighbouring

lattice sites

Uαα: Onsite interactions
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Two-orbital single-band Hubbard Hamiltonian

The resulting Hamiltonian is

H =−
∑

〈j,i〉α,m

Jα(c
†
iαmcjαm + h.c.) +

∑

j,α

Uαα

2
njα(njα − 1)

+ V
∑

j

njenjg

with the energies
Jα: Tunnelling between two neighbouring

lattice sites

Uαα: Onsite interactions

V : Direct interactions
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Two-orbital single-band Hubbard Hamiltonian

The resulting Hamiltonian is

H =−
∑

〈j,i〉α,m

Jα(c
†
iαmcjαm + h.c.) +

∑

j,α

Uαα

2
njα(njα − 1)

+ V
∑

j

njenjg + Vex
∑

j,m,m′

c
†
jgmc

†
jem′cjgm′cjem

with the energies
Jα: Tunnelling between two neighbouring

lattice sites

Uαα: Onsite interactions

V : Direct interactions

Vex: Exchange interactions
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Limits of the two-orbital Hamiltonian

Two-orbital

Hamiltonian

U(1)xSU(N)-symmetry

Kugel-Khomskii model
(KKM)

Kondo lattice model
(KLM)
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Kugel-Khomskii model

Strongly interacting regime ( J
U

≪ 1)
→ Effective spin Hamiltonian

Special case:
only |g〉-state atoms in a bipartite lattice

A

B
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Kugel-Khomskii model

Strongly interacting regime ( J
U

≪ 1)
→ Effective spin Hamiltonian

Special case:
only |g〉-state atoms in a bipartite lattice

A

B

Kugel-Khomskii Hamiltonian

H =
2J2

gUgg

U2
gg − (Ugg(nA − nB) + ∆)2

∑

〈i,j〉

S2
ij

where
S2
ij =

∑

mn

Sn
m(i)Sm

n (j) =
∑

mn

c
†
imcinc

†
jncjm
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Kugel-Khomskii model

KKM describes the magnetic properties of transition-metal
compounds based on superexchange

Superexchange is the strong coupling between two magnetic
non-neighbouring ions through a non-magnetic ion

Ferromagnetic interactions, e.g. for a 90 ◦-angle between both
magnetic ions

Otherwise antiferromagnetic interactions

Transition metal oxide with
possible spin configurations7

FerromagneticAntiferromagnetic

(a)

(b)

(c)
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Limits of the two-orbital Hamiltonian

U(1)xSU(N)-symmetry

Kugel-Khomskii model
(KKM)

Kondo lattice model
(KLM)

J/U 1<<

Two-orbital

Hamiltonian
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Kondo lattice model

Onsite interaction between ground state atoms is turned off
→ Ugg = 0

One atom in |e〉-state per lattice site
→ nje = 1

Deep lattice such that Je ≪ Uee

→ Je = 0 | >g

| >e
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Kondo lattice model

Onsite interaction between ground state atoms is turned off
→ Ugg = 0

One atom in |e〉-state per lattice site
→ nje = 1

Deep lattice such that Je ≪ Uee

→ Je = 0

Kondo lattice Hamiltonian

H = −
∑

〈i,j〉m

Jg(c
†
igmcjgm+h.c.)+Vex

∑

j,m,m′

c
†
jgmc

†
jem′cjgm′cjem

| >g

| >e
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Kondo lattice model

Kondo lattice model:

Conduction electrons are free electrons in the conduction band

Magnetic impurties at site j are localized spins

Spin-spin interactions between the conduction electrons and
the impurites

⇒ Explains the Kondo effect:

Resistance minimum at a
non-zero temperature

For Vex < 0:
spin-antisymmetric states
between conduction
electrons and localized spins Temperature dependent resistance of gold with

impurities8
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Limits of the two-orbital Hamiltonian

U(1)xSU(N)-symmetry

Kugel-Khomskii model
(KKM)

Kondo lattice model
(KLM)

J/U 1<<
J/U 1<<

J U    ,U   =0<<e ee gg

Two-orbital

Hamiltonian
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Conclusion

The clock transition 1S0 → 3P0 gets enabled due to

strong LS-coupling

the admixtur of the 3P1-state

Perturbations of the clock frequency due to the ac-Stark shift
can be eliminate by

creating an optical lattice with one of the possible magic
wavelengths

using a blue detuned magic wavelength

Two-orbital single-band Hamiltonian

⇒ Kugel-Khomskii Hamiltonian

⇒ Kondo lattice Hamiltonian
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Thank you for your attention!
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Lamb-Dicke regime

The potential is harmonic near the
bottom of each lattice site with the
level spacing

Eho = ~
2π

λL

√

2α(ωL)E
2
L

M
Probability of presence in a quantum HO

By probig the clock transition the atoms get a momentum

p =
~ωp

c

Atoms stay in the same state of motion as long as p2

2M ≤ Eho

⇒ Lamb-Dicke regime ensures that the atomic motion does not
modify the clock frequency
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Atom-atom interactions

Collisional frequency shift is related to the mean field energy
shift

δE =
4π~2aη

m
g(2)(0)
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Atom-atom interactions

Collisional frequency shift is related to the mean field energy
shift

δE =
4π~2aη

m
g(2)(0)

Distinguishable fermions or bosons: 1 ≤ g(2)(0) ≤ 2

→ More complex lattice geometries, e.g. 3D-lattice, to
minimize the frequency shift
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Atom-atom interactions

Collisional frequency shift is related to the mean field energy
shift

δE =
4π~2aη

m
g(2)(0)

Distinguishable fermions or bosons: 1 ≤ g(2)(0) ≤ 2

→ More complex lattice geometries, e.g. 3D-lattice, to
minimize the frequency shift

Indistinguishable fermions: g(2)(0) = 0 due to the Pauli
exclusion principle

→ Creation of spin-polarized fermions to achive δE = 0
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Spin-polarization

Atoms are prepared in the two
outer Zeeman levels of the ground
state by optical pumping

f± of the corresponding transitions
1S0(F = 9

2 ,mF = ±9
2) →

3P0(F = 9
2 ,mF = ±9

2)
get alternately measured

Excerpt from the level scheme for a strontium
optical lattice clock5⇒ Transition frequency

f0 =
f+ + f−

2

⇒ Cancelation of the first order Zeeman shift by realizing virtual
spin-zero atoms
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