An optical lattice clock	Cold alkaline-earth fermions in optical lattices	Limits of the two-orbital Hamiltonian	Conclusion

Alkaline-earth SU(N) Physics of cold gases

Philipp Ilzhöfer

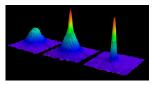
16.07.2013

Universität Stuttgart

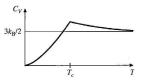
An optical lattice clock	Cold alkaline-earth fermions in optical lattices	Limits of the two-orbital Hamiltonian	Conclusion

Motivation

Bose-Einstein condensation



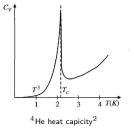
Velocity distribution of atoms for different $\operatorname{temperatures}^1$



Heat capicity of an ideal Bose-Einstein gas^2

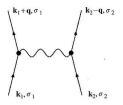
Superfluidity

Vortices in a rotating BEC¹

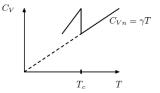


	0000	000000	
Motivation			

Superconductivity



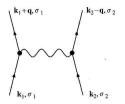
Interaction of electrons via exchange of a phonon^2

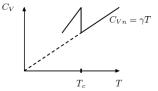


Heat capicity of a superconducter resulting from the Ginzburg-Landau ${\rm theory}^2$

Motivation			
An optical lattice clock	Cold alkaline-earth fermions in optical lattices	Limits of the two-orbital Hamiltonian	Conclusion

Superconductivity





Interaction of electrons via exchange of a phonon^2

Heat capicity of a superconducter resulting from the Ginzburg-Landau theory $^2\,$

Is it possible to simulate solid state physics with cold gases?

Motivation			
	Cold alkaline-earth fermions in optical lattices	Limits of the two-orbital Hamiltonian	Conclusion

Properties of alkaline-earth metals:

- Two valence electrons
- Fermionic and bosonic isotopes

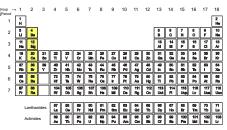
Group IPeriod	• 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	8 U	4 Be											Б В	e C	7 N	8 0	9 F	10 No
3	11 Na	12 Mg											13 Al	14 81	18 P	18 8	17 Cl	18 Ar
4	19 K	20 Ca	21 80	22 11	23 V	at Cr	25 Min	28 Fe	27 C8	28 NI	29 Ou	30 Zh	31 Ga	32 Ge	33 Aa	34 8e	35 Br	36 Kr
5	37 Rb	38 8r	30 Y	40 Zr	41 NB	42 Mo	43 12	44 Ru	45 Ph	48 Pd	47 Ag	48 01	49 in	50 Sin	51 Sb	52 Te	53 I	54 Xa
6	85 Ca	80 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 11	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	106 He	109 Mt	110 De	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	118 Lv	117 Uus	118 Uuo
				_	_												_	
	L	anthar	ides	67 La	58 Ce	59 Pt	eo Nd	61 Pm	62 Sm	63 Eu	64 Gd	66 Tb	86 Dy	67 Ho	66 Er	69 Tm	70 Yb	71
	/	Actinide	s	89 Ac	90 Th	91 Pa	92 U	93 Nip	94 Pu	95 Am	98 Om	97 Bk	98 C7	90 Ea	100 Fm	101 Mid	102 No	103 Lr

Periodic table of $elements^3$

Motivation			
	Cold alkaline-earth fermions in optical lattices	Limits of the two-orbital Hamiltonian	Conclusion

Properties of alkaline-earth metals:

- Two valence electrons
- Fermionic and bosonic isotopes



Periodic table of $elements^3$

- \Rightarrow Two key features:
 - Ultranarrow doubly forbidden transition between the ground state 1S_0 and the state 3P_0
 - Fermionic isotopes show almost perfect decoupling of the electronic angular moment J and the nuclear spin I for these two states

Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian Conclu

Outline - Alkaline-earth SU(N)

1 An optical lattice clock

- Time definition and clock quantities
- The clock transition
- Optical lattices

2 Cold alkaline-earth fermions in optical lattices

- Bloch functions
- Wannier functions
- Second quantized Hamiltonian
- Two-orbital Hamiltonian
- 3 Limits of the two-orbital Hamiltonian
 - Kugel-Khomskii model (KKM)
 - Kondo lattice model (KLM)

4 Conclusion

Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian Concluo00000

Time definition and clock quantities

The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom.⁴

The oscillator is characterized by the Q-factor:

$$Q = \frac{\nu_0}{\delta\nu}$$

The fractional instability is given by the Allan deviation:

$$\sigma \approx \frac{1}{Q\sqrt{N_{\rm at}\cdot\tau}}$$

Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian Conclus

Time definition and clock quantities

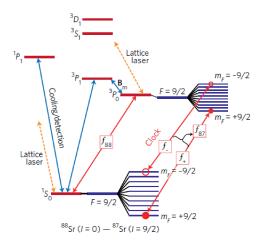
Possible improvements:

- Switching from a transition with radio-frequency $\nu_{\rm RF}$ (10⁹ Hz) to one with higher frequency, e.g. optical frequency $\nu_{\rm OF}$ (10¹⁴ Hz)
- Using a transition with a small linewidth $\delta \nu$
- Cooling atoms to eliminate Doppler-broadening $(\delta \nu_{\text{Doppler}} = -\frac{v}{c}\nu_0)$ and to increase the investigation time
- Trapping atoms in an optical lattice to interrogate them simultaneously
- \Rightarrow Cs atomic clock: $\sigma = 10^{-15}$
- \Rightarrow Optical lattice clock: $\sigma = 10^{-18}$

Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian Conclu

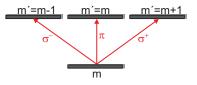
Strontium level scheme



Level scheme for a strontium optical lattice ${\rm clock}^5$

Selection rules	

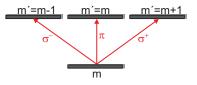
- Dipole allowed transitions:
 - $\ \ \, \blacksquare \ \ \Delta n = {\rm arbitrary}$
 - $\bullet \ \Delta l = \pm 1$
 - $\ \ \, \Delta J=0,\pm 1$
 - $\blacksquare \ J=0 \nrightarrow J'=0$



with linearly ($\Delta m_J = 0$) and circularly ($\Delta m_J = \pm 1$) polarized light

Selection ru			
An optical lattice clock	Cold alkaline-earth fermions in optical lattices	Limits of the two-orbital Hamiltonian	Conclusion

- Dipole allowed transitions:
 - $\ \ \, \Delta n = {\rm arbitrary}$
 - $\bullet \ \Delta l = \pm 1$
 - $\Delta J = 0, \pm 1$
 - $\blacksquare J = 0 \nrightarrow J' = 0$



with linearly ($\Delta m_J = 0$) and circularly ($\Delta m_J = \pm 1$) polarized light

■ For atoms with strong *LS*-coupling:

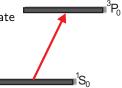
$$\Delta S = \pm 1$$

 $\bullet \ \Delta L = 0, \pm 1, \pm 2$

 \Rightarrow Transitions between singlet and triplet states are allowed

- The clock transition ${}^1S_0 \rightarrow {}^3P_0$ is doubly forbidden
 - Transition from a spin-singlet to a spin-triplet state

$$J = 0 \rightarrow J' = 0$$



An optical lattice clock Cold alkaline-earth fermions in optical lattices Limits of the two-orbital Hamiltonian Conclusion <math>Conclusion Conclusion Conclusio

- The clock transition ${}^1S_0 \rightarrow {}^3P_0$ is doubly forbidden
 - Transition from a spin-singlet to a spin-triplet state

$$\blacksquare J = 0 \rightarrow J' = 0$$

- Fermionic isotope (⁸⁷Sr, $I = \frac{9}{2}$):
 - Hyperfine interactions admixe the ³P₁-state
 - **Typical linewidth** $\approx 10 \, \mathrm{mHz}$

An optical lattice clock conduction conduct the fermions in optical lattices between the second conduct the second conduct of the second conduct the second conduct

- \blacksquare The clock transition ${}^1S_0 \rightarrow {}^3P_0$ is doubly forbidden
 - Transition from a spin-singlet to a spin-triplet state

$$\blacksquare J = 0 \rightarrow J' = 0$$

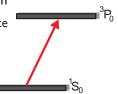
Fermionic isotope $\binom{87}{5}$ Sr, $I = \frac{9}{2}$):

Hyperfine interactions admixe the ³P₁-state

Typical linewidth $\approx 10 \, \mathrm{mHz}$

Bosonic isotope (⁸⁸Sr,I = 0):

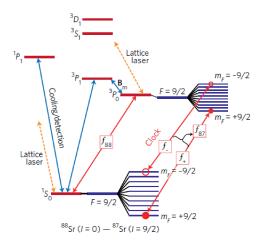
- \blacksquare No hyperfine interactions \rightarrow transition is strongly suppressed
- \blacksquare $^{3}P_{1}$ -state can be admixed by an external magnetic field



Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian Conclu

Strontium level scheme

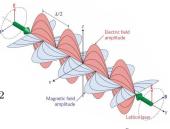


Level scheme for a strontium optical lattice ${\rm clock}^5$

Ontical lattices		
An optical lattice clock Cold alkaline-earth fermions in optical lattices	Limits of the two-orbital Hamiltonian	Conclusion

- Superposition of two laser beams with wavelength $\lambda_{\rm L}$
- Atoms experience an optical potential:

$$V(y,r) = -\alpha(\omega_{\mathsf{L}})E_{\mathsf{L}}^{2}e^{-2(\frac{r}{w(y)})^{2}}\cos\frac{2\pi y}{\lambda_{\mathsf{L}}}^{2}$$



1D optical lattice scheme ⁵

Dipole force

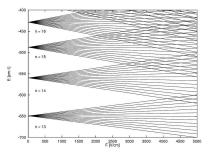
$$F_{\mathsf{dip}} = -\nabla V(y, r)$$

points to

- the intensity maxima for red detuned light $(\lambda_L \ge \lambda_R)$
- the intensity minima for blue detuned light ($\lambda_{\mathsf{L}} \leq \lambda_{\mathsf{R}}$)

Stark effect

- Atomic energy levels get split and shifted due to an external electric field
- The Zeeman effect is the magnetic analogue
- The resulting clock frequency is:



 $\nu = \nu_0 - [\alpha_{\rm e}(\omega_{\rm L}) - \alpha_{\rm g}(\omega_{\rm L})] \frac{E_{\rm L}^2}{4h} + O(E_{\rm L}^4)$

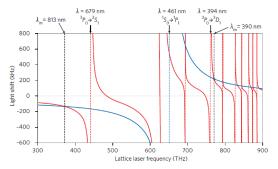
with the polarizability

$$\alpha_a(\omega_{\mathsf{L}}) = \sum_b \frac{|\langle a|\underline{D} \cdot \underline{\epsilon}|b\rangle|^2}{E_b - E_a - \omega_{\mathsf{L}}} + \sum_b \frac{|\langle a|\underline{D} \cdot \underline{\epsilon}|b\rangle|^2}{E_b - E_a + \omega_{\mathsf{L}}}$$

Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian Conclusion

Magic Wavelengths



Light shifts for the $^1S_{0^-}$ (blue line) and $^3P_{0^-}$ (red line) states depending on the lattice laser frequency 5

- The polarizabilities are the same for both clock states $(\alpha_{e}(\omega_{L}) = \alpha_{g}(\omega_{L}))$
- The ac-Stark effect is canceled out
- Both states experience the same trapping potential

Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian Conclusion

Blue and red magic lattices

Red magic lattice:

- Atoms get trapped in areas of high laser intensities
- Higher order light shifts can not be neglected
- Reduction of laser intensity → spectral line broadens and collision rate increases

Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian Conclusion

Blue and red magic lattices

Red magic lattice:

- Atoms get trapped in areas of high laser intensities
- Higher order light shifts can not be neglected
- Reduction of laser intensity → spectral line broadens and collision rate increases
- Blue magic lattice:
 - Atoms get trapped in areas with low laser intensities
 - Contributions of higher order light shifts can be neglected

Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian Concl

Outline - Alkaline-earth SU(N)

1 An optical lattice clock

- Time definition and clock quantities
- The clock transition
- Optical lattices

2 Cold alkaline-earth fermions in optical lattices

- Bloch functions
- Wannier functions
- Second quantized Hamiltonian
- Two-orbital Hamiltonian

3 Limits of the two-orbital Hamiltonian

- Kugel-Khomskii model (KKM)
- Kondo lattice model (KLM)

4 Conclusion

An optical lattice clock	Cold alkaline-earth fermions in optical lattices $\bullet \circ \circ \circ$	Limits of the two-orbital Hamiltonian	Conclusion
Bloch funct	ions		

The optical lattice potential is periodic

$$V_{\mathsf{L}}(\underline{r}) = V_{\mathsf{L}}(\underline{r} + \underline{a}_j)$$

with the lattice vector $\underline{a} = \{a_{\alpha}\}$ and $\underline{a}_{j} = \{n_{j}a_{\alpha}|n_{j} = 0, \pm 1, ...\}$

Solutions for periodic potentials are Bloch functions

$$\phi_{nk}(\underline{r}) = f_{nk}(\underline{r})e^{i\underline{k}\cdot\underline{r}}$$

where $f_{nk}(\underline{r}) = f_{nk}(\underline{r} + \underline{a}_j)$

 \blacksquare The quasimomentum \underline{k} corresponds to the Brillouin zone

$$B = \{\underline{k} : -\frac{\pi}{a_{\alpha}} \le k_{\alpha} \le \frac{\pi}{a_{\alpha}}\}$$

Cold alkaline-earth fermions in optical lattices $\circ \bullet \circ \circ$

Limits of the two-orbital Hamiltonian Conclus

Wannier functions

 For strong localization the Wannier functions

$$\omega_{nj}(\underline{r}) = \frac{1}{\sqrt{N_{\mathsf{L}}}} \sum_{k} \phi_{nk}(\underline{r}) e^{-i\underline{k}\cdot\underline{a}_{j}}$$

can be used as a basis

Orthonormality:

$$\int \omega_{mi}^*(\underline{r}) \omega_{nj}(\underline{r}) \mathrm{d}\underline{r} = \delta_{mn} \delta_{ij}$$

Real:

$$\omega_{nj}(\underline{r}) = \omega_{nj}^*(\underline{r})$$

Completeness:

$$\sum_{nj} \omega_{nj}(\underline{r}) \omega_{nj}^*(\underline{r'}) = \delta(\underline{r} - \underline{r'})$$

Periodicity:

$$\omega_n(\underline{r}) = \omega_n(\underline{r} - \underline{a}_j)$$

Cold alkaline-earth fermions in optical lattices $\circ \circ \circ \circ$

Limits of the two-orbital Hamiltonian Cor

Hamiltonian for trapped fermions in a 2D-lattice

$$\begin{split} H &= \sum_{\alpha m} \int \mathsf{d}^3 \underline{r} \psi^{\dagger}_{\alpha m}(\underline{r}) [-\frac{\hbar^2}{2M} \nabla^2 + V_{\alpha}(\underline{r})] \psi_{\alpha m}(\underline{r}) \\ &+ \hbar \omega_0 \int \mathsf{d}^3 \underline{r} [\rho_e(\underline{r}) - \rho_g(\underline{r})] + \frac{g^+_{eg} + g^-_{eg}}{2} \int \mathsf{d}^3 \underline{r} \rho_e(\underline{r}) \rho_g(\underline{r}) \\ &+ \sum_{\alpha, m < m'} g_{\alpha \alpha} \int \mathsf{d}^3 \underline{r} \rho_{\alpha m}(\underline{r}) \rho_{\alpha m'}(\underline{r}) \\ &+ \frac{g^+_{eg} - g^-_{eg}}{2} \sum_{mm'} \int \mathsf{d}^3 \underline{r} \psi^{\dagger}_{gm}(\underline{r}) \psi^{\dagger}_{em'}(\underline{r}) \psi_{gm'}(\underline{r}) \psi_{em}(\underline{r}) \end{split}$$

Cold alkaline-earth fermions in optical lattices $\circ \circ \circ \circ$

Limits of the two-orbital Hamiltonian Cor

Hamiltonian for trapped fermions in a 2D-lattice

$$H = \sum_{\alpha m} \int d^3 \underline{r} \psi^{\dagger}_{\alpha m}(\underline{r}) \left[-\frac{\hbar^2}{2M} \nabla^2 + V_{\alpha}(\underline{r}) \right] \psi_{\alpha m}(\underline{r})$$

Cold alkaline-earth fermions in optical lattices $\circ \circ \circ \circ$

Limits of the two-orbital Hamiltonian Conc

Hamiltonian for trapped fermions in a 2D-lattice

$$H = \sum_{\alpha m} \int d^{3}\underline{r} \psi^{\dagger}_{\alpha m}(\underline{r}) [-\frac{\hbar^{2}}{2M} \nabla^{2} + V_{\alpha}(\underline{r})] \psi_{\alpha m}(\underline{r})$$

$${}^{3}P_{0} \qquad F = 9/2 \qquad M_{F} = -9/2$$

$${}^{3}P_{0} \qquad F = 9/2 \qquad M_{F} = -9/2$$

$${}^{1}S_{0} \qquad F = 9/2 \qquad M_{F} = -9/2$$

Cold alkaline-earth fermions in optical lattices $\circ \circ \circ \circ$

Limits of the two-orbital Hamiltonian Con

Hamiltonian for trapped fermions in a 2D-lattice

$$H = \sum_{\alpha m} \int d^3 \underline{r} \psi^{\dagger}_{\alpha m}(\underline{r}) \left[-\frac{\hbar^2}{2M} \nabla^2 + V_{\alpha}(\underline{r}) \right] \psi_{\alpha m}(\underline{r}) + \hbar \omega_0 \int d^3 \underline{r} [\rho_e(\underline{r}) - \rho_g(\underline{r})]$$

Cold alkaline-earth fermions in optical lattices $\circ \circ \circ \circ$

Limits of the two-orbital Hamiltonian Conc

Hamiltonian for trapped fermions in a 2D-lattice

$$H = \sum_{\alpha m} \int d^{3}\underline{r} \psi^{\dagger}_{\alpha m}(\underline{r}) [-\frac{\hbar^{2}}{2M} \nabla^{2} + V_{\alpha}(\underline{r})] \psi_{\alpha m}(\underline{r})$$
$$+ \hbar \omega_{0} \int d^{3}\underline{r} [\rho_{e}(\underline{r}) - \rho_{g}(\underline{r})] \xrightarrow{3_{P_{0}}} \underbrace{F = 9/2}_{F = 9/2} \underbrace{f_{gg}}_{F_{gg}} \underbrace{f_{$$

Cold alkaline-earth fermions in optical lattices $\circ \circ \circ \circ$

Limits of the two-orbital Hamiltonian Con

Hamiltonian for trapped fermions in a 2D-lattice

$$\begin{split} H &= \sum_{\alpha m} \int \mathsf{d}^3 \underline{r} \psi^{\dagger}_{\alpha m}(\underline{r}) [-\frac{\hbar^2}{2M} \nabla^2 + V_{\alpha}(\underline{r})] \psi_{\alpha m}(\underline{r}) \\ &+ \hbar \omega_0 \int \mathsf{d}^3 \underline{r} [\rho_e(\underline{r}) - \rho_g(\underline{r})] + \frac{g^+_{eg} + g^-_{eg}}{2} \int \mathsf{d}^3 \underline{r} \rho_e(\underline{r}) \rho_g(\underline{r}) \end{split}$$

Cold alkaline-earth fermions in optical lattices $\circ \circ \circ \circ$

Limits of the two-orbital Hamiltonian Conc

Hamiltonian for trapped fermions in a 2D-lattice

 Fermionic alkaline-earth atoms trapped in the lowest band of an optical 2D-lattice are described by:

~

$$H = \sum_{\alpha m} \int d^{3}\underline{r} \psi^{\dagger}_{\alpha m}(\underline{r}) \left[-\frac{\hbar^{2}}{2M} \nabla^{2} + V_{\alpha}(\underline{r}) \right] \psi_{\alpha m}(\underline{r})$$

$$+ \hbar \omega_{0} \int d^{3}\underline{r} \left[\rho_{e}(\underline{r}) - \rho_{g}(\underline{r}) \right] + \frac{g^{+}_{eg} + \xi}{2} {}^{3}_{P_{0}} \underbrace{F = 9/2}_{F = 9/2} \underbrace{f_{gg}}_{F_{e}} \underbrace{f_{gg}}_{F_{$$

Cold alkaline-earth fermions in optical lattices $\circ \circ \circ \circ$

Limits of the two-orbital Hamiltonian Con

Hamiltonian for trapped fermions in a 2D-lattice

$$\begin{split} H &= \sum_{\alpha m} \int \mathsf{d}^3 \underline{r} \psi^{\dagger}_{\alpha m}(\underline{r}) [-\frac{\hbar^2}{2M} \nabla^2 + V_{\alpha}(\underline{r})] \psi_{\alpha m}(\underline{r}) \\ &+ \hbar \omega_0 \int \mathsf{d}^3 \underline{r} [\rho_e(\underline{r}) - \rho_g(\underline{r})] + \frac{g^+_{eg} + g^-_{eg}}{2} \int \mathsf{d}^3 \underline{r} \rho_e(\underline{r}) \rho_g(\underline{r}) \\ &+ \sum_{\alpha, m < m'} g_{\alpha \alpha} \int \mathsf{d}^3 \underline{r} \rho_{\alpha m}(\underline{r}) \rho_{\alpha m'}(\underline{r}) \end{split}$$

Cold alkaline-earth fermions in optical lattices $\circ \circ \circ \circ$

Limits of the two-orbital Hamiltonian Conc 0000000

Hamiltonian for trapped fermions in a 2D-lattice

$$H = \sum_{\alpha m} \int d^{3}\underline{r} \psi^{\dagger}_{\alpha m}(\underline{r}) \left[-\frac{\hbar^{2}}{2M} \nabla^{2} + V_{\alpha}(\underline{r}) \right] \psi_{\alpha m}(\underline{r})$$

$$+ \hbar \omega_{0} \int d^{3}\underline{r} [\rho_{e}(\underline{r}) - \rho_{g}(\underline{r})] + \frac{g^{+}_{eg} + \underline{\ell}}{2} \, {}^{3}P_{0} \qquad F = 9/2$$

$$+ \sum_{\alpha,m < m'} g_{\alpha \alpha} \int d^{3}\underline{r} \rho_{\alpha m}(\underline{r}) \rho_{\alpha m'}(\underline{r}) \qquad F = 9/2$$

Cold alkaline-earth fermions in optical lattices $\circ \circ \circ \circ$

Limits of the two-orbital Hamiltonian Cor

Hamiltonian for trapped fermions in a 2D-lattice

$$\begin{split} H &= \sum_{\alpha m} \int \mathsf{d}^3 \underline{r} \psi^{\dagger}_{\alpha m}(\underline{r}) [-\frac{\hbar^2}{2M} \nabla^2 + V_{\alpha}(\underline{r})] \psi_{\alpha m}(\underline{r}) \\ &+ \hbar \omega_0 \int \mathsf{d}^3 \underline{r} [\rho_e(\underline{r}) - \rho_g(\underline{r})] + \frac{g^+_{eg} + g^-_{eg}}{2} \int \mathsf{d}^3 \underline{r} \rho_e(\underline{r}) \rho_g(\underline{r}) \\ &+ \sum_{\alpha, m < m'} g_{\alpha \alpha} \int \mathsf{d}^3 \underline{r} \rho_{\alpha m}(\underline{r}) \rho_{\alpha m'}(\underline{r}) \\ &+ \frac{g^+_{eg} - g^-_{eg}}{2} \sum_{mm'} \int \mathsf{d}^3 \underline{r} \psi^{\dagger}_{gm}(\underline{r}) \psi^{\dagger}_{em'}(\underline{r}) \psi_{gm'}(\underline{r}) \psi_{em}(\underline{r}) \end{split}$$

Cold alkaline-earth fermions in optical lattices $\circ \circ \circ \bullet$

Limits of the two-orbital Hamiltonian Conc 0000000

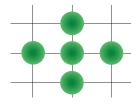
Two-orbital single-band Hubbard Hamiltonian

The resulting Hamiltonian is

$$H = -\sum_{\langle j,i\rangle\alpha,m} J_{\alpha}(c^{\dagger}_{i\alpha m}c_{j\alpha m} + h.c.)$$

with the energies

J_α: Tunnelling between two neighbouring lattice sites



Cold alkaline-earth fermions in optical lattices $\circ \circ \circ \bullet$

Limits of the two-orbital Hamiltonian Conclu

Two-orbital single-band Hubbard Hamiltonian

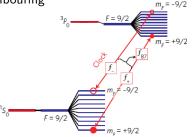
The resulting Hamiltonian is

$$H = -\sum_{\langle j,i\rangle\alpha,m} J_{\alpha}(c_{i\alpha m}^{\dagger}c_{j\alpha m} + h.c.) + \sum_{j,\alpha} \frac{U_{\alpha\alpha}}{2}n_{j\alpha}(n_{j\alpha} - 1)$$

with the energies

■ J_α: Tunnelling between two neighbouring lattice sites

• $U_{\alpha\alpha}$: Onsite interactions



Cold alkaline-earth fermions in optical lattices $\circ\circ\circ\bullet$

Limits of the two-orbital Hamiltonian Conclusion

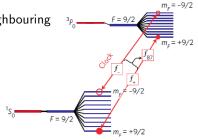
Two-orbital single-band Hubbard Hamiltonian

The resulting Hamiltonian is

$$H = -\sum_{\langle j,i\rangle\alpha,m} J_{\alpha}(c_{i\alpha m}^{\dagger}c_{j\alpha m} + h.c.) + \sum_{j,\alpha} \frac{U_{\alpha\alpha}}{2} n_{j\alpha}(n_{j\alpha} - 1) + V \sum_{j} n_{je}n_{jg}$$

with the energies

- J_α: Tunnelling between two neighbouring lattice sites
- $U_{\alpha\alpha}$: Onsite interactions
- V: Direct interactions



1

Cold alkaline-earth fermions in optical lattices $\circ \circ \circ \bullet$

Limits of the two-orbital Hamiltonian Conclusion

Two-orbital single-band Hubbard Hamiltonian

The resulting Hamiltonian is

$$H = -\sum_{\langle j,i\rangle\alpha,m} J_{\alpha}(c_{i\alpha m}^{\dagger}c_{j\alpha m} + h.c.) + \sum_{j,\alpha} \frac{U_{\alpha\alpha}}{2}n_{j\alpha}(n_{j\alpha} - 1)$$
$$+ V\sum_{j} n_{je}n_{jg} + V_{ex}\sum_{j,m,m'} c_{jgm}^{\dagger}c_{jem'}^{\dagger}c_{jgm'}c_{jem}$$

with the energies

- J_α: Tunnelling between two neighbouring lattice sites
- $U_{\alpha\alpha}$: Onsite interactions
- V: Direct interactions
- V_{ex} : Exchange interactions



Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian

Outline - Alkaline-earth SU(N)

1 An optical lattice clock

- Time definition and clock quantities
- The clock transition
- Optical lattices

2 Cold alkaline-earth fermions in optical lattices

- Bloch functions
- Wannier functions
- Second quantized Hamiltonian
- Two-orbital Hamiltonian

3 Limits of the two-orbital Hamiltonian

- Kugel-Khomskii model (KKM)
- Kondo lattice model (KLM)

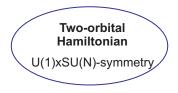
4 Conclusion

Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian

Conclusion

Limits of the two-orbital Hamiltonian



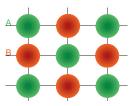
Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian

Conclusion

Kugel-Khomskii model

- Strongly interacting regime $(\frac{J}{U} \ll 1)$ \rightarrow Effective spin Hamiltonian
- Special case: only |g⟩-state atoms in a bipartite lattice



Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian

Conclusion

Kugel-Khomskii model

- Strongly interacting regime $(\frac{J}{U} \ll 1)$ \rightarrow Effective spin Hamiltonian
- Special case: only $|g\rangle$ -state atoms in a bipartite lattice
- Kugel-Khomskii Hamiltonian

$$H = \frac{2J_g^2 U_{gg}}{U_{gg}^2 - (U_{gg}(n_{\mathsf{A}} - n_{\mathsf{B}}) + \Delta)^2} \sum_{\langle i,j \rangle} S_{ij}^2$$

where

$$S_{ij}^2 = \sum_{mn} S_m^n(i) S_n^m(j) = \sum_{mn} c_{im}^{\dagger} c_{in} c_{jn}^{\dagger} c_{jm}$$

Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian

Conclusion

Kugel-Khomskii model

- KKM describes the magnetic properties of transition-metal compounds based on superexchange
- Superexchange is the strong coupling between two magnetic non-neighbouring ions through a non-magnetic ion
 - Ferromagnetic interactions, e.g. for a 90°-angle between both magnetic ions
 - Otherwise antiferromagnetic interactions

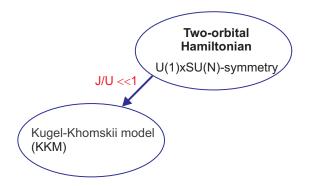
Transition metal oxide with possible spin configurations⁷

Antiferromagnetic		Ferromagnetic			
(a) 🕈	↑ ↓	¥		≜ ↓	
(b) ↑ ↓	↑ ↓		↑ ↓	↑↑	
(c) ↑ ↓		↑ ↓	↑ ↓		↑↑

Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian

Limits of the two-orbital Hamiltonian



Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian

Conclusion

Kondo lattice model

- Onsite interaction between ground state atoms is turned off $\rightarrow U_{gg} = 0$
- \blacksquare One atom in $|e\rangle\text{-state per lattice site}$ \rightarrow $n_{je}=1$

Deep lattice such that $J_e \ll U_{ee}$ $\rightarrow J_e = 0$

Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian

Conclusion

Kondo lattice model

- Onsite interaction between ground state atoms is turned off $\rightarrow U_{gg} = 0$
- \blacksquare One atom in $|e\rangle\text{-state per lattice site}$ \rightarrow $n_{je}=1$
- Deep lattice such that $J_e \ll U_{ee}$ $\rightarrow J_e = 0$

Kondo lattice Hamiltonian

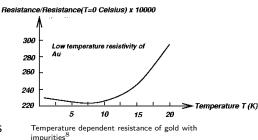
$$H = -\sum_{\langle i,j\rangle m} J_g(c^{\dagger}_{igm}c_{jgm} + h.c.) + V_{ex} \sum_{j,m,m'} c^{\dagger}_{jgm}c^{\dagger}_{jem'}c_{jgm'}c_{jem}$$

Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian \bigcirc Conclusion $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Kondo lattice model

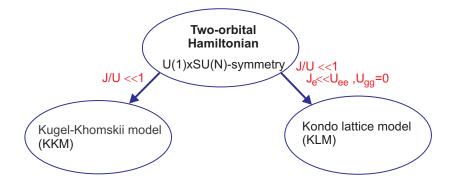
- Kondo lattice model:
 - Conduction electrons are free electrons in the conduction band
 - Magnetic impurties at site j are localized spins
 - Spin-spin interactions between the conduction electrons and the impurites
- \Rightarrow Explains the Kondo effect:
 - Resistance minimum at a non-zero temperature
 - For V_{ex} < 0: spin-antisymmetric states between conduction electrons and localized spins



Cold alkaline-earth fermions in optical lattices

Limits of the two-orbital Hamiltonian ○○○○○○●

Limits of the two-orbital Hamiltonian



An optical lattice clock	Cold alkaline-earth fermions in optical lattices	Limits of the two-orbital Hamiltonian	Conclusion
Conclusion			

- \blacksquare The clock transition ${}^1S_0 \rightarrow {}^3P_0$ gets enabled due to
 - strong LS-coupling
 - the admixtur of the ³P₁-state
- Perturbations of the clock frequency due to the ac-Stark shift can be eliminate by
 - creating an optical lattice with one of the possible magic wavelengths
 - using a blue detuned magic wavelength
- Two-orbital single-band Hamiltonian
 - \Rightarrow Kugel-Khomskii Hamiltonian
 - \Rightarrow Kondo lattice Hamiltonian

An optical lattice clock	Cold alkaline-earth fermions in optical lattices	Limits of the two-orbital Hamiltonian	Conclusion
000000000	0000	000000	

Thank you for your attention!

An optical lattice clock	Cold alkaline-earth fermions in optical lattices	Limits of the two-orbital Hamiltonian

Conclusion

Picture sources

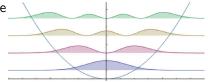
- [1] Ketterle group (http://cua.mit.edu/ketterle_group/Nice_pics.htm)
- [2] James F. Annett, Superconductivity, Superfluids and Condensates, Oxforxd University Press 2012
- [3] Wikipedia, (http://en.wikipedia.org/wiki/Periodic_table)
- [4] http://www.bipm.org/en/si/si_brochure/chapter2/2-1/second.html
- [5] Hidetoshi Katori, Nature Photonics 5, 203210 (31. March 2011)
- [6] Wikipedia (https://en.wikipedia.org/wiki/File:Hfspec1.jpg)
- [7] Stephen Blundell, Magnetism in condensed matter, Oxforxd University Press 2001
- [8] Wikipedia (http://en.wikipedia.org/wiki/File:Classickondo.png)

An optical lattice clock Cold alkaline-earth fermions in optical lattices Limits of the two-orbital Hamiltonian Conclusion

Lamb-Dicke regime

 The potential is harmonic near the bottom of each lattice site with the level spacing

$$E_{\rm ho} = \hbar \frac{2\pi}{\lambda_{\rm L}} \sqrt{\frac{2\alpha(\omega_{\rm L})E_{\rm L}^2}{M}}$$



Probability of presence in a quantum HO

By probig the clock transition the atoms get a momentum

$$p = \frac{\hbar\omega_{\mathsf{p}}}{c}$$

- Atoms stay in the same state of motion as long as $\frac{p^2}{2M} \leq E_{ho}$
- \Rightarrow Lamb-Dicke regime ensures that the atomic motion does not modify the clock frequency

An optical lattice clock	Cold alkaline-earth fermions in optical lattices	Limits of the two-orbital Hamiltonian	Conclusion
Atom-atom	interactions		

Collisional frequency shift is related to the mean field energy shift

$$\delta E = \frac{4\pi\hbar^2 a\eta}{m} g^{(2)}(0)$$

An optical lattice clock	Cold alkaline-earth fermions in optical lattices	Limits of the two-orbital Hamiltonian	Conclusion
Atom-atom	interactions		

 Collisional frequency shift is related to the mean field energy shift

$$\delta E = \frac{4\pi\hbar^2 a\eta}{m} g^{(2)}(0)$$

■ Distinguishable fermions or bosons: 1 ≤ g⁽²⁾(0) ≤ 2
 → More complex lattice geometries, e.g. 3D-lattice, to minimize the frequency shift

An optical lattice clock	Cold alkaline-earth fermions in optical lattices	Limits of the two-orbital Hamiltonian	Conclusion
Atom-atom	interactions		

 Collisional frequency shift is related to the mean field energy shift

$$\delta E = \frac{4\pi\hbar^2 a\eta}{m} g^{(2)}(0)$$

- Distinguishable fermions or bosons: 1 ≤ g⁽²⁾(0) ≤ 2
 → More complex lattice geometries, e.g. 3D-lattice, to minimize the frequency shift
- Indistinguishable fermions: $g^{(2)}(0) = 0$ due to the Pauli exclusion principle

 \rightarrow Creation of spin-polarized fermions to achive $\delta E=0$

An optical lattice clock Cold alkaline-earth fermions in optical lattices Limits of the two-orbital Hamiltonian Conclusion

Spin-polarization

- Atoms are prepared in the two outer Zeeman levels of the ground state by optical pumping
- f_{\pm} of the corresponding transitions ${}^{1}S_{0}(F = \frac{9}{2}, m_{F} = \pm \frac{9}{2}) \rightarrow$ ${}^{3}P_{0}(F = \frac{9}{2}, m_{F} = \pm \frac{9}{2})$ get alternately measured
- \Rightarrow Transition frequency

$$3_{P_0}$$
 $F = 9/2$
 $m_F = +9/2$

m = -9/2

Excerpt from the level scheme for a strontium optical lattice ${\rm clock}^5$

$$f_0 = \frac{f_+ + f_-}{2}$$

 \Rightarrow Cancelation of the first order Zeeman shift by realizing virtual spin-zero atoms