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Ginzburg-Landau theory



Motivation

m Superconductivity

k,+q,0 k,—q,0
174,91 2 2 Cv
k0, ky, 0,
Interaction of electrons via exchange of a phonon? Heat capicity of a superconducter resulting from the

Ginzburg-Landau theory

Is it possible to simulate solid state physics
with cold gases?
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Properties of alkaline-earth

metals:

m Two valence electrons

- & o v w oo 9~

m Fermionic and bosonic

FRER
s[4
[85]8 5]
[8e]5a
[s3]2 5]
[8]s |
[25]sel
FHEE
FEIEN
[s]sel
[83]ze]
[ca]s2]
)

v

o

o

=

o

0

Periodic table of elements®



Motivation

°
'
o
N
o
B
<
@
©
3
2
)
>
B
®

Properties of alkaline-earth
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= Two key features:

m Ultranarrow doubly forbidden transition between the ground
state 1Sy and the state 3P,

m Fermionic isotopes show almost perfect decoupling of the
electronic angular moment J and the nuclear spin I for these
two states
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An optical lattice clock
@00

Time definition and clock quantities

| The second is the duration of 9 192 631 770 periods
of the radiation corresponding to the transition
between the two hyperfine levels of the ground state
of the caesium 133 atom.*

m The oscillator is characterized by the Q-factor:
_
@= ov
m The fractional instability is given by the Allan deviation:
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An optical lattice clock
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Time definition and clock quantities

m Possible improvements:

m Switching from a transition with radio-frequency vgrr (109 Hz)
to one with higher frequency, e.g. optical frequency vor
(1014 Hz)

m Using a transition with a small linewidth dv

m Cooling atoms to eliminate Doppler-broadening
(0VDoppler = —219) and to increase the investigation time

m Trapping atoms in an optical lattice to interrogate them
simultaneously

= Cs atomic clock: o=10"1
= Optical lattice clock: o = 107"



An optical lattice clock
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Strontium level scheme

Lattice

1 laser
m.=-9/2
F=9/2
m_=+9/2
s f57
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& f,
Lattice f
laser .
m_=-9/2
15,‘
N F=9/2
m.=+9/2

B (1=0) — sr (1= 9/2)

Level scheme for a strontium optical lattice clock®




An optical lattice clock
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Selection rules

m Dipole allowed transitions:

m An = arbitrary
m Al =+1

m AJ=0,+1
mJ/=0»J =0

with linearly (Amj = 0) and circularly (Am; = £1)
polarized light



An optical lattice clock
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Selection rules

m Dipole allowed transitions:

m An = arbitrary
m Al =+1

m AJ=0,+1
mJ/=0»J =0

with linearly (Amj = 0) and circularly (Am; = £1)
polarized light

m For atoms with strong LS-coupling:

m AS=+1
m AL=0,+1,+2

= Transitions between singlet and triplet states are allowed



An optical lattice clock
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The 1S, - 3P, transition

m The clock transition 1Sy — 3Py is doubly forbidden

m Transition from a spin-singlet to a spin-triplet state
mJ=0—>J=0
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The 1S, - 3P, transition

m The clock transition 1Sy — 3Py is doubly forbidden

m Transition from a spin-singlet to a spin-triplet state
mJ=0—>J=0

m Fermionic isotope (%7Sr,J = 2): s,
m Hyperfine interactions admixe the 3 P;-state
m Typical linewidth ~ 10 mHz



An optical lattice clock
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The 1S, - 3P, transition

m The clock transition 1Sy — 3Py is doubly forbidden

m Transition from a spin-singlet to a spin-triplet state
mJ=0—>J=0

m Fermionic isotope (%7Sr,J = 2): s,
m Hyperfine interactions admixe the 3 P;-state
m Typical linewidth ~ 10 mHz

m Bosonic isotope (*3Sr,I = 0):
m No hyperfine interactions — transition is strongly suppressed
m 3P, -state can be admixed by an external magnetic field



An optical lattice clock
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Strontium level scheme

Lattice

1 laser
m.=-9/2
F=9/2
m_=+9/2
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Level scheme for a strontium optical lattice clock®




An optical lattice clock
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Optical lattices

m Superposition of two laser beams [
with wavelength A\ Sy

Electric field

< amplitude

m Atoms experience an optical D

potential:

Magnetic field p
V(y7 ’r) = —OZ(WL)ELe_2(w(y) CcOS )\_ amplitude V 1
L Latticélaser.~
5

1D optical lattice scheme

m Dipole force
Fyip = -VV{(y,r)
points to
m the intensity maxima for red detuned light (AL > AR)
m the intensity minima for blue detuned light (AL < AR)



An optical lattice clock
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Stark effect

m Atomic energy levels get split and
shifted due to an external electric

500

field )
m The Zeeman effect is the magnetic
analogue
m The resulting clock frequency is: e e e e g e e e e s
2 Stark map for 13 < n < 16 of hyclrogen6
L 4
v =1 — [ae(wr) — ag(wi)] 7= + O(EL)

4h
with the polarizability



An optical lattice clock
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Magic Wavelengths

A=679nm A=461nm  A=394nm
A_=813nm *p 37 s>, ’p 5D,
m 0> o> Py P 350mm
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Lattice laser frequency (THz)

Light shifts for the 1 Sg- (blue line) and 3 Py- (red line) states depending on the lattice laser frequency®

m The polarizabilities are the same for both clock states
(ae(wr) = ag(wi))
m The ac-Stark effect is canceled out

m Both states experience the same trapping potential



An optical lattice clock
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Blue and red magic lattices

m Red magic lattice:

m Atoms get trapped in areas of
high laser intensities

m Higher order light shifts can not
be neglected

m Reduction of laser intensity
— spectral line broadens and
collision rate increases



An optical lattice clock
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Blue and red magic lattices

m Red magic lattice:
m Atoms get trapped in areas of
high laser intensities

m Higher order light shifts can not
be neglected
m Reduction of laser intensity

— spectral line broadens and
collision rate increases

m Blue magic lattice:
m Atoms get trapped in areas with
low laser intensities

m Contributions of higher order
light shifts can be neglected




Cold alkaline-earth fermions in optical lattices

Outline - Alkaline-earth SU(N)

Cold alkaline-earth fermions in optical lattices
m Bloch functions
m Wannier functions
m Second quantized Hamiltonian
m Two-orbital Hamiltonian



Cold alkaline-earth fermions in optical lattices
[ ]

Bloch functions

m The optical lattice potential is periodic
Vi(r) = Wi(r + g )

with the lattice vector a = {a,} and
Qj = {njaa\nj = 0, :El, }

m Solutions for periodic potentials are Bloch functions
¢nk( ) fnk( )6——

where f1(r) = for(r + Qj)

m The quasimomentum k£ corresponds to the Brillouin zone

™ ™
B={k:—— <k, < —
(-l ko< )



Cold alkaline-earth fermions in optical lattices

Wannier functions

m For strong localization the Wannier
functions

Wn] Z ¢nk _ZE & . .
@

can be used as a basis
m Orthonormality: m Completeness:

/w;kni(f)wnj (f)df = 5mn52] an] - 5(T r )

m Real: m Periodicity:

wnj(r) = wy;(r) wn(r) = wn(r — ;)



Cold alkaline-earth fermions in optical lattices
L]

Hamiltonian for trapped fermions in a 2D-lattice

m Fermionic alkaline-earth atoms trapped in the lowest band of
an optical 2D-lattice are described by:

=y / 1o (DT + Va2 )

Gay + 9oy

+ hiwg / d®rlpe(r) — pg(r)] + 5 / d®rpe(r)pg(r)
+ Z gaa/d Tpam pam’( )

a,m<m’

+ 850 5 [ i 0L 0 g (1)

mm/
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Hamiltonian for trapped fermions in a 2D-lattice

m Fermionic alkaline-earth atoms trapped in the lowest band of
an optical 2D-lattice are described by:

=y / 1 (D V2 4+ Va2 0



Cold alkaline-earth fermions in optical lattices

Hamiltonian for trapped fermions in a 2D-lattice

m Fermionic alkaline-earth atoms trapped in the lowest band of
an optical 2D-lattice are described by:

H= Z/dgmb V2 4 Va2 2

m.= -9/2

F=9/2



Cold alkaline-earth fermions in optical lattices
L]

Hamiltonian for trapped fermions in a 2D-lattice

m Fermionic alkaline-earth atoms trapped in the lowest band of
an optical 2D-lattice are described by:

=y / 1 (D V2 4+ Va2 0

+ Fusy / rlpe(r) — po(r)]



Cold alkaline-earth fermions in optical lattices
L]

Hamiltonian for trapped fermions in a 2D-lattice

m Fermionic alkaline-earth atoms trapped in the lowest band of
an optical 2D-lattice are described by:

H= Z/dgmb V2 4 Va2 2
mF:—Q/Z

+ hwo / d°rlpe(r) — pg(r)]

F=9/2



Cold alkaline-earth fermions in optical lattices
L]

Hamiltonian for trapped fermions in a 2D-lattice

m Fermionic alkaline-earth atoms trapped in the lowest band of
an optical 2D-lattice are described by:

=y / 1o (DT + Va2 )

Gay + 9oy

[ Srlper) = o) + 22 [ &1 (r)py 0



Cold alkaline-earth fermions in optical lattices
L]

Hamiltonian for trapped fermions in a 2D-lattice

m Fermionic alkaline-earth atoms trapped in the lowest band of
an optical 2D-lattice are described by:

H = Z/d3r¢ eV Va2 )
g+ +( mF:—Q/Z
+ Fwg / d®rlpe(r) — py(r)] + =2 5 "
9 F=9/2



Cold alkaline-earth fermions in optical lattices
L]

Hamiltonian for trapped fermions in a 2D-lattice

m Fermionic alkaline-earth atoms trapped in the lowest band of
an optical 2D-lattice are described by:

=y / 1o (DT + Va2 )

Gay + 9oy

[ Srlper) = o) + 22 [ &1 (r)py 0
+ Z gaa/d Tpam pam’( )

a,m<m’



Cold alkaline-earth fermions in optical lattices
L]

Hamiltonian for trapped fermions in a 2D-lattice

m Fermionic alkaline-earth atoms trapped in the lowest band of
an optical 2D-lattice are described by:

H = Z/d?’w ——v Vo (1)t ()
+ mF:—Q/Z
gl
+ hwo / d*r[pe(r) — py(r)] + =2 5
+ Z gaa/d Tpam pam’( )
a,m<m’
150
F=9/2



Cold alkaline-earth fermions in optical lattices
L]

Hamiltonian for trapped fermions in a 2D-lattice

m Fermionic alkaline-earth atoms trapped in the lowest band of
an optical 2D-lattice are described by:

=y / 1o (DT + Va2 )

Gay + 9oy

+ hiwg / d®rlpe(r) — pg(r)] + 5 / d®rpe(r)pg(r)
+ Z gaa/d Tpam pam’( )

a,m<m’

+ 850 5 [ i 0L 0 g (1)
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Cold alkaline-earth fermions in optical lattices
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Two-orbital single-band Hubbard Hamiltonian

m The resulting Hamiltonian is

H=-— Z Ja(CIaijam + h.c.)

<J7Z>a7m

with the energies
m J,: Tunnelling between two neighbouring
lattice sites




Cold alkaline-earth fermions in optical lattices
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Two-orbital single-band Hubbard Hamiltonian

m The resulting Hamiltonian is

Z J zamc]am + h. C + Z n]a Njo — 1)

(j,iya,m

with the energies
m J,: Tunnelling between two neighbouring = -5/2

. - F
lattice sites

m U,.: Onsite interactions




Cold alkaline-earth fermions in optical lattices
[ ]

Two-orbital single-band Hubbard Hamiltonian

m The resulting Hamiltonian is

Z J zamc]am + h. C + Z n]a Njo — 1)
(iya,m
+V Z NjeNjg
J
with the energies m.=-9/2

m J,: Tunnelling between two neighbouring 3
lattice sites

m U,.: Onsite interactions

mV: Direct interactions




Cold alkaline-earth fermions in optical lattices
[ ]

Two-orbital single-band Hubbard Hamiltonian

m The resulting Hamiltonian is

Z J zamc]am + h. C + Z n]a Njo — 1)

(Ji)a,m
+V E :”Jenjg + Vea E : C igm Jem'cygm/cjem
J 7,m,m/

with the energies

m J,: Tunnelling between two neighbouring
lattice sites

mF:—9/2

3
FG

m U,.: Onsite interactions

mV: Direct interactions

m V.,: Exchange interactions 1 éF
S -

m.=+9/2




Limits of the two-orbital Hamiltonian

Outline - Alkaline-earth SU(N)

Limits of the two-orbital Hamiltonian
m Kugel-Khomskii model (KKM)
m Kondo lattice model (KLM)



Limits of the two-orbital Hamiltonian
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Limits of the two-orbital Hamiltonian

Two-orbital
Hamiltonian

U(1)xSU(N)-symmetry



Limits of the two-orbital Hamiltonian
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Kugel-Khomskii model

m Strongly interacting regime (% < 1)
— Effective spin Hamiltonian

m Special case:
only |g)-state atoms in a bipartite lattice




Limits of the two-orbital Hamiltonian

0@00

Kugel-Khomskii model

m Strongly interacting regime (% < 1)
— Effective spin Hamiltonian

m Special case:
only |g)-state atoms in a bipartite lattice

m Kugel-Khomskii Hamiltonian

B 2J3Uyqq Z
~ U2, — (Ugg(na —ng) + A)?

where

TL m
g Sy (2)S)) g czmcmc]nc]m



Limits of the two-orbital Hamiltonian
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Kugel-Khomskii model

m KKM describes the magnetic properties of transition-metal
compounds based on superexchange

m Superexchange is the strong coupling between two magnetic
non-neighbouring ions through a non-magnetic ion

m Ferromagnetic interactions, e.g. for a 90 °-angle between both
magnetic ions

m Otherwise antiferromagnetic interactions

O O Antiferromagnetic Ferromai;netic
@4+ v vt oty 8

CO ‘:OO &) vt o4t
© tv tv ty te

Transition metal oxide with
possible spin configurations7



Limits of the two-orbital Hamiltonian
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Limits of the two-orbital Hamiltonian

Two-orbital
Hamiltonian

U(1)xSU(N)-symmetry

Kugel-Khomskii model
(KKM)



Limits of the two-orbital Hamiltonian
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Kondo lattice model

m Onsite interaction between ground state atoms is turned off

— Ugg =0
m One atom in |e)-state per lattice site + >
— Nje = 1

m Deep lattice such that J, < U,

— Je=0 D00 -



Limits of the two-orbital Hamiltonian
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Kondo lattice model

m Onsite interaction between ground state atoms is turned off

— Ugg =0
m One atom in |e)-state per lattice site + >
— Nje = 1

m Deep lattice such that J, < U,

— Je=0 D00 -

m Kondo lattice Hamiltonian

H=— Z Jg(c;[gmcjgm—l—h.c.)—i—‘/ez Z c}gmc}em,cjgm/cjem

(i,5)m Jm,m’



Limits of the two-orbital Hamiltonian
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Kondo lattice model

m Kondo lattice model:
m Conduction electrons are free electrons in the conduction band

m Magnetic impurties at site j are localized spins

m Spin-spin interactions between the conduction electrons and
the impurites

= Explains the Kondo effect:
(T=0 Celsius) x 10000

m Resistance minimum at a

non-zero temperature 308 | owtemperaturs resistivity of
Ay
280
m For V. < O: 260
spin-antisymmetric states 240
: 220 L Temp T (K]
between conduction 5 w 5 ®
electrons and |Oca|iZed SpinS Temperature dependent resistance of gold with

impurities8



Limits of the two-orbital Hamiltonian
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Limits of the two-orbital Hamiltonian

Two-orbital
Hamiltonian

U(1)xSU(N)-symmetry /J/U <<1

Kondo lattice model
(KLM)

Kugel-Khomskii model
(KKM)




Conclusion

Conclusion

m The clock transition 1Sy — 3Py gets enabled due to
m strong LS-coupling
m the admixtur of the 3 P;-state

m Perturbations of the clock frequency due to the ac-Stark shift
can be eliminate by

m creating an optical lattice with one of the possible magic
wavelengths

m using a blue detuned magic wavelength

m Two-orbital single-band Hamiltonian
= Kugel-Khomskii Hamiltonian
= Kondo lattice Hamiltonian



Conclusion

Thank you for your attention!
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Conclusion

Lamb-Dicke regime

m The potential is harmonic near the
bottom of each lattice site with the
level spacing

21 20wy ) E?
AL M

Eno =1

Probability of presence in a quantum HO

m By probig the clock transition the atoms get a momentum

I
Cc

. . 2
m Atoms stay in the same state of motion as long as ;W < Fho

= Lamb-Dicke regime ensures that the atomic motion does not
modify the clock frequency



Conclusion

Atom-atom interactions

m Collisional frequency shift is related to the mean field energy
shift

2
oE = dThan )

(0)

m



Conclusion

Atom-atom interactions

m Collisional frequency shift is related to the mean field energy

shift

_ Anltan o

SE 0)

m

m Distinguishable fermions or bosons: 1 < ¢(?(0) < 2

— More complex lattice geometries, e.g. 3D-lattice, to
minimize the frequency shift



Conclusion

Atom-atom interactions

m Collisional frequency shift is related to the mean field energy

shift
B drh?an o)

SE 0)

m

m Distinguishable fermions or bosons: 1 < ¢(?(0) < 2

— More complex lattice geometries, e.g. 3D-lattice, to
minimize the frequency shift

m Indistinguishable fermions: ¢(?)(0) = 0 due to the Pauli
exclusion principle

— Creation of spin-polarized fermions to achive 0F = 0



Conclusion

Spin-polarization

mF=79/2

m Atoms are prepared in the two s o
outer Zeeman levels of the ground

state by optical pumping me= 2

m fi of the corresponding transitions gt
LSo(F = % mF =+3) - m.#-9/2
SPy(F =5,mp =+£3) 1
get alternately measured

F=9/2
m_=+9/2

Excerpt from the level scheme for a strontium

= Transition frequency optical lattice clock?

= Cancelation of the first order Zeeman shift by realizing virtual
spin-zero atoms
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