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AN OPTICAL LATTICE CLOCK

The quality factor or Q-factor

_
QiAV

characterizes an oscillator, while the fractional instability
is given by the Allan deviation
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Figure 1. Level scheme for a bosonic as well as a fermionic
strontium lattice clock [1]

The transition from 'Sy to 3P, is used as the clock
transition, as it is doubly forbidden and therefore ultra-
narrow:

= Transition from the spin- singlet to the spin-triplet

=J=0—=J =0

Admixture of the % P;-state due to
e hyperfine interactions for fermionic isotopes
e an external magnetic field for bosonic isotopes

enables the clock transition.
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Figure 2. 1D optical lattice created by superimposing two
laser beams [1]

The dipole force points to the
e intensity maxima for red detuned light
e intensity minima for blue detuned light
The clock frequency v gets modified due to the ac-Stark
effect
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v =1y — [ae(wr) — ag(wL)]% +O(EL)

with the polarizability
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At certain wavelengths, the so called magic wavelengths,
is ae(wr,) = ag(wr,) and the ac-Stark shift cancels out.
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Figure 3. Light shifts of various transitions in dependence of
the lattice laser frequency for the determination of the magic
wavelengths [1]



COLD ALKALINE-EARTH FERMIONS IN
OPTICAL LATTICES

Fermionic alkaline-earth atoms trapped in the lowest
band of an optical 2D-lattice are described by
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with a € {|g),|e)} and m € {—1,...,I}.
The field operator is defined as

YVam = Z Wa (f - Zj)cjam;
J

where w,, (r — zj) are the Wannier functions.

This results in the two-orbital single-band Hubbard
Hamiltonian

_ t U
H=-— Z Ja(€l ymCiam + h.c.) + Z %nja(nja -1)
<j1i>a7m I,
+V Z NjeNjg + Vea Z C;gmcj‘em/ Cijgm’Cjem

J Jym,m/!

with the energies

e J,: Tunnelling between two neighbouring lattice
sites

e U,,: Onsite interactions

oV Direct interactions

e V... Exchange interactions

LIMITS OF THE HUBBARD HAMILTONIAN

Two-orbital
Hamiltonian

U(1)xSU(N)-symmetry /J/U <<1
Je<<Ugg ,Ugg=0

JIU <1

Kondo lattice model
(KLM)

Kugel-Khomskii model
(KKM)

/ rpe(r)py(r)

Kugel-Khomskii model:

e Magnetic properties of transition-metal compounds
are described based on superexchange

e Superexchange is the strong coupling between two
magnetic non-neighbouring ions through a non-

magnetic ion
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Figure 4. Transition metal oxide with possible spin configu-
rations, (b) and (c) are forbidden in the ferromagnetic case
due to the Pauli exclusion principle[2]

Kondo lattice model:

H=— Z Jg(c;rgmcjgmJrh.c.)JrVez Z c}gmc;em/cjgm/cjem
(3,5)m 7,m,m’

The Kondo lattice model describes the spin-spin inter-

actions between the free conduction electrons and the

magnetic impurities at site j.

=This model explains the Kondo effect:

e Resistance minimum at a non-zero temperature

e spin-antisymmetric states between conduction elec-
trons and impurties for V., < 0
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Figure 5.  Temperature dependent resistance of gold with
impurities|3]
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