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AN OPTICAL LATTICE CLOCK

The quality factor or Q-factor

Q =
ν0

∆ν

characterizes an oscillator, while the fractional instability
is given by the Allan deviation

σ ≈ 1

Q
√
Natτ

.

Figure 1. Level scheme for a bosonic as well as a fermionic
strontium lattice clock [1]

The transition from 1S0 to 3P0 is used as the clock
transition, as it is doubly forbidden and therefore ultra-
narrow:

⇒ Transition from the spin- singlet to the spin-triplet

⇒ J = 0 → J ′ = 0

Admixture of the 3P1-state due to

• hyperfine interactions for fermionic isotopes

• an external magnetic field for bosonic isotopes

enables the clock transition.

Figure 2. 1D optical lattice created by superimposing two
laser beams [1]

The dipole force points to the

• intensity maxima for red detuned light

• intensity minima for blue detuned light

The clock frequency ν gets modified due to the ac-Stark
effect
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with the polarizability
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At certain wavelengths, the so called magic wavelengths,
is αe(ωL) = αg(ωL) and the ac-Stark shift cancels out.

Figure 3. Light shifts of various transitions in dependence of
the lattice laser frequency for the determination of the magic
wavelengths [1]
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COLD ALKALINE-EARTH FERMIONS IN

OPTICAL LATTICES

Fermionic alkaline-earth atoms trapped in the lowest
band of an optical 2D-lattice are described by
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with α ∈ {|g〉, |e〉} and m ∈ {−I, ..., I}.

The field operator is defined as

ψαm =
∑
j

ωα(r − rj)cjαm,

where ωα(r − rj) are the Wannier functions.

This results in the two-orbital single-band Hubbard
Hamiltonian
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with the energies

• Jα: Tunnelling between two neighbouring lattice
sites

• Uαα: Onsite interactions

• V : Direct interactions

• Vex: Exchange interactions

LIMITS OF THE HUBBARD HAMILTONIAN

U(1)xSU(N)-symmetry

Kugel-Khomskii model
(KKM)

Kondo lattice model
(KLM)
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Kugel-Khomskii model:

• Magnetic properties of transition-metal compounds
are described based on superexchange

• Superexchange is the strong coupling between two
magnetic non-neighbouring ions through a non-
magnetic ion
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Figure 4. Transition metal oxide with possible spin configu-
rations, (b) and (c) are forbidden in the ferromagnetic case
due to the Pauli exclusion principle[2]

Kondo lattice model:
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The Kondo lattice model describes the spin-spin inter-
actions between the free conduction electrons and the
magnetic impurities at site j.

⇒This model explains the Kondo effect:

• Resistance minimum at a non-zero temperature

• spin-antisymmetric states between conduction elec-
trons and impurties for Vex < 0

Figure 5. Temperature dependent resistance of gold with
impurities[3]
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