
Quantum

®eld-theory of

low

dimensional

systems

Björn Miksch

Motivation

Grassmann

algebra

Functions and

operators

Integral

Coherent states

Properties

Closure relation

Gaussian

integrals

Comparison

Bosons

Quantum ®eld-theory of low dimensional

systems

Coherent states for fermions

Björn Miksch

6. May 2014

1 / 24



Quantum

®eld-theory of

low

dimensional

systems

Björn Miksch

Motivation

Grassmann

algebra

Functions and

operators

Integral

Coherent states

Properties

Closure relation

Gaussian

integrals

Comparison

Bosons

Overview

1 Motivation

2 Grassmann algebra

Functions and operators

Integral and its applications

3 Coherent states for fermions

Properties

Overcompleteness of coherent states

4 Gaussian integrals

5 Comparison with coherent states for bosons

2 / 24



Quantum

®eld-theory of

low

dimensional

systems

Björn Miksch

Motivation

Grassmann

algebra

Functions and

operators

Integral

Coherent states

Properties

Closure relation

Gaussian

integrals

Comparison

Bosons

Motivation

Coherent state representation needed for path integral

formalism of many-particle systems

Construct coherent states ∣ϕ⟩ for fermions analogue to

coherent states for bosons

▸ Eigenstates of the fermionic annihilation operator f

fα ∣ϕ⟩ = ϕα ∣ϕ⟩

Problem: dealing with anticommuting behaviour of

fermionic creation f †
and annihilation f operators

{fi, f †

j } = δij {fi, fj} = {f †

i , f
†

j } = 0

fαfβ ∣ϕ⟩ = ϕαϕβ ∣ϕ⟩ − fβfα ∣ϕ⟩ = −ϕβϕα ∣ϕ⟩
▸ Anticommuting eigenvalues: Grassmann numbers
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Creation and annihilation operators

f and f †
can be used to construct many-particle states and

serve as basis for many-body operators

De®nition

f †

i and fi create or annihilate a fermion in state ∣αi⟩. The

occupation number in each state can only be either 0 or 1.

They operate in Fock space.

f †

i ∣n1n2 . . . ni . . .⟩ = (1 − ni) ∣n1n2 . . . ni + 1 . . .⟩
fi ∣n1n2 . . . ni . . .⟩ = ni ∣n1n2 . . . ni − 1 . . .⟩

f †

i fi = n̂i ⇒ n̂i ∣n1n2 . . . ni . . .⟩ = ni ∣n1n2 . . . ni . . .⟩
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Grassmann algebra

An algebra over a ®eld is a vector space equipped with a

product

Grassmann algebras can be de®ned over the ®elds R or C
Grassmann algebra de®ned by a set of anticommuting

generators {ξα}, α = 1, . . . , n

ξα ξβ + ξβ ξα = 0 ξ2α = 0

Basis of the algebra made of all distinct products

{1, ξ1, ξ2, ξ3 . . . , ξ1ξ2, ξ1ξ3, ξ2ξ3, . . . , ξ1ξ2ξ3, . . . }
▸ Dimension 2n with n generators
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Grassmann algebra

The generated Grassmann algebra contains all linear

combinations of the basis elements with complex

coe«cients f{i}

f (ξ) = f0 +∑
i
fiξi +∑

i<j
fijξiξj + ∑

i<j<k
fijkξiξjξk + . . .

In an algebra with even number of generators n = 2p, we

de®ne a conjugation

▸ Select p generators ξα , associate ξ⋆α to each of them

(ξα)⋆ = ξ⋆α (ξ⋆α)⋆ = ξα

For simplicity: use 2 generators and the basis: {1, ξ, ξ⋆, ξ⋆ξ}
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Functions and operators

Any analytic function f is linear on a Grassmann algebra

due to ξ2α = 0
▸ Form of the coherent state representation of a wave

function

f (ξ) = f0 + f1ξ

Operators are a function of ξ⋆ and ξ and have bilinear form

A(ξ⋆, ξ) = a0 + a1ξ + a2ξ⋆ + a12ξ⋆ξ

Derivative is de®ned identical to the complex derivative;

variable has to be adjacent to the derivative operator

∂
∂ξ

ξ = 1
∂
∂ξ
(ξ⋆ξ) = ∂

∂ξ
(−ξξ⋆) = −ξ⋆
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Integral

No analog of the sum motivated Riemann integral possible

Integration over Grassmann variables: linear mapping

with fundamental property that integral of exact

diªerential form is zero over functions vanishing at in®nity

∫ dξ 1 = 0 ∫ dξ ξ = 1

Similar to Grassmann diªerentiation

∂
∂ξ

1 = 0
∂
∂ξ

ξ = 1

Analogous de®nition for conjugated variables

∫ dξ⋆ 1 = 0 ∫ dξ⋆ ξ⋆ = 1
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Applications of the integral

Grassmann δ-function

δ(ξ, ξ′) = ∫ dη e−η(ξ−ξ′) = ∫ dη (1 − η(ξ − ξ′)) = −(ξ − ξ′)

∫ dξ′ δ(ξ, ξ′)f (ξ′) = −∫ dξ′ (ξ−ξ′)(f0+f1ξ′) = f0+f1ξ = f (ξ)

Scalar product of Grassmann algebra

⟨f ∣g⟩ = ∫ dξdξ⋆ e−ξξ⋆ f ⋆(ξ⋆)g(ξ)

⟨f ∣g⟩ = ∫ dξdξ⋆ (1 − ξξ⋆)(f ⋆0 + f ⋆1 ξ⋆)(g0 + g1ξ)

= −∫ dξdξ⋆ ξξ⋆f ⋆0 g0 + ∫ dξdξ⋆ ξ⋆ξf ⋆1 g1

= f ⋆0 g0 + f ⋆1 g1
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Coherent states for fermions

Expansion of states as linear combination of states of the

Fock spaceF with Grassmann numbers as coe«cients

∣ψ⟩ = ∑
α

χα ∣ϕα⟩

Generator ξα associated to annihilation operator fα and ξ⋆α
associated with creation operator f †

α

{ξ̃, f̃ } = 0 (ξ̃f̃ )† = ξ⋆ f̃ †

De®ntion of fermionic coherent states ∣ξ⟩ analogous to

bosonic coherent states

∣ξ⟩ = e−∑α ξα f †

α ∣0⟩ = ∏
α
(1 − ξαf †

α )∣0⟩
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Coherent states for fermions

Proof: Coherent states are eigenstates of the annihilation

operator fα
For a single state α:

fα(1 − ξαf †

α )∣0⟩ = +ξα ∣0⟩ = ξα(1 − ξαf †

α )∣0⟩

fα ∣ξ⟩ = fα∏
β
(1 − ξβf †

β )∣0⟩ = ∏
β≠α
(1 − ξβf †

β )fα(1 − ξαf †

α )∣0⟩

= ∏
β≠α
(1 − ξβf †

β )ξα(1 − ξαf †

α )∣0⟩ = ξα∏
β
(1 − ξβf †

β )∣0⟩

= ξα ∣ξ⟩

where fα and ξα commute with ξβfβ for β ≠ α.

Similarly, adjoint coherent state

⟨ξ∣ = ⟨0∣e−∑α fα ξ⋆α ⟨ξ∣f †

α = ⟨ξ∣ξ⋆α
11 / 24
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Properties of coherent states

Action of f †

α on a coherent state is a derivative analogous to

the results for Bosons

f †

α ∣ξ⟩ = f †

α (1 − ξαf †

α )∏
β≠α
(1 − ξβf †

β )∣0⟩ = f †

α ∏
β≠α
(1 − ξβf †

β )∣0⟩

= − ∂
∂ξα
(1 − ξαf †

α )∏
β≠α
(1 − ξβf †

β )∣0⟩

= − ∂
∂ξα
∣ξ⟩
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Properties of coherent states

Action of creation/annihilation operators on coherent

states

fα ∣ξ⟩ = ξα ∣ξ⟩ f †

α ∣ξ⟩ = −
∂
∂ξα
∣ξ⟩

⟨ξ∣f †

α = ⟨ξ∣ξ⋆α ⟨ξ∣fα = +
∂
∂ξ⋆α
⟨ξ∣

Overlap of two coherent states

⟨ξ∣ξ′⟩ = ⟨0∣∏
α
(1 + ξ⋆αfα)(1 − ξ′αf

†

α )∣0⟩

= ∏
α
(1 + ξ⋆α ξ′α) = e∑α ξ⋆α ξ′α

13 / 24
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Properties of coherent states

Matrix element between two coherent states

⟨ξ∣A(f †

α , fα)∣ξ′⟩ = e∑α ξ⋆α ξ′αA(ξ⋆α , ξα)

Expectation value of number operator N is not a real value

⟨ξ∣N∣ξ⟩
⟨ξ∣ξ⟩

= ∑α⟨ξ∣f †

α fα ∣ξ⟩
⟨ξ∣ξ⟩

= ∑
α

ξ⋆α ξα
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Overcompleteness of coherent states

Proof of closure relation:

A = ∫ ∏
α
dξ⋆αdξα e−∑α ξ⋆α ξα ∣ξ⟩⟨ξ∣ = IF

We need to prove

⟨α1 . . . αn∣A∣β1 . . . βm⟩ = ⟨α1 . . . αn∣β1 . . . βm⟩

The overlap of the considered states is

⟨α1 . . . αn∣β1 . . . βm⟩ = δnm(−1p)δαi1 β1 . . . δαin βm

with parity p of the permutation P( α1, . . . , αn
αi1 , . . . , αin

)
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Overcompleteness of coherent states

Using the eigenvalue property we obtain

⟨α1 . . . αn∣ξ⟩ = ⟨0∣fαn . . . fα1 ∣ξ⟩ = ξαn . . . ξα1

This leads to the matrix element

⟨α1 . . . αn∣A∣β1 . . . βm⟩ =

= ∫ ∏
α
dξ⋆αdξα e−∑α ξ⋆α ξα ⟨α1 . . . αn∣ξ⟩⟨ξ∣β1 . . . βn⟩

= ∫ ∏
α
dξ⋆αdξα ∏

α
(1 − ξ⋆α ξα)ξαn . . . ξα1 ξ

⋆
β1
. . . ξ⋆βn

with the following integrals arising for a particular state γ

∫ dξ⋆γdξγ (1 − ξ⋆γ ξγ)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ξ⋆γ ξγ
ξ⋆γ
ξγ
1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
0
0
1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
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Overcompleteness of coherent states

Integral non-vanishing if each state γ is either occupied in

both ⟨α1 . . . αn∣ and ∣β1 . . . βm⟩ or unoccupied in both states

⇒ m = n and {α1 . . . αn} has to be a permutation P of

{β1 . . . βn}
ξαn . . . ξα1 ξ

⋆
β1
. . . ξ⋆βn = (−1)

pξαn . . . ξα1 ξ
⋆
α1 . . . ξ⋆αn

Even number of anticommutations needed to bring the ξγ
and ξ⋆γ adjacent to the integral

⇒ Integral evaluates to (−1)p , equal to the value of the overlap

Resolution of unity for fermionic coherent states

∫ ∏
α
dξ⋆αdξα e−∑α ξ⋆α ξα ∣ξ⟩⟨ξ∣ = IF
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Coherent state representation

Overcompleteness allows to de®ne Grassmann coherent

state representation, where ⟨ξ∣ψ⟩ = ψ(ξ⋆)

∣ψ⟩ = ∫ ∏
α
dξ⋆αdξα e−∑α ξ⋆α ξα ψ(ξ⋆)∣ξ⟩

The creation and annihilation operators in this

representation are given by

⟨ξ∣fα ∣ψ⟩ =
∂
∂ξ⋆α

ψ(ξ⋆)

⟨ξ∣f †

α ∣ψ⟩ = ξ⋆αψ(ξ⋆)

Anticommutation relation between operators
∂

∂ξ⋆α
and ξ⋆α

{ ∂
∂ξ⋆α

, ξ⋆β} = δαβ
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Gaussian integrals

Matrix elements of the evolution operator give rise to

Gaussian integrals in case of quadratic forms

For a Hermitian operator H, integrals of those form lead to

∫
n
∏
i=1

dη⋆i dηi e−η⋆i Hijηj+ξ⋆i ηi+ξiη⋆i = det(H)eξ⋆i H
−1
ij ξj

To prove this, one needs the transformation law under a

change of variables and the formula for a Gaussian integral

for Grassmann variables
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Gaussian integrals

Gaussian integral for a single pair of conjugate Grassmann

variables

∫ dξ⋆dξ e−ξ⋆aξ = ∫ dξ⋆dξ (1 − ξ⋆aξ) = a

Law for integral transformation under change of

Grassmann variables

∫ dξ⋆1 dξ1 . . . dξ⋆ndξn P(ξ⋆, ξ) = ∣∂(η
⋆, η)

∂(ξ⋆, ξ)
∣

× ∫ dη⋆1 dη1 . . . dη⋆ndηn P(ξ⋆(η⋆, η), ξ(η⋆, η))

! Be careful: Inverse Jacobian
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Gaussian integrals

Proof of Gaussian integral formula

▸ De®ne the transformations ρi = ηi −H−1
ij ξj and

ρ⋆i = η⋆i −H−1
ij ξ⋆j

▸ Diagonalize H with a unitary transformation U
▸ De®ne ζi = U−1

ij ρj and ζ⋆i = U−1⋆
ij ρ⋆j

▸ All Jacobians are unity in this case

∫
n
∏
i=1

dη⋆i dηi e−η⋆i Hijηj+ξ⋆i ηi+ξiη⋆i −ξ⋆i H
−1
ij ξj

= ∫
n
∏
i=1

dρ⋆i dρi e−ρ⋆i Hijρj

= ∫
n
∏
i=1

dζ⋆i dζi ehiζ
⋆

i ζi

=
n
∏
m=1

hm = det(H)
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Comparison with coherent states for bosons

Bosons Fermions

Eigenstates of the bosonic/fermionic annihilation operator bα/fα

∣ϕ⟩ = e∑α ϕαb†

α ∣0⟩ ∣ξ⟩ = e−∑α ξα f †

α ∣0⟩

Provide overcomplete basis of bosonic/fermionic Fock space

closure relation

∫ ∏
α

dϕ⋆α dϕα
2iπ e−∑α ϕ⋆α ϕα ∣ϕ⟩⟨ϕ∣ = IB ∫ ∏

α
dξ⋆αdξα e−∑α ξ⋆α ξα ∣ξ⟩⟨ξ∣ = IF

Coherent state representation

⟨ϕ∣bα ∣ψ⟩ = ϕ⋆αψ(ϕ⋆) ⟨ξ∣fα ∣ψ⟩ = ξ⋆αψ(ξ⋆)
⟨ϕ∣b†

α ∣ψ⟩ = ∂
∂ϕ⋆α

ψ(ϕ⋆) ⟨ξ∣f †

α ∣ψ⟩ = ∂
∂ξ⋆α

ψ(ξ⋆)

Expectation value of number operator

⟨ϕ∣N̂∣ϕ⟩
⟨ϕ∣ϕ⟩ = ∑α ϕ⋆αϕα ∈ R ⟨ξ∣N̂∣ξ⟩

⟨ξ∣ξ⟩ = ∑α ξ⋆α ξα ∉ R
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Comparison with coherent states for bosons

Bosons Fermions

Physical states in sense of Not physically observable

the classical limit but useful uniformication

Most classical state No analogon

Classical ®eld ϕ(x) No classical ®eld

e.g. electromagnetic ®eld as for fermions

coherent state of photons

Provide representation for path integral formalism

Important to relate statistical physics and quantum mechanics

Enables calculation of thermodynamic values for

quantum many-particle systems
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