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Motivation

the dispersion relation of long-wavelength spin-wave excitations for
antiferromagnetic systems:

o different approaches calculate the dispersion-relation e.g. by

2nd quantisation or Bethe-ansatz

@ the result is a linear dispersion relation for s = %

@ it is also a linear dispersion relation for the high spin limit
s>>1

@ there was no analytical solution for s =1

@ — why should there be an other behavior for s=17

@ Haldane expects that the dispersion relations of s =1 and

s = % are different F.p. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983)
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Motivation: experimental measurement
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fig.: Neutron scattering for S=1 and S =1

M. Kenzelmann, R. A. Cowley, W. J. L. Buyers, Z. Tun, R. Coldea and M. Enderle; The properties of Haldane
excitations and multi-particle states in the antiferromagnetic spin-1 chain compound CsNiCI3, November 23, 2013

@ Measurement of the dispersion relation by neutron scattering
@ dashed line: s = % — massless Dirac-particle

@ pointed line: s =1 — spontaneous mass generation
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Motivation

dispersion relation for all half-integer spin-systems is linear
it exists a gap for all integer spin-systems
there is a dependency of integer sequences

this tends to be of topological origin

we get this topological term out of the path-integral formalism
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°

Heisenberg model

@ named after Werner Heisenberg
@ one approach to describe (anti-)ferromagnetic systems

@ Spin is a quantum mechanical observable S

H=-J) 55
i—1
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Path-integral-formalism

From the talk of Jan Lotze:
@ Partition-function:

7= / Diis(n? — 1) exp (=S[#]),

= / D7d(n? — 1) exp {— /Oﬁ dr (<ﬁ|667|ﬁ> + <ﬁ|’H|ﬁ>>]

@ Coherent states :

n i is a vector on the unit sphere
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Path-integral-formalism

@ kinetic term

B B
/0 dT(ﬁ|%|ﬁ> _ —is/o dr[1 — cos 6(7)](7)

=Q

o where we assume — [, Adii = [(V x A) - fidf = Q,
where A is a vector potential on the unit sphere with
VxA=in

@ use periodic boundary conditions

@ OY is a line integral enclosing the surface on the sphere
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Path-integral-formalism

B o B
Z:/Dﬁexp —is g / dr(A(nj) - 0-1i;) — / d7(n|H|n)
- 0 0
J —_

interaction term S;,;

Berry phase Sg
@ Heisenberg Hamiltonian:
(Ai[H|7) = J> (7S - Sjpali) = Js* > #(j) - Al + 1)
J J

for nearest neighbor interaction
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afff///,
rr /7 /I /7 7/ " x

Xi—1 Xi Xi4+1

e nj = (—1)fij;1and with ,a"as lattice spacing
@ but the spins are staggered
divide 7 into a slowly varying part m and a small but fast

fluctuation part /
= (1Y \/1 = 2 rii; + al;

Sy

still apply
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Spin-systems

for small lattice spacing a we approach for the nearest neighbor
I‘T’)j+1 ~ I‘T‘lj + a@xrﬁj

a1 ~ [+ adxl;
2p2

/
/1 _ 3272 7
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Interaction term

Heisenberg Hamiltonian:
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0O®000000000

Interaction term

Heisenberg Hamiltonian:
— — 2 /. . J52 . - 2
() = Js? SO AG) - Al + 1) = == 3 (170) + G + 1) - 2)

J J
with our assumptions for small lattice spacing
e ) . — o 72 o
() — AG + 12 -2 ~ [23/,- — (1Y ad; + ax/j} . 2200 =0

= [42% 1 + 2®m;02my;] — A(—1Y & [Oxm;

Js? B o
S = 3 [ o (422 + R (0umP) a1y o
J

blue marked term vanishes due the alternating sum
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Kinetic term

B -
Z:/Dﬁexp[is E / d7(A(nj) - 0-1))
—~ Jo
J

/

Berry phase Sg

2 B
- J% Z/o dr [432/1-2 + a2(8xmj)2]]
J

J/

interaction term S;,;
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Kinetic term

/

B -
Z:/Dﬁexp[is E / d7(A(nj) - 0-1))
—~ Jo
J

Berry phase Sg

2 B
- J% Z/o dr [432/1-2 + a2(8xmj)2]]
J

J/

interaction term S;,;

Berry Phase:
N
S5 = isZ/ dr(A() - 0,7)
— Jo
J

@ expand /Z\'(@) in a
@ expand 0-nj in a
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@ using the assumption for staggered spins
@ Taylor-expansion in a

Aulfi] = Au[ﬁ:’j] = Au[(_l)jﬁ]
= A, [\/1 — 22 @+ (~1Yal
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0000®0000000

Kinetic term

@ using the assumption for staggered spins
@ Taylor-expansion in a

Aul] = Aul, 1) = AL(-1)7]
= A, [\/1 — 22 @+ (~1Yal

~ Au() + 9, Au(m)[(-1Y al’] + O(%)

et = (=1Y 0, mH + ad, 1" + O(a?)

we apply again: V x A = 7 and use fab dT% = f(b) — f(a)

A(R)) - 07 = (—1Y Ad 1y — alj(r; x 0-riij)  + a0 (A- )
—0
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Partition function

: ~ i}
Z:/Dﬁexp[—isZ/ dr((—1Y A0, i, — ali(rfi; x 0, 17i}))
~ Jo
J

Berry phase Sg

2 B
- J;Z/O dr [4222 + 2 (Dem;)’] ]
J

2

interaction term S;,;
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Continuum limit

suppose X = Xp +£-a

Zaf(xa) — /Xl f(x)dx

£

N N/2 N/2
> (—1Yf(x) Zf o) = > F(xaj-1)
j=1 j=1
/v/z
1 f(xj) — fxgj-1) _ 1/
Z ; =5 dxOxf(x)

Oxf(x)
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Continuum limit

@ sum — integral
@ using periodic boundary conditions
@ apply that VxA=H

B
S[A] ~ /dx/ dr
0
Js? . -

{_,-Zm(axm X 0rii) + - (Oi)? — sI(i x D) + 252 P
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Gaussian integration

we are only interested in long range order
— integrate over the fast fluctuation / in the partition function

Z= / DID e S
saddle point method:

/ di () m () / di expéf”(lo)(/—/o)z

2mi

~ if(/o)
~ e 77
" (ho)

calculate o from f'(/) = 0 — £(/) changes slowly around this point
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Gaussian integration

S[H]%/dx/BdT

iz Lz 2 _ = -\ 272
[ i=m(Oxm x 0-m) + 2(Gm) (s/(m x Oxm) — 2Js°[7)

only red marked part depends on T

2Js P+ 1(m x Oxm) s
—_——

Vs

y
— f(I) = —vsl® + lys

for f'(I)=0— lp = s

2Vs
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Result

Partition-function:

7 — /41 / Drﬁe_dedXL(X’T)
Vs

£= 21g ' [\i(&m)z + Vs - (8Xrﬁ)2] B i% -6“"57’(3#,7’1 X 8Vr_ﬁ)

Lo cr
where L, is the same result, which we get from the
non-linear-sigma model,

L is the topological term
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Topological term

i% / drdxe® m(0,m x 0,m)

1
= [2ms— / drdxe"” m(0,m x 0,m)
™

= 2wsQ
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Topological term

i% / drdxe® m(0,m x 0,m)

1

= [2ms— / drdxe"” m(0,m x 0,m)
™

= 2wsQ

@ there is a topological term which depends on the value of s

@ @ is the winding number which was discussed in the talk of
Andreas Lohle, Q € Z

o for integer spin: e‘i2”5Q =1
o for half-integer spin: e=/2752 = (1)<

@ the topological term has an effect only for half-integer-spins in
one D
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Results

@ The one-dimension Heisenberg antiferromagnet can be
described by using the path-integral-formalism and leads to
same result as the NLoM plus topological term

@ we proved Haldane's conjecture:

o NLoM with topological term for half-integer spin — linear
dispersion relation was proved by Bethe Ansatz for s = %
e NLoM without topological term for integer spin — gap in the

dispersion relation
@ we can explain the energy-gap of the neutron-scattering for
s=1
@ Antiferromagnetism in two dimension by Wolfgang Voesch
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