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Motivation

why?

→ because we are physicists!

describe the behavior of some properties

e.g. the dispersion relation of spin-wave-excitation of
antiferromagnets
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Motivation

the dispersion relation of long-wavelength spin-wave excitations for
antiferromagnetic systems:

different approaches calculate the dispersion-relation e.g. by
2nd quantisation or Bethe-ansatz

the result is a linear dispersion relation for s = 1
2

it is also a linear dispersion relation for the high spin limit
s >> 1

there was no analytical solution for s = 1

→ why should there be an other behavior for s=1?
Haldane expects that the dispersion relations of s = 1 and
s = 1

2 are different F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983)
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Motivation: experimental measurement

fig.: Neutron scattering for S = 1
2 and S = 1

M. Kenzelmann, R. A. Cowley, W. J. L. Buyers, Z. Tun, R. Coldea and M. Enderle; The properties of Haldane
excitations and multi-particle states in the antiferromagnetic spin-1 chain compound CsNiCl3, November 23, 2013

Measurement of the dispersion relation by neutron scattering

dashed line: s = 1
2 → massless Dirac-particle

pointed line: s = 1 → spontaneous mass generation
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dispersion relation for all half-integer spin-systems is linear

it exists a gap for all integer spin-systems

there is a dependency of integer sequences

this tends to be of topological origin

we get this topological term out of the path-integral formalism
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named after Werner Heisenberg

one approach to describe (anti-)ferromagnetic systems

Spin is a quantum mechanical observable ~S

H = −J
N∑
i=1

~Si~Si+1
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Path-integral-formalism

From the talk of Jan Lotze:

Partition-function:

Z =

∫
D~nδ(n2 − 1) exp (−S [~n]) ,

=

∫
D~nδ(n2 − 1) exp

[
−
∫ β

0
dτ

(
〈~n| ∂

∂τ
|~n〉+ 〈~n|H|~n〉

)]
Coherent states :

~n is a vector on the unit sphere

|~n〉 = e−iθ~m·
~S |s,−s〉,

〈~n|~S |~n〉 = −s~n, ~n2 = 1
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Path-integral-formalism

kinetic term∫ β

0
dτ〈~n| ∂

∂τ
|~n〉 = −is

∫ β

0
dτ [1− cos θ(τ)]

.
ϕ(τ)︸ ︷︷ ︸

=Ω

where we assume →
∫
∂Σ
~Ad~n =

∫
Σ(~∇× ~A) · ~ndf = Ω,

where ~A is a vector potential on the unit sphere with
~∇× ~A = ~n

use periodic boundary conditions

∂Σ is a line integral enclosing the surface on the sphere
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Path-integral-formalism

Z =

∫
D~n exp

−is
∑
j

∫ β

0
dτ(~A(~nj) · ∂τ~nj)︸ ︷︷ ︸

Berry phase SB

−
∫ β

0
dτ〈~n|H|~n〉︸ ︷︷ ︸

interaction term Sint


Heisenberg Hamiltonian:

〈~n|H|~n〉 = J
∑
j

〈~n|~Sj · ~Sj+1|~n〉 = Js2
∑
j

~n(j) · ~n(j + 1)

for nearest neighbor interaction
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Spin-systems

~nj = (−1)~nj+1and with
”
a“as lattice spacing

but the spins are staggered
divide ~n into a slowly varying part ~m and a small but fast
fluctuation part ~l

~nj = (−1)j
√

1− a2l2j ~mj + a~lj

still apply

~nj
2 = ~mj

2 = 1, ~mj · ~lj = 0
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Spin-systems

for small lattice spacing a we approach for the nearest neighbor

~mj+1 ≈ ~mj + a∂x ~mj

~lj+1 ≈~lj + a∂x~lj√
1− a2~l2j ≈ 1−

a2l2j
2
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Interaction term

Heisenberg Hamiltonian:

〈~n|H|~n〉 = Js2
∑
j

~n(j) · ~n(j + 1) =
Js2

2

∑
j

(
[~n(j) + ~n(j + 1)]2 − 2

)
with our assumptions for small lattice spacing

[~n(j)− ~n(j + 1)]2 − 2 ≈
[
2a~lj − (−1)ja∂x ~mj + a2∂x~lj

]2
, a2∂x~lj → 0

= [4a2~l2j + a2~mj∂
2
x ~mj ]− 4(−1)ja2~lj∂x ~mi

Sint =
Js2

2

∑
j

∫ β

0
dτ
[
4a2l2j + a2(∂xmj)

2
]
−4(−1)ja2~lj∂x ~mj

blue marked term vanishes due the alternating sum
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Kinetic term

Z =

∫
D~n exp[−is

∑
j

∫ β

0
dτ(~A(~nj) · ∂τ~nj)︸ ︷︷ ︸

Berry phase SB

− Js2

2

∑
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dτ
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expand ~A(~nj) in a

expand ∂τ ~nj in a
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Kinetic term

using the assumption for staggered spins
Taylor-expansion in a

Aµ[~n] = Aµ[~m,~l ] = Aµ[(−1)j~n]

= Aµ
[√

1− a2l2 · ~m + (−1)ja~l
]

≈ Aµ(~m) + ∂νAµ(~m)[(−1)jalν ] +O(a2)

∂τn
µ = (−1)j∂τm

µ + a∂τ l
µ +O(a2)

we apply again: ~∇× ~A = ~n and use
∫ b
a dτ ∂f∂τ = f (b)− f (a)

~A(~nj) · ∂τ ~nj = (−1)j~A∂τ ~mj − a~lj( ~mj × ∂τ ~mj) + a∂τ (~A ·~l)︸ ︷︷ ︸
→0
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Partition function

Z =

∫
D~n exp[−is

∑
j

∫ β

0
dτ((−1)j~A∂τ ~mj − a~lj( ~mj × ∂τ ~mj))︸ ︷︷ ︸

Berry phase SB

− Js2

2

∑
j

∫ β

0
dτ
[
4a2l2j + a2(∂xmj)

2
]

︸ ︷︷ ︸
interaction term Sint

]
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Continuum limit

suppose xε = x0 + ε · a

∑
ε

af (xε)→
∫ x1

x0

f (x)dx

N∑
j=1

(−1)j f (xj) =

N/2∑
j=1

f (x2j)−
N/2∑
j=1

f (x2j−1)

=
1

2

N/2∑
j=1

2a
f (x2j)− f (x2j−1)

a︸ ︷︷ ︸
∂x f (x)

=
1

2

∫
dx∂x f (x)
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Continuum limit

sum → integral

using periodic boundary conditions

apply that ~∇× ~A = ~n

S [~n] ≈
∫

dx

∫ β

0
dτ[

−i s
2
~m(∂x ~m × ∂τ ~m) +

Js2

2
(∂x ~m)2 − s~l(~m × ∂τ ~m) + 2Js2~l2

]
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Gaussian integration

we are only interested in long range order
→ integrate over the fast fluctuation ~l in the partition function

Z =

∫
D~lD ~me−iS[~l ,~m]

saddle point method:∫ ∞
−∞

dl e if (l) ≈ e if (l0)

∫ ∞
−∞

dl exp
i

2
f
′′

(l0)(l − l0)2

≈ e if (l0)

√
2πi

f ′′(l0)

calculate l0 from f
′
(l) = 0 → f (l) changes slowly around this point
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Gaussian integration

S [~n] ≈
∫

dx

∫ β

0
dτ[

−i s
2
~m(∂x ~m × ∂τ ~m) +

Js2

2
(∂x ~m)2 − (s~l(~m × ∂x ~m)− 2Js2~l2)

]
only red marked part depends on ~l

− 2Js2︸︷︷︸
vs

~l2 +~l (~m × ∂x ~m)︸ ︷︷ ︸
y

s

→ f (l) = −vs l2 + lys

for f
′
(l) = 0→ l0 = s

y

2vs
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Result

Partition-function:

Z =

√
4π

vs

∫
D ~me−

∫
dτdxL(x ,τ)

L =
1

2g
· [ 1

vs
(∂τ ~m)2 + vs · (∂x ~m)2]︸ ︷︷ ︸

Lσ

− i
s

4
· εµν ~m(∂µ~m × ∂ν ~m)︸ ︷︷ ︸

LT

where Lσ is the same result, which we get from the
non-linear-sigma model,
LT is the topological term
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Topological term

i
s

4

∫
dτdxεµν ~m(∂µ~m × ∂ν ~m)

= i2πs
1

π

∫
dτdxεµν ~m(∂µ~m × ∂ν ~m)

= i2πsQ

there is a topological term which depends on the value of s

Q is the winding number which was discussed in the talk of
Andreas Löhle, Q ∈ Z

for integer spin: e−i2πsQ = 1
for half-integer spin: e−i2πsQ = (−1)Q

the topological term has an effect only for half-integer-spins in
one D
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Results

The one-dimension Heisenberg antiferromagnet can be
described by using the path-integral-formalism and leads to
same result as the NLσM plus topological term

we proved Haldane’s conjecture:

NLσM with topological term for half-integer spin → linear
dispersion relation was proved by Bethe Ansatz for s = 1

2
NLσM without topological term for integer spin → gap in the
dispersion relation

we can explain the energy-gap of the neutron-scattering for
s=1

Antiferromagnetism in two dimension by Wolfgang Voesch
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