Field-theory for the quantum Heisenberg antiferromagnet in one dimension

Seminar: Quantum field-theory on low dimensional systems

Marco Ströbel

24th June 2014
Table of contents

1. **Introduction**
 - Motivation
 - Heisenberg model

2. **Recapitulation**
 - Path-integral-formalism

3. **Effective action of antiferromagnets**
 - Path-integral

4. **Conclusion**
 - Conclusion
Motivation

- why?
Motivation

- why? → because we are physicists!
Motivation

- why? → because we are physicists!
- describe the behavior of some properties
Motivation

- why? → because we are physicists!
- describe the behavior of some properties
- e.g. the dispersion relation of spin-wave-excitation of antiferromagnets
Motivation

• why? → because we are physicists!
• describe the behavior of some properties
• e.g. the dispersion relation of spin-wave-excitation of antiferromagnets
the dispersion relation of long-wavelength spin-wave excitations for antiferromagnetic systems:

- different approaches calculate the dispersion-relation e.g. by 2nd quantisation or Bethe-ansatz
- the result is a linear dispersion relation for \(s = \frac{1}{2} \)
- it is also a linear dispersion relation for the high spin limit \(s \gg 1 \)
the dispersion relation of long-wavelength spin-wave excitations for antiferromagnetic systems:

- different approaches calculate the dispersion-relation e.g. by 2nd quantisation or Bethe-ansatz
- the result is a linear dispersion relation for $s = \frac{1}{2}$
- it is also a linear dispersion relation for the high spin limit $s \gg 1$
- there was no analytical solution for $s = 1$
Motivation

the dispersion relation of long-wavelength spin-wave excitations for antiferromagnetic systems:

- different approaches calculate the dispersion-relation e.g. by 2nd quantisation or Bethe-ansatz
- the result is a linear dispersion relation for \(s = \frac{1}{2} \)
- it is also a linear dispersion relation for the high spin limit \(s \gg 1 \)
- there was no analytical solution for \(s = 1 \)
- \(\rightarrow \) why should there be an other behavior for \(s=1 \)?
the dispersion relation of long-wavelength spin-wave excitations for antiferromagnetic systems:

- different approaches calculate the dispersion-relation e.g. by 2nd quantisation or Bethe-ansatz
- the result is a linear dispersion relation for $s = \frac{1}{2}$
- it is also a linear dispersion relation for the high spin limit $s >> 1$
- there was no analytical solution for $s = 1$
- why should there be an other behavior for $s=1$?
- Haldane expects that the dispersion relations of $s = 1$ and $s = \frac{1}{2}$ are different

the dispersion relation of long-wavelength spin-wave excitations for antiferromagnetic systems:

- different approaches calculate the dispersion-relation e.g. by 2nd quantisation or Bethe-ansatz
- the result is a linear dispersion relation for $s = \frac{1}{2}$
- it is also a linear dispersion relation for the high spin limit $s \gg 1$
- there was no analytical solution for $s = 1$
- → why should there be an other behavior for $s=1$?
- Haldane expects that the dispersion relations of $s = 1$ and $s = \frac{1}{2}$ are different

Motivation: experimental measurement

fig.: Neutron scattering for $S = \frac{1}{2}$ and $S = 1$

- Measurement of the dispersion relation by neutron scattering
- dashed line: $s = \frac{1}{2} \rightarrow$ massless Dirac-particle
- pointed line: $s = 1 \rightarrow$ spontaneous mass generation
Motivation

- dispersion relation for all half-integer spin-systems is linear
- it exists a gap for all integer spin-systems
Motivation

- dispersion relation for all half-integer spin-systems is linear
- it exists a gap for all integer spin-systems
- there is a dependency of integer sequences
- this tends to be of topological origin
Motivation

- dispersion relation for all half-integer spin-systems is linear
- it exists a gap for all integer spin-systems
- there is a dependency of integer sequences
- this tends to be of topological origin
- we get this topological term out of the path-integral formalism
Motivation

- dispersion relation for all half-integer spin-systems is linear
- it exists a gap for all integer spin-systems
- there is a dependency of integer sequences
- this tends to be of topological origin
- we get this topological term out of the path-integral formalism
Heisenberg model

- named after Werner Heisenberg
- one approach to describe (anti-)ferromagnetic systems
Heisenberg model

- named after Werner Heisenberg
- one approach to describe (anti-)ferromagnetic systems
- Spin is a quantum mechanical observable \vec{S}

$$H = -J \sum_{i=1}^{N} \vec{S}_i \vec{S}_{i+1}$$
Heisenberg model

- named after Werner Heisenberg
- one approach to describe (anti-)ferromagnetic systems
- Spin is a quantum mechanical observable \vec{S}

\[
H = -J \sum_{i=1}^{N} \vec{S}_i \vec{S}_{i+1}
\]
Path-integral-formalism

From the talk of Jan Lotze:

- **Partition-function:**

\[
Z = \int D\vec{n} \delta(n^2 - 1) \exp(-S[\vec{n}]),
\]

\[
= \int D\vec{n} \delta(n^2 - 1) \exp \left[-\int_0^\beta d\tau \left(\langle \vec{n}| \frac{\partial}{\partial \tau} |\vec{n}\rangle + \langle \vec{n}|H|\vec{n}\rangle \right) \right]
\]

- **Coherent states:**

\[|\vec{n}\rangle = e^{-i\theta \vec{m} \cdot \vec{S}} |s, -s\rangle,\]

\[\langle \vec{n}| \hat{\vec{S}} |\vec{n}\rangle = -s \vec{n}, \quad \vec{n}^2 = 1\]
Path-integral-formalism

- kinetic term

\[\int_0^\beta d\tau \langle \vec{n} \rvert \frac{\partial}{\partial \tau} \rvert \vec{n} \rangle = -i s \int_0^\beta d\tau [1 - \cos \theta(\tau)] \varphi(\tau) \]

where we assume \(\int_{\partial \Sigma} \vec{A} \, d\vec{n} = \int_{\Sigma} (\nabla \times \vec{A}) \cdot \vec{n} \, df = \Omega \),

where \(\vec{A} \) is a vector potential on the unit sphere with \(\nabla \times \vec{A} = \vec{n} \)

- use periodic boundary conditions
- \(\partial \Sigma \) is a line integral enclosing the surface on the sphere
Path-integral-formalism

\[Z = \int D\vec{n} \exp \left(-i s \sum_j \int_0^\beta d\tau (\vec{A}(\vec{n}_j) \cdot \partial_\tau \vec{n}_j) - \int_0^\beta d\tau \langle \vec{n} | H | \vec{n} \rangle \right) \]

- Heisenberg Hamiltonian:

\[\langle \vec{n} | H | \vec{n} \rangle = J \sum_j \langle \vec{n} | \vec{S}_j \cdot \vec{S}_{j+1} | \vec{n} \rangle = Js^2 \sum_j \vec{n}(j) \cdot \vec{n}(j + 1) \]

for nearest neighbor interaction
Path-integral-formalism

\[
Z = \int D\vec{n} \exp \left(-is \sum_j \int_0^\beta d\tau (\vec{A}(\vec{n}_j) \cdot \partial_\tau \vec{n}_j) - \int_0^\beta d\tau \langle \vec{n} | H | \vec{n} \rangle \right)
\]

- Heisenberg Hamiltonian:

\[
\langle \vec{n} | H | \vec{n} \rangle = J \sum_j \langle \vec{n} | S_j \cdot \vec{S}_{j+1} | \vec{n} \rangle = Js^2 \sum_j \vec{n}(j) \cdot \vec{n}(j + 1)
\]

for nearest neighbor interaction
Spin-systems

\[\vec{n}_j = (-1)^j \vec{n}_{j+1} \text{ and with } \, a \text{ as lattice spacing} \]

- but the spins are staggered
- divide \(\vec{n} \) into a slowly varying part \(\vec{m} \) and a small but fast fluctuation part \(\vec{l} \)

\[\vec{n}_j = (-1)^j \sqrt{1 - a^2 l_j^2} \, \vec{m}_j + a \vec{l}_j \]
Spin-systems

- $\vec{n}_j = (-1)^j \vec{n}_{j+1}$ and with "a" as lattice spacing
- but the spins are staggered
 divide \vec{n} into a slowly varying part \vec{m} and a small but fast fluctuation part \vec{l}

\[
\vec{n}_j = (-1)^j \sqrt{1 - a^2 l_j^2} \vec{m}_j + a \vec{l}_j
\]

still apply

\[
\vec{n}_j^2 = \vec{m}_j^2 = 1, \quad \vec{m}_j \cdot \vec{l}_j = 0
\]
Spin-systems

- \(\vec{n}_j = (-1)^j \vec{n}_{j+1} \) and with \(\text{``a''} \) as lattice spacing
- but the spins are staggered
 divide \(\vec{n} \) into a slowly varying part \(\vec{m} \) and a small but fast fluctuation part \(\vec{l} \)

\[
\vec{n}_j = (-1)^j \sqrt{1 - a^2 \vec{l}_j^2} \vec{m}_j + a \vec{l}_j
\]

still apply

\[
\vec{n}_j^2 = \vec{m}_j^2 = 1, \quad \vec{m}_j \cdot \vec{l}_j = 0
\]
Spin-systems

\[\mathbf{n}_j = (-1)^j \mathbf{n}_{j+1} \]

and with „a“ as lattice spacing

but the spins are staggered

divide \(\mathbf{n} \) into a slowly varying part \(\mathbf{m} \) and a small but fast fluctuation part \(\mathbf{l} \)

\[\mathbf{n}_j = (-1)^j \sqrt{1 - a^2 l_j^2} \mathbf{m}_j + a \mathbf{l}_j \]

still apply

\[\mathbf{n}_j^2 = \mathbf{m}_j^2 = 1, \quad \mathbf{m}_j \cdot \mathbf{l}_j = 0 \]
Spin-systems

for small lattice spacing a we approach for the nearest neighbor

$$\vec{m}_{j+1} \approx \vec{m}_j + a \partial_x \vec{m}_j$$

$$\vec{l}_{j+1} \approx \vec{l}_j + a \partial_x \vec{l}_j$$

$$\sqrt{1 - a^2 \vec{l}_j^2} \approx 1 - \frac{a^2 \vec{l}_j^2}{2}$$
Interaction term

Heisenberg Hamiltonian:

\[\langle \vec{n} | H | \vec{n} \rangle = J s^2 \sum_j \vec{n}(j) \cdot \vec{n}(j + 1) = \frac{J s^2}{2} \sum_j ([\vec{n}(j) + \vec{n}(j + 1)]^2 - 2) \]

with our assumptions for small lattice spacing

\[([\vec{n}(j) - \vec{n}(j + 1)]^2 - 2 \approx \left[2a \vec{l}_j - (\text{\color{blue}1})^j a \partial_x \vec{m}_j + a^2 \partial_x^2 \vec{l}_j \right]^2, \quad a^2 \partial_x \vec{l}_j \rightarrow 0 \]

\[= [4a^2 \vec{l}_j^2 + a^2 \vec{m}_j \partial_x^2 \vec{m}_j] - 4(\text{\color{blue}1})^j a^2 \vec{l}_j \partial_x \vec{m}_i \]

\[S_{\text{int}} = \frac{J s^2}{2} \sum_j \int_0^\beta d\tau \left[4a^2 \vec{l}_j^2 + a^2 (\partial_x m_j)^2 \right] - 4(\text{\color{blue}1})^j a^2 \vec{l}_j \partial_x \vec{m}_j \]

\text{blue marked term vanishes due the alternating sum.}
Interaction term

Heisenberg Hamiltonian:

\[
\langle \vec{n} | H | \vec{n} \rangle = Js^2 \sum_j \vec{n}(j) \cdot \vec{n}(j + 1) = \frac{Js^2}{2} \sum_j ([\vec{n}(j) + \vec{n}(j + 1)]^2 - 2)
\]

with our assumptions for small lattice spacing

\[
[\vec{n}(j) - \vec{n}(j + 1)]^2 - 2 \approx \left[2a\vec{l}_j - (-1)^j a\partial_x \vec{m}_j + a^2 \partial_x \vec{l}_j \right]^2, \quad a^2 \partial_x \vec{l}_j \rightarrow 0
\]

\[
= [4a^2 \vec{l}_j^2 + a^2 \vec{m}_j \partial_x^2 \vec{m}_j] - 4(-1)^j a^2 \vec{l}_j \partial_x \vec{m}_i
\]

\[
S_{int} = \frac{Js^2}{2} \sum_j \int_0^\beta d\tau \left[4a^2 \vec{l}_j^2 + a^2 (\partial_x m_j)^2 \right] - 4(-1)^j a^2 \vec{l}_j \partial_x \vec{m}_j
\]

blue marked term vanishes due the alternating sum
Kinetic term

\[Z = \int D\vec{n} \exp[-is \sum_j \int_0^\beta d\tau (\vec{A}(\vec{n}_j) \cdot \partial_\tau \vec{n}_j)] \]

Berry phase \(S_B \)

\[-\frac{Js^2}{2} \sum_j \int_0^\beta d\tau \left[4a^2 l_j^2 + a^2 (\partial_x m_j)^2 \right] \]

Interaction term \(S_{int} \)

Berry Phase:

\[S_B = is \sum_j \int_0^\beta d\tau (\vec{A}(\vec{n}_j) \cdot \partial_\tau \vec{n}_j) \]

- expand \(\vec{A}(\vec{n}_j) \) in \(a \)
- expand \(\partial_\tau \vec{n}_j \) in \(a \)
Kinetic term

\[
Z = \int D\vec{n} \exp\left[-is \sum_j \int_0^\beta d\tau (\vec{A}(\vec{n}_j) \cdot \partial_\tau \vec{n}_j) \right]
\]

- **Berry phase** S_B

\[
S_B = is \sum_j \int_0^\beta d\tau (\vec{A}(\vec{n}_j) \cdot \partial_\tau \vec{n}_j)
\]

- **Interaction term** S_{int}

\[
- \frac{J s^2}{2} \sum_j \int_0^\beta d\tau \left[4a^2 l_j^2 + a^2 (\partial_x m_j)^2 \right]
\]

Berry Phase:

\[
S_B = is \sum_j \int_0^\beta d\tau (\vec{A}(\vec{n}_j) \cdot \partial_\tau \vec{n}_j)
\]

- expand $\vec{A}(\vec{n}_j)$ in a
- expand $\partial_\tau \vec{n}_j$ in a
Kinetic term

- using the assumption for staggered spins
- Taylor-expansion in a

\[
A_\mu[\vec{n}] = A_\mu[\vec{m}, \vec{l}] = A_\mu[(-1)^j \vec{n}]
\]
\[
= A_\mu \left[\sqrt{1 - a^2 l^2} \cdot \vec{m} + (-1)^j a \vec{l} \right]
\]
\[
\approx A_\mu(\vec{m}) + \partial_\nu A_\mu(\vec{m})[(-1)^j a l^{\nu}] + O(a^2)
\]

\[
\partial_\tau n^\mu = (-1)^j \partial_\tau m^\mu + a \partial_\tau l^\mu + O(a^2)
\]
Kinetic term

- using the assumption for staggered spins
- Taylor-expansion in a

\[
A_\mu[\vec{n}] = A_\mu[\vec{m}, \vec{l}] = A_\mu[(-1)^j \vec{n}]
\]
\[
= A_\mu \left[\sqrt{1 - a^2 l^2} \cdot \vec{m} + (-1)^j a \vec{l} \right]
\]
\[
\approx A_\mu(\vec{m}) + \partial_\nu A_\mu(\vec{m})[(-1)^j a l^{\nu}] + O(a^2)
\]

\[
\partial_\tau n^\mu = (-1)^j \partial_\tau m^\mu + a \partial_\tau l^\mu + O(a^2)
\]

we apply again: $\vec{\nabla} \times \vec{A} = \vec{n}$ and use $\int_a^b d\tau \frac{\partial f}{\partial \tau} = f(b) - f(a)$

\[
\vec{A}(\vec{n}_j) \cdot \partial_\tau \vec{n}_j = (-1)^j \vec{A} \partial_\tau \vec{m}_j - a \vec{l}_j(\vec{m}_j \times \partial_\tau \vec{m}_j) + a \partial_\tau (\vec{A} \cdot \vec{l})
\]
Kinetic term

- using the assumption for staggered spins
- Taylor-expansion in \(a \)

\[
A_\mu[\vec{n}] = A_\mu[\vec{m}, \vec{l}] = A_\mu[(-1)^j \vec{n}]
\]
\[
= A_\mu \left[\sqrt{1 - a^2 l^2} \cdot \vec{m} + (-1)^j a \vec{l} \right]
\]
\[
\approx A_\mu(\vec{m}) + \partial_\nu A_\mu(\vec{m})[(-1)^j a l^\nu] + \mathcal{O}(a^2)
\]

\[
\partial_\tau n^\mu = (-1)^j \partial_\tau m^\mu + a \partial_\tau l^\mu + \mathcal{O}(a^2)
\]

we apply again: \(\vec{\nabla} \times \vec{A} = \vec{n} \) and use \(\int_a^b d\tau \frac{\partial f}{\partial \tau} = f(b) - f(a) \)

\[
\vec{A}(\vec{n}_j) \cdot \partial_\tau \vec{n}_j = (-1)^j \vec{A} \partial_\tau \vec{m}_j - a l_j (\vec{m}_j \times \partial_\tau \vec{m}_j) + a \partial_\tau (\vec{A} \cdot \vec{l}) \rightarrow 0
\]
Partition function

\[Z = \int D\bar{n} \exp[-is \sum_j \int_0^\beta d\tau ((-1)^j \mathbf{\dot{A}} \partial_\tau \mathbf{m}_j - a\mathbf{l}_j (\mathbf{m}_j \times \partial_\tau \mathbf{m}_j))} \]

\[- \frac{Js^2}{2} \sum_j \int_0^\beta d\tau \left[4a^2 l_j^2 + a^2 (\partial_x m_j)^2 \right] \]

Berry phase \(S_B \)

interaction term \(S_{int} \)
Continuum limit

suppose $x_\varepsilon = x_0 + \varepsilon \cdot a$

$$\sum_{\varepsilon} a f(x_\varepsilon) \to \int_{x_0}^{x_1} f(x) dx$$

$$\sum_{j=1}^{N} (-1)^j f(x_j) = \sum_{j=1}^{N/2} f(x_{2j}) - \sum_{j=1}^{N/2} f(x_{2j-1})$$

$$= \frac{1}{2} \sum_{j=1}^{N/2} 2a \frac{f(x_{2j}) - f(x_{2j-1})}{a} = \frac{1}{2} \int dx \partial_x f(x)$$
Continuum limit

suppose \(x_\varepsilon = x_0 + \varepsilon \cdot a \)

\[
\sum_{\varepsilon} \alpha f(x_\varepsilon) \rightarrow \int_{x_0}^{x_1} f(x) \, dx
\]

\[
\sum_{j=1}^{N} (-1)^j f(x_j) = \sum_{j=1}^{N/2} f(x_{2j}) - \sum_{j=1}^{N/2} f(x_{2j-1})
\]

\[
= \frac{1}{2} \sum_{j=1}^{N/2} 2a \left(\frac{f(x_{2j}) - f(x_{2j-1})}{a} \right)
= \frac{1}{2} \int dx \partial_x f(x)
\]
Continuum limit

- sum \to integral
- using periodic boundary conditions
- apply that $\tilde{\nabla} \times \tilde{A} = \tilde{n}$

$$S[\tilde{n}] \approx \int d\mathbf{x} \int_0^\beta d\tau$$
$$\left[-i \frac{s}{2} \tilde{m}(\partial_x \tilde{m} \times \partial_\tau \tilde{m}) + \frac{Js^2}{2} (\partial_x \tilde{m})^2 - s\tilde{l}(\tilde{m} \times \partial_\tau \tilde{m}) + 2Js^2 \tilde{l}^2 \right]$$
we are only interested in long range order
→ integrate over the fast fluctuation \vec{I} in the partition function

$$Z = \int D\vec{I} D\vec{m} e^{-iS[\vec{I},\vec{m}]}$$

saddle point method:

$$\int_{-\infty}^{\infty} dl \ e^{if(l)} \approx e^{if(l_0)} \int_{-\infty}^{\infty} dl \ \exp \frac{i}{2} f''(l_0)(l - l_0)^2$$

$$\approx e^{if(l_0)} \sqrt{\frac{2\pi i}{f''(l_0)}}$$

calculate l_0 from $f'(l) = 0 \rightarrow f(l)$ changes slowly around this point
Gaussian integration

\[S[\mathbf{n}] \approx \int d\mathbf{x} \int_{0}^{\beta} d\tau \]

\[\left[-i\frac{s}{2} \mathbf{m}(\partial_{x} \mathbf{m} \times \partial_{\tau} \mathbf{m}) + \frac{Js^{2}}{2} (\partial_{x} \mathbf{m})^{2} - (s\mathbf{l}(\mathbf{m} \times \partial_{x} \mathbf{m}) - 2Js^{2}\mathbf{l}^{2}) \right] \]

only red marked part depends on \(\mathbf{l} \)

\[-2Js^{2}\mathbf{l}^{2} + \mathbf{l}(\mathbf{m} \times \partial_{x} \mathbf{m}) s \]

\[\nu_{s} \]

\[y \]

\[\rightarrow f(l) = -\nu_{s}l^{2} + lys \]

for \(f'(l) = 0 \rightarrow l_{0} = s \frac{y}{2\nu_{s}} \]
Result

Partition-function:

\[
Z = \sqrt{\frac{4\pi}{v_s}} \int D\vec{m} e^{-\int d\tau d\mathbf{x} \mathcal{L}(\mathbf{x},\tau)}
\]

\[
\mathcal{L} = \frac{1}{2g} \cdot \left[\frac{1}{v_s} (\partial_\tau \vec{m})^2 + v_s \cdot (\partial_\mathbf{x} \vec{m})^2 \right] - i s \frac{\varepsilon^{\mu
\nu}}{4} \vec{m} (\partial_\mu \vec{m} \times \partial_\nu \vec{m})
\]

where \(\mathcal{L}_\sigma\) is the same result, which we get from the non-linear-sigma model,
\(\mathcal{L}_T\) is the topological term
Topological term

\[
i \frac{s}{4} \int d\tau dx \varepsilon^{\mu \nu} \mathbf{m} (\partial_\mu \mathbf{m} \times \partial_\nu \mathbf{m})
\]

\[
= i 2\pi s \frac{1}{\pi} \int d\tau dx \varepsilon^{\mu \nu} \mathbf{m} (\partial_\mu \mathbf{m} \times \partial_\nu \mathbf{m})
\]

\[
= i 2\pi s Q
\]

- there is a topological term which depends on the value of \(s\)
Topological term

\[i \frac{s}{4} \int d\tau dx \varepsilon^{\mu\nu} \vec{m}(\partial_\mu \vec{m} \times \partial_\nu \vec{m}) \]

\[= i2\pi s \frac{1}{\pi} \int d\tau dx \varepsilon^{\mu\nu} \vec{m}(\partial_\mu \vec{m} \times \partial_\nu \vec{m}) \]

\[= i2\pi s Q \]

- there is a topological term which depends on the value of \(s \)
- \(Q \) is the winding number which was discussed in the talk of Andreas Löhle, \(Q \in \mathbb{Z} \)
 - for integer spin: \(e^{-i2\pi s Q} = 1 \)
 - for half-integer spin: \(e^{-i2\pi s Q} = (-1)^Q \)
- the topological term has an effect only for half-integer-spins in one D
there is a topological term which depends on the value of s

Q is the winding number which was discussed in the talk of Andreas Löhle, $Q \in \mathbb{Z}$

- for integer spin: $e^{-i2\pi sQ} = 1$
- for half-integer spin: $e^{-i2\pi sQ} = (-1)^Q$

the topological term has an effect only for half-integer-spins in one D
The one-dimension Heisenberg antiferromagnet can be described by using the path-integral-formalism and leads to same result as the NLσM plus topological term

we proved Haldane’s conjecture:

- $NL\sigma$M with topological term for half-integer spin \rightarrow linear dispersion relation was proved by Bethe Ansatz for $s = \frac{1}{2}$
- $NL\sigma$M without topological term for integer spin \rightarrow gap in the dispersion relation
The one-dimension Heisenberg antiferromagnet can be described by using the path-integral-formalism and leads to same result as the NLσM plus topological term

we proved Haldane’s conjecture:

- NLσM with topological term for half-integer spin \rightarrow linear dispersion relation was proved by Bethe Ansatz for $s = \frac{1}{2}$
- NLσM without topological term for integer spin \rightarrow gap in the dispersion relation

we can explain the energy-gap of the neutron-scattering for $s=1$
The one-dimension Heisenberg antiferromagnet can be described by using the path-integral-formalism and leads to the same result as the NL\(\sigma\)M plus topological term. We proved Haldane’s conjecture:

- NL\(\sigma\)M with topological term for half-integer spin \(s = \frac{1}{2}\) → linear dispersion relation was proved by Bethe Ansatz.
- NL\(\sigma\)M without topological term for integer spin \(s = \frac{1}{2}\) → gap in the dispersion relation.

We can explain the energy-gap of the neutron-scattering for \(s = 1\).

Antiferromagnetism in two dimension by Wolfgang Voesch.
The one-dimensional Heisenberg antiferromagnet can be described by using the path-integral-formalism and leads to the same result as the NLσM plus topological term. We proved Haldane’s conjecture:

- NLσM with topological term for half-integer spin \rightarrow linear dispersion relation was proved by Bethe Ansatz for $s = \frac{1}{2}$
- NLσM without topological term for integer spin \rightarrow gap in the dispersion relation

We can explain the energy-gap of the neutron-scattering for $s=1$.

Antiferromagnetism in two dimension by Wolfgang Voesch