Field-theory of the quantum Heisenberg antiferromagnet in two dimensions Quantum field-theory of low dimensional systems

Wolfgang Voesch

Professor A. Muramatsu Institute for Theoretical Physics III University of Stuttgart

July 1, 2014

Motivation

G. Shirane, Y. Endoh, R. J. Birgeneau, M. Kastner, M. A. Kastner, Y. Hidaka, M. Oda, M. Suzuki, and T. Murakami, *Two-Dimensional Antiferromagnetic Quantum Spin-Fluid State in La₂CuO₄*: Phys. Rev. Lett. 59, pp. 1613-1616, Oct 5 1987

Chakravarty S., Halperin B., Nelson D.: Two-dimensional quantum Heisenberg antiferromagnet at low temperatures. PR B, vol. 39, pp. 2344-2371, Feb 1 1989.

Table of Contents

1 Introduction

- Spin coherent states
- Partition function
- \bullet Heisenberg antiferromagnet in d=1
- 2 Heisenberg antiferromagnet in d=2
 - Haldane's mapping
 - Action and Berry-phase
 - Lagrangian

3 Overview

- \bullet Connection to the $\rm NL\sigma M$
- Results of the $NL\sigma M$

4 Conclusion

Spin coherent states Partition function Heisenberg antiferromagnet in d=1

Recapitulation - Spin coherent states

• start with spin-states, the eigenstates to S^2 and S_z :

 $|s,m\rangle$ with m=-s,...,s

- choose fundamental state $|\psi\rangle = |s, s\rangle$, with m = s
- introduce the spin coherent state

$$|\mathbf{n}\rangle = e^{i\theta\mathbf{mS}}|\psi\rangle$$

with $\mathbf{m} = (\sin \phi, -\cos \phi, 0)$ and $0 \le \theta \le \pi$: vector on unit sphere

Spin coherent states Partition function Heisenberg antiferromagnet in d=1

Recapitulation - Partition function

• partition function on single-spin system

$$Z = \operatorname{Tr}\left(e^{-\beta H}\right) = \int \mathrm{d}\mathbf{n} \, \langle \mathbf{n} | e^{-\beta H} | \mathbf{n} \rangle$$

• with time-slicing

$$Z = \int \mathcal{D}\mathbf{n} \ e^{-\mathcal{S}}$$
$$\mathcal{S} = \underbrace{\int d\tau \langle \mathbf{n} | \frac{d}{d\tau} | \mathbf{n} \rangle}_{\mathcal{S}_B} + \underbrace{\int d\tau \langle \mathbf{n} | H | \mathbf{n} \rangle}_{\mathcal{S}_H}$$

- S_B : the Berry-Phase
- S_H : the action depending on the system's Hamiltonian

Spin coherent states Partition function Heisenberg antiferromagnet in d=1

Heisenberg antiferromagnet in d=1

• partition function of the system

$$Z = \int \mathcal{D}\mathbf{n} \exp\left[\underbrace{-\mathrm{i}s \sum_{i} \int \mathrm{d}\tau \left(\mathbf{A} \partial_{\tau} \mathbf{n}_{i}\right)}_{\mathcal{S}_{B}} - \underbrace{\int \mathrm{d}\tau \langle \mathbf{n} | H | \mathbf{n} \rangle}_{\mathcal{S}_{H}}\right]$$

with
$$H = J \sum_{\langle i,j \rangle} \mathbf{s}_i \mathbf{s}_j$$

• Lagrangian

$$\mathcal{L} = \underbrace{\frac{1}{16a^2 J} (\partial_{\tau} \mathbf{n})^2 + s^2 \frac{J}{2} (\partial_x \mathbf{n})^2}_{\mathcal{L}_{\sigma}} - \underbrace{\mathrm{i} \frac{s}{4} \epsilon_{\mu,\nu} \mathbf{n} (\partial_{\mu} \mathbf{n} \times \partial_{\nu} \mathbf{n})}_{\mathcal{L}_{\mathrm{topol}}}$$

Haldane's mapping Action and Berry-phase Dagrangian

Heisenberg antiferromagnet in d=2

• Heisenberg Hamiltonian:

$$\hat{H} = J \sum_{\langle i,j \rangle} \hat{\mathbf{s}}_i \hat{\mathbf{s}}_j$$

with J > 0

• partition function:

$$Z = \int \mathcal{D}\mathbf{n} \, \mathrm{e}^{-\mathcal{S}}$$

• action:

$$\mathcal{S} = i \sum_{\langle i,j \rangle} \int d^2 x d\tau \mathbf{A}_i(\mathbf{x},\tau) \cdot \partial_\tau \mathbf{s}_i(\mathbf{x},\tau) + J \sum_{\langle i,j \rangle} \mathbf{s}_i \mathbf{s}_j$$

Haldane's mapping Action and Berry-phase Jagrangian

Néel state

- interested in solving the Heisenberg antiferromagnet in d=2; expectations:
 - short range correlation
 - short range antiferromagnetic order
- Néel state is classical ground state
 - derivation from Néel state
- idea
 - modify Néel state, cubic lattice
 - short and long length scale fluctuations
 - \rightarrow eliminate short wavelength fluctuations

staggered fluctuations

Haldane's mapping Action and Berry-phase Lagrangian

Haldane's mapping

- Hald ane mapped effective long-wavelength action into nonlinear sigma model with d=2+1
- separate short and long length scale fluctuations
- \mathbf{L}_i small fluctuation

$$\mathbf{s}_{i} = \underbrace{(-1)^{i} s \sqrt{1 - \frac{a^{2} L_{i}^{2}}{s^{2}} \mathbf{n}_{i}}}_{x} + \underbrace{a \mathbf{L}_{i}}_{y}$$
$$|\mathbf{s}_{i}|^{2} = (-1)^{2i} s^{2} \left(1 - \frac{a^{2} L_{i}^{2}}{s^{2}}\right) \mathbf{n}_{i}^{2} + a^{2} \mathbf{L}_{i}^{2} = s^{2}$$

with the constraints:

-
$$\mathbf{n}_i^2 = 1$$

- $a|\mathbf{L}_i| \ll s$
- $\mathbf{L}_i \cdot \mathbf{n}_i = 0$
 $\xrightarrow{\text{later}} Z = \int \mathcal{D}\mathbf{n} \ \delta(\mathbf{n}^2 - 1)\delta(\mathbf{L}\mathbf{n})e^{-S}$

Haldane's mapping Action and Berry-phase Lagrangian

Kinetic term

• evaluate kinetic term of

$$S = i \sum_{\langle i,j \rangle} \int d^2 x d\tau \mathbf{A}_i(\mathbf{x},\tau) \cdot \partial_\tau \mathbf{s}_i(\mathbf{x},\tau) + J_H \sum_{\langle i,j \rangle} \mathbf{s}_i \mathbf{s}_j$$

- evaluate $\mathbf{A}_i(\mathbf{x}, \tau)$ and $\partial_{\tau} \mathbf{s}_i(\mathbf{x}, \tau)$ separately
- for simplicity neglect position indication $i (X_i \to X)$
- Start with $\mathbf{A}(\mathbf{x}, \tau) = \mathbf{A}(\mathbf{n}(\mathbf{x}, \tau), \mathbf{L}(\mathbf{x}, \tau))$ reminder: $\mathbf{s} = (-1)^i s \sqrt{1 - \frac{a^2 L^2}{s^2}} \mathbf{n} + a \mathbf{L}$

$$A_{\mu}(\mathbf{n}, \mathbf{L}) = A_{\mu}\left((-1)^{i}\frac{\mathbf{s}}{s}\right) = A_{\mu}\left(\sqrt{1 - \frac{a^{2}L^{2}}{s^{2}}}\mathbf{n} + (-1)^{i}\frac{a\mathbf{L}}{s}\right)$$

• first order series expansion around $\sqrt{1 - \frac{a^2 L^2}{s^2}} \mathbf{n}$

Haldane's mapping Action and Berry-phase Lagrangian

Kinetic term - first part

• first order expansion in a for the point

$$\sqrt{1 - \frac{a^2 L^2}{s^2}} \mathbf{n} = \left(1 - \frac{a^2 L^2}{2s^2}\right) \mathbf{n} + \mathcal{O}(a^3) \approx \mathbf{n}$$

• expansion around the point

$$\begin{aligned} A_{\mu}(\mathbf{n},\mathbf{L}) =& A_{\mu}\left((-1)^{i}\frac{\mathbf{s}}{s}\right) = A_{\mu}\left(\sqrt{1-\frac{a^{2}L^{2}}{s^{2}}}\mathbf{n} + (-1)^{i}\frac{a\mathbf{L}}{s}\right) \\ \approx& A_{\mu}\left(\mathbf{n}\right) + \partial_{\nu}A_{\mu}\left(\mathbf{n}\right) \cdot \left[(-1)^{i}\frac{aL_{\nu}}{s}\right] + \\ & + \frac{1}{2}\partial_{\lambda}\partial_{\nu}A_{\mu}\left(\mathbf{n}\right) \cdot \left[(-1)^{i}\frac{aL_{\nu}}{s}\right] \left[(-1)^{i}\frac{aL_{\lambda}}{s}\right] + \dots \\ \approx& A_{\mu}\left(\mathbf{n}\right) + \partial_{\nu}A_{\mu}\left(\mathbf{n}\right) \cdot \left[(-1)^{i}\frac{aL_{\nu}}{s}\right] \end{aligned}$$

Haldane's mapping Action and Berry-phase Lagrangian

Kinetic term - second part

• continue with derivation of second part $\partial_{\tau} \mathbf{s}_i(\mathbf{n}_i, \mathbf{L}_i)$

$$\begin{split} \partial_{\tau} s_i^{\mu}(\mathbf{n}, \mathbf{L}) = &\partial_{\tau} \left[(-1)^i s \sqrt{1 - \frac{a^2 L(\tau)^2}{2s^2}} n^{\mu}(\tau) + a L^{\mu}(\tau) \right] \\ \approx &\partial_{\tau} \left[(-1)^i s \left(1 - \frac{a^2 L(\tau)^2}{2s^2} \right) n^{\mu}(\tau) + a L^{\mu}(\tau) + \mathcal{O}(a^2) \right] \\ \approx &(-1)^i s \cdot 1 \cdot \partial_{\tau} n^{\mu} + a \partial_{\tau} L^{\mu} + \mathcal{O}(a^2) \\ \approx &(-1)^i s \partial_{\tau} n^{\mu} + a \partial_{\tau} L^{\mu} \end{split}$$

Haldane's mapping Action and Berry-phase Lagrangian

Kinetic part - evaluation of the whole expression

• now evaluate the whole expression

$$\begin{aligned} A_{\mu} \cdot \partial_{\tau} s_{i}^{\mu} &\approx \left[A_{\mu} \left(\mathbf{n} \right) + \partial_{\nu} A_{\mu} \left(\mathbf{n} \right) \cdot \left[(-1)^{i} \frac{a L_{\nu}}{s} \right] \right] \cdot \\ & \cdot \left[(-1)^{i} s \partial_{\tau} n^{\mu} + a \partial_{\tau} L^{\mu} \right] \\ &\approx (-1)^{i} s A_{\mu} (\mathbf{n}) \partial_{\tau} n \mu + a \partial_{\nu} A_{\mu} (\mathbf{n}) L^{\nu} \partial_{\tau} n^{\mu} + a A_{\mu} (\mathbf{n}) \partial_{\tau} L^{\mu} + \mathcal{O}(a^{2}) \end{aligned}$$

• next step: evaluate $\partial_{\nu} A_{\mu}(\mathbf{n}) L^{\nu} \partial_{\tau} n^{\mu}$

Haldane's mapping Action and Berry-phase Lagrangian

Kinetic term - further calculations

- auxiliary calculation for $\partial_{\nu}A_{\mu}(\mathbf{n})L^{\nu}\partial_{\tau}n^{\mu}$
 - constraint for the vector potential $\nabla\times \mathbf{A}=\mathbf{n}$

$$\epsilon_{\alpha\beta\gamma}\partial_{\beta}A_{\gamma} = n_{\alpha}$$

$$\epsilon_{\mu\nu\alpha} \epsilon_{\alpha\beta\gamma}\partial_{\beta}A_{\gamma} = \epsilon_{\mu\nu\alpha} n_{\alpha}$$

• use identity
$$\epsilon_{\mu\nu\alpha} \ \epsilon_{\alpha\beta\gamma} = \delta_{\mu\beta}\delta_{\nu\gamma} - \delta_{\mu\gamma}\delta_{\nu\beta}$$

$$\begin{split} \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} &= \epsilon_{\mu\nu\alpha} \ n_{\alpha} \\ \partial_{\nu}A_{\mu} &= \epsilon_{\nu\mu\alpha} \ n_{\alpha} + \partial_{\mu}A_{\nu} \end{split}$$

• plug this in the result in $\partial_{\nu}A_{\mu}(\mathbf{n})L^{\nu}\partial_{\tau}n^{\mu}$

 $\partial_{\nu}A_{\mu}(\mathbf{n})L^{\nu}\partial_{\tau}n^{\mu} = \epsilon_{\nu\mu\alpha} \ n_{\alpha}L^{\nu}\partial_{\tau}n^{\mu} + \partial_{\mu}A_{\nu}L^{\nu}\partial_{\tau}n^{\mu}$

• now have a look at the last part

$$\partial_{\mu}A_{\nu}L^{\nu}\partial_{\tau}n^{\mu} = L^{\nu}\frac{\partial A_{\nu}}{\partial n^{\mu}}\frac{\partial n^{\nu}}{\partial \tau} = L^{\nu}\partial_{\tau}A_{\nu}$$

Haldane's mapping Action and Berry-phase Lagrangian

Kinetic term - the result

• now plug it back in $A_{\mu} \cdot \partial_{\tau} s_i^{\mu}$

$$A_{\mu} \cdot \partial_{\tau} s_{i}^{\mu} \approx (-1)^{i} s A_{\mu} \partial_{\tau} n \mu + a \partial_{\nu} A_{\mu} L^{\nu} \partial_{\tau} n^{\mu} + a A_{\mu} \partial_{\tau} L^{\mu}$$

$$\approx (-1)^{i} s A_{\mu} \partial_{\tau} n \mu + a \epsilon_{\nu\mu\alpha} n_{\alpha} L^{\nu} \partial_{\tau} n^{\mu} + \underbrace{a L^{\nu} \partial_{\tau} A_{\nu} + a A_{\mu} \partial_{\tau} L^{\mu}}_{= (-1)^{i} s A_{\mu} \partial_{\tau} n \mu + a \epsilon_{\nu\mu\alpha} n_{\alpha} L^{\nu} \partial_{\tau} n^{\mu} + a \partial_{\tau} (A_{\mu} L^{\mu})}$$

• all components of the kinetic term

$$\mathbf{A}\partial_{\tau}\mathbf{s} = (-1)^{i}s\mathbf{A}\partial_{\tau}\mathbf{n} - a\mathbf{L}\cdot(\mathbf{n}\times\partial_{\tau}\mathbf{n}) + a\underbrace{\partial_{\tau}(\mathbf{A}\mathbf{L})}_{=0}$$

• the total time derivation

$$\mathcal{S} \propto \int_0^\beta \mathrm{d} au \; \partial_ au(\mathbf{AL}) = \left. \mathbf{AL} \right|_0^eta \quad \mathop{\stackrel{\mathrm{closed}}{=}}_{\mathrm{loop}} \quad 0$$

Haldane's mapping Action and Berry-phase Lagrangian

Interaction term

• reminder:

$$\mathbf{s}_i = (-1)^i s \sqrt{1 - \frac{a^2 L_i^2}{s^2}} \mathbf{n}_i + a \mathbf{L}_i \approx (-1)^i s \left(1 - \frac{a^2 L_i^2}{2s^2}\right) \mathbf{n}_i + a \mathbf{L}_i$$

• calculating the interaction, neglecting $\mathcal{O}(a^3)$:

$$\begin{aligned} \mathbf{s}_{i}\mathbf{s}_{j} &= \left[(-1)^{i}s \left(1 - \frac{a^{2}L_{i}^{2}}{2s^{2}} \right) \mathbf{n}_{i} + a\mathbf{L}_{i} \right] \left[(-1)^{j}s \left(1 - \frac{a^{2}L_{j}^{2}}{2s^{2}} \right) \mathbf{n}_{j} + a\mathbf{L}_{j} \right] \\ &\approx (-1)^{i+j}s^{2}\mathbf{n}_{i}\mathbf{n}_{j} - (-1)^{i+j}s^{2}\mathbf{n}_{i}\mathbf{n}_{j} \frac{a^{2}L_{j}^{2}}{2s^{2}} - (-1)^{i+j}s^{2}\mathbf{n}_{i}\mathbf{n}_{j} \frac{a^{2}L_{i}^{2}}{2s^{2}} + a^{2}\mathbf{L}_{i}\mathbf{L}_{j} + \mathcal{O}(a^{4}) \end{aligned}$$

• used $\mathbf{nL} = 0$

$$\mathbf{s}_{i}\mathbf{s}_{j} \approx (-1)^{i+j}s^{2} \underbrace{\mathbf{n}_{i}\mathbf{n}_{j}}_{\psi} + \underbrace{a^{2} \left[\mathbf{L}_{i}\mathbf{L}_{j} - \frac{(-1)^{i+j}}{2}\mathbf{n}_{i}\mathbf{n}_{j} \left(L_{i}^{2} + L_{j}^{2}\right)\right]}_{\zeta}$$

Haldane's mapping Action and Berry-phase Lagrangian

Evaluation of ψ - part I

• evaluate first bit

$$\psi = \mathbf{n}_i \mathbf{n}_j + 1 - \frac{1}{2} - \frac{1}{2}$$

• with
$$\mathbf{n}_i^2 = 1$$
 and $\mathbf{n}_j^2 = 1$

$$\psi = \mathbf{n}_i \mathbf{n}_j + 1 - \frac{\mathbf{n}_i^2}{2} - \frac{\mathbf{n}_j^2}{2}$$
$$= 1 - \frac{1}{2} (\mathbf{n}_i - \mathbf{n}_j)^2$$

- evaluate $\mathbf{n}_i \mathbf{n}_j$
- summation over nearest neighbor

$$\begin{split} i &\rightarrow \{p,q\} \\ j &\rightarrow \{\{p+1,q\},\{p,q+1\}\} \end{split}$$

16/33

Haldane's mapping Action and Berry-phase Lagrangian

Evaluation of ψ - part II

• summation over nearest neighbors leads to

$$\begin{aligned} \mathbf{n}_{i} - \mathbf{n}_{j} &= (\mathbf{n}_{p,q} - \mathbf{n}_{p+1,q}) + (\mathbf{n}_{p,q} - \mathbf{n}_{p,q+1}) \\ &= a \left[\frac{\mathbf{n}_{p,q} - \mathbf{n}_{p+1,q}}{a} + \frac{\mathbf{n}_{p,q} - \mathbf{n}_{p,q+1}}{a} \right] \\ &= a \left[\partial_{x} \mathbf{n}(\mathbf{x}_{p,q}) + \partial_{y} \mathbf{n}(\mathbf{x}_{p,q}) \right] \\ &= a \left[\partial_{x} \mathbf{n}_{i} + \partial_{y} \mathbf{n}_{i} \right] \\ &= a \nabla \mathbf{n}_{i} \end{aligned}$$

•
$$(\mathbf{n}_i - \mathbf{n}_j)^2 = a^2 (\nabla \mathbf{n}_i)^2$$

• finally

$$\psi = \mathbf{n}_i \mathbf{n}_j = 1 - \frac{a^2}{2} (\nabla \mathbf{n}_i)^2$$

Haldane's mapping Action and Berry-phase Lagrangian

Evaluation of ζ

• evaluate of the term:

$$\zeta = a^2 \left[\mathbf{L}_i \mathbf{L}_j - \frac{(-1)^{i+j}}{2} \mathbf{n}_i \mathbf{n}_j \left(L_i^2 + L_j^2 \right) \right]$$

• reminder:
$$\mathbf{n}_i \mathbf{n}_j = 1 - \frac{a^2}{2} (\nabla \mathbf{n}_i)^2$$

• for nearest neighbour $(-1)^{i+j} = -1$

$$\zeta = a^2 \mathbf{L}_i \mathbf{L}_j + \frac{a^2}{2} (L_i^2 + L_j^2) + \mathcal{O}(a^4)$$
$$\approx \frac{a^2}{2} (\mathbf{L}_i + \mathbf{L}_j)^2$$

Haldane's mapping Action and Berry-phase Lagrangian

Evaluation of the interaction term

• now ψ and ζ combined

$$\mathbf{s}_i \mathbf{s}_j \approx (-1)^{i+j} s^2 - \frac{(-1)^{i+j}}{2} s^2 a^2 (\nabla \mathbf{n}_i)^2 + \frac{a^2}{2} (\mathbf{L}_i + \mathbf{L}_j)^2$$

• again $(-1)^{i+j} = -1$ for nearest neighbours

The Hamiltonian

$$H = J \sum_{\langle i,j \rangle} \mathbf{s}_i \mathbf{s}_j$$

= $-J \sum_{\langle i,j \rangle} s^2 + \frac{Ja^2}{2} \sum_{\langle i,j \rangle} \left[s^2 (\nabla \mathbf{n}_i)^2 + (\mathbf{L}_i + \mathbf{L}_j)^2 \right]$
= classical energy

Haldane's mapping Action and Berry-phase Lagrangian

continuum limit for the interaction term

• continuum limit for interaction term of the action

•
$$a \to 0$$

• $\mathbf{L}_j \to \mathbf{L}_i = \mathbf{L}_i$

•
$$\sum_{\langle i,j \rangle} a^2 \to \int \mathrm{d}^2 x$$

• continuum limit in the action

$$\begin{split} \mathcal{S}_{H} &= -J\sum_{\langle i,j\rangle} \int_{0}^{\beta} \mathrm{d}\tau s^{2} + \\ &+ \int \mathrm{d}\tau \sum_{\langle i,j\rangle} a^{2} \frac{Js^{2}}{2} \left(s^{2} (\nabla \mathbf{n}(\mathbf{x}))^{2} + (\mathbf{L}_{i} + \mathbf{L}_{j})^{2}\right) \\ \mathcal{S}_{H} &\to \underbrace{-J \int \mathrm{d}^{2}x \int_{0}^{\beta} \mathrm{d}\tau \ s^{2}}_{=0} + \int \mathrm{d}\tau \int \mathrm{d}^{2}x \left(\frac{Js^{2}}{2} (\nabla \mathbf{n}(\mathbf{x}))^{2} + J(4\mathbf{L}^{2})\right) \end{split}$$

Haldane's mapping Action and Berry-phase Lagrangian

Temporary Total Action

$$S = \underbrace{i \sum_{\langle i,j \rangle} (-1)^{i+j} s \int d\tau \mathbf{A}_i(\mathbf{n}_i) \partial_\tau \mathbf{n}_i}_{=S_B} - \underbrace{\frac{i}{a} \int d^2 x d\tau \mathbf{L} \cdot (\mathbf{n} \times \partial_\tau \mathbf{n})}_{S_H} + \underbrace{\frac{J s^2}{2} \int d^2 x d\tau (\nabla \mathbf{n})^2 + 4J \int d^2 x d\tau \mathbf{L}^2}_{S_H}}_{S_H}$$

• now: evaluate Berry-phase S_B

Haldane's mapping Action and Berry-phase Lagrangian

Mathematical insertion - part I

f(x) in [a, c] with N steps x_i and $x_i = b + i \cdot a$ and $a = \frac{c-b}{N}$ then for $N \to \infty$ and $a \to 0$

$$\sum_{i=1}^{N} af(x_i) \to \int_{b}^{c} \mathrm{d}x f(x)$$

later we will need $\tilde{N} = N/2$ and $\tilde{a} = 2a$. Thus

$$\sum_{i=1}^{N/2} 2af(x_i) \to \int_b^c \mathrm{d}x f(x)$$

Haldane's mapping Action and Berry-phase Lagrangian

Mathematical insertion - part II

$$S_B = i \sum_{\langle i,j \rangle} (-1)^{i+j} s \int d\tau \mathbf{A}_i(\mathbf{n}_i) \partial_{\tau} \mathbf{n}_i$$

•
$$M, N \to \infty$$
 and $a \to 0$

Haldane's mapping Action and Berry-phase Lagrangian

Mathematical insertion - part III

• we will need

 $\partial_x (\mathbf{A} \cdot \partial_\tau \mathbf{n}) = \partial_x \mathbf{A} \cdot \partial_\tau \mathbf{n} + \mathbf{A} \cdot \partial_x \partial_\tau \mathbf{n} = \Phi$

• with $\nabla \times \mathbf{A} = \mathbf{n}$ and $\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = \epsilon_{\mu\nu\alpha}n_{\alpha}$

$$\frac{\partial_x \mathbf{A}}{\partial n_\nu} A_\mu \cdot \partial_x n_\nu = \partial_\nu A_\mu \cdot \partial_x n_\nu = \epsilon_{\nu\mu\alpha} n_\alpha \partial_x n_\nu + \partial_\mu A_\nu \partial_x n_\nu$$

$$\Phi = \epsilon_{\nu\mu\alpha} n_{\alpha} \partial_x n_{\nu} \partial_\tau n_{\mu} + \underbrace{\partial_{\mu} A_{\nu} \partial_x n_{\nu} \partial_\tau n_{\mu} + A_{\mu} \partial_\tau \partial_x n_{\mu}}_{=\partial_{\tau} (A_{\mu} \partial_x n_{\mu}) = 0}$$

$$= -\frac{1}{2}\epsilon_{\mu\nu} \epsilon_{abc} n_a \partial_\mu n_b \partial_\nu n_c$$

• all components

$$\partial_x (\mathbf{A} \cdot \partial_\tau \mathbf{n}) = -\frac{1}{2} \epsilon_{\mu\nu} \mathbf{n} (\partial_\mu \mathbf{n} \times \partial_\nu \mathbf{n})$$

Haldane's mapping Action and Berry-phase Lagrangian

Calculation of the Berry-phase

$$\sum_{\langle i,j \rangle} (-1)^{i+j} \mathbf{x}_i = \frac{1}{4} \int \mathrm{d}p \, \mathrm{d}q \, \partial_p \partial_q \mathbf{x}(p,q) \text{ and } \partial_x (\mathbf{A} \cdot \partial_\tau \mathbf{n}) = -\frac{1}{2} \epsilon_{\mu\nu} \mathbf{n} (\partial_\mu \mathbf{n} \times \partial_\nu \mathbf{n})$$

$$S_{B} = i \sum_{\langle i,j \rangle} (-1)^{i+j} s \int d\tau \underbrace{\mathbf{A}_{i}(\mathbf{n}_{i})\partial_{\tau}\mathbf{n}_{i}}_{=\mathbf{x}_{i}}$$

$$= i \frac{s}{4} \int d\tau \int dx \, dy \, \partial_{y} \left[\partial_{x} \left(\mathbf{A}(\mathbf{n})\partial_{\tau}\mathbf{n} \right) \right]$$

$$= -i \frac{s}{8} \int dy \, \partial_{y} \underbrace{\int d\tau \int dx \, \epsilon_{\mu,\nu} \mathbf{n}(\partial_{\mu}\mathbf{n} \times \partial_{\nu}\mathbf{n})}_{=8\pi Q(y)}$$

$$= -i s\pi \int dy \underbrace{\partial_{y} Q(y)}_{=0}$$

$$Q=7$$

$$Q=7$$

$$Q=2$$

$$Q=5$$

$$Q=1$$

= 0

Haldane's mapping Action and Berry-phase Lagrangian

Identifying the Lagrangian

Final Action

$$S = -\frac{\mathrm{i}}{a} \int \mathrm{d}^2 x \mathrm{d}\tau \mathbf{L} \cdot (\mathbf{n} \times \partial_\tau \mathbf{n}) + \frac{Js^2}{2} \int \mathrm{d}^2 x \mathrm{d}\tau (\nabla \mathbf{n})^2 + 4J \int \mathrm{d}^2 x \mathrm{d}\tau \mathbf{L}^2$$

• we know

$$\mathcal{S} = \int \mathrm{d}^2 x \int \mathrm{d}\tau \mathcal{L}(\mathbf{x},\tau)$$

The Lagrangian

$$\mathcal{L} = -\frac{\mathrm{i}}{a}\mathbf{L} \cdot (\mathbf{n} \times \partial_{\tau}\mathbf{n}) + \frac{Js^2}{2}(\nabla \mathbf{n})^2 + 4J\mathbf{L}^2$$

Haldane's mapping Action and Berry-phase Lagrangian

The Lagrangian

• the partition function is given by

$$Z = \int \mathcal{D}\mathbf{n}\mathcal{D}\mathbf{L}\mathrm{e}^{-\mathcal{S}}$$

• solve the gaussian integral

$$\int \mathcal{D}\mathbf{L} e^{-\alpha \mathbf{L}^2 + \beta \mathbf{L} + \gamma} \propto e^{\frac{\beta^2}{4\alpha} + \gamma}$$

• and with the identity $(\mathbf{n} \times \partial_{\tau} \mathbf{n})^2 = (\partial_{\tau} \mathbf{n})^2$ we find

$$Z \propto \int \mathcal{D} \mathbf{n} \mathrm{e}^{-\int \mathrm{d}^2 x \mathrm{d} \tau \mathcal{L}}$$

• with

$$\mathcal{L} = \frac{1}{16a^2 J} (\partial_\tau \mathbf{n})^2 + s^2 \frac{J}{2} (\nabla \mathbf{n})^2$$

Comparision of the Heisenberg antiferromagnet in d=1and d=2

• compare Lagrangians

$$\mathcal{L}^{(d=1)} = \frac{1}{16a^2 J} (\partial_\tau \mathbf{n})^2 + s^2 \frac{J}{2} (\partial_x \mathbf{n})^2 - \mathrm{i} \frac{s}{4} \epsilon_{\mu,\nu} \mathbf{n} (\partial_\mu \mathbf{n} \times \partial_\nu \mathbf{n})$$
$$\mathcal{L}^{(d=2)} = \frac{1}{16a^2 J} (\partial_\tau \mathbf{n})^2 + s^2 \frac{J}{2} (\nabla \mathbf{n})^2$$

• the partition function

$$Z^{(d=1)} \propto \int \mathcal{D}\mathbf{n} \mathrm{e}^{-\int \mathrm{d}x \mathrm{d}\tau \mathcal{L}^{(d=1)}} \propto \int \mathcal{D}\mathbf{n} \mathrm{e}^{\mathrm{i}2\pi s Q}$$
$$Z^{(d=2)} \propto \int \mathcal{D}\mathbf{n} \mathrm{e}^{-\int \mathrm{d}x \mathrm{d}\tau \mathcal{L}^{(d=2)}}$$

Haldane's mapping Action and Berry-phase Lagrangian

The Lagrangian and the nonlinear sigma model

Final Lagrangian in d=2

$$\mathcal{L} = \frac{1}{16a^2 J} (\partial_\tau \mathbf{n})^2 + s^2 \frac{J}{2} (\nabla \mathbf{n})^2$$

• bring on new form

$$\mathcal{L} = \frac{1}{2g} \left[\frac{1}{c} (\partial_{\tau} \mathbf{n})^2 + c (\nabla \mathbf{n})^2 \right]$$

with an

$$g = \frac{a}{s} 2\sqrt{2}, \qquad c = 2\sqrt{2}asJ$$

• nonlinear sigma model in d = 2 + 1

Connection to the NL σ M Results of the NL σ M

Nonlinear sigma model d=2+1

• change coordinate

$$(x, y, c\tau) \to (x_1, x_2, x_3)$$

• new Lagrangian

$$\mathcal{L}' = \frac{c}{2g} \sum_{\mu=1}^{3} (\partial_{\mu} \mathbf{n})^2$$

• new partition function

$$Z = \int \mathcal{D}\mathbf{n} \, \exp\left[-\frac{1}{2f} \int \mathrm{d}^3 x \, \sum_{\mu=1}^3 (\partial_\mu \mathbf{n})^2\right]$$

with f = g/c

• analyzing an antiferromagnet in d = 2 is equivalent to analyzing a NL σ M in d = 2 + 1

Connection to the $\rm NL\sigma M$ Results of the $\rm NL\sigma M$

Results of $NL\sigma M$

- order parameter f(J)
- \bullet correlation length ξ

Connection to the $\rm NL\sigma M$ Results of the $\rm NL\sigma M$

Results of $NL\sigma M$

- order parameter f(J)
- \bullet correlation length ξ

Connection to the $\rm NL\sigma M$ Results of the $\rm NL\sigma M$

Results of $NL\sigma M$

- order parameter f(J)
- \bullet correlation length ξ

Conclusion

• we started with action

$$S = i \sum_{\langle i,j \rangle} \int d^2 x d\tau \mathbf{A}_i(\mathbf{x},\tau) \cdot \partial_\tau \mathbf{s}_i(\mathbf{x},\tau) + J \sum_{\langle i,j \rangle} \mathbf{s}_i \mathbf{s}_j$$

- introduced Haldane's mapping
 - split short and long range fluctuations
- Berry-phase vanishes, no topological term
- Lagrangian

$$\mathcal{L} = \frac{1}{2g} \left[\frac{1}{c} (\partial_{\tau} \mathbf{n})^2 + c (\nabla \mathbf{n})^2 \right]$$

• analyzing an antiferromagnet in d = 2 is equivalent to analyzing a NL σ M in d = 2 + 1 $\begin{array}{c} {\rm Introduction}\\ {\rm Heisenberg\ antiferromagnet\ in\ d=2}\\ {\rm Overview}\\ {\rm Conclusion} \end{array}$

Thank you

- Dombre T., Read N.: Absence of the Hopf invariant in the long-wavelength action of two-dimensional quantum antiferromagnets. PR B, vol. 38, pp. 7181-7183, Oct 1 1988.
- Muramatsu, A.: script: 2.2 Feldtheorie für das quantenmechanische antiferromagnetische Heisenberg-Modell
- Auerbach, A.: Interacting Electrons and Quantum Magnetism. Springer-Verlag, New York, 1994.
- Fradkin, E.: Field Theory of Condensed Matter Systems. Addison-Wesley, Redwood City, California, 1991.
- Chakravarty S., Halperin B., Nelson D.: Two-dimensional quantum Heisenberg antiferromagnet at low temperatures. PR B, vol. 39, pp. 2344-2371, Feb 1 1989.
 - Yu Lu, Lundqvist S., Morandi G.: *script: QUANTUM ANTIFERROMAGNETS IN TWO DIMENSIONS.* World Scientific, Singapore, 1995