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The dynamic scaling function @(x,y), which appears in
Eq. (4.13), should be the same for the quantum antifer-
romagnet and the CLRM. Since this function is not
known at present, however, it may be helpful to guess a
simple form, with several adjustable parameters, which
then may be fit to experimental data. One such form, con-
sistent with the dynamic scaling hypothesis, is

r

S(k,~) -S(k) rm + . , (5.57)
N Qk —l0 co+ Qk EO

where 0 is chosen to be a constant times coo, independent
of k, and

,= (-', ) '"[1+—,
' in(I+k'g')] '"

(I 2+ $g 2) 1/2
2%ps

(5.58)

where 8 is a second adjustable parameter, introduced to
permit a non-Lorentzian line shape for k =0. A better ap-
proximation would allow the damping 0 to depend on k in
such a manner that the spin-wave width can increase with
increasing k, as discussed in Sec. IV. Note that for large
values of kg, the position of the spin-wave peak ak con-
tains no adjustable parameters, in the limit of small
ksT/2'„assuming that the zero-temperature parame-
ters p, and c are known.
It is possible to compare our results with those obtained

by Manousakis and Salvador from a Monte Carlo simu-
lation of a 5 = 2 nearest-neighbor Heisenberg model on a
square lattice. Since our expression for g should be valid
when 2zp, /kgT)) 1, we compare the results obtained by
them at their lowest temperature T/J =0.4. For this pur-
pose we write Eq. (5.52) as (S= i )

0.94J/Ta —~e (5.59)
We find for T/J =0.4, g/a =4.9 instead of 13 as found by
them. In spite of the uncertainties in C~, the difference
seems difficult to reconcile. By contrast, at T/J=0. 5 we
get g/a =3.1 which is close to the value 3.4 obtained by
Manousakis and Salvador at that temperature. Thus,
the discrepancy might be explained if they have overes-
timated the increase in g between the temperatures
T/J =0.5 and T/J =0.4.
In principle, one might also compare Eq. (5.53) for

S(k =0) with results from Monte Carlo simulations of
the S= 2 antiferromagnet. However, a serious problem
arises because the value of ke T/2rrp, is only of order —,

' in
these simulations. The renormalization-group analysis
employed by Shenker and Tobochnik suggests that for
moderate temperatures it may be a better approximation
to replace to by tp/(I+to/2rr) in the preexponential fac-
tors of (4.5) and (4.8a). In this spirit, one should then re-
place (5.52) and (5.53) by

2',/I/. ~ TC~ae
1+(ke T/2np, )

S k C,a '(ks T/2rrp, ) 'e
4 . 561[I+(k,T/2~p, )]'

The correction to S(k) is particularly large.

VI. COMPARISON %'ITH KXPKRIMKNTS
IN La2Cu04

The experimental dependence of the correlation length
g obtained in Ref. 4 as a function of temperature is shown
in Fig. 4. The data plotted here are for their "best sam-
ple, " i.e., the sample with highest Neel temperature
T~ =195 K. In our earlier paper we attempted to fit the
data with the one-loop result given in Sec. III. In this ap-
proach, well within the renormalized classical regime, one
can write

g =0.9 exp(2np, /ks T),hc
gT (6.1)

where 2', =C~ (Ac/a) with C~ =-0.576 as shown previ-
ously. The preexponential factor in the one-loop approxi-
mation cannot be reliable. Nonetheless, we obtained an
excellent fit with Ac =0.425 eV A.
One of the major emphases of the present paper has

been to show that this preexponential factor in the renor-
malized classical regime can be fixed unambiguously if
one combines classical Monte Carlo simulation results
with the two-loop calculation. This was discussed exten-
sively in Sec. V. None of the uncertainties encountered in
the one-loop approach appear anymore. We now obtain
for g the expression

(=C~a exp(2trp, /ksT), (6.2)
where the lattice constant a is 3.8 A and C~=0.5. The
uncertainties in the classical simulation may lead to as
large as 30% uncertainty in C~. With a better simulation
of the classical problem it may be possible to determine C~
more accurately. Moreover, there may be of the order of
10%-15%uncertainty in the spin-wave approximations at
T =0 that we have used to determine Z~ . This, in turn,
would lead to additional 10%-15% error in C~ as well as
10%-15% error in p, . Furthermore, one must bear in
mind that the, formula (6.2) is valid asymptotically, i.e.,

0.03—

0.02—

0.0t—

100 200 300 400 500 600
T(K)

FIG. 4. Inverse correlation length ( ' as a function of tem-
perature T. The data are taken from Ref. 4. The solid line is
the fit (/a =A exp(B/T), where A =1, and B=1175K.
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Heisenberg antiferromagnet in d=1

Recapitulation - Spin coherent states

start with spin-states, the eigenstates to S2 and Sz:

|s,m〉 with m = −s, ..., s

choose fundamental state |ψ〉 = |s, s〉, with m = s

introduce the spin coherent state

|n〉 = eiθmS|ψ〉

with m = (sinφ,− cosφ, 0) and 0 ≤ θ ≤ π: vector on unit
sphere
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Recapitulation - Partition function

partition function on single-spin system

Z = Tr
(

e−βH
)

=

∫
dn 〈n|e−βH |n〉

with time-slicing

Z =

∫
Dn e−S

S =

∫
dτ〈n| d

dτ
|n〉︸ ︷︷ ︸

SB

+

∫
dτ〈n|H|n〉︸ ︷︷ ︸
SH

SB : the Berry-Phase
SH : the action depending on the system’s Hamiltonian
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Heisenberg antiferromagnet in d=1

partition function of the system

Z =

∫
Dn exp

−is
∑
i

∫
dτ (A∂τni)︸ ︷︷ ︸
SB

−
∫

dτ〈n|H|n〉︸ ︷︷ ︸
SH


with H = J

∑
<i,j> sisj

Lagrangian

L =
1

16a2J
(∂τn)2 + s2J

2
(∂xn)2︸ ︷︷ ︸

Lσ

− i
s

4
εµ,νn(∂µn× ∂νn)︸ ︷︷ ︸

Ltopol
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Heisenberg antiferromagnet in d=2

Heisenberg Hamiltonian:

Ĥ = J
∑
<i,j>

ŝiŝj

with J > 0

partition function:

Z =

∫
Dn e−S

action:

S = i
∑
<i,j>

∫
d2xdτAi(x, τ) · ∂τsi(x, τ) + J

∑
<i,j>

sisj
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Néel state

interested in solving the Heisenberg
antiferromagnet in d=2;
expectations:

short range correlation
short range antiferromagnetic order

Néel state is classical ground state

derivation from Néel state

a

Néel state

idea

modify Néel state, cubic lattice
short and long length scale
fluctuations

→ eliminate short wavelength
fluctuations

a

i

staggered fluctuations
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Haldane’s mapping

Haldane mapped effective long-wavelength action into
nonlinear sigma model with d = 2 + 1
separate short and long length scale fluctuations
Li small fluctuation

si = (−1)is

√
1− a2L2

i

s2
ni︸ ︷︷ ︸

x

+ aLi︸︷︷︸
y

|si|2 = (−1)2is2

(
1− a2L2

i

s2

)
n2
i + a2L2

i = s2

Si
x

y

with the constraints:

- n2
i = 1

- a|Li| � s
- Li · ni = 0

later−→ Z =

∫
Dn δ(n2 − 1)δ(Ln)e−S
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Kinetic term

evaluate kinetic term of

S = i
∑
<i,j>

∫
d2xdτAi(x, τ) · ∂τsi(x, τ) + JH

∑
<i,j>

sisj

evaluate Ai(x, τ) and ∂τsi(x, τ) separately

for simplicity neglect position indication i (Xi → X)

Start with A(x, τ) = A(n(x, τ),L(x, τ))

reminder: s = (−1)is
√

1− a2L2

s2
n + aL

Aµ(n,L) =Aµ

(
(−1)i

s

s

)
= Aµ

(√
1− a2L2

s2
n + (−1)i

aL

s

)

first order series expansion around
√

1− a2L2

s2
n
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Kinetic term - first part

first order expansion in a for the point√
1− a2L2

s2
n =

(
1− a2L2

2s2

)
n +O(a3) ≈ n

expansion around the point

Aµ(n,L) =Aµ

(
(−1)i

s

s

)
= Aµ

(√
1− a2L2

s2
n + (−1)i

aL

s

)

≈Aµ (n) + ∂νAµ (n) ·
[
(−1)i

aLν
s

]
+

+
1

2
∂λ∂νAµ (n) ·

[
(−1)i

aLν
s

] [
(−1)i

aLλ
s

]
+ ...

≈Aµ (n) + ∂νAµ (n) ·
[
(−1)i

aLν
s

]
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Kinetic term - second part

continue with derivation of second part ∂τsi(ni,Li)

∂τs
µ
i (n,L) =∂τ

[
(−1)is

√
1− a2L(τ)2

2s2
nµ(τ) + aLµ(τ)

]

≈∂τ
[
(−1)is

(
1− a2L(τ)2

2s2

)
nµ(τ) + aLµ(τ) +O(a2)

]
≈(−1)is · 1 · ∂τnµ + a∂τL

µ +O(a2)

≈(−1)is∂τn
µ + a∂τL

µ

11 / 33



Introduction
Heisenberg antiferromagnet in d=2

Overview
Conclusion

Haldane’s mapping
Action and Berry-phase
Lagrangian

Kinetic part - evaluation of the whole expression

now evaluate the whole expression

Aµ·∂τsµi ≈
[
Aµ (n) + ∂νAµ (n) ·

[
(−1)i

aLν
s

]]
·

·
[
(−1)is∂τn

µ + a∂τL
µ
]

≈(−1)isAµ(n)∂τnµ+ a∂νAµ(n)Lν∂τn
µ + aAµ(n)∂τL

µ +O(a2)

next step: evaluate ∂νAµ(n)Lν∂τn
µ
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Kinetic term - further calculations

auxiliary calculation for ∂νAµ(n)Lν∂τn
µ

constraint for the vector potential ∇×A = n

εαβγ∂βAγ = nα

εµνα εαβγ∂βAγ =εµνα nα

use identity εµνα εαβγ = δµβδνγ − δµγδνβ
∂µAν − ∂νAµ = εµνα nα

∂νAµ = ενµα nα + ∂µAν

plug this in the result in ∂νAµ(n)Lν∂τn
µ

∂νAµ(n)Lν∂τn
µ = ενµα nαL

ν∂τn
µ + ∂µAνL

ν∂τn
µ

now have a look at the last part

∂µAνL
ν∂τn

µ = Lν
∂Aν
∂nµ

∂nν

∂τ
= Lν∂τAν
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Kinetic term - the result

now plug it back in Aµ · ∂τsµi
Aµ · ∂τsµi ≈(−1)isAµ∂τnµ+ a∂νAµL

ν∂τn
µ + aAµ∂τL

µ

≈(−1)isAµ∂τnµ+ aενµα nαL
ν∂τn

µ+

+ aLν∂τAν + aAµ∂τL
µ︸ ︷︷ ︸

=(−1)isAµ∂τnµ+ aενµα nαL
ν∂τn

µ + a∂τ (AµL
µ)

all components of the kinetic term

A∂τs = (−1)isA∂τn− aL · (n× ∂τn) + a ∂τ (AL)︸ ︷︷ ︸
=0

the total time derivation

S ∝
∫ β

0
dτ ∂τ (AL) = AL|β0

closed
=

loop
0
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Interaction term

reminder:

si = (−1)is

√
1− a2L2

i
s2

ni + aLi ≈ (−1)is
(

1− a2L2
i

2s2

)
ni + aLi

calculating the interaction, neglecting O(a3):

sisj =

[
(−1)is

(
1− a2L2

i

2s2

)
ni + aLi

] [
(−1)js

(
1−

a2L2
j

2s2

)
nj + aLj

]

≈(−1)i+js2ninj − (−1)i+js2ninj
a2L2

j

2s2
− (−1)i+js2ninj

a2L2
i

2s2
+ +(−1)isniaLi + (−1)jsnjLj+

+ a2LiLj +O(a4)

used nL = 0

sisj ≈(−1)i+js2 ninj︸︷︷︸
ψ

+ a2

[
LiLj −

(−1)i+j

2
ninj

(
L2
i + L2

j

)]
︸ ︷︷ ︸

ζ
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Evaluation of ψ - part I

evaluate first bit

ψ = ninj + 1− 1

2
− 1

2

with n2
i = 1 and n2

j = 1

ψ =ninj + 1− n2
i

2
−

n2
j

2

=1− 1

2
(ni − nj)

2

evaluate ni − nj

summation over nearest neighbor

i→ {p, q}
j → {{p+ 1, q}, {p, q + 1}}

a

i=p,q

p

q

p-1,q

p,q+1

p+1,q

p,q-1
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Evaluation of ψ - part II

summation over nearest neighbors
leads to

ni − nj = (np,q − np+1,q) + (np,q − np,q+1)

=a

[
np,q − np+1,q

a
+

np,q − np,q+1

a

]
=a [∂xn(xp,q) + ∂yn(xp,q)]

=a [∂xni + ∂yni]

=a∇ni

(ni − nj)
2 = a2(∇ni)2

finally

ψ =ninj = 1− a2

2
(∇ni)2

a

i=p,q

p

q

p-1,q

p,q+1

p+1,q

p,q-1
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Evaluation of ζ

evaluate of the term:

ζ = a2
[
LiLj − (−1)i+j

2 ninj

(
L2
i + L2

j

)]
reminder: ninj = 1− a2

2 (∇ni)2

for nearest neighbour (−1)i+j = −1

ζ =a2LiLj +
a2

2
(L2

i + L2
j ) +O(a4)

≈a
2

2
(Li + Lj)

2
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Evaluation of the interaction term

now ψ and ζ combined

sisj ≈(−1)i+js2 − (−1)i+j

2
s2a2(∇ni)2 +

a2

2
(Li + Lj)

2

again (−1)i+j = −1 for nearest neighbours

The Hamiltonian

H =J
∑
<i,j>

sisj

= −J
∑
<i,j>

s2

︸ ︷︷ ︸
= classical energy

+
Ja2

2

∑
<i,j>

[
s2(∇ni)2 + (Li + Lj)

2
]
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continuum limit for the interaction term

continuum limit for interaction term of the action
a→ 0
Lj → Li = L∑
<i,j> a

2 →
∫

d2x

continuum limit in the action

SH =− J
∑
<i,j>

∫ β

0
dτs2+

+

∫
dτ
∑
<i,j>

a2Js
2

2

(
s2(∇n(x))2 + (Li + Lj)

2
)

SH →−J
∫

d2x

∫ β

0
dτ s2︸ ︷︷ ︸

=0

+

∫
dτ

∫
d2x

(
Js2

2
(∇n(x))2 + J(4L2)

)
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Temporary Total Action

S = i
∑
<i,j>

(−1)i+js

∫
dτAi(ni)∂τni︸ ︷︷ ︸

=SB

− i
a

∫
d2xdτL · (n× ∂τn)+

+
Js2

2

∫
d2xdτ(∇n)2 + 4J

∫
d2xdτL2︸ ︷︷ ︸

SH

now: evaluate Berry-phase SB
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Mathematical insertion - part I

f(x) in [a, c] with N steps xi and xi = b+ i · a and a = c−b
N then

for N →∞ and a→ 0

N∑
i=1

af(xi)→
∫ c

b
dxf(x)

later we will need Ñ = N/2 and ã = 2a. Thus

N/2∑
i=1

2af(xi)→
∫ c

b
dxf(x)
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Mathematical insertion - part II

SB = i
∑

<i,j>(−1)i+js
∫

dτAi(ni)∂τni

M,N →∞ and a→ 0

∑
<i,j>

(−1)i+jxi =

M∑
p=1

N∑
q=1

(−1)p+qxp,q =

M∑
p=1

(−1)p
N/2∑
q=1

(xp,2q − xp,2q−1)

=
M∑
p=1

(−1)p

2

N/2∑
q=1

2a
xp,2q − xp,2q−1

a︸ ︷︷ ︸
∂qxp,q

=

M∑
p=1

(−1)p

2

∫
dq ∂qxp(q)

=
1

4

M/2∑
p=1

2a

∫
dq ∂q

x2p(q)− x2p−1(q)

a

=
1

4

∫
dp dq ∂p∂qx(p, q)
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Mathematical insertion - part III

we will need

∂x(A · ∂τn) = ∂xA · ∂τn + A · ∂x∂τn = Φ

with ∇×A = n and ∂µAν − ∂νAµ = εµναnα

∂xA = ∂
∂nν

Aµ·∂xnν = ∂νAµ·∂xnν = ενµαnα∂xnν+∂µAν∂xnν

Φ =ενµαnα∂xnν∂τnµ + ∂µAν∂xnν∂τnµ +Aµ∂τ∂xnµ︸ ︷︷ ︸
=∂τ (Aµ∂xnµ)=0

=− 1

2
εµν εabcna∂µnb∂νnc

all components

∂x(A · ∂τn) = −1

2
εµνn(∂µn× ∂νn)
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Calculation of the Berry-phase

∑
<i,j>(−1)i+jxi = 1

4

∫
dp dq ∂p∂qx(p, q) and ∂x(A · ∂τn) = − 1

2
εµνn(∂µn× ∂νn)

SB =i
∑
<i,j>

(−1)i+js

∫
dτ Ai(ni)∂τni︸ ︷︷ ︸

=xi

=i
s

4

∫
dτ

∫
dx dy ∂y [∂x (A(n)∂τn)]

=− i
s

8

∫
dy ∂y

∫
dτ

∫
dx εµ,νn(∂µn× ∂νn)︸ ︷︷ ︸

=8πQ(y)

=− isπ

∫
dy ∂yQ(y)︸ ︷︷ ︸

=0

= 0

x

y

a→0
Q=7

Q=1

Q=5

Q=2
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Identifying the Lagrangian

Final Action

S =− i

a

∫
d2xdτL · (n× ∂τn)+

+
Js2

2

∫
d2xdτ(∇n)2 + 4J

∫
d2xdτL2

we know

S =

∫
d2x

∫
dτL(x, τ)

The Lagrangian

L = − i

a
L · (n× ∂τn) +

Js2

2
(∇n)2 + 4JL2
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The Lagrangian

the partition function is given by

Z =

∫
DnDLe−S

solve the gaussian integral∫
DLe−αL

2+βL+γ ∝ e
β2

4α
+γ

and with the identity (n× ∂τn)2 = (∂τn)2 we find

Z ∝
∫
Dne−

∫
d2xdτL

with

L =
1

16a2J
(∂τn)2 + s2J

2
(∇n)2
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Comparision of the Heisenberg antiferromagnet in d=1
and d=2

compare Lagrangians

L(d=1) =
1

16a2J
(∂τn)2 + s2J

2
(∂xn)2 − i

s

4
εµ,νn(∂µn× ∂νn)

L(d=2) =
1

16a2J
(∂τn)2 + s2J

2
(∇n)2

the partition function

Z(d=1) ∝
∫
Dne−

∫
dxdτL(d=1) ∝

∫
Dnei2πsQ

Z(d=2) ∝
∫
Dne−

∫
dxdτL(d=2)
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The Lagrangian and the nonlinear sigma model

Final Lagrangian in d=2

L =
1

16a2J
(∂τn)2 + s2J

2
(∇n)2

bring on new form

L =
1

2g

[
1

c
(∂τn)2 + c(∇n)2

]
with an

g =
a

s
2
√

2, c = 2
√

2asJ

nonlinear sigma model in d = 2 + 1
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Nonlinear sigma model d=2+1

change coordinate

(x, y, cτ)→ (x1, x2, x3)

new Lagrangian

L′ = c

2g

3∑
µ=1

(∂µn)2

new partition function

Z =

∫
Dn exp

− 1

2f

∫
d3x

3∑
µ=1

(∂µn)2


with f = g/c

analyzing an antiferromagnet in d = 2 is equivalent to
analyzing a NLσM in d = 2 + 1
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Results of NLσM

order parameter f(J)
correlation length ξ

⇠ / 1

T

⇠ / const⇠ / e

T

f

T

fcNéel-Line LRO

Renormalised 
Classical

Quantum Critical

Quantum Disordered
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order parameter f(J)
correlation length ξ
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The dynamic scaling function @(x,y), which appears in
Eq. (4.13), should be the same for the quantum antifer-
romagnet and the CLRM. Since this function is not
known at present, however, it may be helpful to guess a
simple form, with several adjustable parameters, which
then may be fit to experimental data. One such form, con-
sistent with the dynamic scaling hypothesis, is

r

S(k,~) -S(k) rm + . , (5.57)
N Qk —l0 co+ Qk EO

where 0 is chosen to be a constant times coo, independent
of k, and

,= (-', ) '"[1+—,
' in(I+k'g')] '"

(I 2+ $g 2) 1/2
2%ps

(5.58)

where 8 is a second adjustable parameter, introduced to
permit a non-Lorentzian line shape for k =0. A better ap-
proximation would allow the damping 0 to depend on k in
such a manner that the spin-wave width can increase with
increasing k, as discussed in Sec. IV. Note that for large
values of kg, the position of the spin-wave peak ak con-
tains no adjustable parameters, in the limit of small
ksT/2'„assuming that the zero-temperature parame-
ters p, and c are known.
It is possible to compare our results with those obtained

by Manousakis and Salvador from a Monte Carlo simu-
lation of a 5 = 2 nearest-neighbor Heisenberg model on a
square lattice. Since our expression for g should be valid
when 2zp, /kgT)) 1, we compare the results obtained by
them at their lowest temperature T/J =0.4. For this pur-
pose we write Eq. (5.52) as (S= i )

0.94J/Ta —~e (5.59)
We find for T/J =0.4, g/a =4.9 instead of 13 as found by
them. In spite of the uncertainties in C~, the difference
seems difficult to reconcile. By contrast, at T/J=0. 5 we
get g/a =3.1 which is close to the value 3.4 obtained by
Manousakis and Salvador at that temperature. Thus,
the discrepancy might be explained if they have overes-
timated the increase in g between the temperatures
T/J =0.5 and T/J =0.4.
In principle, one might also compare Eq. (5.53) for

S(k =0) with results from Monte Carlo simulations of
the S= 2 antiferromagnet. However, a serious problem
arises because the value of ke T/2rrp, is only of order —,

' in
these simulations. The renormalization-group analysis
employed by Shenker and Tobochnik suggests that for
moderate temperatures it may be a better approximation
to replace to by tp/(I+to/2rr) in the preexponential fac-
tors of (4.5) and (4.8a). In this spirit, one should then re-
place (5.52) and (5.53) by

2',/I/. ~ TC~ae
1+(ke T/2np, )

S k C,a '(ks T/2rrp, ) 'e
4 . 561[I+(k,T/2~p, )]'

The correction to S(k) is particularly large.

VI. COMPARISON %'ITH KXPKRIMKNTS
IN La2Cu04

The experimental dependence of the correlation length
g obtained in Ref. 4 as a function of temperature is shown
in Fig. 4. The data plotted here are for their "best sam-
ple, " i.e., the sample with highest Neel temperature
T~ =195 K. In our earlier paper we attempted to fit the
data with the one-loop result given in Sec. III. In this ap-
proach, well within the renormalized classical regime, one
can write

g =0.9 exp(2np, /ks T),hc
gT (6.1)

where 2', =C~ (Ac/a) with C~ =-0.576 as shown previ-
ously. The preexponential factor in the one-loop approxi-
mation cannot be reliable. Nonetheless, we obtained an
excellent fit with Ac =0.425 eV A.
One of the major emphases of the present paper has

been to show that this preexponential factor in the renor-
malized classical regime can be fixed unambiguously if
one combines classical Monte Carlo simulation results
with the two-loop calculation. This was discussed exten-
sively in Sec. V. None of the uncertainties encountered in
the one-loop approach appear anymore. We now obtain
for g the expression

(=C~a exp(2trp, /ksT), (6.2)
where the lattice constant a is 3.8 A and C~=0.5. The
uncertainties in the classical simulation may lead to as
large as 30% uncertainty in C~. With a better simulation
of the classical problem it may be possible to determine C~
more accurately. Moreover, there may be of the order of
10%-15%uncertainty in the spin-wave approximations at
T =0 that we have used to determine Z~ . This, in turn,
would lead to additional 10%-15% error in C~ as well as
10%-15% error in p, . Furthermore, one must bear in
mind that the, formula (6.2) is valid asymptotically, i.e.,

0.03—

0.02—

0.0t—

100 200 300 400 500 600
T(K)

FIG. 4. Inverse correlation length ( ' as a function of tem-
perature T. The data are taken from Ref. 4. The solid line is
the fit (/a =A exp(B/T), where A =1, and B=1175K.

⇠�1 / e�

T
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Conclusion

we started with action

S = i
∑
<i,j>

∫
d2xdτAi(x, τ) · ∂τsi(x, τ) + J

∑
<i,j>

sisj

introduced Haldane’s mapping

split short and long range fluctuations

Berry-phase vanishes, no topological term

Lagrangian

L =
1

2g

[
1

c
(∂τn)2 + c(∇n)2

]
analyzing an antiferromagnet in d = 2 is equivalent to
analyzing a NLσM in d = 2 + 1
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