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Summary

In this dissertation, we present research conducted in the field of Rydberg
quantum optics. This research would not have been possible without the
enormous recent progress in the field of atomic, molecular, and optical (AMO)
physics1, in particular, ultracold atoms and quantum optics [18, 19]. Specifically,
Rydberg quantum optics combines the two rapidly developing and still young
fields of Rydberg physics and electromagnetically induced transparency (EIT).
The long term goal is to incorporate Rydberg-EIT as a building block of quantum
simulators [20, 21] and quantum technologies in general [22].

In the last few years, a number of experimental observations [5, 23–31] and
theoretical proposals [32–36] were demonstrated in the field of Rydberg-EIT. A
variety of applications were shown, such as a deterministic single photon source
[24], atom-photon entanglement generation [27], as well as a single-photon
switch [29], transistors [5, 30, 31], and an optical fi-phase shift created with
a stored single-photon pulse [37]. Moreover, the regime of strong interactions
between photons has been experimentally demonstrated, leading to a medium
transparent only to single photons [25] and to the appearance of bound states
for photons [28]. From a theoretical point of view, a full description of the
propagation of photons through the medium is limited to extensive numerical
simulations and low photon numbers [6, 25, 28, 38–43]. In this dissertation we
provide a novel theoretical framework to describe quantum optical nonlinearities
in Rydberg-EIT systems and present the application of this framework for two
experiments.

Theoretical foundations— In chapter 2, we present the derivation of a mi-
croscopic Hamiltonian describing the Rydberg polariton propagation in one
dimension [2]. We analyze decoherence processes using a Master equation

1A comprehensive overview of the field can be founded in the series of more than 60 volumes
of “Advances in Atomic, Molecular, and Optical Physics” published by Elsevier
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approach and show for which processes the evolution can be described using the
Schrödinger equation with an e�ective non-Hermitian Hamiltonian. Next, we
apply diagrammatic methods to the setup, consisting of a single polariton prop-
agating in an external potential. We solve this setup exactly by a summation
of all Feynman diagrams.

Two copropagating polaritons— In chapter 3, we extend our theoretical
framework to describe two and more copropagating Rydberg polaritons [8].
In particular, using Feynman diagrams, we analytically derive the scattering
properties of two polaritons. We identify new parameter regimes where polariton-
polariton interactions are repulsive, giving rise to antibunching of photons.
Furthermore, in the regime of attractive interactions, we identify multiple
two-polariton bound states, calculate their dispersion relation, and study the
resulting scattering resonances. Our method enables us to derive an e�ective
many-body theory for slow light polaritons alone and rigorously justify the
previously ad-hoc used adiabatic elimination.

Phase gate— In chapter 4, we analyze the possibility of designing a high
fidelity quantum gate between photons using two counter-propagating Rydberg
polaritons [3]. Applying our diagrammatic technique, we analytically derive
all leading terms which reduce the phase gate fidelity. This allows us to find
optimal parameters for experimental realizations and deepens our understanding
of the limitations of the Rydberg-EIT scheme.

Kerr nonlinearity— In chapter 5, we analyze the relationship between the
classical Kerr nonlinearity and the interacting quantum many-body setup
of Rydberg polaritons in the dispersive regime [1]. We show that such a
relationship can be obtained when the mass term in the kinetic energy of
polaritons is negligible. Then, the quantum input-output theory of polaritons
is exactly solvable for an arbitrary atomic density distribution and an arbitrary
incoming photon number. In the classical regime, the theory reduces to the
well established description of a Kerr nonlinearity. Our method allows for a
solution of the problem with not only two-body but also higher-body interactions
between polaritons. Consequently, we demonstrate the possibility to probe the
microscopic interaction potential, in particular two and three body interactions,
between the Rydberg polaritons within a simple homodyne detection scheme
for a coherent input state. Finally, past studies showed that the self-consistent
quantum theory for a local Kerr nonlinearity is ill defined, and a non-local
response time has been proposed to resolve this issue [44]. Using our microscopic
approach, we show that a Rydberg-EIT setup is free of such problems due to
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either the long range character of the interactions or the quadratic corrections
to the polaritonic dispersion relation.

Förster resonances— In the last two chapters, we present theoretical descrip-
tions of two experiments conducted by the group of Sebastian Ho�erberth at
the University of Stuttgart. First, in chapter 6, we investigate the application
of Stark-tuned Förster resonances to boost the e�ciency of Rydberg-mediated
single photon transistors and the non-destructive detection of single Rydberg
atoms [5]. For the parameters used in the experiment, most of the measurements
can be explained by analyzing the propagation of a single S-state Rydberg
polariton in the presence of a stored S-state Rydberg excitation. Even though
a similar problem of a polariton interacting with an impurity via van der Waals
interactions has already been studied, the physics in the presented case is
substantially di�erent. For example, the common intuition, that for a vanishing
Förster defect the Rydberg blockade should be given by the resonant dipolar-
interactions ≥ r≠3, is incorrect. We compare our theoretical description with
the experimental measurements, achieving very good agreement.

Dipolar dephasing— In chapter 7, we present the results of the second
joint experimental-theoretical project [7]. Namely, we study the e�ects of
the anisotropic Rydberg interaction on D-state slow light Rydberg polaritons.
Experimentalists observed an increase of the absorption of the probe photons
over time. We attribute this increase to the interaction-induced coupling to
degenerate Zeeman sublevels, which leads to polaritons being converted to
stationary Rydberg excitations. This, in turn, prevents other polaritons from
propagating through the cloud. In order to qualitatively describe the observed
e�ect, we develop a model which combines the propagation of the two-photon
wave-function through the system with nonperturbative calculations of the
anisotropic Rydberg interaction.

7





Zusammenfassung

Diese Doktorarbeit behandelt Forschung aus dem Bereich der Rydberg-Quanten-
optik. Diese Forschung wäre ohne die großen, jüngst erzielten Fortschritte
in der Atom-, Molekular- und optische (AMO)-Physik2, insbesondere bei ul-
trakalten Atomen und in der Quantenoptik [18, 19], nicht möglich gewesen.
Rydberg-Quantenoptik verbindet die zwei schnell wachsenden und noch jungen
Forschungsgebiete der Rydberg-Physik und der elektromagnetisch induzierten
Transparenz (EIT). Das langfristige Ziel ist es, Rydberg-EIT als Baustein für
Quantensimulatoren [20, 21] und andere Quantentechnologien [22] zu etablieren.

In den letzten Jahren gab es etliche experimentelle Beobachtungen [5, 23–31]
und theoretische Vorschläge [32–36] zur Rydberg-EIT. Es wurden verschiedenste
Anwendungen gefunden — zum Beispiel eine deterministische Einzelphotonen-
quelle [24], Verschränkung von Atomen und Photonen [27], sowie Einzelphoto-
nenschalter [29], Transistoren [5, 30, 31] und eine optische fi-Phasenverschiebung
mittels eines gespeicherten Einzelphotonenpulses [37]. Außerdem wurde experi-
mentell gezeigt, dass im Regime der starken Wechselwirkung zwischen Photonen
ein Rydberg-Medium nur für einzelne Photonen transparent ist [25] und gebunde-
ne Photonenzustände auftreten [28]. Aus theoretischer Sicht ist eine vollständige
Beschreibung der Photonenpropagation durch ein Rydberg-Medium nur mit
aufwendigen numerischen Simulationen und nur für kleine Photonenzahlen
möglich [6, 25, 28, 38–43]. In dieser Doktorarbeit werden neue theoretische Me-
thoden zur Beschreibung optischer Nichtlinearitäten in Rydberg-EIT Systemen
entwickelt. Anhand zweier Experimente wird gezeigt, wie diese Methoden in
der Praxis Anwendung finden.

Theoretische Grundlagen— In Kapitel 2 wird ein mikroskopische Hamiltonian

2Die vom Elsevier Verlag herausgegebene, 60-bändige Bücherreihe „Advances in Atomic,
Molecular, and Optical Physics“ gibt einen umfassenden Überblick über das Forschungs-
gebiet.
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hergeleitet, der die Propagation von Rydberg-Polaritonen in einer Dimension
beschreibt [2]. Mit einem Mastergleichungsansatz analysieren wir Dekohärenz-
prozesse und zeigen für welche Prozesse die Zeitentwicklung mit einem e�ek-
tiven, nichthermitschen Hamiltonian beschrieben werden kann. Anschließend
verwenden wir diagrammatische Methoden zur Untersuchung eines einzelnen,
in einem externen Potential propagierenden Polaritons. Durch die Summation
aller Feynman-Diagramme lösen wir dieses System exakt.

Zwei kopropagierende Polaritonen— In Kapitel 3 verallgemeinern wir unsere
theoretischen Methoden auf zwei und mehr kopropagierende Polaritonen [8].
Insbesondere leiten wir mit Feynman-Diagrammen die Streuung von zwei Pola-
ritonen her. Wir bestimmen neue Parameterbereiche, in denen die Polariton-
Polariton-Wechselwirkung repulsiv ist, was zu Antibunching von Photonen
führt. Außerdem finden wir im Regime attraktiver Wechselwirkung mehrere
gebundene Zustände aus zwei Polaritonen. Wir berechnen die Dispersion dieser
Zustände und analysieren die resultierenden Streuresonanzen. Unsere Methoden
ermöglichen es, eine e�ektive Vielteilchentheorie für Slow-Light-Polaritonen zu
entwickeln und die früher ad hoc verwendete adiabatische Elimination rigoros
zu rechtfertigen.

Phasengatter— In Kapitel 4 analysieren wir die Möglichkeit, mit zwei gegen-
läufigen Rydberg-Polaritonen ein Quantengatter mit hoher Fidelität zu bauen [3].
Wir leiten mit diagrammatischen Methoden alle Terme in führender Ordnung
her, welche die Fidelität des Gatters verringern. Hierdurch lassen sich die für
die experimentelle Umsetzung optimalen Parameter finden und die Grenzen des
Rydberg-EIT-Schemas besser verstehen.

Kerr-Nichtlinearität— In Kapitel 5 untersuchen wir die Verbindung zwischen
der klassischen Kerr-Nichtlinearität und einem wechselwirkenden, quantenmecha-
nischen Vielteilchensystem aus Rydberg-Polaritonen im dispersiven Regime [1].
Wir zeigen, dass eine solche Verbindung besteht, wenn der Massenterm in der
kinetischen Energie der Polaritonen vernachlässigbar ist. Dann ist die quantenme-
chanische Input-Output-Theorie für Polaritonen exakt lösbar, unabhängig von
der Atomdichte und der Anzahl ankommender Photonen. Im klassischen Regime
reduziert sich die Theorie zur gängigen Beschreibung der Kerr-Nichtlinearität.
Unsere Methode macht es möglich, Lösungen nicht nur für Zwei- sondern auch für
Mehrkörperwechselwirkungen zwischen den Polaritonen zu finden. Wir erklären,
wie das mikroskopische Wechselwirkungspotential, insbesondere für Zwei- und
Dreikörperwechselwirkungen, zwischen Rydberg-Polaritonen mit einer einfachen
homodynen Detektion unter Verwendung eines kohärenten Input-Zustandes

10
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untersucht werden kann. Zuletzt wurde herausgefunden, dass die selbstkonsis-
tente Quantentheorie für eine lokale Kerr-Nichtlinearität nicht wohldefiniert ist.
Zur Lösung dieses Problems wurde die Verwendung einer nichtlokalen Antwort-
zeit vorgeschlagen [44]. Wir zeigen mit unserem mikroskopischen Ansatz, dass
in einem Rydberg-EIT-System solche Probleme nicht auftreten können, zum
einen weil die Wechselwirkung langreichweitig ist und zum anderen wegen der
quadratischen Korrekturen zur Dispersionsrelation der Polaritonen.

Förster-Resonanzen— In den beiden letzten Kapitel werden zwei Experimen-
te, die von Sebastian Ho�erberths Gruppe durchgeführt wurden, theoretisch
beschrieben. In Kapitel 6 untersuchen wir, wie sich unter Ausnutzung von
Förster-Resonanzen, die mithilfe des Stark-E�ekts eingestellt wurden, die Ef-
fizienz von auf Rydberg-Physik basierenden Einzelphotonentransistoren und
die nichtdestruktive Detektion einzelner Rydberg-Atome verbessern lässt [5].
Die meisten Messergebnisse können durch eine Analyse der Propagation eines
einzelnen Rydberg-S-Zustand-Polaritons in Anwesenheit einer gespeicherten
Rydberg-S-Zustand-Anregung erklärt werden. Auch wenn eine ähnliche Fra-
gestellung für Van-der-Waals-Wechselwirkung zwischen einem Polariton und
einer gespeicherten Anregung bereits untersucht wurde, ist die Physik im vor-
liegenden Fall grundlegend anders. So ist die weitverbreitete Annahme falsch,
dass die Rydberg-Blockade für einen verschwindenden Förster-Defekt durch die
resonante dipolare Wechselwirkung ≥ r≠3 gegeben ist. Wir vergleichen unsere
theoretischen Beschreibungen mit experimentellen Messungen und zeigen, dass
diese sehr gut übereinstimmen.

Dipolare Dephasierung— In Kapitel 7 stellen wir die Ergebnisse aus dem zwei-
ten Projekts vor, das Experiment und Theorie miteinander verbindet [7]. Wir
untersuchen den Einfluss der anisotropen Rydberg-Wechselwirkung auf Slow-
Light-Rydberg-Polaritonen im D-Zustand. Experimentatoren haben beobachtet,
dass sich im Laufe der Zeit die Absorption der Signalphotonen erhöht. Wir er-
klären diese Erhöhung mit der Kopplung an entartete Zeeman-Subniveaus durch
die Wechselwirkung, was dazu führt, dass Polaritonen in stationäre Rydberg-
Anregungen umgewandelt werden. Dies hält wiederum andere Polaritonen davon
ab, sich durch die Atomwolke zu bewegen. Um den beobachteten E�ekt quali-
tativ beschreiben zu können, entwickeln wir ein Modell, das die Propagation
der Zwei-Photonen-Wellenfunktion durch das System mit nichtperturbativen
Berechnungen der anisotropen Rydberg-Wechselwirkung verbindet.
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The important thing is to not stop questioning.
Curiosity has its own reason for existence. One
cannot help but be in awe when he contemplates
the mysteries of eternity, of life, of the marvelous
structure of reality. It is enough if one tries merely
to comprehend a little of this mystery each day.

Albert Einstein





Introduction

Photons interact with its environment much weaker than other quanta (e.g.
electron spin, superconducting current) and are therefore excellent carriers
of information. A long-standing goal is the realization of strong interaction
between individual photons which may lead to ultralow-power all-optical signal
processing [45, 46], quantum information processing and communication [47,
48] as well as other applications based on non-classical states of light [49, 50].

Means to engineer interactions between photons— A number of promising
platforms to engineer suitable interactions between photons are being developed,
see an excellent review by Chang et al. [51]. First ideas were based on the Kerr
nonlinearity of conventional materials which unfortunately lead to extremely
weak e�ects for single photons, even for highly nonlinear fibres [52]. In the
microwave domain, a significant progress has been made using high-Q cavity
quantum electrodynamics where a single confined electromagnetic mode is cou-
pled to an atomic system [53–55] or to a superconducting circuit acting as an
‘artificial atom’ [19, 56]. In the optical domain, one approach is to map photons
onto the collective states of an atomic ensemble [57, 58], which enabled the
observation of electromagnetically-induced-transparency cross-coupling nonlin-
earities [59] and similar e�ects [60]. However, in order to achieve single photon
e�ects [61, 62] cavities are necessary.

Rydberg-EIT— A promising approach that does not require optical resonators
capitalizes on strong atom-atom interactions in the metastable Rydberg state
|sÍ of an EIT scheme [32, 63]. These strong, tunable and long-range interac-
tions [64] enabled a number of applications for quantum computing [65–68] and
simulations [69–73] in which quantum information is encoded in the atomic
degrees of freedom.

Short history of Rydberg-EIT— It is worth mentioning a few breakthroughs
which laid the foundation for the field of Rydberg-EIT. In 2001, Lukin et al.
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proposed to use the Rydberg blockade e�ect for the creation of non-classical
states of light [63], however, their proposal lacked the EIT component. The
idea to use EIT in order to couple photons to metastable Rydberg states was
first proposed by Friedler et al. in 2005 [32]. The feasibility of these ideas was
experimentally confirmed by Mohapatra in 2007 et al. [74]. This classical linear-
optics experiment showed that dephasing and decoherence rates in ultracold
Rydberg media can be low enough to observe a narrow EIT transparency
window. The control of photons on the single quanta level was shown for the
first time by three groups [24–26].

First applications of Rydberg-EIT— On the experimental side, the Rydberg-
EIT approach [23, 75] enabled a variety of applications such as deterministic
single photon source [24], observation of the quantum phenomena on a few
photon level [76], atom-photon entanglement generation [77], a single pho-
ton switch [29] and a transistor [30, 31]. Moreover, in the regime of strong
interactions between copropagating photons, the medium being transparent
only to single photons [25] as well as the bound states of photons [28] were
demonstrated.

Quantum gates— First steps towards an experimental realization of the
Rydberg-EIT phase gate were done by demonstrating an optical fi-phase shift
created with a stored single-photon pulse by Tiarks et al. [37]. The extensions of
the two-qubit photonic gate [38], employing spatial separation of photons [39] and
performing quantum operations on the stored photons [78, 79], were proposed.
In the one-dimensional free-space setups realized so far, the possible optical
depth per blockade radius is limited by the interaction between ground state
and Rydberg atoms [80]. This, in turn, sets constraints on the available amount
of the dispersive interaction per photon for quantum information applications.
To circumvent this limitation, an optical cavity can be employed to enhance
the interaction per photon life-time [81, 82] and to construct high fidelity phase
gates [83].

Rydberg states with orbital angular momentum— First Rydberg-EIT experi-
ments mostly exploited interactions between s-states with the same principal
quantum number where the angular dependence of the interaction is very weak.
In recent experiments, Rydberg s- and p-states [26], or two di�erent s-states [30,
31, 84] are simultaneously prepared. The interaction between di�erent Rydberg
states enables novel entanglement schemes [85] and additional flexibility in ma-
nipulation of few-photon light fields [86, 87]. Moreover, the angular dependence
of the interaction between d-state polaritons can lead to the interaction-induced
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dipolar dephasing of polariton pairs [7].
Förster resonances— The additional tunability of the interactions was inves-

tigated in setups close to a Förster resonance, where the interaction changes
its character from van-der-Waals to dipolar. In the regime of zero E-field, an
enhancement of the single-photon-transistor gain was shown [31], while in ex-
periments on Rydberg atom imaging [88, 89] an increase in Rydberg excitation
hopping was observed [84] in the regime of many photons. In addition, the
Stark-tuned Förster resonances were used to further improve the e�ciency and
to study the coherent properties of the transistor [5].

Exotic states of light— Recently, it was shown that a Rydberg-EIT setup
can give rise to new few- and many-body states of light. Two photons can
form shallow [28] and deep bound states [8], which can be imagined as photons
trapped by a Rydberg interaction in a deep nearly-square well. Interestingly, the
e�ective three-body interaction between Rydberg polaritons can be as strong
as the two-body interaction [4], which might lead to new exotic states of light.
Pair of photons can also interact via an e�ective Coulomb potential, leading to
a hydrogen-like diatomic molecule, in which photons are separated by a finite
bond length [6]. Moreover, a single-photon absorber based on Rydberg-blockade
e�ect [90] has been experimentally demonstrated [91]. Finally, the formation of
a Wigner crystal of individual photons was predicted [36, 40].

It is also worth mentioning the progress towards many-body theory of strongly
interacting Rydberg polaritons. In the dissipative regime, the dynamics of
quantized light was analyzed in [35]. In the dispersive regime, the derivation of
a low-energy Hamiltonian in the dilute regime was presented in [8]. The case
of higher densities when the interaction is dominated by the purely repulsive
part of the van der Waals interaction was studied in [36] . In the regime,
where the e�ective interaction can be replaced by contact-interaction, the study
of non-perturbative e�ects in N -body scattering of Rydberg polaritons using
e�ective field theory (EFT) was presented in Ref. [92]. In the regime where the
mass term is negligible, the analytical solution for arbitrary incoming photon
number and shape of the atomic medium was shown in Ref. [1]. Moreover, a
recently developed general input-output formalism to describe the dynamics of
propagating strongly interacting photons in 1D [42, 43] can be applied to the
Rydberg-polariton systems as well.

Rydberg-EIT in 2D and 3D— Most of the initial Rydberg-EIT research
investigated e�ectively one-dimensional systems. A new promising direction are
extensions to higher dimensions. For example, Rydberg-dressed photons in near-
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degenerate optical cavities can behave as interacting, massive, harmonically
trapped, two-dimensional particles in a synthetic magnetic field [93]. The
experimental progress [94] makes Rydberg-cavity polaritons a promising platform
for creating photonic quantum materials and topological states of light [41].
Moreover, the dynamics in the transversal direction of the copropagatingphotons
can lead to tight beam focusing or spontaneous formation of ring structures [33].
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�
Basic concepts

The main goal of this thesis is to study single photons strongly interacting
by means of Rydberg-EIT. In the introduction, we have put this thesis into a
broader perspective by describing other ways of making photons interact. We
also presented the current state of the field by describing recent experimental
demonstrations and theoretical proposals. In this chapter, we provide the reader
with the tools and intuitions required to well understand interacting Rydberg
slow light polaritons. We start with the discussion of classical nonlinearities.
Then we present a description of EIT, introduce the concept of polaritons, and
discuss properties of Rydberg atoms. Finally, we will show how Rydberg-EIT
can lead to optical nonlinearities on both classical and quantum level.

�.� Optical nonlinearities

Classical optical nonlinearities occur when the response of the medium to
incident light depends on the intensity of the propagating electromagnetic
field [95]. Depending on the number of involved fields, we can distinguish one-
field e�ects (e.g., self phase modulation and frequency doubling), and two-field
e�ects (e.g., cross-phase modulation and four-wave mixing).

The origin of classical nonlinearities: The classical origin of the nonlinear optical
response of an atom is the following: The electric field strength E of the
propagating light induces the average dipole moment ÈdÍ per atom. This leads
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to an attenuation and a phase shift of the field described by the imaginary and
real parts of the electric susceptibility ‰

e

, which is given by

‰
e

= n
at

ÈdÍ
‘

0

E , (1.1)

with n
at

the number density of atoms and ‘
0

vacuum permittivity. Note that
the electric susceptibility is connected to the complex refractive index of non-
magnetic (µ = 1) matter via the relation n2

refr

= 1 + ‰
e

.
The nonlinearity occurs when ÈdÍ is a nonlinear function of E . Classically, the

reason for that can be the anharmonic response of an oscillating charge. Such
e�ects can be taken into account by expanding the susceptibility as a power
series in E

‰
e

= NÈdÍ
‘

0

E = ‰(1)

e

+ ‰(2)

e

E + ‰(3)

e

E2 + · · · , (1.2)

where ‰(1)

e

describes the linear response, whereas higher order terms depict the
nonlinear response. Due to the inversion symmetry of atomic media, the second
order vanishes (i.e., ‰(2)

e

¥ 0) and the dominant nonlinear term is ‰(3)

e

, also
know as optical Kerr nonlinearity [95].

The strength of the real part of the nonlinearity, denoted by ‰(3)

e,r , can be
estimated by comparing the single-photon electric field with the binding field of
electrons inside the Bohr’s atom (for details see [96]) which leads to---‰(3)

e,r

--- Æ 10≠23 V≠2m2 . (1.3)

Based on this result, one can deduce that optical nonlinearities in conventional
media are approximately 20 orders of magnitude smaller than would be required
for single-photon nonlinear optics.

Nonlinearity via resonant transition : Larger nonlinearities can be achieved by
choosing the frequency of probe photons Êp close to the transition frequency in
the medium Êpg between the ground state |GÍ and the excited state |P Í. The
susceptibility of the two-level system reads

‰2≠level

e

= 1
kl

a

“

” ≠ i“
, (1.4)

where ” = Êpg ≠ Êp, 2“ is a spontaneous decay rate of the excited state,
k = Êp/c = 2fi/⁄ is a wavenumber, and l

a

= (n
at

‡)≠1 is the resonant attenuation
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length, with ‡ the optical cross-section (‡ = 3⁄2/2fi for a closed two-level
transition).

Then the electric field of the photon causes an AC-stark shift of the excited
level. Assuming that the absolute value of the detuning is much greater than
the decay, i.e., |”| ∫ “, the Kerr nonlinearity is

‰(3)

e,r = ‰(1)

e,r

d2

gp

(~Êp)2

, (1.5)

where dgp is the dipole moment for the transition between |GÍ and |P Í states.
The nonlinearity could be enhanced by choosing the detuning closer to the
resonance, but this unfortunately coincides with an increase of the scattering
rate due to the imaginary part of the susceptibility.

A very useful route to circumvent these issues is via coupling the excited
state to an additional metastable state. This leads to the phenomenon of
electromagnetically induced transparency, which will be discussed in the next
section.

�.� Electromagnetically induced transparency

Scientists try to understand and take advantage of remarkable and counterin-
tuitive physical e�ects. One of such e�ects is the electromagnetically induced
transparency (EIT): In this case, due to the interaction of light with coherently
prepared atoms, an opaque medium becomes transparent. More precisely, quan-
tum interference leads to the cancellation of a linear optical response to the
probe photons when a coherent control field � is applied to the medium. EIT
was first discussed by Harris et al. in 1990 [97], and experimentally realized by
Boller et al. in 1991 [98].

In this section, we first explain the general idea and intuition behind EIT. We
discuss the electric susceptibility of the medium, introduce the concept of dark
states, and show experimental applications. More details regarding formalism
and applications of EIT can be found in excellent reviews by Scully et al. (1997),
Lukin et al. (2003), and Fleischhauer et al. (2005) [57, 99, 100].

Setup: We are interested in an ensemble of identical three-level atoms. Initially,
all atoms are in the ground state |GÍ. Since this dissertation treats Rydberg-
EIT, we present EIT in the so-called ladder-scheme. In our case, the scheme
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Fig. 1.1: EIT scheme: Three level atom driven by two coherent fields.

consists of a ground state |GÍ, an excited short-lived state |P Í, and an excited
long-lived state |SÍ, where |GÍ and |SÍ have the same parity, see figure 1.1.
The frequencies of the lower and upper transitions are Êpg and Êsp, respectively.
Moreover, Êp and 2�p are the frequency and Rabi frequency of the probe
laser whereas Êc and 2� describe the stronger coupling laser. The decay rate
of the |P Í state is equal to 2“ whereas the |SÍ state decays with 2“s . The
detuning of the |P Í-state is ” = Êpg ≠ Êp and the two-photon detuning is equal
to ”

2ph

= Êpg + Êsp ≠ Êp ≠ Êc = ” + ”c, with ”c defined as ”c = Êsp ≠ Êc.
Originally, theoretical and experimental work considered EIT in the so-called

�-scheme which involves two ground states. The results are fully analogous,
regardless of the type of the scheme, assuming that |SÍ is metastable.

Within the dipole approximation, the atom-laser interaction takes the form
H

dipole

= d · E. This interaction can be expressed in terms of the Rabi coupling
2� = d · E

0

/~, where E

0

is the amplitude of the electric field E, and d

is the transition’s electric dipole moment. After applying the rotating-wave
approximation, we arrive at a Hamiltonian of the three-level atom interacting
with a coupling laser with real Rabi frequency �

p

and a probe laser with Rabi
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frequency �, which in the rotating frame has the form

H
int

= ~

Qcca
0 �

p

0
�

p

” �
0 � ” + ”c

Rddb . (1.6)

Note that often other conventions are used: e.g., di�erent signs of the of Rabi
frequencies and with Rabi frequencies di�ering by factor of 2. We use the given
convention because then most expressions have a much simpler form, i.e., are
without additional factors of 2 and -1.

�.�.� Intuitive picture

The nearly perfect transmission at the EIT resonance can be understood intu-
itively. In this subsection, we present two ways of explaining this phenomena.

In the first picture, the absorption cancellation is caused by destructive
interference between all possible excitation pathways |GÍ æ |P Í , |GÍ æ |P Í æ
|SÍ æ |P Í, |GÍ æ |P Í æ |SÍ æ |P Í æ |SÍ æ |P Í, etc. at ” + ”c = 0. A change
of the detuning ” leads to imperfect destructive interference and, therefore, to
the finite absorption of the medium shown in figure 1.3. The larger the coupling
field �, the broader is the transparency window and the EIT-feature becomes
more stable.

Fig. 1.2: Dressed states.

In order to explain the second intuitive pic-
ture, it proves useful to introduce the dressed
state basis, |+Í and |≠Í, for the two upper
states, see figure 1.2. Then, we see that the
probe field does not directly couple to any
of the dressed states |+Í and |≠Í. Moreover,
the destructive interference occurs since the
detunings of the dressed states have opposite
signs. This destructive interference is nearly
perfect, even for � comparable to “, as long as
we one is close to the two-photon resonance.

Finally, it is worth mentioning that the in-
terference phenomenon of EIT is, in a sense, a
classical e�ect as it can also occur in systems
consisting of classical oscillators [101].
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�.�.� Linear susceptibility

Here we discuss the susceptibility of the coherently driven EIT medium in linear
response with respect to a weak probe field. The presented results are based on
the work of Gea-Banacloche et al. [102] , and more details can be found in the
two reviews [57, 103].

The dynamics of the laser-coupled atomic system can be described by the
Markovian master equation in Lindblad form for the atomic density operator fl,

dfl

dt
= ≠ i

~ [H
int

, fl] +
ÿ

i

Li(fl) , (1.7)

where Li are Liouvillians describing di�erent incoherent processes, like decays
and dephasings indexed by i. For example, the Louvillian describing the decay
of the intermediate p-state reads

Lpg(fl) = ≠“ [‡̂ppfl + fl‡̂pp ≠ 2‡̂gpfl‡̂pg] , (1.8)

and the Louvillian describing the dephasing of the |SÍ state takes the form

Lss(fl) = ≠“deph
s [‡̂ssfl + fl‡̂ss ≠ 2‡̂ssfl‡̂ss] , (1.9)

where ‡̂µ‹ = |µÍÈ‹| are atomic internal-state operators with µ, ‹ œ {g, p, s}.
We are interested in the perturbative regime in the probe field (the so-called

weak-excitation limit), hence we can set flgg = 1, flpp = 0, flss = 0 in the master
equation. Then, we arrive at a set of equations for the coherences flgp, flgs

and flps. From them, we get the expression for the coherence flgp of the probe
transition in the steady state. Next, we use the relation between the electric
amplitude components of the electromagnetic field and the polarization,

P = ‘
0

‰
e

E , (1.10)

where P = n
at

d is the polarization amplitude of the medium and E = |E
0

| is
the amplitude of the electric field, with n

at

= N/V the atomic density and the
dipole moment d defined as d = dgpflgp. Based on this relation, we arrive at an
the expression for the electric susceptibility of the three-level system,

‰3≠level

e

= ‰
2≠level

C
1 ≠ �2

�2 ≠ (” + ”c ≠ i“s)(” ≠ i“)

D
, (1.11)

where the susceptibility of the two-level system (� = 0) is given by Eq. (1.4).
These susceptibilities are plotted in figure 1.3 and figure 1.4.
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Fig. 1.3: The imaginary part of the electric susceptibility in the vicinity of the two
photon resonance in the dissipative regime of fixed ”c = 0. (left) For � = “/2 we see a
narrow transmission window at the center of the two-level feature. (right) For � = 2“
the EIT transmission window is broader.

From Eq. (1.11) we see that ‰3≠level

e

nearly vanishes at the two-photon reso-
nance ” + ”c = 0 as long as |“s(” ≠ i“)| π �2. Thus, a small decay rate of |SÍ
can lead to nearly perfect transmission at the EIT-resonance. Equation (1.11)
defines also the EIT-linewidth given by

�
EIT

= �2/|” ≠ i“|. (1.12)

In other words, the coupling by the laser field � causes the appearance of the
narrow transmission window at the center of the two-level feature. In addition,
the two peaks revealed in the imaginary part of the susceptibility correspond to
the two dressed states.

We can distinguish two interesting regimes, depending on the detuning to the
intermediate level ”: For small detuning ” π “ the system is in dissipative regime
(see figure 1.3), whereas for large detuning ” ∫ “ the system is in dispersive
regime (see figure 1.4). Those two regimes will be discussed in section 1.5.2.

We see that in the dispersive regime, the imaginary part of both 2-level and
3-level susceptibilities can be very small. However, the real components can be
large and di�erent for the 3-level than for the 2-level susceptibility. In the next
sections we will see how to switch between 2-level and 3-level susceptibilities on
demand by using the dipolar interaction between Rydberg states.
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Fig. 1.4: Imaginary and real components of the susceptibilities for fixed ”c = 2“ and
� = 2“ in function of Êp ≠ Êpg = ≠”. Note that in the vicinity of the two-photon
resonance, a strong absorption feature is visible. This peak in Im[‰e] resembles the
Raman resonances corresponding to the AC-stark shifted Rydberg level.

In general, on EIT resonance one can achieve a Kerr nonlinearity given by

‰(3)

r

¥ ‰(1)

r

d2

gp

(~�)2

. (1.13)

The enormous enhancement compared to the o� – resonant 2-level case is
immediately apparent as we have replaced the photon energy ~Êp by ~�, which
di�er by 8 orders of magnitude.

�.�.� Dark state

The absorption cancellation at the EIT resonance can also be explained using
the concept of a dark state. The dark state of the i-th atom is the eigenstate of
Hamiltonian (1.6) having of form

|DiÍ = �p |SÍi ≠ � |GÍiÒ
�2

p + �2

. (1.14)

Single atoms prepared in this steady state have no admixing of the |P Í-state,
thus there is no possibility of a subsequent spontaneous emission from this
short-lived state. Moreover, since the amplitudes of the atomic components
are proportional to the light fields, the dark state is e�ectively decoupled from
the electric field. This is a reason why both real and imaginary part of the
susceptibility vanish at the two-photon resonance.
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Note that the EIT e�ect is closely related to the coherent populations trapping
(CPT) [104]. A di�erence is that for the CPT the evolution into the dark state
is driven through the spontaneous decay from the |P Í-state, whereas for EIT
the evolution into the dark state can be much more e�cient by adiabatically
time-varying the strength of the light fields [57].

�.�.� Applications

After the first experimental realization of EIT [98], a lot of outstanding experi-
mental and theoretical work has been done, which improved our fundamental
understanding of light-matter interaction and demonstrated possible applica-
tions of EIT in quantum technologies.

For example, EIT allowed to slow down photons to group velocities many
orders of magnitude smaller than the speed of light c, not only in quantum
gases [105] but also in solids [106–108]. Moreover, using EIT, the excitation
with localized, stationary electromagnetic energy – the so-called stationary light
– was demonstrated [109–111]. EIT has been demonstated on the single photon
level for in a gaseous medium [112, 113], and with single atoms in optical cavities
[114, 115] as well as in a free space [116].

By time-varying a control field, it is even possible to bring light to full stop,
as shown in proposed protocols [117–119] and in implementations for classical
light in atomic ensemble [120–124] or for single atoms [125]. This storage of light
on a single photon level [126–128] is especially appealing due to the possible
applications in quantum information processing and quantum computation [51,
99]. This so-called stored light can be used as a photonic quantum memory [99,
126], and building block for quantum repeaters [129] exploiting protocols such
as the Duan-Lukin-Cirac-Zoller (DLCZ) scheme [130].

In the next sections, we will show that EIT combined with Rydberg states
can lead to even more amazing phenomena.

�.� Dark state polariton

In previous sections we considered EIT from the semiclassical perspective where
the continuous-wave (cw) classical fields interact with a single atom. In order
to incorporate time-varying group-velocities and take into account the quantum
nature of the probe field in the single photon limit one introduces the concept
of a polariton. In the following, we present the general idea behind polaritons;
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a full description (consistent with the formalism used throughout this thesis)
will be presented in chapter 2.

Generally speaking, a polariton is a quasi-particle formed due to the coherent
interaction of the probe field with the coherently dressed atoms. As we will see
in section 2.4.1, we can distinguish a few types of polaritons depending on their
life-time. The one which is metastable within the EIT-scheme is called dark
state polariton – in analogy to the dark state introduced in section 1.2.3.

Fig. 1.5: Atomic scheme.

The quantum treatment of light propagation
under EIT was first presented by Fleischhauer
and Lukin [117, 118]. Using this treatment,
the probe light propagation (within 1D ap-
proximation along the z direction) is described
by slowly varying amplitude operator Ê†(z) –
which creates a photon at the position z – and
a slowly varying polarizations P̂†(z) and Ŝ†(z)
– which create atomic excitation at position z
in |P Í and |SÍ states, respectively. The neces-
sary assumption behind this description is that
during polariton dynamics, atoms are mostly
in the ground state, and thus the condition
|g

0

E| π � has to be satisfied. This last con-
dition can be derived from Eq. (1.14), where
the classical photon-field amplitude E is given
by E =

e
Ê

f
.

At the two photon resonance, the field operator creating the dark state
polariton has the form

�̂†
d(z) = �Ê†(z) ≠ gŜ†(z)Ô

�2 + g2

(1.15)

where g is a collectively enhanced coupling of probe photons to the |P Í exci-
tation, i.e. g = g

0

Ô
n

at

. The dark state polariton consists of electromagnetic
and collective atomic excitations, and inherits the features from both types
of excitations. Its kinetics stems from the photonic component, leading to
propagation, whereas the spin-wave component can gives rise to interactions
with other polaritons or external fields.

In the strong coupling regime, g ∫ �, the photonic component is strongly
quenched, leading to the suppression of the group velocity by a factor of �2/g2
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compared to the speed of light. Therefore, in this regime, the dark state
polariton is termed the slow light polariton. Additionally, polaritons in the
medium are compressed compared to the size of the incoming photon outside
the medium. Moreover, as we show in detail in section 2.4.1, the polaritonic
dispersion relation consists of a linear part (described by the group velocity vg),
which is modified by higher order corrections. The second order correction leads
to a mass term, which (similarly to the group velocity) can be controlled by
tunable experimental parameters. As long as the spectral width of the incoming
photon is much narrower than the EIT-width �

EIT

(given by Eq. 1.12), we can
neglect the mass term and the polariton propagates as a lossless and form-
stable quasiparticle. All these properties make slow light polaritons excellent
candidates for applications in quantum technologies.

Finally, there is a relation of dark state polaritons to the atomic dark-state
(the latter was introduced in section 1.2.3). From the condition �

p

= |g
0

E| π �,
follows that for dark-state polaritons most atoms are in the ground state. But
simultaneously, due to the collective enhancement of the coupling g, we can be
in the regime of g

0

Ô
n

at

∫ �. Therefore the character of each single polariton
can be mostly that of a matter excitation and much less contribution of a light
excitation.

�.� Rydberg atoms

One of the main goals in the field of AMO physics is to engineer and control
strong and long-range interactions between single quanta [18, 19, 131]. There are
many di�erent approaches to this objective, for example, coulomb-interacting
ions in paul-traps [132], dipolar quantum gases of atoms and molecules [133,
134], and atomic ensembles in cavities with photon-mediated interactions [135].
Another highly promising direction is to use Rydberg atoms for this purpose.

Rydberg states are defined as highly excited states of a valence electron in an
atom or molecule, characterized by a large (& 20) principal quantum number
n. These states can be extremely large on their own, can interact strongly
with each other, and can be highly sensitive to external electric and magnetic
fields [136].

In this section we describe properties of Rydberg atoms and briefly summarize
experimental and theoretical progress – especially in the context of hybrid
Rydberg-EIT systems. For a detailed overview on Rydberg atoms, see Sa�man
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et al. [64], Löw et al. [137], Lim et al. [138], as well as Gallagher [136].

�.�.� Properties of Rydberg atoms

Here, we review briefly properties of Rydberg atoms, especially those relevant for
applications. Because the valence electron of the Rydberg atom is highly excited,
many properties of Rydberg atoms follow hydrogenic scaling laws depending
on the principal quantum number n. This often simplifies the description of
Rydberg atoms tremendously and allows for simple estimates of the relevant
quantities.

We start our presentation with the electron’s Bohr radius which scales like
r Ã n2, and can reach sizes on the order of micrometers [139]. This huge size
of the orbital radius leads to an enormous dipole moment with the same Ã n2

scaling. The strength of the dipole moment together with the weak Coulomb
interaction between nucleus and valence electron makes Rydberg atoms very
sensitive to the environment. This is manifested by a strong response to electric
fields with a DC polarizability – Ã n7. Their sensitivity to electric fields leads
directly to applications of Rydberg atoms in precision electrometry [140–145] and
nonlinear optics [23]. Due to this high sensitivity to the microwave frequencies,
Rydberg atoms were used to probe few-photon fields in the Nobel-prize winning
experiments by Haroche [146].

A small spatial overlap between the electronic wavefunctions of the ground
state and the Rydberg state leads to a strong suppression of a spontaneous
decay and therefore very long life-times Ã n3 with values of the order of 100µs
achievable in modern experiments. This metastability of the Rydberg states
makes it also possible to use them as a third level in the EIT scheme.

The large dipole moment in combination with a millimeter energy spacing
between Rydberg levels leads to a strong dipole-dipole interaction between
Rydberg atoms. In most cases, the interaction V (r) has a van der Waals
character of the form V (r) = C

6

/r6 with the scaling C
6

Ã n11 [147–149].
However, an external electric or microwave field can be used to engineer a longer
range resonant dipole-dipole coupling of the form V (r) = C

3

/r3 [64, 150].
The strength of the van der Waals interaction between Rydberg atoms is

comparable to the Coulomb interaction between ions and much stronger than the
interaction between magnetic dipoles. This feature is illustrated in figure 1.6,
which is taken from the excellent review of Sa�man et al. [64]. Importantly,
while the interactions between ions are always present in a setup, the Rydberg
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Fig. 1.6: Comparison of the interaction strengths for ground state Rb atoms: magnetic
dipole-dipole (blue) and van der Waals (violet); for Rb atoms excited to the 100s level
(red); and for ions (yellow). Source: Sa�man et al. [64].

interaction can be easily switched on and o�. This switching can be achieved
by a coherent transfer between Rydberg states and ground states using light
fields, together with the fact that interactions between ground states are more
than ten order of magnitude smaller than between Rydberg states.

The highlighted properties of Rydberg atoms make them a great candidate
for coherent manipulations of strongly interacting systems [64].

�.�.� Dipolar interactions and Förster resonance

In this section, we will consider a simple two channel model in order to gain
further intuition for the dipolar interactions between Rydberg atoms. This will
lead us naturally to the notion of Förster resonances which will be explored
thoroughly in the context of Rydberg-EIT in chapter 6.

Let us consider interatomic distances R greater than the LeRoy radius, i.e.,
R ∫ 2n2a

0

, where a
0

is the Bohr radius. Then we can neglect the e�ects due to
the overlap between the atoms, and the leading electrostatic interaction between
two Rydberg atoms 1 and 2 is the dipole-dipole interaction [151],

V
dd

(R
12

) = 1
4fi‘

0

1
|R

12

|3
Ë
d

1

· d

2

≠ 3(d
1

· R̂

12

)(d
2

· R̂

12

)
È

= DÏ
C

3

|R
12

|3 , (1.16)

where d

1

, d

2

denote dipole moments, R = R

1

≠ R

2

is the di�erence between
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the positions of the two atoms, and DÏ is a distance-independent but angle-
dependent factor.

We are interested in two atoms excited by light to the same fine structure
level, thus, the two-atom state at R = Œ takes the form---Â(2)

f
= |nlj, nljÍ . (1.17)

The dipolar interaction given by Eq. (1.16) couples
---Â(2)

f
to other two-atom

states |n
1

l
1

j
1

, n
2

l
2

j
2

Í. From the usual dipole selection rules, we get conditions on
the angular momentum quantum numbers, i.e., l

1

, l
2

= l ± 1 and j
1

, j
2

= j ± 0, 1.
Even though there is an infinite number of dipole-coupled states, in practice, the
dipole-dipole interaction is dominated by only few two-atom states which are
energetically nearby. The reason is twofold: First, the energy di�erence between
two-atom states has to be small. Second, the dipole matrix element must not
be too small. The latter quantity is proportional to the overlap of the electronic
wave-functions and is strongly suppressed for large principal-quantum-number
di�erences |n ≠ n

1

|, |n ≠ n
2

| & 3 [149].
Next, let us additionally assume that the long-range interaction comes mainly

from the coupling of just two states. We introduce the Förster defect equal to
�F = En

1

l
1

j
1

+ En
2

l
2

j
2

≠ 2Enlj. Within this two-level approximation we arrive
at the interaction Hamiltonian

H
int

=
Qa 0 V

dd

V
dd

�F

Rb . (1.18)

This leads to the two Förster eigen-energies [149]

V±(R) = �F

2 ± sign(�F )
ı̂ıÙ�2

F

4 + C2

3

R6

D2

Ï . (1.19)

We can distinguish two limiting cases: First, for large inter-atom separations
atoms in the

---Â(2)

f
state interact via the perturbative van der Waals interaction-

potential given by

V
vdW

(R) ¥ ≠C2

3

D2

Ï

�F R6

= C
6

R6

(1.20)

Note that the C
6

coe�cient for Rydberg states can be positive or negative,
depending on the sign of the Förster defect. On the other hand, for atoms in
the ground state, the van der Waals interaction is always attractive.
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In the second case, for small inter-atom separation, the interaction has a
dipole-dipole character with

V±(R) ¥ ± sgn(�F )C
3

DÏ

R3

. (1.21)

The crossover between the two regimes takes place at the distance Rc ≥
|V

dd

/�F |1/3. This crossover distance is usually much smaller then the distance
between excitations due to the blockade e�ect, which will be discussed in the
next section.

Importantly, one can change the character of the interaction for large distances
from van der Waals to dipolar by either applying external electric fields [152–
157], which corresponds to tuning �F æ 0, and via microwave fields [26, 158,
159].

An interesting aspect of Förster resonances with Rydberg states is the study
of resonant energy transfer processes in ensembles of atoms [160, 161]. It is
envisioned that this research will help to shed light on the physics behind e.g.
light harvesting complexes [162], which play an important role in biological
systems.

We point out that the accuracy of the presented simple description of dipolar
interactions by using C

3

and C
6

coe�cients was directly validated by a number
of beautiful experiments conducted by the Palaiseau group [163–166].

�.�.� Rydberg blockade

An important and distinctive phenomenon in Rydberg physics is the so-called
Rydberg blockade [63, 167], also know under the name of dipole blockade or
just blockade e�ect. The Rydberg blockade describes the strong suppression
of multiple Rydberg excitations due to position dependent level shifts. As
illustrated in figure 1.7, once a single Rydberg atom is excited to the |SÍ state,
the excitation of a second one is strongly suppressed for distances smaller than
the blockade radius ›. For the excitation of ground states to Rydberg states
using coherent laser fields, the blockade radius is defined as the distance at
which the interaction V (R) equals the laser linewidth ~�S of the Rydberg-state
excitation process,

V (›) != ~�S , (1.22)

where V (r) can be a resonant dipole-dipole interaction or a van der Waals
interaction. For large principal quantum numbers, the blockade radius can
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Fig. 1.7: Illustration of the Rydberg blockade.

reach sizes of the order of tens of microns. In this thesis, we will demonstrate
that the blockade e�ect is also an important feature of Rydberg-EIT systems.

It should be mentioned that an e�ective interaction, as well as entanglement
created using Rydberg blockade, is insensitive to the exact values of the inter-
actions. Thus, it is not necessary to control the strength of the interaction to
high precision, which in turn leads to less demanding requirements on atom
positions and temperature control.

Closely related to the blockade e�ect is the notion of a superatom [64, 168].
To understand this concept, imagine an ensemble of N atoms with size smaller
than the blockade radius ›. Then it is only possible to create a single collective
excitation in the system, described by the collective state |W Í, which reads

|W Í = 1Ô
N

ÿ
i

|g
1

, g
2

, g
3

, ..., ei, ...gNÍ . (1.23)

In other words, the ensemble of atoms e�ectively behaves as a two-level atom
with collectively enhanced coupling �N =

Ô
N�, which motivates the term

“superatom”.
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�.�.� Applications

Due to their amazing properties, Rydberg atoms give rise to a plethora of
interesting phenomena, some of which can find applications in quantum tech-
nologies. For example, Rydberg atoms can be used for quantum information
processing [64, 169] and as quantum simulators [72, 73, 170]. Based on the
blockade e�ect, it is possible to realize a source of single photons [24, 63, 171]
and atoms [171, 172]. Moreover, great progress in imaging and loading of
atoms in microtrap arrays [173–175] and optical lattices [69] facilitated the
direct observation of super-atom dynamics [176, 177] and Rydberg blockade [69,
70]. Finally, the scattering between the Rydberg electron and ground state
atoms can lead to strong interactions and subsequently to the formation of
ultra-long-range molecules [80, 139, 178–181].

�.� Rydberg-EIT

The study of strongly interacting Rydberg polaritons is the main subject of
this dissertation. This setup is an extremely promising approach to engineer
nonlinearities on the single photon level. Its premise is based on the combination
of Rydberg state properties (like blockade e�ect) with properties of EIT (like
strong and coherent atom-light coupling).

In this section, building on already described results, we will give a brief
introduction to Rydberg nonlinear optics. We start with the general concept
and explain Rydberg-EIT nonlinearities in two regimes: classical and quantum.
Finally, we shortly discuss Rydberg-EIT applications and experimental results,
we will concentrate on those which are not discussed in the next chapters. An
additional overview of the Rydberg-EIT field can be found in the introduction.
For more detailed description of Rydberg-EIT we refer the reader to the great
works by Pritchard et al. [96], Firstenberg et al. [103], and Murray et al. [182].

Note that there are also other ways of using dipolar interactions to engineer
interactions between photons. One approach is to use single emitters. However,
for this setup the mode matching between input and output modes is challenging
and limits e�ciencies to about ≥ 10% [183–186]. Another approach (which
solves mode matching problem) is to combine Rydberg atoms with cavity
QED or waveguides [62, 187–189]. In this case, the challenge is to control the
complexity of a hybrid system. In contrast, the Rydberg-EIT setup in free-space
achieves strong interactions by compressing photons in the atomic ensemble
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via the slow light e�ect. Additionally, photonic input and output e�ciencies in
Rydberg-EIT systems are nearly perfect – in contrast to the cavity setups.

�.�.� General concept

Fig. 1.8: Setup of Rydberg slow light polaritons: Each atom consists of three relevant
levels, ground state |GÍ, intermediate state |P Í and Rydberg state |SÍ; the latter are
coupled by a strong laser �. Photons are propagating in the medium as slow light
Rydberg polaritons. The interaction between the Rydberg states provides an interaction
V between the polaritons. Dashed circles depict the characteristic length-scale › of the
interaction.

The general idea behind Rydberg-EIT is to map Rydberg interactions onto
e�ective photon interactions by means of electromagnetically induced trans-
parency. This is achieved by using Rydberg states as |SÍ state in the three-level
EIT scheme, as shown in figure 1.8. EIT is a sensitive quantum interference
e�ect and can be easily perturbed. The Rydberg-EIT takes advantage of this
feature: Once two propagating photons are close by, the Rydberg component is
shifted out of the two-photon resonance and the EIT condition is broken.

Rydberg blockade: The blockade e�ect gives rise to the characteristic range of
the interaction in terms of the blockade radius, which was discussed in the
context of Rydberg excitations in section 1.4.3. For polaritons the Rydberg
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blockade › is defined as distance at which the dipolar interaction equals to the
EIT linewidth,

V (›) != �
EIT

. (1.24)

The blockade radius reach values on the order of tens of microns – much larger
than the optical wavelength of the probe photons.

�.�.� Intuition based on electric susceptibility

The Rydberg optical nonlinearity can be understood intuitively as a controlled
switching between three-level and two-level optical responses, given by Eqs
(1.4) and (1.11). As discussed in section 1.2.2, the susceptibility of the medium
vanishes at the two-photon resonance. Thus, the figure of merit comes from the
two-level susceptibility, see Eq. (1.4). As already mentioned in section 1.2.2, we
di�erentiate two regimes depending on the detuning ” to the intermediate level:
The dissipative regime for small detuning ” π “, and the dispersive regime for
large detuning ” ∫ “.

In the dissipative regime the two-level susceptibility takes the form

‰2≠level

e

= i
1

kl
a

, (1.25)

which corresponds to the strong absorption of two photons separated by less
than the blockade radius. In order to quantify this dissipative feature, we
introduce the optical depth OD = g2

0

n
at

L/ (c“). It describes the exponential
attenuation e≠OD of the probe-field after propagation through the medium of
length L in the absence of the control field. In other words, OD characterizes
the strength of the collective optical coupling to the atomic ensemble. A closely
related quantity is the optical depth per blockade radius ODb = g2›/ (c“) which
characterizes the e�ective interaction strength between photons.

Note that the first Rydberg-EIT nonlinear e�ects where observed in the
dissipative regime. Pritchard et al. observed the decrease of transmission peak
of the EIT signal with increasing probe field strength [75]. Moreover, they
measured that the output intensity (at the exit of the medium) saturated at
low values.

In the dispersive regime, the two-level susceptibility is dominated by its real
part with a small imaginary contribution,

‰2≠level

e

= 1
kl

a

“

”

3
1 + i

“

”

4
. (1.26)
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In this regime, the blockade e�ect leads to an additional phase shift for the
closely propagating photons. In this thesis we will mostly study the dispersive
e�ects involving Rydberg polaritons.

We stress that, in analogy to the electric susceptibilities in other system
discussed above, see Eqs (1.5) and (1.13), we can also describe Rydberg-EIT by
the third order susceptibility. And since there are N

b

atoms within the blockade
sphere, the maximum nonlinearity on resonance is enhanced approximately by
a factor of N

b

, i.e.,

‰(3)

e

≥ N
b

‰(1)

e

d2

gp

(~�)2

. (1.27)

Finally, Rydberg-EIT can be thought of as a Rydberg dressing of photons –
in analogy to the Rydberg dressing of ground state atoms [190–192] in which an
admixture of Rydberg states leads to an e�ective interaction between ground
state atoms.

�.�.� Classical and quantum nonlinearities

In the previous section we di�erentiated Rydberg optical nonlinearities depend-
ing whether the dipolar interactions give rise to the dispersive or dissipative
e�ects. Another way of characterizing optical nonlinearities is based on the inter-
action strength per photon as shown in figure 1.9. For Rydberg-EIT systems the
strength of interaction can be quantified by ODb in the dissipative regime and by
ODb “/” in the dispersive regime. In order to distinguish between classical and
quantum e�ects, we introduce the two-photon correlation function g(2)(t

2

≠ t
1

),
where t

1

and t
2

denote the measurement time of the first and second photon,
respectively. In the weakly interacting regime, i.e., for ODb “/|” ≠ i“| π 1,
the interaction does not a�ect the statistics of a coherent input field, thus,
g(2)(0) = 1. Note that the interaction can still lead to strong classical nonlinear
e�ects. In the strongly interacting regime, ODb “/|” ≠ i“| > 1, the interaction
leads to nonclassical correlations, best visible in the two-photon equal-time
correlation function, i.e., g(2)(0) ”= 1.

�.6 Classical Rydberg-EIT nonlinearities

In this section we review the main achievements related to the classical Rydberg-
EIT nonlinearities. This will help us better understand quantum nonlinearities.
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Fig. 1.9: Phenomena involving photons can be characterized according to the interac-
tion strength per photon and the number of photons involved. Four di�erent regimes
can be distinguished: First, linear optics, in which interaction can be neglected at
all. Second, classical nonlinear optics, in which the interactions only appear for large
numbers of photons and they can be well described using averaged fields. In the regimes
of quantum few- and many-photon physics, the interactions strongly modify statistics
and correlations between photons on single-quanta level. In this dissertation, we mainly
concentrate on quantum few-photon physics, but often we will also describe the two
regimes with a large number of photons. Source: Figure adapted from Chang et al. [51].

In the weakly interacting regime, ODb “/|”≠i“| π 1, the theoretical descriptions
can be simplified a lot. Since photon correlations are weak, the light propagation
can be described by the classical photon-field amplitude E =

e
Ê

f
. Then,

any appearing correlations stem from strong correlations between interacting
Rydberg excitations, but we neglect any back-action of photons on the atomic
correlations.

�.6.� Optical nonlinearities

In the simplest case, we can neglect propagation e�ects and describe the probe
field on the lower transition by the Rabi frequency �

p

. Then interactions
between Rydberg atoms can lead to various interesting e�ects: nonclassical
light emission [193, 194], dissipative preparation of entangled N -atom states
[85, 195–197], and quantum gate operations [198–201].

In general, even in this simplest case, the theoretical description of atomic
ensembles is computationally hard. Thus, in recent years, a number of approx-
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imate theoretical methods were used, e.g., variational approaches [202–204]
and the cluster expansion method [205]. Another theoretical approach takes
advantage of strong dissipation on the lower optical transition. This way one
can treat the problem classically, considering only atomic level populations, via
classical rate equations [206–208].

�.6.� Nonlinear light propagation

In this section we discuss the nonlinear propagation through a Rydberg-EIT
medium. In the classical regime, this propagation can be described by an
e�ective equation for the coherent photon field E(r) =

e
Ê(r)

f
, for details see

Ref. [33]. In this regime we can still assume that the interactions do not change
the classical nature of the coherent input field. The photon propagation is
determined by correlations between Rydberg spin wave excitations. The latter
can be described using a hierarchy of equations for many-body correlations [33,
209]. Interestingly, one can tune between defocusing nonlinearities for repulsive
e�ective interactions � > 0 and focusing for � < 0. It was also argued that
in this classical regime it is possible to observe tight beam focusing and the
spontaneous formation of ring structures [33].

�.� Quantum Rydberg-EIT nonlinearities

In preceding sections we presented all building blocks for the Rydberg-EIT
scheme. Since this thesis is treating quantum nonlinearities, we will present
motivation for and explanation of the involved quantum phenomena in the
corresponding chapters. An overview of the field was already given in the
introduction to this dissertation.

The theoretical foundations of the description of quantum Rydberg-EIT
nonlinearities will be presented in chapter 2. More details related to...

• photonic molecules will be discussed in chapter 3.
• applications in quantum technologies like quantum gates and all-optical

transistors are surveyed in Chapters 4 and 6.
• the connection of Rydberg-EIT to the optical Kerr nonlinearities is de-

scribed in chapter 5.
• Förster resonances and the related tunability of the interaction can be

found in chapter 6.
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• the angular dependence of Rydberg interactions and Rydberg polaritons
with higher angular quantum numbers than l = 0 are discussed in chapter 7.
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�
Theoretical foundations

In this chapter, we present the theoretical foundations our work [1–5, 7, 8,
41] presented in next chapters is based on. We start from the derivation
of a microscopic Hamiltonian describing the polariton propagation in one-
dimensional free-space. We analyze decoherence processes using a Master
equation approach and show for which processes the evolution can be described
using the Schrödinger equation with an e�ective non-Hermitian Hamiltonian.
Using this approach, we present a straightforward derivation of the equations
of motion in the Schrödinger picture for the example of two polaritons. Next,
we introduce well-established in condensed-matter diagrammatic methods to
describe Rydberg-EIT. Here, we apply diagrammatic methods to the setup
consisting of a single polariton propagating in an external potential. For this
setup, we show the exact solution by a summation of all Feynman diagrams. The
intuition gained from this problem will be very profitable for the understanding
the enhancement of nonlinearities by Förster resonances presented in chapter 6.
Note also that the diagrammatic method will be very useful to describe the
two-body problem [8], as we show in chapter 3.

�.� Microscopic Hamiltonian derivation

In this section, we derive a microscopic Hamiltonian describing the propagation
of a weak probe light pulse through an atomic medium under the EIT condition.

We start with the description of single photons propagating along the z-axis
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in a free space. In the following, the relevant modes have only small deviations
from the carrier probe frequency Êc and momentum ~kc = ~Êc/c. Moreover, we
will study the experimentally relevant one-dimensional setup. The light field
distribution uk, characterized by a single transverse mode u‹, has the form

uk(x) = eiz(kc+k)Ò
Lq

u‹(R), (2.1)

with Lq being the quantization length. For each longitudinal mode k, we
introduce the creation operator a†

k. Then, the electric field operator reduces to

E(x) =
ı̂ıÙ~Êc

2‘
0

ÿ
k

Ë
Ákuk(x)a†

k + Áú
kuú

k(x)ak

È
, (2.2)

with the polarization Ák. Here, each mode is characterized by a shift in energy
from the leading frequency Êc. This gives rise to the Hamiltonian in the rotating
frame

H
ph

=
ÿ
k

~kc a†
kak (2.3)

with ~kc π ~Êc.
Next, we study the interaction of a single photon with the atoms in the

medium. For each atom, there are three relevant states within the EIT setup:
The ground state |gÍ, an intermediate state |pÍ, and finally the Rydberg

state |sÍ, see Fig. 2.1(a). Within the rotating frame and using the rotating
wave approximation, the strong coupling between the intermediate state |pÍ
with detuning ” and the Rydberg state |sÍ with Rabi frequency 2� gives rise to
dressed states

|+Í = –|pÍ + —|sÍ, �
+

=
1
” +

Ô
”2 + 4�2

2
/2,

|≠Í = —ú|pÍ ≠ –ú|sÍ, �≠ =
1
” ≠ Ô

”2 + 4�2

2
/2,

(2.4)

with energies ~�±. Note, that the spontaneous emission from the intermediate
state with decay rate 2“ can be incorporated by replacing ” with a complex
detuning � = ” ≠ i“, for details see Section 2.2. The probe light modes couple
the states |gÍ with |pÍ. For simplicity, we restrict the analysis to a situation
where only a single polarization couples matter with light, with the dipole
moment d = Èg|d · Á|pÍ. Then, the Hamiltonian, describing the interaction
between the atoms and the light modes reduces to

H
lm

= ~g
ÿ

i

Ë
Âe(xi) |pÍÈg|i + Â†

e(xi) |gÍÈp|i
È

(2.5)
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Fig. 2.1: (a) Setup for the electromagnetically induced transparency: the probe field
couples the atomic ground state |gÍ to the p-level |pÍ with the single-particle coupling
strength g0, while a strong coupling laser drives the transition between the p-level
and the Rydberg state |sÍ with Rabi frequency � and detuning ”. Furthermore, 2“
denotes the decay rate from the p-level. The single-particle coupling g0 is related to the
collective coupling g =

Ô
ng0 with n the particle density. (b) Single photons propagate

through the atomic medium with the reduced group velocity vg π c. In this chapter
we will be interested in case, in which a single polariton propagates in an external
potential generated by, for example, a stored Rydberg excitation (impurity).

with g =
Ò

Êc
2~‘

0

d. In addition, we have introduced the field operator for the
electric field

Â†
e(x) =

ÿ
k

uk(x)a†
k. (2.6)

In the following, in the continuum limit, we describe the atoms by a field
operator �̄, with the internal structure of the atoms properly accounted for by
a spinor degree of freedom of �̄, i.e.,

�̄(x) =

Qcca
�g(x)
�

+

(x)
�≠(x)

Rddb . (2.7)

This operator can either be a fermionic or a bosonic field operator, depending
on the statistics of the atoms. Next, we define two new operators, describing a
transition from the ground state |gÍ into an excited state |±Í,

b†(x) = 1Ò
n(x)

�̄†(x)S+�̄(x), (2.8)

c†(x) = 1Ò
n(x)

�̄†(x)T +�̄(x), (2.9)
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with the spinor operator S+ = |+ÍÈg| and T + = |≠ÍÈg|. In addition, n(x)
denotes the atomic density. Then, these operators always satisfy the bosonic
commutation relation, for example:

Ë
b(x), b†(y)

È
=

�†
g�g ≠ �†

+

�
+

n(x) ”(x ≠ y) ƒ ”(x ≠ y). (2.10)

Here, we have used that fact, that the atomic density is much higher than the
photon (polariton) density and, therefore, almost all atoms are in the ground
state, i.e., �†

g�g ƒ n(x) ∫ �†
+

�
+

. It immediately follows, that b† and c† are
bosonic field operators, and the Hamiltonian describing the light field and the
interaction with the atoms reduces to a quadratic Hamiltonian for three coupled
bosonic fields,

H = ~
⁄

dx

Qcca
Â†

e

b†

c†

Rddb
Qcca

≠icˆz g
Ô

n– g
Ô

n—
g
Ô

n– �
+

0
g
Ô

n— 0 �≠

Rddb
Qcca

Âe

b
c

Rddb , (2.11)

where we have Fourier-transformed the photonic part.
The Hamiltonian in Eq. (2.11) may be written in a more convenient way by

introducing the fields Â†
p(x) = ≠—b†(x) + –c†(x) and Â†

s(x) = –b†(x) + —c†(x).
These operators describe bosonic fields for the creation of excitation in |pÍ-state
and |sÍ-state, respectively. Then, the Hamiltonian reduces to

H = ~
⁄

dx

Qcca
Âe

Âp

Âs

Rddb
† Qcca

≠icˆz g 0
g ” �
0 � 0

Rddb
Qcca

Âe

Âp

Âs

Rddb . (2.12)

Note, that our derivation can be straightforwardly generalized to the light fields
confined in a cavity.

Next, we integrate out the transverse mode u‹ in order to arrive at a one-
dimensional theory. Assuming a homogeneous particle distribution along the
longitudinal mode, the light field couples to the following matter mode

Â†
p(x) =

Û
n(R)

n̄
u‹(R)Â†

p(z) (2.13)

with the e�ective particle density

n̄ =
⁄

dR n(R)|u‹(R)|2. (2.14)
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Analogously, we can define the one-dimensional field operator Âs(z) accounting
for the Rydberg state. Then, the operators Âe(z), Âp(z), Âs(z) describe a
one-dimensional field theory with the Hamiltonian

H = ~
⁄

dz

Qcca
Â†

e

Â†
p

Â†
s

Rddb
Qcca

≠icˆz g 0
g ” �
0 � 0

Rddb
Qcca

Âe

Âp

Âs

Rddb . (2.15)

�.� Decoherence description within Master equation
approach

In this section, we analyze the decoherence of Rydberg polaritons within the
formalism developed in the previous section. The source of the decoherence
can be, e.g., spontaneous emission from excited states, motional dephasing
or dephasing caused by the interactions between ground and Rydberg states.
In order to understand the impact of these processes on polaritons, we study
the system evolution using the Master equation. In the case of a Markovian
evolution, it can be written in the Lindblad form

fl̇ = ≠ i

~ [H, fl] +
ÿ

i

Li(fl), (2.16)

where Li are Liouvillians describing di�erent incoherent processes, H describes
the coherent evolution and fl is a density matrix

fl =
Nÿ

n=0

fl(n), (2.17)

where fl(n) contains n excitations (atomic or photonic). Moreover, we neglect
correlations between the N + 1 terms in (2.17). Note that we truncated the
Hilbert space by introducing the maximal number of excitations N present in
the system. Such a cut-o� is justified for most of the experiments investigating
quantum phenomena on a few-photon level with Rydberg-polaritons [5, 25, 28,
30, 31, 36]. In these experiments, a low intensity laser field is used as a photon
source and, thus, the probability of having N excitations in the system is much
higher than the probability of having N + 1 excitations.

As an example, let us consider the case of a single incoming photon, for which
the full density matrix takes the form

fl(t) = fl(0)(t) + fl(1)(t) = ‘(t)|0ÍÈ0| + fl(1)(t). (2.18)
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The single-particle component of the density matrix fl(1) can be character-
ized using density matrix components flAB(x, y, t) defined as flAB(x, y, t) =
Tr[fl(1)(t)Â†

A(x)ÂB(y)], i.e.,

fl(1)(t) =
ÿ
AB

⁄
dx

⁄
dy fl

AB

(x, y, t)Â†
B

(y)|0ÍÈ0|Â
A

(x), (2.19)

where AB œ {ee, ep, pe, es, se, sp, ps, ss}.
In the following, we will only be interested in the evolution of fl(N). First,

we will show that in such a situation, the description of the system can be
substantially simplified in the case of decoherence due to the decay of the excited
states. Afterwards, we comment on the impact of dephasing on the system
evolution.

�.�.� Decay

Here, we consider decoherence in the system due to the finite lifetime of the
excited states. For the sake of simplicity, we analyze the decay on the example
of the intermediate p-state with the decay rate 2“. The Louvillian for such a
process reads

Lpg = ≠“
⁄

dy
Ë
Â†

p(y)Âp(y)fl + flÂ†
p(y)Âp(y) ≠ 2Âp(y)flÂ†

p(y)
È
. (2.20)

The first two terms describe the decay of the probability that the system
contains N excitations. The last term depicts the “quantum jump” from the
(N + 1)-excitation manifold to the N -excitation manifold. Since we consider
the case fl(N+1) = 0, this process can be neglected. Using this observation we
can rewrite Master equation as

fl̇(N) = ≠ i

~(H
0

fl(N) ≠ fl(N)H†
0

), (2.21)

where we defined the non-Hermitian Hamiltonian

H
0

= H ≠ i~“
⁄

dy Â†
p(y)Âp(y). (2.22)

Next, we write density operator in the general form fl(N) = q
j pj |�jÍÈ�j|.

Together with (2.21) we see that, rather than solving the Master equation
(2.21), we can solve the Schrödinger equation

i~ d

dt
|�jÍ = H

0

|�jÍ (2.23)
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for the pure state |�jÍ, which is much more convenient. Note that there are
no approximations in this simplification. The only assumption is that we can
neglect the occupation of any Hilbert subspace with more than N excitations
and that we are only interested in the time evolution of fl(N). Let us illustrate
this simplification on the previously described example of a single incoming
photon (2.18). Assuming that at initial time t = 0 the excitation can be
described by a pure state |Â

1

(0)Í, the full density matrix simplifies to

fl(t) = ‘(t)|0ÍÈ0| + |Â
1

(t)ÍÈÂ
1

(t)|. (2.24)

Note, that due to the non-Hermitian nature of the e�ective Hamiltonian, the
probability leaks from the single excitation subspace. It corresponds to an
increase in time of the probability ‘(t) to have zero excitations.

Analogously to the decay of the p-level, we can include the decay 2“s of the
Rydberg s-state. Together with (4.2) leads to the non-Hermitian Hamiltonian
of the form

H
0

= ~
⁄

dz

Qcca
Âe

Âp

Âs

Rddb
† Qcca

≠icˆz g 0
g ” ≠ i“ �
0 � ≠i“s

Rddb
Qcca

Âe

Âp

Âs

Rddb . (2.25)

Note, that even though for typical experimental conditions “s π “, it can be
the decoherence of the Rydberg level that has a leading impact on the losses of
a single photon inside the medium at the two-photon resonance.

�.�.� Dephasing

In general there exist processes which decrease coherences of the density matrix
without a�ecting the populations. In this chapter, we call such processes
dephasing. In Rydberg-EIT setups the dephasing can result from a variety of
sources, for example, finite linewidth of the laser field, atom-atom interactions
or motion of the atoms. In general, dephasing can not be rigorously treated
by an imaginary part in an e�ective Hamiltonian. In this section we show the
impact of dephasing on the description of polaritons propagation.

We start with the Liouvillian describing the dephasing [Fleischhauer2005a,
210] of the s-state

Lss = ≠“deph

s

ÿ
j

(PjPjfl + flPjPj ≠ 2PjflPj) (2.26)
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with P j = |sÍÈs|j being the projection onto the Rydberg state. In second
quantization, and written using field operators Âs, it takes the form

Lss = ≠“deph

s

⁄
dy

A
Â†

s(y)Âs(y)fl ≠ Â†
s(y)Âs(y) fl Â†

s(y)Âs(y)
n(y) + h.c.

B
.

In general, the second term in the parentheses is nonzero even for fl(N). To better
understand the impact of this term, we analyze an exemplary time evolution
of a single excitation fl(1). For this purpose, we use the representation of the
density matrix given by (2.19). Next, we project the Master equation onto
di�erent components flµ— of the single excitation subspace:

fl̇µ—(x, y, t) = ÈÂµ(x)|fl̇|Â—(y)Í
=

K
Âµ(x)

-----≠ i

~ [H, fl] + Lss(fl) + Lsg(fl)
-----Â—(y)

L
, (2.27)

where |Â—(y)Í = Â†
—(y) |0Í. We also included the decay of the s-state by the

Liouvillian Lsg analogous to Lpg for the decay of the p-state, see Eq. (2.20).
Specifically, the equation of main interest, i.e., for flss takes the form

ˆtflss(z, zÕ, t) = i� (fles(z, zÕ, t) + flse(z, zÕ, t)) ≠ “sflss(z, zÕ, t) (2.28)

≠“deph

s flss(z, zÕ, t) + “deph

s flss(z, zÕ, t)”(z ≠ zÕ)
n(z) .

Where the last term in the first line depicts the decay due to the finite lifetime,
while the two terms in the second line describe dephasing. We see that the
dephasing di�ers from the decay by the last term which is nonzero for z = zÕ.
Because of this di�erence one can not use an e�ective non-Hermitian Hamiltonian
for the rigorous description of dephasing.

�.� Interaction between polaritons

In this section, we include the strong interaction between the Rydberg atoms.
It takes the form

H
rr

= 1
2

ÿ
i”=j

V 3D(xi ≠ xj)PiPj (2.29)

= 1
2

⁄
dx

⁄
dy V 3D(x ≠ y) : �†

r(x)�r(x)�†
r(y)�r(y) :

with Pi = |sÍÈs|i the projection onto the Rydberg state. The notation : :
means normal ordering, which is included in order to avoid self-interactions.
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On the same level of approximation as for the non-interacting Hamiltonian H
0

,
this interaction can then be expressed in terms of the bosonic fields as

H
rr

= 1
2

⁄
dx

⁄
dy V 3D(x ≠ y) : Â†

s(x)Âs(x)Â†
s(y)Âs(y) : (2.30)

with the bosonic field operator Â†
s(x) creating an s-excitation at position x.

In the one-dimensional limit, the interaction between the Rydberg levels is
described by

H
rr

= 1
2

⁄
dz

⁄
dz ÕV (z ≠ zÕ)Â†

s(z)Â†
s(zÕ)Âs(zÕ)Âs(z), (2.31)

where the interaction potential V results from the microscopic interaction
potential by an average over the transverse modes

V (z) =
⁄

dR

⁄
dR

Õ n(R)n(RÕ)
n̄2

|u‹(R)|2|u‹(RÕ)|2V 3D(R ≠ R

Õ, z). (2.32)

Note, that the transverse mode spacing naturally introduces a cut-o� to the
van der Waals interaction. In this chapter, we neglect this e�ect by taking
V (z) = C

6

/z6, which is an excellent approximation for high Rydberg states,
such that the blockade radius is greater than the size of the transverse mode.
For additional insights see Ref. [40].

In the following, the quadratic Hamiltonian in Eq. (4.2) for the bosonic fields
Âe, Âp, and Âs together with the interaction H

rr

in Eq. (2.31) allows us to apply
standard diagrammatic Green’s function techniques to study the properties of
the system. The only relevant approximations are, that the light modes are
restricted to low energies ~Ê π ~Êc and that the photonic density is always
much smaller than the atomic density n(x).

�.�.� Equations of motion in Schrödinger picture

Here, we derive the equations of motion within the Schrödinger picture using an
e�ective non-Hermitian Hamiltonian. The Schrödinger equation has the form

i~ˆt |Â(t)Í = (H
0

+ H
rr

) |Â(t)Í . (2.33)
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As an exemplary case, we present the analysis for the wavefunction describing
two excitations,

|Â(t)Í =
⁄

dx
⁄

dy

C
Ïep(x, y, t)Â†

e(x)Â†
p(y) + Ïes(x, y, t)Â†

e(x)Â†
s(y)

+ Ïps(x, y, t)Â†
p(x)Â†

s(y) + 1
2Ïee(x, y, t)Â†

e(x)Â†
e(y)+

+ 1
2Ïpp(x, y, t)Â†

p(x)Â†
p(y) + 1

2Ïss(x, y, t)Â†
s(x)Â†

s(y)
D

|0Í . (2.34)

We will arrive at equations of motion for the two particle amplitudes by pro-
jecting Eq. (2.33) onto all possible components |Â

A

(z)Â
B

(zÕ)Í = Â†
A

(z)Â†
B

(zÕ) |0Í.
For example, the time evolution of Ïep(z, zÕ) is given by ÈÂe(z)Âp(zÕ)| (≠i~ˆt +
H

0

+ H
rr

) |Â(t)Í = 0. Without loss of generality, we take Ïee(x, y) = Ïee(y, x),
Ïpp(x, y) = Ïpp(y, x) and Ïss(x, y) = Ïss(y, x). The full set of equations has the
form

iˆtÏee(z, zÕ) = ≠ic(ˆz + ˆzÕ)Ïee(z, zÕ) + g(Ïep(z, zÕ) + Ïep(zÕ, z)),
iˆtÏep(z, zÕ) = (≠icˆz + �)Ïep(z, zÕ) + g(Ïee(z, zÕ) + Ïpp(z, zÕ)) + �Ïes(z, zÕ),
iˆtÏes(z, zÕ) = (≠icˆz ≠ i“s)Ïes(z, zÕ) + gÏps(z, zÕ) + �Ïep(z, zÕ),
iˆtÏpp(z, zÕ) = 2�Ïpp(z, zÕ) + g(Ïep(z, zÕ) + Ïep(zÕ, z))

+ �(Ïps(z, zÕ) + Ïps(zÕ, z)),
iˆtÏps(z, zÕ) = (� ≠ i“s)Ïps(z, zÕ) + gÏes(z, zÕ) + �(Ïpp(z, zÕ) + Ïss(z, zÕ)),
iˆtÏss(z, zÕ) = ≠i2“sÏss(z, zÕ) + �(Ïps(z, zÕ) + Ïps(zÕ, z))

+ V (z ≠ zÕ)Ïss(z, zÕ).

Alternatively, one can describe the system in the Heisenberg picture. Then,
the equation of motion for the time dependent field operators ÂA(z, t) can be
derived from Heisenberg-Langevin equations

ˆtÂe = i

~ [H + H
rr

, Âe], (2.35)

ˆtÂp = i

~ [H + H
rr

, Âp] ≠ “Âp + Fp, (2.36)

ˆtÂs = i

~ [H + H
rr

, Âs] ≠ “sÂs + Fs, (2.37)

where H + H
rr

describes the coherent evolution, see Eqs (2.15) and (2.31), while
Fp and Fs are the Langevin noise operators corresponding to the decay rates
“ and “s, respectively. These equations are the starting point of the analysis
presented, for example, in [25, 36, 38, 40].
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�.� Diagrammatic methods

The microscopic Hamiltonian describes three bosonic fields with a non-interacting
quadratic part [Eq. (4.2)] and a quartic interaction [Eq. (2.31)]. In the past,
such systems have been studied extensively using diagrammatic methods; see for
example [211]. However, it is important to stress that the quadratic Hamiltonian
exhibits a rather unconventional form, as the only dynamics is given by the
light velocity of the photon. It is this property, which is crucial for the following
analysis using diagrammatic methods and gives rise to novel phenomena.

In our previous work [8], we successfully applied diagrammatic methods to
the case of two copropagating polaritons. Here, we first use the diagrammatic
formalism to describe a single polariton propagating in an external potential.
We show that this problem can be solved by an exact summation of all Feynman
diagrams. Note, that in section 3.2.5 we will show another exact solution, i.e.,
of a two-body problem in the weakly interacting regime.

�.�.� Dispersion relation

First, we analyze the unconventional form of the quadratic Hamiltonian, by
looking at its spectrum, see Fig 2.2. It is obtained by diagonalizing the quadratic
Hamiltonian (4.2), which reduces to H

0

= q
µœ0,±1

‘µ(k)Ẫ†
µ(k)Ẫµ(k). Here,

µ œ ±1 accounts for the two bright polariton states, while µ = 0 denotes
the dark state polariton mode. The new field operators take the form Ẫµk =q

—œ{e,p,s} U—
µ (k)Â—k with µ œ {0, ±1}, and its inverse Ū © U≠1 providing

Ẫ†
µk = q

—œ{e,p,s} Ūµ
— (k)Â†

—k. Note, that the diagonalizing matrix U is not unitary,
due to the imaginary part in the Hamiltonian (4.2). For the clarity of the
expressions, we set the decay of the s-state to zero in the rest of this chapter,
i.e., “s = 0. This approximation is well justified for highly excited Rydberg
states used in nowadays experiments, because the propagation time of the
photon in the medium is much shorter than the life-time of the Rydberg state.

In the regime of low-momentum and low-energy, i.e., Ê, vgk π min[�, |�|, g],
the dispersion relation for the dark state polariton is well accounted for by the
two terms in

‘
0

(k) = ~vgk ≠ ~2

2m
k2, (2.38)
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Fig. 2.2: Dispersion relation for the three non-interacting polariton branches for g = 4”,
� = 0.25” and � = (4 ≠ i)“. (a) The real part of the energy ‘Õ

µ(k). The gray dashed
line depicts light mode dispersion relation. (b) The low energy range of the dispersion
relation illustrating dark state polariton behavior: For low momenta the dispersion
relation ‘0(k) can be approximated by linear and quadratic contributions. The gray
dashed line shows the contribution from these two terms, see Eq. (2.38). (c) The
imaginary part of the energy ‘ÕÕ

µ(k): For low momenta the imaginary part of the dark
state energy vanishes. Note di�erent characteristic energy scales for each figure.

with group velocity and polariton mass

vg = �2

g2 + �2

c, m =
1
g2 + �2

2
3

2c2g2��2

. (2.39)

Finally, it is worth pointing out that while the general expressions for the
dispersion relation are complicated, the expression for momentum as a function
of energy has a simple analytical form

~ck(Ê) = ~Ê

Qa g2

�2

1
1 + �Ê≠Ê2

�

2

+ 1
Rb . (2.40)
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�.�.� Polariton propagation in external potential

In this section, building on the understanding of single-body physics, we describe
the polariton propagation in an external potential V (z), acting only on the
Rydberg s-state

H
ext

=
⁄

dz Âs(z)†V (z)Âs(z). (2.41)

This potential can be a result of an interaction between the polariton and a
stationary Rydberg excitation in state |sÕÍ. Such a configuration is relevant
for recent experimental realizations of single photon switch and transistor [5,
29–31]. Note, that in order to neglect readout of the stored excitation, the
state |sÕÍ has to be di�erent than the state |sÍ in the EIT scheme. Moreover,
alternative ways of treating this problem can be found, for example, in Ref. [38,
212].

We start by pointing out, that the Hamiltonian conserves the total energy ~Ê.
Then, the single polariton scattering properties can be well accounted for using
the T -matrix formalism. As the interaction acts only between the Rydberg
states, it is su�cient to study the T -matrix for the Rydberg states alone, which
will be denoted as TkkÕ(Ê). Here, ~k denotes the momentum of the incoming
particle, and ~kÕ the momentum of the outgoing state. The relation between the
T -matrix and the s-state amplitude Ïs by definition is provided by the relation

Ïs(z) = 1
V (z)

⁄ dkÕ

2fi
eikÕz TkkÕ. (2.42)

For single polaritons, the T -matrix is expressed as a resummation of all ladder
diagrams, figure 2.3, which gives rise to the integral equation [211]

TkkÕ(Ê) = V (k ≠ kÕ) +
⁄ dq

2fi
Tkq(Ê)‰q(Ê)V (q ≠ kÕ). (2.43)

Here, ‰q denotes the full propagation of a single polariton and its overlap with
the Rydberg state

‰q (Ê) =
ÿ

µœ{0,±1}

Ūµ
s (q)U s

µ(q)
~Ê ≠ ‘µ(q) + i÷

(2.44)

It is a special property of the polariton Hamiltonian, that ‰q reduces to two
terms

‰q = ‰̄(Ê) + –(Ê)
~c k(Ê) ≠ ~c q + i÷

. (2.45)
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Fig. 2.3: (a) Illustration of ladder diagrams up to the third order: the interaction V is
denoted by a wavy line, while the straight lines with an arrow are Green’s functions for
the three polariton modes 1/(~Ê ≠ ‘µ + i÷), and the dots mark the overlap factors U s

µ

and Ūµ
s of the polariton with the Rydberg state. The T -matrix includes all diagrams

up to arbitrary order with all possible intermediate polaritons. (b) Illustration of the
integral equation (2.43).

Here, ‰̄(Ê) accounts for the saturation of the polariton propagation at large
momenta q æ ±Œ and takes the form

~‰̄(Ê) = �
�2

1 ≠ Ê
�

1 + �Ê
�

2

≠ Ê2

�

2

, (2.46)

which for Ê π �2/� simplifies to ~‰̄(Ê) = �/�2. The second term in Eq. (2.45)
characterizes the pole structure of the propagating polariton. This term reduces
to the propagator of a single polariton with momentum ~k(Ê), given by (2.40),
and – depends on the energy Ê of the incoming polariton:

–(Ê) = g2

�2

1
((� ≠ Ê)Ê/�2 + 1)2

. (2.47)

In order to eliminate the saturation-term ‰̄, we Fourier transform the T -matrix
equation (2.43) to real space

Tk(z) = V (x)eikz + ‰̄(Ê)V (z)Tk(z) + V (z)
⁄

dy G(Ê, z ≠ y)Tk(y)

with G(Ê, z) = ≠i–(Ê) ◊(z)eik(Ê)z being the Fourier transform of the second
term in Eq. (2.45), where ◊(z) is the Heaviside step function. Introducing the
e�ective interaction potential

V e�(z) = V (z)
1 ≠ ‰̄(Ê)V (z) , (2.48)
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the equation for the T -matrix reduces to

Tk(z) = V e�(z)eikz

Qca1 ≠ i
–

~c

z⁄
≠Œ

dy e≠ikyTk(y)

Rdb . (2.49)

This equation can be solved analytically leading to the expression for T -matrix

Tk(z) = eikzV e�(z) exp

SWU≠i
–

~c

z⁄
≠Œ

dy V e�(y)

TXV . (2.50)

Based on the solution for Tk(Ê) we can derive all components of the wavefunc-
tion describing a single polariton. For this purpose, we start from the relation
between the T -matrix and the outgoing state

Ï—
k(z) = eikzu—

k + us
k

⁄ dq

2fi
eiqzTkq‰

s—(Ê, q), (2.51)

where the index — œ {e, p, s} depicts components of the incoming u—
k and the

outgoing Ï—
k states. In order to arrive at formula (2.51) we used the fact that

the only non-vanishing element of the T -matrix is between s-states. Moreover,
we introduced ‰s—(Ê, q) which is the generalization of ‰q(Ê), see Eq. (2.44),
and describes the propagation of a single polariton and its overlap with s-state
and —-state

‰s—(Ê, q) =
ÿ

µœ{0,±1}

Ūµ
s (q)U—

µ (q)
~Ê ≠ ‘µ(q) + i÷

. (2.52)

Moreover, analogously to Eq. (2.45), ‰s—(Ê, q) can be re-written in the following
form

‰s—(Ê, q) = ‰̄—(Ê) + –—(Ê)
~ck(Ê) ≠ ~cq + i÷

. (2.53)

Note that in the newly introduced notation, by definition, the following relations
are satisfied: ‰̄s © ‰̄ and –s © –. Next, we Fourier transform Eq. (2.51), and
then insert to it the solution for T -matrix, given by Eq. (2.50). Furthermore,
we use the relation us

k/u—
k = –s/–— and finally arrive at the expressions for the

wavefunction components

Ï“
k(z) = eikzu“

k exp

SWU≠i
–

~c

z⁄
≠Œ

dy V e�(y)

TXV 3
1 + V e�(z)‰̄“ –

–“

4
. (2.54)
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From this solution, we see that for distances much larger than the range of
the interaction the outgoing state is proportional to the incoming one. Thus,
due to the interaction, all components pick up a common exponent. Next,
we comment on the form of each component separately. For van der Waals
interaction V (r) = C

6

/r6, all of them are shown in figure 2.4.
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Fig. 2.4: Wavefunction components and e�ective interaction in function of distance.
(a) The dispersive regime with � = (10 ≠ i)“, (b) The dissipative regime with � = ≠i“.
All other parameters are the same for both regimes: Ê = 0.05‰2/|�|, g = 1500“,
‰ = 1.4“, C6 = 3.3 ◊ 104“ µm6.

First, for the photonic component the saturation vanishes, i.e. ‰̄e = 0, which
leads to

Ïe
k(z) = eikzue

k exp

SWU≠i
–

~c

z⁄
≠Œ

dy Ve(y)

TXV . (2.55)

We see that even close to the impurity the photonic component only picks up a
phase factor as a result of the interaction with the impurity. Note, that due to
the finite “ this phase factor is complex what leads to the decay of Ïe

k.
Secondly, for the Rydberg component expressed using ue

k we arrive at

Ïs
k(z) = ≠eikz g

�
1

1 + Ê�

�

2

≠ Ê2

�

2

exp

SWU≠i
–

~c

z⁄
≠Œ

dy Ve(y)

TXV 1
1 ≠ ‰̄sV (z)ue

k,(2.56)

from which we see that the Rydberg component is suppressed at distances shorter
than the so-called Rydberg blockade › defined via |V (›)‰̄| = 1. The reason is
the following: At short distances, due to the interaction, the Rydberg-level is
shifted out of resonance and can not be excited [63].
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Finally, the p-state component has the form

Ïp
k(z) = ≠eikz g

�
1

1 + �Ê
�

2

≠ Ê2

�

2

1
�

V ≠ Ê

1 ≠ ‰̄V
exp

SWU≠i–
z⁄

≠Œ
dy Ve(y)

TXV ue
k. (2.57)

This component vanishes for distances much greater than the blockade length,
i.e., x ∫ ›, as long as Ê π �2/|�|. The last condition corresponds to the
EIT transparency condition. Once this condition is broken, the polariton has a
significant admixture of the p-state, which causes the decay of the polariton
inside the medium. Moreover, for short distances z < › with Ê π �2/|�|, the
p-state component saturates at |Ïp

k| ≥ g
|�|u

e
k. Hence, in the dissipative regime

with small detuning ” < “ the p-component is larger than in dispersive regime
with ” ∫ “. It corresponds to smaller losses in the dispersive regime, as shown
in figure 2.4.
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�
Scattering resonances and bound states

for strongly interacting Rydberg polaritons

In this chapter, we provide a rigorous framework for describing a low-density
gas of slow-light polaritons propagating in one dimension under the conditions
of electromagnetically induced transparency and interacting via strong Rydberg-
Rydberg interactions. For this purpose, we formulate the problem in the
condensed matter language using a well-established Feynman-diagrams approach.
Specifically, we use a diagrammatic method to analytically derive the scattering
properties of two polaritons. We discover previously unexplored parameter
regimes where polariton-polariton interactions are repulsive. Furthermore, in
the regime of attractive interactions, we identify multiple two-polariton bound
states and calculate their dispersion relation. We analytically derive the low
energy scattering length and find the appearance of resonances; we expect the
corresponding tunability of the scattering length to play the role that Feshbach
resonances play in ultra-cold atomic gases [213]. Moreover, we present the exact
solution of the two-body problem in a weakly interacting regime. This result
facilitates better understanding of losses from the dark state polaritons to the
bright polaritons [8]. Finally, the two-particle scattering properties allow us to
derive the exact low-energy many-body Hamiltonian.

This theoretical platform is also a foundation for a better understanding of
other Rydberg-polariton phenomena presented in this thesis, especially, the
dipolar dephasing of D≠state polaritons and the quantum theory of Kerr-
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nonlinearity for Rydberg-polaritons presented in chapters 7 and 5, respectively.

�.� Introduction

First, we would like to shortly put our research into a broader perspective.
The goal of this project was to study the Rydberg-EIT system, in which
photons entering the atomic gas are converted into a slow-light polariton with
a substantial admixture of the Rydberg state. It is this latter admixture
which maps the Rydberg-Rydberg interaction onto an e�ective interaction
between slow light polaritons. The propagation and interaction e�ects can be
experimentally probed by looking at the correlations between outgoing photons.
Within such a setup, two impressive two-body e�ects have been demonstrated
by the collaboration of MIT and Harvard physicists, i.e., the antibunching of
single-photons [25] and the formation of bound states of Rydberg polaritons
[28]. These experiments were an additional motivation to study the two-body
problem more carefully.

�.�.� Setup

Fig. 3.1: Scheme

The atomic scheme and theoretical description of non-
interacting polaritons were extensively described in chap-
ters 1 and 2. Here, in order to make the description more
consistent, we shortly repeat the notation used to describe
Rydberg polaritons.

We start with the microscopic Hamiltonian for a one-
dimensional setup with the light field described by a single
transverse mode, for details see section 2.1. Then the
electric field is described by the operator Â†

e(z) which
creates a photon at position z in the transverse mode.
The matter is well described by the bosonic field operators
Â†

p(z) which depicts an atomic excitation into the p-state
at position z, while Â†

s(z) accounts for the creation of a
Rydberg excitation. We then obtain the non-interacting
part of the microscopic Hamiltonian within the rotating
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frame, for details see Eq. (4.2),

H
0

= ~
⁄

dz

Qcca
Âe

Âp

Âs

Rddb
† Qcca

≠icˆz g 0
g � �
0 � 0

Rddb
Qcca

Âe

Âp

Âs

Rddb . (3.1)

with 2� the Rabi frequency of the coupling laser and g =
Ô

n̄g
0

the collective
coupling, where n̄ accounts for the e�ective atomic density for the coupling and
depends on the transverse shape of the photonic mode. The atomic scheme
is shown in figure 3.1 (as well as in figure 2.1). Note that the kinetic energy
of the photons ≠i~cˆz only accounts for the di�erence to the EIT condition,
and in the momentum space takes the form ~cq. Furthermore, the detuning
� = ” ≠ i“ includes the decay rate “ from the p-level. The interaction between
the Rydberg levels is described by

H
rr

= 1
2

⁄
dz

⁄
dzÕ V (z ≠ zÕ)Â†

s(z)Â†
s(zÕ)Âs(zÕ)Âs(z). (3.2)

In the following, we focus on a van der Waals interaction V (r) = C
6

/r6. The
microscopic Hamiltonian H

0

+ H
rr

describes three bosonic fields with a non-
interacting quadratic part and a quartic interaction. Such systems have been
extensively studied in the past using diagrammatic methods, cf. Ref. [211].
However, it is relevant to emphasize that the quadratic Hamiltonian has an
unconventional form, as the dynamics is only due to the light velocity of the
photon. This is crucial to the following analysis using diagrammatic methods
and gives rise to novel phenomena. This property can already be seen from the
spectrum of the non-interacting Hamiltonian, already discussed in section 2.4.1
and Fig 2.2.

�.� Two-body problem

Pseudo-potential: We start with analyzing the scattering properties and bound-
state structure for two dark-state polaritons. Subsequently, this will help us
to understand the many-body properties of the system. The main idea is to
derive the scattering length a

1D

, which in turn allows for the description of
the many-body theory in terms of a pseudo-potential. In one dimension, the
pseudo-potential takes the form

V
1D

(r) = ≠ 2~2

m a
1D

”(r), (3.3)

69



Chapter 3 Scattering resonances and bound states

where m plays the role of the polariton mass. This approach is in analogy to
cold atomic gases, where it is extremely successful [213].

The description of two polaritons requires, in the most general case, a nine-
component, two-particle wavefunctions Âµ‹(z, zÕ) with µ, ‹ œ {e, p, s}, which
denotes the amplitude of finding particles in states µ and ‹ at z and zÕ, respec-
tively [38]. To utilize the conservation of energy and momentum, we rewrite
Âµ‹ in the center-of-mass R = (z + zÕ)/2 and relative r = z ≠ zÕ coordinates
and parametrize it in terms of temporal and spatial Fourier components (Ê, K),
leaving r the only degree of freedom.

�.�.� Diagrammatic approach

We start by pointing out, first, that the Hamiltonian conserves the total energy
~Ê and momentum ~K. Second, the two-polariton scattering properties are well
accounted for by the T -matrix. As the interaction acts only between the

Fig. 3.2: Diagrammatic representation: (a) The diagonalization of H0 gives rise to
three propagator accounting for the di�erent polaritons. (b) The interaction between
the polaritons is given by the microscopic interaction between the Rydberg levels (wavy
line) and the overlap U–

s with each polariton (dots). (c) The full two-particle propagator
for the Rydberg state ‰ is the summation of all individual pair propagation of two
polaritons. (d) Illustration of ladder diagrams up to third order: the interaction V (r) is
denoted by a wavy line, while the straight lines with an arrow are Green’s functions for
the three polariton modes 1/(~Ê ≠ ‘µ + i÷), and the dots mark the overlap factors U s

µ

and Ūµ
s of the polariton with the Rydberg state. The T -matrix includes all diagrams

to arbitrary order with all possible intermediate polaritons.

two Rydberg states, it is su�cient to study the T -matrix for the Rydberg states
alone, denoted as TkkÕ(K, Ê). Here, k is the relative momentum of the incoming
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two polaritons and kÕ the relative momentum of the outgoing polaritons. The
relation between the T -matrix and the scattering wave function is provided by
the relation

Âss(r) = 1
V (r)

⁄ dkÕ

2fi
eikÕr TkkÕ (3.4)

where Âss(r) denotes the amplitude to find both Rydberg polaritons in the
Rydberg state at relative separation r. For two-polaritons, the T -matrix can
be determined as a resummation of all ladder diagrams, which gives rise to the
integral equation [211]

TkkÕ(K, Ê) = Vk≠kÕ +
⁄ dq

2fi
Vk≠q ‰q(K, Ê)TqkÕ(K, Ê), (3.5)

Here, the full pair propagation of two polaritons and its overlap with the
Rydberg state is denoted by

‰q (K, Ê) =
ÿ

–,—œ{0,±1}

Ū–
s (p)U s

–(p)Ū—
s (pÕ)U s

—(pÕ)
~Ê ≠ ‘–(p) ≠ ‘—(pÕ) + i÷

, (3.6)

with q = p≠pÕ and K = (p+pÕ)/2, where diagonalizing matrix U was introduced
and discussed in section 2.4.1. Note that in the following, we will drop the
explicit dependence on K and Ê as the latter are conserved. It is a special
property of our polariton Hamiltonian, that the pair propagation reduces to
three terms,

‰q = ‰̄ + –

~Ê̄ ≠ ~2q2/m + i÷
+ –

B

~Ê̄
B

≠ ~2q2/m + i÷
. (3.7)

Here, ‰̄(Ê) accounts for the saturation of the pair propagation at large momenta
q æ ±Œ and takes the form

‰̄(Ê) = 1
~

� ≠ Ê
2

≠ �

2

�≠Ê

Ê
1
� ≠ Ê

2

2
+ 2�2

. (3.8)

The second term in Eq. (4.5) is the pole structure for the propagation of the two
incoming polaritons. This term reduces to the propagator of a single massive
particle, where – and Ê̄ depend on the center-of-mass momentum K and total
energy Ê. The latter defines the relative momentum k = ±Ô

Ê̄ of the incoming
scattering states.
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Fig. 3.3: Parameter ’(K, Ê) measuring the influence of the second pole for � π g and
�/� = 0.5. In the low energy and in the low momentum limit, the second pole can be
safely neglected, however its influence strongly increases for cK�/2g2 æ 1.

Losses to the bright channel: The last term in Eq. (4.5) accounts for a second pole,
describing the phenomenon of resonant scattering of two incoming polaritons
into a di�erent outgoing channel, e.g., the conversion of two dark polaritons
into an upper and a lower bright polariton, and therefore denoted by ‘B’, for
illustration see figure 3.5. The influence of the second pole is measured by
the dimensionless parameter ’(K, Ê) =

Ò
|(Ê̄–2

B

)/(Ê̄
B

–2)|. Especially, ’(K, Ê) is
strongly suppressed in the two regimes discussed below, i.e., the low momentum
and low energy regime, and the far-detuned regime. In these cases the second pole
can be dropped in leading order in the small parameter ’ π 1. An illustration
demonstrating the strong suppression is shown Fig. 3.3, while the analytical
expressions are provided in the subsection 3.2.4.

Effective potential: The saturation ‰̄ can be eliminated by introducing the
e�ective interaction potential

V
e�

(r) = V (r)
1 ≠ ‰̄(Ê)V (r) . (3.9)

Then, the equation for the T -matrix reduces to

TkkÕ = V e�

k≠kÕ +
⁄ dq

2fi
V e�

k≠q

–

~Ê̄ ≠ ~2q2/m
TqkÕ. (3.10)

Consequently the T -matrix describes a system of a single massive particle in
the e�ective interaction potential V

e�

with the relative coordinate as the degree
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of freedom and is fully described by the Schrödinger equation

~Ê̄Â(r) =
C
≠~2

m
ˆ2

r + –V e�(r)
D

Â(r). (3.11)

with the e�ective potential given by Eq. (4.8) and polariton mass (discussed in
detail in section 2.4.1)

m = ~(g2 + �2)3

2c2g2��2

. (3.12)

Here, ~Ê̄(K, Ê) plays the role of energy, and the dimensionless parameter –(K, Ê)
can be interpreted as the overlap of the polaritons with the Rydberg state.

The relation Â(r) = Âss(r)[1 ≠ ‰̄V (r)] follows from the relation between the
T -matrix and the scattering wave function Âss(r)V (r) = s dkÕ eirkÕ

TkkÕ/(2fi) =
Â(r)V e�(r). Note that this relation captures the blockade phenomenon: the
amplitude Âss(r) to find two Rydberg states essentially vanishes at distances
shorter than the blockade radius › = (|C

6

‰̄|)1/6. In addition, the wavefunction
Â(r) is proportional to the electric field amplitude Âee(r). We would like to
stress once again that equation (3.11) is valid in several experimentally relevant
regimes, including the low-momentum and low-energy regime, and the far-
detuned regime. The analytical expressions for –, Ê̄, and ‰̄ are discussed below.
In the following, we will analyze the behavior of the two-particle properties in
these two important regimes. Note that, throughout our analysis, we assume
|”| ∫ “, thus providing the results in the limit “ = 0. Then, the inclusion of a
finite decay rate “ is obtained by an analytical continuation in � = ” ≠ i“.

�.�.� Low momentum and low energy regime

We start with the low momentum and low energy regime, which allows us to
analytically derive the low-energy scattering length a

1D

, see figure 3.4. The
characteristic energy scale is given by Êc = min{|�|, �2/|�|}, and the corre-
sponding characteristic momentum is qc = Êc/vg with vg = �2/(�2 + g2)c the
slow-light velocity. Expanding the two-particle propagator for |Ê| < Êc and
|K| < qc, the parameters for the first pole take the form

Ê̄ = Ê ≠ vgK, – = g4

(g2 + �2)2

. (3.13)

The strength of the second pole –
B

is strongly suppressed and vanishes as –
B

≥
(Ê ≠ cK)2, see figure 3.3, and is thus negligible in the low energy/momentum
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limit. Furthermore, ‰̄ reduces to

~ ‰̄ = �
2�2

≠ 1
2� . (3.14)

Scattering length and interaction tunability: Most importantly, we identify that
‰̄ exhibits a zero crossing for � = |�| and consequently changes sign.

Fig. 3.4: Low-energy scattering length a
1D

: for attractive interactions (solid line), we
obtain scattering resonances associated with the appearance of additional bound states.
For repulsive interactions (dashed line), we find a single zero crossing.

Therefore, it is possible to realize repulsive polariton-polariton interactions for
� > |�| with C

6

” > 0 (the latter condition is required in order to avoid a
singular behavior of V

e�

). In this regime, we obtain a transition from a negative
to a positive 1D scattering-length a

1D

for increasing interactions, see figure 3.4.
Using the blockade radius › = (≠C

6

‰̄)1/6, we obtain the asymptotic behavior
a

1D

= (3/fi)‰̄/–›, valid for weak interactions with |›| <
Ò

|‰̄/–|, where the
interaction potential can be replaced by a ”-function. Note that for “ = 0,
the scattering length is negative, while for a finite decay rate, we obtain an
imaginary contribution to the scattering length accounting for the losses from
the p-level during the collision. For increasing interactions |›| >

Ò
|‰̄/–|, we

eventually obtain a zero crossing of a
1D

, and recover the positive scattering
length a

1D

¥ 0.7 (–C
6

)1/4, where the full tail of the van der Waals interaction
dominates.

In the attractive regime � < |�| with C
6

” < 0, the system generally gives
rise to bound states. For weak interaction |›| <

Ò
|‰̄/–|, a single bound state
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is present, and we recover the positive scattering length a
1D

= (3/fi)‰̄/–›.
For increasing interactions |›| >

Ò
|‰̄/–|, additional bound states will appear.

Each additional bound state is associated with a resonance in the scattering
length in analogy to Feshbach resonances in cold atomic gases [213]. The exact
determination of the scattering length a

1D

requires the full treatment of the
e�ective interaction potential V

e�

(r); the latter is easily achieved numerically, see
Fig. 3.4. It clearly demonstrates, that we can tune the strength of the scattering
length to arbitrary values by controlling the single parameter ›/

Ò
|‰̄/–|, which

defines the strength of the interaction potential.

�.�.� Far detuned regime

In general, the bound states will violate the condition of low energy and are
thus more appropriately studied in the far-detuned regime with � π |�|, which
is valid for all momenta K with the weak constraint on the energy |Ê| π |�|.
In this regime, the weight of the second pole is suppressed by a factor |�/�|6
and can again be safely ignored. Then, we obtain ~ ‰̄(Ê) = [Ê + 2�2/�]≠1, the
blockade radius reduces to › = (|C

6

�/2�2~|)1/6, while the analytic but lengthy
expressions for Ê̄ and – are presented in the section 3.2.4. In the experimentally
most interesting regime of slow light with g ∫ � with g & |�|, we find

– =
1 ≠ cK�

2g21
1 + Ê�

2�

2

2
2

, (3.15)

while the expression for the energy ~Ê̄ is defined through

Ê̄�
2�2

=
Ê�

2�

2

1 + Ê�

2�

2

≠ 1 + 2 Ê�

2�

2

1 + Ê�

2�

2

cK�
2g2

+
A

cK�
2g2

B
2

. (3.16)

Finally, the relation to the electric field amplitude Âee is again closely related
to the wavefunction Â via (g2 ≠ cK�/2)Âee = (�2 + Ê�/2)Â.

In contrast to a conventional massive particle, here the on-shell condition
at Ê = 0 takes the form K2/4 ≠ k2 = Kg2/2�c with opposite sign between
relative and center-of-mass momenta. This parameter regime has previously
been analyzed using adiabatic elimination [28, 38]. It is important to stress
that, in this limit, the diagrammatic result completely agrees with the approach
utilizing adiabatic elimination, see section 3.3 for details. However, the dia-
grammatic approach provides the strength of the second pole and therefore
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serves as a microscopic justification for the adiabatic elimination. Moreover,
the diagrammatic approach also provides a natural extension to finite energies
Ê and thus to time-dependent phenomena.

�.�.� In�uence and strength of the second pole

- 2 - 1 1

- 2

- 1

1

Fig. 3.5: Illustration of a resonant excitation of two bright polaritons from two dark
polaritons for g = 3”, � = ”/3 and “ = 0. Two di�erent cases of the total energy
~Ê of the incoming dark-state polaritons are shown. In both situations the relative
momentum is zero, ~k = 0. Orange solid arrow shows the case of Ê = ≠0.06�2/”, while
orange dashed line the case of Ê = ≠0.35�2/”. Resonant excitation conserves center of
mass momentum ~K, as well as the total energy, ~Ê = 2‘0(K/2) = ‘≠(K/2 ≠ k

B

/2) +
‘+(K/2 + k

B

/2), where ~k
B

= ±Ô
~Ê̄

B

m.

In the following, we estimate the relevance of the second pole in Eq. (A.7),
characterized by –

B

and Ê̄
B

, which gives rise to the resonant scattering into
a di�erent outgoing channel, see figure 3.5. First, we concentrate on the low
momentum and energy regime. The analytical expressions for – and Ê̄ describing
the first pole are given in Eq. (3.13). In turn, the parameters for the second
pole derived by the diagrammatic method take the form

–
B

= ≠ (Ê ≠ cK)2�6

4�2(g2 + �2)3

, (3.17)

Ê̄
B

= 4�2g4

(g2 + �2)3

�2

Ê ≠ cK
. (3.18)

Note that the weight –
B

of the pole vanishes quadratically, when ~|Ê|, ~|K|vg π
~min{|�|, 2�2/|�|}, where vg = �2/(�2 + g2)c the slow light velocity, and can
therefore be safely dropped.
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Next, we analyze the influence of the second pole in the regime of far-detuned
Rydberg polaritons with |Ê|, � π |�|, g. The diagrammatic approach provides
the analytic expressions

–
B

= ≠ �6(1 + cK
2�

)(Ê ≠ cK)2

4�2(g2 + �2)3

1
1 ≠ cK�

2g2

2
2

, (3.19)

Ê̄
B

= ≠
A

1 + cK

2�

B
2

A
1 ≠ cK�

2g2

B 4�2g4

(g2 + �2)3

�2

cK ≠ Ê
.

We find that, in the regime cK”/2g2 < 1, the dimensionless parameters ’(K, Ê)
is strongly suppressed by the factor (�/�)6. However, it is important to stress
that the strength of the second pole diverges in a narrow parameter regime
around cK”/2g2 ¥ 1.

�.�.� Exact solution for weak interactions

In the section 3.2.1, we claimed that the influence of the second pole can be
measured by the dimensionless parameter ’(K, Ê) =

Ò
|(Ê̄–2

B

)/(Ê̄
B

–2)|. We also
have shown that ’(K, Ê) is strongly suppressed in several relevant regimes. In
this subsection, we will show how the parameter ’(K, Ê) relates to the solution
of two-body problem in the weakly interacting regime.

The interaction strength can be conveniently quantified by the dimensionless
parameter ›/⁄̄, where ⁄̄ =

Ò
|~2‰̄/(–m)| is the de Broglie wavelength associated

with the depth (or height) |–/‰̄| of the e�ective potential. Here, we present
exact solution of the two-body problem for weak interactions, i.e., for ›/⁄̄ π 1,
in which case the interaction potential can be replaced by a ”-function. We
start by rewriting the equation for the T -matrix, see Eq. (3.5), using the
e�ective potential V e�(r) = V (r)/(1 ≠ ‰̄(Ê)V (r)) and explicitly including the
pole structure,

TkkÕ(K, Ê) = V e�

k≠kÕ +
⁄ dq

2fi
Tkq(K, Ê)

Qa –

~Ê̄ ≠ ~2q2

m + i÷
+ –

B

~Ê̄
B

≠ ~2q2

m + i÷

Rb V e�

q≠kÕ,

This equation is equivalent to the Lippmann-Schwinger equation for Ï, defined
by Ï(r)V e�(r) = s dkÕ eirkÕ

TkkÕ/(2fi),

Ï(r) = Ï
0

(r) +
⁄

dy G(r ≠ y) – V e�(y) Ï(y). (3.20)

As already mentioned, the wavefunction component Ïss describing two Rydberg
excitations can be expressed using T -matrix, i.e., Ïss(r)V (r) = s dkÕ eirkÕ

TkkÕ/(2fi).
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Moreover, the incoming wave Ï
0

(r) = eikr, and the propagator G in real space
has the form

G(r) = ≠ i

2
m

~2

Qaeik|r|

k
+ –

B

–

eik
B

|r|

k
B

Rb , (3.21)

with k =
Ò

Ê̄m/~ and k
B

=
Ò

Ê̄
B

m/~. Then, the solution of (3.20) can be found
via the re-summation of all orders in Born expansion

Ï(r) = Ï
0

(r) +
⁄

dy G(r ≠ y) – V e�(y) Ï
0

(y) (3.22)

+
⁄

dy
⁄

dyÕ G(r ≠ y) – V e�(y) G(y ≠ yÕ) – V e�(yÕ) Ï
0

(yÕ) + ...

In the case of weak interactions › π ⁄̄, we can replace the e�ective interaction
by the potential v”(r), where v = s dr –V e�(r). It enables us to simplify the
expression for Ï to

Ï(r) = Ï
0

(r) + G(r)v
1
1 + G(0)v + (G(0)v)2 + ...

2
= Ï

0

(r) + v G(r) 1
1 ≠ v G(0)

= eikr ≠ 1
1 + k

kB

–B
– ≠ 2i~

2k
mv

A
eik|r| + –B

–

k

k
B

eik
B

|r|
B

. (3.23)

We see that the dimensionless parameter ’(K, Ê) = |(k–
B

)/(k
B

–)| controls the
influence of the second pole. Since the term proportional to eik

B

|r| accounts for
the resonant excitation of an upper and lower bright polariton, this process is
strongly suppressed for small parameter ’(K, Ê) π 1.

�.� Comparison with adiabatic elimination

In the following, we compare our diagrammatic approach with the previously
successfully-applied study of the two-particle equation for the wave function in
the regime Ê = 0, where the p-level has sometimes been adiabatically eliminated
[25, 28, 38]. Furthermore, we will present the natural extension of adiabatic
elimination for finite frequencies. The two-particle wave function contains four
components: Âee describes the amplitude for two photons, Âss the amplitude for
two Rydberg atoms, and Âes± the amplitude for one photon and one Rydberg
atom with even (odd) symmetry. The Schrödinger equation reduces to (see
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Refs. [25, 28, 38] for more details)

ÊÂee = ≠icˆRÂee ≠ 2g2

� Âee ≠ 2g�
� Âes+

, (3.24)

ÊÂes+

= ≠ic

2 ˆRÂes+

≠ icˆrÂes≠

≠g2 + �2

� Âes+

≠ g�
� (Âee + Âss) , (3.25)

ÊÂes≠ = ≠ic

2 ˆRÂes≠ ≠ icˆrÂes+

≠ g2 + �2

� Âes≠, (3.26)

ÊÂss = ≠2�2

� Âss ≠ 2g�
� Âes+

+ V (r)
~ Âss, (3.27)

where r denotes the relative coordinate and R the center-of-mass coordinate.
For the translational invariant system, the latter coordinate is expressed in
Fourier space with the total momentum K. We can solve the first, third and
fourth equations for Âee, Âes≠, and Âss, respectively. Inserting these expressions
into Eq. (3.25), we obtain a single di�erential equation involving only the wave
function Âes+

,

~Ê̄Âes+

= ≠~2

m
ˆ2

r Âes+

+ –V
e�

(r)Âes+

. (3.28)

This equation takes exactly the form of Eq. (3.11) with the identification
Âes+

≥ Â. The expressions for – and Ê̄ within the adiabatic elimination reduce
to

–m

~2

= g2�2

c2~�2

2(Ê + g2

+�

2

�

) ≠ cK1
Ê + 2�

2

�

2
2

, (3.29)

‰̄ = 1
~

1
Ê + 2�2/� ,

Ê̄m

~ =
C
cK ≠ 2(Ê + �2 + g2

� )
D

2 2Ê �

2

+g2

�

+ Ê(Ê ≠ cK) ≠ 2�

2

�

cK

4c2

1
Ê + 2�

2

�

2 1
Ê ≠ cK + 2g2

�

2 .

These expressions fully agree with the result derived within the diagrammatic
approach in the limit of large detuning � π |�| and energies |Ê| π |�|. In the
physically interesting situation of Rydberg polaritons with g & |�|, we finally
obtain the expressions (3.15) and (3.16).
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Fig. 3.6: Bound-state structure (“ = 0): For weak interactions ›g2/�c = ±0.5, we
obtain a single bound state below the continuum of scattering states, while for strong
interactions ›g2/�c = ±5, we observe the existence of several bound states giving rise
to scattering resonances. The dashed lines mark the lines with fixed incoming relative
momentum k̃ = k�c/g2 = 0.5, 1.0, 1.5 for the scattering states.

�.� Bound states

The e�ective equation Eq. (3.11) allows us to derive the bound states and their
group velocity in addition to the scattering states. The spectrum of two Rydberg
polaritons is shown in figure 3.6: it exhibits a continuum of scattering states as
well as bound states. Note that the interaction potential as well as Ê̄ depend
on the energy Ê, and therefore the bound-state energies have to be determined
self-consistently. The condition of weak interaction reduces to |›g2/�c| < 1,
and we recover a single bound state, which is well described by replacing
the e�ective interaction potential by a ”-function. For increasing interaction
strength |›g2/�c| > 1, we observe the appearance of additional bound states.
Then, the exact bound state energy requires the numerical treatment of the full
e�ective interaction potential Eq. (4.8). These bound states can be probed in
two di�erent ways: first, at fixed energy, one can determine the center of mass
momentum of the bound state, as it has been demonstrated experimentally [28].
Alternatively at a fixed center of mass K = 0, we can probe the bound state by
a two-color input field via probing the excitation frequency; the latter method
is the standard method in condensed matter physics to probe the spectrum.
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�.� Low energy many-body Hamiltonian

The full understanding of the scattering properties allows us now to derive the low
energy many-body Hamiltonian for Rydberg polaritons. Here, the fundamental
assumption is that each scattering process of the polaritons is independent of
each other. This condition is well satisfied in the dilute regime nd r

0

π 1, where
the density nd of Rydberg polaritons is low compared to the range r

0

of the
interaction potential. The latter is determined either by the blockade radius or
the van der Waals length, i.e., r

0

= max{|›|, (|–C
6

|)1/4}. Then, the interaction
is fully determined by the scattering length a

1D

via the pseudo-potential in
Eq. (3.3), and the many-body theory reduces to the Hamiltonian

H =
⁄

dz

C
Â†

d

A
≠i~vgˆz ≠ ~2

2m
ˆ2

z

B
Âd ≠ 2~2

ma
1D

Â†
dÂ†

dÂdÂd

D
.

Here, Â†
d (Âd) denotes the bosonic field operator creating (annihilating) a

Rydberg polariton. The kinetic energy in the low momentum limit is well
described by the slow-light velocity vg and the e�ective mass m = ~(g2 +
�2)3/(2c2g2��2). Note that the change in sign for the center-of-mass momentum
term K2 in Eq. (3.16) is a higher-order process and is irrelevant in the low-
momentum limit. Here we can control the scattering length a

1D

by the strength
of the interactions, see Fig. 3.4. We can therefore study continuously the
crossover from a Lieb-Liniger gas with a

1D

< 1 to the Super-Tonks-Girardeaux
gas a

1D

> 1 by tuning the parameters through a zero crossing of the scattering
length [214–216]. In contrast to cold atomic gases [217, 218], the zero crossing
of the scattering length is not associated with losses in the system. Using
the experimental parameters characteristic for Ref. [28] with � ¥ 5 MHz,
” ¥ 18 MHz and g ¥ 5 GHz, we find that the range of the potential is
determined by the Blockade radius with › ¥ 18 µm, while the interaction
strength reduces to ›g2/c|�| = 0.54. Consequently, these experiments are in
the regime close to the appearance of an additional bound state.

Complementary approaches: Finally, we point out that a complementary deriva-
tion of an e�ective low-energy theory can also be achieved at high densities,
if the interaction is dominated by the purely repulsive part of the van der
Waals interaction, as proposed in Ref. [36]. This behavior is obtained in the
parameter regime with 1/(|–C

6

|)1/4 < n
1D

< qc, 1/|›|; note that here we provide
a microscopic derivation for the correct blockade radius ‰.
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We have demonstrated that this regime is most interesting to study at the
point � = ±� and C

6

� > 0, where ‰̄ = 0 vanishes, and the e�ective interaction
reduces to the pure van der Waals repulsion V

e�

(r) = C
6

/r6 and allows one to
observe the crossover into a regime where crystalline correlation dominate the
ground state.

�.6 Outlook

The microscopic analysis presented here has several implications for experiments.
First, the existence of a parameter regime with a purely repulsive interaction
will give rise to photon anti-bunching for the two-photon correlations in an
experimental setup similar to that of Ref. [28]. The experimental requirements
are strong Rabi frequency � & |�|, and “ π |”| to distinguish the repulsion
from losses. In turn, the analysis of the bound-state structure allows for the
determination of the group velocity. As can be seen in figure 3.6, the group
velocity of the bound states is larger than the slow light velocity, and the bound
states will travel ahead of the continuum. This will allow one to spatially
separate the bound photon pairs in a pulsed experiment. Finally, the scattering
length defines the phase shift two polaritons pick up during a collision; it has
been proposed to use such collisions to realize photonic two-qubit gates [32, 38].
Here, the predicted zero-crossing of the scattering length corresponds to the
optimal fi-phase shift. A direct measurement of these resonances is possible
in a setup with frequency di�erence �Ê and spatially-resolved detection of
the polaritons inside the medium. Therein, the correlation function in the
relative coordinate will oscillate with a wavevector �k = �Ê/vg. The maxima
of these oscillations will shift for increasing scattering length by a phase „ via
cot(„) = ≠a

1D

�k. The details of these observations depend on the experimental
setup and on the precise boundary conditions but can be e�ciently addressed
within the presented framework.
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�
Two-photon conditional phase-gate based

on Rydberg slow light polaritons

�.� Introduction

Since photons only interact weakly with their environment, propagate with the
speed of light and provide a high bandwidth, they are an excellent carrier of
information. However, for applications in quantum information processing [219],
interactions on the level of single quanta is necessary. Such interactions can be
achieved by coupling photons to matter [53, 76, 220–222], with Rydberg-EIT
(rEIT) being a specially promising approach [57, 74, 75, 223–226].

Once a strong e�ective interaction is available in the system, an important
question can be posed: Can one use this interaction to engineer a two-photon
conditional phase-gate? The principle behind the phase gate is that the source
photon picks up a phase shift depending on the state of the control photon.
Moreover, this phase shift should be spatially homogeneous, shouldn’t change
the shape of both source and gate photons, and for most applications in the
quantum information processing should be on the order of fi.

A photonic phase gate using Rydberg-EIT in a counter-propagating setup
was first discussed by Friedler et al. [32] and an extended description was shown
by Gorshkov et al. [38]. However, a study including all e�ects that decrease the
fidelity of the phase gate is still missing; in this chapter, we attempt to fill this
gap.
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It is worth mentioning that for the co-propagating setup with the linear
dispersion, the condition of a homogeneous phase shift requires a compression
of photons to the size of the blockade radius. However, the latter violates the
conditions for the mass negligence. In turn, adding the mass term leads to
strong mode distortion precluding the realization of a photonic quantum gate in
co-propagating setup. Thus, the homogeneous phase shift between two photons
might be possible only if they pass each other either by for example being
counter-propagating [32, 227–229] or having di�erent group velocities [230].

Note that a number of new proposals [78, 79] were (at least partially) motivated
by the believe that, from fundamental grounds, the link between propagation
and interaction [44, 231] precludes high-fidelity gates whenever a cross-phase
modulation (XPM) on a single photon level is used. We would like to point
out that this argument does not apply to the Rydberg-EIT setup because the
interaction between Rydberg polaritons is nonlocal, whereas no-go theorems [44,
231, 232] assume local interactions.

Moreover, we would like to comment on a new proposal [39], in which the
authors use a semiclassical approach to describe the evolution of two polaritons
in a Rydberg medium. There is no need to use the semiclassical approach
since the equations of motion for two polaritons [8, 25, 38] do not assume
a steady state. In other words, the quantum mechanical approach used by
us fully describes both the propagation as well as the state evolution. Using
this approach, we derive analytical and compact expressions for the fidelity
and phase shifts. Finally, once this Hamiltonian is restricted to two photons,
the decay rates can be exactly included by an imaginary contribution in the
detuning. Such an inclusion is fully equivalent to solving the master equation.
We consider this another fundamental advantage of the presented approach,
which allows for a nearly analytical solution.

It deserves mentioning that first steps towards an experimental realization
of the Rydberg-EIT phase gate were done by the group of G. Rempe, which
demonstrated an optical fi-phase shift created with a stored single-photon
pulse [37]. An alternative promising route to engineer a phase gate is by using
a Rydberg-state dependent reflection of the cavity, as shown by Das et al. [83].

�.�.� General concept

Photons after entering the Rydberg medium are propagating as polaritons, see
figure 4.1. After passing each other, they pick-up the phase shift due to the
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strong interaction between Rydberg atoms. The information can be encoded in
the polarization of probe photons. The excitation into the Rydberg levels can
depend on this polarization [28], leading to the interaction induced phase shift
only between photons having a specific polarization. We define the fidelity F and
phase shift „ of the gate as the overlap between the two-photon wave-functions
with (EE) and without (EEV =0) the interaction V (r) between the polaritons:

Ô
Fei„ =

e
EEV =0

---EE
fOe

EEV =0

---EEV =0

f
. (4.1)

Such a definition, in which two output states are normalized, is often used [39,
232, 233] and is related to the concept of conditional fidelity and e�ciency
commonly applied in the context of quantum storage [78, 234]. This way,
the e�ects of single photon losses are included in the e�ciency � defined by
� =

e
EEV =0

---EEV =0

f
.

Fig. 4.1: (a) The probe field couples the atomic ground state |GÍ to the p-level |P Í
with the single-particle coupling strength g0, while a strong coupling laser drives the
transition between the p-level and the Rydberg state |SÍ with Rabi frequency 2� and
detuning ”. Furthermore, 2“ denotes the decay rate from the p-level. The single-particle
coupling g0 is related to the collective coupling g = Ô

natg0 with nat the particle density.
Note that the kinetic energy of the photons ±~cq accounts for the di�erence to the EIT
condition, and in the position space takes the form ûi~cˆz. (b) Photon entering the
EIT medium is compressed by factor vg/c. (c) Two counterpropagating polaritons inside
the medium. (d) In the center of mass frame, a problem simplifies to the scattering
on the e�ective potential V e�(r), which leads to the imprint of the phase shift on the
two-body wave-function Â(r).
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�.� Propagation inside the medium

We consider photons inside an atomic ensemble propagating in one dimension
(the light field distribution is characterized by a single transverse mode) under
the EIT conditions, where the atomic ground state is coupled to a Rydberg
s-state via an intermediate short-lived p-state, see Fig. 4.1(a). We introduce
the electric field operators Ê†

+

(z) and Ê†
≠(z) creating at position z photons

propagating to the right and left, respectively. For the atomic density much
higher than the photonic density, the excitations of atoms generated by left-
and right- moving photons into s-level and p-level are well-described by the
bosonic field operators Ŝ†

±(z) and P̂†
±(z), respectively. Then, we obtain the

non-interacting part of the microscopic Hamiltonian [8, 38], i.e., H
+

+H≠, under
the rotating-wave approximation in the rotating frame, where

H± = ~
⁄

dz

Qcca
Ê±
P̂±
Ŝ±

Rddb
† Qcca

ûicˆz g 0
g � �
0 � 0

Rddb
Qcca

Ê±
P̂±
Ŝ±

Rddb . (4.2)

Here, g denotes the collective coupling of the photons to the matter via the
excitation of ground state atoms into the p-level, while 2� denotes the Rabi
frequency of the control field between the p-level and the Rydberg state. Note
that the kinetic energy of the photons ûi~ˆz accounts for the deviation from
the EIT condition. We introduced the complex detuning � = ” ≠ i“, which
accounts for the detuning ” of the control field and the decay rate 2“ from
the p-level. While we are interested in two counter-propagating polaritons the
interaction between the Rydberg levels is described by

H
rr

= 1
2

⁄
dz

⁄
dzÕ V (z ≠ zÕ)Ŝ†

+

(z)Ŝ†
≠(zÕ)Ŝ≠(zÕ)Ŝ

+

(z).

We obtain the real time evolution by decomposing the incoming photons
into the frequency components. It is then natural to analyze interaction of
two counter-propagating photons as the scattering process. The two-polariton
scattering properties are well accounted for by the T -matrix. As the interaction
acts only between Rydberg states, it is su�cient to study T -matrix for the
Rydberg states alone. The resummation of all ladder diagrams [8] leads to the
integral equation

TkkÕ(K, Ê) = Vk≠kÕ +
⁄ dq

2fi
Vk≠q ‰q(K, Ê)TqkÕ(K, Ê), (4.3)
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Fig. 4.2: Dispersion relations for the right- and left- propagating fields are shown
using the property that ‘≠

– (≠q) = ‘+
– (q), and therefore the curves overlap. For each

direction of propagation, three noninteracting polariton branches exist. Two dark state
polaritons (denoted by stars in the inset for low energy and momentum) can scatter into
four channels, each represented by di�erent colour of arrows. Solid lines correspond to
right-propagating and dashed lines to left- propagating polaritons. Note, that the total
momentum ~K and energy ~Ê are conserved during the scattering process. Strongly
suppressed losses into two bright polaritons are described by light and dark brown arrows.
Crucial losses into bright-dark polariton pair are depicted by red and purple arrows.
Results are presented for g = 3 ”, ” = 3 �, “ = 0, Ê = 0.1 ◊ 2�2/|�|, K = ≠0.1 g2/|�|c.

where ~k is the relative momentum of the two incoming polaritons and ~kÕ the
relative momentum of the outgoing polaritons. The full pair propagator of two
polaritons and its overlap with the Rydberg state takes the form

‰q (K, Ê) =
ÿ

–,—œ{0,±1}

Ū–
s (p)U s

–(p)Ū—
s (pÕ)U s

—(pÕ)
~Ê ≠ ‘+

– (p) ≠ ‘≠
— (pÕ) + i÷

, (4.4)

with p = K/2 + q and pÕ = K/2 ≠ q. It is a special property of our polaritonic
Hamiltonian that the pair propagation reduces to six terms [8],

‰q(K, Ê) = ‰̄(Ê) + –D

~k̄D ≠ ~q + i÷
+

5ÿ
i=2

–i

~k̄i ≠ ~q + i÷
. (4.5)

Here, ‰̄(Ê) accounts for the saturation of the pair propagation at large momenta
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~q æ ±Œ. The second term in Eq. (4.5) is the pole structure for the propaga-
tion of the two incoming dark-state polaritons. The last sum accounts for the
resonant scattering of the two incoming polaritons into four outgoing channels
containing at least one bright polariton, see figure 4.2. Note that in contrast to
the copropagating equation, where the massive-like behavior of the dark-dark
polariton pair can be neglected only in certain regimes (see chapter 5), here,
the kinetic part is always linear in relative momentum. Thus, the large phase
shift is possible without a drop of the fidelity caused by the distortion of the
wave-packet shape.

�.�.� Scattering matrix description

The scattering into four bright channels can be neglected in the experimentally
relevant regime of slow light g ∫ �, with large single photon detuning � ∫ �,
with small center of mass momentum K π g2/|�|c, and with a weak constraint
on the total energy |Ê| Æ 2�2|/�|; we will discuss the derivation of these
constraints below. In this regime, the initial problem simplifies tremendously:
the only nonvanishing T -matrix element is the one between two dark-state
polaritons and has the form Tkk = i~c(eiÏ ≠ 1). This corresponds to the
elements of scattering S≠matrix for two incoming dark-polaritons (depicted by
“DD”):

SDD;IJ(k ≠ kÕ) = 2fi ”D,I”D,J”(k ≠ kÕ) exp[iÏ], (4.6)

with I, J œ {D, U, L}, where indices U and L denote “U”pper and “L”ower
bright polariton. Therefore, due to the interaction, dark polaritons only pick-up
the exponent Ï, which imaginary part describes losses in the system.

�.� The phase shift

The exponent Ï can be conveniently calculated by Fourier transforming equation
(4.3) and introducing Â defined by Â(r)V e�(r) = s dkÕ eirkÕ

TkkÕ/(2fi), which leads
to the e�ective Schrödinger equation [8],

~Ê

1 + Ê�

2�

2

Â(r) =
Qa≠i2~c

�2

g2

ˆr + 1
(1 + Ê�

2�

2

)2

V e�(r)
Rb Â(r), (4.7)
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where we defined an e�ective potential

V e�(r) = V (r)
1 ≠ ‰̄(Ê)V (r) (4.8)

with ~‰̄(Ê) = (Ê + 2�2/�)≠1. The blockade radius has the form › = (|C
6

‰̄|)1/6;
note that ‰̄ has the same form as in the copropagating setup, see Eq. (3.8).
Equation (4.7) can be interpreted as an evolution of a massless particle in the
e�ective potential, see figure 4.1(d). This interpretation will be useful later for
the estimation of transverse size e�ects. The analytical solution of Eq. (4.7) for
r ∫ › has the form Â(r) = exp[ik

D

r + iÏ] where

Ï = 2fig2›(≠sgn[C
6

]�)1/6

3c|�|1/6�
1

�Ê
2�

2

+ 1
2

7/6

, k
D

= g2

2�2c

Ê

1 + Ê�

2�

2

. (4.9)

In the limit of two photon resonance, i.e., Ê = 0, the solution agrees with
Ref. [38]. For “ π |”| the exponent Ï simplifies to „+i÷ = 2fig2›(1+i5

6

“
” )/(3”c),

where ÷ describes dissipation, whereas „ denotes the phase shift and can be
expressed using optical depth Ÿ› per blockade radius: „ = (fi/3)Ÿ›“/”.

�.� Estimate of the scattering to other channels

Next, we discuss the (presented in section 4.2.1) conditions on the negligence of
the scattering dark polaritons into bright polaritons. In general, the corrections
”Âi due to the scattering to other channels can be estimated using the exponent
Ï and pole strengths –i, see Appendix B,

-----”Âi

Â

----- .
------
–B

1
eiÏÏ ≠ sin(Ï)

2
2–D

------ (4.10)

which for „ π fi scales like ≥
---–BÏ2/2–D

---, whereas for „ & fi like ≥ |–BÏ/2–D|.
Interestingly, the sign of the detuning matters, and in order to minimize scatter-
ing to bright polaritons ” < 0 is preferable. In order to simplify the presentation
of the rest of results, we define f(Ï) =

---eiÏÏ ≠ sin(Ï)
--- /2. Based on this esti-

mate, scattering corrections can be neglected when the ratio of poles strength
’i = –i/–D is small, ’i π 1. First, let us consider two poles –LU , –UL correspond-
ing to outgoing “U”pper and “L”ower bright polariton pair. The parameters
’LU , ’UL scale like �6/(g2 + �2)3/2 and therefore this loss channel is strongly
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suppressed for � π g. We observed similar suppression in case of copropagating
polaritons in chapter 3, but there the bright-bright resonance was the only
scattering channel. Here, a pair of dark and lower bright polariton can also be res-
onantly excited, for which |’LD|+ |’DL| . 2(g2 +�2)�2/(g2�2)+(K|�|c/g2)2/4.
This estimate leads to the conditions K π g2/|�|c and � π |�|, which are
more demanding than the one from UL and LU channels.

�.� Finite size corrections

Up to now we considered single frequency component of the photons. In the
following we will show the impact of the finite size of photons on the phase gate
fidelity. Outside the medium photons are described by slowly varying envelopes,

E±(z, t) = 1
2fi

⁄
d‹ E±(‹) exp[ik±z ≠ i‹t], (4.11)

where the momentum k is related to frequency ‹ via k±(‹) = ±‹/c. Inside the
medium, photons are converted into compressed polaritons figure 4.1(b). Once
the size of polariton is much less than the length of the medium ‡z < L, the
interaction between polaritons does not impact their entrance into the medium.
Thus, the energy Ê± of each component is conserved, whereas momentum
k±(Ê±) is changed. Inside the medium, the interaction between polaritons leads
to losses from the p≠level as well as the imprint of the phase shift– both taken
into account by the S≠matrix, see Eqs (4.6) and (4.9). Including these e�ects,
the propagation through the medium of the pair of dark polaritons with energy
components {Ê

+

, Ê≠} can be described by the factor

exp [iÏ(Ê
+

, Ê≠) + i (k
+

(Ê
+

) ≠ k≠(Ê≠))L + ~(Ê
+

+ Ê≠)t] . (4.12)

For large times– such that both photons already left the medium, the fidelity
F [defined in Eq. (4.1)] does not depend on the time and is given by, for details
see Appendix B,

Ô
Fei„ = 1

�

A 1
2fi

B
2 ⁄

dÊ
1

⁄
dÊ

2

|E
+

(Ê
1

)|2|E≠(Ê
2

)|2

◊ exp {2Im [k≠(Ê
2

) ≠ k
+

(Ê
1

)]L + iÏ(Ê
1

, Ê
2

)} . (4.13)

Because of the losses from the p≠state, the best e�ciency � can be achieved
for both polaritons close to the EIT resonance, i.e., Ê± ¥ 0. Assuming that
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both photons have the same shape, we conveniently define polaritons by their
frequency components (introduced in (4.11)) outside the medium

E±(‹) = exp
Ë
≠(‹/‡Ê)2/2

È
/

ÒÔ
fi‡Ê, (4.14)

with ‡Ê”/�2 π 1, where the width in energy space is connected to the width
in position space via ‡Ê = c�2/(g2‡z). Next, we estimate the drop of the gate
e�ciency due to the single photon losses and the deviations from the linear
dispersion relation. To this end, we use expression for momentum in the regime
of g, |�| ∫ � but for bigger energies |‹| . �2/|�| which takes the form

k±(‹) = ± g2

�c

‹�
2�2

O A
‹�
2�2

+ 1
2

B
, (4.15)

therefore, the losses in the leading order of “/” are equal to

2Im [k≠(Ê≠) ≠ k
+

(Ê
+

)] L = ≠2Lg2

”c

”2(Ê2

+

+ Ê2

≠)
�4

“

”
, (4.16)

which leads to the drop of the e�ciency by factor

� = 1
1 + 2Lg2

”c
”2‡2

Ê
�

4

“
”

. (4.17)

Which for the length of the medium L on the order of polaritons size ‡z leads
to negligible corrections, suppressed additionally by “/”. Moreover, by making
the medium longer and simultaneously keeping the ratio ‡z/L fixed, we can
make this correction arbitrary small.

Finite size of the wavepacket leads to the increase of the losses into bright-dark
channel. We already estimated the strength of this scattering process by

”Â(Ê
+

, Ê≠)
Â(Ê

+

, Ê≠) Æ
Qa �2

|�|2 +
A

K|�|c
2g2

B
2

Rb f(Ï)
2 (4.18)

for g ∫ |�|, which after averaging over wavepacket shape gives

”F = ÈÂ|”ÂÍ Æ
Qa �2

|�|2 +
A

‡Ê|�|
2�2

B
2

Rb f(Ï)
2 . (4.19)

Finally, we will estimate the e�ect caused by energy dependence of the
exponent Ï(Ê, K), which leads to the inhomogeneity of the phase shift. For
this estimate, we neglect scattering to bright channels but include dependence
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on K of dark pole –D, which leads to the analytical solution Â(r) of Eq. 4.7
with modified exponent Ï having the formQcca 1Ú1

c�K
g2

2
2

1
�Ê
2�

2

+ 1
2

2+1
+ 1

Rddb 2fig2›(≠sgn[C
6

]�)1/6

6c|�|1/6�
1

�Ê
2�

2

+ 1
2

7/6

, (4.20)

which can be expanded in Ê
+

, Ê≠ up to the second order. After integration over
Gaussian wavepackets the expression for the fidelity and phase shift, which
contains corrections up to the second order in small parameters “/” and ‡Ê/Êc,
takes the form

Ô
Fei„ = exp

SUi„ ≠ 5
6

“

”
„ ≠ 1

2
1
72 „2 + i 19 „

2 A
‡Ê|�|
12�2

B
2

TV (4.21)

It shows that the setup with far detuned ” ∫ “ and long polaritons ‡z ∫ g2/|�|c
enables a construction of the phase gate with fidelity F close to the unity,
unconstrained fundamentally.

�.6 Effects due to the transversal extend of the photons

Fig. 4.3: (a) Two-photon wave-function, having finite transverse size, scatters in center-
of-mass (i.e., z≠ + z+ = const. and R+ + R≠ = const.) frame on the e�ective potential
V e�(r, R), where R = R+ ≠ R≠. (b) Fidelity in function of a transverse width ‡R‹ for
the phase shift „ = fi/2: The drop of the fidelity for ‡‹/› < 0.25 is negligible. Thus,
due to the plateauing of V e�, photons experience a homogeneous phase shift.

Next, we analyze the impact of a transversal size of photons, which in general
is limited by the di�raction limit or the finite width of a waveguide, on the phase
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gate fidelity. The interaction potential V e� depends on the relative distance, what
leads to the inhomogeneity of the phase shift, [32, 235]. We estimate this phase-
inhomogeneity e�ect by calculating the fidelity F in the limit of “/” æ 0 and
for long photons. For two colliding wave-packets having the transverse size ‡‹,
described by E±(z±, R±) = E(z±)u(R±) with u(R) = exp[≠(x2 + y2)/‡2

‹]/fi‡2

‹,
the fidelity is given by

F =
⁄

dR

+

⁄
dR≠ |u(R

+

)u(R≠)|2 exp[i„(|R
+

≠ R≠|, ›)].

From the figure 4.3(b) we see that the fidelity drop due to the transversal size can
be neglected for ‡‹/› < 0.25, which is within current experimental capabilities,
e.g., for ‡‹ = 3 µm, nS= 100S, � = �, and � = 5� we get ‡‹/› = 0.12. The
reason for this behavior is that polaritons interact via V e� which is nearly
constant for the distances shorter than the blockade radius, Eq. (4.7). It is
an important feature of Rydberg polaritons, resulting in the phase shift being
nearly homogeneous also in the transverse direction.

Fig. 4.4: The
Ô

F including all presented corrections for „ = fi/2 in function of
collective coupling g and length of the medium L with parameters characteristic for [28,
30]: L0 = 160µm and g0/2fi = 4.4GHz. All our estimates assume that the corrections
are small and a pulse is long ‡zg2/|�|c ∫ 1. Therefore, the estimates are not valid in
the regimes where F drops much below 1, therefore, we do not plot F there.
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�.� Estimate of the optimal parameters for the phase gate

Based on the estimates of all the detrimental e�ects, we numerically find optimal
parameters ” and � for fixed C

6

, g, L and „ in case of 87Rb atoms (for which
“/fi = 6.1MHz). A resulting fidelity for 100S state and „ = fi/2 as a function of
the g and L is presented in the figure 4.4. In order to neglect interaction e�ects
for the entering and leaving the medium, as well as to ensure that photons will
completely interact with each other, we take ‡z = L/8. Some of the corrections
are overestimated, like scattering to other channels, see Eq. (4.10), and thus
true fidelity can be higher. Presented figure shows that high F phase gate is
possible for parameters reachable in the future. It is also a good starting point
to find optimal parameters using full numerical two-photon propagation.

It is important to note that in the scope of recent experiments [29, 236] the
main limitation of Rydberg-EIT setup is available optical depth per blockade
radius: For high densities interaction between Rydberg- and ground- state
atoms leads to significant polariton dephasing. The proposed spatially separated
geometry [39] does not circumvent this problem. Intuitively, spatial separation
a has a similar role to the detuning, i.e., it decreases the imaginary component
of the e�ective interaction V e�. The advantage of the spatially separated setup
is that we can have shorter wave-packets because this setup enables larger
EIT window, �2/�. However, the disadvantages is that scattering to bright
polaritons, proportional to �/�, might not be negligible: The reason is that
we are limited by experimentally available C

6

and g, and therefore, in order
to achieve desirable „ for larger a we need to increase ratio �/” leading to
greater losses. Moreover, for intermediate separations a ≥ › the inhomogeneity
of the phase shift, due to the finite range of the interaction, becomes relevant.
Summing up, the optimal choice of the setup depends on the value of „ we want
to achieve and available experimental resources.
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�
Quantum theory of Kerr nonlinearity

with Rydberg slow light polaritons

In this chapter, we study the propagation of Rydberg slow light polaritons
through an atomic medium in the regime where the dispersion relation for the
polaritons is well described by the slow light velocity alone [1]. In this regime, the
quantum many-body problem can be solved analytically for arbitrary shape of
the atomic cloud. We demonstrate the connection of Rydberg polaritons to the
behavior of a conventional Kerr nonlinearity for weak interactions and determine
the leading quantum corrections for increasing interactions. We propose an
experimental setup which allows the measurement of the e�ective two-body as
well as higher-body interaction potentials between slow light polaritons.

�.� Introduction

Photons interact with their environment much weaker than other quanta and
therefore represent excellent carriers of information. On the other hand, a
long-standing goal is the realization of a strong and controllable interactions on
the level of individual photons. Such interactions would pave the way towards
ultralow-power all-optical signal processing [45, 46] which in turn has important
applications in quantum information processing and communication [47–50].
A natural mechanism for an interaction is provided by the Kerr nonlinearity
of conventional materials [237], but is unfortunately restricted to high field
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intensities [52]. On the other hand, the appearance of strong interactions
between individual photons has been experimentally realized using Rydberg
slow light polaritons [23, 25, 26, 28, 30, 31, 238]. Here, we provide the theoretical
framework to connect this regime of strong interactions with the phenomena of
a classical Kerr nonlinearity.

Rydberg slow light polaritons have emerged as a highly promising candidates
to engineer strong interactions between optical photons with a tremendous recent
experimental success [5, 23–31, 238] and several theoretical proposals for the
realization of non-classical states of photons [32, 33, 35, 36]. For more details see
the introduction and chapter 1. From the theoretical point of view, the e�ective
low energy theory is well understood from a microscopic approach [8, 36], but a
full description of the propagation of photons through the medium is limited to
extensive numerical simulations and low photon number [Gorshkov2011a, 6,
25, 28, 39–43].

Fig. 5.1: Setup of Rydberg slow light polaritons: each atom consists of three relevant
levels, ground state |GÍ, intermediate p-level |P Í and Rydberg state |SÍ; the latter are
coupled by a strong laser. Incoming photons with a single transverse channel enter the
medium and are converted into slow light vg < c Rydberg polaritons. The interaction
between the Rydberg states provides an e�ective interaction V (x) for the polaritons.

In this chapter, we provide the full input-output formalism of Rydberg po-
laritons for an intermediate interaction strength where the dispersion relation
for the polaritons is well described by the slow light velocity alone, however
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allowing for an arbitrary number of incoming photons and an arbitrary shape
of the atomic medium. The analysis is performed in the regime with large
detuning from the intermediate p-level where losses are strongly suppressed
and the e�ective low-energy theory for the polaritons is well described by an
e�ective interaction potential [8]. We demonstrate that the quantum many-body
problem can be solved analytically, and we find the connection of Rydberg
polaritons to the behavior of a conventional Kerr nonlinearity for weak interac-
tions. This allows us to determine the leading quantum corrections for such a
Kerr nonlinearity. We demonstrate the potential to experimentally determine
the e�ective interaction potential as well as higher-body interactions between
the slow light polaritons within a homodyne setup. We expect that our results
will play an important role for the generation of strongly-correlated quantum
many-body states of photons.

Previous approaches: It is important to point out that previous approaches to
describe the quantum propagation of photons in a nonlinear Kerr medium
based on a quantization of the phenomenological nonlinear equations provide
an inconsistent quantum field theory [239–241] as the interaction is local and
the dispersion relation of the photons is linear. This inconsistency was removed
by introducing a non-local response in time which leads to a noise term of
the same strength as the Kerr nonlinearity [242]. As a consequence, the
impossibility to generate a photonic quantum gate based on a large Kerr
nonlinearity was concluded [44]. However, the microscopic analysis for Rydberg
slow light polaritons shows that such a non-local response in time is absent, but
naturally provides a mass term accounting for deviations from the slow light
velocity, as well as a finite range of the e�ective interaction potential describing
the blockade phenomena. Here, we demonstrate that the finite range of the
interaction potential is su�cient to derive a consistent quantum theory for a
Kerr nonlinearity. As a consequence, we conclude that the proposed inability
to generate a photonic phase gate by a large Kerr nonlinearity [44] does not
apply to Rydberg slow light polaritons.

�.� Setup

We consider a system of Rydberg slow light polaritons in the dispersive limit
with large detuning |”| ∫ “, � from the intermediate p-level, see Fig. 5.1. Here,
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“ describes the decay rate of the p-level, while � denotes the Rabi frequency of
the coupling laser. Within this regime, losses are strongly suppressed and the
intermediate p-level can be adiabatically eliminated [8]. Note, that the decay
rates of highly excited Rydberg levels are negligible. We are interested in the
propagation of photons along a one-dimensional mode through the medium
with frequency close to the condition of electromagnetic induced transparency.
In the regime with a low density of Rydberg polaritons, the system is well
described by an e�ective low energy quantum theory [8]. The interaction
potential between the polaritons is characterized by a blockade radius › and
the potential depth 2~�2/” at short distances. For a microscopic van der
Waals interaction with C

6

” < 0 the e�ective interaction potential reduces to
V (x) = ≠(2~�2/”)[1 + (x/›)6]≠1 with the blockade radius › = (|C

6

”|/2�2)1/6,
see Fig. 5.1. Note, that for increasing polariton densities additional many-body
interactions are expected to appear [4]. In the following, we mainly focus on
the two body interactions, but the extension to include many-body interactions
is discussed at the end of this chapter.

The kinetic energy for the polaritons at low energies is determined by the
slow light velocity of the polaritons and an e�ective mass term accounting for
the curvature in the dispersion relation. The important aspect for the present
analysis is the possibility to drop the mass term for moderate interactions
between polaritons. The precise condition for the validity of this approximation
is discussed below. Then, the Hamiltonian describing the propagation of photons
through the spatially inhomogeneous medium with atomic density na(x) is given
by

H =
⁄

dx
Ë
—(x)Â†(x)

È
(≠i~cˆx) [—(x)Â(x)] (5.1)

+ 1
2

⁄
dx dy n(x)n(y)V (x ≠ y)Â†(x)Â†(y)Â(y)Â(x).

Here, Â and Â† denote the bosonic field operators annihilating and creating the
Rydberg slow light polaritons and satisfy [Â(x), Â†(xÕ)] = ”(x≠xÕ). Furthermore,
—(x) describes the amplitude of the polariton to be in a photonic state and
is related to the slow light velocity vg = c—(x)2, while n(x) = 1 ≠ —(x)2 is
the probability for the polariton to be in the Rydberg state. These quantities
are determined by the atomic density na(x) via —(x) = �/

Ò
�2 + g2

0

na(x)
with g

0

the single atom coupling. Note that outside the atomic medium the
operator Â describes non-interacting photons. The inclusion of higher many-
body interactions into the Hamiltonian is straightforward and the influence of a
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three-body interaction is discussed at the end of this chapter.

�.� Exact solution

In the following, it is convenient to introduce a coordinate transformation which
removes the reduced velocity vg of the polaritons inside the media, i.e., we
measure distances in the time z/c which is required for the polaritons to reach
the position x. The coordinate transformation takes the form z = ’≠1(x) =s x
0

dy
1
1/—(y)2

2
, and the Hamiltonian reduces to

H = ≠i~c
⁄

dz Â̂†(z)ˆzÂ̂(z) (5.2)

+1
2

⁄
dz dw ñ(z)ñ(w)Ṽ (z, w)Â̂†(z)Â̂†(w)Â̂(w)Â̂(z)

with ñ(z) = n(’(z)), Ṽ (z, w) = V (’(z) ≠ ’(w)), and Â̂†(z) = Â†(’(z))—(’(z));
the new operators Â̂ still satisfy the bosonic canonical commutation relations.

The quantum many-body theory in Eq. (5.2) is exactly solvable. This re-
markable property is most conveniently observed by analyzing the Heisenberg
equations for the field operator Â̂(z, t),

i~ˆtÂ̂(z, t) = ≠i~cˆzÂ̂(z, t) + K(z, t)Â̂(z, t) (5.3)

with the operator K(z, t) accounting for the interaction,

K(z, t) =
⁄

dw ñ(z)ñ(w)Ṽ (z, w)Â̂†(w, t)Â̂(w, t). (5.4)

In the following, we denote by Â̂
0

(z) the non-interacting field operator at time
t = 0. Then, the interacting field operator Â̂(z, t), satisfying the Heisenberg
equation above, reduces to Â̂(z, t) = e≠i ˆJ(z,t)Â̂

0

(z ≠ ct) with the operator

Ĵ(z, t) = 1
c~

⁄ z

z≠ct
dw

⁄ Œ

≠Œ
du ñ(w)ñ(u)Ṽ (u, w)Î(z≠w+u≠ct) (5.5)

and the polariton density operator Î(z) = Â̂†
0

(z)Â̂
0

(z).

�.�.� Two-photon solution

We start by analyzing the behavior of the two-photon solution. It allows us
to determine the influence of the involved approximations and to provide a
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connection to previous results on two-polariton propagation [8, 28]. For an
arbitrary two photon state |„Í, the incoming wave function is defined via

„in(x ≠ ct, y ≠ ct) = lim
tæ≠Œ

È0|Â̂(z, t)Â̂(w, t)|„Í/Ô
2, (5.6)

with the coordinates x = ’(z) and y = ’(w), and the outgoing wave function
„out via an analogous expression in the limit t æ Œ. Using the above exact
solution for the bosonic field operators Â̂(z, t), we obtain the relation between
the incoming and the outgoing photon wave function

„out(x, y, t) = e≠iÏ(x≠y)„in(x ≠ ctÕ, y ≠ ctÕ) (5.7)

where tÕ = t ≠ �t accounts for the delay of the polaritons inside the medium
with �t = s Œ

≠Œ dy
1
1/—(y)2 ≠ 1

2
/c. Note, that the outgoing wave function only

depends on the reduced coordinate ·
1

= x≠ctÕ and ·
2

= y ≠ctÕ; therefore, in the
following, we will use these reduced coordinates to express the outgoing wave
function. The phase factor Ï(u) describes the correlations built up between the
photons during the propagation through the medium and takes the form

Ï(u) = 1
~c

⁄ Œ

≠Œ
dw ñ

1
w + u

2
ñ

1
w

2
Ṽ

1
w + u, w

2
. (5.8)

It is instructive to analyze this phase factor for a specific homogeneous atomic
density distribution na(x) = n̄a◊(L2/4≠x2) where ◊ is a Heaviside step function.
The time delay simplifies to �t = L(1/ṽg ≠ 1/c), where the slow light velocity
ṽg = c�2/(g2 + �2) and the collective coupling between photon and matter
g = g

0

Ô
n̄a. In turn, the phase shift acquires the peak value

Ï(0) = g4V (0)L
(g2 + �2)�2~c

= ≠ g2

g2 + �2

Ÿ“

”
(5.9)

with Ÿ the optical depth of the medium. The width of the signal in the
phase Ï(u) is enhanced from the blockade radius by the slow light velocity to
›

out

= ›(g2 + �2)/�2. The exact phase shapes for di�erent medium lengths are
shown in Fig. 5.2. The determination of Ï(u) for other physical distributions of
atoms is straightforward.

Note, that the interaction provides a spatially dependent phase factor cor-
relating the photons, but is unable to induce a modification in the inten-
sity correlations. A bunching of photons as observed in the experiments
by Firstenberg et al. [28] requires the inclusion of the mass term. Here,
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Fig. 5.2: (left) Phase factor Ï(u) for homogeneous distributions of atoms with di�erent
lengths L. For short clouds the condition › π L is not satisfied and the behavior of
Ï(u)/Ï(0) is no longer universal, like it is for a long medium. (right) Phase shift and
suppression of the electric field for coherent state in the limit ›

out

π l
coh

as a function
of a single photon nonlinearity strength parametrized by Ï(0). For weak nonlinearities
Ï(0) π 1 the electric field suppression scales quadratically and the phase shift linearly
with the nonlinearity strength. The suppression as well as phase shift oscillate with the
increasing strength of interaction.

we estimate the influence of this term, and determine the regime of valid-
ity for our approximation to drop it, for details see Appendix A. First, the
inclusion of the mass would lead to an additional phase shift estimated by
Ï

m

≥ ~�t/(m›2)|Ï(0)2 + iÏ(0)| = |Ï(0) + i|g6/(g2 + �2)3L2/›2, where we used
the expression for the polariton mass m = ~ (g2

+�

2

)

3

2c2g2

��

2

[8]. In order to drop
phenomena like the bunching of photons we require Ï

m

π 1. Secondly, we
would like the phase shift induced by the interaction to dominate the behavior,
i.e., Ï(0) ∫ Ï

m

. The two conditions are either satisfied for a weak coupling
between photon and matter or for a short medium.

The two-photon analysis can be generalized straightforwardly to an N -photon
Fock state. Then, the wave function reduces to

„out(·
1

, . . . , ·N)
„in(·

1

, . . . , ·N) = exp
SU≠i

Nÿ
i<j

Ï(·i ≠ ·j)
TV ,

where ·i = xi ≠ c[t ≠ �t]. This allows one to derive the outgoing wave function
for an arbitrary incoming state. Of special experimental interest however is the
behavior of coherent states.
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�.� Coherent incoming state

A general incoming coherent state is characterized by its incoming electric field
expectation value E(x ≠ ct) = limtæ≠Œ E(x, t) with E(x, t) = ÈE|Â(x, t)—(x)|EÍ.
Then, the outgoing electric field (see appendix A) behaves as

Eout(·)
E(·) = exp

3⁄
du|E(u)|2

Ë
e≠iÏ(u≠·) ≠ 1

È4
, (5.10)

where · = x ≠ c[t ≠ �t]. In the limit of a weak non-linearity Ï(u) π 1, we
can recover the result of a classical Kerr nonlinearity. In this regime, the
incoming wave packet has a size l

coh

much larger than the characteristic size of
the interaction l

coh

∫ ›
out

, and propagates through a long medium L ∫ ›. Then,
the Eq. (5.10) reduces to Eout(·) = E(·) exp

1
≠i ‡ |E(·)|2

2
with ‡ the strength

of the Kerr nonlinearity. The latter depends on the shape of the atomic density
distribution and reduces for a homogeneous atomic density to

‡ =
⁄

du Ï(u) = 2fi

3
g2

�2 + g2

Ÿ“

”
›

out

. (5.11)

However, it is important to stress, that Eq. (5.10) includes also the corrections
to the Kerr nonlinearity due to the quantum fluctuations. The corrections can
be analyzed by the full evaluation of the factor i� + ÷ = ≠ s du (exp(≠iÏ(u)) ≠
1)/›

out

, where � describes the strength of the Kerr nonlinearity, whereas ÷
accounts for a suppression of the coherences due to quantum fluctuations, see
Fig. 5.2. The latter follows from the fact that a coherent state is a superposition
of di�erent number states, where each number state picks up a slightly di�erent
phase factor. Note, that residual decay processes as well as dephasing can lead to
an additional suppression. The observation of the quantum correction therefore
requires a precise control of dephasing and a large detuning |”| ∫ “. We would
like to stress that these technical noises can be suppressed independently from
the strength of the Kerr nonlinearity; in contrast to a system with contact
interactions [44].

�.�.� Correlation functions

The full characterization of the output state and relation to experimentally
accessible quantities is most conveniently achieved by the normally ordered
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electric field correlations in the reduced coordinates ·i,

Gout

n,m(·
1

, ..., ·n+m) =
K

E
------

nŸ
i=1

Â†(·i)
n+mŸ

j=n+1

Â(·j)
------ E

L
.

These correlation functions are experimentally accessible in a homodyne detec-
tion scheme. The full expression for the correlations of the outgoing fields for
an incoming coherent state is presented in Appendix A. In the following, we
provide the result for the two point correlation function Gout

0,2, which reduces to

Gout

0,2(·, · Õ) = E(·)E(· Õ) exp [≠iÏ(· ≠ · Õ)] (5.12)

◊ exp
3⁄

du |E(u)|2
Ë
e≠iÏ(u≠·)≠iÏ(u≠· Õ

) ≠ 1
È4

.

We can distinguish two di�erent contribution: first, we find a strong spatial
correlation determined by the phase contribution Ï(· ≠· Õ), which provides direct
information about the e�ective interaction potential between the polaritons. It
is this contribution, which allows the access to the e�ective interaction potential
within a homodyne detection scheme. The last factor describes additional
phase shift and the suppression due to quantum fluctuations, which are small
corrections for ›

out

|E(·)|2 π 1.

�.�.� Wigner function

A full characterization of the outgoing field for an incoming field coherent
field E is provided by the Wigner function W (q, p). In contrast to circuit
and cavity QED experiments, where the photons within the resonator are
characterized by a single photonic mode [19, 243], our system here corresponds
to a multimode setup. Therefore, in terms of the Wigner function, we can
only express the reduced density matrix in a specific photonic mode. For this
purpose, we define the annihilation operator for an arbitrary spatial mode u(x)
as âu = s dx u(x)Â(x) and the related quadrature operators as q̂ = (âu + â†

u)/2,
p̂ = (âu ≠ â†

u)/2i. Then, the Wigner function derives directly from the analytical
expression for the correlation functions Gout

n,m for the incoming coherent field
(see appendix A),

W (q, p) = 2
fi

ÿ
nm

(≠1)n+m

n!m! Gnmˆn
–úˆ

m
– e≠2|–|2 (5.13)
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with – = q + ip, and Gnm the overlap of the electric field correlations with the
probe photonic mode

Gnm =
⁄

dn+m· Gout

n,m(·
1

, ..., ·n+m)
nŸ

i=1

u(·i)ú
m+nŸ

j=n+1

u(·j).

In order to characterize short range correlations between photons we consider a

Fig. 5.3: Wigner function describing short range correlations (l
probe

π ›
out

) for long-
photons l

coh

/l
probe

= 100 for two di�erent strengths of interaction: Ï(0) = fi/64 (left)
and Ï(0) = fi (right).

homodyne detection [244–246] with u(x) being a localized mode having size l
probe

much shorter than ›
out

. The quasi-probability W (q, p) for di�erent strengths
of the interaction is shown in Fig. 5.3. For weak interactions Ï(0) π 1, the
leading correction due to quantum fluctuations to the Gaussian coherent state
is a small squeezing. However, for increasing interaction we obtain a strongly
mixed state. This behavior is a result of the localized measurement tracing
out all positions outside the u(x). Such an operation, acting on our strongly
spatially entangled state, leads to the mixed state.

�.�.� Many-body interactions

A crucial property of our analysis is that it demonstrates the possibility to
probe the microscopic interaction potential between the Rydberg polaritons
via a homodyne detection scheme for a coherent input state. This method can
easily be extended to probe higher body interactions between the polaritons,
which are expected to appear for higher polariton densities. Such a n-body
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interaction on the microscopic level takes the from

Hn = 1
n!

⁄
dx Un(x

1

, . . . , xn)
nŸ

i=1

n(xi)Â†(xi)Â(xi) (5.14)

with the n-body interaction potential Un. This term can be straightforwardly
included in the exact solution. As an example, we present the results for a three-
body interaction, which leads, in analogy to Eq. (5.7), to a phase contribution
to the three photon wave-function

„out(·
1

, ·
2

, ·
3

) = e≠iÏ
3

(·
1

≠·
2

,·
2

≠·
3

)„in(·
1

, ·
2

, ·
3

).

The phase factor Ï
3

(u, v) induced by the three-body interaction takes the form
1
~c

⁄ Œ

≠Œ
dw ñ

1
w+u

2
ñ

1
w+v

2
ñ

1
w

2
Ũ

3

1
w+u, w+v, w

2
,

with Ũ
3

defined in analogy to Ṽ . The corresponding three-body interaction
potential can then be experimentally observed in a homodyne detection of the
correlations Gout

0,3.
In general, the quantum field for polaritons is well-defined if at least one of

the two conditions, nonzero mass or nonzero range of interactions, is satisfied.
Our work concentrated on the case of a finite range of interactions. The system
with contact-interaction and nonzero-mass was studied by Gullans et al. [92].
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6
Control of Rydberg-mediated

few-photon nonlinearities
by electrically tuned Förster resonances

In this chapter, we analyze the e�ects of the electrically tuned Förster resonances
on the propagation of slow light Rydberg polaritons in the presence of a
stationary Rydberg excitation. The group of S. Ho�erberth at the University of
Stuttgart experimentally studied this setup with the goal to boost the e�ciency
of Rydberg-mediated single photon transistors and the non-destructive detection
of single Rydberg atoms [5].

Even though a similar problem of a polariton interacting with an impurity via
van der Waals interaction has already been studied, see chapter 2, the physics
close to the Förster resonance is more complex. For example, the common
intuition, that for a vanishing Förster defect the Rydberg blockade should be
defined by the resonant dipolar-interactions ≥ r≠3, is incorrect. This is due to
the interference between quantum paths for di�erent atomic levels within the EIT
scheme. This interference e�ect also enabled experimentalists to perform high-
resolution spectroscopy of two-state Förster resonances, revealing the residual
fine structure splitting of high-n Rydberg states and the non-degeneracy of
Rydberg Zeeman-substates in finite magnetic and electric fields.

Here, we mostly concentrate on our theoretical contribution. In order to
present a coherent story, we will first review relevant experimental details. For
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more information see Ref. [5].
Note that in addition to the results presented here, the experimentalists have

showed that the
---50S

1/2

, 48S
1/2

f
¡

---49P
1/2

, 48P
1/2

f
pair state resonance in 87Rb

enables a transistor gain G > 100, as well as a high all-optical detection fidelity
of single Rydberg atoms F > 0.8. Moreover, the experimentalists demonstrated
for the first time the coherent operation of the Rydberg transistor with G > 2
by reading out the gate photon after scattering source photons. The group of I.
Lesanovsky at the University of Nottingham compared the observed readout
e�ciency to a theoretical model for the projection of the stored spin wave. The
comparison yielded to the excellent agreement between theory and experiment
and thus successfully identified the main decoherence mechanism of the Rydberg
transistor [86, 247].

6.� Introduction and motivation

As already explained in the introduction and chapter 1, most of the Rydberg
quantum optics experiments and proposals employ the van der Waals interaction
between Rydberg atoms [148, 149, 248]. A very e�cient tool for tuning the
interaction are Stark-tuned Förster resonances, where two dipole-coupled pair
states are shifted into resonance by a DC [63] or microwave [157, 249] electric field.
Förster resonances have been studied by observation of dipole blockade [250], line
shape analysis [154], double-resonance spectroscopy [155], excitation statistics
[251], and Ramsey spectroscopy [153, 252]. Recently, the anisotropic blockade
on Förster resonance [166] as well as quasi-forbidden Förster resonances [253]
have been observed, and Förster resonances between di�erent atomic species
have been predicted [254]. For Rydberg-mediated single-photon transistors, the
near-resonance in zero field for specific pair states has been used to enhance
the transistor gain [31], while in experiments on Rydberg atom imaging [88, 89]
an increase in Rydberg excitation hopping has been observed on resonance [84].

6.�.� Setup

The experimental setup based on Refs [30, 31, 38, 89] and the atomic scheme are
shown in figure 6.1. First, a gate photon is stored as a Rydberg excitation of the
state

---S(g)

f
inside a cloud of ultracold 87Rb atoms. Afterwards, the existence of

this gate excitation is monitored by the transmission of source photons, which
are coupled to the source Rydberg state

---S(s)

f
via electromagnetically induced
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Fig. 6.1: (a) Tightly focused source and gate beams (w0 = 6.2 µm) are overlapped with
an optically trapped cloud of 2 ◊ 104 atoms of 87Rb at 3 µK (cylindrical 1/e dimensions
L = 40 µm, R = 10 µm). In-vacuum electrodes, in Löw configuration [255], are used
to apply the electric field. (b) Level scheme for gate and source photons coupled to
di�erent Rydberg states, where 2 � is the Rabi frequency of the control field and 2“ is
the decay rate of |eÍ.

transparency. In case of zero external electric field, the interaction between---S(g), S(s)

f
pair is of van der Waals type. In the experiment a homogeneous

electric field was applied along the direction of beam propagation. The electric
polarizabilities of S- and P -states di�er, which enables shifting the initial pair
state into degeneracy with specific

---P (g), P (s)

f
pairs. This, in turn, can lead to

a resonant dipole-dipole interaction scaling like ≥ r≠3.
This way one can decrease the interaction between source photons compared

to the interaction between a source photon and a gate photon, which, in turn
can lead to the enhancement of the transistor performance comparing to the
previous demonstrations [30, 31].

Resonance structure: In the experiment, two di�erent pairs of states were con-
sidered for which observed e�ects were quantitatively and qualitatively di�erent.
First, let us discuss the pair state

---S(g), S(s)

f
=

---66S
1/2

, 64S
1/2

f
. Because of the

fine structure splitting of the Rydberg P -states, this pair is near resonant with
two P -state pairs

---65P
1/2

, 64P
3/2

f
and

---65P
3/2

, 64P
1/2

f
.

By using an electric field, both
---P (g), P (s)

f
pairs can be tuned into resonance.

The full pair state Stark map for the magnetic field B = 1 G shows many
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Fig. 6.2: Optical gain: (a) for
---S(g), S(s)

f
=

---66S1/2, 64S1/2
f

and (b) for
---S(g), S(s)

f
=---50S1/2, 48S1/2

f
as a function of the external electric field. At certain electric fields

(vertical dashed lines), the
---S(g), S(s)

f
pair state is resonant to pair states of type---P (g), P (s)

f
. The enhancement of interaction between

---S(g)
f

and
---S(s)

f
manifests in

peaking of the transistor gain, visible in the blue data points. In (a), the fine structure of
the involved P -states and the mJ -dependence of the Stark-shift results in the observed
multi-resonance structure. The blue solid line is a theoretical analysis of the full
polariton propagation in the presence of the gate excitation.

closely spaced resonances due to the non-degenerate (m(g)

J , m(s)

J ) combinations,
see figure 6.2. The strength of each individual resonance depends on the angle ◊
between the interatomic axis and the quantization axis defined by the external
fields. This in turn results in a non-spherical blockade volume [149]. In order
to quantify these resonances in the experiments we introduce the optical gain

G =
1
N̄no gate

s,out

≠ N̄with gate

s,out

2
/N̄

g,in

, (6.1)

i.e., the number of source photons scattered by a single incident gate photon
[31]. The measured optical gain as a function of applied electric field is shown
in figure 6.2a). We see that the measured high-resolution spectroscopy revealed
four resonances, corresponding to the calculated crossings of di�erent pair state
groups.

Note that in between resonances, the coupling of the
---S(g), S(s)

f
state to

multiple
---P (g), P (s)

f
states results in a smaller blockade than in the zero-field

case. This interplay between di�erent resonances with positive and negative
Förster defects actually decreases the measured gain with respect to the field-free
value. This e�ect does not occur for the Förster resonance

---50S
1/2

, 48S
1/2

f
¡
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---49P
1/2

, 48P
1/2

f
, see figure 6.2(b). For this pair state, there is only one isolated

resonance, which leads to the single peak in the optical gain.

6.� Theoretical description

In order to quantitatively describe the observed resonances, we include the
special character of the interaction close to the Förster resonance in the micro-
scopic description of the polariton propagation [8, 25, 34]. For illustration, we
consider the

---50S
1/2

, 48S
1/2

f
pair state and an angle ◊ = 0, which results in the

selection rule �MJ = �m(g)

J + �m(s)

J = 0 for the magnetic quantum numbers of
the involved states. We then need to include four pair states:

Ó ---50S
1/2

, 48S
1/2

f
,---49P

1/2

, 48P
1/2

f
,

---48P
1/2

, 49P
1/2

f
,
---48S

1/2

, 50S
1/2

f Ô
with

3
m(g)

J , m(s)

J

4
=

1
1

2

, 1

2

2
.

In this basis, the interaction Hamiltonian reduces to

H
dd

(r) = 1
r3

Qccccca
0 C

3

C Õ
3

0
C

3

0 0 C Õ
3

C Õ
3

0 0 C
3

0 C Õ
3

C
3

0

Rdddddb (6.2)

with two dipolar coupling parameters C
3

, C Õ
3

. Since the interaction is dominated
by the Förster resonance, we neglect any residual van der Waals interactions.
In general, the Hamiltonian (6.2) gives rise to flip-flop (hopping) processes of
type

---50S
1/2

, 48S
1/2

f
æ

Ó---49P
1/2

, 48P
1/2

f
,

---48P
1/2

, 49P
1/2

fÔ
æ

---48S
1/2

, 50S
1/2

f
.

However, for our choice of Rydberg states with |n ≠ nÕ| > 1 the dipolar coupling
parameters satisfy C

3

∫ C Õ
3

, and therefore provide a strong suppression of the
hopping. This behavior is in contrast to the results in Ref. [84], where hopping
processes strongly influenced the interaction mediated imaging of Rydberg
excitations.

6.�.� Derivation of a photon propagation in the presence of a Rydberg
excitation

For the sake of simplicity, we explain our general method explicitly considering
the

---50S
1/2

, 48S
1/2

f
pair state and an angle ◊ = 0 between the interatomic axis

and the quantization axis. Our model system is a one-dimensional gas of atoms,
whose electronic levels are given in figure 6.1. The photon field Ê(z) resonantly
couples the ground state |gÍ with the excited state |eÍ, while 2� denotes the
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Rabi frequency of the control laser field coupling the |eÍ state with the Rydberg
state |S(s)Í. Moreover, Ê is the probe photon detuning, while “s and “p describe
the decoherence rates of

---S(s)

f
and

---P (s)

f
excitations. Following Ref. [8, 25, 34],

we introduce operators P̂ †(z) and Ŝ†(z) which generate the atomic excitations
into the |eÍ and

---S(s)

f
states, respectively, at position z. In addition, compared

to Ref. [2, 8, 25, 34], we include a more complex atomic level structure of the
source and the gate excitations by defining P̂†(z), Ẑ†(z) and B̂†(z) which create
excitations into

---P (s)

f
,

---S(g)

f
and

---P (g)

f
states, respectively. All the operators

Ô(z) œ
Ó
Ê(z) , P̂ (z) , Ŝ(z) , P̂(z) , Ẑ(z) , B̂(z)

Ô
are bosonic and satisfy the equal

time commutation relation,
Ë
Ô(z), Ô†(zÕ)

È
= ”(z ≠ zÕ).

The microscopic Hamiltonian describing the propagation consists of three
parts: Ĥ = Ĥ

p

+ Ĥ
ap

+ Ĥ
a

. The first term describes the photon propagation in
the medium and is defined as

Ĥ
p

= ≠ic
⁄

dzÊ†(z)ˆzÊ(z),

with the speed of light in vacuum c, and we set ~ = 1 throughout this chapter.
The atom-photon coupling is described by

Ĥ
ap

=
⁄

dz
Ë
gÊ(z)P̂ †(z) + �Ŝ†(z)P̂ (z) + gP̂ (z)Ê†(z) + �P̂ †(z)Ŝ(z)

≠i“P̂ †(z)P̂ (z) ≠ i“sŜ
†(z)Ŝ(z) ≠ i“pP̂†(z)P̂(z)

È
,

where 2“ is the decay rate of |eÍ-state, while g = g
0

Ô
n

at

is the collective coupling
strength with g

0

being the single atom-photon coupling strength and n
at

the
atomic density.

The interaction between Rydberg levels is described by

Ĥ
a

=
⁄

dzÕ
⁄

dz

C
P̂†(z)B†(zÕ)V (z ≠ zÕ)Ẑ(zÕ)Ŝ(z) +

�D

2 P̂†(z)B̂†(zÕ)B̂(zÕ)P̂(z) + H.c.
D
,

where V (z) = C
3

/z3 is the dipolar interaction potential and �D the Förster
defect. Note, that for the experimental parameters C

3

∫ C Õ
3

and therefore it is
su�cient to include only the C

3

/z3 coupling term in the interaction Hamiltonian.
In addition, it follows that the hopping of excitations is quenched, and therefore
the

---S(g)

f
excitation is at a fixed position. Then, the description of a single

photon propagation requires four components of the wave function: EZ(z, t),
PZ(z, t), SZ(z, t) and PB(z, t), which denote the probability of finding the
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source excitation in E , |eÍ ,
---S(s)

f
or

---P (s)

f
state at position z and the gate

excitation in
---S(g)

f
or

---P (g)

f
state at position zj. The Schrödinger equation

reduces to

ˆtEZ(z, t) = ≠cˆzEZ(z, t) ≠ igPZ(z, t),
ˆtPZ(z, t) = ≠“PZ(z, t) ≠ igEZ(z, t) ≠ i�SZ(z, t),
ˆtSZ(z, t) = ≠“sSZ(z, t) ≠ iVj(z)PB(z, t) ≠ i�PZ(z, t),
ˆtPB(z, t) = ≠“pPB(z, t) ≠ iVj(z)SZ(z, t) ≠ i�DPB(z, t), (6.3)

where Vj(z) = V (z ≠ zj). We solve the above set of coupled equations via
Fourier transform in time, which leads to the equation for the photon field:Qa≠icˆz ≠ g2

1
V j

ef

(z) ≠ Ê ≠ i“s

2
≠i“Ê + (“ ≠ iÊ)“s ≠ Ê2 + �2 ≠ V j

ef

(z)(Ê + i“)
≠ Ê

Rb EZ(z, Ê) = 0,

with

V j
ef

(z) = C2

3

�D ≠ Ê ≠ i“p

1
(z ≠ zj)6

. (6.4)

It is remarkable that, regardless of �D, our microscopic derivation provides an
e�ective interaction always based on a van der Waals type of interaction.

The equation for the E-field can be generalized to the second pair of states---66S
1/2

, 64S
1/2

f
by redefining the expression for V j

ef

(z) to

V j
ef

(z) =
ÿ
–

C2

3,–

�–
D ≠ Ê ≠ i“p

1
(z ≠ zj)6

, (6.5)

where we sum over all relevant pairs of states –, which for ◊ = 0 are

– œ
I ---65P

1/2

, mJ = 1

2

, 64P
3/2

, mJ = 1

2

f
,

---65P
1/2

, mJ = ≠1

2

, 64P
3/2

, mJ = 3

2

f
,

---65P
3/2

, mj = 1

2

, 64P
1/2

, mj = 1

2

f
,

---65P
3/2

, mj = 3

2

, 64P
1/2

, mj = ≠1

2

f J
.

6.�.� Comparison with the experiment

In the experimentally relevant regime with Ê, “s, “p π �, “, the equation
describing a single polariton E(z, Ê) and its interaction with the gate Rydberg
excitation

---S(g)

f
at position rj simplifies toQaicˆz + g2 (Ê ≠ i“s)

�2

+ g2V j
ef

(z)
�2 ≠ i“V j

ef

(z)

Rb E(z, Ê) = 0 , (6.6)
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with the e�ective interaction V j
ef

(z) given by Eqs (6.4) or (6.5)
For comparison with the experiment, we generalize our calculation to nonzero

angles ◊ between the quantization and interatomic axis as well as to the larger
number of states involved for the

---66S
1/2

, 64S
1/2

f
pair. We then integrate

Eq. (6.6) over the cloud shape and average over the stored spin wave. We also
take into account the Poissonian statistics of the gate and source photons, the
storage e�ciency, the fact that the blockade radius is comparable to the beam
waist and the finite experimental resolution in electric-field �‘ = ±2mV

cm

. The
comparison, without any free parameters, with experimental results for the
gain is shown in Fig. 6.2. We find very good agreement for all electric fields
except very close to the resonances. One reason for the discrepancy is the
following: Close to the Förster resonance and for distances on the order of rb

between gate and source, the atomic part of the polariton-excitation pair initially
in

---50S
1/2

, 48S
1/2

f
is converted into the superposition of

---49P
1/2

, 48P
1/2

f
and---50S

1/2

, 48S
1/2

f
. This results in additional slowing down of the polariton and,

consequently, an accumulation of polaritons close to rb. Then, the assumption
to study the propagation of individual polaritons breaks down as the interaction
between the polaritons have to be included.

6.� Outlook

Our polariton propagation theory correctly accounts for the enhanced source-
gate interaction and is in excellent agreement with the experiment. It also
reveals unexpected and rich properties close to Förster resonances. This regime
might enable the study of the transition from two- to many-body interaction
and the propagation with excitation hopping [84, 212]. The complexity of
the resonances due to the Rydberg level structure provides a wide range of
tuning options. The gate-source interaction can be reduced or even switched o�
completely between individual resonances. Similarly, the angular dependence
of the interaction can be greatly varied by the external field. This provides a
rich set of new tools for tailoring the interaction of photons coupled to di�erent
Rydberg states inside the medium.
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�
Dipolar dephasing of Rydberg

D-state polaritons

In this chapter, we analyze the e�ects of the anisotropic Rydberg interaction
on D-state slow light Rydberg polaritons. The group of S. Ho�erberth at the
University of Stuttgart experimentally studied the D-state Rydberg polaritons
slowly propagating through a cold atomic sample [7]. They observed the
interaction-induced dephasing of Rydberg polaritons at very low photon input
rates into the medium. We developed a model combining the propagation of the
two-photon wavefunction through the system with nonperturbative calculations
of the anisotropic Rydberg-interaction. This way we showed that the observed
e�ect can be attributed to pairwise interaction of individual Rydberg polaritons
at distances larger than the Rydberg blockade.

Here, we mostly concentrate on our theoretical contribution. In order to
present a coherent story, we will review relevant experimental details. For more
information see Ref. [7].

�.� Introduction

Long-range and spatially anisotropic dipole-dipole (DD) interactions make
possible new ways of preparation and exploration of strongly correlated quantum
systems [133]. For example, magnetic DD interaction leads to the coupling
between individual nuclear spins and nitrogen-vacancy centers in diamond [256,
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257] and to strong interactions between ultracold gases of dipolar atoms [258,
259]. Electric DD interaction is the reason behind the long-range interaction
between polar molecules [260], as well as between Rydberg atoms [64, 261].
There have been several proposals to use these interaction in order to study
important phenomena such as quantum magnetism [34, 72, 73] and topological
phases [262]. In the recent past, the angular dependence of the DD interaction
between two Rydberg atoms has been shown experimentally [166].

As we already have stressed multiple times in the introduction and chapter 1,
the Rydberg-EIT is an e�ective way to realize few-photon optical nonlinearities.
Here, we will mention a few aspects of Rydberg-EIT, which are relevant in
the context of the D-state polaritons. There were many studies of the electric
DD interaction between two Rydberg atoms in the perturbative van-der-Waals
regime, e.g., see Ref. [148, 149, 263]. In most of the Rydberg-EIT experiments,
the Rydberg S-states are used for which the interaction is only weakly angle-
dependent [72]. However, some of the recent experiments prepare Rydberg
atoms in S- and P -states at the same time [26] or in two S-states with di�erent
quantum principal number n [30, 31, 84]. These states are well separated in
energy, and interaction between them can lead to novel entanglement schemes
for atomic systems [85], as well as to greater flexibility in the control of weak
light fields [87, 212].

Here, we study the anisotropic interaction between D-state Rydberg polaritons.
Due to the dipolar interactions, the individual Rydberg polaritons decouple from
the EIT control field. Importantly, as we will show, this e�ect can already be
relevant for low incoming probe photon rates corresponding to a mean distance
between polaritons larger than the blockade radius.

�.� Experimental setup

The setup consists of an ensemble of three-level atoms. The single-photon
probe field E is on a single-photon resonance, whereas a coupling field � is on
a two-photon resonance, as illustrated in figure 7.1. The transversal size of
the probe field is smaller than the blockade radius and much longer than the
length of the medium. Thus, we can consider the photons dynamics within a
1D-approximation and average it over the transversal direction.

First, the experimentalists performed the frequency scan of the probe laser
around the EIT resonance. For low rates of incoming photons, they saw very
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Fig. 7.1: (a) EIT level scheme with weak probe field E and strong control field �.
The decay rate “e of the intermediate state |5P3/2Í is given by “e/2fi = 6.1 MHz. Note
that in this chapter the Rabi frequency � and decay rate “e di�er by a factor of 2
compared to the convention used in the rest of this thesis, e.g., “ = “e/2. (b) Geometric
scheme of our setup consisting of an EIT probe laser with w0 ¥ 6 µm and of an EIT
control laser with w0 ¥ 12 µm, focused onto a thermal cloud of 87Rb atoms with a size
of ‡z = 80 µm in the longitudinal direction and a size of ‡r = 25 µm in the transverse
direction. The dark grey shadow shows the anisotropic blockade region caused by a
|100D5/2Í Rydberg excitation. For more details see Ref. [7].

high transmission, whereas for higher rates the transmission dropped. The
reason for that is a self-blockade of propagating polaritons and was already
demonstrated in the experiments with S-states [24, 25, 75]. Then, they looked
into the time dependent transmission on the EIT resonance, see figure 7.2. For
low incoming-photon rates Rin, when two photons are rarely simultaneously
inside the medium, the transmission was nearly constant, whereas for higher
rates the decay of transmission over times was faster with increasing rate Rin

and much stronger than for S-states (the latter observation is based on other
measurements for S-states which are not presented in this dissertation).

These observations can be explained by the interaction-induced coupling to
degenerate Zeeman sublevels, which leads to polaritons being converted into
stationary Rydberg excitations inside the medium. Subsequently, the created
impurities shift the Rydberg levels of the surrounding atoms, and therefore
other polaritons can not propagate through the cloud on the EIT resonance.
The latter part of this mechanism is analogous to the physics behind Rydberg
all-optical switch and transistor [29–31].

In order to quantify the dependence of the transmission decay on the photon
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Fig. 7.2: Time-dependent transmission on two-photon resonance for di�erent probe
photon input.

rate Rin, we introduce an e�ective optical depth (ODeff ) of the medium on the
EIT resonance with ” = 0. It is defined as the logarithm of the transmission
(figure 7.3(a)) and can be written as

ODeff = ODdec + ODnl(Rin) + ODdph(Rin, t). (7.1)

The expression for ODeff accounts for three e�ects: a decoherence of polaritons
due to the thermal motion of atoms (ODdec), a blockade-induced nonlinearity
(ODnl), and a dipolar dephasing (ODdph).

Throughout this chapter we will be mostly interested in the last contribution.
Neglecting saturation e�ects for the highest values of Rin, we can approximate
the increase in OD due to dephasing by a linear function in time. Thus, we
write ODdph = ROD · t, where we defined ROD depicting the creation rate of
optical density by decoupled impurities.

In figure 7.3(b) the extracted rates ROD as a function of Rin for di�erent Rabi
frequencies � of the control field are shown for n = 88. For the measurements
with higher Rabi frequencies, i.e., �/2fi = 16.6 MHz and �/2fi = 26.3 MHz, ROD

scales quadratically with Rin over experimentally probed rates. In contrast,
for lower Rabi frequencies �/2fi = 6.1 MHz and �/2fi = 10.8 MHz, we see
deviations from the quadratic dependence for Rin larger than 1.5 and 2.7,
respectively. These deviations coincide with rates corresponding to a mean
number of photons in the medium larger than 2 (vertical lines in figure 7.3(b)).
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The position of these lines are calculated based on the delay time in the medium
given by ·delay = OD·“e

�

2

and the initial EIT transmission TEIT (t = 0) < 1.
Note that the quadratic dependence of ROD on Rin strongly suggests that the
dephasing is a two-body e�ect.

In the theoretical analysis below we will relate the dephasing to the probability
|Âdd|2 of finding two polaritons in the Rydberg state at the same time. For
distances larger than the blockade radius rb, this probability is given by

|Âdd|2 = R2

in

v2

g

. (7.2)

Motivated by the quadratic dependence, we introduce a rate constant C(�) which
relates ROD and Rin in the quadratic regime via the expression ROD = C(�)·R2

in.
The � dependence of the experimentally extracted rate constants C is shown

in figure 7.3(c) for three di�erent principal quantum numbers: n = 80, n = 88,
and n = 100. In order to compare the outcomes for di�erent principal quantum
numbers, we extract the dependence on � by a fit of the form

C(�) = a · �≠k, (7.3)

which leads to k = 1.67(4) for all the di�erent n. However, for the prefactor
a we observe a strong scaling with n, which indicates greater dephasing for
larger n.

�.� Pair potentials

In order to explain the observed dephasing, we used the Rydberg pair potentials
calculated via the diagonalization of the electrostatic DD interaction Hamilto-
nian [248]. In figure 7.4(a) and (b), we show pair potentials for |80D

5/2

; 80D
5/2

Í
and |100D

5/2

; 100D
5/2

Í, respectively. The anisotropic DD interaction couples
states with di�erent magnetic quantum numbers in the D-pair state manifold
which leads to the observed splitting of the manifold in addition to the overall
level shift. Next, we consider the coupling of a laser field with a given direction
and polarization. We take into account the electric dipole selection rules by
calculating the overlap of the coupled pair state in the fixed coordinate sys-
tem (defined by the direction of light propagation) with the eigenstates in the
presence of interaction in the interatomic coordinate system [149].

The colored shade behind the potentials curves depicts the overlap of the
|nD

5/2

, mJ = 5/2; nD
5/2

, mJ = 5/2Í pair state in the fixed coordinate system,
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Rin = 0.18, 1.74, 5.14 photons/µs
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Fig. 7.3: (a) E�ective optical density for three di�erent photon rates with fixed
�/2fi = 8.3 MHz. The solid lines are linear fits to the data from which we extract
the rates ROD of additional ODeff due to the creation of impurities. (b) ROD as a
function of Rin for di�erent Rabi frequencies �. Parabolic fits (solid lines) define the
rate constants C(�) for each dataset. The vertical dashed lines depict the mean photon
numbers inside the medium exceeding 2 when the quadratic dependence no longer holds.
(c) Rate constants C as a function of �. For the di�erent n, we see the same scaling
according to Eq. (7.3) with coe�cient k = 1.67(4), where dashed lines are numerical
fits.

rotated into the interatomic frame via Wigner d-matrices, with the new eigen-
states for an angle ◊ = 60¶ between the interatomic axis and the direction of
light propagation. This way, a coupled pair state is projected onto multiple
new eigenstates. In contrast to the isotropic S-states, the projection for the
D-states depends greatly on the angle ◊ [149]. The anisotropic interaction
has two consequences for the physics behind our setup: First, the blockade
volume for D-states is no longer spherical and thus it is not enough to use a
single C

6

coe�cient in order to describe the interaction potential. Secondly, in
the presence of the interaction the coupled pair state is not an eigenstate and
therefore will evolve in time under the impact of the interaction Hamiltonian.
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Fig. 7.4: Calculated pair state potentials for (a) |80D5/2; 80D5/2Í and (b)
|100D5/2; 100D5/2Í pair states (grey lines). The color shading represents the pro-
jection of the |mJ = 5/2, mJ = 5/2Í state (defined with respect to the direction of light
propagation) onto the new eigenstates in the presence of interaction for an angle of
◊ = 60¶ between the interatomic axis and the coupling laser beam.

�.� Theoretical description

In order to incorporate the interaction-induced dynamics with the polariton
propagation under EIT, we reduce the full interaction potential to an e�ective
level structure as shown in figure 7.5. In the weak-probe limit it is su�cient to
consider only two photons simultaneously inside the medium [8, 25]. Accounting
for level shifts and selection rules, we determine the anisotropic blockade distance
rb(◊) where the laser-coupled pair state is shifted out of the EIT bandwidth
(figure 7.6). From this we obtain an e�ective interaction potential between
two slow-light polaritons V (z, r‹). This term results in the blockade-induced
nonlinearity of the medium.

Outside the blockaded region, where both the overall shift and the splitting
of the D

5/2

-Zeeman-manifold are smaller than the EIT bandwidth, we describe
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Fig. 7.5: The anisotropic DD interaction between two polaritons is modeled as an
e�ective potential V (r = {z, r‹}) capturing the interaction-induced blockade e�ect
and a position dependent dephasing rate �(r) out of the pair-state coupled by the EIT
control laser.

the evolution of the coupled pair-state by an e�ective dephasing rate �(z, r‹)
of the Rydberg polaritons into localized Rydberg excitations. Here, z = z

1

≠ z
2

and r‹ = r‹,1 ≠ r‹,2 are the relative coordinates along and perpendicular to
the direction of propagation. In order to obtain �(z, r‹), we calculate from
the full interaction potential the time evolution of a stationary Rydberg pair
in the initial state (coupled by the fixed control field) at given distance and
angle between light propagation direction and interatomic axis. Although this
dynamics is fully coherent, the revival of the initial population appears only on
time scales long compared to the polariton propagation time due to the large
number of states in the D-state manifold. Therefore, the initial time evolution
on experimentally relevant time scales is well described by a spatially varying
dephasing rate.

The important result is that for D-states the decay �(z, r‹) is large at
distances well beyond the blockade volume figure 7.6. In contrast, the same
approach results in vanishingly small dephasing rates for S-states.

For the propagation dynamics, we numerically solve the full set of propagation
equations for the two-body wave function [25, 28] including the dephasing rate
�(z, r‹) as a decay of the amplitude Âdd(r

1

, r

2

) of two Rydberg excitations.
We assume a homogeneous distribution of atoms inside the finite-size medium
of length L = 4‡z and include imperfect single-photon transmission due to
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Fig. 7.6: Anisotropic blockaded volume and the dephasing rate outside this region for
n = 80 and �/2fi = 25 MHz.

the decoherence “gr of the 2-photon transition, which was extracted from
experimental data. Neglecting probe-beam di�raction due to the interaction, we
solve the polariton dynamics (figure 7.7) for di�erent r‹ with V

1D(z) = V (z, r‹)
followed by averaging over the r‹-distribution determined by the Gaussian
transverse profile with waist we� = 7µm (corresponding to the waist averaged
over length L) of the probe beam.

Then, the rate of events N that at least one photon is converted into station-
ary Rydberg excitation is proportional to the amplitude of the two-polariton
wavefunction Âdd:

N =
⁄

d3r
1

⁄
d3r

2

�(r1 ≠ r2)|Âdd(r1, r2)|2. (7.4)

We normalize the Rydberg wave function Âdd with the incoming photon flux as in
Eq. (7.2). A single dephasing event increases on average the optical depth within
the medium by ODim for the incoming photons. Therefore, the change in trans-
mission by a single dephasing event is exp(≠ODdec ≠ ODsat(Rin))

1
1 ≠ e≠ODim

2
.

This reduction appears with the rate N and therefore the initial time evolution
for the averaged transmission behaves as

T (t) = e≠ODdec≠ODsat(Rin) exp
Ë
≠N t

1
1 ≠ e≠ODim

2È
(7.5)
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Fig. 7.7: (c) Numerical simulations showing: for z > 0, probability distribution
associated with two Rydberg excitations |Âdd(z, R)|2, whereas for z < 0, the product
�(z)|Âdd(z, R)|2, where R = (z1+z2)/2 is the center-of-mass coordinate. Both quantities
are presented in arbitrary units for r‹ = 4.2µm, �/2fi = 12 MHz, n = 80 and a probe-
beam waist of we� = 7µm.

leading to a rate constant C(�) = N
1
1 ≠ e≠ODim

2
/R2

in. Furthermore, we ob-
serve that a finite life-time of the Rydberg impurity results in an e�ective
saturation of the transmission. However, the full time evolution for the trans-
mission including higher number of excited Rydberg impurities is extremely
challenging and beyond the scope of this work.

Qualitative description of the dephasing: Our calculations provide important in-
sights into the behavior of the dephasing. First, the averaged optical thickness
ODim > 1 of a dephasing event is su�cient to strongly block the medium.
Therefore, the decay mainly follows the probability to absorb at least one impu-
rity. Second, there appears a characteristic distance with the highest probability
for the excitation of an impurity Rydberg state. This characteristic distance is
given by the competition between the higher dephasing rates at shorter distances
and the suppression to find two Rydberg excitations due to the blockade e�ect,
see FIGS 7.6 and 7.7. The latter is strongly a�ected by the polariton dynamics
inside the medium (as has been previously discussed in terms of a di�usive
behavior [25]): At the entrance of the two photons into the medium, the prob-
ability to find two Rydberg excitations is purely determined by the blockade
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due to interactions Âdd(z) ≥ 1/(1 ≠ ‰̄V
1D(z)) where ~‰̄ = ≠i(“e/�2 + 1/“e)

[8]. This dip in the probability broadens during the propagation due to the
correction to the linear behavior of the polariton dispersion, while the single
polariton losses provide an overall reduction of the amplitude (see figure 7.7).
These e�ects strongly depend on �. In addition, photons inside the medium
are compressed due to the slow light velocity, which contributes an additional
factor �≠4 (see Eq. (7.2)) to the scaling of C(�) with �. Both described e�ects
combined explain the numerical results presented in figure 7.8.

n =80( ), n =88( ), n =100( )

Fig. 7.8: Comparison of C(�) from numerical simulations (circles) with fits to experi-
mental data from figure 7.3(c) (dashed lines).

Comparison with the experimental results: We find qualitative agreement between
theory and experiment without any fitting parameters. While for low n and small
values of � the agreement is excellent, for larger �, we observe a discrepancy and
moreover, the theory does not reproduce the strong scaling with the principal
quantum number n measured in the experiment. We expect the reason for
this discrepancy to be the fact that for large � and n, the AC-stark shift and
broadening of the Rydberg lines due to the coupling to the 5P

3/2

manifold by
the control field become comparable to the splitting between the nD

5/2

and
nD

3/2

manifold which scales with n≠3. In this case, our two-step approach of
first calculating the interaction potentials and then incorporating them into the
polariton propagation does not capture the full evolution of the system.
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�.� Outlook

Here, we briefly relate our research to other works and describe possible future
directions. Our results on the interaction-induced decoupling into stationary
Rydberg excitations show that this process can be relevant to all Rydberg
experiments employing non-S-states [26] or Förster resonances [31, 84], since
the anisotropy of the Rydberg interaction will always result in coupling to
additional levels.

In theoretical description, we include the full Rydberg pair state potentials
in the numerical two-photon propagation by an e�ective potential and an
anisotropic decay rate. Such a description yields a qualitative agreement with
the measurements and therefore makes it a useful tool for taking into account
the complicated interaction between Rydberg polariton and excitations.

The fact that experimentalist observed the interaction-induced state-mixing
on the few-photon level is a promising result for the proposals based on Rydberg-
dressing [72, 73] and engineered polariton-interaction [41] using Rydberg states
with orbital angular momentum.

A possible extension of the presented results would be a more detailed study
of the anisotropic coupling, e.g., in a storage and retrieval experiments [29, 264],
which would enable a control over the number and the position of stored excita-
tions. In this case, it would be also interesting to employ echo techniques [265],
which would enable investigation of the coherent spin evolution of interacting
Rydberg-polaritons.
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to Quantum theory of Kerr nonlinearity
with Rydberg polaritons

A.� Regime of parameters in which mass term is negligible

In this section, we derive a regime of parameters in which we can drop the mass
term in the polaritonic dispersion relation. For this purpose, we analyze two
polaritons propagating through a cloud of atoms with a constant density. In
the relative r and center of mass R coordinates, the Schrödinger equation for
the two-body wave function „(R, r) takes the form [8]

~Ê„(R, r) =
A

≠i~vgˆR ≠ ~2

m
ˆ2

r + –V (r)
B

„(R, r), (A.1)

where

m = ~(g2 + �2)3

2c2g2��2

, V (r) = 2�2~
”

1
1 + r6/›6

, (A.2)

– = g4

(g2 + �2)2

, vg = �2

�2 + g2

c. (A.3)

Assuming that the mass term is negligible, we can find the analytical solution
of Eq. A.1 of the form

„
0

(R, r) = „(0, r) exp
A

i
Ê

vg
R ≠ iÏ(0)R

L

1
1 + (r/›)6

B
(A.4)



Appendix A Supplement to Kerr nonlinearity

where we used the relation Ï(0) = L–V (0)/vg, see Eq. (5.9) in Chapter 5. For
latter purposes let us define Ïint(R, r) = Ï(0)R/L/(1+(r/›)6). Using the above
solution, we calculate perturbatively the corrections due to the mass term to
the phase shift. For this purpose we express the full solution „ using „

0

:

„(R, r) = „
0

(R, r)e≠iËm(R,r), (A.5)

where Ëm(R, r) takes into account the impact of the mass term. Next, we insert
this Ansatz into Eq. A.1. Exploiting that „

0

is the solution for the unperturbed
Hamiltonian, most of the terms cancel and we arrive with the equation for Ëm:

0 = ≠ivg„
0

(R, r)ˆRe≠iËm(R,r) ≠ ~2

m
ˆ2

r „
0

(R, r)e≠iËm(R,r). (A.6)

This equation can be simplified once we take into account that in the perturbative
limit |ˆrËm(R, r)| π |ˆrÏint

(R, r)| and |ˆ2

r Ëm(R, r)| π |ˆ2

r Ï
int

(R, r)|. Moreover,
considered photons are much longer than ›

out

and, therefore, we drop ˆr„(0, r)
and ˆ2

r „(0, r) terms. Finally, Eq. A.6 simplifies to

0 = ≠ivg„
0

(R, r)ˆRe≠iËm(R,r)

≠ ~2

m
„(0, r)e≠iËm(R,r)ei Ê

vg
Rˆ2

r exp
A

≠iÏ(0)R

L

1
1 + (r/›)6

B
. (A.7)

This equation leads to the solution for Ëm(L, r) of the form

Ëm(L, r) = ≠ 1
vg

L⁄
0

dR
~2

m

ˆ2

r exp
3

≠iÏ(0)R
L

1

1+(r/›)

6

4
exp

3
≠iÏ(0)R

L
1

1+(r/›)

6

4 . (A.8)

In order to estimate Ëm(R = L, r), we consider its value at r = ›, which is equal
to

Ëm(L, ›) = 3 (Ï(0) + i) L2

›2

g6

(g2 + �2)3

, (A.9)

and corresponds to the result for Ïm from Chapter 5. We see that the mass
term can be dropped if two conditions Ïm π 1 and Ïm/Ï(0) π 1 are satisfied.

A.� Correlations of the outgoing �elds for an incoming
coherent state

Here, we derive the general expression for the correlations Gout

n,m of the outgoing
fields for an incoming coherent state |EÍ. We start by inserting the exact solution
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for bosonic field operators Â̂(z, t) = e≠i ˆJ(z,t)Â̂
0

(z ≠ ct) into the definition of
Gout

n,m from Chapter 5. This leads to
Gout

n,m(·
1

, ..., ·n+m) =K
E

------
nŸ

i=1

3
e≠i ˆJ(zi,t)Â̂

0

(zi ≠ ct)
4† n+mŸ

j=n+1

e≠i ˆJ(zj ,t)Â̂
0

(zj ≠ ct)
------ E

L
, (A.10)

where ·i = zi ≠ ct. Our goal is to transform the product of operators to the
normally ordered expression, of which expectation value in a coherent state is
trivial. For this purpose, we first use the relation

Â̂
0

(zi ≠ ct)e≠i ˆJ(zj ,t) = e≠i ˆJ(zj ,t)e≠iÏ(zi≠zj)Â̂
0

(zi ≠ ct) (A.11)
to normally order the Â

0

operators in the Eq. A.10,
Gout

n,m(·
1

, ..., ·n+m) =K
E

------
nŸ

k=1

Â̂†
0

(·k)
nŸ

i=1

ei ˆJ(zi,t)
n+mŸ

j=n+1

e≠i ˆJ(zj ,t)
n+mŸ

l=n+1

Â̂
0

(·l)
------ E

L

◊ exp
SUi

nÿ
k>l=1

Ï(·k ≠ ·l)
TV exp

SU≠i
m+nÿ

k>l=n+1

Ï(·k ≠ ·l)
TV . (A.12)

Next, we use the fact that in the limit of t æ Œ the expression for Ĵ(zi, t) can
be written as Ĵ(zi, t) = s ≠Œ

Œ du Î(u)Ï(u ≠ zi + ct), and that Ĵ(zj, t) commutes
with Ĵ(zi, t), in order to rewrite the product of exponentials appearing in Eq.
A.12 in the following way:

nŸ
i=1

ei ˆJ(zi,t)
n+mŸ

j=n+1

e≠i ˆJ(zj ,t) = exp
Qai

nÿ
i=1

Ĵ(zi, t) ≠ i
n+mÿ

j=n+1

Ĵ(zj, t)
Rb

= exp

Qca Œ⁄
≠Œ

du Î(u)
SUi

nÿ
i=1

Ï(u ≠ ·i) ≠ i
n+mÿ

j=n+1

Ï(u ≠ ·j)
TV

Rdb . (A.13)

The last expression can be transformed to the normally ordered one using the
relation [242]:

exp
3⁄

du g(u)Î(u)
4

=:exp
3⁄

du
1
eg(u) ≠ 1

2
Î(u)

4
: . (A.14)

In our case g(u) = i
qn

i=1

Ï(u ≠ ·i) ≠ i
qn+m

j=n+1

Ï(u ≠ ·j), what leads to
nŸ

i=1

ei ˆJ(zi,t)
n+mŸ

j=n+1

e≠i ˆJ(zj ,t) = (A.15)

: exp

Qca Œ⁄
≠Œ

du Î(u)
SUexp

Qai
nÿ

i=1

Ï(u ≠ ·i) ≠ i
n+mÿ

j=n+1

Ï(u ≠ ·j)
Rb ≠ 1

TV
Rdb : .
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The last equation inserted into the Eq. A.12 provides the final result,

Gout

n,m(·
1

, ..., ·n+m) = (A.16)
nŸ

i=1

Êú(·i)
n+mŸ

j=n+1

Ê(·j) exp
SUi

nÿ
k>l=1

Ï(·k ≠ ·l)
TV exp

SU≠i
m+nÿ

k>l=n+1

Ï(·k ≠ ·l)
TV

◊ exp

Qca Œ⁄
≠Œ

du |E(u)|2
SUexp

Qai
nÿ

i=1

Ï(u ≠ ·i) ≠ i
n+mÿ

j=n+1

Ï(u ≠ ·j)
Rb ≠ 1

TV
Rdb .

Two special cases of these correlations, i.e., Gout

0,1 and Gout

0,2 are presented in
Chapter 5, see Eqs 5.10 and 5.12, respectively.

A.� Wigner function from correlation functions

Here, we show how Wigner function W (q, p) can be calculate using the correla-
tion functions Gnm. Our starting point is symmetrically ordered characteristic
function ‰(÷) defined as

‰(÷) = Tr
Ë
fl exp

Ë
÷â†

u ≠ ÷úâu

ÈÈ
. (A.17)

The function ‰(n) can be expressed using correlation function Gnm =
e
(â†

u)nâm
u

f
as

‰(÷) =
ÿ
nm

÷n(≠÷ú)m

n!m! e≠|÷|2/2Tr
Ë
fl(â†

u)nâm
u

È
=

ÿ
nm

÷n(≠÷ú)m

n!m! e≠|÷|2/2Gnm.

(A.18)

The Wigner function is defined as the Fourier transform of the characteristic
function ‰(÷) [266],

W (–) = 1
fi2

⁄
d2÷ e÷ú–≠÷–ú

‰(÷). (A.19)

Finally, we insert ‰(÷) from Eq. A.18 into the definition A.19 and afterwards
transform W (–) to a more concise expression:

W (–) = 1
fi2

ÿ
nm

(≠1)m

n!m!

⁄
d2÷ e÷ú–≠÷–ú

÷n(÷ú)me≠|÷|2/2Gnm

= 1
fi2

ÿ
nm

(≠1)n+m

n!m! Gnmˆn
–úˆm

–

⁄
d2÷ e÷ú–≠÷–ú

e≠|÷|2/2

= 2
fi

ÿ
nm

(≠1)n+m

n!m! Gnmˆn
–úˆm

– e≠2|–|2, (A.20)

which is the formula presented in Chapter 5.
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B.� Poles structure in the regime of K = 0
In the regime of K = 0 the problem significantly simplifies because two resonance
for dark-bright channels (LD and DL pairs), as well as, two resonance for bright-
bright channels (LU and UL pairs) do overlap and, therefore, –LD = –DL and
–LU = –UL. Then, parameters describing poles can be derived analytically but
expressions are long. Formulas simplify a lot in the interesting us regime of
g, � ∫ � and Ê Æ Êc to

– = 2g2�2

(�Ê + 2�2)2

(B.1)

–LU = –UL = g2�4

4 (�2 + g2)3

(B.2)

–LD = –DL = �2 + g2

4�2

(B.3)

What corresponds to the expressions for ’LU = ’UL and ’LD = ’DL from the
main manuscript in the limit of Ê π Êc, K = 0. Expressions taking additionally
into account finite K for ’LD = ’DL are obtained with the help of far detuned
regime (see next section) and numerics. Regime of K æ 0 is useful to show the
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weakness of the spatially separated regime proposed in [39]: In the considered
there regime of � ≥ �, the losses to bright channel become relevant.

B.� Poles structure in far detuned regime

In the far detuned regime the problem simplifies to two channels described, in
units of Êc = 2�2/� and kc = g2/�c, by the following expressions

– =
1Ô

K2

(Ê+1)

2

+1

+ 1

2(Ê + 1)2

, (B.4)

–B = ≠
1Ô

K2

(Ê+1)

2

+1

≠ 1

2(Ê + 1)2

, (B.5)

kD =
≠

Ò
K2(Ê + 1)2 + 1 + 2Ê + 1

2(Ê + 1) , (B.6)

kB =
Ò

K2(Ê + 1)2 + 1 + 2Ê + 1
2(Ê + 1) . (B.7)

For Ê æ 0 it gives us the scaling for the ratio of the pole strengths, i.e.,
limKæ0

–B/– = K2/4. The pole –B corresponds to the resonant scattering
into bright-dark channel with –B ¥ max[–DL, –LD] (note that for K ”= 0 the
relation –LD = –DL presented in the previous section is no longer satisfied).

B.� Derivation of general expression for �delity and
ef�ciency based on Fourier components E±(Ê)

Here, we describe two photons after passing the medium of the length L. We
include the losses due to the propagation, as well as, the interaction between
polaritons. We neglect e�ects related to the entering and leaving the medium.
The two photon wave packet for t ∫ L/vg, x

1

> L and x
2

< 0, using Eqs (4.11)
and (4.12), can be written as

EE(x
1

, x
2

, t) =
A 1

2fi

B
2 ⁄

dÊ
+

⁄
dÊ≠ exp [i (k

+

(Ê
+

) ≠ ik≠(Ê≠)) L]

◊ E
+

(Ê
+

) exp[iÊ
+

(x
1

≠ L)/c ≠ iÊ
+

t] exp[iÏ(Ê
+

, Ê≠)]
◊ E≠(Ê≠) exp[≠iÊ≠(x

2

≠ L)/c ≠ iÊ≠t], (B.8)
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whereas in case of noninteracting polaritons the two-photon wave-packet
EEV =0(x

1

, x
2

, t) is given by similar expression, except that it lacks the term
Ï(Ê

+

, Ê≠), i.e.,

EEV =0(x
1

, x
2

, t) =
A 1

2fi

B
2 ⁄

dỄ
+

⁄
dỄ≠ exp [i (k

+

(Ễ
+

) ≠ ik≠(Ễ≠)) L]

◊ E
+

(Ễ
+

) exp[iỄ
+

(x
1

≠ L)/c ≠ iỄ
+

t]
◊ E≠(Ễ≠) exp[≠iỄ≠(x

2

≠ L)/c ≠ iỄ≠t]. (B.9)

In order to calculate the fidelity, given by Eq. (4.1), we calculate the overlap⁄
dx

1

⁄
dx

2

EEV =0(x
1

, x
2

, t))úEE(x
1

, x
2

, t). (B.10)

To this end, we first integrate over x
1

, x
2

, which leads to ”(Ê
+

≠ Ễ
+

)”(Ê≠ ≠ Ễ≠).
Therefore, time dependent terms in (B.10) cancel each other and the only
non-vanishing position-dependent term is

ik
+

(Ê
+

)L + (ik
+

(Ê
+

)L)ú ≠ ik≠(Ê≠)L ≠ (ik≠(Ê≠)L)ú

= 2Im[≠k
+

(Ê
+

) + k≠(Ê≠)]L, (B.11)

which leads to the expression (4.13).

B.� Expansion of Ï in small energies

For K = 0 and after the expansion of Eq. (4.9) the exponent Ï reads

Ï = 2fi

3c
g2›�≠5/6|�|≠1/6

Qa1 ≠ 7
6

�
2�2

Ê + 13
6

A �
2�2

Ê

B
2

Rb , (B.12)

which leads to

Ô
Fei„ = exp

SUi„ ≠ 5
6

“

”
„ ≠ 1

2
1
72 „2 + i 91 „

2 A
‡Ê|�|
12�2

B
2

TV . (B.13)

For K ”= 0 after expansion of Eq. (4.20) the exponent takes the form

Ï(Ê
+

, Ê≠) = 2fi

3c
g2›�≠5/6|�|≠1/6 (B.14)

◊
A19�2(Ê2

≠ + Ê2

+

) + 326�2Ê≠Ê
+

288�4

≠ 7� (Ê≠ + Ê
+

)
12�2

+ 1
B

.
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B.� First order corrections to the scattering of two dark
polaritons

In this section we use shorter notation: V e
x = V e�(x), Âx = Â(x). We define the

wave-function Âx as the solution after neglecting other channels:
Âx = Â0

x +
⁄

dxÕ Gx≠xÕV e
xÕÂxÕ. (B.15)

We are interested in the first order corrections to this solution when we include
the second weaker pole, i.e.,

Âx + ”Âx = Â0

x +
⁄

dxÕ (Gx≠xÕ + ”Gx≠xÕ)V e
xÕ(ÂxÕ + ”ÂxÕ). (B.16)

For first order corrections, we neglect the higher order term, i.e., ”GV ”Â, and
then we arrive with integral equation for ”Â,

”Âx =
⁄

dy (Gx≠yV e
y ”Ây + ”Gx≠yV e

y Ây), (B.17)
which we can transform into di�erential equation by acting on both sides with
operator (kD + iˆx)

(kD + iˆx)”Âx = –DV e
x ”Âx + (kD + iˆx)

⁄
dy ”Gx≠yV e

y Ây. (B.18)
Solution of the homogeneous part has the form ”Âhom = DAx where D is a
constant, and Ax reads

Ax = eikDx exp
3

≠i–D

⁄
dy V e

y

4
. (B.19)

The solution of the inhomogeneous first order di�erential equation (B.18) we
get by varying integration constant, D æ Dx. After plugging AxDx into Eq.
(B.18) we arrive with the equation

iAxˆxDx = (kD + iˆx)
⁄

dy ”Gx≠yV e
y Ây, (B.20)

which can be transformed into
iˆxDx = A≠1

x (kD + iˆx)
⁄

dy
1
≠i–B◊(x ≠ y)eikB(x≠y)

2
V e

y Ây, (B.21)

≠ˆxDx = –B

Ax

⁄
dy ((kD ≠ kB)◊(x ≠ y) + i”(x ≠ y)) eikB(x≠y)V e

y Ây.

Since D(≠Œ) = 0, the solution for Dz takes the form

Dz = ≠–B

z⁄
≠Œ

dx A≠1

x

Qca x⁄
≠Œ

dy (kD ≠ kB)eikB(x≠y)V e
y Ây + iV e

x Âx

Rdb .

The full solution ”Â(z) = DzAz is used for the analytical estimates of the
corrections in the next section.
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B.6 Estimation of the corrections ”Â to the solution Â

Here, we show a rough estimate of the corrections. Because of the relation
A≠1

x Âx = 1, the last term of Eq. (B.22) can be treated easily without approxi-
mations:

lim
z∫rB

≠i–B

z⁄
≠Œ

dx V e
x = i

–B

–D
Ï (B.22)

To roughly estimate double integral defining ”Â, we approximate V e
y by

vd ◊(rB ≠ |z|) (where vd is the height of the potential), neglect decay of p-level
(i.e., � æ ”), and work in the regime of g ∫ �. Then Ï = „ = ≠2–D›vd; and
the correction for z > › takes the form

”Â = –Bvde≠i›(2vd–D+kD)

kB + vd–D ≠ kD

A
≠ ei(kB(›+z)+2›vd–D) + ei(kB(z≠›)+2›kD) (B.23)

≠ 2i›vd–DeikD(›+z) ≠ vd–D

1
eikD(›+z) ≠ ei(2›kB+2›vd–D+kD(z≠›))

2
kB + vd–D ≠ kD

B

which can be rewritten as ”Â(z) = eikDz”ÂD + eikBz”ÂB with:

”ÂD = –Bv2

d–De≠2i›(vd–D+kD)

(kB + vd–D ≠ kD) 2

(B.24)

◊
1
ie2i›kD (≠2› (kB + vd–D ≠ kD) + i) + e2i›(kB+vd–D)

2
, (B.25)

”ÂB = ≠2i–Bvde≠i›vd–D sin (› (kB + vd–D ≠ kD))
kB + vd–D ≠ kD

(B.26)

From figure 4.2 we see that kB ¥ 2g2/|”|c. By definition, we know that
vd–D = ≠g2/”c. In order to fit photons well into EIT-window we use photons
with low momenta, i.e., kD π kB. From estimates we see that the sign
of detuning ” matters, thus, in order to minimize the scattering into bright
polaritons we need vd–D > 0 and therefore to take ” < 0. In order to estimate
scattering processes we also replace 2›vd–D by ≠„ (note that „ is negative in
our case), and kB by ≠„/2›, this gives

”ÂD =
i–B

1
≠ sin(„) + ei„„

2
2–D

, (B.27)

”ÂB = ie
i„
2 –B sin(„)

–D
. (B.28)
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Whereas for „ π 1 those expressions simplify furthermore to

”ÂD = ≠„2–B

2–D
, (B.29)

”ÂB = i–B„

–D
. (B.30)

Note, that in our problem the total probability flux, but not the total probability
density, is conserved. Bright part ”ÂB has greater group velocity than dark and
therefore leaves the medium earlier. Due to this separation in time of dark and
bright components, we use ”Â = ”ÂD as a measure of the corrections to the
solution Â.

Note, that losses to bright channel, relevant to the He et al. proposal [39],
will be even more important for large „. For phase shift „ = 0.36 presented in
Ref. [39], the prefactor

---≠ sin(„) + ei„„
--- in Eq. (B.27) is equal to 0.13, whereas

for „ = fi/2 the same prefactor would be approximately 15 times larger. This
shows once again that for large phase shift the spatially separated setup has its
issues, which were not discussed in [39].

B.� Optimal parameters for the phase gate

In this section, we describe in detail the calculation behind figure 4.4. First, we
sum-up all the e�ects and estimates for the corrections to the phase gate fidelity
F and e�ciency �. We start with single photon losses due to the propagation,
which lead to the e�ciency

� = 1
1 + 2Lg2

”c
”2‡2

Ê
�

4

“
”

¥ exp
SU≠2Lg2

”c

A
”‡Ê

�2

B
2 “

”

TV . (B.31)

The estimate of the e�ects due to the interaction between dark polaritons (4.21)
is given by:

Ô
Fei„ Ã exp

SUi„ ≠ 5
6

“

”
„ ≠ 1

2
1
72 „2 + i 19 „

2 A
‡Ê|�|
12�2

B
2

TV . (B.32)

The scattering into bright-bright channels is negligible. The scattering into two
bright-dark channels for g π |�| leads to the wave-function corrections

”Â(Ê
+

, Ê≠)/Â(Ê
+

, Ê≠) Æ (�2/|�|2 + K2/k2

c /4)f(Ï). (B.33)
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Assuming that corrections are small it leads to the drop of fidelity like
Ô

F Ã
1 ≠ ”Â/Â, which we have to average over the wavepacket shape. The averaging
leads to

Ô
F Ã 1 ≠

Qa �2

|�|2 +
A

‡Ê|�|
2�2

B
2

Rb f(Ï). (B.34)

Finally, the transverse size e�ects are described by F(‡‹/›) shown in figure 4.3.
Our goal is to maximize the value of

Ô
F

Ô
F ¥ exp

SU≠5
6

“

”
„ ≠ 1

272 „2

A
‡Ê|�|
12�2

B
2

TV
◊ F(‡‹, ›)

Qa1 ≠
Qa �2

|�|2 +
A

‡Ê|�|
2�2

B
2

Rb |Ï|f(Ï)
Rb (B.35)

by finding optimal detuning ” for fixed ‡‹, „, C
6

in function of g, L. Then, the
value of Rabi frequency � is fixed by the constraint on „. Since we work in
the regime of small corrections we can approximate 1 ≠ ‘ ¥ exp[≠‘]. We apply
this relation in case of transverse size e�ects F and losses to bright channels.
Thus, in order to find optimal ”, we can look at the maximum of the following
expression in the exponent

≠5
6

“

”
„ ≠ 1

272 „2

A
‡Ê|�|
12�2

B
2

+ F(‡‹, ›) ≠
Qa �2

|�|2 +
A

‡Ê|�|
2�2

B
2

Rb f(Ï).

This leads to results presented in figure 4.4.
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