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Chapter 1

Introduction

A solid is characterized by a periodic structure, i.e. a long-range ordering of atoms. This
ordering forms a lattice, where each lattice site is occupied by one or more atoms. Depending
on the solid, one or more lattice sites form the basis of it. The solid is then simply formed by
adding a number of basis together, see [28].
On the other hand, superfluidity is characterized by a frictionless flow of particles. This means,
that the flow of particles does not suffer an energy loss due to friction, see [2]. The arising
question now is, are the properties of a solid and the superfluid flow compatible? Theoreti-
cal thoughts, on behalf to this question, were made by Leggett [33], Chester [13] and Guyer
[21]. They proposed, that these two possible properties of a system can only be compatible,
if the system has diagonal and off-diagonal elements in its reduced density matrix. Diagonal
elements in the reduced density matrix refers to a crystalline, solid structure, i.e. diagonal
long-range order, where off-diagonal elements are a sign of superfluidity. The concept of di-
agonal and off-diagonal long-range order were introduced by Penrose and Onsager [39], and
Yang [57].
The following question then is: Does a solid with superfluid properties exist in nature? A nat-
ural candidate for such properties would be solid 4He. Despite this proposal for a candidate,
the question of the existence of a superfluid solid was answered for a long time with no. For
many years the answer stayed negative, until Kim and Chan [25] did their experiment with
solid 4He. They showed an indication of non-classical rotational inertia. Leggett proposed
in 1970 [33] that non-classical rotational inertia is the first signature of the compatibility of
a solid structure and superfluidity. The experiment and discovery of Kim and Chan are still
highly debated by the community. This means, that a rigorous proof of the existence of a
superfluid solid in nature is still due.
Possible candidates for such experiments are cold atomic gases, since they offer a wide range
of applications, especially when loaded into an optical lattice. Gases are referred to be cold, if
they are in a temperature regime of micro

(
10−6

)
to nano

(
10−9

)
Kelvin or lower. Often alkali

atoms like lithium Li, rubidium Rb and cesium Cs are cooled to such temperatures. Other
common atoms used for cooling are chromium Cr and helium He. In principle, all atoms or
even some molecules like LiCs, CaO and SrF, can be cooled to the desired temperature regime.
Possible applications for cold gases are e.g. high precession measurements, investigation of
new quantum phases and many more. The most prominent example of the application of cold
gases is the experimental realization of the Mott Insulator to superfluid transition done in
2002 by Greiner et.al. [19].
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8 CHAPTER 1. INTRODUCTION

Further introductions into the field of BECs and possibile phases in optical lattices can be
found in [15], [36], [17], [16], [54], [7], [23], [30]. For more insight into supersolids, confront
[10], [56], [40], [49], [5], [46], [41], [47], [4], [37], [6] . For the subject of cold gases, [9] can also
be taken into account.

The motivation for the presented work is the following: Until now, the superfluid and Mott
Insulator quantum phase have been achieved in experiments. Still due is to proof the existence
of the supersolid within an experiment. So far, calculations for the supersolid phase have been
done with low filling factors n at each lattice site of an optical lattice. In this work, we consider
a regime, where we assume to have a high filling factor n � 1 at each lattice site. This is a
totally different approach and therefore we want to investigate, if the supersolid phase even
occurs in that regime.

The work is structured as follows: In chapter 2 we give the tools to understand the discussions
in the following chapters and give some insight into the field of cold gases. Then, in chapter 3
we begin our calculations for a system of a dilute Bose gas and investigate the superfluid phase
there. Within chapter 4 we investigate rigorously various considerations relevant to mean-field
calculations. Then chapter 5 concludes the preceded chapters by the stability determination
of the proposed new phase. In the last chapter 6 of this work, we consider an experimental
setup to achieve the argued situations within an experiment.



Chapter 2

Basic concepts

In recent years, the technique of loading Bose-Einstein condensates (BEC) into optical lattices
has opened up new and interesting physics. The following sections will give an introduction
to the required tools.

2.1 Optical lattice

An optical lattice is a periodic potential, which is generated by overlapping two counterprop-
agating laser beams. The periodic structure is due to the interference between these two laser
beams, resulting in an optical standing wave with a periodicity of λ/2. Atoms can now be
confined in the standing wave. Depending on how many laser beams are used, different lattice
structures can be realized. Using two laser beams reavels a 1D optical lattice, which looks like
stacked pancakes, see figure 2.1. Using four superimposed orthogonal laser beams gives a 2D
lattice, containing of 1D potential tubes and six laser beams gives a 3D simple cubic lattice,
where each lattice site confines atoms in a harmonic oscillator potential.

1D 2D 3D

Figure 2.1: Depending on how many counterpropagating laser beams are used, one, two or
three dimensional optical lattices can be created.

The optical lattice, i.e. the standing wave, can be described approximately as the sum of a
homogeneous periodic lattice potential

9



10 CHAPTER 2. BASIC CONCEPTS

Vlat(x, y, z) = V0

(
sin2 (k x) + sin2 (k y) + sin2 (k z)

)
= Vlat(r) , (2.1)

with V0 being the depth of the potential and k = 2π/λ is the wave vector of the laser beam.
In addition, the harmonic potential at each lattice site can be described as

Vsite(x, y, z) =
m

2
(
ω2
x x

2 + ω2
y y

2 + ω2
z z

2
)

= Vsite(r) , (2.2)

where m is the mass of the confined atoms and ωx, y, z are the trapping frequencies in the
corresponding direction. See also figure 2.2.

harmonic potential Vsite

laser beam

V
0

optical potential

Figure 2.2: An optical lattice is created by counterpropagating laser beams. It is described as
a standing wave, where each valley can be approximated with a harmonic potential. V0 tunes
the depth of the optical lattice.

This gives an approximation for the confining potential of the atoms in the BEC

V (x, y, z) = V0

(
sin2 (k x) + sin2 (k y) + sin2 (k z)

)
+
m

2
(
ω2
x x

2 + ω2
y y

2 + ω2
z z

2
)

= V (r) .
(2.3)

2.2 Bose-Hubbard Model

As a next step a model is required, which can describe a BEC in an optical lattice. Jaksch
et.al. [22] proposed, that the known Bose-Hubbard model can be applied to describe this sit-
uation.

The starting point is a Hamiltonian for interacting bosonic particles in a trapping potential
V (r) as described above

H =
∫
dr ψ†(r)

(
− ~2

2m
∇2 + V (r)

)
ψ(r) +

1
2

4πas~2

m

∫
dr ψ†(r)ψ†(r) ψ(r)ψ(r) , (2.4)
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where ψ(r) are bosonic field operators, as the s-wave scattering length, m is the mass of the
atoms and VT (r) is an additional potential.

Assuming that energies in the system are much smaller than the first excited state, i.e. ex-
citations to higher bands can be neglected, only the lowest Bloch band is considered. In the
following an ansatz for the field operators with Wannier functions w(r− ri) is introduced,
since they are well localized at each lattice site i,

ψ(r) =
∑
i

bi w(r− ri) , (2.5)

and

ψ†(r) =
∑
i

b†i w
∗(r− ri) . (2.6)

The Wannier functions w(r− ri) are defined by the Fourier transformation of Bloch wave
functions φn,q(r)

wn(r− ri) =
1√
N

∑
q
e−iq·ri φn,q(r) , (2.7)

where n denotes the Bloch band, q the momentum and N the normalization constant. The
Bloch wave functions can be written as a product of a plane wave and a function un,q(r),
which has the same periodicity as the periodic potential

un,q(r + R) = un,q(r) , (2.8)

with R being a lattice vector, this gives

φn,q(r) = un,q(r) eiq · r . (2.9)

Now the ansatz eq. (2.5) and eq. (2.6) can be inserted into the Hamiltonian eq. (2.4), which
then becomes

H = −t
∑
〈i, j〉

(
b†jbi + b†ibj

)
+
∑
i

εi b
†
ibi +

U

2

∑
i

b†ib
†
i bibi (2.10)

where the hopping coefficient t between nearest neighboring sites, the energy offset εi and the
on-site interaction U of each lattice site are calculated as

t =
∫
dr w∗(r− ri)

[
− ~2

2m
∇2 + Vlat(r)

]
w(r− rj) , (2.11)

εi =
∫
dr Vsite(r) |w(r− ri)|2 , (2.12)

U =
4πas~2

m

∫
dr |w(r)|4 , (2.13)

with Vlat(r) as in eq. (2.1) and Vsite(r) as in eq. (2.2).
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The creation b†i and annihilation bi operators obey the commutation relation[
bi , b

†
j

]
= δij . (2.14)

Introducing the number operator

n̂i = b†ibi , (2.15)

the Hamiltonian of eq. (2.10) finally becomes the well-known Bose-Hubbard Hamiltonian

H = −t
∑
〈i ,j〉

(
b†jbi + b†ibj

)
+
∑
i

εin̂i +
U

2

∑
i

n̂i (n̂i − 1) . (2.16)

The first term of the Bose-Hubbard Hamiltonian describes the hopping of bosons between
neighboring sites, i.e. the tunneling of bosons. The hopping term t determines the strength of
the hopping between the sites. The second term, the energy offset εi is zero for a homogeneous
system. The third term describes the interaction of n bosons with n− 1 other bosons at the
same lattice site. In this case, U determines the repulsion strength between atoms.

2.2.1 Extended Bose-Hubbard Hamiltonian

The Hamiltonian eq. (2.16) can be extended for the case of arbitrary interactions and for a
grand canonical ensemble. It then reads

H = −t
∑
〈i, j〉

(
b†jbi + b†ibj

)
+
∑
i

εi n̂i +
U

2

∑
i

n̂i (n̂i − 1) +
1
2

∑
i 6=j

Vij n̂in̂j − µ
∑
i

n̂i , (2.17)

the forth term accounts the nearest-neighbor interactions, where Vij goes over to V when only
nearest-neighbor interactions are considered. The fifth term consists the chemical potential
µ, which fixes the mean number of particles in the case of a grand canonical ensemble.

When only nearest-neighbor interactions and a homogeneous system is considered, the ex-
tended Bose-Hubbard Hamiltonian reads

H = −t
∑
〈i, j〉

(
b†jbi + b†ibj

)
+
U

2

∑
i

n̂i (n̂i − 1) +
V

2

∑
〈i, j〉

n̂in̂j − µ
∑
i

n̂i . (2.18)

2.3 Quantum Phase Transition

A phase transition is characterized by a change of phases when some physical quantities are
tuned, e.g. water can change its phase from solid (ice), to liquid or vapor, depending on
temperature and applied pressure. This means classical phase transitions are driven by ther-
mal fluctuations. In recent years a new field of research opened up, when temperatures near
T = 0 were reached and new physics observed. In a classical sense, all thermal fluctuations
are frozen out, when T = 0 is reached, i.e. no classical phase transition appears at T = 0.
If temperatures reach T = 0, the system becomes quantum mechanical and such effects as
the Heisenberg uncertainty principle come into play. The Heisenberg uncertainty principle is
responsible for the appearance of quantum fluctuations, which can drive the system even at



2.3. QUANTUM PHASE TRANSITION 13

T = 0 into different phases. This means quantum phase transitions at T = 0 are solely driven
by quantum fluctuations. For a further introduction into this field see [43].

A well-known quantum phase transition is the transition of a system from the Mott Insulator
to the superfluid ground state.

2.3.1 Mott Insulator - Superfluid Transition

The Bose-Hubbard Hamiltonian eq. (2.16) describes a quantum system, which contains an
optical lattice that can confine atoms, which are in a BEC. The two main quantities are the
hopping t eq. (2.11) and the on-site interaction U eq. (2.13). The hopping term in eq. (2.16)
tends to delocalize the bosons over the lattice, where the on-site interaction term tends to
localize the bosons to a lattice site. The two quantities t and U are in competition with each
other. In the superfluid ground state the hopping t is much larger than the on-site interaction
U , meaning that a hopping of bosons through the lattice sites, i.e. delocalization, is favorable.
In the Mott Insulator ground state, the hopping t is suppressed by a larger on-site interaction
U , where a integer filling of lattice sites is preferred and no hopping. See also figure 2.3.

Mott Insulator

V
0 V

0

Superfluid

Figure 2.3: Left figure: Mott Insulator, each boson is confined to a lattice site. The hopping
between different lattice sites is suppressed by the depth of the optical potential. Right
figure: Superfluid, the boson can hop freely between lattice sites, without being constraint
to a certain lattice site. In this case a delocalization of the boson over the lattice is favored.

The tunable quantity in this system is the depth of the optical potential V0 as introduced
in eq. (2.1). With a low V0 the bosons can easily overcome the potential barrier V0 and hop
through the lattice, i.e. tunnel between lattice sites. It is not energetically favorable to localize
the bosons to specific lattice sites, since the cost of kinetic energy is low compared to the on-
site interaction U . As the depth of the potential V0 is raised, the cost of hopping nearly free
through the lattice increases. At a critical value (U/t)c = z · 5.8 the transition between the
superfluid ground state to the Mott Insulator ground state occurs, where z is the number of
nearest neighbors. The cost in energy for hopping is now much higher than the localization of
each boson to a lattice site. In this regime, the on-site interaction term in eq. (2.16) becomes
dominant and pins each lattice site with an integer filling of bosons, also see figure 2.4.
For larger fillings n� 1, the critical value is (U/t)c = z · 4n, where n is the mean number of
atoms, see also figure 2.5.
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U a

ER aS

10
2

10
1

10
0

5 15 25

10
-2

10
-3

10
-1

t/ER

V0 /ER

Figure 2.4: Dependence of the hopping term t and the on-site interaction U on the depth
of the optical lattice V0. At low values for V0 the hopping in the system is dominant. The
bosons are delocalized over the lattice, the system is in the superfluid phase. As the depth
is raised, hopping becomes suppressed and the bosons become localized to a certain lattice
site. In this case, it becomes much harder to overcome the barrier created by V0. The system
then is transferred into the Mott Insulator phase, with an integer filling of each lattice site.
Diagram is qualitatively taken from [22].

The Bose-Hubbard phase diagram for the superfluid to Mott Insulator transition is given in
figure 2.5. The lobes at integer filling n are characteristic for the Mott Insulator. In the regions
outside of the Mott lobes, the system is superfluid. The critical value (t/U)c corresponds to
the tip of each Mott lobe. For higher fillings n, the critical value (t/U)c for the transition
scales as ∼ 1/n.

With the system being in the Mott Insulator ground state, there are two possible ways to
drive it into the superfluid regime. Either the hopping t is increased, beyond the critical
value (t/U)c until the bosons confined to single lattice sites can easily overcome the potential
barrier. Or some bosons are added to the system, which leads to non-integer filling of lattice
sites and a raise in chemical potential µ. The system is then in the superfluid regime until
there are more bosons added. The Mott Insulator is again achieved, if the filling results in an
integer value per lattice site and the hopping t is lowered.
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μ / U

t / U

3

2

1

MI

MI

MI

n = 3

n = 2

n = 1

SF

Figure 2.5: Phasediagram of the Mott Insulator to Superfluid transition in the Bose-Hubbard
Model. µ is the chemical potential given in units of the on-site interaction energy U and t the
hopping term in units of U . The characteristic Mott lobes for different filling factors n per
lattice site i is given. See also [7].
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2.3.2 Supersolid Phase

Another interesting quantum phase is the supersolid. This kind of phase is characterized by
a solid-like crystalline long-range ordering and the existence of superfluidity. The notation
"supersolid" refers to the two properties of the phase. The existence was proposed by Leggett
[33] and Chester [13], that a solid can also exhibit superfluidity and has been discussed con-
troversial.

To describe a solid structure, the number density ρ(r) has to be considered. Here r denotes
the position vector in the solid structure. The solid is described by a peak structure in the
number density, since particles can only be found on certain sites within the structure. This
can be expressed as

ρ(r) =
∑

l

δ(r−Rl) , (2.19)

where Rl considers all possible lattice sites.
A fluid or superfluid can be described by the one particle density matrix

ρ1

(
r, r′

)
= N

∫
dr2 dr3 ... drN ρ∗(r, r2 ... rN) ρ

(
r′, r2 ... rN

)
, (2.20)

where N is a normalization constant. It gives the density of two different coordinates r
and r′. A superfluid is translational invariant, therefore the density matrix ρ(r, r′) can be
written as ρ(r− r′). Now, the nature of two far apart positions within the superfluid system
is investigated

ρ
(
r− r′

)
−−−−−→
r−r′→∞

const. . (2.21)

This means, that at every position between r and r′ the system has a constant value in its
density. Thus, no peak structure can be found within a superfluid system, the density is
constant.
To give a short summary, a solid is described by a peak structured number density ρ(r),
whereas a superfluid has a constant value in its density, if two far apart positions r and r′

are analyzed. For a more rigorous introduction into this subject, see [12]. In the following, a
more detailed description is given.
A crystalline solid is characterized by a diagonal long-range order (DLRO) in its density ma-
trix. A solid is a many-particle system which is defined by a many-particle wave function
Ψk(r1, r2, ...rN ), where k denotes the state and r1 ...rN the position. For the further consid-
erations, it is assumed, that the system is in its ground state, thus the many-particle wave
function becomes Ψ0(r1, r2, ...rN ). The diagonal many-particle density matrix is defined as
the square of the wave function and gives the probability density for finding a particle at
position rj

ρN (r1, r2 , ... rN ) = |Ψ0(r1, r2, ... rN )|2 , (2.22)

the diagonal density matrix ρN is normalized, thus a integral over all positions gives unity

1 =
∫
d3r1 ... d

3rN ρN (r1, r2, ... rN ) . (2.23)
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Now the concept of superfluidity and off-diagonal long-range order (ODLRO) is given. A gen-
eral density matrix is defined as the product of two wave functions with different coordinates

ρ̃N
(
r1, r2, ... rN ; r′1, r

′
2, ... r

′
N

)
= Ψ∗0(r1, r2, ... rN ) Ψ0

(
r′1, r

′
2, ... r

′
N

)
, (2.24)

where again the system is assumed to be in its ground state with k = 0. If the two sets of
coordinates are identical, the general density matrix ρ̃N becomes the diagonal density matrix
ρN of eq. (2.22).
The one-particle density matrix ρ̃1(r1, r′1) is obtained, when all but one set of coordinates in
ρ̃N eq. (2.24) are set equal and integrated over

ρ̃1

(
r1, r′1

)
=
∫
d3r2 d

3r3 ... d
3rN ρ̃N

(
r1, r2, ... rN ; r′1, r2, ... rN

)
. (2.25)

A system is superfluid, i.e. Bose condensed, if the density matrix ρ̃1 eq. (2.25) has an eigenvalue
which is proportional to the number of atoms in the system.
The condensate fraction in the ground state nk=0, i.e. the number of particles, is calculated
as

n0 =
1
ν

∫
d3r1 d

3r′1 ρ̃N
(
r1, r′1

)
, (2.26)

with ν being the system volume.

A system is called to have an ODLRO, if the condensate fraction n0 has a value greater
than zero. This implies that a system which has ODLRO in its ground state is superfluid.
Thus, Bose-Einstein condensation is the simplest form of an ODLRO in the density matrix
ρ̃N eq. (2.24), see also [34] for a introduction into ODLRO.
Hence the supersolid phase has to have a diagonal and off-diagonal long-range order in its
density matrix to exhibit superfluidity and the properties of a solid.
For further insight into ODLRO see [39], [57], [52], [14], [45], [55], [58].

2.4 Rotor Model

The Bose-Hubbard Hamiltonian eq. (2.18) is only valid for small filling factors n ≥ 1. If filling
factors much larger than one are considered, i.e. n � 1, the Bose-Hubbard Hamiltonian be-
comes inaccurate. For this case a new Hamiltonian has to be found, which then can describe
the system.

If each lattice site contains many bosons, it can be considered, that each lattice holds a Bose-
Einstein condensate of its own. This means that the bosons within each lattice site can now
be described by a macroscopic wave function, with a defined phase ϕ and a particle density
n. Under these assumptions the following ansatz for the creation and annihilation operators
for the bosons can be made

bi =
√
ni e

iϕi ,

b†i =
√
ni e
−iϕi .

(2.27)
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This means that each lattice site contains a quasi-condensate with a particle density ni and a
defined phase ϕi.

Inserting the ansatz eq. (2.27) into the Bose-Hubbard Hamiltonian eq. (2.18) and applying
once more the commutation relation for bosonic operators eq. (2.14), at the on-site interaction
term, reveals the Hamiltonian in the Rotor-Model

HRotor = −2t
∑
〈i, j〉

√
ninj cos (ϕi − ϕj) +

U

2

∑
i

n2
i +

V

2

∑
〈i, j〉

ninj − µ
∑
i

ni . (2.28)

See chapter 4 for a rigorous derivation of the Rotor-Hamiltonian.

The presented Hamiltonian eq. (2.28) in the Rotor-Model is valid for higher filling factors n,
where n� 1. For a filling factor n ≈ 1 it becomes invalid, because each lattice site is no longer
populated by many particles. A description of each lattice site, containing a quasi-condensate,
expressed by a macroscopic wave function, becomes invalid. Hence, it depends on the filling
factor n, if the Rotor-Hamiltonian HRotor eq. (2.28) or the Bose-Hubbard Hamiltonian H
eq. (2.18) can be applied.
The Rotor-Hamiltonian is related to the topic of Josephson Junction arrays, see [24], [8],
[42],[11], [48], for a introduction into this field. The concept of quasi-condensates is introduced
in [35], [50].

2.5 52Cr Experiments

The properties of chromium (52Cr) atoms and possible applications are under high investiga-
tions by the group of Tilman Pfau at the University of Stuttgart.

In 2005 they first reported of the experimental realization of a BEC of chromium [20]. Be-
fore that, only BECs of alkali atoms have been achieved, where the atoms mainly interact
via an effective contact interaction. The interesting feature of chromium is its very high
magnetic moment of 6µB (µB is the Bohr magneton) and therefore its significant long-range
and anisotropic dipole-dipole interaction. In their experiment, a pure dipolar BEC with up
to 105 atoms was achieved, where the magnetic dipole-dipole interactions play a dominant role.

oblate trap λ > 1 

prolate trap λ < 1

Figure 2.6: Possible cloud shapes for a dipolar BEC. The left figure shows a oblate, pancake
shaped trap. The right a prolate, cigar shaped trap.
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As a next step, they investigated the influence of the dipole-dipole interaction on the behavior
of the dynamics of the chromium BEC [51], [31]. They applied a homogeneous magnetic field
to the BEC and found that the atoms align along the magnetization direction, which leads
to a squeezed orthogonal direction. This alignment could even be seen, when the BEC was
released from the trap and measured in a time of flight experiment. Further, they studied the
characteristics of the BEC with strong dipolar interactions by tuning the contact interactions,
via a Feshbach resonance, to be small. In the same work they used different trap sizes, by
applying different magnetic fields.

Then they examined the stability of a dipolar BEC depending on the scattering length a and
the trap size [27]. One conclusion was, that the stability strongly depends on the trap size. A
dipolar BEC is stable, if its loaded into a pancake-shaped trap (aspect ratio λ = ωz/ωr > 1,
with ωr, z being the trap frequencies in r- or z-direction), because the dipoles predominantly
repel each other. It becomes unstable, if the trap is cigar-shaped (λ < 1), which leads to
attractive forces and thus to a collapse. Another conclusion was, that the scattering length a
also plays an important role in the stability. The scattering length a is responsible for tuning
the contact interaction. A scattering length a = 0 means, that now the pure dipolar regime is
reached.The higher the value of a, the more the effect of the contact interaction is important.
If the dipolar BEC is within an isotropic trap (λ = 1), it can only handle positive scattering
lengths a. On the other hand, if the BEC is loaded into a pancake-shaped trap (λ = 10), it
can even handle slightly negative scattering lengths a, before collapsing, see figure 2.7.
They could also give a stability diagram of a dipolar BEC, which depends on the critical scat-
tering length acrit and the trap aspect ratio λ. The critical scattering length acrit determines,
if the dipolar BEC is stable at a given set of trap aspect ratio and scattering length a. At
aspect ratios of λ � 1 the scattering length can be tuned to a = 0, which leads to the pure
dipolar regime, without the BEC collapsing, see figure 2.8.
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Figure 2.7: Number of particles in a dipolar condensate at given trap ratios λ and tuning the
scattering length a. In the above figure, the trap is prolate. The dipolar BEC collapses at
a positive scattering length a. The bottom figure shows that the collapse of a BEC, within
a oblate trap, occurs at slightly negative scattering lengths. The figure is qualitatively taken
from [27].

Figure 2.8: Stability diagram of a diplar BEC. The stability at different scattering lengths a
depends strongly on the trap aspect ratio λ. At a cigar shaped trap, λ < 1, the BEC can only
handle positive scattering lengths before collapsing. Within a pancake shaped trap, λ � 1,
the BEC can even handle negative scattering lengths before collapsing. In the region above
the green curve, the dipolar BEC is stable, beneath it, it becomes unstable and collapses. On
the right side of the figure, there are the energy planes, for different scattering lengths. The
figure is taken from [27].



Chapter 3

Bogoliubov theory

In the theory of a dilute Bose gas, the interactions between particles are relatively small. Only
s-wave scattering processes between particles are considered. Further, the scattering can be
regarded as isotropic and triple collisions are neglected. The interaction between particles is
assumed to be repulsive, i.e. the scattering amplitude aS is positive.
Bogoliubov was the first, who found the energy spectrum for such a system at T = 0. For sake
of simplicity, he assumed that the particles in the Bose gas have spin zero. In [1] a detailed
introduction to the theory of a dilute Bose gas can be found.
The following calculation is carried out similarly as in [1], whereas here, nearest-neighbor
interactions V are accounted.

3.1 Fourier transformation of the Bose-Hubbard Hamiltonian

For calculating the energy spectrum ε(k) as in [1] of a dilute Bose gas, the first step is to
Fourier transform the following Hamiltonian

H = −t
∑
〈i, j〉

(
b†jbi + b†ibj

)
+
U

2

∑
i

n̂in̂i +
V

2

∑
〈i, j〉

n̂in̂j . (3.1)

It is the extended Bose-Hubbard Hamiltonian, as introduced in sec.2.2.1 , for a canonical
ensemble, i.e. µ = 0. The on-site interaction U is as in eq. (2.13), V only consideres nearest-
neighbor interactions.

The Fourier transformations for the creation b†i , annihilation bi and number operator n̂i are

b†i =
1√
N

∑
k′

e−ik′xi b†k′ , (3.2)

bi =
1√
N

∑
k

eikxi bk , (3.3)

n̂i =
1
N

∑
k

eikxi n̂k . (3.4)

To obtain the energy spectrum from eq. (3.1), by diagonalizing it, the following simplification
has to be made: In an ideal Bose gas the particles are not interacting with each other. In

21
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a dilute Bose gas, the ground state slightly differs from that of an ideal gas, because of the
weakly interactions. Although, the occupation of the ground state in a dilute gas exceeds the
occupations of excited levels. In this case, only interactions of particles in the ground state
of the dilute gas and particles in the weakly excited states with particles in the ground state
have to be considered. Interactions of excited particles with each other are neglected.

The following sections compute the Fourier transformation of eq. (3.1).

3.1.1 Fourier transformation of the first part of the Hamiltonian

Now the first part of the Hamiltonian eq. (3.1) can be transformed, it reads

H1 = −t
∑
〈i, j〉

(
b†jbi + b†ibj

)
. (3.5)

Inserting the Fourier transformations eq. (3.2, 3.3) gives

H1 = −t
∑
〈i, j〉

1
N

∑
q′

e−iq′xj b†q′
∑
k

eikxi bk +
∑
k′

e−ik′xj b†k′
∑
q

eiqxi bq


= − t

N

∑
〈i, j〉

∑
q′, k

e−i(q′xj−kxi) b†q′bk +
∑
k′, q

ei(qxj−k
′xi) b†k′bq

 . (3.6)

Since the Bose-Hubbard Hamiltonian describes the physics on an optical lattice, each lattice
site xj is accompanied by nearest-neighboring sites of xi afar by a unity vector ej . Using this
fact gives

= − t

N

∑
〈i, j〉

∑
q′, k

e−i((q′−k)xi+q′ej) b†q′bk +
∑
k′, q

ei((q−k
′)xi+q′ej) b†k′bq


= − t

N

∑
j

∑
q′

Ne−iq′ej b†q′bq′ +
∑
q

Neiqej b†qbq


= −t

∑
j

∑
q′

e−iq′ej b†q′bq′ +
∑
q

eiqej b†qbq

 . (3.7)

The summations
∑

q′ and
∑

q run over all possible q- and q′-values, hence the summation
index q′ can be rewritten as q

= −t
∑
j, q

b†qbq
(
e−iqej + eiqej

)
= −2t

∑
j, q

b†qbq cos (qej)

⇒ H1 = −4t
∑
q, α

b†qbq cos (qαa) . (3.8)
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Depending on the dimension of the lattice, the summation index α is one for a 1D lattice,
two for 2 D and three for a three dimensional lattice. For the case, where each lattice site is
equidistant apart, the summation

∑
j over all possible unity vectors ej each time gives a, a

lattice constant.

3.1.2 Fourier transformation of the second part

The second part of the Hamiltonian eq. (3.1) reads

H2 =
U

2

∑
i

n̂in̂i . (3.9)

Here, the number operators have to be Fourier transformed with eq. (3.4). In the follow-
ing the symbols for the operator ˆ are omitted, since the nature of ni is clear. The Fourier
transformation of the first number operator thus is

n
(1)
k1

=
∑
i

e−ik1xi ni

=
∑
i

e−ik1xi b†ibi

=
∑
i

e−ik1xi 1√
N

∑
q′

e−iq′xi b†q′
1√
N

∑
q

eiqxi bq

=
1
N

∑
i, q′, q

e−i(k1+q′−q)xi b†q′bq

=
1
N

∑
q′, q

N δ(k1+q′) q b
†
q′bq

⇒ n
(1)
k1

=
∑
q′

b†q′ bq′+k1 . (3.10)

Hence, the first number operator reads

n
(1)
i =

1
N

∑
k1

eik1xi n
(1)
k1

=
1
N

∑
k1, q′

eik1xi b†q′ bq′+k1 . (3.11)

The Fourier transformation of the second number operator is done identically and gives

n
(2)
i =

1
N

∑
k2, q′2

eik2xi b†
q′2
bq′2+k2 (3.12)

Inserting both Fourier transformed number operators into the second part of the Hamiltonian
eq. (3.9)

H2 =
U

2

∑
i

n
(1)
i n

(2)
i

=
U

2N2

∑
i, k1, k2

∑
q′1, q

′
2

ei(k1+k2)xi b†
q′1
bq′1+k1 b

†
q′2
bq′2+k2 , (3.13)
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to sum over all lattice sites i, k2 must be −k1

H2 =
U

2N2

∑
k1, k2

∑
q′1, q

′
2

δ−k1 k2 N b†
q′1
bq′1+k1 b

†
q′2
bq′2+k2 . (3.14)

The summation over all possible k2 and renaming the variable k1 as k gives a more compact
form for the Fourier transformed second part of the Hamiltonian eq. (3.9)

H2 =
U

2N

∑
k

∑
q′1, q

′
2

b†
q′1
bq′1+k b

†
q′2
bq′2−k . (3.15)

3.1.3 Fourier transformation of the third part

The third part of the Hamiltonian eq. (3.1) is

H3 =
V

2

∑
〈i, j〉

n̂in̂j . (3.16)

The Fourier transformations for both number operators are done identically as in eq. (3.10 +
3.11), the symbols for the operators are again omitted and the results are

ni =
1
N

∑
k, k1

eikxi b†k1 bk1+k (3.17)

nj =
1
N

∑
q, q1

eiqxj b†q1 bq1+q . (3.18)

These Fourier transformed number operators can be inserted into eq. (3.16). The relation
between nearest-neighboring sites, introduced in section 3.1.1 xj = xi + ej , is also used

H3 =
V

2

∑
〈i, j〉

 1
N

∑
k, k1

eikxi b†k1 bk1+k

( 1
N

∑
q, q1

eiqxj b†q1 bq1+q

)

=
V

2N2

∑
〈i, j〉

∑
k, k1, q, q1

ei(k+q)xi eiqej b†k1 bk1+k b
†
q1 bq1+q

=
V

2N2

∑
j

∑
k, k1, q, q1

N δq−k e
iqej b†k1 bk1+k b

†
q1 bq1+q

⇒ H3 =
V

N

∑
k, k1, q1, α

b†k1 bk1+k b
†
q1 bq1−k cos (kαa) (3.19)

The summation index α again accounts for the dimensionality of the considered lattice, as
introduced in section 3.1.1.
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3.1.4 Fourier transformed Hamiltonian

Since now, all three parts of the Hamiltonian eq. (3.1) have been Fourier transformed. To get
the whole Fourier transformation eq. (3.8, 3.12, 3.19) have to be summed. All the different
summation indices can be renamed as: q′1 → q , q′2 → q′ , k1 → q , q1 → q′ , q → k. This
is for sake of simplicity and to achieve a more compact form for the following Bogoliubov
Hamiltonian

H = −4t
∑
k,α

b†kbk cos (kαa) +
U

2N

∑
k, q, q′

b†q bq+k b
†
q′ bq′−k

[
1 + 2γ

∑
α

cos (kαa)

]
︸ ︷︷ ︸

=V(k)

. (3.20)

At renaming all the different summation indices, one has to be caution not to miss the different
natures of the summations. False renaming could lead to a false behavior of the system.

3.2 Analysis of the Bogoliubov Hamiltonian

With the Hamiltonian eq. (3.1) completely Fourier transformed, the analysis of the Bogoliubov
Hamiltonian eq. (3.20) can be done. For this reason different values for the indices k, q, q′ are
inserted. The analysis begins with the kinetic part of eq. (3.20)

Hkin = −2t
∑
k, α

(
b†k bk + b†−k b−k

)
cos (kαa) (3.21)

k = 0 : Hkin, 0 = −2t
(
b†0 b0 + b†0 b0

)
= −4tN0 . (3.22)

If all the summation indices k, q, q′ are set equally to zero, nearly all particles are in the
ground state. This means, that the creation b†0 and annihilation operator b0 of the ground
state with k = q = q′ = 0 can be treated as c-numbers and can be replaced by

√
N0, i.e.

b†0 = b0 =
√
N0. The number of particles in the ground state

√
N0 is such a large number,

that b†0 nearly behaves like b0. This justifies the replacement of b†0 and b0 by
√
N0. Further

we introduce a quantity, which lets us write later equations more compact: n0 = N0/N. This
quantity, n0, is the density of particles in the ground state, where N are the number of lattice
sites.

As a next step, the interaction part of the Bogoliubov Hamiltonian eq. (3.20)

Hint =
U

2N

∑
k, q, q′

b†q bq+k b
†
q′ bq′−k V (k) , (3.23)

is analyzed, by starting with the ground state. Here all the summation indices k, q, q′ are set
equally to zero. This gives the contribution of the interactions to the ground state energy,
since in this case only particles in the ground state interacting with each other are considered

Hint, 0 =
U

2N
b†0 b0 b

†
0 b0V (0) =

U

2
N0 n0 V (0) . (3.24)

Hence, the energy of the ground state can be calculated by summing eq. (3.22) and eq. (3.24)
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E0 = −4tN0 +
U

2
N0 n0 V (0) = N0

(
U

2
n0 V (0)− 4t

)
. (3.25)

Now the interaction part of the Bogoliubov Hamiltonian eq. (3.23) is further analyzed for the
case of interactions between particles in an excited state and in the ground state, as reasoned
in section 3.1. For this reason the values k, q, q′ are chosen in such a way, that only one set
of particles is in the excited state and the other set remains in the ground state

k = q = 0 : Hint, 1 =
U

2N

∑
q′

b†0 b0 b
†
q′ bq′V (0) =

U

2
n0

∑
q′

b†q′ bq′ V (0) , (3.26)

q′ = q = 0 : Hint, 2 =
U

2N

∑
k

b†0 bk b
†
0 b−kV (k) =

U

2
n0

∑
k

bk b−k V (k) . (3.27)

In the next step, the annihilation operator bq+k is permuted with the creation operator b†q′ .
This is possible, since they act on different k values[

bq+k , b
†
q′

]
= 0 . (3.28)

With the two operators permuted, the case with q = 0 and q′ = k can be considered

q = 0 , q′ = k : Hint, 3 =
U

2N

∑
k

b†0 b
†
k bk b0 V (k) =

U

2
n0

∑
k

b†k bk V (k) . (3.29)

The two operators bq+k and b
†
q′ can now be permuted back and hence the other possible values

for k, q, q′ are analyzed

q = −k , q′ = 0 : Hint, 4 =
U

2N

∑
k

b†−k b0 b
†
0 b−kV (k) =

U

2
n0

∑
k

b†−k b−k V (k) , (3.30)

q = −k , q′ = k : Hint, 5 =
U

2N

∑
k

b†−k b0 b
†
k b0 V (k) =

U

2
n0

∑
k

b†−k b
†
k V (k) , (3.31)

q′ = k = 0 : Hint, 6 =
U

2N

∑
q

b†q bq b
†
0 b0 V (0) =

U

2
n0

∑
q

b†q bq V (0) . (3.32)

The terms, where the summations are carried out for the values q and q′ can be renamed as
summations carried out for all possible k-values. This can be done, since all possible values
for q and q′ are considered with a summation over k. The equations (3.26) and (3.32) then
can be written as

Hint, 1 =
U

4
n0 V (0)

∑
k

(
b†k bk + b†−k b−k

)
, (3.33)

Hint, 6 =
U

4
n0 V (0)

∑
k

(
b†k bk + b†−k b−k

)
. (3.34)

It has to be kept in mind, that the number of particles in the system N is fixed. Thus the
number of particles in the ground state N0 can be written as
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N0 = N− 1
2

∑
k 6=0

(
b†k bk + b†−k b−k

)
. (3.35)

The number of particles in the ground state can now be expressed by eq. (3.35). Terms which
appear linearly in N0 can directly be expressed as N the number of particles in the system,
because N0 is such a larger number that it is in the order of N. Only terms which appear
in quadratic order in N0 have to be replaced by eq. (3.35). Inserting this into the ground
state energy of a dilute Bose gas eq. (3.25) and keeping only linear terms in the creation and
annihilation operators, thus gives

E0 =
U

2N
N2

V (0)− U

2N
N
∑
k 6=0

(
b†k bk + b†−k b−k

)
V (0)− 4tN +O

(
b† 2
k , b2k

)
. (3.36)

Higher orders of creation and annihilation operators are neglected, since only weakly excited
states are considers.

To finally achieve the Bogoliubov Hamiltonian for a dilute Bose gas, equations (3.21, 3.27,
3.29 - 3.31, 3.33 - 3.34) have to be summed

H = E′ +
1
2

∑
k

{
E′k

(
b†k bk + b†−k b−k

)
+ V ′k

(
b†k b
†
−k + b−k bk

)}
, (3.37)

where

E′ = N
(
U

2
n V (0)− 4t

)
(3.38)

E′k = 2 εk + U n V (k) = −4t
∑
α

cos (kαa) + U n

(
1 + 2γ

∑
α

cos (kαa)

)
(3.39)

V ′k = U n V (k) = U n

(
1 + 2γ

∑
α

cos (kαa)

)
, (3.40)

and n = N/N being the particle density.

The presented Bogoliubov Hamiltonian eq. (3.37) is obviously not diagonal. To diagonalize
it, a set of new operators are introduced, similarly done in [1],

bk =
1√

1−A2
k

(
αk +Ak α

†
−k

)
, b†k =

1√
1−A2

k

(
α†k +Ak α−k

)
(3.41)

b−k =
1√

1−A2
k

(
α−k +Ak α

†
k

)
, b†−k =

1√
1−A2

k

(α−k +Ak αk) (3.42)

where the introduced operators α†±k , α±k are again creation and annihilation operators. The
coefficient Ak has to be calculated in such a way, that the Hamiltonian eq. (3.37) becomes
diagonal.
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Now the introduced relations between the old operators b±k , b†±k and the new operators α±k,
α†±k eq. (3.41 + 3.42) can be inserted into eq. (3.37)

Hα = E′ +
1
2

∑
k

1
1−A2

k

{(
E′k
(
1 +A2

k

)
+ 2Ak V ′k

) (
α†−k α−k + α†k αk

)
+
(
2E′k Ak + V ′k

(
1 +A2

k

)) (
α†k α

†
−k + αk α−k

)
+ 2Ak

(
E′k Ak + V ′k

)}
.

(3.43)

In the next step, the coefficient Ak is determined in such a way, that the off-diagonal term(
α†k α

†
−k + αk α−k

)
vanishes

(
2E′k Ak + V ′k

(
1 +A2

k

))︸ ︷︷ ︸
=0

(
α†k α

†
−k + αk α−k

)
︸ ︷︷ ︸

6=0

!= 0 , (3.44)

the operators α†±k , α±k can not become zero, hence

2E′k Ak + V ′k
(
1 +A2

k

)
= 0

⇒ Ak = −
E′k
V ′k
±

√
E′ 2k
V ′ 2k
− 1 , (3.45)

where only one solution for Ak is kept for the further calculation

Ak = −
E′k
V ′k

+

√
E′ 2k
V ′ 2k
− 1 , (3.46)

since the other solution for Ak is physically irrelevant.

With the calculated value for Ak eq. (3.46) being inserted into the not-diagonal Hamiltonian
Hα eq. (3.43), the diagonal Bogoliubov Hamiltonian is obtained

Hα = E′ +
1
2

∑
k

ε(k)
(
α†−k α−k + α†k αk

)
− 1

2

∑
k

(
E′k −

√
E′ 2k − V ′ 2k

)
. (3.47)

The dispersion relation ε(k) is hereby

ε(k) =
√
E′ 2k − V ′ 2k . (3.48)

The coefficient E′ is as defined in eq. (3.38), E′k as in eq. (3.39) and V ′k as in eq. (3.40).
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3.2.1 Calculation of the Instability

To calculate the instability, it is necessary, that the dispersion relation ε(k) in eq. (3.47) has to
vanish. A disappearing dispersion relation at a certain value of γ, the ratio between nearest-
neighbor and on-site interaction, means, that the system becomes unstable at this ratio. The
instability is the first sign of a phase transition to some kind of ordering of the boson. This
also means, that a symmetry-breaking occus, because there is no diagonal long-range order in
the superfluid phase. At the onset of the instability, some kind of structure sets in. What we
suppose this structure is, will be argued later. For the instability to happen, there has to be

ε(k) =
√
E′ 2k − V ′ 2k

!= 0 . (3.49)

Next, the equations (3.39) and (3.40) are inserted into eq. (3.49) and further simplified

0 =

[(
−4t

∑
α

cos (kαa) + U n

(
1 + 2γ

∑
α

cos (kαa)

))2

−

(
U n

(
1 + 2γ

∑
α

cos (kαa)

))2]1/2

−2t

(
z

2
−
∑
α

cos (kαa)

)
= U n

(
1 + 2γ

∑
α

cos (kαa)

)
. (3.50)

With the simplified eq. (3.50), it can be solved for the desired ratio γ

− 2t
Un

(
z

2
−
∑
α

cos (kαa)

)
= 1 + 2γ

∑
α

cos (kαa)

γ = − t

Un
∑

α cos (kαa)

(
z

2
−
∑
α

cos (kαa)

)
− 1

2
∑

α cos (kαa)
. (3.51)

For a further simplification, it has to be mentioned, that the number of nearest neighbors z
can be expressed as

z = −2
∑
α

cos (kαa) . (3.52)

This is possible, because the function −2
∑

α cos (kαa) has its maximum value at the boundary
of the first Brillouin zone k = π/a. Depending on the dimensionality of the lattice,

∑
α

accounts for that, the possible values for the function −2
∑

α cos (kαa) are 2 in 1D, 4 in 2D
and 6 in 3D, which is exactly the number of nearest neighboring sites in the given dimension.
Inserting the relation eq. (3.52) into eq. (3.51) reveals

γ =
2t
Un

+
1
z
. (3.53)

Hence, the system of a dilute Bose gas becomes unstable, if the ratio γ of nearest-neighbor
and on-site interaction is tuned to eq. (3.53). This is the first sign of an appearance of a new
possible phase in the system.
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Chapter 4

Mean-field Calculations for Rotor
Model

In chapter 3 the instability of the dispersion relation was calculated in a dilute Bose gas. In
this regime, small filling factors n ≥ 1 were considered. We are now interested in a regime
with high filling factors, i.e. n � 1. This means, the presented Bose-Hubbard Hamiltonian
eq. (2.18) becomes invalid and we have to use the Rotor-Hamiltonian HRotor eq. (2.28), as
introduced in section 2.4.

4.1 Deriving the Rotor-Model

We consider a regime with high filling factors n � 1. We are interested on how the system
behaves, when each lattice site i contains a particle density ni, which is much larger than
one. The particle density ni consists out of a mean number of particles n, which is fixed,
and mean-field fluctuations δni. The mean-field fluctuations δni are small compared to the
mean number of particles n. The total number of particles in the system is fixed, thus the
calculation is carried out in the canonical ensemble, i.e. the chemical potential µ = 0.

As mentioned in section 2.4, we now carry out the derivation of the Rotor-Hamiltonian.
Therefore, we start with the extended Bose-Hubbard Hamiltonian eq. (2.18) in a homogeneous
system with µ = 0 and transform it into a Rotor-Hamiltonian. The extended Bose-Hubbard-
Hamiltonian, for our considerations, reads

H = −t
∑
〈i, j〉

(
b†ibj + b†jbi

)
+
U

2

∑
i

n̂i (n̂i − 1) +
1
2

∑
i 6=j

Vij n̂in̂j (4.1)

where t is the hopping parameter, b†i the annihilation, b
†
i the creation operator for particles on

lattice site i or j, U the on-site interaction, n̂i the number operator for lattice site i or j and
Vij is the neighbor interaction. For the following calculations we only assume nearest-neighbor
interactions, thus Vij → V .

For the further derivation, we replace each creation and annihilation operator by the following
ansatz, as argued in section 2.4

31



32 CHAPTER 4. MEAN-FIELD CALCULATIONS FOR ROTOR MODEL

bi =
√
n+ δni e

iϕi b†i =
√
n+ δni e

−iϕi (4.2)

where n is the mean number of particles per lattice site and δni is the mean-field fluctuation
of particles at lattice site i or j. The ansatz is justified, because we consider a regime with
high filling factors, thus each lattice contains a quasi-condensate, which can be described by
a macroscopic wave function.

4.1.1 Calculation of the kinetic part

Now the different parts of the Bose-Hubbard Hamiltonian eq. (4.1) are transformed, by in-
serting the ansatz eq. (4.2). Starting with the kinetic part

H1 = −t
∑
〈i, j〉

(
b†ibj + b†jbi

)
= −t

∑
〈i, j〉

[√
n+ δni e

−iϕi
√
n+ δnj e

iϕj +
√
n+ δnj e

−iϕj
√
n+ δni e

iϕi
]

= −tn
∑
〈i, j〉

√(
1 +

δni
n

)(
1 +

δnj
n

)[
e−i(ϕi−ϕj) + ei(ϕi−ϕj)

]

= −tn
∑
〈i, j〉

√(
1 +

δni
n

)(
1 +

δnj
n

)
2 cos (ϕi − ϕj) . (4.3)

Since we only consider small deviations of the neighboring phases ϕi and ϕj , the difference
ϕi −ϕj is small. Hence, the cosine cos (ϕi − ϕj) in eq. (4.3) can be expanded to second order

cosx ≈ 1− x2

2
. (4.4)

The expansion is only carried out to second order, because higher orders are irrelevant for the
further calculation.

As mentioned before, the mean-field fluctuations δni are small compared to the mean number
of particles in a lattice site n, thus, the root can be expanded to second order too

√
1 + x ≈ 1 +

x

2
− x2

8
. (4.5)

Again, the expansion is only carried out to second order, because the contributions of higher
orders can be neglected.

After inserting the expansions eq. (4.4 + 4.5) into the Hamiltonian eq. (4.3), it reads

H1 = −2tn
∑
〈i, j〉

(
1 +

1
2
δni
n
− 1

8

(
δni
n

)2
)(

1 +
1
2
δnj
n
− 1

8

(
δnj
n

)2
)

×
(

1− (ϕi − ϕj)
2

)
. (4.6)
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For the further calculation, all terms containing δni in a linear order and higher order than
O
{
δn2

i

}
are neglected, since they only mean a chemical shift. This means, only quadratic

orders in δni are kept. Now the above Hamiltonian eq. (4.6) becomes

H1 = −2tn
∑
〈i, j〉

[
1− 1

8

(
δnj
n

)2

+
1

4n2
δniδnj −

1
8

(
δni
n

)2
]

+tn
∑
〈i, j〉

[
1− 1

8

(
δnj
n

)2

+
1

4n2
− 1

8

(
δni
n

)2
]

(ϕi − ϕj)2 (4.7)

Next, all terms of the form δn2
i (ϕi − ϕj)2 are neglected, because their contribution is of higher

order, than we are interested in

H1 =− 2tn
∑
〈i, j〉

[
−1

8

((
δni
n

)2

+
(
δnj
n

)2
)

+
1

4n2
δniδnj −

1
2

(ϕi − ϕj)2
]
− 2tznN .

(4.8)

The summation of
∑
〈i, j〉 1 was done and contributes the last term in eq. (4.8). The quantity

z is the number of nearest neighbors to a certain lattice site and N is the number of lattice
sites in the system.

4.1.2 Calculation of the on-site interaction part

Now the second part of the Hamiltonian eq. (4.1) is calculated, which is the on-site interaction
part. Again the ansatz eq. (4.2) is inserted. The commutation relation for bosonic operators
has to be applied at first, before inserting the ansatz

H2 =
U

2

∑
i

n̂i (n̂i − 1)→ U

2

∑
i

b†ib
†
i bibi . (4.9)

Then, the ansatz eq. (4.2) can be inserted

H2 =
U

2

∑
i

b†ib
†
i bibi

=
U

2

∑
i

(n+ δni) (n+ δni)

=
U

2
Nn2 +

U

2

∑
i

(2n δni) +
U

2

∑
i

δni δni , (4.10)

where N is the number of lattice sites in the system. Here, once more, the part with the linear
order in δni can be neglected, because it again means a chemical shift. With this, the second
part eq. (4.10) becomes

H2 =
U

2
Nn2 +

U

2

∑
i

δni δni . (4.11)
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4.1.3 Calculation of the nearest-neighbor interaction part

The third part of the Bose-Hubbard Hamiltonian eq. (4.1) is now being calculated. Again,
the ansatz eq. (4.2) is inserted

H3 =
V

2

∑
〈i, j〉

n̂in̂j

=
V

2

∑
〈i, j〉

(n+ δni) (n+ δnj)

=
V

2
zNn2 +

V

2

∑
〈i, j〉

(n (δni + δnj) + δni δnj) , (4.12)

where z is the number of nearest neighbors.

With the same reasoning as in sec. 4.1.2, the part with linear order in δni is neglected. The
third part then reads

H3 =
V

2
zNn2 +

V

2

∑
〈i, j〉

δniδnj . (4.13)

4.1.4 The Rotor-Hamiltonian

As the calculated parts of the Hamiltonians eq. (4.8, 4.11, 4.13) being summed, we get the
Rotor-Hamiltonian for a system with high filling factors n

H =E0 − 2tn
∑
〈i, j〉

[
1

4n2
δniδnj −

1
8

((
δni
n

)2

+
(
δnj
n

)2
)
− 1

2
(ϕi − ϕj)2

]

+
U

2

∑
i

δni δni +
V

2

∑
〈i, j〉

δni δnj ,

(4.14)

where

E0 = 2tnzN
[ n

4tz
(U + zV )− 1

]
, (4.15)

is the energy of the ground state in this system.
At this point, it should be reminded, that we derived the Rotor-Hamiltonian eq. (4.14) out
of the extended Bose-Hubbard Hamiltonian eq. (4.1) by expanding the root

√
n+ δni and

the cosine cos (ϕi − ϕj) to second order and neglecting terms of linear order in δni, terms
containing a mixture of ϕi · δni and terms of higher order than quadratic.

4.2 Fourier Transformation of the Rotor-Hamiltonian

With the Rotor-Hamiltonian calculated, a Fourier transformation has to be performed to reach
the desired dispersion relation. Following Fourier transformations are valid for the phase ϕi
and the mean-field fluctuation δni
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ϕi =
1√
N

∑
k

eikxi ϕk , δni =
1√
N

∑
k

eikxi δnk , (4.16)

where the factor 1/
√
N is the normalization constant and N is the number of lattice sites.

With these definitions eq. (4.16), the relevant parts of the Rotor-Hamiltonian eq. (4.14) are
transformed

(ϕi − ϕj)2 =
1
N

2
∑
k

ϕk ϕ−k −
∑
k, q

ei(kxi−qxj) ϕk ϕ−q −
∑
k, q

ei(qxj−kxi) ϕq ϕ−k

 . (4.17)

The nearest neighboring sites xj can be expressed as xj = xi+ ej , where ej is an unity vector.
This was introduced in section 3.1.1. Inserting this into eq. (4.17) gives

=
1
N

2
∑
k

ϕk ϕ−k −
∑
k, q

(
ei(k−q)xi ϕk ϕ−q e

−iqej + e−i(k−q)xi ϕq ϕ−k e
iqej
) . (4.18)

The next relevant parts of the Rotor-Hamiltonian eq. (4.14) are

δni δnj =
1
N

∑
k′, q′

ei(k
′xi+q′xj) δnk′ δnq′ (4.19)

=
1
N

∑
k′, q′

ei(k
′+q′)xi eiq

′ej δnk′ δnq′ , (4.20)

and

δni δni =
1
N

∑
k

eikxi δnk
∑
q

eiqxi δnq

=
1
N

∑
k, q

ei(k+q)xi δnk δnq . (4.21)

4.2.1 Fourier Transformation of the kinetic part

Now these Fourier transformations can be inserted into the Rotor-Hamiltonian parts eq. (4.8,
4.11, 4.13) to compute the corresponding parts in k-space.
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We begin with the kinetic part eq. (4.8)

H1 = −2tn
∑
〈i, j〉

[
1

4n2

 1
N

∑
k′,q′

ei(k
′+q′)xi eiq

′ej δnk′ δnq′


− 1

8n2

 1
N

∑
k, q

ei(k+q)xi δnk δnq

− 1
8n2

 1
N

∑
k′, q′

ei(k
′+q′)xj δnk′ δnq′


− 1

2N

2
∑
k

ϕk ϕ−k −
∑
k, q

(
ei(k−q)xi ϕk ϕ−q e

−iqej + e−i(k−q)xi ϕq ϕ−k e
iqej
)]

−2tnzN

= −2tn
∑
j

[
1

4n2 N

∑
k′, q′

N δ−k′ q′ e
iq′ej δnk′ δnq′

− 1
8n2 n

∑
k, q

N δ−k q δnk δnq −
1

8n2 N

∑
k′, q′

z ei(k
′+q′)xj δnk′ δnq′

− 1
2N

2
∑
k

N ϕk ϕ−k −
∑
k, q

N δk q e
−iqej ϕk ϕ−q −

∑
k, q

N δk q e
iqej ϕq ϕ−k

]− 2tnzN

= −2tn

[
1

4n2

∑
k′, α

2 cos
(
k′αa

)
δnk′ δn−k′

− z

8n2

∑
k

δnk δn−k −
z

8n2N

∑
k′, q′

N δ−k′ q′ δnk′ δnq′

−1
2

2z
∑
k

ϕk ϕ−k −
∑
k, α

4 cos (kαa)ϕk ϕ−k

]− 2tnzN , (4.22)

where a is the lattice constant, as introduced in section 3.1.1.

All summation indices k′ can be renamed as k, since the summations have to be carried out
over all possible k-values. This gives, after further simplification

H1 = −2tn

[
1

2n2

∑
k, α

δnk δn−k cos (kαa)− z

4n2

∑
k

δnk δn−k

−

z∑
k

ϕk ϕ−k − 2
∑
k, α

ϕk ϕ−k cos (kαa)

]− 2tnzN

= − t
n

∑
k, α

δnk δn−k cos (kαa) +
tz

2n

∑
k

δnk δn−k

+2tn
∑
k

ϕk ϕ−k

[
z − 2

∑
α

cos (kαa)

]
− 2tnzN . (4.23)

Finally we get the Fourier transformed kinetic part of the Rotor-Hamiltonian
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H1 =− 2tnzN + 2tn
∑
k

ϕk ϕ−k

[
z − 2

∑
α

cos (kαa)

]

+
t

n

∑
k

δnk δn−k

[
z

2
−
∑
α

cos (kαa)

]
.

(4.24)

4.2.2 Fourier Transformation of the interaction parts

Now that the kinetic part of the Rotor-Hamiltonian H1 has been Fourier transformed, the
next step is to transform the on-site interaction part H2 eq. (4.11) by using the Fourier
transformation eq. (4.21)

H2 =
U

2
Nn2 +

U

2

∑
i

δni δni

=
U

2
Nn2 +

U

2

∑
i

1√
N

∑
k

eikxi δnk
1√
N

∑
q

eiqxi δnq

=
U

2
Nn2 +

U

2N

∑
i, k, q

ei(k+q)xi δnk δnq

=
U

2
Nn2 +

U

2N

∑
k, q

N δ−k q δnk δnq . (4.25)

Hence, the Fourier transformed on-site interaction part is obtained

H2 =
U

2
Nn2 +

U

2

∑
k

δnk δn−k . (4.26)

In the following, the third part of the Rotor-Hamiltonian eq. (4.14), for the nearest-neighbor
interaction, is due. For this case the Fourier transformation eq. (4.20) is needed

H3 =
V

2
zNn2 +

V

2

∑
〈i, j〉

δni δnj

=
V

2
zNn2 +

V

2

∑
〈i, j〉

1√
N

∑
k

eikxi δnk
1√
N

∑
q

eiqxj δnq

=
V

2
zNn2 +

V

2N

∑
〈i, j〉

∑
k, q

ei(kxi+qxj) δnk δnq

=
V

2
zNn2 +

V

2N

∑
〈i, j〉

∑
k, q

ei(k+q)xi eiqej δnk δnq

=
V

2
zNn2 +

V

2N

∑
j, k, q

N δ−k q e
iqej δnk δnq

=
V

2
zNn2 +

V

2

∑
j, k

e−ikej δnk δn−k . (4.27)



38 CHAPTER 4. MEAN-FIELD CALCULATIONS FOR ROTOR MODEL

It follows the last part for the Rotor-Hamiltonian, the Fourier transformed nearest-neighbor
interaction part

H3 =
V

2
zNn2 + V

∑
k, α

δnk δn−k cos (kαa) . (4.28)

4.2.3 The Fourier transformed Rotor-Hamiltonian

The whole Fourier transformed Rotor-Hamiltonian is obtained by summing all three Fourier
transformed parts eq. (4.24, 4.26, 4.28)

H = E0 + 2tn
∑
k

ϕk ϕ−k

[
z − 2

∑
α

cos (kαa)

]

+
t

n

∑
k

δnk δn−k

[
z

2
−
∑
α

cos (kαa)

]

+
U

2

∑
k

δnk δn−k + V
∑
k, α

δnk δn−k cos (kαa) , (4.29)

where E0 is as in eq. (4.15) defined.

Thus, the Rotor-Hamiltonian in k-space is

H =E0 + 2tn
∑
k

ϕk ϕ−k

[
z − 2

∑
α

cos (kαa)

]

+
∑
k

δnk δn−k

[
t

n

(
z

2
−
∑
α

cos (kαa)

)
+
U

2

(
1 + 2γ

∑
α

cos (kαa)

)]

and γ is the ratio of the nearest-neighbor and on-site interaction V/U .

4.3 Diagonalization of the Rotor-Hamiltonian

Still due is the calculation of the dispersion relation for a system with high filling factors n.
A step in this direction was the realization of a Rotor-Hamiltonian in real space eq. (4.14) for
a system, where each lattice site contains a quasi-condensate, which is described by a macro-
scopic wave function. The next step was the Fourier transformation of this Rotor-Hamiltonian
eq. (4.30). The final step, which is up next, is to diagonalize the Fourier transformed Rotor-
Hamiltonian eq. (4.30), to finally achieve the desired dispersion relation.

Since the Rotor-Hamiltonian eq. (4.30) is of quadratic order, it can be solved by diagonalizing,
similar to the harmonic oscillator. For a further introduction in the solving mechanism of the
harmonic oscillator by diagonalization, see [44]. To do this, creation and annihilation operators
are introduced for the phase ϕk,−k and mean-field fluctuation δnk,−k , similarly as in [44]. The
phase ϕk,−k of the quasi-condensate can be interpreted as the momentum p and the mean-field
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fluctuation δnk,−k as the position x of the particles in the harmonic oscillator system. Thus,
following relations between the old values ϕk,−k , δnk,−k and the new operators are made

ϕk = iβk
(
a†k − a−k

)
, (4.30)

ϕ−k = iβ−k
(
a†−k − ak

)
, (4.31)

δnk = γk

(
ak + a†−k

)
, (4.32)

δn−k = γ−k

(
a−k + a†k

)
, (4.33)

where βk and γk are coefficients, which still need to be calculated. The operator a†k creates
a particle with momentum k and the operator ak annihilates a particle with momentum k.
To determine the coefficients βk and γk, it is necessary to know, that the phase ϕk and the
mean-field fluctuation δnk are connected via following commutator relation

[ϕk , δnk] = i . (4.34)

It has to be kept in mind, that γ 6= γk. The coefficient γk is for diagonalization purposes and
γ is the ratio of the nearest-neighbor to on-site interaction. With the commutator relation
eq. (4.34) above, we achieve a relation between βk and γk

βk = − 1
2γk

. (4.35)

This relation between βk and γk is inserted into eq. (4.30 + 4.31)

ϕk = − i
2γk

(
a†k − a−k

)
, (4.36)

ϕ−k = − i
2γ−k

(
a†−k − ak

)
. (4.37)

By using the commutator relation eq. (4.34) and inserting it into eq. (4.30 + 4.31), we ob-
tained that the equations for the phase ϕk,−k eq. (4.36, 4.37) and mean-field fluctuation δnk,−k
eq. (4.32, 4.33) only depend of the coefficient γk. The coefficient γk is determined in a later
step.

Finally the equations (4.32, 4.33, 4.36, 4.37) are inserted into the Rotor-Hamiltonian eq. (4.30)



40 CHAPTER 4. MEAN-FIELD CALCULATIONS FOR ROTOR MODEL

H = E0 − 2tn
∑
k

1
4 |γk|2

(
a†k a

†
−k − a†k ak − a−k a

†
−k + a−k ak

)[
z − 2

∑
α

cos (kαa)

]
︸ ︷︷ ︸

=: εk

+
∑
k

|γk|2
(
ak a−k + ak a

†
k + a†−k a−k + a†−k a

†
k

)
×

[
t

n

(
z

2
−
∑
α

cos (kαa)

)
+
U

2

(
1 + 2γ

∑
α

cos (kαa)

)]
︸ ︷︷ ︸

=:Vk

= E0 −
tn

2

∑
k

1
|γk|2

(
−a†k ak − a−k a

†
−k

)
εk +

∑
k

|γk|2
(
ak a

†
k + a†−k a−k

)
Vk

− tn
2

∑
k

1
|γk|2

(
a†k a

†
−k + a−k ak

)
εk +

∑
k

|γk|2
(
ak a−k + a†−k a

†
k

)
Vk . (4.38)

To further diagonalize the Rotor-Hamiltonian eq. (4.38), the off-diagonal elements have to
vanish. This is accomplished by calculating the coefficient γk

⇒ 0 = − tn
2

∑
k

1
|γk|2

(
a†k a

†
−k + a−k ak

)
+
∑
k

|γk|2
(
ak a−k + a†−k a

†
k

)
Vk

0 =
∑
k

(
− tn

2
1
|γk|2

+ |γk|2 Vk
)

︸ ︷︷ ︸
=0

(
a†k a

†
−k + a−k ak

)
. (4.39)

Since the operators a†±k , a±k can not become zero, the bracket has to be always zero. This
leads to

tn

2
εk

|γk|2
= |γk|2 Vk

⇒ |γk| = ±
(
tn

2
εk
Vk

)1/4

. (4.40)

The calculated coefficient γk of eq. (4.40) has to be inserted into the Rotor-Hamiltonian
eq. (4.38) to further reduce it

H =E0 +
tn

2

∑
k

(
tn

2
εk
Vk

)−1/2 (
a†k ak + a−k a

†
−k

)
εk

+
∑
k

√
tn

2
εk
Vk

(
ak a

†
k + a†−k a−k

)
Vk .

(4.41)

The presented Rotor-Hamiltonian eq. (4.41) can be diagonalized further by applying the com-
mutator relation for the creation a†±k and annihilation operator a±k
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[
a†k , ak

]
= −1 . (4.42)

With this, the Rotor-Hamiltonian eq. (4.41) is finally diagonalized and we achieve the energy
spectrum for this system

H = E0 +
∑
k

Ek

(
a†k ak +

1
2

)
. (4.43)

Since the summation
∑

k runs over all possible k-values, operators a−k can be renamed as ak.
By this renaming, no values for k are missed or lost. The Rotor-Hamiltonian eq. (4.43) now
is of the same form as the harmonic oscillator Hamiltonian, see [44]. The ground state energy
E0 is as defined in eq. (4.15). The dispersion relation Ek for a system with high filling factors
n� 1 reads

Ek =
√

8tnVkεk , (4.44)

where the coefficients Vk and εk are

Vk =
t

n

(
z

2
−
∑
α

cos (kαa)

)
+
U

2

(
1 + 2γ

∑
α

cos (kαa)

)
(4.45)

εk =

[
z − 2

∑
α

cos (kαa)

]
. (4.46)

4.4 Calculation of the Instability

Until now, we have calculated the energy spectrum eq. (4.43) of a system with high filling
factors n � 1, where each lattice site contains a quasi-condensate. The question, which now
arises is: Is the system stable in the presence of the mean-field fluctuations δn±k and the
appearance of nearest-neighbor interaction V or does an instability in its dispersion relation
eq. (4.44) occur? An instability in the dispersion relation means, that at some certain ratio γ
it becomes zero. This indicates a quantum phase transition.
We are now interested in the calculation of the instability. For this, we have to determine
the ratio of γ = V/U where the dispersion relation Ek of eq. (4.44) becomes zero, again. The
dispersion relation Ek eq. (4.44) can be brought into following form

E′k =

{[
4t2
(
z − 2

∑
α

cos (kαa)

)
+ 4tnU

(
1 + 2γ

∑
α

cos (kαa)

)]
︸ ︷︷ ︸

E′1

×

[
z − 2

∑
α

cos (kαa)

]
︸ ︷︷ ︸

E′2

}
.

(4.47)

Since the quantity E′2 is not always zero, only at certain values for k, the quantity E′1 has to
be
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E′1 =

√√√√4t2
[
z − 2

∑
α

cos (kαa)

]
+ 4tnU

[
1 + 2γ

∑
α

cos (kαa)

]
!= 0

−t

[
z − 2

∑
α

cos (kαa)

]
= Un

(
1 + 2γ

∑
α

cos (kαa)

)

⇒ γ = − t

Un
∑

α cos (kαa)

(
z

2
−
∑
α

cos (kαa)

)
− 1

2
∑

α cos (kαa)
. (4.48)

As introduced in section 3.2.1, the following relation for the number of nearest neighbors z is
valid

z = −2
∑
α

cos (kαa) . (4.49)

This relation eq. (4.49) is inserted into eq. (4.48) and reveals the ratio γ for which the instability
in the dispersion relation Ek eq. (4.44) occurs

γ =
2t
Un

+
1
z
. (4.50)

This has the following consequence for the system: At low ratios γ ≈ 1, the nearest-neighbor
interaction is of the order of the on-site interaction. The bosons are in the superfluid phase,
thus they can freely hop between lattice site, i.e. delocalize over the lattice. Despite the
hopping, there is always a large number of particles in each lattice site. As the ratio γ is being
raised, the influence of the nearest-neighbor interaction becomes stronger. The bosons are
still free to hop between lattice site, but are aware of this influence. As the nearest-neighbor
interaction is getting stronger, more and more bosons become confined to a certain lattice
site. Many are still free to hop, in spite of the strong nearest-neighbor interaction. When
the critical ratio γ eq. (4.50) is reached the superfluid phase becomes unstable and leads to a
phase transition.

In figure 4.1 the dispersion relation is plotted for two different kind of ratios γ. The top figure
shows the dispersion relation for γ = 1. For that case, the system is in the superfluid phase.
The bottom figure shows the dispersion relation for the critical γ-ratio eq. (4.50). Here, the
system undergoes an instability, which is a sign for a phase transition.
At this point, the calculated value for the critical ratio γ eq. (4.50) within the Rotor-Model
should be compared to the value of the Bogoliubov theory eq. (3.53). In the Bogoliubov
description only a low filling factor n ∝ 1 is considered, where as in the Rotor-Model, the
filling factor is much larger than one n � 1. The arising question now is, how does this
discrepancy affect the critical ratio of nearest-neighbor to on-site interaction and therefore the
occurrence of the instability of the superfluid phase? We find, that the two ratios are identical,
despite the two different descriptions. Never the less, we have to keep the properties of the
two different models in mind, when considering one of them.
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Figure 4.1: Top: Dispersion relation in units of k = π/a, where a is the lattice constant. The
ratio γ = 1, thus the system is in the superfluid phase. Bottom: Dispersion relation in units
of k = π/a. In this case, the system is tuned to the critical ratio γ of eq. (4.50). Here the
superfluid phase becomes unstable and a phase transition occurs.
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4.5 Calculating the number of particles

So far we have assumed our optical lattice is constructed of an one atomic basis. Therefore
we did not make any comments about the possible structures on the optical lattice. With
this assumption we saw, that the superfluid phase suffers an instability. In the next step, we
propose a possible structure on the lattice. Since the one atomic basis is unstable at a critical
ratio γc, we suggest a two atomic basis. This proposal has to be investigated, if it is viable on
an optical lattice. In the following calculations and considerations this is due.

In section 4.3 we have calculated the energy spectrum for a system with high filling factors
n. The previous section 4.4 investigated the stability for that system and revealed, that it
becomes unstable at a critical ratio γ eq. (4.50). In the calculations above, we have used the
quantity ni, the particle density at a certain lattice site, without even knowing the nature of
this quantity. As the next step we are going to determine ni and if a realization of a two
atomic basis is doable. The mean number of particles per lattice site is calculated by

ni = 〈b†i bi〉 , (4.51)

where b†i is the creation operator and bi the annihilation operator for a particle in lattice site
i.The brackets 〈〉 indicate, that the mean value is carried out.

The mean-field operators 〈bk〉 are known for two k-values, k0 = 0 and k1 = π/a, i.e. at the
center of the first Brillouin zone k0 = 0 and at the boundary of the first zone k1 = π/a, a is
the lattice constant. The values for these operators are

〈bk0〉 = c eiϕ0 , 〈b†k0〉 = c∗ e−iϕ0 (4.52)

〈bk1〉 = d eiϕ1 , 〈b†k1〉 = d∗ e−iϕ1 (4.53)

where c, d are constants, which have to be calculated, see section 4.6.1. The quantities ϕ0 , ϕ1

are the phases at k0 = 0 and k1 = π/a. The symbol ∗ indicates, that the complex conjugate
of the according quantity has to be taken.

Since we are not aware of the values for the creation 〈b†i 〉 and annihilation operator 〈bi〉 in real
space, we have to Fourier transform the number of particles ni at first

nq =
∑
i

e−iqxi ni (4.54)

=
∑
i

e−iqxi 〈b†i bi〉 , (4.55)

where the Fourier transformations for the creation and annihilation operators read

〈bi〉 = l
∑
i

eik
′xi 〈bk′〉 , 〈b†i 〉 = l∗

∑
i

e−ikxi 〈b†k〉 , (4.56)

where l, l∗ are normalization constants. These constants are determined by the fact, that the
two operators b†i , bi obey the commutator relation
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[
b†i , bi

]
= −1 . (4.57)

This gives the following result for the normalization constants

l = l∗ =
1√
N
, (4.58)

thus, the constants in eq. (4.56) can be replaced by their calculated values eq. (4.58).

At the next step, the Fourier transformations for the creation and annihilation operators
eq. (4.56) are inserted into the Fourier transformation for the number operator eq. (4.55)

nq =
∑
i

e−iqxi

(
1√
N

∑
k

e−ikxi 〈b†k〉

)(
1√
N

∑
k′

eik
′xi 〈bk′〉

)

=
1
N

∑
i, k, k′

e−ixi(q+k−k′) 〈b†k bk′〉

=
1
N

∑
k, k′

N δ(q+k) k′ 〈b
†
k bk′〉

=
∑
k

〈b†k bq+k〉 , (4.59)

hence, we achieved the Fourier transformation for the number of particles nq.

To finally get the number of particles per lattice site i, the Fourier transformation has to be
carried out backwards

ni =
1
N

∑
q

eiqxi nq

=
1
N

∑
q

eiqxi
∑
k

〈b†k bq+k〉

=
1
N

∑
q, k

eiqxi 〈b†k bq+k〉 , (4.60)

at this point, we accomplished to evaluate the number of particles at lattice site i, expressed
by the mean-field operators 〈b†k bq+k〉. Thus we are able to determine ni, because we know the
values of the mean-field operators at certain points in k-space.
With the number of particles per lattice site i eq. (4.60) calculated, an analysis of the possible
k, q-values has to be done

q = 0 :
1
N

(
〈b†k0 bk0〉+ 〈b†k1 bk1〉

)
=

1
N

(
|c|2 + |d|2

)
(4.61)

q =
π

a
:

1
N
ei
π
a
xi
(
〈b†k0 bk1〉+ 〈b†k1 bk0〉

)
=

1
N
ei
π
a
xi
(
c∗d e−iϕ0 eiϕ1 + d∗c e−iϕ1 eiϕ0

)
, (4.62)
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if the assumption is made, that c, d are all real quantities, i.e. c∗ = c and d∗ = d, then
eq. (4.62) becomes

=
c d

N
ei
π
a
xi
(
e−i(ϕ0−ϕ1) + ei(ϕ0−ϕ1)

)
=
c d

N

(
e−i(ϕ′−πa xi) + ei(ϕ

′+π
a
xi)
)
. (4.63)

Here we used the expression ϕ′ = ϕ0−ϕ1 and took advantage of the periodicity of the lattice
considered. This allows us to put −π

axi = +π
axi. With this, eq. (4.63) then becomes

1
N
ei
π
a
xi
(
〈b†k0 bk1〉+ 〈b†k1 bk0〉

)
= 2

c d

N
cos
(
ϕ′ +

π

a
xi

)
. (4.64)

If eq. (4.61 + 4.64) are summed, they reveal the number of particles at lattice site i

ni =
1
N

[
|c|2 + |d|2 + 2 c d cos

(
ϕ′ +

π

a
xi

)]
, (4.65)

where ϕ′ = ϕ0 − ϕ1 is the difference between the two phases at k0 = 0 and k1 = π/a.

4.5.1 Calculation of the mean-field number fluctuations

We still are not aware of the value for the mean-field fluctuations δni. One step closer was
the calculation of the number of particles at lattice site i eq. (4.65), because ni consists of the
mean number of particles n and δni. Thus, the mean-field fluctuations can be expressed as

δni = ni − 〈n〉 . (4.66)

where ni is the number of particles per lattice site i, as in eq. (4.65), and 〈n〉 is the mean
number of particle per lattice site.

There are two possible ways to determine the mean-field fluctuations δni, either by direct
calculation or by evaluating the mean number of particles per lattice site 〈n〉. For the following
consideration, we have chosen the latter possibility. Use of the Fourier transformations for the
mean-field operators eq. (4.56) is advantageous.

〈n〉 =
1
N

∑
i

〈b†i bi〉

=
1
N

∑
i

(
1√
N

∑
k′

e−ik′xi 〈b†k′〉

)(
1√
N

∑
k

e−ikxi 〈b†k〉

)

=
1
N2

∑
k

N δk k′ 〈b†k′ bk〉

=
1
N

∑
k

〈b†k bk〉 . (4.67)

Now, the possible k-values for the equation above eq. (4.67) are analyzed and inserted are the
possible mean fields of eq. (4.52, 4.53). We then obtain the mean number of particles 〈n〉
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〈n〉 =
1
N

(
|c|2 + |d|2

)
. (4.68)

The next step is to insert the calculated mean number of particles eq. (4.68) into the proposed
relation between the mean-field fluctuations δni and the number of particles at lattice site i
eq. (4.66), to achieve

δni =
2 c d
N

cos
(
ϕ′ +

π

a
xi

)
. (4.69)

For further calculations, normalized quantities c, d are introduced

c =
c√
N
, d =

d√
N
, (4.70)

they are normalized to the number of lattice sites N in the considered system.

As the normalized quantities c , d are inserted into the number of particles at lattice site i
eq. (4.65), we get

ni = 〈n〉+ δni (4.71)

=
(
c2 + d

2
)

+
(

2 c d cos
(
ϕ′ +

π

a
xi

))
. (4.72)

This has the following consequence for the system: Each lattice site is occupied by a mean
number of particles 〈n〉 as assumed in sec. 4.1, accompanied by a mean-field fluctuation δni.
The fluctuation δni depends on the lattice i and is driven by the phase difference ϕ′. The
phase difference has to be adjusted in such a way, that the fluctuations can be seen, i.e. they
have to be at the different lattice sites i. If ϕ′ is detuned, the fluctuations appear in between
the different lattice sites and have no effect on the mean number of particles 〈n〉. Hence,
the phase difference ϕ′ has to be chosen carefully. This counter checks our proposal of a two
atomic basis viability, since it can be realized by tuning the phase difference ϕ′ correctly.

4.6 Calculating the energy of the new groundstate

Until now, we have found, that a system with high filling factors n� 1 on an optical lattice
exhibits an instability in its dispersion relation and that number of particles per lattice site
fluctuates around its mean value 〈n〉. Next, we want to calculate the energy of the new ground
state of the system, after the instability in the dispersion relation happened. The instability
is the sign of a phase transition, see section 4.7 for further analysis of the nature of the phase
transition.

To determine the new ground state energy, we take the Rotor-Hamiltonian eq. (2.28) in a
homogeneous and canonical ensemble. Into this Hamiltonian

HRotor = −2t
∑
〈i, j〉

√
ninj cos (ϕi − ϕj) +

U

2

∑
i

n2
i +

V

2

∑
〈i, j〉

ninj , (4.73)

we plug in the ansatz for a two atomic basis, as mentioned in the previous section
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ni =
(
c+ d

)2
, (4.74)

nj =
(
c− d

)2
. (4.75)

As can be seen in the above equations, the fluctuations of particle numbers at the different
lattice sites are considered in the factors

(
c+ d

)
and

(
c− d

)
. The coefficients c , d are as

introduced in section 4.5.1 and still need to be computed.

Analyzing the first part

The first part of the Hamiltonian eq. (4.73) is the kinetic part. The ansatz eq. (4.74 + 4.75)
are inserted

H1 = −2t
∑
〈i, j〉

√(
c+ d

)2 (
c− d

)2 cos (ϕi − ϕj)

= −2t
(
c2 − d2

)∑
〈i, j〉

cos (ϕi − ϕj) . (4.76)

We carry out the evaluation, while being within a quasi-condensate at a lattice site i. Hence,
the phase difference ϕi − ϕj becomes zero. The first part then reads

H1 = −2ztN
(
c2 − d2

)
, (4.77)

where z is the number of nearest neighbors and N the number of lattice sites in the system.

Analyzing the second part

The second part considers the on-site interaction between particles at the same site i

H2 =
U

2

∑
i

n2
i . (4.78)

The Hamiltonian above has to be split into two parts, because there are two different possible
lattice sites available, one with a large number of particle ni and one with few nj . The
summation over all lattice sites i then also has to be split into two parts, one summing all
i-N/2 and one all j-N/2 sites. The Hamiltonian eq. (4.78) becomes, with inserting the ansatz
of equations (4.74 + 4.75)

H2 =
U

2

N/2∑
i

nini +
N/2∑
j

njnj

 (4.79)

=
U

2

N/2∑
i

(
c+ d

)2 (
c+ d

)2 +
N/2∑
j

(
c− d

)2 (
c− d

)2
=

UN
4

[(
c2 + d

2 + 2cd
)(

c2 + d
2 + 2cd

)
+
(
c2 + d

2 − 2cd
)(

c2 + d
2 − 2cd

)]
. (4.80)
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For further simplification, c2 + d
2 = n can be used, as in eq. (4.68) calculated. The on-site

interaction part thus becomes

H2 =
1
2
UNn2 + 2UN c2d2

. (4.81)

Analyzing the third part

The third part of the Hamiltonian accounts for the nearest-neighbor interactions. With the
ansatz eq. (4.74 + 4.75) put in, it gets

H3 =
V

2

∑
〈i, j〉

ninj

=
V

2

∑
〈i, j〉

(
c+ d

)2 (
c− d

)2
=

V

2
zN
(
c2 + d

2 + 2cd
)(

c2 + d
2 − 2cd

)
=

V

2
zN
(
n+ 2cd

) (
n− 2cd

)
. (4.82)

Thus, the third part of the Hamiltonian then becomes

H3 =
1
2
zVNn2 − 2zVN c2d2

. (4.83)

Now all three parts of the Hamiltonian can be written together, equations (4.77, 4.81, 4.83).
We achieve a Hamiltonian, which only depends of the normalized coefficients c and d

H
(
c, d
)

=
n2N

2
(U + zV )− 2tzN

(
c2 − d2

)
+ 2Nc2d2 (U − zV ) . (4.84)

For further calculations, the energy density of the ground state is introduced as

eg =
H
N

=
n2

2
(U + zV )− 2zt

(
c2 − d2

)
+ 2 c2d2 (U − zV ) . (4.85)

4.6.1 Calculation of c and d

The energy density of the ground state eq. (4.85) is expressed in the normalized coefficients c
and d. We still do not know their value. The computation of these coefficients is due in this
section.

The coefficients c and d are linked via the constraint c2+d2 = n, as introduced in section 4.5.1.
By inserting this constraint into energy density eq. (4.85), we obtain the energy density solely
depending on c or d

eg
(
d
)

=
n2

2
(U + zV )− 2ztn+ 4ztd2 + 2 (U − zV )

(
nd

2 − d4
)
. (4.86)
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The energy density is now expressed in orders of d. This means, that here the energy density
eg has to be an extremal value. Hence, the coefficient d has to be extremal. Therefore the
first derivative with respect to d has to be taken

∂eg

∂d
= 8ztd+ 2 (U − zV )

(
2nd− 4d3

)
= d

(
8zt+ 2 (U − zV )

(
2n− 4d2

))
!= 0 . (4.87)

The coefficient d can not be zero, thus the bracket has to be. Hence, we obtain the value for
d by solving eq. (4.87)

d = ±

√
n

2
+

zt

(U − zV )
. (4.88)

The value for the coefficient c can be calculated via the before introduced constraint c2 = n−d2.
This gives

c = ±

√
n

2
− zt

(U − zV )
. (4.89)

New ground state energy

The values for the coefficient c eq. (4.89) and d eq. (4.88) have now been computed. Therefore
the value for the energy density of the new ground state can be determined, by inserting the
values for c and d into eq. (4.85)

eg =
2z2t2

(U − zV )
+ Un2 . (4.90)

Energy difference between the two phases

The energy density of the new ground state is

eg =
2z2t2

U − zV
+ Un2 , (4.91)

where the energy density of the old, superfluid phase is

e0 = −2ztn . (4.92)

The difference between these to energy densities becomes

∆E = eg − e0 = 2ztn
(

zt

Un (1− zγ)
+
n

2
U

zt
+ 1
)
. (4.93)
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4.7 Calculation of the phase transition

Still due are the considerations about the order of the phase transition, which occurs at the
critical value γ eq. (4.50). To get more insight into the behavior of the phase transition, the
energy density eq. (4.86) can be rewritten in a different form

eg
(
d
)

= 2zt
[
−n+

Un2

4t

(
1
z

+ γ

)
+ 2d2 +

U

t

(
1
z
− γ
)(

nd
2 − d4

)]
. (4.94)

At this point, we introduce a new normalization for the coefficient d

d̃ =
d√
n
. (4.95)

This normalizes the coefficient d to the mean number of particles in a lattice site n. Thus we
can write the energy density eq. (4.94) as

eg

(
d̃
)

= 2ztn
[
−1 +

Un

4t

(
1
z

+ γ

)
+ 2d̃2 +

Un

t

(
1
z
− γ
)(

d̃2 − d̃4
)]

, (4.96)

but we have to be aware, that the normalized coefficient d̃ is only valid for values −1 < d̃ < +1.

To make clear, on how the energy density eq. (4.96) eg depends on the order of d̃, it can be
expressed as

eg

(
d̃
)

= 2znt
[
−1 +

Un

4t

(
1
z

+ γ

)
+
(

2 +
Un

t

(
1
z
− γ
))

d̃2 − Un

t

(
1
z
− γ
)
d̃4

]
. (4.97)

This form clearly shows, that the two parts, d̃2 and d̃4, are in competition with each other.
We are now interested at which point the d̃4-part becomes dominant. The transition from
the d̃2- to d̃4-dominance is the transition between different phases. Hence, we search for the
critical ratio γc, which leads to this transition

eg

(
d̃
)

= 2ztn

−1 +
(

2 +
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t

(
1
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))

︸ ︷︷ ︸
!
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t

(
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z
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)
d̃4

 (4.98)

0 != 2 +
Un

t

(
1
z
− γ
)

⇒ γc =
2t
Un

+
1
z
. (4.99)

This means, that at the critical value γc eq. (4.99) the d̃2-part vanishes and the d̃4-part becomes
dominant. Thus, for small γ-values, i.e. for a small ratio V/U , the d̃2-part is dominant and
the system is superfluid. For large γ-values, the system transforms into a new phase, with a
domiant d̃4-part. It is a smooth transition at the critical ratio γc, i.e. the system undergoes a
second order phase transition, from a superfluid to a new phase. In figure 4.2 there are three



52 CHAPTER 4. MEAN-FIELD CALCULATIONS FOR ROTOR MODEL

plots for different values of the ratio γ. The top figure shows the behavior of the system with
d̃2-dominance, at γ ≈ 1. In this case, the nearest-neighbor interaction V is of the order of
the on-site interaction U . The middle figure shows the system at the transition point with
γ = γc. There is no gap in the energy density, which is a clear indication of a second order
phase transition. The bottom figure shows the energy density at γ > γc. In this region the
d̃4-part of eq. (4.97) prevails. This kind of form of the energy density is called a "mexican
hat", which again is a property of an underlying second order phase transition.
The determined critical ratio γc eq. (4.99) is compared to the computed ratios within the
Bogoliubov theory eq. (3.53) and the Rotor-Model eq. (4.50). All three critical ratios are
identical, which means, that our calculations so far are consistent. The phase transition
occurs at the point, where the superfluid phase becomes unstable.



4.7. CALCULATION OF THE PHASE TRANSITION 53

1.0 0.5 0.5 1.0 d

0.5

0.5

1.0

eg

1.0 0.5 0.5 1.0 d

0.5

1.0

1.5

eg

1.0 0.5 0.5 1.0 d

0.5

1.0

1.5

eg

Figure 4.2: Top: Superfluid region, the energy density eg is dominated by d̃2. The ratio
between nearest neighbor and on-site interaction is of the order of one, γ ≈ 1. Middle: The
system is tuned to the critical ratio γ = γc and undergoes a second order phase transition.
Bottom: The ratio γ is tuned to reach the d̃4-dominant part, with γ > γc � 1. The new
phase prevails.
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4.8 Supersolid Phase

The big question now is: What kind of new phase occurs beyond γc?

So far, we deeply investigated the phase transition. We started within a superfluid regime,
where the bosons were free to hop between lattice sites. Then we found, that by raising the
ratio between nearest-neighbor and on-site interaction γ, the system suffers an instability in
its dispersion relation eq. (4.44). That was the first sign of the occurrence of a phase tran-
sition. Next, we looked at the number of particles at the lattice site i and obtained, that it
fluctuates depending on the phase difference ϕ′ eq. (4.72). Then we proposed an ansatz for
the creation and annihilation operator eq. (4.74 + 4.75), which considers the fluctuations of
particle numbers at lattice sites i. In this calculation we achieved an expression for the energy
density of the new ground state. Finally we investigated the phase transition of the superfluid
regime to the new phase. All these conclusions tell us the following: In the superfluid phase,
all bosons are delocalized over the optical lattice. As the ratio γ is being raised, more and
more bosons become confined to a certain lattice site i. Still, some bosons can overcome the
barrier, which arises from the nearest-neighbor interaction, and hop through the lattice sites.
At the critical ratio γc, most of the bosons are localized at the lattice sites i creating a struc-
ture on the optical lattice. In this regime, there are still bosons, which can hop through the
different lattice sites i. Thus, the new phase has the property of a superfluid, i.e. bosons are
delocalized, and of a crystalline solid, because of the structure on the optical lattice. Hence,
the new phase is a supersolid, as introduced in section 2.3.2.

In figure 4.3 a supersolid is plotted. The crystalline structure is arranged as follows: One lattice
site contains many bosons, the neighboring site is only occupied by few particles. The number
of particles ni eq. (4.72) indicates the occupation of each site i. The presented structure can
be referred to as a checkerboard, where a white area can be imagined as a lattice site occupied
by many bosons and a black area, a site containing few particles. Although, the system is not
static, the bosons are still able to hop between lattice, but the checkerboard pattern prevails.
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Figure 4.3: Supersolid phase on an optical lattice. The structure can be referred to as a
checkerboard, because one lattice site contains many bosons, the neighboring site is occupied
by few and vice versa. The bosons are still free to hop between sites, indicated by the green
arrows.
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4.9 Validity for the mean-field theory

Another question which arises is: Why is a mean-field calculation used to determine such a
delicate phase as the supersolid?

In chapter 3 we calculated the instability within the Bogoliubov theory. In this regime, a dilute
Bose gas was considered, where only few bosons occupy each optical lattice site. Another
phase transition, where few particles in an optical lattice is considered, is the well-known
Mott Insulator to Superfluid transition, see section 2.3.1. For such a system, the instability
(t/U)c scales as ∼ 1/n. Since we were interested in a system with a high filling factor n� 1,
this lead us to the application of the Rotor-Hamiltonian eq. (2.28). The Rotor-Hamiltonian
considers a system where each lattice site is occupied by a quasi-condensate, similar to an array
of Josephson Junctions, [11]. The usage of the Rotor-Hamiltonian gave us the instability for
such a system

γc =
2t
Un

+
1
z
. (4.100)

To find out the scaling properties of the critical ratio γc = V/U , it can be rewritten into(
t

U

)
c

=
1
2

(
V

U
− 1
z

)
n , (4.101)

where t is the hopping term, U the on-site, V the nearest-neighbor interaction, z the number
of nearest neighbors and n is the filling factor.

Equation (4.101) tells us, that the instability in the Rotor-Model regime scales with ∼ n.
This means, the higher we choose the filling factor n, the more accurate the used mean-field
calculation becomes. Although, if small filling factors n are considered the assumptions in
the Rotor-Model become inaccurate and the instability invalid. Figure 4.4 the two different
scaling behaviors within the Bose-Hubbard- and Rotor-Model are compared.

In this work we only consider high filling factors n, thus do not make any estimates, what
happens at small filling factors n ≤ 1. This is the reason for the dashed area in figure 4.4.
Until now, the behavior of a system with small filling factors n ≤ 1 on an optical lattice is
not fully understood and under high investigation. Our discussions exclude the regime with
n ≤ 1.
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Figure 4.4: Comparison of the scaling behaviors in the Bose-Hubbard- and Rotor-Model. The
instability within the Bose-Hubbard Model, indicated in blue, scale with n like ∼ 1/n. In
the Rotor-Model, marked as red, the instability scales as ∼ n. In the dashed area small
filling factors n ≤ 1 are considered, what happens there is not fully understood and therefore
excluded from the discussion.
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Chapter 5

Stability of the supersolid phase

In the previous chapter, we claimed that the new phase, which occurs after the system is tuned
across the critical value γc eq. (4.50), is a supersolid. Then we proposed an ansatz for the
creation and annihilation operator eq. (4.74 + 4.75) , where the number fluctuations at each
lattice site were considered. This supersolid phase has the properties of a crystalline solid, the
long-range ordering and of a superfluid, the delocalization of the bosons over the lattice site.

The question now is: Is the supersolid phase stable against quantum fluctuations?

To answer this question, we consider the system in the grand canonical ensemble, where
quantum fluctuations are allowed. To control the number of particles in the system, we
therefore introduce the chemical potential µ. In the following we use the Rotor-Hamiltonian,
as given in eq. (2.28) of section 2.4 and derived in section 4.1.
The desired goal of the calculation is again the dispersion relation for a system with high
filling factors n� 1, mean-field and quantum fluctuations.

5.1 Rotor-Hamiltonian in real space

As argued above, we start our investigation with the Rotor-Hamiltonian eq. (2.28) for a
homogeneous system

HRotor = −2t
∑
〈i, j〉

√
ninj cos (ϕi − ϕj) +

U

2

∑
i

n2
i +

V

2

∑
〈i,j〉

ninj − µ
∑
i

ni . (5.1)

Mentioned above, we now allow quantum fluctuations in our system. Thus the number of par-
ticles at lattice sites i consist of the mean-field number of particles ni and quantum fluctuations
∆ni

ni =
(
c+ d

)2︸ ︷︷ ︸
=ni

+ ∆ni nj =
(
c− d

)2︸ ︷︷ ︸
=nj

+ ∆nj . (5.2)

The mean-field coefficients c and d are as in eq. (4.89) and eq. (4.88) calculated. For a further
introduction into the Rotor-Model, see section 2.4 and section 2.4.

59
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In the following, the given values for the number of particles eq. (5.2) are inserted into the
Rotor-Hamiltonian eq. (5.1).

Kinetic part

As the first step, we insert the ansatz eq. (5.2) into the kinetic part of the Rotor-Hamiltonian
eq. (5.1) and transform it into a more convenient form.
Hence, the kinetic part reads

H1 = −2t
∑
〈i, j〉

√
nj ni

√
1 +

∆nj
nj

√
1 +

∆ni
ni

cos (ϕi − ϕj) . (5.3)

We assume that the mean-field number of particles ni are much larger than the quantum
fluctuations ∆ni, therefore we are allowed to expand the terms containing roots to quadratic
order

√
1 + x ≈ 1 +

1
2
x− 1

8
x2 . (5.4)

This is being inserted into eq. (5.3) to further reduce the kinetic part of the Rotor-Hamiltonian
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Next, all terms of higher order than quadratic in the quantum fluctuations ∆ni are neglected,
because the contributions of higher orders are irrelevant for the stability consideration. The
cosine term in eq. (5.5) can also be expanded to second order, with the same argumentation
as in section 4.1.1

cosx ≈ 1− 1
2
x2 . (5.6)

With the expansion of the cosine term put into eq. (5.5) and taking only terms purely in ∆ni
and ϕi into account, we arrive at

H1 = −2t
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]
, (5.7)
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the kinetic part of the Rotor-Hamiltonian adjusted for our system. The selection of only pure
terms ∆ni and ϕi was also done in section 4.1.1.

On-site interaction part

Our next item to do, is to compute the on-site interaction term of the Rotor-Hamiltonian for
the considered system. As argued in section 4.6, there are two possible lattice sites available
in the system, one with particle numbers ni and the other with nj . This has to be kept in
mind at the further consideration

H2 =
U

2

∑
i

n2
i

=
U

2

∑
i

n2
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∑
j

n2
j


=
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2

∑
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2


=
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2

∑
i

(
n2
i + ∆n2

i + 2ni ∆ni
)

+
∑
j

(
n2
j + ∆n2

j + 2nj ∆nj
) . (5.8)

The two parts in the on-site interaction term can be combined, because they are of the same
structure. Conclusively the summation index j can be renamed as i without missing a lattice
site. This gives a more compact form for the on-site interaction part of the Rotor-Hamiltonian

H2 =
U

2

∑
i

(
n2
i + ∆n2

i + 2ni∆ni
)
. (5.9)

When the summation of the on-site interaction part eq. (5.9) is carried out, we have to be
careful, at which site i we are looking at. There are two possibilities, either a site with a large
particle number ni are one with few nj . This has to be kept in mind for further calculations.

Nearest-neighbor interaction part

Now we look at the nearest-neighbor interaction term of the Rotor-Hamiltonian. Inserting the
number of particles eq. (5.2) gives

H3 =
V

2

∑
〈i, j〉

ninj

=
V

2

∑
〈i, j〉

(ni + ∆ni) (nj + ∆nj) .

Hence, the nearest-neighbor interaction part for the Rotor-Hamiltonian becomes

H3 =
V

2

∑
〈i, j〉

(ni nj + ni∆nj + nj∆ni + ∆ni∆nj) . (5.10)
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Chemical potential part

Finally we analyze the term containing the chemical potential in the Rotor-Hamiltonian
eq. (5.1). The chemical potential µ takes care of the total number of particles in the sys-
tem. Again, we have to be careful at the summation over all possible lattice sites i, since there
are two possibilities

H4 = − µ
∑
i

ni

= − µ

∑
i

(ni + ∆ni) +
∑
j

(nj + ∆nj)

 .
The summation index j in the equation above, can again be renamed as i. If the summation
over all lattice sites i is carried out, the nature of the lattice sites has to be reminded. The
chemical potential part for the Rotor-Hamiltonian reduces to

H4 = − µ
∑
i

(ni + ∆ni) . (5.11)

The unsorted Rotor-Hamiltonian

With all parts of the Rotor-Hamiltonian computed for our considered system, we have to sum
all four parts to obtain it
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The sorted Rotor-Hamiltonian

The next step is to sort the Rotor-Hamiltonian eq. (5.12) in orders of O (∆ni). The linear
parts of the quantum fluctuations ∆ni have to vanish and for this reason the sortation is
carried out. Appendix A contains the procedure, only the result is given
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(5.13)

5.1.1 Analysis of the linear order in ∆ni

The part of the Rotor-Hamiltonian eq. (5.13), which is of linear order in ∆ni has to vanish.
The linear part reads

Hlinear = − 2t
∑
〈i, j〉

√
nj
ni

∆ni + U
∑
i

ni∆ni + V
∑
〈i, j〉

nj∆ni − µ
∑
i

∆ni . (5.14)

There are two possible cases of lattice site occupation, when the summation over all possible
sites i is carried out. In the following, we write the two cases. For sake of simplicity, we
substitute ni by f1 and nj by f2. The two cases then are

Hlinear =

− 2t
∑

j

√
f2
f1

∆ni + Uf1∆ni + V
∑

j f2∆ni − µ∆ni

− 2t
∑

j

√
f1
f2

∆ni + Uf2∆ni + V
∑

j f1∆ni − µ∆ni .
(5.15)

Here, we assume that the quantities f1 and f2 are independent of i and j. This is a simplifi-
cation for the further evaluation. Thus, the two cases can be rewritten as

Hlinear =


(
− 2tz

√
f2
f1

+ Uf1 + zV f2 − µ
)

∆ni =: g1∆ni(
− 2tz

√
f1
f2

+ Uf2 + zV f1 − µ
)

∆ni =: g2∆ni .
(5.16)

Hence, the Rotor-Hamiltonian part Hlinear , which is of linear order in ∆ni can now be written
in a compact form

Hlinear = gi∆ni , (5.17)

it depends on the considered lattice site i, where the function gi is

gi =

{
g1

g2 .
(5.18)

The function gi can be expressed in a way, that its fluctuating nature, becomes obvious

gi =
g1 + g2

2
+
(
g1 − g2

2

)
cos (kRi) , (5.19)

with Ri being the lattice site coordinate. This means, that the function gi is a fluctuating
function, which depends on the considered lattice site.
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Since Hlinear eq. (5.17) has to vanish, we have to determine the functions gi in such a way,
that it is always zero. In eq. (5.19) we see, that gi consists of two parts. The second part is
multiplied by a cosine, which lets the second part become zero, only at certain values of kRi.
We are interested in a case, where gi is always zero, thus both parts of gi eq. (5.19) have to
be zero separately. Therefore

g1 + g2
2

!= 0 ∧ g1 − g2
2

!= 0 . (5.20)

The right hand side of eq. (5.20) becomes zero, when cos (kRi) does, despite that, it still has
to be zero for any Ri, as argued before.

As a next step, we calculate both parts consisting in gi eq. (5.19). At first, we compute the
left hand side of eq. (5.20)
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+
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}
!= 0 , (5.21)

the brackets marked with "2n" results in the fact, that if functions f1 and f2 are summed,
they equal twice the mean particle number per lattice site. This can easily be proofed by
inserting the definitions for the functions f1, 2, see appendix B.1.

With eq. (5.21), we are now able to calculate the chemical potential µ for our system

µ = n

[
− 2tz√

f1f2
+ (U + zV )

]
. (5.22)

The chemical potential still depends on the function
√
f1f2, thus we have to determine the

right hand side of eq. (5.20)
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}
. (5.23)

To further compute eq. (5.23), we introduce the following substitution

∆ = f1 − f2 , (5.24)
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this can be inserted into eq. (5.23). It has to be kept in mind, that ∆ 6= ∆ni. The right side
of eq. (5.20) thus becomes

g1 − g2
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}

!= 0 . (5.26)

Since neither ∆ni nor ∆ can be zero, the bracket has to be and this leads us to the determi-
nation of the desired function

√
f1f2

0 =
2tz√
f1f2

+ (U − zV )

⇒
√
f1f2 =

2tz
(zV − U)

. (5.27)

With the function
√
f1f2 being obtained, the chemical potential µ eq. (5.22) can be expressed

in terms without functions f1 and f2

µ = 2Un . (5.28)

If the chemical potential µ eq. (5.28) and the functions
√
f1f2 eq. (5.27) are inserted into the

function gi eq. (5.19), we find, that it is always zero, independent of the considered lattice site.

The Rotor-Hamiltonian eq. (5.13) without the linear parts in ∆ni thus is
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(5.29)

where eq. (5.28) for the chemical potential µ and eq. (5.27) for the function
√
f1f2 still need

to be inserted.

5.1.2 Comparing the Hamiltonians

Until now, we computed the Rotor-Hamiltonian for our system and cancelled out all the
linear terms in the quantum fluctuactions ∆ni. This was done by evaluating the function gi
eq. (5.19) to be zero independent of the lattice site i. The next step is to further reduce the
Rotor-Hamiltonian eq. (5.29), by analyzing its behavior at different lattice site occupations ni
or nj . Therefore we write the Rotor-Hamiltonian eq. (5.29) for the two types of lattice site
occupation
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1
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U
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1︸︷︷︸
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+
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f1f2

]
︸ ︷︷ ︸
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i
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i︸ ︷︷ ︸

6

+ U︸︷︷︸
7

 , (5.30)

H′′ = − 2t
∑
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)
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+
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2
f2f1︸ ︷︷ ︸
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− µf2︸︷︷︸
4′

+
1
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∆ni∆nj

[
V − t√

f2f1
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︸ ︷︷ ︸
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∆n2

i

2

zt
√
f2f1

n2
i︸ ︷︷ ︸
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+ U︸︷︷︸
7′

 , (5.31)

where the Hamiltonian H′ considers a site with many particles ni and H′′ one with few nj .
The functions ni and nj were substituted by f1 and f2 as introduced earlier. Those terms
containing an underbrace, are the interesting ones, we want to analyze further.

Before the Hamiltonians H′ and H′′ for the different lattice site occupations can be summed,
we have to consider the different behaviors of those terms. Some terms can be added together,
where others can not and thus the summation of the possible lattice sites can only be carried
out to N/2. Now we want to consider the different parts of the Rotor-Hamiltonians eq. (5.30
+ 5.31)

- part 1, 1′: are the same in both cases, thus the parts can be added together and the
summation can be done to N

- part 2, 2′: are different, since the on-site interaction depends on the number of particles
in each site, hence each summation can only be done to N/2

- part 3, 3′: equal terms, because in one case the interaction between particles at site i
with f1 and at site j with f2 particles are considered, and at the other case vice versa,
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thus the terms can be added together and the summation can be done to N

- part 4, 4′: terms differ from each other, there are different number of particles in the
according sites, hence the summation can only be done to N/2

- part 5, 5′: are the same terms, the reasoning goes as in the case for the nearest-neighbor
interaction, the terms can be added together and the summation can be carried out to N

- part 6, 6′: are not the same terms, their are fluctuating functions, a summation can only
go to N/2 and the summation index has to be changed in one case to i′

- part 7, 7′: same terms, can be added together and summation is carried out to N

After this analysis of the different Rotor-Hamiltonians eq. (5.30) and eq. (5.31), we can sum
them as argued before

H = − 2t
N∑
〈i, j〉

√
f1f2

(
1− 1

2
(ϕi − ϕj)2

)
+
U

2
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f2
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N/2∑
i

f2
2


+

N∑
i
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2
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√
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i

∆n2
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i
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∆n2
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n2
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 .
We further reduce the above Rotor-Hamiltonian by carrying out possible summations

H = − 2t
√
f1f2

N∑
〈i, j〉

(
1− 1
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)
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4
(
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i
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∆n2
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n2
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 . (5.32)

Now we sort the Rotor-Hamiltonian eq. (5.32) in parts
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H = − 2t
√
f1f2
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(1) +
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4
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2

)
+
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 . (5.33)

5.1.3 Calculating the mean-field part

In the next step, we want to evaluate the mean-field energy for the considered system. This
is done by taking the parts of the Rotor-Hamiltonian eq. (5.33), which are independent of the
phase ϕi and the quantum fluctuations ∆ni

EMF = − 2t
√
f1f2

N∑
〈i, j〉

(1) +
UN
4
(
f2
1 + f2

2

)
+

NzV
2

f1f2 −
Nµ
2

(f1 + f2)

= − 2t
√
f1f2Nz +

UN
4
(
f2
1 + f2

2

)
+

NzV
2

f1f2 −
Nµ
2

(f1 + f2) . (5.34)

Now we insert the determined value for the function
√
f1f2, as calculated in eq. (5.27). We

also include the substitution done earlier, where we set f1 = ni and f2 = nj . The quantities
ni are as defined in eq. (5.2). The values c and d, which construct the mean-field number of
particles ni are

c =

√
n

2
− zt

(U − zV )
, (5.35)

d =

√
n

2
+

zt

(U − zV )
, (5.36)

as computed in section 4.6.1.

All this can be plugged into eq. (5.34) to calculate the mean-field energy EMF

EMF = − 2t
(
− 2tz

(U − zV )

)
Nz +

NU
4

((
c+ d

)4 +
(
c− d

)4)
+
NzV

2

(
− 2tz

(U − zV )

)2

− Nµ
2

(2n)

=
4t2z2N

(U − zV )
+
UN
4

(
2
(
c4 + 6c2d2 + d

4
))

+
NzV

2
4t2z2

(U − zV )2
−Nµn . (5.37)
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At this point, we insert the computed values for c of eq. (4.89) and d of eq. (4.88). The
mean-field energy thus becomes

EMF =
4t2z2N

(U − zV )
+
UN
2

[(
n

2
− zt

U − zV

)2

+ 6
(
n

2
− zt
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)

×
(
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2
+
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)
+
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2
+
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]
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=
4t2z2N

(U − zV )
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[
n2 − 2
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]
+ NzV
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(U − zV )
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=
4t2z2N
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+ UNn2 − µNn− 2z2t2N

(U − zV )2
(U − zV )

=
2t2z2N

(U − zV )
+ Un2N− µNn . (5.38)

If eq. (5.38) the mean-field energy for the considered grand canonical ensemble is compared to
the energy density of the ground state, in the previously done mean-field calculations eq. (4.91),
we find, that it only differs by a part −µNn. This parts originates in the fact, that we have
included the chemical potential µ into the evaluation done so far. Thus, our calculations so
far, are consistent with the mean-field considerations done in chapter 4.

To obtain the mean-field energy for the grand canonical ensemble, we have to insert the
calculated chemical potential eq. (5.28) into the mean-field energy eq. (5.38). Therefore we
get the value for the mean-field energy EMF

EMF = N
[

2t2z2

U − zV
− Un2

]
, (5.39)

where N is the number of lattice sites, t the hopping constant, z the number of nearest
neighbors, U the on-site interaction, V the nearest-neighbor interaction and n is the mean
number of particles in a lattice site.

5.1.4 The final Rotor-Hamiltonian in real space

After completing the above calculation, we are closer to finally write the Rotor-Hamiltonian
in real space. To do so, we rewrite the Rotor-Hamiltonian in eq. (5.33) as

H = EMF + t
√
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N∑
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(ϕi − ϕj)2 +
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〈i, j〉

∆ni∆nj
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i
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i

+
N/2∑
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∆n2
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n2
i′

 . (5.40)
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In the next step, we insert the value of the function
√
f1f2, as obtained in eq. (5.27) and then

get

H = EMF + t

(
2tz

(zV − U)

) N∑
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1
2

N∑
〈i, j〉

∆ni∆nj

V − t(
2zt

(zV−U)

)


+
U

2

∑
i

∆n2
i +

zt

2

(
2tz

(zV − U)
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i

+
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i′

∆n2
i′

n2
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 . (5.41)

Within the proceeding reduction we have to introduce new coefficients allowing us to construct
the above equation in a terse form. These coefficients are

E1 =
2t2z

(zV − U)
, (5.42)

E2 =
1
4

[
V +

U

z

]
, (5.43)

E3 =
U

2
, (5.44)

E4 =
t2z2

(zV − U)
. (5.45)

Thus we can write the Rotor-Hamiltonian eq. (5.41) as

H = EMF + E1

N∑
〈i, j〉

(ϕi − ϕj)2 + E2

N∑
〈i, j〉

∆ni∆nj

+E3

∑
i

∆n2
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N/2∑
i

∆n2
i

n2
i

+
N/2∑
i′

∆n2
i′

n2
i′

 . (5.46)

5.2 Fourier Transformation of the Rotor-Hamiltonian

Our goal for the whole calculation done so far, is to reach the dispersion relation for our
system. With the Rotor-Hamiltonian eq. (5.46) brought into a compact form, we now have to
Fourier transform it.

5.2.1 Fourier Transformation Part1

We start the transformation by considering the Rotor-Hamiltonian eq. (5.46) without the fluc-
tuating part. This part is the last term in eq. (5.46). It has to be analyzed, before a Fourier
transformation can be done. The next section is going to do this.

Thus, the Rotor-Hamiltonian eq. (5.46) without fluctuations is
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H = EMF + E1

N∑
〈i, j〉

(ϕi − ϕj)2

+E2

N∑
〈i, j〉

∆ni∆nj + E3

∑
i

∆n2
i . (5.47)

The Fourier transformation of the Hamiltonian eq. (5.47) can be done similarly as in the
previous chapter in section 4.2. Therefore only the result of the transformation is given

H = EMF + E1

∑
k

2ϕk ϕ−k

[
z − 2

∑
α

cos (kαa)

]
+E2

∑
k, α

2∆nk ∆n−k cos (kαa) + E3

∑
k

∆nk∆n−k , (5.48)

where the mean-field energy EMF is as in eq. (5.39) and the coefficients E1−E3 are as defined
in equations (5.42 - 5.44).

By introducing again new coefficients

E′1 =
4t2z

(zV − U)
, (5.49)

E′2 =
1
2

[(
V +

U

z

)∑
α

cos (kαa) + U

]
, (5.50)

we can rewrite the Fourier transformed Rotor-Hamiltonian eq. (5.48) as

H (k) = EMF + E′1
∑
k

ϕk ϕ−k

[
z − 2

∑
α

cos (kαa)

]
+
∑
k

∆nk ∆n−k E′2 . (5.51)

This Hamiltonian can now be diagonalized with the same technique as introduced in section 4.3
of the previous chapter. It can be diagonalized, because it is of the same form as in section 4.3.
Thus, we can give the diagonal Rotor-Hamiltonian for the case without the fluctuating part

H = EMF+
∑
k

√√√√ 8t2z
(zV − U)

[
z − 2

∑
α

cos (kαa)

][(
V +

U

z

)∑
α

cos (kαa) + U

](
α†kαk +

1
2

)
.

(5.52)
The evaluation the the diagonal Rotor-Hamiltonian is only given for sake of completeness.
The fluctuating part of the Rotor-Hamiltonian eq. (5.46) has to be taken into account too, at
diagonalizing the Hamiltonian.
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5.2.2 Fourier Transformation Part2

As argued above, the Fourier transformation of the fourth part of the Rotor-Hamiltonian
eq. (5.46) is still due. In this section, we want to get more insight of the fluctuating part

H4 = E4

N/2∑
i

∆n2
i

n2
i

+
N/2∑
i′

∆n2
i′

n2
i′

 , (5.53)

where the coefficient E4 is, as defined in eq. (5.45) .

The equation above can be written with a lattice site depending coefficient Ui

H4 = E4

N∑
i

Ui∆n2
i , (5.54)

where the introduced coefficient Ui is

Ui =


1
f2
1

= 1
n2
i
, at site ni

1
f2
2

= 1
n2
i′
at site ni′ .

(5.55)

The Fourier transformation can now be carried out. In this case, the coefficient Ui has to be
transformed too. This is done with

Ui =
∑
q

eiqxi Uq . (5.56)

The Fourier transformation for the quadratic quantum fluctuations is done similarly as in
section 4.2.2 of the previous chapter. The routine is now carried out in the same way, except
for the inclusion of the coefficient Ui

N∑
i

Ui∆n2
i =

∑
i

(∑
q

eiqxi Uq

)(
1√
N

∑
k

eikxi ∆nk

)(
1
N

∑
k′

eik
′xi ∆nk′

)

=
1
N

∑
i, k, k′, q

Uq ∆nk ∆nk′ ei(q+k+k
′)xi

=
1
N

∑
k, k′, q

Uq ∆nk ∆nk′ N δk−(k+q)

=
∑
k, q

Uq∆nk ∆n−(k+q) . (5.57)

There are two possible cases for the Fourier transformed coefficient Uq. Either we are interested
in the value of the coefficient at the center of the first Brillouin zone at q = 0 or at the boundary
q = K. The quantityK is a reciprocal lattice vector. Thus, the fluctuating functions eq. (5.57)
splits up into two parts

H4 = E4

∑
k

U0∆nk ∆n−k︸ ︷︷ ︸
1

+
∑
k

U1∆nk ∆n−(k+K)︸ ︷︷ ︸
2

 (5.58)
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where the two coefficients U0 and U1 are

U0 =
1
2

(
1
f2
1

+
1
f2
2

)
(5.59)

U1 =
1
2

(
1
f2
1

− 1
f2
2

)
. (5.60)

This tells us, that the fluctuating parts contribute two different parts to the Fourier trans-
formed Rotor-Hamiltonian. Thus, the first part with the coefficient U0 is responsible for
further diagonal contributions to the Rotor-Hamiltonian. The second part in eq. (5.58) with
the coefficient U1 delivers off-diagonal contributions.

Next, the first part of eq. (5.58) with the diagonal contributions is added to the Rotor-
Hamiltonian in eq. (5.51)

H (k) = EMF + E′1
∑
k

ϕk ϕk′

[
z − 2

∑
α

cos (kαa)

]

+
∑
k

∆nk ∆n−k

[
E′2 +

E4

2

(
1
f2
1

+
1
f2
2

)]
. (5.61)

We then have to calculate the coefficient U0 eq. (5.59). This is done by inserting the values
for c eq. (4.89) and d eq. (4.88), since the coefficient f1 and f2 consist of these two values.
The calculation is straight forward and presented in the appendix B.2.

With the coefficient U0 determined, the quantities E′2 of eq. (5.50) and E4 of eq. (5.45) are
plugged into above equation, together with U0

H (k) = EMF + E′1
∑
k

ϕk ϕ−k

[
z − 2

∑
α

cos (kαa)

]

+
∑
k

∆nk ∆n−k

[
1
2

[(
V +

U

z

)∑
α

cos (kαa) + U

]

+
(zV − U)

4

(
n2 (U − zV )2

2z2t2
− 1

)]
. (5.62)

The above Rotor-Hamiltonian can now be diagonalized in the same manner as done earlier
in section 4.3 by introducing relations between the phases ϕi, the quantum fluctuations ∆ni
and the new creation a†k and annihilation operators ak. The diagonalized Rotor-Hamiltonian
then, again, becomes of the harmonic oscillator form

H = EMF +
∑
k

E′′(k)
(
α†kαk +

1
2

)
, (5.63)

with the dispersion relation E′′(k) being
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E′′(k) =

{
8t2z
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2

(
n2 (U − zV )2

2z2t2
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)]}1/2

.

(5.64)

5.2.3 Fourier Transformation Part3

So far we have diagonalized the Rotor-Hamiltonian eq. (5.46) without considering the con-
tributions of the fluctuating part eq. (5.53). Then, we took the fluctuating part along, but
only with the diagonal contributions to the Rotor-Hamiltonian and thus found the diagonal-
ized Hamiltonian eq. (5.63). The next logical step would be, to also consider the off-diagonal
terms of the fluctuating Hamiltonian part eq. (5.53).

The coefficient U1, which contributes the off-diagonal parts, is calculated in the appendix B.3.
In the following, only the result of this computation is used.

The whole Rotor-Hamiltonian eq. (5.46) Fourier transformed, with off-diagonal terms, reads

H = EMF + E′1
∑
k

ϕk ϕ−k

[
z − 2

∑
α

cos (kαa)

]

+
∑
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]

+
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(
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+
∑
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∆nk ∆n−(k+K)

(zV − U)2 n
4zt

(
n2 (U − zV )2

4z2t2

)1/2
 . (5.65)

The diagonalization of the Rotor-Hamiltonian above, is a bit tricky. Despite that, we present
the procedure of doing so.

The Rotor-Hamiltonian eq. (5.65) can be rewritten in a more compact form, by introducing
new coefficients

H = EMF +
∑
k

ϕk ϕ−k χk +
∑
k

∆nk ∆n−k ζk +
∑
k

∆nk ∆n−(k+K) ξ , (5.66)

where K is still a reciprocal lattice vector and



5.2. FOURIER TRANSFORMATION OF THE ROTOR-HAMILTONIAN 75

χk = E′1

[
z − 2

∑
α
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]
=

4t2z
(zV − U)

[
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∑
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]
, (5.67)

ζk =
1
2

[(
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U

z

)∑
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cos (kαa) + U

]
+

(zV − U)
4

(
n2 (U − zV )2
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)
, (5.68)

ξ = E4 · U1 =
(zV − U)2 n

4zt

(
n2 (U − zV )2

4z2t2
− 1

)1/2

. (5.69)

We know, that there are two different lattice site fillings, therefore we have to write the Rotor-
Hamiltonian eq. (5.66) for the two types. In this procedure we neglect the mean-field energy
EMF, because it does not effect the diagonalization. The Rotor-Hamiltonian thus is

H =
∑
k

[ϕk1 ϕ−k1 χk1 + ϕk2 ϕ−k2 χk2 ]

+
∑
k

[∆nk1 ∆n−k1 ζk1 + ∆nk2 ∆n−k2 ζk2 ]

+ξ
∑
k

[∆nk1 ∆n−k2 + ∆nk2 ∆n−k1 ] . (5.70)

To reduce the Hamiltonian above eq. (5.70), it can also be expressed in a matrix representation

H =
∑
k

{(
ϕk1
ϕk2

)(
χk1 0
0 χk2

)
+
(

∆nk1
∆nk2

)(
ζk1 ξ
ξ ζk2

)(
∆n−k1
∆n−k2

)}
. (5.71)

The further computation and diagonalization of above the Hamiltonian is done by lending
a useful tool of classical mechanics, the Hamiltonian equations. For a introduction into the
Hamiltonian equations of motion in classical mechanics, see [29]. The Hamiltonian equations
of motion are

q̇k =
∂H
∂pk

(5.72)

and

ṗk = − ∂H
∂qk

. (5.73)

In our case we interpret the phase of the quasi-condensate ϕk as the classical momentum pk,
because the motion of particles in the system is due to the change of the different phases. The
quantum fluctuations ∆nk in the system is referred to as the classical position qk, since the
quantum fluctuations are responsible for the change of the particle number at the lattice sites.

With these assumptions, we write the Hamiltonian equations of motion, first for the time
derivative of the positions qk eq. (5.72)
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(
∂t qk1
∂t qk2

)
=
(

2χk1 0
0 2χk2

)(
pk1
pk2

)
(5.74)(

1
2χk1

∂tqk1
1

2χk2
∂tqk2

)
=
(
pk1
pk2

)
, (5.75)

then for the momentums eq.(5.73)(
∂t pk1
∂t pk2

)
= −2

(
ζk1 ξ
ξ ζk2

)(
qk1
qk2

)
. (5.76)

In the next step, we want eliminate one of the variables qki or pki from equations (5.75 or
5.76). Therefore we insert eq. (5.75) into eq. (5.76) and obtain a relation between pki and qki

∂t

(
pk1
pk2

)
=

1
2

(
1
χk1

∂2
t qk1

1
χk2

∂2
t qk2

)
. (5.77)

This relation eq. (5.77) is plugged into eq. (5.76) to get equations of motion, which only depend
on the position of particles qki

1
2

(
1
χk1

∂2
t qk1

1
χk2

∂2
t qk2

)
= −2

(
ζk1 ξ
ξ ζk2

)(
qk1
qk2

)
. (5.78)

The above matrix equations can be brought to a more convenient form(
χk2 ∂

2
t qk1

χk1 ∂
2
t qk2

)
= −4χk1χk2

(
ζk1 ξ
ξ ζk2

)(
qk1
qk2

)
. (5.79)

The two equations of motion, which can be obtained from the above matrices, are

χk2 ∂
2
t qk1 (n) = −4χk1χk2 (ζk1qk1 (n) + ξqk2 (n− 1)) (5.80)

χk1 ∂
2
t qk2 (n) = −4χk1χk2 (ξqk1 (n+ 1) + ζk2qk2 (n)) . (5.81)

They are of the form of coupled oscillators. In the further calculations, they need to be de-
coupled. The form reminds us of the equations of motion for a two atomic basis in a solid.

To solve these equations we need to propose an ansatz, which reads

qk1 = A ei(krin−ωt) qk2 = B ei(krin−ωt) , (5.82)

where the coefficients A, B are amplitudes. The ansatz above is the same as in solid state
physics, if equations of motions for a solid with a basis of two atoms needs to be solved. For
an introduction into the field of solid state physics, see [3].

The second derivative of the ansatz for qki eq. (5.82) is done

q̈1(2) = −A (B)ω2ei(knri−ωt) . (5.83)

This is now inserted into the first equation of motion eq. (5.80)
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χk2

(
−ω2Aei(krin−ωt)

)
= −4χk1χk2

(
ζk1 Ae

i(krin−ωt) + ξB ei(kri(n−1)−ωt)
)

(5.84)

⇒ 0 =
(
4χk1ζk1 − ω2

)
A+ 4χk1 ξ e

−ikriB . (5.85)

Now the second derivative, eq. (5.83), is put into eq. (5.81) to further reduce that equation

χk1

(
−B ω2 ei(knri−ωt)

)
= −4χk1χk2

(
ξ A ei(kri(n+1)−ωt) + ζk2 B e

i(knri−ωt)
)

(5.86)

⇒ 0 =
(
4χk2 ζk2 − ω2

)
B + 4χk2 ξ e

ikri . (5.87)

The two computed equations (5.85 + 5.87) can be rewritten in a matrix representation

0 =
((

4χk1 ζk1 − ω2
)

4χk1 ξ e
−ikri

4χk2 ξ e
ikri

(
4χk2 ζk2 − ω2

))(A
B

)
. (5.88)

To solve these equations in matrix representation, either the matrix or the vector has to be
zero. Since the vector consisting of the amplitudes A and B can not be zero, the matrix has
to be. This tells us, that the determinant of the matrix has to vanish

0 !=
(
4χk1 ζk1 − ω2

) (
4χk2 ζk2 − ω2

)
− 16χk1 χk2 ξ

2 . (5.89)

Let us recall, which quantity we are interested in. We started with a Rotor-Hamiltonian in the
grand canonical ensemble and proposed an ansatz for the number of particles at the lattice
sites ni. Next we cancelled all linear orders of quantum fluctuations out and obtained the de-
sired Rotor-Hamiltonian in real space. The obvious next step was the Fourier transformation
of the determined Rotor-Hamiltonian. By doing this, we found that the quantum fluctuations
deliver off-diagonal contributions to the diagonalization of the Rotor-Hamiltonian. Therefore,
we could not apply our scheme of introducing creation and annihilation operators to do the di-
agonalization. Despite that, our goal was to diagonalize the Rotor-Hamiltonian to obtain the
dispersion relation. We needed to know, if the new supersolid phase is stable or not. To find
out, if an instability in the dispersion relation of the supersolid phase occurs or not. Hence,
the whole steps done so far were to calculate the dispersion relation ε(k) of our supersolid
phase. Since our previously done techniques of diagonalization can not solve the problem, we
helped ourselves with the trick by relating to problems that have already been solved, like the
behavior of a solid with a two atomic basis. Therefore our desired quantity is the dispersion
relation ω.

After this excursion, it is clear, for what quantity we need to solve eq. (5.89), thus for ω2

ω2
1/2 = 2 (χk1ζk1 + χk2ζk2)± 2

√
(χk1ζk1 − χk2ζk2)2 + 4χk1χk2ξ2 . (5.90)

By inserting the definitions of equations (5.67 - 5.69) renaming k1 = k and k2 = k + K we
obtain the dispersion relation for our supersolid phase
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(5.91)

where K is again a reciprocal lattice vector, the introduced coefficient g thereby is

g =
n (zV − U)

2zt
, (5.92)

and the coefficient κ is as

κ =
nU

t
. (5.93)

The coefficients g and κ were introduced into eq. (5.91) to allow to write a more compact form
for the dispersion relation.

Since we want to consider the off-diagonal terms too, we set the reciprocal lattice vector as
K = π

a . The dispersion relation eq. (5.91) then can be written in a dimensionless form
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(5.94)
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Figure 5.1 shows the dimensionless dispersion relation of eq. (5.94). We find that no instability
occurs, despite any ratios of nearest-neighbor to on-site interaction. Thus we propose that the
presented supersolid phase is stable against quantum fluctuations.

k

π /a

ω2

2 t
2

ω
1+

ω
2-

- 0.5 0.5

Figure 5.1: Dispersion relation of the supersolid phase in one dimension in orders of k = π/a.
Despite the ratio γ of nearest-neighbor to on-site interaction the system is stable. No instability
occurs. For more insight see text.

The dispersion relation in figure 5.1 can be explained as follows: The lower branch, marked
as ω1+, corresponds to the first solution of eq. (5.94), if the + sign is considered. The upper
branch is marked as ω2− and is the solution of eq. (5.94) for the case of the − sign. The lower
branch can be considered as the acoustic modes of the supersolid. There, the condensates in
the lattice sites oscillate in phase. The upper branch can be assigned as the optical mode,
where the condensates oscillate out of phase by π.
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Chapter 6

Experimental Realization

In the previous chapters we first calculated the instability of the dispersion relation within the
Bogoliubov theory. Then we went into the Rotor-Model to determine the instability within
a mean-field theory, since the description of the Bogoliubov theory becomes invalid at higher
filling factors n. There we discovered, that the instability occurs at the same critical ratio γ
as in the Bogoliubov theory. After that, we proposed an ansatz to describe the new phase.
Previously within chapter 5 we investigated the stability of the supersolid phase and found
that no instability occurs. Thus, the theory done so far is conclusive and seems to be valid.
Our next step is to consider the experimental realization of the done theory.

A possibility for an experimental set up would be the application of chromium atoms to an
optical lattice. The group of Tilman Pfau at the University of Stuttgart intensively investi-
gated the properties of 52Cr atoms and possible applications.

In the following sections we want to determine a possible experimental setup and if the dipolar
chromium BEC is stable, while being in a trap. The stability of the Cr-BEC is necessary to
carry out the loading into an optical lattice and applying the needed ratio γ.

6.1 Energy of the BEC in a trap

At first we start with the calculation of the energy of a Cr-BEC within a cylindrical shaped
trap. Therefore we use the Gross-Pitaevskii energy functional with an external trapping
potential of cylindrical shape

E [Φ] =
∫ [

~2

2m
|∇Φ|2︸ ︷︷ ︸
1

+Vtrap |Φ|2︸ ︷︷ ︸
2

−µ |Φ|2︸ ︷︷ ︸
3

+
1
2
|Φ|2

∫
Udd

(
r− r′

) ∣∣Φ (r′)∣∣2 dr′︸ ︷︷ ︸
4

+
g

2
|Φ|4︸ ︷︷ ︸
5

]
dr ,

(6.1)

where Vtrap is the potential of the cylindrical trap and Udd is the dipole-dipole interaction
potential
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Vtrap =
m

2
(
ω2
ρρ

2 + ω2
zz

2
)
, (6.2)

Udd
(
r− r′

)
=

µ0 µ
2

4π
1− 3 cos2 θ

|r− r′|3
, (6.3)

and the coefficient g being

g =
4π~2a

m
. (6.4)

The first part in eq. (6.1) accounts the kinetic part, the second considers the potential of
the trap Vtrap, the third the chemical potential µ, the forth part stands for the dipole-dipole
interaction and the fifth part is for the contact interaction. In the equation above, a is the
scattering length, m the atomic mass of the particles, ~ the planck’s constant, µ0 the perme-
ability of vacuum, µ the permanent magnetic dipole moment and θ is the angle between the
direction of polarization and the relative position of the particles. For a further introduction
into the detailed calculation of the dipolar BEC confined in a cylindrical shape see [30].

Following ansatz is used for the wave function, it is of a Gaussian form

Φ (ρ , z) =

√
N

π3/2σ2
ρσza

3
ho
e
− 1

2a2ho

„
ρ2

σ2
ρ
+ z2

σ2
z

«
, (6.5)

where the coefficient σρ is the radial size of the BEC cloud, σz the expansion in the z-direction,
ωz is the trap size in z-direction and ωρ the trap size in radial direction. The coefficient N is
the number of particles in the trap and aho is the harmonic oscillator length with

aho =

√
~
mω

. (6.6)

The coefficient ω is mean trap frequency with

ω =
(
ω2
ρ ωz

)1/3
. (6.7)

The ansatz eq. (6.5) is being inserted into the Gross-Pitaevskii energy functional eq. (6.1) and
reveals the energy for the BEC in the confining trap

E =
N
4

~ω

{[
2
σ2
ρ

+
1
σ2
z

]
+

1
λ2/3

[
2σ2

ρ + λ2σ2
z

]
− 4µ

~ω
+

4Nadd√
2π ahoσ2

ρσz

(
a

add
− f(κ)

)}
, (6.8)

where following coefficients are introduced

λ =
ωz
ωρ

(6.9)

add =
µ0µ

2m

12π ~2
(6.10)

f(κ) =
1 + 2κ2

1− κ2
− 3κ2Artanh

√
1− κ2

(1− κ2)3/2
. (6.11)
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The coefficient λ is the ratio of the confining trap in z- to ρ-direction, add is the dipolar length
as introduced in [30] and the function f(κ) comes out at the integration of the dipole-dipole
interaction term. It depends on the aspect ratio κ = σρ/σz of the BEC cloud.

6.2 Calculation of U , V , t

In the upcoming sections we want to determine relations for the on-site interaction U , the
nearest-neighbor interaction V and the hopping term t, expressed in experimental available
quantities, e.g. like the aspect ratio of the cloud κ. To reach this, we begin our calculations
with the above result for the energy of a BEC in a trap and modify it to our needs.

6.2.1 Calculation of the on-site interaction U

We start with the evaluation of the on-site interaction U . Here, we consider the BEC to be
of Gaussian form and being confined in a cylindrical shaped trap, see figure 6.1.

z

x

trap

Gaussian wave function

Figure 6.1: Dipolar BEC, described by a Gaussian wave function, confined in a cylindrical
shaped trap.

Instead of a calculation for fixed particle number N, as done before, we now consider a variable
particle number. For this reason we replace the particle number N by the mean number of
particles per trap n and introduce mean-field particle fluctuations δn

N→ n+ δn . (6.12)
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Since we work with a fluctuating particle number, we also have to introduce a chemical po-
tential µ, for controlling purposes, into the energy eq. (6.8). Next, we replace every particle
number N by the proposed eq. (6.12) and obtain

E =
(n+ δn)
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(6.13)

Now, we sort the above energy in orders of δn
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We seek, that there are only quadratic orders of mean-fluctuations in our system. Therefore,
we determine the chemical potential µ in such a way, that all linear terms in δn vanish. Thus

µ =
~ω
4

(
2
σ2
ρ

+
1
σ2
z

)
+
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4λ2/3

(
2σ2

ρ + λ2σ2
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)
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. (6.15)

With the chemical potential µ eq. (6.15) inserted into the energy eq. (6.14), we get the following
structure for the energy of our considered system

E(n+ δn) = E(n) +
U

2
δn2 , (6.16)

where the energy of the mean number of particles E(n) is

E (n) =
n2~ω add√
2π ahoσ2

ρσz

(
f(κ)− a

add

)
. (6.17)

The pre-factor of the quadratic part in eq. (6.16) is the desired on-site interaction, expressed
in experimentally accessible values

U =
2~ω add√

2π ahoσ2
ρσz

(
a

add
− f(κ)

)
. (6.18)

The above value for U is only an upper boundary for the exact value of the on-site interaction.
To find the exact value for U , the derivative of eq. (6.17) with respect to σρ and σz has to be
done. Then this determined equation has to be solved, to obtain the critical scattering length
acrit, this has to be inserted into eq. (6.18) to achieve the exact value. Derivatives with respect
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to N, λ or ω can not be carried out, because E(n+ δn) does not depend on these values. For
further insight into the exact calculation of U , a first step is to consider [30].

In this work we only present the upper boundary for U , because the exact value can only be
obtained with numerical efforts. For an estimate of U the upper boundary is sufficient.

6.2.2 Calculation of the nearest-neighbor interaction V

With the upper boundary for the on-site interaction U , an upper boundary for the nearest-
neighbor interaction V is due. This is done in the following.

We assume two cylindrical shaped traps, each occupied by a BEC. The two traps are apart
by a distance b and one trap contains N1 particles, the other N2, see figure 6.2.

b

site 1 site 2

N1 N2

z

x

Figure 6.2: Two dipolar BECs, each assumed to be a sharp peak function to prevent an
overlap, confined in cylindrical shaped traps. The left BEC contains N1 particles, the right
N2.

For this case the energy functional for two cylindrical shaped traps, where each holds one
BEC, has to be written as

E [Φ1 , Φ2] = E [Φ1] + E [Φ2] +WW [Φ1 , Φ2] , (6.19)

where E [Φ1] is the energy functional of eq. (6.1) for trap1 and E [Φ2] for trap2. The term
WW [Φ1 , Φ2] is the energy functional for the interaction between the BECs in trap1 and trap2.
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To solve the above Gross-Pitaevskii equations, we need to propose an ansatz for the two wave
functions, where again the fixed particle number N is replaced by a fluctuating particle number
n+ δni. Thus

Φ1(ρ, z) =

√
n+ δn1

π3/2σ2
ρσza

3
ho
e
− 1

2a2ho

„
ρ2

σ2
ρ
+ z2

σ2
z

«
, (6.20)

Φ2(ρ, z) =

√
n+ δn2

π3/2σ2
ρσza

3
ho
e
− 1

2a2ho

„
ρ2

σ2
ρ
+ z2

σ2
z

«
. (6.21)

The given ansatz above need to be inserted into the Gross-Pitaevskii energy functional of
eq. (6.19) to determine the energy of the considered system. The calculation for the energy
functionals E [Φ1] and E [Φ2] can be done identically as in section 6.1, by inserting the ap-
propriate wave function eq. (6.20) or eq. (6.21). To evaluate the chemical potential µ in this
case, the interaction energy functional has to be calculated at first. It reads

WW [Φ1 , Φ2] =
1
2

∫
|Φ1 (r)|2 Udd

(
r− r′

) ∣∣Φ2r′
∣∣2 dr′dr . (6.22)

where Udd is as in eq. (6.3) given. An analytic calculation can not be carried out, because one
integration can not be done analytically. Therefore we compute an upper boundary, again,
for the nearest-neighbor interaction. We use the following simplification: Here, the two wave
functions are considered to be of a delta shape, instead of a Gaussian. Thus eq. (6.20) and
eq. (6.21) have to be multiplied by δ

(
x± b

2

)
, where b is the fixed distance between the traps.

Since the wave functions are now delta shaped, all particles in the two traps can be considered
being parallel, which leads to following simplifications of eq. (6.3)

∣∣r− r′
∣∣ → b (6.23)

θ → π

2
⇒ cos

(π
2

)
→ 0 . (6.24)

The angle θ is the angle between the direction of polarization and the relative position of the
particles. For these simplifications, the dipole-dipole potential is

Udd
(
r− r′

)
→ Udd(b) =

µ0µ
2

4πb3
. (6.25)

The ansatz for the wave functions of the different BECs now are

Φ1(x, y, z) =
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Φ2
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)
=
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π3/2σ2
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3
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e
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σ2
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!
δ

(
x′ − b

2

)
, (6.27)

where we further assume, that trap sizes and the size of the BECs are the same for the two sites.
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Next we insert the above wave functions into the simplified interaction energy functional

WW [Φ1 , Φ2] =
1
2

∫
|Φ1(r)|2 Udd(b)

∣∣Φ2

(
r′
)∣∣2 dr′dr , (6.28)

and integrate over the coordinates y′, z′, y, z. This leads to the following expression

WW [Φ1 , Φ2] = γ
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π2a4
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2
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2
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) ∫
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2
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Here we introduce the coefficient γ as

γ =
1
2
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π3/2σ2
ρσza

3
ho

)(
µ0µ

2
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)(
N2
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3
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)
. (6.30)

The introduced coefficient γ should not be misunderstood, it is not the ratio of nearest-
neighbor to on-site interaction γ 6= γc.

Next, we integrate over the coordinate x′ and get

WW [Φ1 , Φ2] = γ
(
π2a4

hoσ
2
ρσ

2
z

) ∫
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, (6.31)

where an integration over the last coordinate x gives

WW [Φ1 , Φ2] = γ
(
π2a4

hoσ
2
ρσ

2
z

) (√
πahoσρ

) (√
πahoσρ

)
. (6.32)

The introduced coefficient γ eq. (6.30) is now being put into the above computed equation
and thus reveals the final value for interaction energy functional WW [Φ1 , Φ2]

WW [Φ1 , Φ2] =
µ0µ

2 N1N2

8πb3
. (6.33)

Until now, we have evaluated the energy of the interaction term WW [Φ1 , Φ2]. To obtain the
energy of the whole considered system, we need to insert eq. (6.33) into the energy functional
eq. (6.19), together with the results for the energies E [Φ1] and E [Φ2]. Hence we get

Eges[Φ1 , Φ2] = E[Φ1] + E[Φ2] +WW [Φ1 , Φ2]
= N1 (α− µ+ N1β) + N2 (α− µ+ N2β) + ηN1N2 . (6.34)

The coefficients α, β and η are

α =
~ω
4

{[
2
σ2
ρ

+
1
σ2
z

]
+

1
λ2/3

[
2σ2

ρ + λ2σ2
z

]}
, (6.35)

β =
add~ω√

2πahoσ2
ρσz

(
a

add
− f (κ)

)
, (6.36)

η =
µ0µ

2

8πb3
, (6.37)
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and were introduced for simplification and to allow a more compact form for the energy of the
system Eges.

In the next step, we plug in the values for the particle numbers N1 and N2, namely n + δni
and sort the revealing equation by orders of the mean-field fluctuations δni

Eges =n2 (2β + η) + β
(
δn2

1 + δn2
2

)
+ 2n [α− µ]

+ ηδn1δn2 + (δn1 + δn2) [2nβ + α− µ+ ηn] .
(6.38)

Again, we have to determine the chemical potential µ in such a way, that the linear parts of
the mean-field fluctuations δni vanish. Thus we get the chemical potential as

0 != (δn1 + δn2) [2nβ + α− µ+ ηn]
⇒ µ = 2nβ + α+ ηn . (6.39)

We can now achieve the energy for the system expressed with the introduced coefficients α,
β, η, by inserting the chemical potential eq. (6.39) into eq. (6.38)

Eges = n2 (−2β − η) + β
(
δn2

1 + δn2
2

)
+ ηδn1 δn2 . (6.40)

Now the definitions (6.35 - 6.37) are put into the equation above, to get the energy expressed
in the experimental parameters. After that we bring eq. (6.40) into a form, where the values
for the nearest-neighbor and on-site interaction are shown. Hence we get

Eges = E
(
n2
)

+
U

2
(
δn2

1 + δn2
2

)
+
V

2
δn1 δn2 , (6.41)

whereby the energy of the mean number of particles E
(
n2
)
, the on-site interaction U and the

nearest-neighbor interactions V are

E
(
n2
)

= n2

(
2add~ω√
2πahoσ2

ρσz

(
f(κ)− a

add

)
− µ0µ

2

8πb3

)
, (6.42)

U =
2add~ω√

2πahoσ2
ρσz

(
a

add
− f(κ)

)
, (6.43)

V =
µ0µ

2

4πb3
. (6.44)

Thus we found an upper boundary for the nearest-neighbor interaction V with eq. (6.44). The
value for the on-site interaction eq. (6.43) is identical to the value in calculated in eq. (6.18)
and proofs the consistency for our calculations.

6.2.3 Expressing the Instability

Since we now have upper boundaries for the on-site U and nearest-neighbor interaction V ,
we can express the critical ratio of V/U in coefficients, which are accessible in an experiment.
This is done by using the value for the on-site interaction eq. (6.18) and the nearest-neighbor
interaction V eq. (6.44)
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γ =
V

U
=

12a3
hoσ

2
ρσz

√
2π b3

(
a
add
− f(κ)

) . (6.45)

The upper equation, can be given in a more convenient form, where only proportions between
values are important

γ ≈
(σρaho

b

)2 σzaho

b

1(
a
add
− f(κ)

) . (6.46)

With the ratio γ expressed in quantities accessible in an experiment, we now have to consider,
how γ can be tuned to the critical value γ. First, we start with the investigation for the radial
size of the cloud, the first part in eq. (6.46). In the radial direction, the expansion of the cloud
is limited at

σρmax =
b

4
,

because we assumed that the two BEC clouds do not overlap. The assumption was, that the
two BEC wave functions have a Gaussian delta shape and therefore no expansion of the wave
functions were considered. To be sure, that no overlapping between the two wave functions
appear, the cloud is limited in radial-direction. The harmonic oscillator length aho is of the
order of one. Thus, we obtain for the first part in eq. (6.46)(σρ aho

b

)2
→ O

(
1
16

)
.

This means, we are not able to tune γ in the radial direction.

Next, we investigate the constraints in the z-direction. Since there are now constraints con-
cerning the z-direction, therefore the system can be fully tuned. Now, we want to take a closer
look at the last part of eq. (6.46). The function

1(
a
add
− f(κ)

) , (6.47)

results from the calculation of the energy of a dipolar BEC. It is responsible for the stability
of a dipolar BEC within a cylindrical shaped trap and gives the dependency of the scattering
length for the collapse. For trap aspect ratios λ < 1, the cloud is cigar shaped and only stable
for scattering lengths a > add. If the trap aspect ratio is chosen to be oblate, λ > 1, even
negative scattering lengths until a ≈ −2 add can be realized, before collapsing. For a stability
discussion see [30]. Still due is, how we should choose the trap ratio. First of all, we need the
ratio of nearest-neighbor to on-site interaction to be positive and larger than one. Therefore
the function eq. (6.47) has to be larger than one. To accomplish that, we need(

a

add
− f(κ)

)
< 1 , (6.48)

to be smaller than one. This can only be achieved, if we choose a cigar shaped trap and a
scattering length a of a ≥ add. With this, the function eq. (6.47) becomes smaller than one.
Hence, the ratio γ can be tuned to reach the critical ratio γc, where the instability in the
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superfluid phase occurs and the supersolid phase begins, be setting the trap to be prolate and
the scattering length to be a ≥ add.

6.2.4 The hopping term t

For sake of completeness the hopping term is given

t =
4√
π
Er

(
V0

Er

)3/4

exp

[
−2
(
V0

Er

)1/2
]
, (6.49)

where Er = ~2k2

2m is the recoil energy and V0 the tuneable amplitude of the optical lattice.

The equation for the hopping term is valid for the lowest Bloch band n = 0 and in the limit
V0 � Er, see also [7]. It can be used for the analysis, since the assumption is made, that the
system stays in the lowest Bloch band and excitations to higher bands can be neglected.

The hopping matrix elements tn(R) are uniquely determined by the energies of the Bloch
bands εn(q) via ∑

R

tn(R) eıq·R = εn(q) , (6.50)

and R is a lattice vector.

Alternatively the hopping term can be calculated, as proposed by Jaksch et al. [22], as

t =
∫
d3x w∗0(x− xi)

[
− ~2

2m
∇2 + V0 (x)

]
w(x− xj) , (6.51)

where w(x− xi) is the Wannier function of lattice site i or j and V0(x) is the optical lattice
potential.

6.3 Experimental Proposal

In this section, we want to propose an experimental setup to achieve the described supersolid
phase. In the previous section 6.2.3 we argued, that cigar shaped traps are needed. Therefore
we consider a 2D optical lattice, which consist of cigar shaped traps, arranged in a plane to
form a two dimensional lattice, see section 2.1.
Now we want to give estimates for the needed frequencies of the on-site U and nearest-neighbor
interaction V . The critical ratio γc is

γc =
2t
nU

+
1
z
. (6.52)

Since we desire to be in the supersolid phase, the hopping t should be small compared to the
superfluid phase, were t dominates. Therefore the first part of eq. (6.52) is small. Hereby, t
is small and U too, but in the order of t, thus the term should be of the order of 1/z. The
quantity z is the number of nearest neighbors. Hence, in our experiment, we consider the
critical ratio γc to be of the order of
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γc =
V

U
≈ 2
z
. (6.53)

This is one relation to consider. The other one, as argued is

nU ≈ 2zt , (6.54)

since the first part in eq. (6.52) should be

1
z
≈ 2t
Un

. (6.55)

With the equations above, we have relations for calculating the desired frequencies. Typically
frequencies for the hopping t is ∼ 10Hz, [32]. Usually the number of particles confined in a
cigar shaped trap ranges between 101 and 3 ·102, depending on the used laser power [18], [53],
[38], [26]. Therefore, we can carry out the determination of U and V , in a 1D system with 20
particles per lattice site. Inserting these values into equations (6.53 + 6.54) we find that the
on-site interaction U is of the order

U ≈ 2Hz , (6.56)

and the nearest-neighbor interaction V thus

V ≈ 2Hz , (6.57)

depending on the considered dimension.

Another proof for the possible experimental application of our theory is to insert the needed
values for chromium atoms into eq. (6.44). The typically distance between two cigar shaped
traps is in the order of 10−6m. The other needed values for the calculation are

µ0 = 4π 10−7 Vs
Am

,

µ = 6 · 9.2740154 · 10−24 Am2 ,

b ≈ 10−6 m .

With this inserted into the upper boundary for the nearest-neighbor interaction eq. (6.44), we
obtain a value of

V ≈ 0.5Hz . (6.58)

Thus the value for the calculated nearest-neighbor interaction of chromium is of the order of
the estimated value for the nearest-neighbor interaction eq. (6.57) needed for the instability
to occur.
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Chapter 7

Summary & Outlook

In the presented work, we have in detail showed the possibility of a supersolid phase on an
optical lattice by rigorous calculations. We have proofed in several ways, that an instability
occurs in the energy spectrum of the superfluid phase. Therefore we propose the existence of
a supersolid phase on an optical lattice.

Our calculations started with the Bogoliubov theory for a dilute Bose gas. Within this the-
ory, where the system is assumed to be in the ground state and interactions are only allowed
between particles in the ground state and in low excited states, we found that the superfluid
phase is unstable. To find this, we took a Hamiltonian, which considers on-site and nearest-
neighbor interactions and then diagonalized it. In this way, we achieved the dispersion relation
of the system. Next, we tuned the ratio between the nearest-neighbor and on-site interaction
and discovered, that at a critical ratio γc, the superfluid phase suffers an instability in its
dispersion relation. This was the first sign of the appearance of a new quantum phase. This
new phase could not be interpreted as the known Mott Insulator phase, since hopping was not
fully suppressed. To proof, that the superfluid phase really undergoes a phase transition, we
changed the description from the Bogoliubov to a mean-field picture. In the mean-field theory,
we started our considerations with a Rotor-Hamiltonian. We used it, because we assumed,
that every optical lattice site contains a quasi-condensate, which can be described by a macro-
scopic wave function. This kind of system then could be considered as a Josephson Junction
array. After the determination of the dispersion relation, we discovered, that the instability
occurs even at this description. We then took a closer look at the system, determined the
number of particles and the mean-field fluctuations at each lattice site. This told us, that there
are fluctuations of particle numbers, depending on the lattice site and the phase difference
between sites. Next, we proposed an ansatz, where the different occupations of lattice sites
were considered. This proposal was strengthened by the fluctuating particle numbers of the
different lattice sites and the adjustability of them. Then we evaluated the new ground state
energy for the new phase, which enters at the instability of the superfluid phase. Afterwards
we investigated the phase transition between the superfluid and the new phase. The conclu-
sion was, that it is of second order, thus the system undergoes a smooth transition. The new
phase was proposed to be a supersolid, because it has properties of the superfluid, i.e. the
hopping, and it forms a crystalline ordering, like solids. In the last section of the mean-field
considerations the validity of the calculations was discussed and argued to be appropriate.
The following chapter investigated the stability of the supersolid phase and if it holds against
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quantum fluctuations introduced to the system. The conclusion, that the supersolid phase
is stable, even against quantum fluctuations, strengthened our proposal of the occurrence of
this phase on an optical lattice. In the last chapter, we discussed a possible experimental
realization for the supersolid phase. There we proposed, that a BEC with chromium atoms
confined to an optical lattice would be a promising candidate. We also calculated the on-site
and nearest-neighbor interaction expressed in values, which are experimental accessible. To
close the chapter of experimental realization, we assumed the frequencies of the on-site and
nearest-neighbor interaction needed to tune the system to the critical ratio.

The next step of this work would be an experimental setup to realize the calculations carried
out in this work. For this, a Bose-Einstein condensate of much more particles in the condensate
is needed, than achieved today. With this accomplished, the future would look really promising
to finally realize a supersolid.



Appendix A

Sortation of Rotor-Hamiltonian

As argued in section 5.1, we are going to sort the Rotor-Hamiltonian

H = −2t
∑
〈i, j〉

√
ni nj

[
1 +

1
2

(
∆nj
nj

+
∆ni
ni

)
+

1
4

∆nj∆ni
njni

−1
8

((
∆nj
nj

)2

+
(

∆ni
ni

)2
)
− 1

2
(ϕi − ϕj)2

]

+
U

2

∑
i

(
n2
i + ∆n2

i + 2ni∆ni
)

+
V

2

∑
〈i, j〉

(ni nj + ni∆nj + nj∆ni + ∆ni∆nj)

− µ
∑
i

(ni + ∆ni) . (A.1)

by orders of ∆ni

H = −2t
∑
〈i, j〉

√
ni nj

(
1− 1

2
(ϕi − ϕj)2

)
+
U

2

∑
i

n2
i +

V

2

∑
〈i, j〉

ni nj − µ
∑
i

ni

− 2t
∑
〈i, j〉

√
ni nj

1
2

(
∆ni
ni

+
∆nj
nj

)
+
U

2

∑
i

2ni ∆ni

+
V

2

∑
〈i, j〉

(ni ∆nj + nj ∆ni)− µ
∑
i

∆ni

− 2t
∑
〈i, j〉

√
ni nj

1
4

∆ni∆nj
ni nj

+
V

2

∑
〈i, j〉

∆ni∆nj

− 2t
∑
〈i, j〉

√
ni nj

(
−1

8

((
∆ni
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)2

+
(

∆nj
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)2
))

+
U

2

∑
i

∆n2
i
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= − 2t
∑
〈i, j〉

√
ninj
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1− 1

2
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)
+
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i , (A.2)

where the coefficient E′ is

E′ = − 2t
∑
〈i, j〉

√
ninj

(
1− 1

2
(ϕi − ϕj)2

)
+

U

2

∑
i

n2
i +

V

2

∑
〈i, j〉

ninj − µ
∑
i

ni . (A.3)

The terms in eq. (A.2) labeled as "same structure" reveal the same values, when the summation
over 〈i, j〉 is carried out. Therefore the terms can be put together in each case. Thus, the
Rotor-Hamiltonian reduces further to

H = E′ − 2t
∑
〈i, j〉

√
nj
ni

∆ni + U
∑
i
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1
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]
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√
ninj
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U

2

∑
i

∆n2
i . (A.4)

Finally we obtain the sorted Rotor-Hamiltonian by orders of the quantum fluctuations ∆ni

H =− 2t
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ninj
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(A.5)



Appendix B

Calculations of Chapter 5

B.1 Computing 2n

As argued in section 5.1.1, f1 + f2 = 2n. In the following this is computed.

We need following values

f1 = ni =
(
c+ d

)2
, f2 = nj =

(
c− d

)2
, (B.1)

the values for c eq. (4.89) and d eq. (4.88)

c2 =
n

2
− zt

U − zV
, (B.2)

d
2 =

n

2
+

zt

U − zV
. (B.3)

Now we can begin the calculation

f1 + f2 = ni + nj =
(
c+ d

)2 +
(
c− d

)2
=

(
c2 + 2 cd+ d

2
)

+
(
c2 − 2 cd+ d

2
)

= 2
(
c2 + d

2
)

= 2
(
n

2
− zt

U − zV
+
n

2
+

zt

U − zV

)
= 2

(n
2

+
n

2

)
= 2n (B.4)
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B.2 Calculation of U0

Here we want to refer to the postponed calculation of U0 in section 5.2.2

U0 =
1
2

(
1
f2
1

+
1
f2
2

)
, (B.5)

where

f2
1 = n2

i =
((
c+ d

)2)2
, (B.6)

f2
2 = n2

j =
((
c− d

)2)2
, (B.7)

and with eq. (B.2 + B.3).

Inserting the values for f2
1 and f2

2 into eq. (B.5)
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(
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)2
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. (B.8)

B.3 Calculation of U1

With U0 being calculated above, U1 is due. The coefficient U1 is

U1 =
1
2

(
1
f2
1

− 1
f2
2

)
, (B.9)

and

f2
1 = n2

i =
((
c+ d

)2)2
, (B.10)

f2
2 = n2

j =
((
c− d

)2)2
, (B.11)

where the coefficients c and d are as in eq. (B.2 + B.3).

Now the computation can be carried out
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