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Abstract

In this dissertation we focus on many-body phenomena on a quantum level.
In particular fermionic quantum gases in a temperature regime approaching
absolute zero. Ultracold quantum gases have proven to be a versatile framework
for Theorists and Experimentalists to probe many-body quantum mechanics.
They also serve to quantum simulate solid state problems in a clean and
controllable environment. The use of optical lattices include the advantage of
tuning the required lattice structure nearly at will and lack the experimental
shortcomings compared to the solid state, like the presence of lattice dislocations.
The relevant lattice parameters can be easily tuned without changing the setup.
In recent years many goals within theory and experiments of ultracold quantum
gases in optical lattices were achieved. This emphasizes the significance of
ongoing research with ultracold quantum gases on optical lattices.
We present two aspects of modern theory of ultracold quantum gases in optical
lattices. On the one hand, we implement orbital physics in a setup of optical
lattices and on the other, we find elusive Majorana fermions in a setup with
ultracold fermionic gases. Both aspects are well-known in solid state systems,
but did not make the step towards ultracold quantum gases so far. We propose
and investigate setups to quantum simulate these challenges in the framework
of optical lattices.
The first part of this work concerns the implementation of orbital physics in
optical lattices. The orbital structure of atoms reveals novel phenomena in
solid state systems. This raises the interest in creating optical lattice systems
exhibiting analog behavior, as dictated by the orbitals in the solid state. We
derive the microscopic Hamiltonian for a p-orbital system and investigate it in
detail. For this Hamiltonian we perform a mean-field treatment and discover
novel phase transitions including a possible tricritical point. In the analysis of
the strong coupling regime we find an additional phase transition towards an
antiferromagnet and then extend the mean-field phase diagram. Concluding
the investigations is a proposal of an experimental setup to achieve orbital
physics with state-of-the-art experimental tools.
The second part of this work considers Majorana modes and p-wave superfluids.
Majorana modes are not only present in high-energy physics, but also in
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condensed matter systems. Here we demonstrate a setup in order to simulate
Majorana modes and p-wave superfluids in optical lattices. We derive an
effective Hamiltonian and investigate it on a mean-field level as well as give
the mean-field phase diagram. It contains a rich manifold of different p-wave
phases. In addition, we extend our investigations to topological properties of
our system and provide the topological phase diagram. We discover the special
phenomena that the mean-field and topological phase transitions are decoupled
in our system. The proposed system is suited to have Majorana modes at
vortices and dislocations, which are injected into the system in controllable
experimental manner. We conclude the considerations by giving a protocol for
braiding in order to demonstrate non-Abelian statistics of Majorana modes.
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Zusammenfassung

In dieser Dissertation konzentrieren wir uns auf Vielteilchenphänomene auf der
Quantenebene. Im Besonderen auf fermionische Quantengase in der Nähe des
absoluten Nullpunktes. Ultrakalte Quantengase haben bewiesen ein vielseiti-
ger Rahmen für Theoretiker und Experimentatoren zu sein, um Vielteilchen-
Quantenmechanik zu testen als auch darzulegen. Ebenso dienen sie dazu Pro-
bleme der Festkörperphysik in einer sauberen und kontrollierbaren Umgebung
auf der Quantenebene zu simulieren. Die Verwendung von optischen Gittern
hat den Vorteil, die benötigten Gitterstrukturen fast nach belieben einzustellen.
Ihnen fehlen die experimentellen Mängel im Vergleich zur Festkörperphysik,
wie beispielsweise das Vorhandensein von Gitterfehlstellen. Ohne einen Auf-
bau zu wechseln können relevante Gitterparameter leicht geändert werden. In
den letzten Jahren haben ultrakalte Quantengase in optischen Gittern viele
Ziele erreicht. Dies betont die Wichtigkeit weiterhin Forschung mit ultrakalten
Quantengasen in optischen Gittern fortzuführen.
Wir stellen zwei Aspekte moderner Theorie ultrakalter Quantengase in opti-
schen Gittern vor. Einerseits implementieren wir Orbitalphysik in einen Aufbau
optischer Gitter und andererseits finden wir schwer fassbare Majorana Fer-
mionen in einem Aufbau mit ultrakalten fermionischen Gasen. Beide Aspekte
sind wohlbekannt in Festkörpersystemen, haben jedoch seither nicht den erfolg-
reichen Schritt in Richtung ultrakalter Quantengase geschafft. Wir schlagen
Systeme vor, um diese Herausforderungen im Rahmen von optischen Gittern
auf einer Quantenebene zu simulieren und untersuchen diese.
Der erste Teil dieser Arbeit behandelt die Implementierung orbitaler Physik in
optischen Gittern. Die orbitale Struktur der Atome eröffnet neuartige Phänome-
ne in Festkörpersystemen. Dies steigert das Interesse Systeme optischer Gitter
zu erzeugen, die ein vergleichbares Verhalten besitzen, wie es durch die Orbitale
im Festkörper vorgegeben wird. Wir leiten den mikroskopischen Hamiltonian
für ein System mit p-Orbitalen her, um Orbitalphysik in optischen Gittern
im Detail zu untersuchen. Weiter führen wir eine Mean-Field-Behandlung
durch und entdecken dabei neuartige Phasenübergänge mit einem möglichen
trikritischen Punkt. Mittels der Analyse des stark wechselwirkenden Bereichs
finden wir einen weiteren Phasenübergang zum Antiferromagnet und erweitern
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damit das Mean-Field-Phasendiagramm. Die Untersuchungen schließen wir mit
einem Vorschlag eines experimentellen Aufbaus ab, um Orbitalphysik mittels
modernster experimenteller Techniken zu erreichen.
Der zweite Teil dieser Arbeit behandelt Majorana Moden und p-Wellen Su-
praflüssigkeiten. Majorana Moden gibt es nicht nur in der Hochenergiephysik,
sondern können auch in Systemen kondensierter Materie simuliert werden.
Wir legen hier einen Aufbau dar, um Majorana Moden und p-Wellen Su-
praflüssigkeiten zu simulieren. Wir leiten einen effektiven Hamiltonian her
und untersuchen ihn auf einer Mean-Field-Ebene. Ebenfalls geben wir das
Mean-Field-Phasendiagramm an. Es beinhaltet ein reiches Angebot an verschie-
denen p-Wellen Phasen. Zusätzlich erweitern wir unsere Untersuchungen auf
topologische Eigenschaften unseres Systems und liefern das topologische Pha-
sendiagramm. Dabei entdecken wir das besondere Phänomen, dass in unserem
System die Mean-Field- und topologischen Phasenübergänge entkoppelt sind.
Das vorgeschlagene System eignet sich um Majorana Moden an Vortices und
Gitterfehlstellen zu bekommen. Die Gitterfehlstellen werden auf kontrollierbare
experimentelle Weise in das System gebracht. Wir schließen unsere Betrach-
tungen durch eine Vorschrift um nicht-Abelsche Statistik der Majorana Moden
nachzuweisen.
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CHAPTER

ONE

INTRODUCTION

Solid state research is essential in modern physics and reveals novel as well
as interesting phenomena. Especially magnetism in metals engages physicists
since many years [1, 2]: Properties like ferromagnetism [3–8], diamagnetism [9]
and antiferromagnetism [10, 11]. Intense research went into the theoretical
understanding and classifications of magnetic structures [12–14]. A challenging
task is the theoretical description of these discoveries, e.g. the antiferromag-
netic order within some solids [15] via the superexchange mechanism [16, 17].
Especially the introduction by J. Hubbard [18] of a simple model describing
electrons in the tight-binding limit in metals revolutionized the description of a
large class of solids. A major success of this Hamiltonian was the prediction of
phase transitions, like the superfluid to Mott Insulator transition essential in
metals [19]. In recent years the orbital structure of solid state systems becomes
more important leading to novel orbital orderings [20] and exotic phases [21].
Up to now, many of these phenomena are not yet fully understood [22, 23] and
demand for an definitive answer, for example high-temperature superconduc-
tivity [24–26].
At the turn of the millennium an idea was proposed, implementing the Hubbard
model for a gas of ultracold bosons into a controllable environment, namely
optical lattices [27, 28]. Shortly after this proposal the prime example of
phase transitions in solids, the superfluid to Mott Insulator transition, was
experimentally achieved for ultracold bosons in an optical lattice setup [29].
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1. Introduction

This was the first major step of quantum simulating solid state problems in a
controllable setup of optical lattices [30]. Furthermore, the first steps towards
ultracold gases of fermions were proposed [31] in order to set up an actual
quantum simulator for solid state problems. As in metals, the Hubbard model
was also implemented in an optical lattice framework [32]. More and more
solid state properties, known from previous investigations in metals, became
accessible in optical lattices: including the Fermi surface [33], antibunching of
fermions [34], even pairing of fermions and superfluidity [35]. Recently even the
Mott Insulator phase transition was revealed in optical lattices [36–38]. The
goals for theory and experiments are currently simulating magnetic properties
within ultracold gases in optical lattices, such as ferromagnetism [39, 40] and
the superexchange mechanism [41, 42], relevant to antiferromagnetism in optical
lattices [43–50]. These pioneering experiments show that ultracold fermionic
gases indeed are able to quantum simulate magnetic behavior in optical lattice
setups [51–54].
Ultracold fermions in optical lattices demonstrated to be a framework in order
to quantum simulate the solid state in a controllable experimental environment.
In this work we take this framework to a new level and investigate two different
branches for fermions in optical lattices. On the one hand we start to bridge
the – still open – gap of orbital physics within optical lattices and on the other
we explore a path towards quantum simulating a setup delivering Majorana
modes and p-wave superfluids in an optical lattice system.
In the first part of this work we explain how orbital physics can be implemented
into the framework of optical lattices. Previous work was so far restricted to
s-orbital systems. The orbital structure of atoms is essential for novel mecha-
nisms in solid state systems. Here we propose a setup for p-orbital physics as a
first step towards the goal of simulating d-orbital problems in an optical lattice.
In the investigation we discover interesting mechanisms as well as novel phase
transitions. Hereby we pave the path towards the possible realization of orbital
physics in ultracold fermionic gases.
In the second part of this work we focus on another novelty of solid state
systems, namely Majorana modes. We design an optical lattice setup revealing
p-wave superfluids as well as Majorana modes at vortices and lattice disloca-
tions. In our investigation we discover that the mean-field and topological phase
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transitions are decoupled. In addition, our setup can be used to implement a
braiding protocol to demonstrate non-Abelian statistics of Majorana modes.
Creating and detecting Majorana fermions is essential for a reliable quantum
register and thus quantum computer.
This work is structured as follows: In chapter 2 we briefly present the general
concepts of this work. Chapter 3 gives the in-depth analysis of the imple-
mentation of orbital physics in an optical lattice setup. The investigations
regarding the Majorana modes in the fermionic p-wave system is given in
chapter 4. Supplementary material to the individual chapters are presented in
the appendix.
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CHAPTER

TWO

GENERAL CONCEPTS

The general concepts consider the rudimentary basics for the following chapters
in a brief manner. For each topic we give additional references for further
reading. Section 2.4 is presented in more detail since the two main chapters
rely on this concept.

2.1. Optical Lattices

Optical lattices are frequently used in experiments with ultracold gases to
trap neutral atoms [55]. They are created by counter propagating a set of
lasers to create the required lattice structure, see fig. 2.1. A set of two counter
propagating lasers create a structure, which directly relates to a one-dimensional
lattice. If an additional pair of counter propagating lasers is set perpendicular
to the previous setup, the resulting structure reveals a two-dimensional lattice
system. In this work we focus on two-dimensional setups. For the common
experimental setup, every lattice site is positive of the created two-dimensional
lattice, see fig. 2.2a) [30]. We refer to this configuration as positive optical
lattice. If an additional set of Raman lasers is used, a modulation of the sign
for each lattice site is achieved, as proposed in [57]. Here every other lattice
site is negative and we will refer to this as negative optical lattice, see fig. 2.2b)
for an illustration. For details regarding optical lattices see [30, 56].
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2. General Concepts

1D

a) b) c)

2D 3D

Fig. 2.1 Counter propagating lasers produce a landscape of different possible
optical lattices. a) Two lasers create a one-dimensional lattice. b) Four
lasers (two counter propagating and the other two perpendicular) produce an
array of two-dimensional tubes. Here a two-dimensional plane can be created,
thus a two-dimensional lattice. c) Six counter propagating lasers result in a
three-dimensional lattice. For additional details see [30, 53, 56].

a)

+ +

+ +

b)

- +

+ -

Fig. 2.2 Two-dimensional square lat-
tice, created by two sets of counter
propagating laser pairs. a) Positive
optical lattice. b) Negative optical
lattice, where every other site is neg-
ative.

2.2. Alkaline-Earth Atoms and Magic
Wavelength

Atoms located in the second group of the periodic table of elements are named
alkaline-earth metals, see fig. A.1. They have a closed s-wave orbital shell
and fermionic as well as bosonic isotopes. The special feature characterizing
alkaline-earth atoms is the highly forbidden transition between the 1S0 ground
state and the 3P0 excited state, see fig. 2.3. This transition is called optical
clock transition [58], it can be measured with high precision [59–62] and is used
for a wide range of setups including as an application for state-insensitive light
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2.2. Alkaline-Earth Atoms and Magic Wavelength

3P0

1S0

Clo
ck Fig. 2.3 Simplified illustration of the clock transi-

tion of alkaline-earth atoms between the 1S0 ground
state and the 3P0 excited state.

traps [63], measuring density-dependent collisional frequency shifts [64], optical
tuning of the scattering length [65] and more [66–68]. For further reading
regarding selection rules and forbidden transitions see [69–72].
If the alkaline-earth atoms are trapped in an optical lattice [58, 73], the
transition frequency ν for atoms in the 1S0 ground state to the 3P0 excited
state is given by

ν(λL, eL) = ν0 + νac ≈ ν0 −
∆α(λL, eL)

2ε0ch
I +O

(
I2
)
, (2.1)

where ν0 is the unperturbed transition frequency, νac the ac Stark shift due
to the perturbation of the lasers [71], ε0 is the permittivity of free space, c
the speed of light, h Planck’s constant, eL the polarization vector and I is
the lattice laser intensity. The difference between the ac polarizabilities of the
upper (excited) and lower (ground) state is

∆α(λL, eL) = αu(λL, eL)− αl(λL, eL) , (2.2)

and depends on the polarization vector as well as the lattice laser wavelength
λL. The goal is to set the difference ∆α(λL, eL) to zero, in order to transfer
the ground state atoms to the excited state with the unperturbed transition
frequency ν0 and have the transition to be independent of the lattice laser
intensity I. This is achieved by adjusting the polarization vector and setting the
laser wavelength to themagic wavelength λm [58, 73, 74], where ∆α(λm, eL) = 0

can be achieved. Thus, if the lattice laser is set to match the magic wavelength,
a second laser can be used to excite atoms through the forbidden transition
into the meta-stable 3P0 state. This state decays slowly with a finite lifetime
of Γ−1

0 ≈ 150 s [73]. Commonly used for experiments are Strontium 87,88Sr,
Ytterbium 171Y b and Calcium 43Ca. A possible candidate is also Mercury
199Hg [58, 73].
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2. General Concepts

The discovery of the magic wavelength mechanism opened up a new road of
experiments and theoretical calculations, like implementing a many-body spin
system in an optical lattice clock [75], quantum computing with alkaline-earth
atoms [76] or the application of alkaline-earth atoms as quantum registers [77].
Experimentally it was even possible to cancel the cold-collision-shift and inelastic
scattering in optical clock setups [78], determine the nuclear spin effects [79]
and even suppress the collisional shifts in lattice clocks [80]. Theoretically
many-body treatments were applied to the collisional frequency shifts in alkaline-
earth system [81]. The next major step was achieved, by implementing SU(N)

symmetric models with a setup of alkaline-earth atoms [82–84].
On the other hand, it is also possible to tune the polarizabilities to match the
anti-magic wavelength λam, such that the polarizabilities are opposite for the
ground and excited state, leading to off-resonant lattices [85–87].

2.3. Hubbard Model

In 1963 J. Hubbard introduced a simple model to describe fermions on a lattice
in a solid [18]. The Hamiltonian reads

H = −
∑
〈i,j〉,s

tij c
†
jscis + U

∑
i

ni↑ni↓ − µ
∑
i

ni , (2.3)

where the summation runs over all lattice sites i and nearest neighbors j of
our two-dimensional systems, tij is the hopping amplitude for the fermions
between sites i and j, c(†)i,s is the annihilation (creation) operator for a fermion
with spin s =↑, ↓. Note, it is also possible to adapt the Hubbard Hamiltonian
for bosons, then the it is called Bose-Hubbard Hamiltonian [27]. The on-site
interaction is U , the chemical potential µ and the particle number operator is
ni. Even though this Hamiltonian has a simple form, it nevertheless describes
the principle mechanisms of fermions on a lattice. For vanishing interaction
U = 0, the system is in a Fermi liquid state, where the fermions are delocalized
over the whole lattice. On the other hand, for vanishing hopping t = 0, the
fermions are localized and thus are in a Mott insulating state [88, 89]. The
phase transition between the Fermi liquid and Mott Insulator is subject of
intense research over the last years [19]. Despite its simple form, the Hubbard
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Hamiltonian incorporates interesting physics [90, 91] and serves as starting
point for many approaches and problems in the solid state framework [92, 93].
In addition, the Hubbard Hamiltonian also describes the basic mechanisms of
bosons [27, 28, 41, 94] and fermions [32, 33, 44, 53, 95–99] in optical lattices.

Quantum Phase Transitions

Phase transitions play an important role in all areas of physics. For classical
phase transitions, temperature is a crucial quantity and serves as a control pa-
rameter to drive the transitions. Thus, thermal fluctuations are omnipresent [19,
23, 100–102]. On the other hand, for quantum phase transitions, the temper-
ature is zero, i.e. T = 0, such that fluctuations are solely due to quantum
fluctuations. Here the order parameters for the phase transitions are inde-
pendent of temperature. Relevant tuning parameters can be the interaction
strength among the considered atoms, a magnetic field, external pressure etc.
A prominent example of a quantum phase transition is the superfluid to Mott
Insulator transition in an optical lattice [29, 35, 36, 38]. For further reading
regarding quantum phase transitions, see [22, 30, 56, 103, 104].

2.4. Strong Coupling Limit and
Schrieffer-Wolff Transformation

The Hubbard model describes the mechanisms of fermions on a lattice. In the
limit for vanishing hopping (t = 0) or interaction (U = 0), the evaluation of
the ground state properties is straightforward [18, 91, 105]. If the parameter
regimes becomes comparable (t ∼ U) the situation changes and the analysis
becomes challenging [19, 88].
The question now arises, if and how the Hubbard model can describe the
strong coupling limit (U � t) and the ground state in this limit. We therefore
investigate the strong coupling limit and derive the corresponding Hamiltonian.
We start from the previously introduced Hubbard Hamiltonian (2.3) with

9
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a) b) c) U

t

Fig. 2.4 Possible ground state configurations in the strong coupling limit.
Two possible configurations are given in red and green. a) Ferromagnetic
configuration: either every site on the lattice is spin up or down. b) Anti-
ferromagnetic order: every other site up and down, respectively. c) Hopping
process in the antiferromagnetic configuration resulting in an energy penalty
U � t. Further details are given in the text.

vanishing chemical potential (µ = 0)

H = −
∑
〈i,j〉,s

tij c
†
jscis + U

∑
i

ni↑ni↓ , (2.4)

where the summations are over all lattice sites i and nearest neighbors j,
where s is the spin, tij the hopping strengths between sites i and j, U the
on-site interaction strength, c(†)is the annihilation (creation) operator and nis
the particle number operator. In the strong coupling limit, the kinetic part of
the Hubbard Hamiltonian is a weak perturbation to the system. To derive an
effective Hamiltonian, we first have to specify the system. We consider a square
lattice with lattice spacing a and sites N � 1. For vanishing hopping, the
ground state of the system is obtained when the interaction energy vanishes.
At half-filling, there is always one fermion per site with either spin up or down,
since both cases have in the same energy. This freedom results in a large
degeneracy for the ground state of 2N possibilities with general form

|ψi〉 = c†i↑ |0〉 or |ψi〉 = c†i↓ |0〉 . (2.5)

In fig. 2.4 we give illustrations for the different possible ground state configu-

10
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U

t

t t

Fig. 2.5 Second order hopping process where the
first process produces an energy penalty U and
the second process again leaves only one fermion
per site. The second process can either lead back
to the initial site or to a neighboring site. Fur-
ther details are given in the text.

rations and the resulting degeneracy with respect to the Hubbard Hamiltonian
in the t = 0 case. If we allow weak hopping, the ferromagnetic configuration
in fig. 2.4a) prohibits hopping due to the Pauli principle. Here hopping can
only be induced via hole doping or spin flip processes. On the other hand, in
the antiferromagnetic case of fig. 2.4b) nearest neighbor hopping processes are
possible, although here the hopping results in an on-site interaction U and thus
hopping is penalized by U � t, see fig. 2.4c). The question then is, how this
energy penalty can be circumvented. This is only possible if the initial and
final state again only has one fermion per site. Thus, the single fermion in the
final state avoids the interaction energy U . This process is of second order,
since there are two hopping processes involved, see fig. 2.5. These second
order processes are of a virtual nature, since actual hopping of fermions would
result in a large energy penalty U � t. The virtual hopping process reduces
the energy of the system and thus reveals the nature of the ground state in the
strong coupling limit. The next step is to derive the Hamiltonian in the strong
coupling limit describing the virtual processes.
To derive a Hamiltonian, which solely describes virtual second order and no first
order processes, we have to perform a canonical transformation also known as
Schrieffer-Wolff transformation [106–109], a mathematical review can be found
in [110]. This canonical transformation is commonly used in strong coupling
approaches. The prominent example is the t− J model, the strong coupling
limit of the Hubbard model [105, 111–118].
In the strong coupling limit we are interested in double-occupied lattice sites.

11
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Double-occupancies set the energy scale of the system. Each double-occupancy
contributes an interaction energy of U . Therefore we decompose the total
Hilbert space H into a direct sum of the Hilbert spaces of double-occupied sites

H = H0 ⊕H1 ⊕ . . . ⊕HN , (2.6)

where the index m of H gives the number of double-occupied sites. Next, we
consider the involved states and how the projectors Pm act on them. The
projectors project onto corresponding double-occupied state and annihilate the
remaining states. We denote the total state as |ψ〉 and by |ψm〉 all the states
having m double-occupied sites such that

|ψ〉 =

N∑
m=0

|ψm〉 , Pm |ψ〉 = |ψm〉 , and |ψm〉 ∈ Hm . (2.7)

Note that the projectors have the property P 2
m = Pm. The projected Hubbard

Hamiltonian (2.4) operating in the subspaces is

H =

N−1∑
m=0

[PmHPm + PmHPm+1 + Pm+1 HPm] + PN HPN . (2.8)

Here we follow the approach given in [105, 111]. We modify this approach with
respect to the possible double-occupancies and only consider the projectors P0,
P1 and P2. This simplification is justified, since in our later work - section 3.5
and section 4.2.3 - we only consider systems with such configurations.
After the projection onto the different subspaces we expand the Hamiltonian
perturbatively

Hε := H0 + εH1 + ε2 H2 , (2.9)

where ε is the small dimensionless perturbation parameter and serves to collect
the different orders in ε. The unperturbed part of the Hamiltonian is

H0 := P0 HP0 + P1 HP1 + P2 HP2 . (2.10)

The first H1 and second H2 order perturbation is

H1 := P0 HP1 + P1 HP0 , H2 := P1 HP2 + P2 HP1 , (2.11)

12
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P0 HP0

P1 HP1

P0 HP1P1 HP0

P1 HP2P2 HP1

P2 HP2

Fig. 2.6 Different processes as described by
the expanded Hamiltonian (2.9), the unper-
turbed part (2.10), the first and second or-
der processes (2.11).

and H is the initial Hamiltonian of interest. The Hamiltonian P0 HP0 provides
an energy contribution of the order of the hopping amplitude ∼ tij , where
P1 HP1 provides an energy of the order of the interaction strength ∼ U and
P2 HP2 of ∼ 2U , with respect to P0 HP0. This energy scale is much larger
than the hopping amplitude. In fig. 2.6 we give an illustration of the different
processes.
To transform the Hamiltonian Hε into a form which gets rid of the first order
processes and only contains second order virtual ones, we introduce an unitary
transformation

U = e−iεS , (2.12)

in order to transform the expanded Hamiltonian as

H̃ := U Hε U † = e−iεS Hε eiεS , (2.13)

where S is the generator with S = S†. The central idea of the generator S is
to find a condition, such that the first order processes can be eliminated from
the projected Hamiltonian. The goal thus is to only have processes of the form
P0 HP0 and P0 H . . .HP0.
Next, we expand the two exponentials up to second order

e∓iεS = 1∓ iεS +
(∓iεS)2

2
+ ... ≈ 1∓ iεS − 1

2
ε2S2 . (2.14)
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Now we insert the expanded functions into Hamiltonian H̃ (2.13) and obtain

H̃ =
(

1− iεS − 1

2
ε2S2

)
Hε
(

1 + iεS − 1

2
ε2S2

)
=
(

1− iεS − 1

2
ε2S2

)(
H0 + εH1 + ε2 H2

)(
1 + iεS − 1

2
ε2S2

)
.

(2.15)

We sort the expanded equation in orders of the perturbation parameter ε and
neglect all higher contributions than second order. The remaining orders of ε
can be brought into the form

H̃ = H0 + ε (H1 + i [H0, S]) + iε2 [H1, S]

+
ε2

2

(
−H0 S

2 + 2S H0 S − S2 H0

)
+ ε2 H2

= H0 + ε (H1 + i [H0, S]) +
ε2

2
(2i [H1, S]− [[H0, S] , S] + 2H2) ,

(2.16)

where [H0, S] = H0 S − S H0 denotes the commutator relation. To get rid of
the first order processes, we directly find that

H1 + i [H0, S]
!

= 0 , ⇒ [H0, S] = iH1 . (2.17)

Here it important to stress, that now we have computed a condition for the
generator S. Fulfilling this condition via the correct derivation of S, cancels
the first order processes, as intended at the beginning.
Inserting the condition (2.17) into the perturbed Hamiltonian (2.16) then
reveals the transformed Hamiltonian

H̃ = H0 +
ε2

2
(i [H1, S] + 2H2) . (2.18)

It solely consists of zero and second order processes. The next task is to
determine the generator S, such that [H1, S] describes virtual second order
processes. The additional Hamiltonian H2 describes real second order processes,
i.e. no virtual second processes. In the following we are only interested in
the lowest possible energy scale and hence neglect H2, since here the energy
contribution is of the order of ∼ 2U with respect to P0 HP0. At this point
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2.4. Strong Coupling Limit and Schrieffer-Wolff Transformation

we set the perturbation parameter to one, ε = 1, because we performed the
required sorting of the different perturbative contributions.
We thus derive the generator S. The details are found in [111, 114]. We project
the condition (2.17) onto the Hilbert subspaces using the general projectors Pµ
and Pν

PµHPν (1− δµ,ν) + iPµHPµ (Pµ S Pν)− i (Pµ S Pν) Pν HPν = 0 .

(2.19)

In the case for µ = ν, the above equation directly yields

PµHPµ (Pµ S Pµ) = (Pµ S Pµ)PµHPµ ⇒ Pµ S Pµ = γPµ , (2.20)

with γ being an arbitrary constant. On the other hand, for µ 6= ν we have

PµHPµ (Pµ S Pν)− (Pµ S Pν)Pν HPν = iPµHPν . (2.21)

Adapting the obtained expression for the generator S to our scenario, we find

P0 S P1 = −i P0 HP1

P1 HP1 − P0 HP0
and P1 S P0 = i

P1 HP0

P1 HP1 − P0 HP0
.

(2.22)

Inserted into eq. (2.18) we find for the transformed Hamiltonian H̃ the relation

H̃ = P0 H̃P0 , with P0 H̃P0 = P0 HP0 − P0 HP1 HP0 U
−1 . (2.23)

The main task within the degenerate perturbation theory is to find the explicit
form of the expression P0 HP1 HP0. For details regarding the derivation of the
canonical transformed Hamiltonian see [105, 107–109, 111, 114, 117, 118].
In Dirac notation, we can derive the matrix elements of the generator S as

〈m|S|n〉 = i
〈m|H1|n〉
Em − En

, (2.24)

where {|n〉, |ñ〉} being many-body eigenstates of H0 and |m〉 are the virtual in-
termediate states. The corresponding energies are En, Eñ, Em. The transformed
Hamiltonian is

H̃ = H0 −
1

2

∑
m,n,ñ

|n〉〈ñ| 〈n|H1|m〉〈m|H1|ñ〉
(

1

Em − Eñ
− 1

En − Em

)
.

(2.25)
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For the energy denominators we know, that the energy of the initial and final
state is of the order of tij and no interaction strength contribution is present.
At the intermediate state there is one double-occupancy, resulting in an energy
contribution of order tij + U . The energy difference thus reduces to

Em − En ∼ (tij + U)− tij = U , (2.26)

and hence the denominator of eq. (2.23) for the virtual processes.

The t− J Hamiltonian

After the canonical transformation, the Hubbard Hamiltonian (2.4) takes the
form

HtJ = −P0

∑
〈i,j〉,s

tij c
†
jscis P0

+
∑
〈i,j〉

Jij

[
~Si · ~Sj −

1

4

∑
s,s′

nis (1− nis̄)njs′ (1− njs̄′)

]

+
∑
i,j,k,s

tij tjk
U

[
c†is (1− nis̄)njs̄ (1− njs) cks (1− nks̄)

− c†is (1− nis̄) ~S−sj cks̄ (1− nks)
]
, (2.27)

with Jij = 2t2ij/U and s̄ 6= s. This is the well-known t − J-model [111,
119], describing the strong coupling limit of the Hubbard model. In this
form it also incorporates three-site processes only relevant away from half-
filling, see fig. 2.7. Here ~Si is the spin operator with components ~Si =(
c†i↑ci↓ , c

†
i↓ci↑ ,

(
ni↑ − ni↓

)
/2
)
, see [107, 108, 116, 120, 121]. In the case

of half-filling and without the three-site terms, the kinetic part of the Hamilto-
nian HtJ drops out and we obtain the well-known form

HtJ =
∑
〈i,j〉

2t2ij
U

(
~Si · ~Sj −

1

4

)
, (2.28)

of the antiferromagnetic, isotropic Heisenberg model. The t− J Hamiltonian
describes the virtual processes within the antiferromagnetic ground state.
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b)

U

t

a)

U

t

t t
i

j
i k

j

Fig. 2.7 Possible processes in the strong coupling regime of the Hubbard
model, described by the t − J model. a) Virtual two-site process, where
the initial site equals the final site. b) Three-site process with initial site i,
intermediate site j and final site k.
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CHAPTER

THREE

QUANTUM SIMULATOR FOR SPIN-ORBITAL
MAGNETISM

Cold gases experiments pave the way of understanding solid state problems
better by designing setups, which simulate the basic mechanisms in the solid
without having the problems of accessibility in an experiment. They have
demonstrated key properties of solid state systems, but so far lacked achieving
orbital physics in optical lattices. Orbitals provide interesting mechanisms and
novel physics, especially d-orbitals. Here we propose a design in order to give
the possibility of simulating p-orbitals within a cold gases experiment, as a first
step towards d-orbitals, and investigate the phase diagram [122].

3.1. Introduction

Spin and orbital physics are essential in solid state systems and are the key
ingredients for interesting and novel phenomena including exchange interactions
in magnetic substances [123], the Jahn-Teller effect and magnetism [124], orbital
physics in transition-metal oxides [125] and orbital order in Mott Insulators [126].
Observing these phenomena within an experiment is a challenging task, given
the experimental restrictions.
Experiments with ultracold gases in optical lattices do not suffer restrictions
like solid state experiments and they delivered promising results, see chapter 1.
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3. Quantum Simulator for Spin-Orbital Magnetism

Optical lattices made the transition to fermionic atoms to make a major step
towards quantum simulating the solid state systems [36, 38] and even probe
magnetic phase transitions [51], which makes optical lattice experiments an
ideal testing ground for solid state physics.
This paved the way for the approach, how to implement orbital physics into
optical lattice systems. Theoretical proposals suggested to use alkaline-earth
atoms and their inherent meta-stable state to simulate orbital behavior [76, 82].
Recently it was shown, that alkaline-earth atoms indeed serve as candidates to
simulate orbital physics [83, 84].
The next step is to actually use the optical lattice system to simulate p-
orbital behavior in a convenient lattice system. For this task, there are several
possibilities. Theoretical proposals suggested filling the lowest energy band
to reach the higher p-band [127, 128]. Alternatively, ground state atoms can
be excited into a higher meta-stable state, ideally in the p-band [129]. This
has been theoretically analyzed in detail [130]. The excitation to the higher
band can also be achieved by sweeping through a Feshbach resonance [33, 131].
These experiments then lead to intense theoretical calculations [132], and even
a theoretical proposal to implement p-orbital physics for different optical lattice
structures [133, 134]. Another scheme is to shake the optical lattice periodically
to excite the atoms into the p-band [135–139]. Very recently a review of the
progresses in orbital physics within optical lattices was published [140].
Another road is to engineer an optical lattice setup, where the physics of

the p-orbitals can be intrinsically achieved through the lattice itself. Here
we propose a lattice setup to simulate the behavior of p-orbitals. We use an
anisotropic optical lattice system, which provides anisotropic hopping strengths
for different directions within the lattice. The lattice system is filled with cold
fermionic atoms having two spin states as well as a meta-stable excited state,
e.g. alkaline-earth atoms. In addition, the system is sensitive to the internal
states involved, see fig. 3.1. The fermionic atoms remain in the lowest Bloch
band and can interact through the s-wave channel. For further details see the
experimental proposal in section 3.7. The analysis even for this simple model
reveals a rich phase diagram with interesting mechanisms. Our proposal is
feasible with the current experimental techniques, circumvents the problems
and shortcomings of previous approaches and delivers an testing playground,
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Fig. 3.1 Anisotropic bipartite two-dimensional optical lattice system with
anisotropic hopping strengths t‖ and t⊥. The lattice system is sensitive to
the internal states of the used alkaline-earth atoms. The lattice system is
shifted out of plane for sake of visualization and each lattice is addressed to
one internal state. The different colors of the cold fermionic atoms represent
the different spin states ↑, ↓. a) Optical lattice configuration to simulate the
mechanisms of the px-orbital, where b) is rotated by π/4 with respect to the
previous optical lattice and used to simulate the py-orbital behavior. Further
details are given in the text and see section 3.7 for an detailed description.

as well as a controllable environment, for orbital physics within optical lattices.
The next sections are structured as follows: In section 3.2 we give the Hamil-

tonian of our system and the basic setup we use throughout our investigations.
We begin in section 3.3 with a preliminary analysis to find interesting features
of our system, to then extend the investigation in section 3.4 to a mean-field
analysis for all fillings and small temperature influences. Section 3.5 considers
the strong coupling limit for the half-filling scenario in detail. A sketch of
the phase diagram is given in section 3.6, whereas section 3.7 concludes the
investigations by an experimental proposal. In section 3.8 we give an outlook
and conclusion.
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Fig. 3.2 Principle lattice setup to
simulate with the optical lattice sys-
tem. Two-dimensional square lat-
tice, where each lattice site i holds a
px- and py-orbital, indicated as blue
and red, respectively. In addition,
the possible hopping scenarios are
given, the perpendicular t⊥ and par-
allel hopping t‖ with t‖ > t⊥. For
further details, see text.

3.2. Hamiltonian and Basic Setup

We start by giving the p-orbital lattice configuration that we simulate with the
introduced optical lattice system. The lattice configuration is a two-dimensional
square lattice, where each lattice site contains a px- and py-orbital. Each px ,y-
orbital can be occupied by a fermion with up or down spin s =↑, ↓. There are
two relevant hopping mechanisms throughout the lattice, the parallel hopping
t‖ and the perpendicular hopping t⊥, see fig. 3.2. As in common solid state
systems, the parallel hopping t‖ is larger than the perpendicular hopping t⊥.
See the experimental proposal for the implementation of the p-orbital setup.
The Hamiltonian for this setup is

H = Hkin + Hint , (3.1)

with the kinetic part Hkin and the interaction part Hint. A detailed derivation
of Hamiltonian (3.1) is given in the appendix B.2.
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3.2.1. Kinetic Hamiltonian

We begin our discussion with the kinetic part of Hamiltonian (3.1), which is

Hkin = −
∑
αs

{
t‖
∑
〈i,j〉‖α

(
c†jαsciαs + h.c.

)
+ t⊥

∑
〈i,j〉⊥α

(
c†jαsciαs + h.c.

)
+ µ

∑
i

c†iαsciαs

}
, (3.2)

here the sums run over the orbitals α = px, py, spins s =↑, ↓, all lattice sites
i and nearest neighbors j. The chemical potential is denoted by µ. The
fermionic operator c(†)iαs annihilates (creates) a fermion on lattice site i and
orbital α = px , py with spin s =↑ , ↓. In the following we abbreviate the
labeling of the orbitals α = px, py by α = x, y. To avoid confusion with vector
components, we write vector components γ = x, y, z as exponents and the label
for the corresponding orbitals α as indices on the quantities. Note that the sum
of the nearest neighbors j crucially depends on the considered orbital α. For
the parallel hopping components the summation index is 〈i, j〉‖α. The nearest
neighbor j for a px-orbital for parallel hopping is in x-direction, whereas it is
in y-direction for a py-orbital. The perpendicular components are summed by
〈i, j〉⊥α . Here the nearest neighbor j for the px-orbital is in y-direction and for
the py-orbital in x-direction, see fig. 3.2 for details. The introduced bipartite
optical lattice system considers the different signs encountered by the hopping
strengths, in addition the sign can be gauged away, such that t‖, t⊥ > 0. The
dispersion relation for the kinetic part of the px-orbital and one spin direction
is

εkxs = −2
[
t‖ cos (kx a) + t⊥ cos (ky a)

]
− µ , (3.3)

where a is the lattice spacing. The remaining dispersion relations are of analog
form as the above and we thus encounter four energy bands in the system. The
density of states gnαs(E) can be calculated through

gnαs(E) =
1

N

∑
k

δ(E − εnkαs) , (3.4)
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where n is the energy band, E is the energy, N the number of lattice sites and
εnkαs the dispersion relation of the problem, as in standard literature [107, 141].
Here we restrict our considerations and calculations to the lowest energy band
n and neglect higher contributions. The analytic expression for the density
of states for a 2D rectangular lattice system [142] can be adapted to fit the
p-orbital system for the individual orbitals and spin directions as

g(ε) =
1

2t‖ π2
√
t⊥/t‖

K


√(

1 + t⊥/t‖
)2 − (ε/2)2

2
√
t⊥/t‖

 , (3.5)

where K [x] is the complete elliptic integral of first kind and ε = E/t‖, see [142].
The relation holds for 2

(
1 + t⊥/t‖

)
≥ ε ≥ 2

(
1− t⊥/t‖

)
or 2

(
−1 + t⊥/t‖

)
≥

ε > −2
(
1 + t⊥/t‖

)
. For the region 2

(
1− t⊥/t‖

)
≥ ε ≥ 2

(
−1 + t⊥/t‖

)
we

have

g(ε) =
1

t‖ π2

√(
1 + t⊥/t‖

)2 − (ε/2)2
K

 2
√
t⊥/t‖√(

1 + t⊥/t‖
)2 − (ε/2)2

 . (3.6)

The density of states for one orbital and one spin direction is shown in fig. 3.3a)
with the two van Hove singularities at ε = ±1. The two peaks are due to the
two hopping parameters t‖, t⊥ with t⊥/t‖ = 1/2. If we set t‖ = t⊥, the two
peaks merge into one van Hove singularity, as in the common tight-binding
scenario [107]. In addition, we give the particle density in fig. 3.3b), where
the influence of the two van Hove singularities can be observed at µ/t‖ = ±1.
For different values of the hopping strengths, the van Hove singularities would
appear for different energies than illustrated in our case. The behavior of the
density of states at the van Hove singularities can be described as

g(ε) ∼ −1

2
ln

[
ε − 2

(
1− t⊥

t‖

)]
, (3.7)

which transforms into the common logarithmic expression g(ε) ∼ −1
2 ln ε for

the common tight-binding scenario, where t‖ = t⊥. The detailed calculation
for the behavior of the density of states near the van Hove singularities can be
found in sec. B.4. For the py-orbital we obtain the analogous relations.
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Fig. 3.3 a) Density of states for the dispersion relation eq. (3.3) with t⊥/t‖ =

1/2. The two characteristic peaks at ε = E/t‖ = ±1 are the van Hove
singularities of the system, due to the two different hopping strengths. The
behavior of the density of states near the van Hove singularities is given in
eq. (3.7). b) Particle density depending on the chemical potential µ/t‖ for
t⊥/t‖ = 1/2, for one spin direction and orbital. The influence of the van Hove
singularities can be observed at the kinks at µ/t‖ = ±1.

3.2.2. Interaction Hamiltonian

The interaction part of the Hamiltonian (3.1) is composed out of two parts

Hint = Hintra + Hinter , (3.8)

the intra-orbital interaction part

Hintra = U
∑
i

(
nix↑ nix↓ + niy↑ niy↓

)
, (3.9)

corresponds to the on-site interaction term within the Hubbard model, where
the number operator for site i and orbital pα is niα = niα↑ + niα↓; and the
inter-orbital part

Hinter = V
∑
i

[
T+
i↑ T

+
i↓ + T−i↑ T

−
i↓ − 2

(
~Six · ~Siy −

1

4
nix niy

)]
. (3.10)

The intra-orbital interaction strength is U and identical for the px- and py-
orbital, respectively, whereas the inter-orbital interaction strength is V , i.e. the
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3. Quantum Simulator for Spin-Orbital Magnetism

interaction strength between the px- and py-orbital. The orbital operators T γis
are introduced in analogy to the spin operators, as part of an orbital vector

~Tis =
(
T xis , T

y
is , T

z
is

)
, T γis =

1

2

∑
α,β

c†iαs σ
γ
αβ ciβs , (3.11)

here γ indicates the component of the orbital operator and α, β the correspond-
ing pα,β orbital. The Pauli spin matrix is σγ with γ = x, y, z. As for the spin
operators, the quantization axis of the orbital operators is chosen to be the
z-axis and then behave as

T zis|α, s〉i =


1
2 if |y, s〉i
−1

2 if |x, s〉i
0 if |x, s; y, s〉i and |x, s̄; y, s̄〉i

, (3.12)

where |α, s〉i describes a state on lattice site i with orbital α occupied by a
spin s and s̄ 6= s. In analogy to the common spin algebra, the orbital operators
follow the commutation relation[

T γ1is , T
γ2
is

]
= i εγ1γ2γ3 T γ3is , (3.13)

where εγ1γ2γ3 is the totally anti-symmetric tensor with εxyz = +1. Next, we
introduce the raising and lowering orbital operator through

T±is = T xis ± i T
y
is . (3.14)

These operators then act as

T+
is |x, s〉i = |y, s〉i , T+

is |y, s〉i = 0 ,

T−is |y, s〉i = |x, s〉i , T−is |x, s〉i = 0 ,

T±is |α, s̄〉i = 0 . (3.15)

Thus, the orbital raising and lowering operator flips the occupied orbital, but
conserves the spin.
The spin operators ~Siα are defined through

~Siα =
(
Sxiα , S

y
iα , S

z
iα

)
, Sγiα =

1

2

∑
s,s′

c†iαs σ
γ
s s′ ciαs′ , (3.16)

with γ = x, y, z, α the pα-orbital and the spin index s, s′ =↑, ↓. They describe
the spin degrees of freedom and only act on the spin of the corresponding state.
In contrast to the orbital operators, here the orbital occupancy is conserved.
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3.2. Hamiltonian and Basic Setup

Interaction Strengths

Our setup is well described within the tight-binding regime, such that we can
use the well established approach of Wannier functions [18, 27] and apply it
for the pα-orbitals. The interaction parameters U and V can then be given in
terms of Wannier functions wα as

U = g

∫
dr |wα(r) |4 ,

V = g

∫
dr |wx(r) |2 |wy(r) |2 , (3.17)

where g = 4π~2as/m, as is the s-wave scattering length, m the atomic mass
and α = x, y. Next, we calculate the ratio of the two interaction strengths V/U .
We can estimate the ratio V/U by a Gaussian approximation for the Wannier
functions, where the px-orbital experiences a confinement in y-direction and
the py-orbital in x-direction. The ratio V/U becomes

V

U
=
√

2

/√
1 +

σx 4 + σy 4

2 σx 2 σy 2
, (3.18)

with σγ being the size of the Gaussian in γ-direction. For further details to the
interaction potentials see sec. B.2 and sec. B.3.

3.2.3. Full Hamiltonian

After the separate investigations, we can combine both parts and give the full
Hamiltonian of interest

H =−
∑
αs

{
t‖
∑
〈i,j〉‖α

(
c†jαsciαs + h.c.

)
+ t⊥

∑
〈i,j〉⊥α

(
c†jαsciαs + h.c.

)}
− µ

∑
iαs

c†iαsciαs + U
∑
i

(
nix↑ nix↓ + niy↑ niy↓

)
+ V

∑
i

[
T+
i↑ T

+
i↓ + T−i↑ T

−
i↓ − 2

(
~Six · ~Siy −

1

4
nix niy

)]
. (3.19)
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3. Quantum Simulator for Spin-Orbital Magnetism

3.3. Preliminary Investigations

As a motivation we focus on a single lattice site and analyze the Hamilto-
nian (3.1) in the half-filling case for the weak coupling regime. Hence, there are
two fermions present and no hopping is possible, thus the kinetic part of the
Hamiltonian is not relevant here. The idea is to get a first glance of possible
mechanisms and phases appearing in our system. In the following sections we
then extend and deepen these investigations.
In our system we encounter two sets of degrees of freedom, namely two

degrees for spin and two for the orbitals. The two fermions on the single
lattice site are coupled through the addition of angular momenta within the
Clebsch-Gordan framework and the Pauli principle, i.e. the constraint of a
total anti-symmetric wave function. Thus, we are left with six possible states,
which fulfill the requirements. We can classify them as spin singlet/triplet
states, labeled as |Si〉 , |Ti〉, and orbital triplet/singlet states. The possible spin
triplet states are

|T1〉 = c†ix↑ c
†
iy↑|0〉 ,

|T2〉 = c†ix↓ c
†
iy↓|0〉 ,

|T3〉 =
1√
2

(
c†ix↑ c

†
iy↓ + c†ix↓ c

†
iy↑

)
|0〉 , (3.20)

whereas all spin triplets states are orbital singlet states. The spin singlet and
orbital triplet states are

|S1〉 =
1√
2

(
c†ix↓ c

†
ix↑ + c†iy↓ c

†
iy↑

)
|0〉 ,

|S2〉 =
1√
2

(
c†ix↓ c

†
ix↑ − c

†
iy↓ c

†
iy↑

)
|0〉 ,

|S3〉 =
1√
2

(
c†ix↑ c

†
iy↓ − c

†
ix↓ c

†
iy↑

)
|0〉 . (3.21)

All states are given to act on the vacuum state |0〉. See fig. 3.4 for an illus-
tration of the different coupling possibilities. Details to the different coupling
mechanisms are in section B.5.
We calculate the interaction energy of Hamiltonian (3.1) in first order pertur-
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3.3. Preliminary Investigations

|T1 |T2 |T3

+

|S1

+
|S2

-
|S3

-

Fig. 3.4 Possible configurations of two fermions and a single lattice site. We
present the possible configurations of the degrees of freedom determined
through the Clebsch-Gordan framework. There are six different possible
states, as illustrated. The spin triplet states |Ti〉 as given in eq. (3.20) are in
the top row of the figure. The spin singlet states |Si〉 are as in eq. (3.21) and
are given in the lower row.

bation theory and compute for the spin singlet states

〈S1,2|Hint|S1,2〉 = (U ± V ) , 〈S3|Hint|S3〉 = 2V . (3.22)

The calculation reveals a linear energy contribution with interactions. The
computations for the spin triplet configuration directly gives

〈Ti|Hint|Ti〉 = 0 , (3.23)

and thus no contribution of the interaction Hamiltonian to the energy. We can
conclude, that for vanishing interaction and a single site, the system has Fermi
liquid behavior. Increasing the interaction will lead to a competition between
hopping t‖, t⊥ and interaction U , V . For stronger interactions we expect a
spontaneous magnetization of the system and thus a phase transition towards
a magnetic phase. These preliminary investigations give us reasons to analyze
our Hamiltonian (3.1) in more detail. We therefore extent the investigations to
all fillings and make use of a mean-field treatment.
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3. Quantum Simulator for Spin-Orbital Magnetism

3.4. Mean-Field Analysis

We are interested in magnetic phases in the system, as motivated before. There
are two principle approaches for a mean-field treatment of the system, either
the spin imbalance approach – in analogy to the Stoner ferromagnetism [6] –
or the orbital imbalance approach. In the orbital approach the imbalance of
the filling of the two orbitals is analyzed and thus an orbital instability. In this
section we focus on the spin instability. The orbital imbalance approach was
done in a different work [143].

3.4.1. Mean-Field Treatment

We treat the Hamiltonian (3.1) in the mean-field manner in order to analyze
the behavior of the system for all fillings. The Hamiltonian takes the form

H = Hkin + Hintra − 2V
∑
i

(
Szix · Sziy −

1

4
nix niy

)
− gJ µBH

∑
i

(
Szix + Sziy

)
, (3.24)

where for the spin operators ~Six,y only the z-component is relevant and can be
given as

Sziα =
1

2

(
niα↑ − niα↓

)
. (3.25)

Note, we have chosen the z-axis as quantization axis of the problem. The
kinetic Hamiltonian Hkin is of equation (3.2) and the intra-orbital interaction
Hamiltonian Hintra is of equation (3.9). Here we have included a Zeeman shift,
where the external magnetic field points along the z-direction, with gJ being
the Landé factor, µB the Bohr magneton and H the external magnetic field.
The Landé factor can be computed through

gJ = 1 +
J (J + 1)− L (L+ 1) + S (S + 1)

2J (J + 1)
, (3.26)

where J is the total angular momentum, L the orbit and S the spin momen-
tum [71]. The orbital operators in Hamiltonian (3.19) can be neglected, since
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3.4. Mean-Field Analysis

they do not influence the spin imbalance within the orbitals.
For the mean-field treatment we use the standard approach

niαs = 〈c†iαsciαs〉+
(
niαs − 〈c†iαsciαs〉

)
= n̄αs + (niαs − n̄αs) , (3.27)

with n̄iαs being the mean-particle density and n̄iαs = n̄αs ∀ i. This simplification
is well justified, since we only assume a global mean-particle density n̄αs and
no local deviations of the mean-particle density. Be aware, in the proceeding
steps we indicate the particle number operators as niαs, i.e. by using an i in
the index of n, and write n̄αs, i.e. without the site label in the index, as the
mean-particle density.
Inserting the mean-field approach decouples the Hamiltonian (3.24). The
interaction part of the mean-field Hamiltonian HMF is

HMF, int =
∑
iαs

{niαs (U n̄αs̄ + V n̄α′s̄)}

−
∑
i

[
U
∑
α

n̄α↑n̄α↓ + V
∑
s

n̄xsn̄ys̄

]
, (3.28)

with α, α′ = x, y and α′ 6= α, for the spin index we have s =↑, ↓ and
s 6= s̄. The second part of the above Hamiltonian is the mean-field energy
shift. Within the mean-field approach, we have neglected terms of the form
(niαs − n̄αs)

(
niβs′ − n̄βs′

)
, since their contribution is small. The mean-field

treatment of the kinetic Hamiltonian as well as Zeeman shift is straightforward
and we will include these terms in the final form of the mean-field Hamiltonian.
Next, we introduce the mean-field parameters

n̄α = n̄α↑ + n̄α↓ , mα = n̄α↑ − n̄α↓ , (3.29)

where mα is the magnetization and serves as the order parameter within the
system, n̄α is the total mean-particle density. We express the mean-field
interaction Hamiltonian (3.28) through the new parameters by using

n̄α↑ =
1

2
(n̄α +mα) , n̄α↓ =

1

2
(n̄α −mα) , n̄α↑n̄α↓ =

1

4

(
n̄2
α −m2

α

)
,

(3.30)

31



3. Quantum Simulator for Spin-Orbital Magnetism

and obtain

HMF, int =
∑
iα

{
niα↑

[
U

2
(n̄α −mα) +

V

2
(n̄α′ −mα′)

]
+niα↓

[
U

2
(n̄α +mα) +

V

2
(n̄α′ +mα′)

]}
−
∑
i

{
U

4

(
n̄2
x + n̄2

y −m2
x −m2

y

)
+
V

2
(n̄xn̄y −mxmy)

}
.

(3.31)

Combining the kinetic part as well as Zeeman shift to the interaction part, we
have the mean-field Hamiltonian as

HMF = Hkin +
∑
iα

{
niα↑

[
U

2
(n̄α −mα) +

V

2
(n̄α′ −mα′)− gJ

2
µBH

]
+niα↓

[
U

2
(n̄α +mα) +

V

2
(n̄α′ +mα′) +

gJ
2
µBH

]}
+ E0 ,

(3.32)

where E0 is the mean-field energy shift.

3.4.2. Fourier Transformation and Energy Scales

Now, we Fourier transform the whole mean-field Hamiltonian (3.32) by using
the standard relations

c†iαs =
1√
N

∑
k

e−ikxi c†kαs , ciαs =
1√
N

∑
k

eikxi ckαs , (3.33)

where N is the number of lattice sites. The mean-field Hamiltonian becomes

HMF =
∑
kα

{
nkα↑

[
εkα↑ +

U

2
(n̄α −mα) +

V

2
(n̄α′ −mα′)− gJ

2
µBH

]
+nkα↓

[
εkα↓ +

U

2
(n̄α +mα) +

V

2
(n̄α′ +mα′) +

gJ
2
µBH

]}
−N

[
U

4

(
n̄2
x + n̄2

y −m2
x −m2

y

)
− V

2
(n̄xn̄y −mxmy)

]
, (3.34)
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3.4. Mean-Field Analysis

with εkαs being the dispersion relations of eq. (3.3), α, α′ = x, y, α 6= α′

and s =↑, ↓. The next step is to determine the mean-particle densities n̄α =

n̄α↑+ n̄α↓ and magnetizations mα = n̄α↑− n̄α↓ self-consistently, where we allow
a small temperature influence such that εF = EF /t

‖ � kBTF /t
‖. In order to

perform these calculations, we clarify the energy scales involved. We know, that
the mean-particle density is much larger than the magnetization, i.e. n̄α � mα,
and the applied magnetic field is small, compared to n̄α. To this end, we absorb
the contributions of the large mean-particle densities into new Fermi energies

EF,x = E′F,x +
1

2
(Un̄x + V n̄y) , EF,y = E′F,y +

1

2
(Un̄y + V n̄x) , (3.35)

with E′F,α being the old Fermi energy. Then we assume, that the chemical
potential µ is close to the Fermi energy such that

µα = EF,α + ∆µα(mα,mα′ , H, T ) , (3.36)

where the deviation ∆µα(mα,mα′ , H, T ) is small and depends on the magneti-
zation, magnetic field H and temperature T . Absorbing the large mean-particle
density contributions leads to modified dispersion relations. They can then be
written as

Ekα↑ = ε′kα↑ −
1

2
(Umα + V mα′)−∆µα −

gJ
2
µBH ,

Ekα↓ = ε′kα↓ +
1

2
(Umα + V mα′)−∆µα +

gJ
2
µBH , (3.37)

with ε′kαs being the dispersion relation including the mean-particle density shift.
In addition, we illustrate in fig. 3.5 the different energy scales, since we need
the different levels for the proceeding computations.

3.4.3. Mean-Particle Density

We calculate the mean-particle density n̄α and magnetization mα self-
consistently, as given in eq. (3.29) and use

n̄αs =
1

2

∫ ∞
−∞

dε gα(ε) fαs(ε) . (3.38)
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EF,α

EF,α - 1
2(Umα+V m α) EF,α+ 1

2(Umα+V m α) + µBH+∆µα
gJ
2

Fig. 3.5 Involved energy scales of the mean-field analysis. The Fermi energy
EF,α is the shifted energy as given in eq. (3.35). Additional shifts in the Fermi
energy result from the magnetizationsmα, magnetic field H and the deviation
∆µα, resulting in a lower or higher energy than EF,α.

For the density of states it holds gαs(ε) = 1
2 gα(ε) and fαs(ε) is the Fermi-

Dirac distribution function. To tackle the integrals, we apply the Sommerfeld
expansion, as given in sec. B.1,∫ ∞

−∞
g(ε) f(ε) dε ≈

∫ µ

−∞
g(ε) dε+

π2

6
(kBT )2 g′(µ) , (3.39)

where g(ε) is the density of states and f(ε) is the Fermi-Dirac distribution. The
second term involves the temperature dependence as well as the derivative of g
with respect to ε at the position µ.
We then begin the computations with the mean-particle density of the px-orbital

n̄x = n̄x↑ + n̄x↓ =
1

2

∫ ∞
−∞

dε gx(ε) fx↑(ε) +
1

2

∫ ∞
−∞

dε gx(ε) fx↓(ε)

≈ 1

2

{∫ µx↑

−∞
gx(ε) dε+

π2

6
(kBT )2 g′x

(
µx↑
)}

+
1

2

{∫ µx↓

−∞
gx(ε) dε+

π2

6
(kBT )2 g′x

(
µx↓
)}

=
1

2

∫ ĒF,x+∆µx

−∞
gx(ε) dε+

1

2

∫ ¯̄EF,x+∆µx

−∞
gx(ε) dε

+
1

2

π2

6
(kBT )2 [g′x(ĒF,x + ∆µx

)
+ g′x

( ¯̄EF,x + ∆µx
)]

. (3.40)

Here we have introduced

ĒF,x = EF,x +
1

2
(Umx + V my + gJµBH) ,

¯̄EF,x = EF,x −
1

2
(Umx + V my + gJµBH) , (3.41)
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3.4. Mean-Field Analysis

for sake of convenience. Next, we split the limits of the integrals and add a
zero to the equation to obtain

n̄x =
1

2

∫ EF,x

−∞
gx(ε) dε+

1

2

∫ ĒF,x

EF,x

gx(ε) dε+
1

2

∫ ĒF,x+∆µx

ĒF,x

gx(ε) dε

+
1

2

∫ ¯̄EF,x

−∞
gx(ε) dε+

1

2

∫ ¯̄EF,x+∆µx

¯̄EF,x

gx(ε) dε± 1

2

∫ EF,x

¯̄EF,x

gx(ε) dε

+
1

2

π2

6
(kBT )2 [g′x(ĒF,x + ∆µx

)
+ g′x

( ¯̄EF,x + ∆µx
)]

. (3.42)

The first term in the first and second line of eq. (3.42) can be reduced to∫ EF,x
−∞ gx(ε) dε. We then carry out the integrations and find

n̄x = n̄0x +
1

2

[
Gx(ε)

]ĒF,x
EF,x
− 1

2

[
Gx(ε)

]EF,x
¯̄EF,x

+
1

2

[
Gx(ε)

]ĒF,x+∆µx

ĒF,x
+

1

2

[
Gx(ε)

] ¯̄EF,x+∆µx

¯̄EF,x

+
1

2

π2

6
(kBT )2 [g′x(ĒF,x + ∆µx

)
+ g′x

( ¯̄EF,x + ∆µx
)]

, (3.43)

with n̄0x being the magnetization- and magnetic field-free mean-particle density
and Gx(ε) is the integrated density of states.
We are interested in small magnetizations mα, therefore we can expand the
integrated density of states Gx(ε) around the Fermi energy EF,x up to third
order in mα. In addition, we expand Gx around ĒF,x and ¯̄EF,x up to first order
in ∆µx as well as the temperature dependent part in orders of ∆µx.
After a straightforward calculation we have

n̄x = n̄0x +
1

2

{
1

4
(Umx + V my)

2 g′x
(
EF,x

)
+
π2

6
(kBT )2 ḡ′x

(
EF,x

)}
+

1

2
∆µx

{
ḡx
(
EF,x

)
+
π2

6
(kBT )2 ḡ′′x

(
EF,x

)}
, (3.44)

where we have introduced

ḡx
(
EF,x

)
= gx

(
ĒF,x

)
+ gx

( ¯̄EF,x
)
,

ḡ′x
(
EF,x

)
= g′x

(
ĒF,x

)
+ g′x

( ¯̄EF,x
)
,

ḡ′′x
(
EF,x

)
= g′′x

(
ĒF,x

)
+ g′′x

( ¯̄EF,x
)
. (3.45)
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Be aware, only the linear contribution of the magnetic field is relevant, see
section B.6.3 for details. This is due to direct comparison of the principle form of
the energy functional of the Ginzburg-Landau theory of phase transitions [100,
101], where only the linear order in the magnetic field is relevant.
Although we have T 6= 0 andH 6= 0, we still can assume, that n̄x−n̄0x ≈ 0 [144],
such that we can calculate ∆µx to be

∆µx = −
1
4 (Umx + V my)

2 g′x
(
EF,x

)
+ π2

6 (kBT )2 ḡ′x
(
EF,x

)
ḡx
(
EF,x

)
+ π2

6 (kBT )2 ḡ′′x
(
EF,x

) . (3.46)

The calculation for the mean-particle density of the py-orbital can be done
analogously and is found in detail in appendix B.6.1. The result for ∆µy thus
is

∆µy = −
1
4 (Umy + V mx)2 g′y

(
EF,y

)
+ π2

6 (kBT )2 ḡ′
(
EF,y

)
ḡy
(
EF,y

)
+ π2

6 (kBT )2 ḡ′′y
(
EF,y

) , (3.47)

with

ḡy
(
EF,y

)
= gy

(
ĒF,y

)
+ gy

( ¯̄EF,y
)
,

ḡ′y
(
EF,y

)
= g′y

(
ĒF,y

)
+ g′y

( ¯̄EF,y
)
,

¯̄g′′y
(
EF,y

)
= g′′y

(
ĒF,y

)
+ g′′y

( ¯̄EF,y
)
, (3.48)

and in analogy to the px-orbital calculation, the introduced Fermi energy
abbreviations are

ĒF,y = EF,y +
1

2
(Umy + V mx + gJµBH) ,

¯̄EF,y = EF,y −
1

2
(Umy + V mx + gJµBH) . (3.49)

3.4.4. Magnetization

With the deviations ∆µx,y calculated, we can now perform the computations of
the corresponding magnetizations of the system. We start with the px-orbital.
The magnetization is given by

mx = n̄x↑ − n̄x↓ =
1

2

∫ ∞
−∞

gx(ε) fx↑(ε) dε−
1

2

∫ ∞
−∞

gx(ε) fx↓(ε) dε .

(3.50)
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We again apply the Sommerfeld expansion eq. (3.39) to compute

mx ≈
1

2

{∫ µx↑

−∞
gx(ε) dε+

π2

6
(kBT )2 g′x

(
µx↑
)}

− 1

2

{∫ µx↓

−∞
gx(ε) dε+

π2

6
(kBT )2 g′x

(
µx↓
)}

=
1

2

∫ EF,x

−∞
gx(ε) dε+

1

2

∫ ĒF,x

EF,x

gx(ε) dε+
1

2

∫ ĒF,x+∆µx

ĒF,x

gx(ε) dε

− 1

2

∫ ¯̄EF,x

−∞
gx(ε) dε− 1

2

∫ ¯̄EF,x+∆µx

¯̄EF,x

gx(ε) dε± 1

2

∫ EF,x

¯̄EF,x

gx(ε) dε

+
1

2

π2

6
(kBT )2 [g′x(µx↑)− g′x(µx↓)] . (3.51)

Performing the integrations reveals

mx =
1

2

[
Gx(ε)

]ĒF,x
¯̄EF,x

+
1

2

[
Gx(ε)

]ĒF,x+∆µx

ĒF,x
− 1

2

[
Gx(ε)

] ¯̄EF,x+∆µx

¯̄EF,x

+
1

2

π2

6
(kBT )2 [g′x(µx↑)− g′x(µx↓)] . (3.52)

Next, we expand the integrated density of states in orders of mα up to third
order. In addition we expanded Gx(ε) around ĒF,x and ¯̄EF,x in orders of ∆µx.
The straightforward computation reveals

mx =
1

2

{
(Umx + V my + gJµBH) gx

(
EF,x

)
+

1

4!
(Umx + V my)

3 g′′x
(
EF,x

)}
+

1

2
∆µx

{
¯̄gx
(
EF,x

)
+
π2

6
(kBT )2 ¯̄g′′x

(
EF,x

)}
+

1

2

π2

6
(kBT )2 ¯̄g′x

(
EF,x

)
, (3.53)

with

¯̄gx
(
EF,x

)
= gx

(
ĒF,x

)
− gx

( ¯̄EF,x
)
,

¯̄g′x
(
EF,x

)
= g′x

(
ĒF,x

)
− g′x

( ¯̄EF,x
)
,

¯̄g′′x
(
EF,x

)
= g′′x

(
ĒF,x

)
− g′′x

( ¯̄EF,x
)
. (3.54)
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We simplify the magnetization (3.53) further by using the expansions of the
modified density of states ¯̄gx

(
EF,x

)
, given in sec. B.6.2. This directly computes

mx =
1

2

{
(Umx + V my + gJµBH) gx

(
EF,x

)
+

1

4!
(Umx + V my)

3 g′′x
(
EF,x

)
+
π2

6
(kBT )2 [(Umx + V my + gJµBH) g′′x

(
EF,x

)]}
+

1

2
∆µx

{
(Umx + V my + gJµBH) g′x

(
EF,x

)}
. (3.55)

The next step is to insert the deviation ∆µx of eq. (3.46) into the magnetization.
To the deviation ∆µx we have also applied the expansions of sec. B.6.2, leading
to the magnetization

mx =
1

2
(Umx + V my + gJµBH) gx

(
EF,x

)
×

{
1− π2

6
(kBT )2

[
g′ 2x
(
EF,x

)
g2
x

(
EF,x

) − g′′x
(
EF,x

)
gx
(
EF,x

)]}

+
3

2

1

4!
(Umx + V my)

3

[
g′′x
(
EF,x

)
3

−
g′ 2x
(
EF,x

)
gx
(
EF,x

) ] . (3.56)

The calculation for the magnetization of the py-orbital is found in detail in
appendix B.6.3. The final form is

my =
1

2
(Umy + V mx + gJµBH) gy

(
EF,y

)
×

{
1− π2

6
(kBT )2

[
g′ 2y
(
EF,y

)
g2
y

(
EF,y

) − g′′y
(
EF,y

)
gx
(
EF,y

)]}

+
3

2

1

4!
(Umy + V mx)3

[
g′′y
(
EF,y

)
3

−
g′ 2y
(
EF,y

)
gy
(
EF,y

) ] . (3.57)

We are now able to generalize the expressions for the magnetizations from
above and find the self-consistency equations for our system

mα =
1

2
(Umα + V mα′ + gJµBH) gα

(
EF,α

)
ξ
(
T,EF,α

)
+

3

2

1

4!
(Umα + V mα′)3 ζ

(
EF,α

)
, (3.58)
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with α 6= α′ and we have introduced

ξ
(
T,EF,α

)
:= 1− π2

6
(kBT )2

[
g′ 2α
(
EF,α

)
g2
α

(
EF,α

) − g′′α
(
EF,α

)
gα
(
EF,α

)]

= 1− π2

6
(kBT )2 Λ

(
EF,α

)
ζ
(
EF,α

)
:=

[
g′′α
(
EF,α

)
3

−
g′ 2α
(
EF,α

)
gα
(
EF,α

) ] , (3.59)

for sake of convenience.
We directly see from equation (3.58), that we encounter two scenarios: one
where we are interested in the mechanism for vanishing magnetic field and the
other with finite H. In the following we investigate both scenarios, determine
the instabilities and solve for the magnetizations.

3.4.5. Vanishing Magnetic Field

We investigate equation (3.58) for the magnetic field-free system, i.e. H = 0. We
begin with the instability condition and present the mean-field phase diagram.
Then we evaluate the transition temperature for the involved phase transitions
as well as analyze the order of them. This section is concluded by solving for
the magnetization and plotting them for different parameter regimes.

Instability Condition and Eigenvalues

For the instability only the linear contribution of equation (3.58) is relevant. It
can be transformed into a tensor representation(

mx

my

)
=

1

2

(
Ugx

(
EF,x

)
ξ
(
T,EF,x

)
V gx

(
EF,x

)
ξ
(
T,EF,x

)
V gy
(
EF,y

)
ξ
(
T,EF,y

)
Ugy
(
EF,y

)
ξ
(
T,EF,y

))(mx

my

)
.

(3.60)

39



3. Quantum Simulator for Spin-Orbital Magnetism

We determine the following eigenvalues

λ1,2 =
U

4

[
gx
(
EF,x

)
ξ
(
T,EF,x

)
+ gy

(
EF,y

)
ξ
(
T,EF,y

) ]
×

1±

√√√√1 +
4gx
(
EF,x

)
gy
(
EF,y

)
ξ
(
T,EF,x

)
ξ
(
T,EF,y

)
(V 2 − U2)

U2
(
gx
(
EF,x

)
ξ
(
T,EF,x

)
+ gy

(
EF,y

)
ξ
(
T,EF,y

))2

 .
(3.61)

Next, we make the assumption that the density of states for the individual
orbitals are the same and the corresponding Fermi energies are also identical,
such that

gx
(
EF,x

)
= gy

(
EF,y

)
= g(EF ) ,

⇒ ξ
(
T,EF,x

)
= ξ
(
T,EF,y

)
= ξ(T,EF ) . (3.62)

The eigenvalues (3.61) then reduce to

λ1,2 =
1

2
g(EF ) ξ(T,EF ) [U ± V ] . (3.63)

These eigenvalues lead to two instability conditions

1 =
1

2
g(EF ) ξ(T,EF ) [U + V ] , (3.64a)

and 1 =
1

2
g(EF ) ξ(T,EF ) [U − V ] , (3.64b)

which are the desired self-consistency equations of our system. They can be
tuned through the interaction strengths U, V and the density of states g(EF )

via the Fermi energy.
Fulfilling one of these equations signals an instability of the system and thus
triggers a phase transition. The principle structure of the appearing phase is
indicated through the eigenvectors of the system. We obtain the eigenvectors
as

EV1 =

(
1

1

)
∨

(
−1

−1

)
, EV2 =

(
1

−1

)
∨

(
−1

1

)
. (3.65)

The first eigenvector EV1 shows that for the first eigenvalue λ1 the majority of
spins are ↑ in both orbitals or ↓. This relates to the common ferromagnetic
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configuration with the spins pointing ↑ or ↓. For the second eigenvector EV2,
to the second eigenvalue λ2, we find an alternating ordering with the majority
of spins within the px-orbitals being ↑ and ↓ within the py-orbitals or vice versa.
Here we encounter a ferromagnetic phase with orbital symmetry breaking. The
details of the eigenvalue problem is found in appendix B.6.4.

Mean-Field Phase Diagrams

For both situations of instabilities we give the mean-field phase diagrams in
fig 3.6. The axes of the diagrams are Ug(εF ) and V g(εF ), to have a filling-
independent phase diagram. In addition, we have introduced the reduced Fermi
energy εF = EF /t

‖.
The order parameter for the first instability (3.64a) can be given asm = mx+my,
where for the second instability (3.64b) it is m̃ = mx − my. We find the
ferromagnetic phase transition with order parameter m to be the dominant
transition, since increasing the interaction strengths U, V always leads towards
the instability. On the other hand, the instability leading to the ferromagnetic
phase with orbital symmetry breaking and order parameter m̃ is the sub-leading
phase transition. Here the interaction strength V always has to be weaker than
the intra-interaction strength U in order to trigger the phase transition towards
the ferromagnetic phase with orbital symmetry breaking, see fig. 3.6.
Therefore, the dominant phase transition with order parameter m is pre-empted.
In contrast, the sub-leading phase transition with m̃ is suppressed.

Transition Temperatures

Next, we analyze the transition temperatures for the phase transitions. The
self-consistency equations (3.64a) and (3.64b) can be rearranged as

ξ(T,EF ) =
2

g(EF ) [U ± V ]
. (3.66)

Then using the definition (3.59) directly gives

kBTc =

√
6

π
√

Λ(εF )

√
1− 2

g(εF ) [U ± V ]
, (3.67)
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Fig. 3.6 Mean-field phase diagrams: The axes are chosen to be Ug(εF ) and
V g(εF ). The region in blue and marked with "PM" represents the param-
agnetic phase with m = 0. The region in green with "FM" label is the
ferromagnetic phase, the region in red with "FM + OS" label is the phase
with ferromagnetic order as well as orbital symmetry breaking, both phases
have a finite magnetization with m, m̃ 6= 0. a) Shows the phase diagram for
the first instability (3.64a), where the eigenvectors are mx = my. b) Shows
the phase diagram for the second instability (3.64b), where the eigenvectors
are mx = −my. Here we observe, that the transition towards the ferromag-
netic phase with orbital symmetry breaking is suppressed in comparison to
the previous case of mx = my.

with Λ(εF ) = g′ 2(εF ) /g2(εF ) − g′′(εF ) /g(εF ) and the reduced Fermi energy
εF , as before. The function Λ(εF ) is plotted in fig. 3.7 and is negative in a
large range for the reduced Fermi energy εF .
We give the transition temperature in fig. 3.8 for the reduced temperature
kBT/t

‖ and the dominant ferromagnetic phase transition with (U + V ) /t‖. In
addition, we chose different values for the reduced Fermi energy εF > 0. We
find, that for values of the reduced Fermi energy up to εF ≈ 2.36 the phase
transition is of first order. At the critical reduced value εF crit ≈ 2.37 the order
of the transition changes to two. We sketch this critical line within the figure
in black and dashed. For values εF > 2.37 the phase transition is of second
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Fig. 3.7 a) Function Λ(εF )

of eq. (3.59). The hopping
ratio is t⊥/t‖ = 1/2. For
most of the range of the re-
duced Fermi energies εF the
function Λ(εF ) is negative
and diverges at the van Hove
singularities at εF = ±1. b)
Here we give the left section
of the function Λ(εF ) with
the zero crossing at εF ≈
−2.37. c) Right section of
Λ(εF ) with the zero crossing
at εF ≈ 2.37.

order. This is also resembled in the well-known form of the paramagnet to
ferromagnet transition temperature [141, 144–146]. Increasing the values of
εF up to εF ≈ 3.0 reduces the ferromagnetic phase. It eventually vanishes for
εF = 3.0 and only the paramagnetic phase prevails.
Plotting the transition temperature for the sub-leading phase transition with
order parameter m̃, over the interaction strength (U − V ) /t‖ and the same
values of εF reveals the analogous figure as for the dominant transition. In
addition, the change of the order of the phase transition also occurs for the
same reduced Fermi energy εF , hence we neglect giving this plot.

Order of Phase Transitions

In the investigation of the linear contribution of the order parameter of the
self-consistency equation (3.58) we discovered two instabilities in the system
leading to two phase transitions. There is the dominant phase transition from
a paramagnet to a ferromagnet with order parameter m and there is the sub-
leading phase transition from the paramagnet to a ferromagnetic phase with
orbital symmetry breaking.
Next, we analyze the order of these phase transitions. Here we refer to the
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Fig. 3.8 Transition temperature for the dominant phase transition with order
parameter m. The axes are the reduced transition temperature kBTc/t

‖ and
interaction strengths (U + V ) /t‖. Plotted are different values of the reduced
Fermi energy εF . For εF < 2.37 the phase transition is of first order. At
the critical value εF crit ≈ 2.37 the order of the transition changes to two,
indicated by the black dashed line. For εF > 2.37 the transition takes the
form of the well-known paramagnet to ferromagnet transition.

Ginzburg-Landau theory of phase transitions, the corresponding energy func-
tional and especially the minimizing condition of the order parameter [100,
101]. Our self-consistency equation (3.58) is exactly of the minimizing form.
From the Ginzburg-Landau theory we know, that the cubic contribution of the
order parameter in the self-consistency equation determines the order of the
phase transition and the stability of the new phase. Applying the results of the
discussion of the different orders of the phase transition within the Ginzburg-
Landau framework to our system we find, that the cubic contribution has to
be positive for a first order transition, where the new phase is unstable, and
negative for a second order transition, where the new phase can be stabilized.
Within our system only the function ζ(EF ) can change the sign and thus the
order of the phase transition. We give the function ζ(εF ) in fig. 3.9 for the
relevant range of the reduced Fermi energy εF . We find, that it is positive
for values of εF up to εF ≈ ±1.7 and has its zero crossing at εF = ±1.7. For
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Fig. 3.9 a) Function ζ(εF )

of eq. (3.59), with reduced
Fermi energy εF . It diverges
at the two van Hove singu-
larities at εF = ±1 and is
positive for values of εF ≈
−1.7 to εF ≈ 1.7. At the
zero crossing, εF = ±1.7,
the function becomes neg-
ative indicating a possible
change in the order of the
phase transition. b) Zoom
of the left part of ζ(εF ) and
its zero crossing, c) of the
right part.

values εF > 1.7 (εF < −1.7) the function is negative, indicating that here the
transition can become of second order, where before, it was of first order.
Comparing this result with the behavior of the transition temperature eq. (3.67)
and its plot fig. 3.8, we see that the conditions do not match. Thus, the sign
change of ζ(εF ) only indicates a possible change of the order of the phase
transition. In addition, we have to consult the Λ(εF ) function in fig. 3.7, since
it also influences the critical value of the reduced Fermi energy εF crit. The
function Λ(εF ) has its zero crossing at εF ≈ ±2.37 and for values εF > 2.37 it
is positive. Exactly for these values εF the transition temperature takes the
well-known form of the paramagnet to ferromagnet phase transition, which is
of second order [144]. Hence, the tricritical point [100] is at εF crit ≈ ±2.37,
where the phase transition becomes of second order and the new phase can be
stabilized.

Solutions of Magnetization

To verify the result regarding the order of the phase transitions, we investi-
gate the system further. In addition, we check the assumption of the small

45



3. Quantum Simulator for Spin-Orbital Magnetism

and slowly increasing magnetization, which is essential in our mean-field ap-
proach. We therefore insert the two eigenvectors (3.65) into the self-consistency
equations (3.58) and solve for the two order parameters. The self-consistency
equations take the form

m =
1

2
(U + V ) g(EF ) ξ(T,EF ) m+

3

2

1

4!
(U + V )3 ζ(EF ) m3 ,

and

m̃ =
1

2
(U − V ) g(EF ) ξ(T,EF ) m̃+

3

2

1

4!
(U − V )3 ζ(EF ) m̃3 . (3.68)

The two equations can be solved for m, m̃ and thus reveal

m1 = 0 , m2,3 = ±

√
1− 1

2 (U ± V ) g(EF ) ξ(T,EF )
3
2

1
4! (U ± V )3 ζ(EF )

, (3.69)

where the plus sign within the interaction strengths (U + V ) relates to the
order parameter m and the minus sign in (U − V ) to m̃. In fig. 3.10 we plot
the non-zero solutions for the dominant order parameter m for two different
temperatures and different reduced Fermi energies εF . For the values εF we
restrict the plot to the εF > 0 sector, since the εF < 0 sector reveals the analog
behavior. This is based on the symmetry of the density of states g(εF ) and
the functions Λ(εF ), ζ(εF ). In addition, we plot the solutions for values of
εF larger than the critical reduced Fermi energy εF crit ≈ 2.37, in order to be
in the region of the second order phase transition and to then compare the
behavior of the solutions for two different temperatures. Again we neglect the
plot for the sub-leading order parameter m̃, since we obtain an analogous plot
with the analog behavior.
We analyze the possible solutions mi. There is always the solution m1 = 0,
which corresponds to the paramagnetic phase. The additional solutions for
the magnetizations m2,3 can be tuned through the interaction strengths U, V ,
the density of states via the Fermi energy EF and the temperature T . These
solutions appear, as soon as the instability conditions (3.64a), (3.64b) are
fulfilled and mark the appearing phases with finite magnetization. Either the
ferromagnetic phase or the ferromagnetic phase with orbital symmetry breaking.
The solutions for the magnetization m2,3 increase smoothly and are small, as
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Fig. 3.10 Plotted are the solutions for the magnetization m2,3 of eq. (3.69),
for different reduced Fermi energies εF > 0 as given within the plot and two
different reduced temperatures kBT/t

‖, depending on the reduced interaction
strengths (U + V ) /t‖. The reduced Fermi energies are chosen to be beyond
the tricritical point at εF crit ≈ 2.37. The hopping parameters are t⊥/t‖ = 1/2.
a) Zero temperature magnetization. b) Solutions for the magnetization at
kBT/t

‖ = 1. Here the critical interaction strengths for the m 6= 0 solutions
are increased compared to the zero temperature case. See text for further
details.

required for the mean-field analysis. For increasing εF , increased interaction
strengths are required to trigger the phase transition, as can be observed in
the figure 3.10. On the other hand, increasing the temperature of the system,
shifts the critical interaction strengths to larger values, in comparison to the
zero temperature scenario. In addition we find, that increasing the interaction
strength U, V further, reduces the magnetization again. For large interaction
strengths the denominator in eq. (3.69) grows faster than the nominator.
In the beginning of the mean-field derivation – in the stage of the expansions
and simplifications – we assumed a small magnetization as well as a smooth
growth through the tuning parameters. These assumptions are well justified by
comparison with fig. 3.10.

3.4.6. Finite Magnetic Field

In the preceding investigations, we have turned the magnetic field off, i.e. H = 0.
Next, we turn it on and thus apply a small magnetic field in z-direction to the
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system. We are interested in the instability of the system under the influence
of the magnetic field. The section is concluded by solving the self-consistency
equation for the magnetizations and plotting the solutions.

Instability Condition and Susceptibility

Here, again, we begin the considerations with the linear contribution of the
magnetization for the analysis of the instability. The tensor representation of
the linear self-consistency equations is(

mx

my

)
=

1

2
gJµBH

(
gx
(
EF,x

)
ξ
(
T,EF,x

)
gy
(
EF,y

)
ξ
(
T,EF,y

))
+

1

2

(
Ugx

(
EF,x

)
ξ
(
T,EF,x

)
V gx

(
EF,x

)
ξ
(
T,EF,x

)
V gy
(
EF,y

)
ξ
(
T,EF,y

)
Ugy
(
EF,y

)
ξ
(
T,EF,y

))(mx

my

)
.

(3.70)

For the magnetic field-free part we use the determined eigenvalues (3.61) and
insert them, to find(

m

m̃

)
=

1

2
gJµBH

(
gx
(
EF,x

)
ξ
(
T,EF,x

)
gy
(
EF,y

)
ξ
(
T,EF,y

))+

(
λ1 0

0 λ2

)(
m

m̃

)
, (3.71)

where the order parameters are m, m̃. Next, we apply the simplification of
equal filling and density of states (3.62) and have(

0

0

)
=

1

2
gJµBHg(EF ) ξ(T,EF )

(
1

1

)
+

(
λ1 − 1 0

0 λ2 − 1

)(
m

m̃

)
,

(3.72)

with the eigenvalues λ1,2 being now of eq. (3.63).
We are interested in the behavior of the system through the application of the
magnetic field. Therefore we calculate the magnetic susceptibility, revealing

χ =
1
2 gJ µ

2
B g(EF ) ξ(T,EF )

1− 1
2g(EF ) ξ(T,EF ) (U ± V )

. (3.73)

We directly discover, the susceptibility diverges for the same condition as the
instabilities (3.64a), (3.64b). Driving the system towards the diverging suscep-
tibility can be done through the density of states g(EF ) and its Fermi energy
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EF , the interaction strengths U, V as well as the temperature T .
The presence of the magnetic field influences the configurations of the magneti-
zations, depending on the sign of H and its strength. For a finite magnetic field,
we find a finite magnetization mα even before reaching the self-consistency
condition. Then, fulfilling the instability condition reveals additional solutions
for the magnetizations. Details to the calculation of the susceptibility and a
plot for different parameters is in the appendix B.6.5.

Solutions of Magnetization

In order to obtain more insight into the behavior of the system with an applied
magnetic field, we solve the self-consistency equation (3.58) with the two
order parameters m = mx +my and m̃ = mx −my inserted. We again use the
simplification of identical density of states g(EF ) eq. (3.62). The self-consistency
equation with the applied magnetic field then reduces to

0 = m

[
1 +

3
2

1
4! (U ± V )3 ζ(EF )

1
2 (U ± V ) g(EF ) ξ(T,EF )− 1

m2

]

+
1
2 gJ µB g(EF ) ξ(T,EF )H

1
2 (U ± V ) g(EF ) ξ(T,EF )− 1

, (3.74)

where the equation with U + V holds for the dominant order parameter m
and U − V for the sub-leading order parameter m̃. The three solutions of the
magnetization for the dominant order parameter m are given in fig. 3.11 for
different reduced Fermi energies εF > 0, temperatures kBT/t

‖, and magnetic
fields gJ µBH/t

‖. We only give the εF > 0 sector, because the εF < 0 sector
produces the analog behavior. In appendix B.6.6 we show the details of the
solution of eq. (3.74).
From the plot and its investigation we find, that applying the small magnetic
field always leads to finite solutions for the magnetization m, even for no
interaction present. Increasing the interaction strength increases the value of
the magnetization as well. As soon as the critical interaction strength is reached,
a bifurcation is revealed, where one solution branch of the magnetization splits
into two solutions, one with increased magnetization, the other solution dropping
to m→ 0 – the paramagnetic solution of the system. If the interaction strength

49



3. Quantum Simulator for Spin-Orbital Magnetism

is increased further, the magnetization is reduced again, as before, for the
vanishing magnetic field scenario 3.4.5.
Increasing the magnetic field, gJ µBH/t

‖ = 0.1 → 0.3, leads to a larger initial
gap between the two solutions for the magnetization – see fig. 3.11a) → c)
and fig. 3.11b) → d) – as well as a larger critical interaction strength for
the bifurcation to appear. On the other hand, increasing the temperature,
kBT/t

‖ = 0 → 1 – see fig. 3.11a) → b) and fig. 3.11c) → d) – shifts the
individual bifurcations for the different reduced Fermi energies apart of each
other and to larger interaction strengths.
Hence, as soon as a magnetic field is present, there is always a transition from a
paramagnet towards a phase with finite magnetization m, m̃ 6= 0. Reaching the
critical interaction strength then leads to a bifurcation and additional solutions
for the magnetization, revealing again the possible paramagnetic solution. In
this scenario the phase transition is of first order.
To conclude, even for an applied magnetic field, the assumption of a small and
smoothly growing magnetization holds, as required by the mean-field approach.
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Fig. 3.11 Solutions of the magnetization with an applied magnetic field for
equation (3.74). We give the magnetization over the reduced interaction
strength (U + V ) /t‖, for the dominant phase transition with order parame-
ter m. For a finite magnetic field, there are always finite solutions for the
magnetization m, even before the instability condition is fulfilled. At the crit-
ical interaction strength, one magnetization experiences a bifurcation, this
then leads to three possible solutions again. We plot two different temper-
atures kBT/t

‖ = 0, 1; two different magnetic fields gJ µBH/t
‖ = 0.1, 0.3; for

the same three different reduced Fermi energies εF > 0 as before. Increasing
the magnetic field increases the required critical interaction strength. On the
other hand, going to larger temperatures separates the individual solutions
and increases the critical interaction strength. From left to right [a) → b); c)
→ d)], the temperature is increased, where from top to bottom [a) → c); b)
→ d)], the magnetic field is increased. Further details are given in the text.
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3.5. Strong Coupling

We increase the interaction strength further to reach the strong coupling limit,
where U, V � t‖, t⊥, investigate the behavior of the system and focus on
half-filling. For strong coupling, we are in the Mott insulating regime and
are interested in only two fermions per lattice site, thus half-filling. These
two fermions couple to a spin-1 moment on each lattice site, to reduce the
interaction energy penalty. From the single site analysis of section 3.3 we know,
that the spin triplet state configuration |Ti〉 (3.20) is favored for such increased
interaction strengths. We expand the analysis around the spin triplet states
|Ti〉, which serve as the ground state in perturbation theory. The kinetic part
of the Hamiltonian (3.1) is treated as a perturbation to the interaction part
Hint and provides virtual hopping processes.

3.5.1. Preliminary Investigation

The degeneracy of the half-filled ground state, constructed through the spin
triplet states |Ti〉, is 3N , where N is the number of lattice sites. Each one of
the two fermions can occupy one of the orbitals, respectively. Here both spins
can be up or down, in addition the configuration ↑↓ + ↓↑ is also possible, see
fig. 3.4. This configuration is possible for every lattice site, resulting in the
exponential degeneracy. Based on this degeneracy of the half-filled ground
state, we refer to the canonical perturbation theory, as in the derivation of the
t− J model [111, 147, 148], also see to section 2.4.
In order to begin the derivation of the strong coupling Hamiltonian, we in-
vestigate the different energy scales involved for a single site and focus on
the interaction part of the Hamiltonian (3.19). The half-filled strong coupling
ground state energy thus is

Hint|Ti〉 = Ei|Ti〉 = 0 , (3.75)

where the spin triplets |Ti〉 are of equation (3.20). For an additional fermion
on the single lattice site, the interaction energy increases to E1 = U + V , since
one of the orbitals experiences a double-occupancy. For a fully filled lattice
site with four fermions on site, the interaction energy is E2 = 2 (U + V ). To
summarize the energy scales we find
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• E0 = 0: ground state energy for the half-filled scenario.

• E1 = U + V : first "excited" state, where one of the orbitals becomes
double-occupied, through a hopping process of a neighboring fermion,
hence there are three fermions on site.

• E2 = 2 (U + V ): second "excited" state, here another hopping process
occurred, resulting in a fully filled site with four fermions.

The different interaction energies Ei can be calculated for each spin triplet
state by adjusting the state for the additional fermions present, respectively.
This computation then is straightforward.

3.5.2. Decomposition of Hilbert Space

Next, we extend the single lattice site analysis to our N lattice site system.
For the further derivation, we split the Hilbert space into double-occupied
subspaces, as presented in detail in section 2.4. The Hilbert space then takes
the form

H = H0 ⊕H1 ⊕H2 ⊕ . . . ⊕HN , (3.76)

where H is the total Hilbert space and Hm refers to the number of double-
occupancies 0, 1, 2, ... N of the lattice sites. At this point, we introduce the
projectors Pm to the different Hilbert subspaces

• P0 → projecting onto an empty or single-occupied subspace H0,

• Pm → projecting onto an m times double-occupied subspace Hm.

Now we investigate which relevant processes can appear within our system and
make use of the projectors, where H is the full Hamiltonian (3.19),

1. P0 HP0: hopping process from a single-occupied site i into an empty
neighboring site j; here the initial site i can contain one fermion or be
half-filled.
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2. P1 HP0: process, where a fermion of site i hops into a neighboring site j in
order to make one orbital of that site j double-occupied; the neighboring
site j then contains three fermions.

3. P0 HP1: inverse process of the previous one; a fermion of the double-
occupied orbital in site i hops into an empty or single-occupied site j.
If the process is into a single-occupied site j, the hopping must occur
into the other orbital, e.g. hopping into px ⇒ py can be occupied be a
fermion and vice versa.

4. P1 HP1: process, where the hopping occurs between a single double-
occupied orbital in site i and a single-occupied site j to make the corre-
sponding orbital double-occupied.

i
or

ij j

Fig. 3.12 Two illustrations for the possible hopping process P1 HP1, as given
in the text.

5. P2 HP1: here the initial lattice site i has a single double-occupied orbital
and the hopping process makes the neighboring lattice site j fully filled
with two double-occupied orbitals.

6. P1 HP2: inverse process of the previous hopping scenario; the initial
lattice site i has two double-occupied orbitals and the process makes the
neighboring site j to have an orbital double-occupied, where initially the
neighboring site had two fermions.

7. P2 HP2: the process starts with a fully filled site i and the hopping into
the neighboring site j afterwards becomes fully filled; here the hopping
can only occur, if the corresponding orbital of site j was not occupied.
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i
or

ij j

Fig. 3.13 Hopping process P2 HP2 for two examples.

For details regarding the representation of the decomposed Hamiltonian, see
section 2.4.

3.5.3. Derivation of Effective Hamiltonian

After the description of the processes, we need to evaluate the corresponding
representations of the projected Hamiltonian. The details of the representations
are found in appendix B.7.1. From section 2.4 of the general concepts we know,
that finding the transformed Hamiltonian describing the virtual processes
reduces to an evaluation of the contribution P0 HP1 HP0. This part of the
Hamiltonian is

P0 HP1 HP0 =

[
− P0

∑
αs

{
t‖
∑
〈i,j〉‖α

(
c†jαsciαs + h.c.

)

+ t⊥
∑
〈i,j〉⊥α

(
c†jαsciαs + h.c.

)}
P1

]

×

[
− P1

∑
αs

{
t‖
∑
〈i,j〉‖α

(
c†jαsciαs + h.c.

)

+ t⊥
∑
〈i,j〉⊥α

(
c†jαsciαs + h.c.

)}
P0

]
. (3.77)

Next, we analyze the different possible processes. To avoid confusion, we relabel
the sums, such that the initial lattice sites are labeled by i, the intermediate
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sites are j and the final sites k. In addition, we introduce an additional spin
label s′, where s̄′ 6= s′. The contribution then takes the form

P0 HP1 HP0 =

[
−
∑
〈j,k〉‖α,s

{
P0 t

‖ c†kxscjxs njxs̄ (1− njys njys̄)

+ P0 t
‖ c†kyscjys njys̄ (1− njxs njxs̄)

}
−
∑
〈j,k〉⊥α ,s

{
P0 t

⊥ c†kxscjxs njxs̄ (1− njys njys̄)

+ P0 t
⊥ c†kyscjys njys̄ (1− njxs njxs̄)

}]

×

[
−
∑
〈i,j〉‖α,s′

{
(1− njys′ njys̄′)njxs̄′ t‖ c†jxs′cixs′ P0

+ (1− njxs′ njxs̄′)njys̄′ t‖ c†jys′ciys′ P0

}
−
∑
〈i,j〉⊥α ,s′

{
(1− njys′ njys̄′)njxs̄′ t⊥ c†jxs′cixs′ P0

+ (1− njxs′ njxs̄′)njys̄′ t⊥ c†jys′ciys′ P0

}]
(3.78)

To evaluate the processes further, we expand the above equation and make use
of the fermionic property n2

iαs = niαs. In addition, we only consider virtual
processes, where the initial site is also the final site and neglect three site
processes i → j → k, see fig. 3.14. All combinations have to be investigated
carefully and checked, if they can contribute or not.
After the straightforward evaluation of all terms, we are left with
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i ij j k
a) b)t

t t 

⊥ t 

⊥

Fig. 3.14 Two illustrations of possible hopping processes of eq. (3.78). a)
Virtual hopping process, where the initial site i is also the final site. b)
Three site hopping process, with the initial site i, the intermediate site j and
final site k.

P0 HP1 HP0

= t‖ 2
∑
〈i,j〉‖α,s

[
P0

(
nixs njxs̄ − c†ixscixs̄ c

†
jxs̄cjxs

)
(1− njys njys̄)P0

+ P0

(
niys njys̄ − c†iysciys̄ c

†
jys̄cjys

)
(1− njxs njxs̄)P0

]
+ t⊥ 2

∑
〈i,j〉⊥α ,s

[
P0

(
niys njys̄ − c†iysciys̄ c

†
jys̄cjys

)
(1− njxs njxs̄)P0

+ P0

(
nixs njxs̄ − c†ixscixs̄ c

†
jxs̄cjxs

)
(1− njys njys̄)P0

]
. (3.79)

To reduce the projected expression further, we introduce the spin representation
for the operators

Sγiα =
1

2

∑
s,s′

c†iαs σ
γ
s s′ ciαs′ , (3.80)
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as in equation (3.16). The expression for the virtual processes then becomes

P0 HP1 HP0 = −2t‖ 2
∑
〈i,j〉‖

[
P0

(
~Six · ~Sjx −

1

4
nix njx

)(
1− njy↑ njy↓

)
P0

+ P0

(
~Siy · ~Sjy −

1

4
niy njy

)(
1− njx↑ njx↓

)
P0

]
− 2t⊥ 2

∑
〈i,j〉⊥

[
P0

(
~Siy · ~Sjy −

1

4
niy njy

)(
1− njx↑ njx↓

)
P0

+ P0

(
~Six · ~Sjx −

1

4
nix njx

)(
1− njy↑ njy↓

)
P0

]
.

(3.81)

In our setup, the denominator U of expression (2.23) is U + V . Then we can
give the whole transformed Hamiltonian as

P0 H̃P0 = P0 HP0 − P0 HP1 HP0/ (U + V )

= −P0

∑
αs

{
t‖
∑
〈i,j〉‖α

(
c†jαsciαs + h.c.

)
+ t⊥

∑
〈i,j〉⊥α

(
c†jαsciαs + h.c.

)}
P0

+ J‖
∑
〈i,j〉‖α

{
P0

(
~Six · ~Sjx −

1

4
nix njx

)(
1− njy↑ njy↓

)
P0

+ P0

(
~Siy · ~Sjy −

1

4
niy njy

)(
1− njx↑ njx↓

)
P0

}
+ J⊥

∑
〈i,j〉⊥α

{
P0

(
~Siy · ~Sjy −

1

4
niy njy

)(
1− njx↑ njx↓

)
P0

+ P0

(
~Six · ~Sjx −

1

4
nix njx

)(
1− njy↑ njy↓

)
P0

}
, (3.82)

where we have introduced the two coupling strengths for the virtual processes
as

J‖ =
2 t‖ 2

U + V
, and J⊥ =

2 t⊥ 2

U + V
. (3.83)

When analyzing the transformed Hamiltonian, we have to keep in mind, that
an additional factor of 2 comes about, when the sum over i and j‖,⊥ is carried
out.
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3.5.4. Effective Hamiltonian

We can reduce the form of the transformed Hamiltonian (3.82) further, since
we restrict our system to half-filling. For half-filling the kinetic part of Hamil-
tonian (3.82) directly drops out. In addition we can neglect the projectors P0

and the operator contributions (1− njαs njαs̄).
After the analysis we find the effective Hamiltonian HSC of the strong coupling
limit as

HSC =
∑
α

[
J‖
∑
〈i,j〉‖α

(
~Siα · ~Sjα −

1

4
niαnjα

)

+J⊥
∑
〈i,j〉⊥α

(
~Siα · ~Sjα −

1

4
niαnjα

)]
. (3.84)

The summation i runs over all lattice sites. The summation of the nearest
neighbors j, again, crucially depends on the considered orbital α, indicated
by the summation indices 〈i, j〉‖,⊥α . For the parallel components 〈i, j〉‖α, the px-
orbitals have nearest neighbors in x-direction and the py-orbitals in y-direction.
On the other hand, the px-orbitals have their nearest neighbors in y-direction
for the perpendicular components 〈i, j〉⊥α and the py-orbitals in x-direction.
Note, for half-filling the particle number operator niα is fixed, since there are
always two fermions per site and one per orbital.
In the appendix B.7.2 we investigate the effective Hamiltonian HSC for a
two-site model. We directly see, since J‖,⊥ > 0, the ground state for the
strong coupling system is an antiferromagnet, as in the well-known Heisenberg
scenario [141, 144, 145, 149]. Extending the investigation of the two-site model
towards our N lattice system, we find an antiferromagnetic order to minimize
the effective Hamiltonian HSC . In fig. 3.15 we illustrate a possible ordering of
three lattice sites within the system.
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i kj
Fig. 3.15 Possible ordering of
the half-filled strong coupling case,
demonstrated for three lattice sites
i, j, k. Each lattice site represents a
spin triplet configuration. The over-
all order reveals an antiferromagnet.

3.5.5. Effective Hamiltonian in Spin-1 Representation

The effective Hamiltonian HSC (3.84) describes the coupling of the Hilbert
subspaces(

H1/2 ⊗H1/2

)
i
⊗
(
H1/2 ⊗H1/2

)
j

= (H0 ⊕H1)i ⊗ (H0 ⊕H1)j . (3.85)

The next step is to find a reduced representation of the effective Hamiltonian
HSC . From our previous investigations we know, that the initial ground state
was a spin triplet |Ti〉 for every lattice site i. In the strong coupling limit
the ground state is described by an antiferromagnetic order. Thus the (H0)i
subspace is not relevant for the reduced representation and we neglect these
contributions.
In order to reduce the effective Hamiltonian further, we introduce spin-1
operators as

~Si = ~Six + ~Siy . (3.86)

This allows us to transform the effective Hamiltonian (3.84) and bring it to a
reduced form. The detailed introduction of the spin-1 operator representation
is in appendix B.7.3. These new operators allow us to write the effective
Hamiltonian HSC in the form

HJ =
1

4

(
J‖ + J⊥

)∑
〈i,j〉

(
~Si · ~Sj −

1

4
ni nj

)
, (3.87)

where the operators ~Si are now operators of the spin-1 representation, ni is the
particle number operator. Note, here the summation runs over all lattice sites
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i and all nearest neighbors j. This Hamiltonian HJ now couples the subspaces

(H1)i ⊗ (H1)j = (H0 ⊕H1 ⊕H2)ij . (3.88)

Thus, in this scenario there are additional coupling mechanisms possible, into
a singlet, triplet and quintet. The representation of these additional couplings
are also found in appendix B.7.3. Analyzing the reduced effective Hamiltonian
HJ (3.87) for these possible configurations, we discover the singlet to reveal
the lowest energy contribution.
In analogy to the well-known t− J model [111, 147, 148], we find a transition
towards an antiferromagnetic order. An antiferromagnetic configuration mini-
mizes the energy and thus the effective Hamiltonian.
Hence, within the strong coupling regime, we encounter an additional magnetic
phase transition.

3.6. Phase Diagram

To summarize the investigations we sketch the full phase diagram for our
system in units of reduced chemical potential µ/t‖ and interaction strengths
(U + V ) /t‖ for the zero temperature limit, see fig. 3.16. We focus on the case
for vanishing magnetic field, H = 0, and again the dominant order parameter
m = mx + my. In addition, we sketch a phase boundary for the sub-leading
order parameter m̃ = mx −my colored in yellow. For the hopping strengths
we have chosen the ratio t⊥/t‖ = 1/2.

3.6.1. Description of Phases

The different colors within the phase diagram represent the different phases of
the system: the Fermi liquid regime with its paramagnetic phase is blue and
labeled by "PM, FL"; the ferromagnetic phase is shown in green and has the
"FM" label; red and labeled as "AF" is the Mott insulating regime, where the
order is antiferromagnetic. The black line separating the phases serves as a
sketch of the phase boundary between the paramagnetic and ferromagnetic
phase and corresponds to the dominant order parameter m. On the other
hand, the yellow line illustrates the phase boundary for the sub-leading order
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parameter m̃. Here the transition is from the paramagnetic to ferromagnetic
phase with orbital symmetry breaking. For the case of a dashed (dashed dotted)
line the phase transition is of first order and becomes of second order, when the
line becomes bold. Note, we give the phase diagram for the µ/t‖ > 0 sector,
since the µ/t‖ < 0 case is symmetric to it and reveals the analog phases and
their transitions.

3.6.2. Phase Transitions for Dominant Order Parameter

At half-filling, µ/t‖ = 0, we observe two magnetic phase transitions. For small
interactions the system is in a paramagnetic phase. Increasing the interaction
strengths leads to a first order phase transition to a ferromagnet, characterized
by a finite magnetization m 6= 0. The black dashed line between the two phases
indicates the transition to be of first order. For large interaction strengths, a
further phase transition takes place and the system becomes a Mott Insulator,
where the spins order into a singlet and thus an antiferromagnet. Here it is
important to stress, that the antiferromagnetic order is extended throughout
the whole lattice system, where it can be characterized by two sublattices A, B,
see [107, 141, 150]. The transition point towards the antiferromagnetic phase
for a cold fermionic system in an optical lattice is at U/t ∼ 10, see [151]. Be
aware, in [151] they have just considered the common Hubbard interaction U ,
an isotropic hopping t and solely an s-orbital configuration. Nevertheless, the
antiferromagnetic transition point of U/t ∼ 10 serves as a good estimate even
for our system and we thus sketch the antiferromagnetic phase starting from
this value, U/t ∼ 10.
At µ/t‖ = 1 the van Hove singularity appears for the chosen hopping strengths
and drives the phase transition to a ferromagnet even for very weak interactions,
also see fig. 3.3. Hence, close to the van Hove singularity, the system strongly
drives towards the ferromagnetic order.
For increasing chemical potentials µ/t‖ > 1 we only discover the paramagnet to
ferromagnet phase transition, where the phase transition is still of first order,
shown by the black dashed line separating the two phases. At the critical value
µcrit/t

‖ ≈ 2.37 the order of the paramagnetic to ferromagnetic phase transition
changes to second order. This is illustrated by the bold black line between
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the phases. For details regarding the critical value µcrit/t‖ compare to the
behavior of the transition temperature fig. 3.8 as well as the solutions for the
magnetization fig. 3.10.

3.6.3. Phase Transitions for Sub-Leading Order
Parameter

In addition to the order parameter m – it only considers spin imbalance
instabilities and its corresponding phases – we also have sketched the phase
boundary of the additional order parameter m̃ = mx−my for a small and fixed
value of the interaction strength V . The phase boundary is indicated by the
dashed dotted yellow line within the phase diagram fig. 3.16. In contrast to
the dominant order parameter, here the phase transition takes place between a
paramagnetic phase and a phase with ferromagnetic order as well as orbital
symmetry breaking. This transition is again of first order up to the critical
value µcrit/t‖ ≈ 2.37, where the transition becomes of second order. The second
order transition is marked by the bold yellow line within the diagram.
For the m̃ order parameter the system requires larger absolute interaction
strengths to trigger the phase transition towards the ferromagnetic and orbital
symmetry breaking phase, compared to the previous scenario.
The influence of the van Hove singularity remains as before. Additional details
of the phase boundaries and the tricritical point, we leave to further discussions.
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Fig. 3.16 Zero temperature phase diagram for vanishing magnetic field.
The axes are the reduced chemical potential µ/t‖ and interaction strengths
(U + V ) /t‖ for hopping strengths t⊥/t‖ = 1/2 and the dominant order pa-
rameter m. The different colors represent the different phases within the
system: blue with label "PM, FL" gives the Fermi liquid with paramagnetic
order; green and "FM" is the ferromagnetic phase with m 6= 0; red, labeled
with "AF", the antiferromagnetic phase. The dashed (dashed dotted) line
separating the phases indicates a first order transition. The bold line marks
the transition of second order. The dashed dotted line in yellow gives the
phase boundary for the sub-leading order parameter m̃ for the paramagnetic
to phase with ferromagnetic order and orbital symmetry breaking. The phase
boundary for the sub-leading order parameter m̃ is given for a small and fixed
value of V . Further details see text.
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3.7. Experimental Proposal

We propose an optical lattice setup to realize the theoretically discussed system.
The main idea is to simulate the physics of the orbitals through internal states
of the involved fermionic atoms.
The two anisotropic optical lattices have the same structure and have different
lattice depths in x- and y-direction, see fig. 3.17. The optical lattices are created
in the standard procedure of counter propagating lasers, where the system is
strongly confined in z-direction, in order to produce 2D planes. We create two
2D planes and rotate them by an angle of π/4 with respect to each other.
The next important step is to create a spin-dependent optical lattice system.
Prominent candidates here are alkaline-earth atoms such as 87Sr, with the
long-lived meta-stable 3P0 state, see section 2.2. The spin-dependent optical
lattices are tuned to the magic wavelength condition [58, 63, 73], where one
optical lattice is prepared to match the 1S0 state, the other for the meta-stable
3P0 state. In addition, the lattices are bipartite, indicated in fig. 3.17 through
the alternating signs.
The optical lattices are tuned to have different lattice depths for x- and y-
direction to achieve the anisotropic hopping strengths t‖ and t⊥. Note, if
different laser strengths are required, it is possible to use the mirror technique
introduced in [152]. For details regarding the magic wavelength or bipartite
optical lattice see the general concepts, section 2.1 and 2.2.
The light assisted inelastic two body loss channels in alkaline-earth setups –
between 1S0 - 3P0 atoms or two atoms in the excited 3P0 state – are theoretically
[81, 153] and experimentally well-known [78, 154, 155]. If these inelastic
processes can be suppressed, our system thus becomes feasible in the near
future.
In fig. 3.17a) we sketch the principle setup of the optical lattice system, where
we have shifted the two lattices out of plane, for sake of visualization. This
optical lattice system then can be used to simulate the behavior of the px- and
py-orbitals. The lower optical lattice is addressed to match the ground state
of the alkaline-earth atoms, where the upper optical lattice is tuned to the
magic wavelength, such that it can be occupied by alkaline-earth atoms in the
meta-stable state 3P0. The anisotropic hopping strengths t‖ and t⊥ are tuned
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via the different lattice depths. The different spin configurations s =↑, ↓ are
indicated by the different colors, red relates to spin up and green to spin down.
We give the top view of each optical lattice in fig. 3.17b), where the anisotropic,
as well as bipartite, nature of the optical lattices is observed. The lattices are
again shifted out of plane. The different signs represent the bipartite lattice
sites. In addition, we mark two directions in the figure, where we cut along
the optical lattice system in order to illustrate the different mechanisms in
fig. 3.17c) and d). The different colors for the fermions again relate to the color
code introduced in fig. 3.17a).
In fig. 3.17c) and d) we show the cuts through the optical lattice system along
direction 1 and 2 as indicated in fig. 3.17b), with all relevant quantities as
parallel hopping t‖, perpendicular hopping t⊥, the intra-orbital interaction
strength U and the inter-orbital interaction strength V . The two lattices are
shifted out of plane as well, for sake of visualization.

66



3.7. Experimental Proposal

px

t⊥
+ +

py

t 
∥

+ -

U

Cut along direction 2

d)

V

px

t 
∥

U
+ -

Cut along direction 1

c)
+ +py

t⊥py

t 
∥ t⊥

t 
∥

t⊥

y
x

+ +-

-+ +

Direction 1b)

y
x

px

t 
∥

t⊥

t⊥ t 
∥

+

+

- -

+

+

D
ire

ct
io

n 
2

py

px

y
x

t 
∥

t⊥

t⊥
t 
∥

t 
∥

t 
∥ t⊥

t⊥

a)

3P0

1S0

Fig. 3.17 Principle optical lattice setup for the two internal states of the
alkaline-earth atoms, with the bipartite, as well as anisotropic, lattice struc-
ture. The optical lattices are shifted out of plane. The different internal states
of the alkaline-earth atoms are red for spin up and green for spin down. The
parallel hopping strength is given by t‖ and the perpendicular as t⊥. a) Total
view of the optical lattices, showing all essential features. b) Top view for
both lattices, to focus on the bipartite and anisotropic nature of the lattice as
well as give the directions for the cut along the system. c) and d) Cut along
direction 1 and 2, respectively. Here the two possible interaction strengths
– intra-orbital U and inter-orbital V – can be visualized. For further details
see text.
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3.8. Conclusion and Outlook

To conclude, we have demonstrated how our simple model can be used to create
a quantum simulator for spin-orbital magnetism. It can be realized within
experimental progress in the near future. Our system shows promising steps
incorporating orbital physics in the framework of optical lattices without the
shortcomings of solid state systems. It paves the way towards d-orbital physics
in optical lattices and the glimpse of solving open solid state mysteries in a
controllable environment.
Even for this simple model we discovered a rich phase diagram of competing
phases – most of spin-1 configuration – as well as a possible tricritical point
for the phase transitions. In addition, we found a phase with potential orbital
ordering.
We derived the microscopic Hamiltonian from the general second quantized
Hamiltonian, for the present pα-orbital system and investigated it in-depth. The
kinetic part of the Hamiltonian is influenced by two van Hove singularities, which
are due to the anisotropic hopping strengths t‖ and t⊥. The interaction part
delivers two interaction strengths, an intra-orbital interaction U , comparable
to the well-known Hubbard interaction, as well as an inter-orbital interaction
V , considering the interaction between the px- and py-orbital.
From the preliminary investigations for a single-site model we found the system
to experience a possible phase transition for increasing interaction strengths.
We extended these investigations in a mean-field analysis and discovered various
possible phase transitions. One phase transition is from a paramagnet towards
a ferromagnet with finite magnetization. Another phase transition is towards a
ferromagnet with orbital symmetry breaking. The latter phase transition is
suppressed in contrast to the pre-empted well-known paramagnet to ferromagnet
transition. In addition, we analyzed the temperature, as well as the influence
of an external magnetic field.
Then we extended the calculations and evaluated the strong coupling limit for
the half-filled case. Here we derived an effective Hamiltonian in analogy to the
well-known t− J scenario. In this large interaction limit the ground state is an
antiferromagnet.
After these investigations we were able to sketch the phase diagram of our
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system for the dominant order parameter and discovered its richness with
respect to the transitions. We even found a possible tricritical point in the
phase diagram.
The proposed optical lattice system and its sensitivity for internal states can
thus be used to simulate the behavior of the px- and py-orbital. This setup
then allows us to create a quantum simulator to simulate the intrinsic behavior
of the different orbitals within the solid state Hamiltonian (3.1) and opens the
path for a better understanding of the mechanisms of solid state systems in
the toolbox of cold gases experiments.
So far, we were only interested in spin imbalance instabilities and their

corresponding phases. For the sub-leading phase transition we found a possible
orbital ordering. Thus, the next step is to investigate orbital instabilities.
To this end it is necessary to introduce a new set of order parameters as
m = mx+my – the common magnetization – m̄ = mx−my – the magnetization
with orbital symmetry breaking – and O = nx−ny – the pure orbital symmetry
order parameter. This setup was investigated recently [143].
For the new set of order parameters it is also recommended to extend the
analysis to an energy functional approach. This then covers all scenarios for
all potential phase transitions. The investigation of the orbital imbalance
instability then would shed light into the mechanisms of the phase transitions
and reveal the potential of our simple model.
An additional step for further investigations would be to analyze the spin-1
Hamiltonian of the strong coupling regime in more detail and find additional
transitions for this limit.
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CHAPTER

FOUR

MAJORANA MODES AND P -WAVE SUPERFLUIDS

The interest in non-Abelian phases of matter increased in recent years due to
developments in the research area of p-wave superconductors. One prime exam-
ple supporting non-Abelian quasiparticles is the px + ipy-wave superconductor
in 2D as it also exhibits Majorana modes in vortices. This superconductor
can serve as a blueprint of fractional topological order. On the other hand,
Kitaev proposed Majorana wires to be an ideal playground to understand the
physics of Majorana modes. In this chapter we demonstrate the transition
from the Majorana wire setup by Kitaev [156] to a two-dimensional p-wave
superconductor system [157] within cold atomic gases in an optical lattice.
The central idea is the coupling of orbital degrees of freedom with strong
s-wave interactions in order to create p-wave interactions. In the following we
demonstrate that our approach supports Majorana modes at edge dislocations
in the optical lattice and we describe a protocol to pinpoint the non-Abelian
statistics within a cold atomic gas experiment.
We begin with a short introduction to the basic concepts essential for the

further investigations. Then a brief overview on the research fields of topological
and superconducting phases is given and their shortcomings with respect to
possible experimental realizations are discussed. The features of cold atomic
gases are highlighted to pave a path towards p-wave superfluidity and its
possible quantum simulation. Afterwards we explain in detail our system and
focus on our calculations.
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4. Majorana Modes and p-Wave Superfluids

4.1. Basic Concepts

In the following we briefly review the basic concepts of Majorana fermions
in condensed matter physics. We then comment on non-Abelian statistics of
Majorana modes. Finally we illustrate the main idea of the Bogoliubov-de
Gennes Hamiltonian and its transformation.

4.1.1. Majorana Fermions and non-Abelian Statistics

In our presentation of the Majorana fermions and their properties, we follow
the road given in [158]. The special feature of Majorana fermions is that the
particle is its own anti-particle. In terms of operators this reads

γi = γ†i , (4.1)

where γ(†)
i annihilates (creates) a Majorana fermion at site i. The operators

obey the anti-commutation relation{
γi, γ

†
j

}
= γi γ

†
j + γ†j γi = δij . (4.2)

Fermion operators c(†)i can be constructed out of two of the introduced Majorana
operators such that

c†1 =
1√
2

(
γA,1 + iγB,2

)
, c1 =

1√
2

(
γA,1 − iγB,2

)
. (4.3)

Conversely, the Majorana operators can be expressed through the fermionic
operators

γA,1 =
1√
2

(
c†1 + c1

)
, γB,2 =

1

i
√

2

(
c†1 − c1

)
. (4.4)

The Majorana operator γi thus changes the number of fermions between even
and odd. The operator for the fermion parity of a single fermion mode c1 can
be defined as

P = 1− 2 c†1c1 = 2i γA,1γB,2 . (4.5)

It takes the eigenvalues +1 for an empty state and −1 for an occupied one.
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γA,1 γB,2 γA,2 γB,3 γA,i γB,i+1 γA,N-1 γB,N

c1 c2 ci cN

Fig. 4.1 Kitaev chain in 1D with N lattice sites. The fermions are marked in
red and described by the operators ci (4.3). They can be constructed from
two Majorana operators (4.4), figure adapted from [158].

In 2001, A. Kitaev introduced a toy model [156] to implement Majorana
fermions. The model is a p-wave superconducting system of a one-dimensional
chain of spinless fermions. The Hamiltonian is of the form

H = −
N−1∑
i=1

(
t c†ici+1 + ∆ eiφ cici+1 + h.c.

)
− µ

N∑
i=1

c†ici , (4.6)

where t is the hopping strength, ∆eiφ the superconducting order parameter, µ
the chemical potential and N the number of lattice sites, see also fig. 4.1. We
consider a special parameter set for the Hamiltonian, namely µ = 0 and t = ∆.
The Hamiltonian then becomes

H = −t
N−1∑
i=1

(
c†ici+1 + eiφ cici+1 + h.c.

)
= −t

N−1∑
i=1

(
eiφ/2 ci + e−iφ/2 c†i

)(
eiφ/2 ci+1 − e−iφ/2 c†i+1

)
. (4.7)

Next, we introduce the operators

γB,i =
1√
2

(
eiφ/2 ci + e−iφ/2 c†i

)
, γA,i =

1

i
√

2

(
eiφ/2 ci − e−iφ/2 c†i

)
,

(4.8)

which are again Majorana fermions and obey the relation (4.1), as can be easily
checked. The Hamiltonian (4.7) then reads

H = −2it

N−1∑
i=1

γB,i γA,i+1 . (4.9)
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γA,1 γB,2 γA,2 γB,2 γA,j γB,j γA,N γB,N

α 121 α 12N-1

Fig. 4.2 Kitaev chain in 1D with N lattice sites. The Majorana fermions are
labeled by γA,i and γB,i. They then form a new quasiparticle αi, which is
again a fermion. The two Majorana fermions at the beginning γA,1 and the
end of the chain γB,N are unpaired. The figure is adapted from [158].

Now we are able to define an alternative fermion operator through

αi =
1√
2

(
γA,i+1 + iγB,i

)
, (4.10)

where we have combined the two Majorana fermions γB,i and γA,i+1 and we
find

iγB,i γA,i+1 =
1

2
− α†iαi . (4.11)

The Hamiltonian (4.9) can be written as

H = 2t

N−1∑
i=1

α†iαi − (N − 1) t , (4.12)

also see fig. 4.2. We can directly observe, that all pairs
(
γB,i , γA,i+1

)
for

i = 1, 2, ..., N − 1 give new fermions described by αi. The Majorana fermions
at the beginning of the chain γA,1 and the end γB,N are unpaired.
The ground-state of the 1D chain |g〉 then is the state where αi|g〉 = 0 for

all i and thus

H|g〉 = − (N − 1) t |g〉 . (4.13)

Since we have two degenerate Majorana modes with γA,1 and γB,N , which
are absent from the Hamiltonian (4.12), we can define a zero-energy fermion
α0 = 1√

2

(
γA,1 + iγB,N

)
. We directly find 〈g|α0|g〉 = 0 and obtain a relation

for the operators γA,1, γB,N acting on |g〉 such as

〈g|γA,1γB,N |g〉 =

〈
g

∣∣∣∣1− 2α†0α0

2i

∣∣∣∣g〉 =

{
+ i

2 for α†0α0 = 1

− i
2 for α†0α0 = 0

. (4.14)
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The eigenvalue is determined by the number parity of the ground-state |g〉. The
ground state manifold of the introduced 1D chain, the Kitaev model, is doubly
degenerate and is characterized by different parities. The state |g〉 has even
parity and α0 |g〉 has odd. The stable double degeneracy indicates that the
Kitaev model is topologically non-trivial and thus promises interesting features
and applications on the boundary of condensed matter physics and quantum
information theory.
For further details and research see [156, 159–168].

Non-Abelian Statistics

A group G is called Abelian, if the elements a, b within the group commute

ab = ba , for all a, b ∈ G . (4.15)

Thus, non-Abelian statistics means

ab 6= ba . (4.16)

Majorana fermions follow non-Abelian statistics, i.e. they "know" by which
path they were commuted, in contrast to bosons and fermions, see fig. 4.3. The
non-Abelian statistic of Majorana modes is best demonstrated via the fusion
process after braiding two modes. For further reading regarding non-Abelian
statistics and anyons see [169].
Details to Abelian statistics can be found in literature regarding Algebra [170,
171] or specialized books for group theory [172–174].

4.1.2. Bogoliubov-de Gennes Hamiltonian

The BCS theory was developed to describe superconductivity on a microscopic
level [24, 175]. Within a mean-field approach the well-known BCS Hamiltonian
is of the form

HBCS =
∑
kσ

ξk c
†
kσckσ −

∑
k

(
∆∗k c−k↓ck↑ + ∆k c

†
k↑c
†
−k↓

)
+ const. ,

(4.17)
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Bosons

Fermions

Majorana
fermions

1 2 3

Fig. 4.3 Bosons, fermions and Majorana fermions are compared with respect
to their behavior under braiding. For bosons it holds |ΨaΨb〉 = |ΨbΨa〉. For
fermions |ΨaΨb〉 = −|ΨbΨa〉 = |ΨaΨb〉. Majorana fermions do not follow the
preceding mechanisms. Interchanging positions results in intertwining the
paths of the Majorana fermions, which gives rise to non-Abelian statistics.
The figure is taken and adapted from [164].

where ξk = εk−µ, with εk being the dispersion relation, µ the chemical potential,
∆k the superconducting gap order parameter, c(†)±kσ the fermionic annihilation
(creation) operator and σ is the spin ↑↓. The Hamiltonian describes pure,
homogeneous superconductors. Diagonalizing reveals the excitation spectrum

Ek = ±
√
ξ2
k + |∆k|2 . (4.18)

Since the theory is on a mean-field level, the gap parameter then has to be
determined self-consistently [175].
The situation and equations become more challenging if a spatially inhomoge-
neous superconductor is considered. For this case, the superconducting order
parameter becomes spatially variable and has to be described by ∆ij , where ij
is the position of the edge between sites i and j. Examples for such situations
are dirty superconductors, if a vortex core is present, a lattice dislocation, near
an interface with another material, and a configuration of two superconducting
materials sandwiching a normal material (SNS) [175, 176].
Diagonalizing Hamiltonian (4.17) in k-space is no longer possible because of
the position dependency of the gap parameter ∆ij .
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In order to tackle this problem we introduce the Bogoliubov-de Gennes Hamil-
tonian defined in position space

HBdG = −
∑
〈i,j〉,σ

tij c
†
jσciσ +

∑
i,j

(
∆∗ij ci↓cj↑ + ∆ij c

†
j↑c
†
i↓

)
− µ

∑
iσ

c†iσciσ ,

(4.19)

where tij is the hopping parameter to nearest neighbor sites and µ is the
chemical potential. The Hamiltonian HBdG can be diagonalized efficiently by
introducing quasi-particle operators α(†)

iσ [176]. In addition, the gap parameter
∆ij has to be determined accordingly. Depending on the considered system, the
gap parameter ∆ij can be spin-dependent. These additional contributions make
the required diagonalization of the system more complicated. On the other
hand, based on symmetry arguments or further assumptions, the Bogoliubov-de
Gennes Hamiltonian can also be simplified to make the calculations manageable.
For additional insight into the microscopic theory of homogeneous and inhomo-
geneous superconductors see [149, 175–178].

4.2. p-Wave Analysis

Topological phases supporting non-Abelian anyons [179] have been of wide
interest, especially with the potential application in topological quantum com-
puting [180, 181]. There are several system which have been investigated, such
as superfluid 3He-A [182], the layered superconductor Sr2RuO4 [183] and the
fractional quantum Hall state at filling ν = 5/2 [184, 185]. Further research
has been conducted on semiconductor-superconductor heterostructures [186,
187] as well as systems where the semiconductor is a 1D quantum wire with
spin-orbit coupling [188, 189]. Recently an additional candidate, namely in-
dium antimonide nano-wires in contact with an s-wave superconductor, showed
evidence of the elusive non-Abelian zero-energy Majorana states [190, 191].
For an overview of the research area of Majorana fermions in superconductors
see [162]. Despite the progress in these fields there are still open questions to
address:
In the last couple of years the focus on cold atomic gases was deepened and
wide spread, establishing a different angle on p-wave superconductors. Cold
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atomic gases have different strengths and shortcomings compared to solid state
systems and might offer solutions to problems which are hard to address in
solid state experiments. A prime example is the controllability of the spatial
dimensions of a setup by optical lattices [30] and the high tunability of the
interaction strengths in the system through Feshbach resonances [192]. A
shortcoming in this field is the very limited lifetime of atomic p-wave resonant
gases where the decay channels are well understood [193, 194]. This fact poses
as a central challenge to identify possible realizations of p-wave superfluids with
sufficient lifetimes. Ideas to circumvent the decay channels are, for example,
Bose-Fermi mixtures in optical lattices [195–197], microwave dressed polar
molecules [198], the quantum Zeno effect [199], and driven dissipation [200].
Even synthetic spin-orbit coupling with the use of s-wave interactions was
proposed theoretically [201, 202], as well as the idea of coupling nanoplasmonic
fields with synthetic gauge fields to design p-wave interactions [203]. The exper-
imental implementation of synthetic spin-orbit coupling via ultracold atomic
collisions was promising [204], but further experimental realizations to these
previous theoretical proposals have so far been precluded by the complexity of
the setups.
Here we present a proposal for an experimental realization of p-wave su-

perfluids with the advantage of feasibility within contemporary experimental
techniques in cold atomic gases setups. In the following we explain our system,
the required calculations and the obtained phase diagrams.

4.2.1. Lattice Setup

We begin our considerations with the lattice setup and build up everything else
from there. We consider a two-dimensional optical square lattice, created by
counter propagating lasers. We tune the lattice system such that an additional
minimum in the center of each lattice square appears, see fig. 4.4a). We refer to
this minimum as plaquette. These plaquettes form a dual lattice of our lattice
system. States within the plaquettes are labeled by |...〉p.
In order to realize a system which exhibits Majorana modes and experiences
topological properties, we propose fermionic alkaline-earth atoms such as 87Sr

or 171Y b atoms in our lattice system. The metastable 3P2 state of the alkaline-
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a) b) c)

Fig. 4.4 Microscopic and experimental setup. a) The spinless fermions reside
on the lattice sites i and are coupled to two different internal states which
are trapped in the center of the plaquettes p. The lattice sites surround
the plaquettes. The first state on the plaquette |0, ↑〉p exhibits an s-wave
orbital symmetry, whereas the second state |α, ↓〉p gives a pα-wave symmetry
and is twofold degenerate. b) Single particle energy level structure. The
relevant transitions of the system are illustrated by solid lines. The dashed
lines denote the additional transitions which are required for the design of
the desired coupling Hamiltonian. c) Basic energy levels for the two-particle
states with the two interfering paths to obtain the molecular state in the
plaquette: The states on the lattice sites are described by |ψ〉, whereas the
states with the near resonant repulsively bound molecule, exhibiting p-wave
symmetry, are given by |ψ̃〉 =

(
A†
pB

†
αp − Ā†

pB̄
†
αp

)
|ψ〉. For details see main

text. Figure taken and adapted from [205].

earth atoms will be a key ingredient. The optical lattice is then created such that
these metastable states are trapped at the sites of the optical lattice, whereas
the ground state 1S0 is trapped in the center of plaquettes, see fig. 4.4a). It is
tuned close to the anti-magic wavelength, see section 2.2. This setup requires
only one 2D optical lattice. In addition, light assisted two-particle losses from
the metastable 3P2 are quenched due to their fermionic statistics.
To simplify the investigations, we start with spinless fermionic atoms. We
address the fermionic annihilation (creation) operators acting on states of the
lattice sites i with c(†)i . Next we introduce the operators for the states on the
plaquettes. We are interested in two different hyperfine states of the electronic
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ground state 1S0 which will be denoted by a spin index σ ∈ {↑, ↓}. The lowest
lying states are then |0, σ〉p. In particular, a†p creates |0, ↑〉p and exhibits s-wave
symmetry, see fig. 4.4a). The first excited state |α, σ〉p with α ∈ {x, y} is
twofold degenerate and exhibits p-wave symmetry. The state |α, ↓〉p is created
by the operator b†αp, see fig. 4.4b). We focus on the details of the symmetry
arguments in sec. 4.2.2. Similar setups for bosonic atoms have been previously
proposed [206].
The coupling between the states on the lattice to the center of the plaquette is
driven by two Raman transitions or alternatively by direct transitions. We have
to investigate the two transitions further to give the corresponding Hamiltonians
for the different processes. The first Raman transition couples to the plaquette
state |0, ↑〉p through the Hamiltonian

Ha = wa
∑
p

(
A†p + Ap

)
, (4.20)

with the operator A† = a†p (c1 + c2 + c3 + c4). For the ordering of the operators
ci see fig. 4.4a). The coupling strength wa = Ea + δa accounts for the coupling
energy, the strength of the Rabi frequency and wave function overlap. It
includes the energy of the excited state Ea as well as the detuning δa. The
second coupling Hamiltonian is

Hb = wb
∑
α,p

(
B†αp +Bαp

)
, (4.21)

where B†
x/y p

= b†
x/y p

(c1 ± c2 − c3 ∓ c4) and wb = Eb+δb is the coupling energy
for the second transition. It also includes the detuning δb, see fig. 4.4b). Note,
the energies Eb,α for the excited states created by B†αp|ψ〉 are the same such that
we can solely write Eb for these energies, see fig. 4.4b). For sake of simplicity,
we set δb = −δa and wa = wb.

4.2.2. Symmetry of Operators

The symmetries of the involved states |0, σ〉p and |α, σ〉p become clear when we
investigate the behavior of the corresponding operators under a spatial rotation
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b)a) c)
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pxs py

Fig. 4.5 The lattice sites are numbered as given by the operators ci and
contain a plaquette p, where one (two) fermion(s) can occupy a (molecular)
state. a) A fermion occupying a state exhibiting s-wave symmetry in the
center of the plaquette. b) Two lattice fermions form a molecular state with
px-wave symmetry. c) Analogous molecular state with py-wave symmetry.
Figure adapted from [205].

by π/4, in the mathematically positive direction. In fig. 4.5 we give a sketch of
the different symmetries present. The operators of interest are

s− wave: A†p = a†p (c1 + c2 + c3 + c4) ,

px − wave: B†xp = b†xp (c1 + c2 − c3 − c4) ,

py − wave: B†yp = b†yp (c1 − c2 − c3 + c4) .

Now we rotate every operator by π/4 counterclockwise to pinpoint its behavior

A†p : (c1 + c2 + c3 + c4)
π/4−−→ (c4 + c1 + c2 + c3)⇒ A†p ,

B†xp : (c1 + c2 − c3 − c4)
π/4−−→ (c4 + c1 − c2 − c3)

= (c1 − c2 − c3 + c4)⇒ B†yp ,

B†yp : (c1 − c2 − c3 + c4)
π/4−−→ (c4 − c1 − c2 + c3)

= − (c1 + c2 − c3 − c4)⇒ −B†xp .

Note that the operators b(†)αp are only fixed up to a phase. This phase takes
care of the appearing signs during the rotation and we can absorb those signs
into the b(†)αp . Then the operators B†αp behave as B†xp → B†yp and B†yp → B†xp
characterizing their the p-wave symmetry.

81



4. Majorana Modes and p-Wave Superfluids

4.2.3. Derivation of Microscopic Hamiltonian

After getting familiar with the lattice setup, the states, the involved operators,
and the symmetries, we now turn to the actual derivation of the microscopic
Hamiltonian.
The idea is to form repulsively bound states in the center of the plaquettes
which consist of two orbital states. In order to induce strong p-wave interactions,
we need a combination of the orbital degrees of freedom and s-wave interaction.
The two fermions in the two orbital states have to be in different hyperfine
states to profit from a stable s-wave interaction. This interaction can be tuned
via conventional Feshbach resonances [30]. The repulsively bound state in
the center of the plaquette thus contains one fermion with s-wave symmetry
and another with pα-wave symmetry resulting in a pα-molecular state on the
plaquette.
The interaction energy for a molecule is U due to the s-wave scattering between
two different hyperfine states. The corresponding state is

|2〉 = a†pb
†
αp|0〉 .

Within the rotating frame and the previously introduced simplifications the
energy for the transition of two fermions is

~ω = wa + wb + U = δa − δa + U = U ,

see fig. 4.4c) for an illustration of the relevant level scheme.
Following these ideas, we elaborate on the mechanisms behind the scenario.
The generic hopping Hamiltonian Ht is

Ht = −
∑
〈i,j〉

tijc
†
icj , (4.22)

where the sum runs over all lattice sites i and all nearest neighbors j, tij
is the hopping amplitude. The details of the different hopping mechanisms
are explained in section 4.2.5, after the introduction of the effective Hamilto-
nian (4.45).
The Hamiltonian for the chemical potential for the fermions on the lattice sites
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is

Hµ = −µ
∑
i

c†ici = −µ
∑
i

ni . (4.23)

For the plaquette the chemical potential is

Hµ,p = −µ
∑
α,p

(
a†pap + b†αpbαp

)
, (4.24)

to ensure no particle depletion of states of the lattice sites or plaquettes.
The interaction Hamiltonian Hint for the plaquette is

Hint = U
∑
α,p

b†αpbαp a
†
pap . (4.25)

The full microscopic Hamiltonian thus reads

H = Ht + Hµ + Hµ,p + Ha + Hb + Hint ,

= −
∑
〈i,j〉

tijc
†
icj − µ

∑
i

c†ici − µ
∑
α,p

(
a†pap + b†αpbαp

)
+wa

∑
p

(
A†p + Ap

)
+ wb

∑
α,p

(
B†αp +Bαp

)
+U

∑
α,p

b†αpbαp a
†
pap . (4.26)

4.2.4. Derivation of Effective Hamiltonian

The microscopic Hamiltonian (4.26) describes all possible processes of the
system. Here we are interested in reducing the complexity of the microscopic
Hamiltonian to obtain an effective Hamiltonian describing the effective pro-
cesses. In the following we extend the concepts given in section 2.4 to fit this
setup.
For the derivation of an effective Hamiltonian we set the fermionic hopping
to zero, i.e. tij = 0. In addition, we prohibit hopping between plaquettes.
Furthermore we neglect the chemical potentials for the fermions. Thus the
relevant Hamiltonians are H = Ha + Hb + Hint.
In order to derive the effective Hamiltonian, we refer to degenerate perturbation
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4. Majorana Modes and p-Wave Superfluids

theory. The high degeneracy of the system stems from the hopping of the
fermions on the lattice sites. The basic procedure is described in section 2.4.
We focus solely on the plaquettes. The lowest possible energy achievable on
the plaquette is zero, if there is no fermion or molecule present. Hence in the
ground state all plaquettes are empty. A slightly higher energy is achieved if
two fermions form a pα-symmetric molecule on a plaquette – since we made
the simplification δa = −δb. A single fermion on a plaquette contributes the
highest energy, namely wa,b = Ea,b + δa,b, thus wa,b � U . Therefore the system
will favor totally empty plaquettes or plaquettes filled with pα-molecules.
The effective Hamiltonian is then obtained by a Schrieffer-Wolff transforma-
tion [106], see section 2.4. After this transformation we are left with the generic
Hamiltonian HT

HT = H0−
1

2

∑
n,n′

|n′〉〈n|
∑
m

〈n′|H1|m〉〈m|H1|n〉
(

1

Em − En
− 1

En′ − Em

)
,

(4.27)

where H0 is the unperturbed Hamiltonian, H1 the perturbation, |n〉 is the initial
state, En its energy, |m〉 is the intermediate state, Em its energy, |n′〉 is the
final state and En′ is the energy of the final state.
Now we discuss the consequences for the states. For the ground state of the
system we know that no fermion is on a plaquette, hence the initial state is
always the Fermi sea on the lattice sites: |FS〉. The plaquette contains a single
fermion, which can have three possible symmetries, namely s-wave, px-wave
and py-wave. This plaquette with a single fermion has a high energy penalty,
resulting in an energy contribution of wa,b. Clearly, the system prefers a lower
energy contribution. This is caused through two possible processes: either
through a hopping back of the fermion to the lattice site or by hopping of an
additional fermion onto the plaquette (which then creates a molecule). The
back hopping is forbidden, since a s-wave fermion cannot hop back as a pα-wave
symmetric and vice versa, i.e., a single fermion cannot change its symmetry
while on a plaquette. An additional fermion hopping onto the plaquette is also
forbidden. In order to form a molecule of pα-wave, a s-wave symmetric fermion
requires a pα-wave fermion to create a pα-molecule and vice versa.
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4.2. p-Wave Analysis

With these initial considerations, we can derive the effective Hamiltonian. The
Hamiltonian in perturbation theory is

H = H0 + H1 , (4.28)

with the unperturbed part being

H0 = δa
∑
p

a†pap + δb
∑
α,p

b†αpbαp + U
∑
α,p

b†αpbαp a
†
pap , (4.29)

where the first two parts are the energy offsets for a fermion on a plaquette.
The perturbation is

H1 = wa
∑
p

(
A†p + Ap

)
+ wb

∑
α,p

(
B†αp +Bαp

)
. (4.30)

We now discuss the relevant processes. Here we only focus on the given
states on the plaquette and not on the lattice sites, since we know that an
additional/missing fermion on the lattice or plaquette will be considered by the
neglected chemical potential µ. In fig. 4.6 we illustrate the possible processes,
they are

a) Initial |n〉 empty, intermediate |m〉 one fermion s or pα, final |n′〉 empty.

b) Initial |n〉 empty, intermediate |m〉 one fermion s or pα, final |n′〉 two
fermions, forming a pα-molecule.

c) Initial |n〉 two fermions forming a pα-molecule, intermediate |m〉 one
fermion with either s or pα, final |n′〉 empty.

d) Initial |n〉 two fermions forming a pα-molecule, intermediate |m〉 one
fermion pα, final |n′〉 again two fermions forming again the pα-molecule.

e) Initial |n〉 two fermions forming a pα-molecule, intermediate |m〉 one
fermion s, final |n′〉 again two fermions, forming the pα-molecule.

f) Initial |n〉 two fermions forming a pα-molecule, intermediate |m〉 one
fermion s, final |n′〉 again two fermions forming pα′-molecule.
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b)a) c)

e)d) f)

s

s pα
pα

pα

pα’

p p p

p p p

Fig. 4.6 Illustrations of the different processes, as described in the text. a) In:
Fermion with s- or pα-symmetry Out : corresponding fermion with s- or pα-
symmetry. b) In: Two fermions with s- and pα-symmetry, respectively Out :
Nothing. c) In: Nothing Out : Two fermions with s- and pα-symmetry, re-
spectively. d) In: Fermion with s-symmetry Out : Fermion with s-symmetry.
e) In: Fermion with pα-symmetry Out : Fermion with pα-symmetry. f) Out :
Fermion with pα-symmetry In: Fermion with pα′-symmetry. Figure adapted
from [205].

For the cases c) - f) we shift the energy ground level to Ea in order to measure all
energies relative to this. Then the ground state energy is U since two fermions
form a molecule. The introduced energy offset for the fermions vanishes, since
δa = −δb.
Next we discuss one contribution of the matrix elements

〈n′|H1|m〉〈m|H1|n〉
(

1

Em − En
− 1

En′ − Em

)
, (4.31)

of the presented processes as an example and refer to appendix C.1 for the
details.
The matrix elements are
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4.2. p-Wave Analysis

a)i: |n〉: empty, En = 0, |m〉: s-wave fermion, Em = δa,
|n′〉: empty, En′ = 0

Ha)i =
2

δa

∑
p

〈n′| |wa|2
(
A†pA

†
p + A†pAp + ApA

†
p + ApAp

)
+wawb

∑
α

(
A†pB

†
αp + A†pBαp + ApB

†
αp + ApBαp

)
+wbwa

∑
α

(
B†αpA

†
p +B†αpAp +BαpA

†
p +BαpAp

)
+ |wb|2

∑
α,α′

(
B†αpB

†
α′p +B†αpBα′p

+BαpB
†
α′p +BαpBα′p

)
|n〉 , (4.32)

where A(†)
p and B

(†)
αp are bosonic operators,

[
A

(†)
p , B

(†)
αp

]
= 0. However[

Ap, A
†
p

]
6= 1 and

[
Bαp, B

†
αp

]
6= 1, which can be easily proven by insert-

ing the corresponding operators.
For sake of later convenience, we simplify the expression above by phys-
ically motivated argumentations. The combinations ApAp and A†pA

†
p

directly vanish because of the Fermi statistics of a(†)
p and c

(†)
i , no two

identical fermions can be created or annihilated on the same lattice site
or plaquette. For α 6= α′ the combination B†αpB

†
α′p and BαpBα′p also

vanishes. While a px- and py-fermion could be on a plaquette, the energy
penalty is with 2wb very large and thus not favorable for the system.
For α = α′ the two combinations directly vanish, due to Fermi statistics.
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Hence we are left with

Ha)i =
2

δa

∑
p

〈n′| |wa|2
(
A†pAp + ApA

†
p

)
+wawb

∑
α

(
B†αpA

†
p + ApBαp

)
+wbwa

∑
α

(
A†pB

†
αp +BαpAp

)
+wawb

∑
α

(
A†pBαp + ApB

†
αp +B†αpAp +BαpA

†
p

)
+ |wb|2

∑
α,α′

(
B†αpBα′p +BαpB

†
α′p

)
|n〉 . (4.33)

For the process in fig. 4.6a) there is only the

Ha)i =
2|wa|2

δa

∑
p

ApA
†
p , (4.34)

contribution relevant. All other terms directly drop out.

After the straightforward analysis given in appendix C.1 we can give the final
form of the transformed Hamiltonian (with δb = −δa and wa = wb) by summing
all Hamiltonians Hi from before to give

HT = H0 −
1

2

∑
n,n′

|n′〉〈n|
∑
m

〈n′|H1|m〉〈m|H1|n〉
(

1

Em − En
− 1

En′ − Em

)
= H0 −

∑
p

[
|wa|2

δa
ApA

†
p −
|wa|2

δa

∑
α

BαpB
†
αp

− U |wa|2

U2 − δ2
a

∑
α

(
B†αpA

†
p + ApBαp

)
− |wa|

2

U + δa
A†pAp −

|wa|2

U − δa

∑
α

B†αpBαp

− |wa|
2

U − δa

∑
α,α′,p,α 6=α′

B†α′pBαp

]
, (4.35)

where H0 is the unperturbed Hamiltonian (4.29).
Next we discuss the nature of the individual terms of Hamiltonian (4.35)
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• |wa|
2

δa
ApA

†
p − |wa|

2

δa
BαpB

†
αp

These contributions are related to pure single fermionic hopping. If the
states on the lattice sites are available, single site, nearest neighbor or
next-nearest neighbor hopping can be achieved. This can be observed
by writing down the operators in their fermionic form. In addition, the
pre-factor can be related to the hopping amplitude tij of the Hubbard
model. Hence tij ∼ |wa|

2

δa
,
|wb|2
δb

.

• −U |wa|
2

U2−δ2a
∑

α

(
B†αpA

†
p + ApBαp

)
This is the relevant coupling term of our model, the molecule creation
and annihilation.

• − |wa|
2

U+δa
A†pAp − |wa|

2

U−δa
∑

α,α′ B
†
α′pBαp

This is again a single fermionic hopping contribution, but here the hopping
leads from a state on the plaquette into a state on the lattice site and
back into a state on the plaquette to form a pα-molecule. We refer to
this terms as correlated or induced hopping since they are a perturbation
of the molecule.
The latter can also be regarded as fermionic hopping. The fermions
are indistinguishable and hopping occurs through the annihilation and
creation of the molecules. A fermion leaves the molecular state and a
different one enters this state. Regarding the lattice system, a fermion
hopped.

Analysis of Coupling Operators

We investigate the contributions for the coupling Hamiltonian of the molecule
in more detail. Using the molecular creation and annihilation operators in their
fermionic representation reveals

B†xpA
†
p = 2a†pb

†
xp [c2c3 − c4c1 + c1c3 + c2c4] , (4.36a)

B†ypA
†
p = 2a†pb

†
yp [c1c2 − c3c4 + c1c3 − c2c4] . (4.36b)
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For sake of convenience, we introduce new operators, X†p = a†pb
†
xp and Y †p =

a†pb
†
yp, which exhibit orbital p-wave symmetry. Then the coupling parts read

B†xpA
†
p = 2X†p [c2c3 − c4c1 + c1c3 + c2c4] , (4.37a)

B†ypA
†
p = 2Y †p [c1c2 − c3c4 + c1c3 − c2c4] . (4.37b)

The annihilation configuration BαpAp immediately follows from this.
Thus, in total we have four possibilities to create a molecule with pα-wave
symmetry in a state of the plaquette, as given by the operators ci above. The
problem with all four contributions is, that they cancel each other out when
applying mean-field theory in a later step. In order to observe interesting phases
and properties of our model, we need a scheme to quench the contributions
c
(†)
1 c

(†)
3 and c(†)2 c

(†)
4 or the other ones in eq. (4.37a) and eq. (4.37b).

In the following we address a possible mechanism to select the desired operator
configurations.

Quenching Unwanted Contributions

In the general concepts we introduced the concept of positive and negative
optical lattices, see section 2.1. Here we apply this concept to this setup and
introduce a positive and negative optical lattice as illustrated in fig. 4.7. If we
use a positive optical lattice system, we encounter all of the discussed coupling
operator contributions (4.37a) and (4.37b). Using the negative optical lattice
reveals an alternative set of operators with

A
†
p = a†p (c1 − c2 + c3 − c4) ,

B
†
xp = b†xp (c1 − c2 − c3 + c4) ,

B
†
yp = b†yp (c1 + c2 − c3 − c4) , (4.38)

where the differing signs result from the bipartite lattice, see fig. 4.7b).
As before, we need to perform the degenerate perturbation approach to find
the analogous forms of the involved Hamiltonians. After the calculation we
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p

b)a)

p

Fig. 4.7 a) Positive optical lattice where every lattice site is positive. The
lattice sites are labeled as given by the operators ci and the plaquettes by p. b)
Negative optical lattice where every other lattice site is negative. Overlapping
both optical lattices then quenches the unwanted terms of the Hamiltonian
and reveals the effective model. Figure adapted from [205].

have

HT = H0 −
∑
p

[
|wa|2

δa
ApA

†
p −
|wa|2

δa

∑
α

BαpB
†
αp

− U |wa|2

U2 − δ2
a

∑
α

(
B
†
αpA

†
p + ApBαp

)
− |wa|

2

U + δa
A
†
pAp −

|wa|2

U − δa

∑
α

B
†
αpBαp

− |wa|
2

U − δa

∑
α,α′,p,α 6=α′

B
†
α′pBαp

]
, (4.39)

where H0 is again the unperturbed Hamiltonian (4.29) as before.
Again we consider the part of the Hamiltonian in detail, which gives rise to the
creation and annihilation processes of the molecule

B
†
xpA

†
p = 2X†p [c1c3 − c1c4 − c2c3 + c2c4] , (4.40a)

B
†
ypA

†
p = 2Y †p [−c1c2 + c1c3 − c2c4 + c3c4] . (4.40b)

The key idea to quench unwanted contributions is to use one set of lasers for
the positive optical lattice and another for the negative one. Then both lattices
are overlapped, resulting in the final bipartite lattice system. If the overlapping
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is set up with a negative sign, we obtain as effective Hamiltonian

H = HT − HT

= −
∑
p

[
|wa|2

δa

(
ApA

†
p − ApA

†
p −
∑
α

(
BαpB

†
αp −BαpB

†
αp

))

− U |wa|2

U2 − δ2
a

∑
α

(
B†αpA

†
p −B

†
αpA

†
p + ApBαp − ApBαp

)
− |wa|

2

U + δa

(
A†pAp − A

†
pAp

)
− |wa|

2

U − δa

∑
α

(
B†αpBαp −B

†
αpBαp

)
− |wa|

2

U − δa

∑
α,α′,p,α 6=α′

(
B†α′pBαp −B

†
α′pBαp

)]
. (4.41)

With this mechanism, the molecular part of the above Hamiltonian reduces to

B†xpA
†
p −B

†
xpA

†
p = 4X†p [c2c3 − c4c1] , (4.42a)

B†ypA
†
p −B

†
ypA

†
p = 4Y †p [c1c2 − c3c4] . (4.42b)

The combinations for the annihilation processes directly follow from the above
equations. In addition with the choice of detuning ~|ω| � |δa| all states with
a single fermion in a state on the plaquette can be eliminated adiabatically,
see fig. 4.4b) and c). Furthermore, the induced hopping terms via a single
excitation in the center of the plaquette reduces to an additional conventional
hopping, as in the Hubbard model with the hopping strength tij = 2|wa|2/δa.
In contrast, if the overlapping of the two optical lattices is done with a positive
sign, the coupling part of the Hamiltonian takes the form

B†xpA
†
p +B

†
xpA

†
p = 4X†p [c1c3 + c2c4] , (4.43)

B†ypA
†
p +B

†
ypA

†
p = 4Y †p [c1c3 − c2c4] . (4.44)

This scheme allows us to switch between the two types of molecular processes.
For sure, both sets promise interesting physics. However, in the following we
will concentrate on the first scheme, where the overlapping is done with a
negative sign. The analysis of the second configuration then is straightforward
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and was recently done [207]. For sake of completeness, the full Hamiltonian,
expressed in fermionic and bosonic operators can be found in appendix C.2.

4.2.5. Effective Hamiltonian

In the previous section we investigated the structure of our lattice setup and
derived the effective Hamiltonian from the physically relevant mechanisms. The
effective Hamiltonian we will use for further analysis is

Heff = −
∑
〈i,j〉

tijc
†
icj − µ

∑
i

c†ici + Hx + Hy , (4.45)

where c(†)i are the spinless fermionic annihilation (creation) operators acting
on lattice site i, µ is the chemical potential fixing the average particle number
and tij is the hopping amplitude between nearest neighbor sites 〈i, j〉. Here
we consider two different hopping amplitudes tx for hopping along the x-
direction and ty for hopping along the y-direction, see fig. 4.8. Since we use
spinless fermions, the bound states on the plaquette must exhibit an odd parity
symmetry for a non-vanishing interaction. The two coupling Hamiltonians
Hx,y, as derived before, then are

Hx = γ
∑
p

X†pXp + g
∑
p

[
X†p (c2c3 − c4c1) + h.c.

]
, (4.46a)

Hy = γ
∑
p

Y †p Yp + g
∑
p

[
Y †p (c1c2 − c3c4) + h.c.

]
, (4.46b)

where we sum over all plaquettes p. The lattice sites are labeled as given in
fig. 4.8. The coupling strength to the lattice bound state is g and given in
terms of the microscopic quantities: g = 4|wa|2U/

(
U2 − δ2

a

)
. The detuning

from resonance is γ = ~ω − 2µ and includes the chemical potential, where ~ω
is the energy difference between the molecular state and two free fermions.
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Fig. 4.8 Effective setup of the lattice system where spinless fermions reside
on the lattice sites, labeled by operators ci. The fermions are coupled to a
molecular state in the center of each plaquette. The molecular states are
labeled by Xp and Yp, exhibit a p-wave symmetry and are doubly degenerate.
The system can be tuned through the anisotropic hopping strengths ty/tx
from a coupled wire setup to a 2D isotropic system. Figure taken from [205].

4.2.6. Fourier Transformation of Effective Hamiltonian

The first step to handle Hamiltonian (4.45) is to Fourier transform it, where
we use the convention

c†i =
1√
N

∑
q

e−iqri c†q , Xp =
1√
N

∑
q′

eiq
′rpXq , (4.47)

with N the total number of lattice sites and plaquettes. The kinetic part and
chemical potential part of Hamiltonian (4.45) reads

Hkin =
∑
q

(
ε′q − µ

)
nq =

∑
q

εqnq , (4.48)

with ε′q = −2 (tx cos (qxa) + ty cos (qya)). Next we Fourier transform the cou-
pling Hamiltonians Hx,y. To this end, we use the following relations to address
the lattice sites ri relative to the plaquette site rp

r1 = rp −
a

2
ex −

a

2
ey , r2 = rp −

a

2
ex +

a

2
ey ,

r3 = rp +
a

2
ex +

a

2
ey , r4 = rp +

a

2
ex −

a

2
ey ,
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where ex,y is the unity vector in x, y-direction, respectively and a the lattice
spacing. The Fourier transformation of the coupling Hamiltonian Hx (4.46a)
then gives

Hx = γ
∑
q

X†qXq

+
2ig√
N

∑
q,q′

[
X†q+q′ cqcq′ sin

(
a

2

{
qy + q′y −

(
qx − q′x

)})
−Xq+q′ c†qc

†
q′ sin

(
a

2

{
qy + q′y +

(
qx − q′x

)})]
, (4.49)

and for the other coupling Hamiltonian Hy (4.46b)

Hy = γ
∑
q

Y †qYq

+
2ig√
N

∑
q,q′

[
− Y †q+q′ cqcq′ sin

(
a

2

{
qx + q′x +

(
qy − q′y

)})
+Yq+q′ c†qc

†
q′ sin

(
a

2

{
qx + q′x −

(
qx − q′x

)})]
. (4.50)

To simplify the above expressions further, we rename the summation indices
and use the fermionic commutation relations to end up with the coupling
Hamiltonian

Hc =Hx + Hy

= γ
∑
q

[
X†qXq + Y †qYq

]
+

2ig√
N

∑
q,q′

{[
X†q+q′ cqcq′ +Xq+q′ c†qc

†
q′

]
× sin

(
a

2

{
qy + q′y −

(
qx − q′x

)})
+
[
Y †q+q′ cqcq′ + Yq+q′ c†qc

†
q′

]
× sin

(
a

2

{
qx + q′x −

(
qy − q′y

)})}
. (4.51)
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We split the summations into two parts, use the fact that sin(x) is an odd
function and the relation

sinα− sinβ = 2 cos

(
α + β

2

)
sin

(
α− β

2

)
, (4.52)

to calculate the final form of the coupling Hamiltonian

Hc =γ
∑
q

[
X†qXq + Y †qYq

]
− 2ig√

N

∑
q,q′

{[
X†q+q′ cqcq′ +Xq+q′ c†qc

†
q′

]
× cos

(
a

2

{
qy + q′y

})
sin
(
a

2

{
qx − q′x

})
+
[
Y †q+q′ cqcq′ + Yq+q′ c†qc

†
q′

]
× cos

(
a

2

{
qx + q′x

})
sin
(
a

2

{
qy − q′y

})}
. (4.53)

Thus, the whole Fourier transformed Hamiltonian is

H =
∑
q

εqnq + γ
∑
q

[
X†qXq + Y †qYq

]
− 2ig√

N

∑
q,q′

{[
X†q+q′ cqcq′ +Xq+q′ c†qc

†
q′

]
× cos

(
a

2

{
qy + q′y

})
sin
(
a

2

{
qx − q′x

})
+
[
Y †q+q′ cqcq′ + Yq+q′ c†qc

†
q′

]
× cos

(
a

2

{
qx + q′x

})
sin
(
a

2

{
qy − q′y

})}
, (4.54)

with εq given in eq. (4.48), γ being the detuning from resonance and g the
coupling strength.

4.2.7. Mean-Field Calculations

We are interested in the zero temperature mean-field phase diagram before
investigating the topological phases realized within our system. This mean-
field analysis is well-justified as recent density matrix renormalization group
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(DMRG) simulations verified the appearance of a p-wave superfluid exhibiting
Majorana modes in a double wire setup [160]. Since our investigation goes
beyond a double wire setup, we expect that the influence of thermal and
quantum fluctuations are suppressed even further and the calculated phase
diagram should capture the appearing transitions faithfully.
Next, we present the mean-field theory for our system. Previously we argued
that there is a resonant coupling between the fermions on the lattice sites and
the molecular states on the plaquettes. This gives rise to a p-wave paring for
the fermions and leads to a p-wave superfluid in the system. Here the superfluid
order parameters are of the form

∆x =
4g

N

〈∑
p

Xp

〉
=

4g√
N
〈X0〉 , (4.55a)

∆y =
4g

N

〈∑
p

Yp
〉

=
4g√
N
〈Y0〉 , (4.55b)

and describe the macroscopic condensation of the px,y-molecules into the zero
momentum mode. Applying this to the Hamiltonian (4.54) and inserting the
order parameters reveals

Hmol = γ
[
〈X†0〉〈X0〉+ 〈Y †0 〉〈Y0〉

]
− 2ig√

N

∑
q

{[
〈X†0〉cqc−q + 〈X0〉c†qc

†
−q

]
sin(qxa)

+
[
〈Y †0 〉cqc−q + 〈Y0〉c†qc

†
−q

]
sin(qya)

}
, (4.56)

where we focus on the molecular contribution of the Hamiltonian. In addition,
we are interested in the modes q = 0 and q′ = −q, refer to Hamiltonian (4.54).
Note that the first part – the summation over q of the detuning part with
X†qXq and Y †qYq – reduces to the above contribution, since only the q = 0 part
is relevant. In the coupling Hamiltonian the molecular operators X(†), Y (†)

become relevant as soon as they act on the zero momentum mode, where we
then are interested in the mean-field part 〈X(†)

0 〉 and 〈Y
(†)

0 〉.
We rearrange the above Hamiltonian and introduce the superfluid order param-
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eters (4.55a),(4.55b) which yield the full mean-field Hamiltonian

HMF =
∑
q

εqnq +
N

16

γ

g2

(
|∆x|2 + |∆y|2

)
− i

2

∑
q

{[
∆∗xcqc−q + ∆xc

†
qc
†
−q

]
sin(qxa)

+
[
∆∗ycqc−q + ∆yc

†
qc
†
−q

]
sin(qya)

}
. (4.57)

This quadratic Hamiltonian can be rearranged into a convenient matrix repre-
sentation, namely

HMF =
1

2

∑
q

(
c†q
c−q

)(
εq ∆q

∆∗−q −εq

)(
cq

c†−q

)
+

1

2

∑
q

εq +
N

16

γ

g2

(
|∆x|2 + |∆y|2

)
, (4.58)

where the gap parameter takes the form of a p-wave superfluid

∆q = −i [∆x sin(qxa) + ∆y sin(qya)] . (4.59)

Diagonalizing the Hamiltonian through a Bogoliubov transformation is straight-
forward and gives the excitation spectrum

E±q = ±
√
ε2
q + |∆q|2 , (4.60)

and the diagonal Hamiltonian

HMF =
∑
q

Eq α
†
qαq + F (∆x,∆y) , (4.61)

where α(†)
q are the Bogoliubov quasiparticle operators and F (∆x,∆y) is the

ground state energy functional. Note that we define Eq := E+
q and −Eq := E−q .

We are interested in the ground state of the system. The ground state energy
per unit cell is

F(∆x,∆y) =
F (∆x,∆y)

N
=

γ

16g2

(
|∆x|2 + |∆y|2

)
+

∫
dq
v0

εq − Eq

2
,

(4.62)
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with v0 = (2π)2 /a2 denoting the volume of the first Brillouin zone. Here we
used the fact that we consider a large lattice which justifies the transition from
summation to integration. We can analyze the new ground state by minimizing
the ground state energy with respect to the gap parameters

∂∆x
F(∆x,∆y) = ∂∆y

F(∆x,∆y) = 0 . (4.63)

This determines the gap parameters self-consistently and hence the global
minima. The calculation is numerically demanding. In the following we avoid
these complications by introducing the two gap parameters as

∆x = eiθ∆ cos(ϑ) , (4.64a)

∆y = eiθ∆ sin(ϑ) eiφ , (4.64b)

where exp(iθ) is a global phase for both gaps. It can be set to exp(iθ) = 1

without loss of generality, in analogy to the superconducting case in the BCS
scenario. The strength of the gap is ∆. The gaps also experience a relative
strength ϑ and a relative phase φ.
There are in principle three types of superconductors, which can appear in our
system:

• px (py) superconducting phase: ∆y = 0 (∆x = 0), φ = 0, (φ = π/2). This
phase is possible in our setup.

• px + py superconducting phase: ∆x = ∆y and ϑ = π/4, φ = 0, π. This
superconductor does not appear in our system.

• px+ipy superconducting phase: ∆x = ±i∆y, there the angles are ϑ = π/4

and φ = ±π/2. The numerical result is that the energy minimum is
always at φ = ±π/2. The two order parameters are finite and obey a
fixed phase relation ∆x/∆y = ±i|∆x/∆y|,. This phase is possible within
our system.

If the strength of the gap ∆ is zero, we end up with a common Fermi sea and no
superfluidity. The analysis of the parameter range within mean-field theory then
reveals the mean-field phase diagram of fig. 4.9. For the fully isotropic setup
with tx = ty we find a px + ipy superfluid, i.e. ∆x = ±i∆y. This phase breaks

99



4. Majorana Modes and p-Wave Superfluids

Fig. 4.9 Mean-field phase diagram
for the parameter regime γtx/g2 =

1.5. For isotropic hopping tx = ty
the ground state is a px + ipy super-
fluid, whereas for strong anisotropy
tx 6= ty a pure px or py super-
fluid order parameter prevails. The
grey dots indicate the insufficient
convergence of the gap parameters
within the numerical calculations,
thus the superfluid phase is inac-
cessible for experimentally realistic
temperatures. On the right side
of the diagram the color coding is
given for the gap parameter |∆x| −
|∆y|/|∆x|+|∆y|: yellow corresponds
to a px, blue to a py and red to a
px + ipy superfluid. Figure adapted
from [205].

both, the U(1) and the time-reversal symmetry. The px + ipy superfluid is also
stable to a small anisotropy in the hopping for a finite interaction strength, see
fig. 4.9. The anisotropic behavior is reflected in the order parameter |∆x| 6= |∆y|.
If we increase the anisotropy tx 6= ty, we discover transitions into a px or py
superfluid. This transition depends on the value of the chemical potential µ.
Be aware, in our zero temperature scenario true long-range order survives, as
predicted in mean-field theory. On the other hand, thermal fluctuations will
lead to quasi long-range order in our 2D system [208]. In the following we
investigate the topological properties of our system which are not affected by
the phase fluctuations of the order parameter.

4.2.8. Topological Phase Transitions

In addition to the discussed mean-field phases, our lattice system also exhibits
topological phases and transitions. The possible topological phases of quadratic
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fermionic Hamiltonians have been classified exhaustively [209]. The topological
quantum phase transitions analyzed in this system is captured in the classi-
fication discussed in [209]. In order to study the topological properties, the
quadratic Hamiltonian (4.58) is investigated. The superfluid order parameters
∆x and ∆y then determine the symmetries. We characterize the topological
properties of the system where the superfluid experiences an excitation gap.
To this end, we need three topological indices [210]. In the methods section
of [205], we give a method to calculate the required topological indices of the
system.
The first index denotes the strong topological index ν given by the Chern num-
ber and can take values ν = 0,±1. It characterizes the 2D px + ipy superfluid.
We denote the additional weak topological indices [211, 212] as νx = 0, 1 and
νy = 0, 1. They describe the appearance of Majorana modes in Kitaev’s Majo-
rana wire [156]. The weak topological indices can be of finite value in the px
and chiral px + ipy superfluids. Here we point out, that the topological phase
transitions only depend on the topology of the Fermi surface. In addition, the
boundaries for the topological phase transitions are independent of the values of
the superfluid order parameters. We then divide the system into three different
regions, see fig. 4.10:

• Region (I): Closed Fermi surface

• Region (II): Open Fermi surface

• Region (III): Strong pairing regime (trivial band insulating state, no
interaction present)

In region (III) the superfluids have no topological order, ν = νx = νy = 0, and
hence are neglected in the following.
Next, we combine the introduced topological indices with the superfluid

order parameters to describe the realized phases in the system. Time-reversal
invariant superfluids are denoted as SFν:νxνy , chiral superfluids as cSFν:νxνy .
For a review of time-reversal and chiral symmetry see [158, 161]. We begin
with the chiral px + ipy superfluid. There are two topological phases present,
which are fundamentally different, see fig. 4.10a).
In region (I), we have strong topological superfluids cSF−1:00 and cSF1:11 with a
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4. Majorana Modes and p-Wave Superfluids

finite Chern number ν = ±1. Consulting the standard symmetry classification
scheme [213–215], we find that these superfluids cSF±1:νxνy are in symmetry
class D (particle-hole (PH) symmetry, broken time-reversal (TR) symmetry).
Here the weak indices of the phase depend on the chemical potential, thus
νx = νy = 1 for µ > 0 and νx = νy = 0 for µ < 0. This will strongly affect the
appearance of Majorana modes, see section 4.2.9.
Next, we investigate region (II) and find a weak topological superfluid in the
symmetry class D (cSF0:01), as well as a px weak topological superfluid (SF0:01)

in the symmetry class BDI (PH + TR symmetry).
The superfluid phase in region (I) with the closed Fermi surface becomes gapless
and exhibits no topological properties. The realized py superfluid is gapless in
region (I) and (II).
In order to obtain to full phase diagram of the system, we have to combine
the mean-field phase diagram with the topological properties of fig. 4.10b) and
overlap them. The bold lines in fig. 4.10b) indicate the topological transitions,
as illustrated in fig. 4.10a). The details of the full phase diagram strongly
depend on the strength of the coupling parameters. In this scenario we are
interested in a strong coupling regime, where g2/γ ∼ tx, ty with large superfluid
gaps. For a parameter range of γtx/g2 = 1.5 all given cases for the topological
phases can be nicely realized for varying values of the two parameters µ/tx and
ty/tx, for details see fig. 4.10 and [205]. We also point out, that the mean-field
and topological phase transitions are decoupled from each other, see fig. 4.10c)
and d).
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b)

d)

a)

c)

Fig. 4.10 a) Topological phase diagram showing the three different topolog-
ical regions. The topological indices also depend on the superfluid order
parameter. We denote a time-reversal invariant superfluid as SFν:νxνy and
a chiral superfluid as cSFν:νxνy , where ν is the strong topological index and
νx,y the weak ones. The insets of the different phases illustrate the topology
of the Fermi surface, for details see text. b) Mean-field phase diagram as
before in fig. 4.9. Here the boundaries of the topological phase transitions
are included. c), d) Illustrations of the gap parameters |∆x|/tx, |∆y|/tx and
|∆x|−|∆y|/|∆x|+ |∆y| for a cut through the topological and mean-field phase
diagram at tx = ty/2, indicated in b) by the arrow. The color shading directly
corresponds to the classifications in a). The solid (dashed) lines within the
plots give the topological (mean-field) transitions. Note that the topological
and mean-field transitions are decoupled: The topological index νy takes the
value 1 at a different position than the vanishing gap ∆y. Figure taken and
adapted from [205].
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4.2.9. Majorana Modes and Braiding

In our system we expect the appearance of Majorana modes at topological
defects [210]. Topological defects can be vortices and lattice dislocations.
Majorana modes are localized, doubly degenerate zero-energy modes of the
excitation spectrum of the quadratic Hamiltonian

H = −
∑
〈i,j〉

(
tijc
†
jci + ∆ijcicj + h.c.

)
− µ

∑
i

c†ici , (4.65)

with tij the hopping strengths, ∆ij the (spatially varying) gap and µ the
chemical potential. The gap ∆ij needs to be determined self-consistently by
the previous mean-field theory. Topological defects can be introduced into
the system via spatial dependencies of the gap, to implement vortices, or
directly into the lattice structure, to have dislocations. Diagonalizing the
Hamiltonian (4.65) then verifies the presence of Majorana modes in the system:

• In the core of vortices for the cSF1:νxνy phases.

• At edge dislocations in x- and y-direction for positive chemical potentials
µ > 0 with finite weak topological index νx = νy = 1, as well as in the
superfluid phases cSF0:01 and SF0:01 in x-direction.

An example of a numerical solution of the diagonalized Hamiltonian is illustrated
in fig. 4.11. For further details of Majorana modes at edge dislocations see [205].
The investigated system at hand now provides the possibility to implement a
protocol for the observation of the experimentally elusive non-Abelian braiding
statistics of Majorana modes. From before we know that Majorana modes can be
created at edge dislocations in certain parameter regimes. Within the framework
of cold atomic gases, a vortex in the optical field generating the optical lattice
directly corresponds to an edge dislocation [216]. The next handy feature of
cold gases is the local site addressability [217–219], which allows for arbitrary
shapes of the lattice. This enables the generation of edge dislocations in a
controlled fashion. This setup paves the way for the experimental observation
of the non-Abelian statistics of Majorana modes by braiding the dislocations.
Here we present the protocol for the braiding operation, see fig. 4.12. It is
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Fig. 4.11 Majorana modes at lattice dislocations. The edge dislocation forms
a single quantum wire, indicated by the red line. Here the setup generates
two Majorana modes at both ends of the quantum wire for a weak topological
index νy = 1. In this parameter regime the localized wave function of the
two Majorana modes is computed by diagonalizing the Hamiltonian (4.65)
through a Bogoliubov transformation. The radii of the blue circles represent
the square of the wave function of the Majorana modes and are proportional
to it. Figure taken and adapted from [205].

important to stress that all operations are performed adiabatically, i.e., slower
than the characteristic time scale given by the superfluid gap:

1. Create two dislocation pairs at different positions on the lattice to initialize
the system. This gives an unoccupied fermionic mode at each dislocation,
with a finite single particle gap, described by the operators c†r,b. At low
temperatures all fermions are Cooper paired.

2. Separate the two dislocations along path 1, then along path 2, see fig. 4.12.
The operations divide the created fermionic modes into four Majorana
modes localized at the dislocation endpoints. The initial state is defined
by cr,b|g〉 = 0.

3. The braiding is performed by recombining the two dislocations, first along
path 3, afterwards along path 4. This procedure can be viewed as moving
the two Majorana modes around each other on the lattice.

4. The general non-Abelian braiding rules for Majorana modes [169] state
that this process transforms the initially unoccupied fermionic mode into
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an occupied fermionic mode. The new state then is c†r,b|g〉. We drop the
appearing Abelian phase factor since it is not relevant in our procedure.

5. The energy difference of the molecular to the free fermionic state ~ω is
now ramped to negative values. This drives the system into the strong
pairing phase, where all paired fermions are in the center of the plaquettes.

6. Finally, the fermionic density on the original lattice is measured to probe
for unpaired fermions. Successfully performing all the above operations
then reveals one unpaired fermion at each lattice dislocation pair.

Further details to the braiding protocol and discussions, e.g. regarding induced
noise or finite temperature influences, can be found in [205].
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a)

b)

c)

Fermion mode

Majorana mode

Defect creation

Fermion

Fermion

Defect braiding

Measurement

Fig. 4.12 Procedure for the braiding opera-
tion. a) Two dislocation pairs are formed in
the lattice structure to generate four Majo-
rana modes, indicated by the red and blue
dots. Here two Majorana modes form an
unoccupied fermion mode, as illustrated by
the dashed circles in red and blue. The un-
occupied fermionic modes are described by
operators cr,b. Next, the lattice dislocations
are spatially separated first along path 1, af-
terwards along path 2. b) The braiding op-
eration takes place by recombining the gen-
erated Majorana modes, first along path 3,
then path 4. The paths are now intertwined.
c) After the braiding operation, the ini-
tially unoccupied fermionic state at each dis-
location pair transformed into an occupied
fermion mode described by the operators c†r,b.
This is shown as full red and blue circles in
the figure. Afterwards a measurement of all
unpaired fermions takes place to show the
unique signature of the non-Abelian braid-
ing statistics of the Majorana modes. Fig-
ure taken and adapted from [205].
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4.3. Conclusion and Outlook

We introduced a lattice setup for spinless fermions, where fermions occupy
the lattice sites. A special feature of this setup are the plaquettes which are
surrounded by the lattice sites. The setup was constructed in such a way, that
the lattice sites were coupled to the plaquettes in order to produce molecular
states in the center of the plaquettes with p-wave symmetry. Then a Schrieffer-
Wolff transformation was applied to the microscopic Hamiltonian to end up at
an effective Hamiltonian after quenching the undesired operator contributions.
The effective Hamiltonian was analyzed on a mean-field level, which was justified
based on DMRG calculations of a three wire setup [205]. We found the mean-
field phase diagram and its superfluid phases such as the time-reversal invariant
px, py and the chiral px + ipy superfluid. This lead to the investigation of the
inherent topological properties of the system. In addition, we determined the
topological phase diagram as well as the possibility of appearing Majorana
modes at vortex cores and lattice dislocations. Afterwards we numerically
diagonalized the Hamiltonian (4.65) and demonstrated the appearance of
Majorana Modes in the system. In the last section we described how the
setup enables efficient braiding of the Majorana modes and demonstrated their
non-Abelian statistics.
We thus showed how cold atomic gases in optical lattices can quantum simulate
p-wave superfluids and Majorana modes. In addition we give way towards an
possible experimental observation for non-Abelian braiding statistics.
As a further step of the system, the operator set within the microscopic
Hamiltonian, which was quenched due to the overlapping of the positive and
negative optical lattice, should be considered to reveal the full possibilities and
physics of the proposed setup. Recently, this analysis was carried out and the
phase diagrams determined [207].
Additional steps for future work are: consider the system with full spin statistics,
allow hopping between plaquettes, introduce interactions between occupied
plaquettes and build an experiment to realize the spinless scenario in order to
demonstrate the non-Abelian braiding statistics of the Majorana modes.
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APPENDIX

ONE

SUPPLEMENTARY MATERIAL TO GENERAL
CONCEPTS

For sake of completeness, we give the periodic table of elements [220].
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Fig. A.1 Periodic table of elements adapted and taken from [220].
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APPENDIX

TWO

SUPPLEMENTARY MATERIAL TO QUANTUM
SIMULATOR

B.1. Sommerfeld Expansion

For the presentation of the Sommerfeld expansion we follow the structure given
in [141]. In the mean-field analysis of section 3.4 we will encounter integrals of
the form∫ ∞

−∞
dε g(ε) f(ε) , with f(ε) =

1

exp [(ε− µ) /kBT ] + 1
, (B.1)

where g(ε) is the density of states, f(ε) the Fermi-Dirac distribution as given
above, kB is the Boltzmann constant, T the temperature and µ the chemical
potential. If we are interested in cases, where the temperature is very small
compared to the Fermi temperature T � TF , the integral can be expanded to
make it manageable. The expansion is∫ ∞

−∞
g(ε) f(ε) dε =

∫ µ

−∞
g(ε) dε+

∞∑
n=1

an (kBT )2n d2n−1

dε2n−1
g(ε)
∣∣∣
ε=µ

,

(B.2)

where the dimensionless numbers an are given by

an =

∫ ∞
−∞

x2n

(2n)!

(
− d
dx

1

ex + 1

)
dx , (B.3)
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and x = (ε− µ) /kBT . For the most common cases, it is sufficient to only
consider the n = 1 contribution in the expansion. Then we obtain∫ ∞

−∞
g(ε) f(ε) dε ≈

∫ µ

−∞
g(ε) dε+

π2

6
(kBT )2 d

dε
g(ε)
∣∣∣
ε=µ

+O
(
T 4
)
.

(B.4)

For details regarding the Sommerfeld expansion, its additional terms and limits,
see [107, 108, 141].

B.2. Derivation of Microscopic Hamiltonian

The microscopic Hamiltonian (3.19) can be derived starting from the general
Hamiltonian of second quantized form expressed through the field operators

H =
∑
αs

∫
dx
(
− ~2

2m
∇Ψ†αs(x)∇Ψαs(x) + U(x) Ψ†αs(x) Ψαs(x)

)
+

1

2

∑
αβss′

∫
dx dx′Ψ†αs(x) Ψ†βs′

(
x′
)
Vαβ
(
x,x′

)
Ψβs′

(
x′
)

Ψαs(x) ,

(B.5)

where Ψ
(†)
αs (x) is the field operator for annihilation (creation), s is the spin

component ↑↓, U(x) is a possible single-particle potential, Vαβ(x,x′) is the
two-particle potential and α, β consider the relevant orbitals px, py, where α
and β have to be summed over all possible contributions. In the following
we abbreviate the labeling for the considered orbital to α = x, y and always
write the orbital label as an index for the operators or quantities. To avoid
confusion, we write spatial components as exponents x,y,z. The first part of the
Hamiltonian is the kinetic part and the third part takes care of two-particle
interactions. The general form of the Hamiltonian can be found in standard
literature [72, 120, 121].
The next step is to find the Hamiltonian for the p-orbital system consid-
ered in chapter 3. We apply the common approach using Wannier functions
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w∗αs(x− xij) for the field operators [30, 53, 95] and have

Ψ†αs(x) =
∑
j

w∗αs(x− xj) c
†
jαs +

∑
i

w∗αs(x− xi) c
†
iαs , (B.6a)

Ψβs′(x) =
∑
j

wβs′(x− xj) cjβs′ +
∑
i

wβs′(x− xi) ciβs′ , (B.6b)

as two examples of the required field operators. Here i and j consider the
lattice sites. We then insert all field operators into the Hamiltonian (B.5) and
expand it. The next step is to apply simplifications based on the setup of our
system. Within the kinetic part we are only interested in nearest neighbor
hopping, the summation becomes

∑
ij →

∑
〈i,j〉. The hopping strengths are

introduced to be

• t‖αs for hopping possibilities along the σ-binding of the orbitals

• t⊥αs for π-bindings of the orbitals

• possible hopping possibilities along the δ-binding are neglected due to the
weak strength of this binding, compared to the larger σ- and π-binding

For an illustration of the hopping strengths see fig. 3.2. Then, we set equal
hopping strengths for both spin components and orbitals, such that

• t‖x↑ = t
‖
x↓ = t

‖
ys = t‖,

• t⊥x↑ = t⊥x↓ = t⊥ys = t⊥,

which is justified, since we do not encounter mechanisms in our system, which
treat the hopping strengths differently. The hopping strengths, expressed
through Wannier functions, then are

t‖ =

∫
dx

~2

2m
∇w∗αs(x− xj)∇wαs(x− xi) , (B.7a)

t⊥ =

∫
dx

~2

2m
∇w∗αs(x− xj′)∇wαs(x− xi) . (B.7b)
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The kinetic part of the Hamiltonian can then be reduced to

Hkin =− t‖
∑
〈i,j,j′〉s

[
c†jxscixσ + c†j′ysciys + h.c.

]
− t⊥

∑
〈i,j,j′〉s

[
c†j′xscixσ + c†jysciys + h.c.

]
, (B.8)

where j′ = i ± a ey is the nearest neighbor in y-direction and j = i ± a ex

in x-direction. The lattice spacing is a and the unit vector for the relevant
directions ex,y. For the single-particle contribution we only consider a global
chemical potential µ with the terms

Hµ = −µ
∑
iαs

c†iαsciαs . (B.9)

The major task within this derivation now is the two-particle interaction and its
Hamiltonian. Here we apply the following arguments to reduce the contributing
terms

• only C4 symmetric orbital terms are relevant,

• only keep terms, which are allowed by Pauli principle,

• neglect all contributions, that go beyond on-site interaction,

• allow terms with intra-orbital α = β and inter-orbital α 6= β contributions.

These arguments reduce the present terms even further. To obtain a more
compact form for the interaction, we analyze the Wannier functions and find,
that they can be chosen to be real w∗αs(x− xi) = wαs(x− xi) [221–226]. In
addition, we can choose the Wannier functions to be independent of spin
wα↑(x− xi) = wα↓(x− xi) = wα(x− xi).
Next, we introduce a contact interaction [30, 227]

V
(
x, x′

)
=

4π~2 as
m

δ
(
x− x′

)
= g δ

(
x− x′

)
, (B.10)

where m is the atomic mass and as the s-wave scattering length. After these
simplifications, based on the setup of the system, we are left with two interaction
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potentials

intra-orbital potential U = g

∫
dx |wα(x) |4 , (B.11a)

inter-orbital potential V = g

∫
dx |wx(x) |2 |wy(x) |2 , (B.11b)

with g from before. The Wannier functions can be approximated to be of
Gaussian form, these considerations are done in sec. B.3.
The interaction Hamiltonian thus is

Hint =
∑
i

[
U
{
c†iy↓c

†
iy↑ciy↑ciy↓ + c†ix↓c

†
ix↑cix↑cix↓

}
+V
{
c†iy↓c

†
iy↑cix↑cix↓ + c†ix↓c

†
ix↑ciy↑ciy↓

+ c†iy↓c
†
ix↑cix↑ciy↓ + c†ix↓c

†
iy↑ciy↑cix↓

+ c†iy↓c
†
ix↑ciy↑cix↓ + c†ix↓c

†
iy↑cix↑ciy↓

}]
. (B.12)

Introducing the particle number operators as niαs = c†iαsciαs gives

Hint =
∑
i

[
U
{
niy↓niy↑ + nix↓nix↑

}
+V
{
c†iy↓c

†
iy↑cix↑cix↓ + c†ix↓c

†
ix↑ciy↑ciy↓

+ niy↓nix↑ + nix↓niy↑

+ c†iy↓c
†
ix↑ciy↑cix↓ + c†ix↓c

†
iy↑cix↑ciy↓

}]
. (B.13)

Next, we use the representation of the spin operators ~Siα =
(
Sxiα, S

y
iα, S

z
iα

)
,

where the components are defined through

Sγiα =
1

2

∑
s,s′

c†iασ σ
γ
s s′ ciαs′ with γ = x, y, z , (B.14)

with σγ being the Pauli matrices given by

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (B.15)
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These definitions can also be found in standard literature [72, 120, 121]. Insert-
ing the spin operator into the Hamiltonian (B.13) then reveals

Hint =
∑
i

[
U
{
niy↓niy↑ + nix↓nix↑

}
+V
{
c†iy↓c

†
iy↑cix↑cix↓ + c†ix↓c

†
ix↑ciy↑ciy↓

− 2
(
~Six · ~Siy −

1

4
nixniy

)}]
, (B.16)

where niα is the total particle number operator for orbital α. To compress
the interaction Hamiltonian even further, we introduce in analogy to the spin
operator, the orbital operator ~Tis =

(
~T xis,

~T yis,
~T zis
)
with its components

T γis =
1

2

∑
α,β

c†iαs σ
γ
αβ ciβs , with γ = x, y, z , (B.17)

where here the summation is carried out over the orbitals and the spin is kept
fixed. In addition we give the orbital raising and lowering operator

T±is = T xis ± T
y
is , (B.18)

as in the common case for the spin operator. The interaction Hamiltonian then
takes the convenient form

Hint =
∑
i

[
U
{
niy↓ niy↑ + nix↓ nix↑

}
+V

{
T+
i↑ T

+
i↓ + T−i↑ T

−
i↓ − 2

(
~Six · ~Siy −

1

4
nixniy

)}]
. (B.19)

This is the final form of the microscopic interaction Hamiltonian. In combina-
tion with the kinetic Hamiltonian (B.8) and the Hamiltonian of the chemical
potential (B.9), we then obtain the desired form of Hamiltonian (3.19).

B.3. Approximation to Wannier Functions

In order to gain more insight to the interaction strengths U and V from
eq. (B.11a),(B.11b), we approximate the Wannier functions wα(x) to be of
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Gaussian form. In addition we know, that the Wannier function for the px-
orbital wx is confined in y-direction and vice versa for the py-orbital Wannier
function wy. Both functions are confined in the z-direction due to the setup of
the optical lattice. Hence, we approximate the Wannier functions through

wx = A exp

[
−χ

2

2

(
x2

σx 2
+

y2

σy 2
+

z2

σz 2

)]
, (B.20a)

wy = B exp

[
−ζ

2

2

(
x2

σ′x 2
+

y2

σ′ y 2
+

z2

σz 2

)]
, (B.20b)

where A, B are normalization constants, χ, ζ are adjustable parameters and
σx,y,z are the sizes of the atomic cloud within the optical lattice setup. In
addition, σx > σ′x and σy < σ′ y.
The first step is to normalize the Wannier functions to 1, thus∫ ∞

−∞
|wα(x) |2 dx !

= 1 .

We compute for the individual Wannier functions∫ ∞
−∞
|wx(x) |2 dx = A2

∫ ∞
−∞

exp

[
−χ2

(
x2

σx 2
+

y2

σy 2
+

z2

σz 2

)]
dx (B.21)

= A2

(
π3/2σx σy σz

χ3

)
!

= 1 (B.22)

⇒ A =

√
χ3

π3/2 σx σy σz
, (B.23)

and analogously for wy to find

B =

√
ζ3

π3/2 σ′x σ′ y σz
. (B.24)

The second step is to calculate the interaction strength U using wx and wy

U(wx) = g

∫ ∞
−∞
|wx|4 dx

= g

∫ (
χ3

π3/2 σx σy σz

)2

exp

[
−2χ2

(
x2

σx 2
+

y2

σy 2
+

z2

σz 2

)]
dx

= g

(
χ3

π3/2 σx σy σz

)2 [
π3/2 σx σy σz

2
√

2χ3

]
=

g

2
√

2

χ3

π3/2σx σy σz
,

(B.25)
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and

U(wy) = g

∫ ∞
−∞
|wy|4 dx

= g

∫ (
ζ3

π3/2 σ′x σ′ y σz

)2

exp

[
−2ζ2

(
x2

σ′x 2
+

y2

σ′ y 2
+

z2

σz 2

)]
dx

= g

(
ζ3

π3/2 σ′x σ′ y σz

)2 [
π3/2 σ′x σ′ y σz

2
√

2ζ3

]
=

g

2
√

2

ζ3

π3/2 σ′x σ′ y σz
.

(B.26)

Then we compare both results, since both interaction strengths have to be the
same, based on the previous assumptions and requirements. Therefore

U(wx)
!

=U(wy)

g

2
√

2

χ3

π3/2 σx σy σz
!

=
g

2
√

2

ζ3

π3/2 σ′x σ′ y σz

⇒ ζ =

(
σ′x σ′ y

σx σy

)1/3

χ . (B.27)

The two Wannier functions hence are

wx =

√
χ3

π3/2 σx σy σz
exp

[
−χ

2

2

(
x2

σx 2
+

y2

σy 2
+

z2

σz 2

)]
, (B.28a)

wy =

√
χ3

π3/2 σx σy σz
exp

[
−
(
σ′x σ′ y

σx σy

)2/3
χ2

2

(
x2

σ′x 2
+

y2

σ′ y 2
+

z2

σz 2

)]
.

(B.28b)

The third step is to compute the interaction strength V with the obtained
Wannier functions and use γ2 = (σ′x σ′ y/σx σy)

2/3

V = g

∫ ∞
−∞
|wx|2 |wy|2 dx . (B.29)
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We directly calculate

V = g

(
χ3

π3/2 σx σy σz

)2

×∫
exp
[
− χ2

(
x2

(
1

σx 2
+

γ2

σ′x 2

)
+ y2

(
1

σy 2
+

γ2

σ′ y 2

)
+

z2

σz 2

(
1 + γ2

))]
dx

= g

(
χ3

π3/2 σx σy σz

)2

 π3/2σz

χ3

√
(1 + γ2)

(
1
σx 2 + γ2

σ′ x 2

)(
1
σy2 + γ2

σ′ y 2

)
 .

(B.30)

Next, we bring the above expression in a convenient form by massaging the
equation and have

V =
g χ3

π3/2 σx σy σz

[(
1 + γ2

)(
1 + γ2 σ

x 2

σ′x 2

)(
1 + γ2 σ

y 2

σ′ y 2

)]−1/2

.

(B.31)

The fourth step is to investigate the ratio V/U of the interaction strengths

V

U
=

2
√

2[
(1 + γ2)

(
1 + γ2 σx 2

σ′ x 2

) (
1 + γ2 σy 2

σ′ y 2

)]1/2 . (B.32)

Next, we can simplify the expressions further by assuming that the expansion
of the px-orbital in x-direction is the same as the py-orbital in y-direction, such
that

σx = σ′ y and σy = σ′x . (B.33)

We can set the adjustable parameter to χ = 1. The Wannier functions simplify
to

wx =

√
1

π3/2 σx σy σz
exp

[
−1

2

(
x2

σx 2
+

y2

σy 2
+

z2

σz 2

)]
, (B.34a)

wy =

√
1

π3/2 σx σy σz
exp

[
−1

2

(
x2

σy 2
+

y2

σx 2
+

z2

σz 2

)]
, (B.34b)
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and the interaction strengths become

U =
g

(2π)3/2 σx σy σz
, (B.35a)

V =
g

2π3/2 σx σy σz

[
1 +

σx 4 + σy 4

2σx 2 σy 2

]−1/2

, (B.35b)

whereas the ratio then is

V

U
=
√

2

/[
1 +

σx 4 + σy 4

2σx 2 σy 2

]1/2

. (B.36)

Hence, the ratio solely depends on the sizes of the clouds in x- and y-direction
and can be tuned accordingly.

B.4. Behavior of Density of States Near van
Hove Singularities

The density of states g(ε) can be calculated through [107, 141]

gnαs(ε) =
1

N

∑
k

δ(ε− εnkαs) , (B.37)

where n considers the energy band, α the orbital, s the spin, ε is the energy
and N the number of lattice sites. In addition, the density of states can be
computed by

gnαs(ε) =
1

(2π)dN

∫
dS

|∇εnkαs|
, (B.38)

with d being the dimension and the integral has to be taken over the surface
S. Since we are here interested in the non-interacting case, the dispersion
relations are two-fold degenerate with respect to spin. In addition we restrict
our considerations to the lowest energy band n. The two dispersion relations
are

εkx = −2
(
t‖ cos(kxa) + t⊥ cos(kya)

)
, (B.39a)

εky = −2
(
t‖ cos(kya) + t⊥ cos(kxa)

)
. (B.39b)
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In order to find the characteristic points of the density of states we investigate

|∂εkα/∂k| = 0 , (B.40)

and compute for the dispersion relation of the x-orbital

∂εkx
∂k

=

(
−2t‖a sin(kxa)

2t⊥a sin(kya)

)
⇒ |∂εkα/∂k| = 2at‖

√
sin2 (kxa) +

(
t⊥ 2/t‖ 2

)
sin2 (kya)

!
= 0 . (B.41)

Thus, we find the characteristic points to be

1.) kx = 0 , ky = 0 , 2.) kx = ±π/a , ky = ±π/a ,
3.) kx = ±π/a , ky = 0 , 4.) kx = 0 , ky = ±π/a . (B.42)

Here we are interested in the behavior of the dispersion relation at the critical
k-values k1 = (±π/a, 0) and k2 = (0,±π/a), the characteristic points. These
points are saddle points and signal the van Hove singularities. In fig. B.1 we
give the plot of the dispersion relation (3.3) and the corresponding contour
plot, where we have marked the characteristic points.
The proceeding calculations are in analogy to the two-dimensional tight-

binding case discussed in [228]. In contrast to the common tight-binding
scenario, we have two hopping parameters and here the Fermi surface is open,
as shown in fig B.1. Thus, we expect two van Hove singularities. The idea for
the calculations now is, that we focus on a small region Λ around the saddle
points at k1 = (±π/a, 0) and k2 = (0,±π/a), since we are only interested in
the behavior of the density of states near the van Hove singularities.
As a first step, we approach the van Hove singularities on the x-axis. For

this, the dispersion relation becomes of the form

ε1kx = −2
(
t‖ cos(kxa− kx1a) + t⊥ cos(kya)

)
= −2

(
t‖ cos(kxa− π) + t⊥ cos(kya)

)
. (B.43)

We expand the cosine to second order, cos(x) ≈ 1− 1
2 x

2, and use the relation
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+ +

+

++

kxε

a) b) k y

k x

k x

k y

Fig. B.1 a) Three-dimensional plot of the dispersion relation of one orbital and
one spin direction (3.3) for the hopping strengths t⊥/t‖ = 1/2. b) Contour
plot of the same dispersion relation, where the saddle points k1 = (±π/a, 0)

and k2 = (0,±π/a) are marked red, the four maxima k3 = (±π/a,±π/a) and
k4 = (∓π/a,±π/a) and the minimum k5 = (0, 0) are in green.

cos(180◦ − α) = − cos(α), to obtain

ε1kx = −2
(
−t‖

(
1− 1

2
(kxa− π)2

)
+ t⊥

(
1− 1

2
(kya)2

))
= 2
(
t‖ − t⊥

)
− 2

(
t‖

2
(kxa− π)2 − t⊥

2
(kya)2

)
. (B.44)

Next, we bring the above equation into a handy form for later calculations

ε1kx − 2
(
t‖ − t⊥

)
= −2

(
t‖

2
(kxa− π)2 − t⊥

2
(kya)2

)
− 1

2t‖

(
ε1kx − 2

(
t‖ − t⊥

))
=

1

2
(kxa− π)2 − 1

2

t⊥

t‖
(kya)2 . (B.45)

Here we introduce new quantities to express equation (B.45) in a more conve-
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nient form

χ = − 1

2t‖

(
ε1kx − 2

(
t‖ − t⊥

))
, (B.46a)

γ =
t⊥

t‖
, (B.46b)

ξ = π − kxa , (B.46c)

η = kya , (B.46d)

⇒ for eq. (B.45): χ =
1

2
ξ2 − 1

2
γ η2 . (B.46e)

We calculate the density of states of the two-dimensional problem through

gx(ε) ∼
∮

dl
|∇εkx|

, (B.47)

with |∇εkx| being

∂kx ε1kx = −2t‖a (kxa− π) = 2t‖a ξ , (B.48a)

∂ky ε1kx = 2t⊥a (kya) = 2t⊥a η , (B.48b)

⇒ |∇εkx| = 2t‖a
√
ξ2 + γ2η2 . (B.48c)

Then the density of states becomes

gx ∼
∮

dl

2t‖a
√
ξ2 + γ2η2

. (B.49)

Now we have to determine the line segment dl

dl =

√
(dkx)2 + (dky)2 =

1

a

√
(dξ)2 + (dη)2 , (B.50)

with dkx = −dξ/a and dky = dη/a. We can then write the density of states as

gx ∼
∮ √

(dξ)2 + (dη)2√
ξ2 + γ2 η2

, (B.51)

where we have neglected all pre-factors, since we are only interested in the
behavior of the density of states near the van Hove singularity. Now we
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investigate the change in energy on the considered surface χ (B.46e), to further
simplify the integral. The change in energy is zero, dχ = 0, because it is a
surface of constant energy. Thus,

dχ = 0 = d
(

1

2
ξ2 − 1

2
γ η2
)

= ξ dξ − γ η dη = 0

⇒ dη =
ξ

γ η
dξ , (B.52)

and hence the density of states (B.51) can be expressed as

gx ∼
∮ √

(dξ)2 +
(
ξ
γη

)2

(dξ)2√
ξ2 + γ2 η2

∼
∮

dξ
γ η

. (B.53)

With the definition (B.46e) we can give the parameter η as

η =

√
1

γ
(ξ2 − 2χ) . (B.54)

Inserting this into equation (B.53) reveals

gx ∼
1
√
γ

∮
dξ√
ξ2 − 2χ

. (B.55)

The integration is carried out in the range from ξ1 =
√

2χ to ξ2 ≈ π/2. The
additional numerical factor, due to the closed line integral

∮
dl, is neglected,

because we are just interested in the behavior. Keep in mind, that the expansion
of the cosine to second order becomes invalid for such large values of ξ, but the
integrand is small in the chosen region, such that the whole integral contribution
is small [228]. The integral hence is

gx ∼
∫ ξ2

ξ1

dξ√
ξ2 − 2χ

=
[
ln
(
ξ +
√
−2χ+ ξ2

)]ξ2
ξ1
, (B.56)

where we only are interested in the qualitative behavior and have the desired
result

gx(ε) ∼ −1

2
ln

[
ε1x − 2

(
1− t⊥

t‖

)]
. (B.57)
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The density of states experiences a logarithmic behavior near the van Hove
singularities, characterized through the two hopping parameters t‖ and t⊥. In
the special case for isotropic hopping, t‖ = t⊥, the above behavior reduces to the
common behavior of the density of states for the two-dimensional tight-binding
model g ∼ −1

2 ln ε [107, 228].
Investigating the remaining characteristic k-values for the px-orbital dispersion
relation reveals the analog results and especially the analog behaviors near the
two van Hove singularities.
In fig. B.2 we sketch the behavior of the density of states near the van Hove
singularities ε = ±1, as calculated in equation (B.57). The analysis of the
dispersion relation for the py-orbital and its characteristic points gives the
analog results.

0.5

1.0

1.5

-2 21-1

g(ε)

ε

·t

Fig. B.2 Behavior of the density of
states g (ε) for the p-orbital scenario
near the van Hove singularities ε =

±1 as calculated in eq. (B.57) for
all four possible contributions of the
characteristic points (B.42).

B.5. Analysis of Single-Site with Two Fermions

Here we investigate the ground state for the single-site. We encounter two
degrees of freedom from spin (↑↓) and orbital (px,y). Constraints are due to
the Pauli principle, i.e. the anti-symmetric total wave function. If the spin
contribution is symmetric, the orbital contribution has to be anti-symmetric
and vice versa. To find the possible ground state configuration we refer to the
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Clebsch-Gordan series for the addition of angular momenta [69, 229]. It reads

|J, M〉 =

j1∑
m1=−j1

j2∑
m2=−j2

|j1, j2;m1, m2〉 〈j1, j2;m1, m2|J, M〉 , (B.58)

where 〈...|...〉 are the Clebsch-Gordan coefficients, J is the total angular mo-
mentum with

−|j1 − j2| ≤ J ≤ j1 + j2 , (B.59)

in this case it can take the values J = 0, 1 and M is

M = −J ... J i.e. − 1, 0, 1 , (B.60)

with the constraint M = m1 + m2 and mi = −1/2, 0, 1/2. Thus we are
interested in introducing a total angular momentum for the site, which then
characterizes the possible ground state. This total angular momentum is
constructed out of two angular momenta, one for each orbital, ~J = ~Jx + ~Jy.
The next step is to evaluate all the possible Clebsch-Gordan coefficients. Here
we restrict the considerations only to those cases, where we obtain a spin
singlet |Si〉 or spin triplet |Ti〉 configuration. We label those states in the final
representation as |px ; py〉 = |Si / Ti〉 and begin with the possible spin triplet
states.

• J = 1 ,M = 1:

|J = 1 ,M = 1〉 =

j1∑
m1=−j1

j2∑
m2=−j2

|j1, j2;m1, m2〉 〈j1, j2;m1, m2|J = 1, M = 1〉 ,

(B.61)

here we only compute a non-zero contribution for 〈...|...〉, if j1 = 1/2,
j2 = 1/2 and m1 = 1/2, m2 = 1/2. This then reveals the state

|J = 1, M = 1〉 = |px =↑ ; py =↑〉

⇒ |T1〉 = c†ix↑ c
†
iy↑|0〉 , (B.62)

the first spin triplet state.
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• J = 1, M = 0:

|J = 1, M = 0〉 =
∑
m2

∑
m1

|m1, m2〉 〈m1, m2|M〉 , (B.63)

in this scenario there are two possibilities m1 = 1/2, m2 = −1/2 or
m1 = −1/2, m2 = 1/2, thus

|J = 1, M = 0〉 =
1√
2

(|px =↑; py =↓〉+ |px =↓; py =↑〉)

⇒ |T3〉 =
1√
2

(
c†ix↑ c

†
iy↓ + c†ix↓ c

†
iy↑

)
|0〉 , (B.64)

the second spin triplet state.

• J = 1, M = −1:
Here we obtain only non-zero contributions when m1 = m2 = −1/2 and
thus

|J = 1, M = −1〉 = |px =↓; py =↓〉

⇒ |T2〉 = c†ix↓ c
†
iy↓|0〉 , (B.65)

which is the third spin triplet state.

After the discussion for the spin triplet states, we turn to the corresponding
investigations for the spin singlet states. In contrast to the coupling of two
spin-1/2 particles, we encounter additional coupling mechanisms for the spin
singlet state, which result in additional possible states. We only give the states
fulfilling the previous requirements. They are

• J = 0, M = (1/2− 1/2) + 0:

|J = 0, M = (1/2− 1/2) + 0〉 =∑
m1

∑
m2

|m1, m2〉 〈m1, m2|M = (1/2− 1/2) + 0〉 , (B.66)

here we have to couple two spins, ↑ + ↓, within one orbital and leave
the other orbital empty. This coupling can be done in both orbitals,
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combined symmetrically and anti-symmetrically, resulting in the states

|J = 0, M = 0〉 =
1√
2

(| ↓↑; 0〉 ± |0; ↓↑)

⇒ |S1,2〉 =
1√
2

(
c†ix↓ c

†
ix↑ ± c

†
iy↓ c

†
iy↑

)
|0〉 , (B.67)

two of the spin singlet states.

• J = 0, M = 1/2− 1/2 = 0:
In this possibility one orbital has to have spin ↑, the other ↓, such that

|J = 0, M = 1/2− 1/2〉 =
1√
2

(| ↑ ; ↓〉 − | ↓; ↑〉)

⇒ |S3〉 =
1√
2

(
c†ix↑ c

†
iy↓ − c

†
ix↓ c

†
iy↑

)
|0〉 . (B.68)

the third spin singlet state.

An illustration of all possible configuration is given in fig. 3.4.

B.6. Calculations of Mean-Field Section

The following sections are dedicated to calculations of section 3.4, which were
neglected for sake of readability.

B.6.1. Mean-Particle Density py-Orbital

The mean-particle density of the py-orbital is calculated through the general
relation

n̄ys =

∫ ∞
−∞

gys(ε) fys(ε) dε =
1

2

∫ ∞
−∞

gy(ε) fys(ε) dε , (B.69)

and gives

n̄y = n̄y↑ + n̄y↓ =
1

2

∫ ∞
−∞

gy(ε) fy↑(ε) dε+
1

2

∫ ∞
−∞

gy(ε) fy↓(ε) dε . (B.70)
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Using the Sommerfeld expansion (3.39) results in

n̄y ≈
1

2

{∫ µy↑

−∞
gy(ε) dε+

π2

6
(kBT )2 g′y

(
µy↑
)}

+
1

2

{∫ µy↓

−∞
gy(ε) dε+

π2

6
(kBT )2 g′y

(
µy↓
)}

=
1

2

∫ ĒF,y+∆µy

−∞
gy(ε) dε+

1

2

∫ ¯̄EF,y+∆µy

−∞
gy(ε) dε

+
1

2

π2

6
(kBT )2 [g′y(µy↑)+ g′y

(
µy↓
)]

, (B.71)

where

ĒF,y = EF,y +
1

2
(Umy + V mx + gJµBH) ,

¯̄EF,y = EF,y −
1

2
(Umy + V mx + gJµBH) , (B.72)

and the Fermi energy is close to the chemical potential such that µ = EF + ∆µ

holds. Next, we split the integral limits and add a zero, which gives

n̄y =
1

2

∫ EF,y

−∞
gy(ε) dε+

1

2

∫ ĒF,y

EF,y

gy(ε) dε+
1

2

∫ ĒF,y+∆µy

ĒF,y

gy(ε) dε

+
1

2

∫ ¯̄EF,y

−∞
gy(ε) dε+

1

2

∫ ¯̄EF,y+∆µy

¯̄EF,y

gy(ε) dε±
1

2

∫ EF,y

¯̄EF,y

gy(ε) dε

+
1

2

π2

6
(kBT )2 [g′y(µy↑)+ g′y

(
µy↓
)]

. (B.73)

The first term of the first and second line can be combined to
∫ EF,y
−∞ gy(ε) dε =

n̄0y. Integrating the remaining parts computes

n̄y = n̄0y +
1

2

[
Gy(ε)

]ĒF,y
EF,y
− 1

2

[
Gy(ε)

]EF,y
¯̄EF,y

+
1

2

[
Gy(ε)

]ĒF,y+∆µy

ĒF,y

+
1

2

[
Gy(ε)

] ¯̄EF,y+∆µy

¯̄EF,y
+

1

2

π2

6
(kBT )2 [g′y(µy↑)+ g′y

(
µy↓
)]

. (B.74)

We expand the integrated density of states Gy(ε) around the Fermi energy
EF,y up to third order in the magnetizations mα, in addition we expand the
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temperature dependent term around ĒF,y, ¯̄EF,y up to first order in ∆µy to
then compute

n̄y ≈ n̄0y +
1

2

{
Gy
(
EF,y

)
+

1

2
(Umy + V mx + gJµBH) gy

(
EF,y

)
+

1

8
(Umy + V mx)2 g′y

(
EF,y

)
+

1

2

1

4!
(Umy + V mx)3 g′′y

(
EF,y

)
−Gy

(
EF,y

)}
− 1

2

{
Gy
(
EF,y

)
−
[
Gy
(
EF,y

)
− 1

2
(Umy + V mx + gJµBH) gy

(
EF,y

)
+

1

8
(Umy + V mx)2 g′y

(
EF,y

)
− 1

2

1

4!
(Umy + V mx)3 g′′y

(
EF,y

) ]}
+

1

2

{
Gy
(
ĒF,y

)
+ ∆µy gy

(
ĒF,y

)
−Gy

(
ĒF,y

)}
+

1

2

{
Gy
( ¯̄EF,y

)
+ ∆µy gy

( ¯̄EF,y
)
−Gy

( ¯̄EF,y
)}

+
1

2

π2

6
(kBT )2

[
g′y
(
ĒF,y

)
+ ∆µy g

′′
y

(
ĒF,y

)
+ g′y

( ¯̄EF,y
)

+ ∆µy g
′′
y

( ¯̄EF,y
) ]

. (B.75)

The mean-particle density thus reduces to

n̄y = n̄0y +
1

2

{
1

4
(Umy + V mx)2 g′y

(
EF,y

)
+
π2

6
(kBT )2 ḡ′y

(
EF,y

)}
+

1

2
∆µy

{
ḡy
(
EF,y

)
+
π2

6
(kBT )2 ḡ′′y

(
EF,y

)}
, (B.76)

with

ḡy
(
EF,y

)
= gy

(
ĒF,y

)
+ gy

( ¯̄EF,y
)
,

ḡ′y
(
EF,y

)
= g′y

(
ĒF,y

)
+ g′y

( ¯̄EF,y
)
,

¯̄g′′y
(
EF,y

)
= g′′y

(
ĒF,y

)
+ g′′y

( ¯̄EF,y
)
. (B.77)

Here we assume, that n̄y − n̄0y ≈ 0, which is justified, since the magnetizations
and the magnetic field is small, the deviation ∆µy then is

∆µy = −
1
4 (Umy + V mx)2 g′y

(
EF,y

)
+ π2

6 (kBT )2 ḡ′y
(
EF,y

)
ḡy
(
EF,y

)
+ π2

6 (kBT )2 ḡ′′y
(
EF,y

) . (B.78)
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B.6.2. Expansions for Density of States

The expansions for the density of states ḡα, ¯̄gα and their derivatives, around the
Fermi energy EF,α in orders of the magnetizations mα are performed, where
terms higher than the second derivative in the density of states are neglected.
We start with

gα
(
ĒF,α

)
≈ gα

(
EF,α

)
+

1

2
(Umα + V mα′ + gJµBH) g′α

(
EF,α

)
+

1

8
(Umα + V mα′)2 g′′α

(
EF,α

)
,

gα
( ¯̄EF,α

)
≈ gα

(
EF,α

)
− 1

2
(Umα + V mα′ + gJµBH) g′α

(
EF,α

)
+

1

8
(Umα + V mα′)2 g′′α

(
EF,α

)
, (B.79)

where α, α′ = x, y and α′ 6= α. As before, here only the linear contribution of
the magnetic field is relevant. The resulting equations for the different density
of states are

ḡα
(
EF,α

)
= gα

(
ĒF,α

)
+ gα

( ¯̄EF,α
)

≈ 2gα
(
EF,α

)
+

1

4
(Umα + V mα′)2 g′′α

(
EF,α

)
,

¯̄gα
(
EF,α

)
= gα

(
ĒF,α

)
− gα

( ¯̄EF,α
)

≈ (Umα + V mα′ + gJµBH) g′α
(
EF,α

)
. (B.80)

For the first derivative

g′α
(
ĒF,α

)
≈ g′α

(
EF,α

)
+

1

2
(Umα + V mα′ + gJµBH) g′′α

(
EF,α

)
,

g′α
( ¯̄EF,α

)
≈ g′α

(
EF,α

)
− 1

2
(Umα + V mα′ + gJµBH) g′′α

(
EF,α

)
, (B.81)

thus

ḡ′α
(
EF,α

)
= g′α

(
ĒF,α

)
+ g′α

( ¯̄EF,α
)
≈ 2g′α

(
EF,α

)
,

¯̄g′α
(
EF,α

)
= g′α

(
ĒF,α

)
− g′α

( ¯̄EF,α
)

≈ (Umα + V mα′ + gJµBH) g′′α
(
EF,α

)
. (B.82)
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And for the second derivative

g′′α
(
ĒF,α

)
≈ g′′α

(
EF,α

)
+O

(
g′′′α
)
,

g′′α
( ¯̄EF,α

)
≈ g′′α

(
EF,α

)
+O

(
g′′′α
)
,

ḡ′′α
(
EF,α

)
= g′′α

(
ĒF,α

)
+ g′′α

( ¯̄EF,α
)
≈ 2g′′α

(
EF,α

)
,

¯̄g′′α
(
EF,α

)
= g′′α

(
ĒF,α

)
− g′′α

( ¯̄EF,α
)
≈ 0 . (B.83)

B.6.3. Magnetization py-Orbital

The magnetization of the py-orbital is computed through

my = n̄y↑ − n̄y↓ =
1

2

∫ ∞
−∞

gy(ε) fy↑(ε) dε−
1

2

∫ ∞
−∞

gy(ε) fy↓(ε) dε ,

(B.84)

applying the Sommerfeld expansion (3.39) results in

my ≈
1

2

{∫ µy↑

−∞
gy(ε) dε+

π2

6
(kBT )2 g′y

(
µy↑
)}

− 1

2

{∫ µy↓

−∞
gy(ε) dε+

π2

6
(kBT )2 g′y

(
µy↓
)}

. (B.85)

Splitting the limits of the integrals and adding a zero reveals

my =
1

2

∫ EF,y

−∞
gy(ε) dε+

1

2

∫ ĒF,y

EF,y

gy(ε) dε+
1

2

∫ ĒF,y+∆µy

ĒF,y

gy(ε) dε

− 1

2

∫ ¯̄EF,y

−∞
gy(ε) dε−

1

2

∫ ¯̄EF,y+∆µy

¯̄EF,y

gy(ε) dε±
1

2

∫ EF,y

¯̄EF,y

gy(ε) dε

+
1

2

π2

6
(kBT )2 [g′y(µy↑)− g′y(µy↓)]

=
1

2

∫ ĒF,y

¯̄EF,y

gy(ε) dε+
1

2

∫ ĒF,y+∆µy

ĒF,y

gy(ε) dε−
1

2

∫ ¯̄EF,y+∆µy

¯̄EF,y

gy(ε) dε

+
1

2

π2

6
(kBT )2 [g′y(µy↑)− g′y(µy↓)] , (B.86)
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with ĒF,y and ¯̄EF,y from before, equation (B.72). As the next step, we integrate
the individual terms and compute

my =
1

2

[
Gy(ε)

]ĒF,y
¯̄EF,y

+
1

2

[
Gy(ε)

]ĒF,y+∆µy

ĒF,y
− 1

2

[
Gy(ε)

] ¯̄EF,y+∆µy

¯̄EF,y

+
1

2

π2

6
(kBT )2 [g′y(µy↑)− g′y(µy↓)] . (B.87)

We expand the integrated density of states Gy(ε) around the Fermi energy
EF,y up to third order in the magnetizations and we expand the temperature
dependent term around the modified Fermi energies ĒF,y, ¯̄EF,y in orders of the
deviation ∆µy up to first order. The magnetization then becomes

my ≈
1

2

{
Gy
(
EF,y

)
+

1

2
(Umy + V mx + gJµBH) gy

(
EF,y

)
+

1

8
(Umy + V mx)2 g′y

(
EF,y

)
+

1

2

1

4!
(Umy + V mx)3 g′′y

(
EF,y

)
−
[
Gy
(
EF,y

)
− 1

2
(Umy + V mx + gJµBH) gy

(
EF,y

)
+

1

8
(Umy + V mx)2 g′y

(
EF,y

)
− 1

2

1

4!
(Umy + V mx)3 g′′y

(
EF,y

) ]}
+

1

2

{
Gy
(
ĒF,y

)
+ ∆µy gy

(
ĒF,y

)
−Gy

(
ĒF,y

)}
− 1

2

{
Gy
( ¯̄EF,y

)
+ ∆µy gy

( ¯̄EF,y
)
−Gy

( ¯̄EF,y
)}

+
1

2

π2

6
(kBT )2

[
g′y
(
ĒF,y

)
+ ∆µy g

′′
y

(
ĒF,y

)
−
(
g′y
( ¯̄EF,y

)
+ ∆µy g

′′
y

( ¯̄EF,y
)) ]

, (B.88)
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this then reduces to

my =
1

2

{
(Umy + V mx + gJµBH) gy

(
EF,y

)
+

1

4!
(Umy + V mx)3 g′′y

(
EF,y

)}
+

1

2
∆µy

{
¯̄gy
(
EF,y

)
+
π2

6
(kBT )2 ¯̄g′′y

(
EF,y

)}
+

1

2

π2

6
(kBT )2 ¯̄g′y

(
EF,y

)
, (B.89)

where we have introduced

¯̄gy
(
EF,y

)
= gy

(
ĒF,y

)
− gy

( ¯̄EF,y
)
,

¯̄g′y
(
EF,y

)
= g′y

(
ĒF,y

)
− g′y

( ¯̄EF,y
)
,

¯̄g′′y
(
EF,y

)
= g′′y

(
ĒF,y

)
− g′′y

( ¯̄EF,y
)
. (B.90)

Then, we use the expansions of sec. B.6.2 to reduce and simplify equation (B.89)
further such that

my ≈
1

2

{
(Umy + V mx + gJµBH) gy

(
EF,y

)
+
π2

6
(kBT )2 (Umy + V mx + gJµBH) g′′y

(
EF,y

)
+

1

4!
(Umy + V mx)3 g′′y

(
EF,y

)}
+

1

2
∆µy

{
(Umy + V mx + gJµBH) g′y

(
EF,y

)}
. (B.91)

We insert the deviation ∆µy of eq. (B.78), where we also apply the expansions
of sec. B.6.2 to ∆µy, into the above equation and have

my =
1

2

{
(Umy + V mx + gJµBH)

[
gy
(
EF,y

)
+
π2

6
(kBT )2 g′′y

(
EF,y

)]
+

1

4!
(Umy + V mx)3 g′′y

(
EF,y

)}
+

1

2

{
− 1

8
(Umy + V mx)2 − π2

6
(kBT )2

}g′y(EF,y)
gy
(
EF,y

)
× (Umy + V mx + gJµBH) g′y

(
EF,y

)
. (B.92)
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Here we have neglected a small contribution within the denominator of the
deviation ∆µy. The magnetization then becomes

my =
1

2
(Umy + V mx + gJµBH) gy

(
EF,y

)
×

{
1− π2

6
(kBT )2

[
g′ 2y
(
EF,y

)
g2
y

(
EF,y

) − g′′y
(
EF,y

)
gy
(
EF,y

)]}

+
3

2

1

4!
(Umy + V mx)3

[
g′′y
(
EF,y

)
3

−
g′ 2y
(
EF,y

)
gy
(
EF,y

) ] . (B.93)

Ginzburg-Landau Theory for Magnetization

Within the magnetization (B.93) we have neglected higher contributions of the
magnetic field than linear order. This is based on the principle form of the
energy functional within the Ginzburg-Landau theory of phase transitions [100,
101], it reads

F [m] ∼ a2m
2 + a4m

4 −m ·H , (B.94)

where a2,4 are some tuning parameters andm the corresponding order parameter.
Minimizing the energy functional with respect to the order parameter then
reveals

dF [m]

dm
!

= 0 = 2a2m+ 4a4m
3 −H , (B.95)

and thus only the linear order in the magnetic field is relevant.

Magnetization of py-Orbital

For sake of convenience we introduce

ξ
(
T,EF,y

)
= 1− π2

6
(kBT )2

[
g′ 2y
(
EF,y

)
g2
y

(
EF,y

) − g′′y
(
EF,y

)
gy
(
EF,y

)]

= 1− π2

6
(kBT )2 Λ

(
EF,y

)
,

ζ
(
EF,y

)
=

[
g′′y
(
EF,y

)
3

−
g′ 2y
(
EF,y

)
gy
(
EF,y

) ] , (B.96)
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and the magnetization takes the convenient form

my =
1

2
(Umy + V mx + gJµBH) gy

(
EF,y

)
ξ
(
T,EF,y

)
+

3

2

1

4!
(Umy + V mx)3 ζ

(
EF,y

)
. (B.97)

B.6.4. Eigenvalue Problem of Magnetization

We determine the eigenvalues and eigenvectors for the tensor representa-
tion (3.60) of the magnetization, for the special case of vanishing magnetic
field, H = 0. The tensor representation then is(

mx

my

)
=

1

2

(
Ugx

(
EF,x

)
ξ
(
T,EF,x

)
V gx

(
EF,x

)
ξ
(
T,EF,x

)
V gy
(
EF,y

)
ξ
(
T,EF,y

)
Ugy
(
EF,y

)
ξ
(
T,EF,y

))(mx

my

)
,

(B.98)

for sake of brevity, we introduce

gx
(
EF,x

)
= gx , gy

(
EF,y

)
= gy ,

ξ
(
T,EF,x

)
= ξx , ξ

(
T,EF,y

)
= ξy . (B.99)

The representation takes the form(
mx

my

)
=

1

2

(
Ugxξx V gxξx

V gyξy Ugyξy

)(
mx

my

)
. (B.100)

We compute the eigenvalues through the standard procedure det(A− λE)
!

= 0,
this leads to ∣∣∣∣(1

2Ugxξx − λ
1
2V gxξx

1
2V gyξy

1
2Ugyξy − λ

)∣∣∣∣ !
= 0

⇒ λ2 − λ

2
U (gxξx + gyξy) +

1

4
gxgyξxξy

(
U2 − V 2

)
= 0 , (B.101)

solving for λ then yields

λ1,2 =
U

4
(gxξx + gyξy)±

1

2

√
U2

4
(gxξx + gyξy)

2 − gxgyξxξy (U2 − V 2)

=
U

4
(gxξx + gyξy)

[
1±

√
1 +

4gxgyξxξy (V 2 − U2)
2

U2 (gxξx + gyξy)
2

]
, (B.102)
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the desired eigenvalues. We are interested in a setup, where the two density of
states are identical, with the same Fermi energy

gx = gy = g(EF ) ,

ξx = ξy = ξ(T,EF ) , (B.103)

the eigenvalues then become

λ1,2 =
1

2
g(EF ) ξ(T,EF ) [U ± V ] . (B.104)

The eigenvalues directly lead to two self-consistency equations(
mx

my

)
=

(
λ1 0

0 λ2

) (
mx

my

)
⇒ 1 =

1

2
g(EF ) ξ(T,EF ) [U + V ]

and 1 =
1

2
g(EF ) ξ(T,EF ) [U − V ] . (B.105)

Fulfilling one of the self-consistency equations signals the instability of the
system and thus a phase transition. The next task is to compute the eigenvectors
to determine the principle structure of the phase after the transition. The
eigenvectors are calculated through (A − λiE) (EVi) = 0, where we find the
first set of eigenvectors for the first eigenvalue(

1
2Ug(EF ) ξ(T,EF )− λ1

1
2V g(EF ) ξ(T,EF )

1
2V g(EF ) ξ(T,EF ) 1

2Ug(EF ) ξ(T,EF )− λ1

) (
EV11

EV12

)
!

=

(
0

0

)
1

2
V g(EF ) ξ(T,EF )

(
−1 1

1 −1

) (
EV11

EV12

)
!

=

(
0

0

)
⇒ EV1 =

(
1

1

)
∨

(
−1

−1

)
. (B.106)

These eigenvectors correspond to the common ferromagnet, where the majority
of spins are ↑ or ↓ in both orbitals, depending on the eigenvector. The order
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parameter here thus is m = mx +my. The second set of eigenvectors is(
1
2Ug(EF ) ξ(T,EF )− λ2

1
2V g(EF ) ξ(T,EF )

1
2V g(EF ) ξ(T,EF ) 1

2Ug(EF ) ξ(T,EF )− λ2

) (
EV21

EV22

)
!

=

(
0

0

)
1

2
V g(EF ) ξ(T,EF )

(
1 1

1 1

) (
EV21

EV22

)
!

=

(
0

0

)
⇒ EV2 =

(
1

−1

)
∨

(
−1

1

)
. (B.107)

Here the majority of spins point ↑ within the px-orbitals and ↓ in the py-orbitals
or vice versa. This configuration relates to a ferromagnetic phase with orbital
symmetry breaking. Here, the order parameter can be given as m̃ = mx −my.
Note that we have the same set of eigenvectors, if we use the tensor repre-

sentation(
0

0

)
=

(
1
2Ugxξx − 1 1

2V gxξx
1
2V gyξy

1
2Ugyξy − 1

)(
mx

my

)
. (B.108)

B.6.5. Susceptibility of Mean-Field System

In general, the magnetic susceptibility is calculated through

χ =
∂M

∂H
or χ =

∂2F

∂H2
, (B.109)

where M is the thermodynamic magnetization of the system, H the magnetic
field and F = G(T,H) is the energy functional, here the Gibbs free energy.
The susceptibility χ represents the magnetic moment induced by a magnetic
field H. If the relation

~M = χ ~H , (B.110)

holds, then the material is called to be linear. In addition, if χ > 0, the material
is dominated by paramagnetism, for χ < 0 by diamagnetism, [141, 146]. The
two relevant equations, deduced from eq. (3.58) and eq. (3.63), are

0 =
1

2
gJµBHg(EF ) ξ(T,EF ) +

[
1

2
g(EF ) ξ(T,EF ) (U + V )

]
m,

0 =
1

2
gJµBHg(EF ) ξ(T,EF ) +

[
1

2
g(EF ) ξ(T,EF ) (U − V )

]
m̃ , (B.111)
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where we have also introduced the order parameters m = mx + my for the
ferromagnetic phase and m̃ = mx−my for the ferromagnetic phase with orbital
symmetry breaking, as before. We can solve both equations for m, m̃ and
compute

m =
1
2 gJµB g(EF ) ξ(T,EF ) H

1− 1
2 g(EF ) ξ(T,EF ) (U + V )

,

m̃ =
1
2 gJµB g(EF ) ξ(T,EF ) H

1− 1
2 g(EF ) ξ(T,EF ) (U − V )

. (B.112)

Hence, the system always has a finite magnetization for an applied magnetic
field, even before the instability condition is reached. Our system depends
linearly on the magnetic field, thus the susceptibility can be calculated as

χ =
M

H
=
µBm

H

⇒ χ =
1
2 gJµ

2
B g(EF ) ξ(T,EF )

1− 1
2 g(EF ) ξ(T,EF ) (U ± V )

. (B.113)

The susceptibility diverges at the same critical condition as found for the
self-consistency equations (3.64a) and (3.64b). Fulfilling the self-consistency
equations, the susceptibility diverges and signals a phase transition leading
to additional solutions for the magnetizations m, m̃. In fig. B.3 we give the
susceptibilities for the dominant order parameter m for three different reduced
Fermi energies εF > 0 and two temperatures, the same parameters as in fig. 3.10,
in order to compare the behavior. Again, we only give the εF > 0 sector, since
we obtain the analog results for εF < 0. From the plot B.3 we find that the
susceptibility diverges at the same values as the phase transition occurs in the
plot for the solutions of the magnetization fig. 3.10. This holds for the zero
temperature scenario as well as for kBT/t

‖ = 1. Increasing the temperature
shifts the divergence of the susceptibility to larger values of the interaction
strengths, as in the vanishing magnetic field case.
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Fig. B.3 Susceptibility χ of eq. (B.113) for three different reduced Fermi
energies εF > 0 as given in the plot and two different temperatures kBT/t

‖,
plotted over the reduced interaction strengths (U + V ) /t‖. The parameters
are chosen to be identical to fig. 3.10, to observe the diverging susceptibility
at the same critical condition, as the magnetic field free scenario. a) Zero
temperature susceptibility. b) Here the temperature is kBT/t

‖ = 1 and we
see, that the functions are shifted to larger interaction strengths, as before.

B.6.6. Solutions of Magnetization for Finite Magnetic
Field

The self-consistency equation (3.58) can be transformed by using the eigenvec-
tors EV1 = (1, 1) and EV2 = (1,−1), thus the order parameters m = mx +my

and m̃ = mx−my, as well as the simplification of identical density of state (3.62).
The equation becomes

0 = m

[
1 +

3
2

1
4! (U ± V )3 ζ(EF )

1
2 (U ± V ) g(EF ) ξ(T,EF )− 1

m2

]

+
1
2 gJ µB g(EF ) ξ(T,EF )H

1
2 (U ± V ) g(EF ) ξ(T,EF )− 1

, (B.114)

where the plus sign within the interaction strengths U + V relates to the
dominant order parameter m and the minus sign in U − V to the sub-leading
order parameter m̃. Solving this equation by hand for the magnetization is
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tedious, therefore we introduce new parameters

a =
3

2

1

4!
(U ± V )3 ζ(EF ) ,

b =
1

2
(U ± V ) g(EF ) ξ(T,EF )− 1 ,

c =
1

2
gJ µB g(EF ) ξ(T,EF ) H , (B.115)

and the equation to solve then takes the convenient form

0 = m
[
1 +

a

b
m2
]

+
c

b
. (B.116)

We insert this equation into the software "Mathematica" and find the three
possible solutions as

m1 =
2× 31/3a b− 21/3 [d(a, b, c)]2/3

62/3 a [d(a, b, c)]1/3
,

m2 =
−2
(
3i+

√
3
)
a b+ 21/3 31/6

(
1− i

√
3
)

[d(a, b, c)]2/3

2× 22/3 35/6 a [d(a, b, c)]1/3
,

m3 =
−2
(
−3i+

√
3
)
a b+ 21/3 31/6

(
1 + i

√
3
)

[d(a, b, c)]2/3

2× 22/3 35/6 a [d(a, b, c)]1/3
, (B.117)

with

d(a, b, c) = 9a2c+
√

3
√
a3 (4b3 + 27a c2) . (B.118)

The solutions (B.117) are plotted in fig. 3.11 for three different reduced Fermi
energies εF > 0, two different temperatures as well as two different magnetic
fields. For further details and explanations of the behavior, see main text within
sec. 3.4.6.

B.7. Derivations of Strong Coupling Section

We present here additional calculations and considerations of the strong coupling
section, which were neglected in the main text.
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B.7.1. Representation of Projected Equations in Strong
Coupling Limit

The full Hamiltonian of our system is

H =−
∑
αs

{
t‖
∑
〈i,j〉‖α

(
c†jαsciαs + h.c.

)
+ t⊥

∑
〈i,j〉⊥α

(
c†jαsciαs + h.c.

)}
− µ

∑
iαs

c†iαsciαs + U
∑
i

(
nix↑ nix↓ + niy↑ niy↓

)
+ V

∑
i

[
T+
i↑ T

+
i↓ + T−i↑ T

−
i↓ − 2

(
~Six · ~Siy −

1

4
nix niy

)]
=Hkin + Hint = T̃ + Ṽ , (B.119)

where the chemical potential µ directly vanishes, since we are interested in
half-filling.
Before we get into the detailed analysis of the different projections, we give
the form of the projectors Pm. The P0 projector makes sure, that no double-
occupancy occurs for a certain lattice site, despite the initial configuration of
the state within the considered site. On the other hand, the projector P1 acts
to have a site with one double-occupancy of one of the orbitals, where as P2

acts to have two double-occupancies. The projectors then are of the form

P0 = (1− niαs niαs̄) (1− niᾱs̄) ,
P1 = (1− niαs niαs̄)niᾱs̄ ,
P2 = niαs niαs̄ niᾱs̄ , (B.120)

where niαs is the number operator, α = x, y, α 6= ᾱ considers the orbital and
s =↑, ↓, s 6= s̄ the spin. Since there are two orbitals present in our system,
instead of one [111], the projectors thus consider this.
Step by step we now analyze the different projections P0 HP0, P1 HP0, P0 HP1,
P1 HP1, P2 HP1, P1 HP2, P2 HP2 and investigate, how they act on the different
Hilbert subspaces.
1.) P0 HP0: Here we know, hopping is solely from a half-filled site i into an
empty or singly filled neighboring site j. No interaction term appears here,
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because double-occupancy does not occur. Only T̃ is relevant.

P0 HP0 = P0 T̃P0

= −P0

∑
αs

{
t‖
∑
〈i,j〉‖α

(
c†jαsciαs + h.c.

)
+ t⊥

∑
〈i,j〉⊥α

(
c†jαsciαs + h.c.

)}
P0

= −
∑
〈i,j〉‖α,s

[
(1− njys njys̄) (1− njxs̄) t‖ c†jxscixs (1− nixs̄) (1− niys niys̄)

+ (1− njxs njxs̄) (1− njys̄) t‖ c†jysciys (1− niys̄) (1− nixs nixs̄)
]

−
∑
〈i,j〉⊥α ,s

[
(1− njys njys̄) (1− njxs̄) t⊥ c†jxscixs (1− nixs̄) (1− niys niys̄)

+ (1− njxs njxs̄) (1− njys̄) t⊥ c†jysciys (1− niys̄) (1− nixs nixs̄)
]
.

(B.121)

2.) P1 HP0: This combination of operators projects the half-filled orbitals onto
a single double-occupied subspace. No interaction term appears here, because
the double-occupied subspace is already projected out by P0. Thus, we only
have hopping from a half-filled site i to a neighboring half-filled site j to make
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an orbital double-occupied. The projection then is

P1 HP0 = P1 T̃P0

= −P1

∑
αs

{
t‖
∑
〈i,j〉‖α

(
c†jαsciαs + h.c.

)
+ t⊥

∑
〈i,j〉⊥α

(
c†jαsciαs + h.c.

)}
P0

= −
∑
〈i,j〉‖α,s

[
(1− njys njys̄)njxs̄ t‖ c†jxscixs (1− nixs̄) (1− niys niys̄)

+ (1− njxs njxs̄)njys̄ t‖ c†jysciys (1− niys̄) (1− nixs nixs̄)
]

−
∑
〈i,j〉⊥α ,s

[
(1− njys njys̄)njxs̄ t⊥ c†jxscixs (1− nixs̄) (1− niys niys̄)

+ (1− njxs njxs̄)njys̄ t⊥ c†jysciys (1− niys̄) (1− nixs nixs̄)
]
.

(B.122)

3.) P0 HP1: For this configuration of projectors, the interaction term is
cancelled out by P0. In this process hopping starts at site i, where one orbital
is double-occupied and ends in an empty site j to make this half-filled or singly
occupied.

P0 HP1 = P0 T̃P1

= −P0

∑
αs

{
t‖
∑
〈i,j〉‖

(
c†jαsciαs + h.c.

)
+ t⊥

∑
〈i,j〉⊥

(
c†jαsciαs + h.c.

)}
P1
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= −
∑
〈i,j〉‖,s

[
(1− njys njys̄) (1− njxs̄) t‖ c†jxscixs nixs̄ (1− niys niys̄)

+ (1− njxs njxs̄) (1− njys̄) t‖ c†jysciys niys̄ (1− nixs nixs̄)
]

−
∑
〈i,j〉⊥,s

[
(1− njys njys̄) (1− njxs̄) t⊥ c†jxscixs nixs̄ (1− niys niys̄)

+ (1− njxs njxs̄) (1− njys̄) t⊥ c†jysciys niys̄ (1− nixs nixs̄)
]
.

(B.123)

4.) P1 HP1: With this combination we encounter for the first time the inter-
action part, since we start in a single double-occupied site i and the process
makes the neighboring site j double-occupied for one orbital. The correct form
of the projected interaction part will be the task of a later step within the
derivation. Here we first concentrate on the hopping mechanism.

P1 HP1 = P1 T̃P1 + P1 ṼP1 ,

P1 T̃P1 =

− P1

∑
αs

{
t‖
∑
〈i,j〉‖α

(
c†jαsciαs + h.c.

)
+ t⊥

∑
〈i,j〉⊥α

(
c†jαsciαs + h.c.

)}
P1

= −
∑
〈i,j〉‖α,s

[
(1− njys njys̄)njxs̄ t‖ c†jxscixs nixs̄ (1− niys niys̄)

+ (1− njxs njxs̄)njys̄ t‖ c†jysciys niys̄ (1− nixs nixs̄)
]

−
∑
〈i,j〉⊥α ,s

[
(1− njys njys̄)njxs̄ t⊥ c†jxscixs nixs̄ (1− niys niys̄)

+ (1− njxs njxs̄)njys̄ t⊥ c†jysciys niys̄ (1− nixs nixs̄)
]
,
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P1 ṼP1 = P1

∑
〈j〉‖

[{
U
(
njx↑ njx↓ + njy↑ njy↓

)
+

1

2
V njx njy

}]
P1

+ P1

∑
〈j〉⊥

[{
U
(
njx↑ njx↓ + njy↑ njy↓

)
+

1

2
V njx njy

}]
P1 .

(B.124)

Be aware, for this process the orbital operators (T±is ) as well as the spin operator
contribution (~Siα ~Siβ) vanishes in the interaction Hamiltonian.
5.) P2 HP1: Here we start at a site i, where one orbital is double-occupied, and
one fermion hops into a site j, where already one orbital is double-occupied.
For this configuration we also encounter the interaction term.

P2 HP1 = P2 T̃P1 + P2 ṼP1 ,

P2 T̃P1 =

− P2

∑
αs

{
t‖
∑
〈i,j〉‖α

(
c†jαsciαs + h.c.

)
+ t⊥

∑
〈i,j〉⊥α

(
c†jαsciαs + h.c.

)}
P1

= −
∑
〈i,j〉‖α,s

[
njys njys̄ njxs̄ t

‖ c†jxscixs nixs̄ (1− niys niys̄)

+ njxs njxs̄ njys̄ t
‖ c†jysciys niys̄ (1− nixs nixs̄)

]
−
∑
〈i,j〉⊥α ,s

[
njys njys̄ njxs̄ t

⊥ c†jxscixs nixs̄ (1− niys niys̄)

+ njxs njxs̄ njys̄ t
⊥ c†jysciys niys̄ (1− nixs nixs̄)

]
,

P2 ṼP1 = P2

∑
〈j〉‖

[{
U
(
njx↑ njx↓ + njy↑ njy↓

)
+

1

2
V njx njy

}]
P1

+ P2

∑
〈j〉⊥

[{
U
(
njx↑ njx↓ + njy↑ njy↓

)
+

1

2
V njx njy

}]
P1 .

(B.125)

6.) P1 HP2: For this configuration, we start at a fully filled lattice site i and
one fermion hops into a neighboring half-filled site j in order to achieve one
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orbital to be occupied by two fermions. Again we encounter the interaction
term, which takes on the similar form as before.

P1 HP2 = P1 T̃P2 + P1 ṼP2 ,

P1 T̃P2 =

− P1

∑
αs

{
t‖
∑
〈i,j〉‖α

(
c†jαsciαs + h.c.

)
+ t⊥

∑
〈i,j〉⊥α

(
c†jαsciαs + h.c.

)}
P2

= −
∑
〈i,j〉‖α,s

[
(1− njys njys̄)njxs̄ t‖ c†jxscixs nixs̄ niys niys̄

+ (1− njxs njxs̄)njys̄ t‖ c†jysciys niys̄ nixs nixs̄
]

−
∑
〈i,j〉⊥α ,s

[
(1− njys njys̄)njxs̄ t⊥ c†jxscixs nixs̄ niys niys̄

+ (1− njxs njxs̄)njys̄ t⊥ c†jysciys niys̄ nixs nixs̄
]
,

P1 ṼP2 = P1

∑
〈j〉‖

[{
U
(
njx↑ njx↓ + njy↑ njy↓

)
+

1

2
V njx njy

}]
P2

+ P1

∑
〈j〉⊥

[{
U
(
njx↑ njx↓ + njy↑ njy↓

)
+

1

2
V njx njy

}]
P2 .

(B.126)

7.) P2 HP2: Here we start at a fully filled lattice site i and the hopping process
reveals a fully filled neighboring site j.

P2 HP2 = P2 T̃P2 + P2 ṼP2 ,
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P2 T̃P2 =

− P2

∑
αs

{
t‖
∑
〈i,j〉‖α

(
c†jαsciαs + h.c.

)
+ t⊥

∑
〈i,j〉⊥α

(
c†jαsciαs + h.c.

)}
P2

= −
∑
〈i,j〉‖α,s

[
njys njys̄ njxs̄ t

‖ c†jxscixs nixs̄ niys niys̄

+ njxs njxs̄ njys̄ t
‖ c†jysciys niys̄ nixs nixs̄

]
−
∑
〈i,j〉⊥α ,s

[
njys njys̄ njxs̄ t

⊥ c†jxscixs nixs̄ niys niys̄

+ njxs njxs̄ njys̄ t
⊥ c†jysciys niys̄ nixs nixs̄

]
,

P2 ṼP2 = P2

∑
〈j〉‖

[{
U
(
njx↑ njx↓ + njy↑ njy↓

)
+

1

2
V njx njy

}]
P2

+ P2

∑
〈j〉⊥

[{
U
(
njx↑ njx↓ + njy↑ njy↓

)
+

1

2
V njx njy

}]
P2 .

(B.127)

B.7.2. Two-Site Investigation of Effective Hamiltonian

For the effective Hamiltonian (3.84) we encounter additional coupling mech-
anisms, compared to the previous spin-1/2 scenario of the original Hamil-
tonian (B.119). For the two-site model, the effective Hamiltonian reduces
to

HSC =
[
J̃‖
(
~S1x · ~S2x −

1

4
n1x n2x

)
+ J̃⊥

(
~S1y · ~S2y −

1

4
n1y n2y

)]
,

(B.128)

with the new parameters J̃‖ = 4t‖ 2/ (U + V ) and J̃⊥ = 4t⊥ 2/ (U + V ). To
calculate the energies, we introduce the total x- and y-spin operators, namely

~S12α = ~S1α + ~S2α , (B.129)

148



B.7. Derivations of Strong Coupling Section

where α considers the orbital px, py. Thus, we couple the two spin-1/2 to a
spin-1 operator such that the quantum numbers of it are

S12α = 0, 1 with mS 12α = 0, ±1 . (B.130)

With this, we have to consider a new basis with

|α, S12α,mS 12α〉 = A |α1 α2〉+B |α1 α2〉 . (B.131)

We can write for the different couplings

S12α = 0 : mS 12α = 0 ⇒ |α, 0, 0〉 =
1

2
( | ↑↓〉 − | ↓↑〉 ) ,

S12α = 1 : mS 12α = 1 ⇒ |α, 1, 1〉 = | ↑↑〉 ,

mS 12α = 0 ⇒ |α, 1, 0〉 =
1

2
( | ↑↓〉+ | ↓↑〉 ) ,

mS 12α = −1 ⇒ |α, 1,−1〉 = | ↓↓〉 , (B.132)

After the introduction of the spin operator, we can re-express the two-site
Hamiltonian as

HSC = J̃‖
{

1

2

(
S2

12x − S2
1x − S2

2x

)
− 1

4
n1x n2x

}
+ J̃⊥

{
1

2

(
S2

12 y − S2
1y − S2

2y

)
− 1

4
n1y n2y

}
, (B.133)

We directly find, that only the spin singlet configuration computes a non-zero
energy and thus delivers the lowest energy. Hence, the two-site strong coupling
ground state is described by the spin singlet, an antiferromagnet.

B.7.3. Introduction of Spin-1 Operator Representation

To further reduce the representation of the effective Hamiltonian (3.84), we
consider a spin-1 scenario. Each lattice site is described by a spin triplet
configuration, as given in the initial steps of the strong coupling derivation.
The possible spin triplet states |Ti〉 for a single site are given in equation (3.20).
This initial configuration of the lattice sites then suggests to introduce a spin-1
representation. The reduced effective Hamiltonian then should take a form as

HJ ∼ ~Si · ~Sj , (B.134)
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where the spin-1 operators are constructed through

~Si = ~Six + ~Siy and ~Sj = ~Sjx + ~Sjy . (B.135)

Coupling these spin operators together reveals for the Hilbert subspaces

(H1)i ⊗ (H1)j = (H0 ⊕H1 ⊕H2)ij , (B.136)

and thus

• S = 2: quintet, 5 states,

• S = 1: triplet, 3 states,

• S = 0: singlet, 1 state,

in total 9 possible configurations.

Representation of Spin-1 States

For these different coupling mechanisms (B.136) we refer to the Clebsch-Gordan
framework and its coupling table for different angular momenta [69]. In the
following we give these states and write them as

|Stotal , mtotal〉 = A |mi ; mj〉+B |mi ; mj〉+ C |mi ; mj〉 , (B.137)

on the other hand we know for the initial configuration

|site i〉 = |S = 1 , m = 0,±1〉i , (B.138)

which were spin triplets. This is why we only give the m quantum number in
equation (B.137) for the individual sites.
We begin by giving the singlet case

S = 0, m = 0 :

|0, 0〉 =
1√
3

(
|1;−1〉 − |0; 0〉+ | − 1; 1〉

)
=

1√
3

[
|x ↑ y ↑;x ↓ y ↓〉 − 1

2

(
|x ↑ y ↓;x ↑ y ↓〉+ |x ↑ y ↓;x ↓ y ↑〉

+ |x ↓ y ↑;x ↑ y ↓〉+ |x ↓ y ↑;x ↓ y ↑〉
)

+ |x ↓ y ↓;x ↑ y ↑〉
]
,

(B.139)
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where we write the different configurations within the individual orbitals and
sites in the second and third row.
The triplet case is

S = 1, m = 1 :

|1, 1〉 =
1√
2

(
|1 ; 0〉 − |0 ; 1〉

)
=

1

2

[
|x ↑ y ↑;x ↑ y ↓〉+ |x ↑ y ↑;x ↓ y ↑〉

− |x ↑ y ↓;x ↑ y ↑〉 − |x ↓ y ↑;x ↑ y ↑〉
]
,

S = 1, m = 0 :

|1, 0〉 =
1√
2

(
|1 ; −1〉 − | − 1 ; 1〉

)
=

1√
2

(|x ↑ y ↑;x ↓ y ↓〉 − |x ↓ y ↓;x ↑ y ↑〉) ,

S = 1, m = −1 :

|1;−1〉 =
1√
2

(
|0 ; −1〉 − | − 1 ; 0〉

)
=

1

2

[
|x ↑ y ↓;x ↓ y ↓〉+ |x ↓ y ↑;x ↓ y ↓〉

− |x ↓ y ↓;x ↑ y ↓〉 − |x ↓ y ↓;x ↓ y ↑〉
]
. (B.140)
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As the last step we give the quintet states

S = 2, m = 2 :

|2, 2〉 = |1 ; 1〉 = |x ↑ y ↑;x ↑ y ↑〉
S = 2, m = 1 :

|2, 1〉 =
1√
2

(
|1 ; 0〉+ |0 ; 1〉

)
=

1

2

[
|x ↑ y ↑;x ↑ y ↓〉+ |x ↑ y ↑;x ↓ y ↑〉

+ |x ↑ y ↓;x ↑ y ↑〉+ |x ↓ y ↑;x ↑ y ↑〉
]

S = 2, m = 0 :

|2, 0〉 =
1√
6
|1 ; −1〉+

√
2

3
|0 ; 0〉+

1√
6
| − 1 ; 1〉

=
1√
6

[
|x ↑ y ↑;x ↓ y ↓〉+ |x ↑ y ↓;x ↑ y ↓〉+ |x ↑ y ↓;x ↓ y ↑〉

+ |x ↓ y ↑;x ↑ y ↓〉+ |x ↓ y ↑;x ↓ y ↑〉+ |x ↓ y ↓;x ↑ y ↑〉
]

S = 2, m = −1 :

|2,−1〉 =
1√
2

(
|0 ; −1〉+ | − 1 ; 0〉

)
=

1

2

[
|x ↑ y ↓;x ↓ y ↓〉+ |x ↓ y ↑;x ↓ y ↓〉

+ |x ↓ y ↓;x ↑ y ↓〉+ |x ↓ y ↓;x ↓ y ↑〉
]

S = 2, m = 2 :

|2, 2〉 = | − 1 ; −1〉 = |x ↓ y ↓;x ↓ y ↓〉 . (B.141)

Reduction of Effective Hamiltonian

After giving all possible states for the coupling of spins and their representations,
we focus on the reduction of the effective Hamiltonian. As the first step, we
consider the application of the spin operators S±iα = Sxiα ± S

y
iα, S

z
iα onto the
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pre-coupled states |S , m〉i (B.138). The next step is then to find a translation
of the spin operators Siα towards the spin-1 operators.
From basic quantum mechanics [69, 72, 121, 229] we know

Sziα |S , m〉i = m |S , m〉i
〈j1 j2m1m2|J±|j1 j2 J m〉 =

√
J (J + 1)−m (m± 1)

× 〈j1 j2m1m2|j1 j2 j m± 1〉 , (B.142)

where we give the relation and action of the raising and lowering spin operator
for a general angular momentum operator, in addition J± = J±1 + J±2 .
We then calculate

〈m′i|S+
iα|mi〉 =

 〈1|〈0|
〈−1|

0 1/
√

2 0

0 0 1/
√

2

0 0 0

 |1〉
|0〉
| − 1〉

 ,

〈m′i|S−iα|mi〉 =

 〈1|〈0|
〈−1|

 0 0 0

1/
√

2 0 0

0 1/
√

2 0

 |1〉
|0〉
| − 1〉

 ,

〈m′i|Sziα|mi〉 =

 〈1|〈0|
〈−1|

1/2 0 0

0 0 0

0 0 −1/2

 |1〉
|0〉
| − 1〉

 . (B.143)

Note, the initial – pre-coupled – states on every lattice site i are spin triplets,
as given in equation (3.20). The additional configurations of states follow after
the coupling of (H1)i ⊗ (H1)j .
Next, we determine the actions of the newly introduced spin-1 operators of
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equation (B.135) for the pre-coupled states |S , m〉i. We compute

〈m′i|S+
i |mi〉 =

 〈1|〈0|
〈−1|

0
√

2 0

0 0
√

2

0 0 0

 |1〉
|0〉
| − 1〉

 ,

〈m′i|S−i |mi〉 =

 〈1|〈0|
〈−1|

 0 0 0√
2 0 0

0
√

2 0

 |1〉
|0〉
| − 1〉

 ,

〈m′i|Szi |mi〉 =

 〈1|〈0|
〈−1|

1 0 0

0 0 0

0 0 −1

 |1〉
|0〉
| − 1〉

 . (B.144)

Now we compare the results of equation (B.143) and equation (B.144) closely,
in order to find the translation from the spin operators S± ,ziα towards the new
spin-1 operators S± ,zi as

S±iα →
1

2
S±i and Sziα → Szi

⇒ ~Siα →
1

2
~Si , (B.145)

for our half-filled strong coupling scenario. In addition we can translate the
particle number operators to niα → ni/2.
Then we are able to evaluate the translation for the effective Hamiltonian

HSC =
∑
α

[
J‖
∑
〈i,j〉‖α

(
~Siα · ~Sjα −

1

4
niαnjα

)
+J⊥

∑
〈i,j〉⊥α

(
~Siα · ~Sjα −

1

4
niαnjα

)]
, (B.146)

into the spin-1 representation and directly obtain

HJ =
1

4

(
J‖ + J⊥

)∑
〈i,j〉

(
~Si · ~Sj −

1

4
ninj

)
. (B.147)

Be aware, now the summation runs over all lattice sites i as well as every
neighboring site j regardless of the previously restricted directions indicated
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through 〈i, j〉‖,⊥α . The reduced effective Hamiltonian HJ is again of the well-
known Heisenberg form and has the desired spin operator contribution of ~Si · ~Sj .
The new ground state is again an antiferromagnetic configuration, as we can
calculate through the different coupled states |S = 0, 1, 2〉ij with

~Si · ~Sj =
1

2

(
S2
ij − S2

i − S2
j

)
,

⇒ HJ =
1

8

(
J‖ + J⊥

)∑
〈i,j〉

(
S2
ij − S2

i − S2
j −

1

2
ninj

)
. (B.148)

For our half-filled strong coupling case with the initial spin triplet configuration
we know

ni |S = 1 , m〉i = 2 |S = 1 ,m〉i , (B.149)

and Si,j = 1. The Hamiltonian HJ can be reduced to

HJ =
1

8

(
J‖ + J⊥

)∑
〈i,j〉

(
S2
ij − 6

)
, (B.150)

where we find the lowest energy for the Hamiltonian for the singlet configuration.
Hence, the ground state is ordered in an antiferromagnet, to maximize the
virtual hopping processes, as illustrated in the example in fig. 3.15.
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APPENDIX

THREE

SUPPLEMENTARY MATERIAL TO MAJORANA
MODES

C.1. Analysis Possible Processes

We present in detail the relevant processes given in section 4.2.4 of the derivation
of the effective Hamiltonian. The individual processes refer to fig. 4.6.

a) i: |n〉: empty, En = 0, |m〉: s-wave fermion, Em = δa,
|n′〉: empty, En′ = 0

Ha)i =
2|wa|2

δa

∑
p

ApA
†
p , (C.1)

as discussed in detail in section 4.2.4.

For sake of readability and convenience, we will only give the relevant contribu-
tion to the total Hamiltonian for the given configuration.

a) ii: |n〉: empty, En = 0, |m〉: pα-wave fermion, Em = δb,
|n′〉: empty, En′ = 0

Ha)ii =
2 |wb|2

δb

∑
α,p

BαpB
†
αp . (C.2)
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After these scenarios – where the final state remains empty – we consider the
cases where the initial state is empty and the final state is occupied with a
molecule.

b) i: |n〉: empty, En = 0, |m〉: s-wave fermion, Em = δa,
|n′〉: pα-molecule, En′ = U + δa + δb

Hb)i = wbwa
∑
α,p

B†αpA
†
p

(
1

δa
− 1

U + δb

)
. (C.3)

b) ii: |n〉: empty, En = 0, |m〉: pα-wave fermion, Em = δb,
|n′〉: pα-molecule, En′ = U + δa + δb

Hb)ii = wawb
∑
α,p

A†pB
†
αp

(
1

δb
− 1

U + δa

)
. (C.4)

b): With
[
A†p, B

†
αp

]
= 0, we can sum eq. (C.3) and eq. (C.4) and compute

for the condition δb = −δa

Hb) = −2wawbU

U2 − δ2
a

∑
α,p

B†αpA
†
p . (C.5)

Next we investigate the scenarios, where the initial state is occupied by a
molecule, but the final state is empty.

c) i: |n〉: pα-molecule, En = U + δa + δb,
|m〉: s-wave fermion, Em = δa, |n′〉: empty, En′ = 0

Hc)i = wawb
∑
α,p

ApBαp

(
1

δa
− 1

U + δb

)
. (C.6)

c) ii: |n〉: pα-molecule, En = U + δa + δb,
|m〉: pα-wave fermion, Em = δb, |n′〉: empty, En′ = 0

Hc)ii = wawb
∑
α,p

BαpAp

(
1

δb
− 1

U + δa

)
. (C.7)
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c): We again combine eq. (C.6) and eq. (C.5) and use δb = −δa, to find

Hc) = −2Uwawb
U2 − δ2

a

∑
α,p

ApBαp . (C.8)

The process in fig. 4.6d) is again a hopping process of fermions on the lattice
sites and thus covered in the contributions of a) above. Now we turn our
attention the the processes where the initial state is occupied by a molecule
and the final state is again a molecule.

e) i: |n〉: pα-molecule, En = U + δa + δb,
|m〉: pα-wave fermion, Em = δb,
|n′〉: pα-molecule, En′ = U + δa + δb

He)i = − 2|wa|2

U + δa

∑
p

A†pAp . (C.9)

e) ii: |n〉: pα-molecule, En = U + δa + δb,
|m〉: s-wave fermion, Em = δa,
|n′〉: pα-molecule, En′ = U + δa + δb

He)ii = − 2|wb|2

U + δb

∑
α,p

B†αpBαp . (C.10)

f): |n〉: pα-molecule, En = U + δa + δb,
|m〉: s-wave fermion, Em = δa,
|n′〉: pα′-molecule, En′ = U + δa + δb

Hf) = − 2|wb|2

U + δb

∑
α,α′,p,α 6=α′

B†α′pBαp . (C.11)

For sake of completeness, we investigate row 4 of the Hamiltonian (4.33) for the
general case, in addition also the operator configuration BαpB

†
α′p, for α 6= α′.

The Hamiltonian of interest reads

H3 = wawb
∑
α,p

A†pBαp︸ ︷︷ ︸
β

+BαpA
†︸ ︷︷ ︸

ε

+ApB
†
αp︸ ︷︷ ︸

χ

+B†αpAp︸ ︷︷ ︸
ξ

 . (C.12)
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C. Supplementary Material to Majorana Modes

Parts β and ξ require one corresponding fermion to be in a state of the plaquette
in order to be able to act. Since the energy penalty for one fermion is high, the
system will not be in a state, with one fermion on a plaquette as the ground
state. Hence, these parts drop out, based on energy scale reasoning. In addition,
we give the calculations for these cases

β: En = δb, Em = 0, En′ = δa

Hβ = −wawb
∑
α,p

A†pBαp

(
1

δb
+

1

δa

)
= 0 , since δb = −δa . (C.13)

ξ: En = δa, Em = 0, En′ = δb

Hξ = −wawb
∑
α,p

B†αpAp

(
1

δa
+

1

δb

)
= 0 . (C.14)

The fermions do not change their symmetry while being in a state on the
plaquette. Thus, parts ε and χ also drop out. These parts require a change of
symmetry from s-wave to pα-wave and vice versa. We present the calculations
for both cases

ε: We have to have a fermion in a state on the plaquette, namely pα-wave
fermion, in order to avoid divergence within the energy term. Then
En = δb, Em = U + δa + δb, En′ = δa

Hε = wawb
∑
α,p

BαpA
†
p

(
1

U + δa
+

1

U + δb

)
, (C.15)

since no interaction term can be present, this reduces to

Hε = wawb
∑
α,p

BαpA
†
p

(
1

δa
+

1

δb

)
= 0 . (C.16)

χ: Here we also have to have an initial state with an s-wave fermion on the
plaquette to avoid divergence.
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C.2. Transformed Hamiltonian

En = δa, Em = U + δa + δb, En′ = δb

Hχ = wawb
∑
α,p

ApB
†
αp

(
1

U + δb
+

1

U + δa

)
since U = 0

= wawb
∑
α,p

ApB
†
αp

(
1

δb
+

1

δa

)
= 0 . (C.17)

The symmetry change reason also holds for the last term, BαpB
†
α′p, α 6= α′.

A pα-wave fermion does not change symmetry to pα′-wave by its own, only
through a rotation by π/4. Therefore this term drops out too.

C.2. Transformed Hamiltonian

Here we give the full transformed Hamiltonian of the p-wave section, with all
operators inserted. The Hamiltonian then reads

HT = H0 −
∑
p

{
|wa|2

δa

(
ApA

†
p − ApA

†
p −
∑
α

(
BαpB

†
αp −BαpB

†
αp

))

− U |wa|2

U2 − δ2
a

∑
α

(
B†αpA

†
p −B

†
αpA

†
p + ApBαp − ApBαp

)
− |wa|

2

U + δa

(
A†pAp − A

†
pAp

)
− |wa|

2

U − δa

∑
α′,α

(
B†α′pBαp −B

†
α′pBαp

)}
,

with

H0 = δa
∑
p

a†pap + δb
∑
α,p

b†αpbαp + U
∑
α,p

b†αpbαp a
†
pap .
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Then

HT = H0 +
∑
p

{
−2|wa|2

δa

[
apa
†
p

(
c†1c2 + c†1c4 + c†2c1 + c†2c3

+c†3c2 + c†3c4 + c†4c1 + c†4c3
)

−bxpb†xp
(
c†1c2 − c

†
1c4 + c†2c1 − c

†
2c3

−c†3c2 + c†3c4 − c
†
4c1 + c†4c3

)
−bypb†yp

(
− c†1c2 + c†1c4 − c

†
2c1 + c†2c3

+c†3c2 − c
†
3c4 + c†4c1 − c

†
4c3
)]

+
4U |wa|2
U2−δ2a

[
X†p (c2c3 − c4c1) +Xp

(
c†3c
†
2 − c

†
1c
†
4

)
+Y †p (c1c2 − c3c4) + Yp

(
c†2c
†
1 − c

†
4c
†
3

)]
+

2|wa|2
U+δa

[
a†pap

(
c1c
†
2 + c1c

†
4 + c2c

†
1 + c2c

†
3

+c3c
†
2 + c3c

†
4 + c4c

†
1 + c4c

†
3

)]
+

2|wa|2
U−δa

[
b†xpbxp

(
c1c
†
2 − c1c

†
4 + c2c

†
1 − c2c

†
3

−c3c†2 + c3c
†
4 − c4c

†
1 + c4c

†
3

)
+b†ypbyp

(
− c1c†2 + c1c

†
4 − c2c

†
1 + c2c

†
3

+c3c
†
2 − c3c

†
4 + c4c

†
1 − c4c

†
3

)
+b†xpbyp

(
− c1c†2 + c1c

†
4 + c2c

†
1 − c2c

†
3

+c3c
†
2 − c3c

†
4 − c4c

†
1 + c4c

†
3

)
+b†ypbxp

(
c1c
†
2 − c1c

†
4 − c2c

†
1 + c2c

†
3

−c3c†2 + c3c
†
4 + c4c

†
1 − c4c

†
3

)]}
.
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