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||| Abstract

In this thesis we consider the construction of functional Hilbert spaces as the low-energy sector of
a microscopic system. The construction of such Hilbert spaces is of large interest as it provides a
path towards the realization of quantum phases with long-range entanglement, stable quantum
memories and fault-tolerant quantum computing.
To construct such a Hilbert space, a suitable platform must offer fine-grained control of its degrees
of freedom and decouple the environment. Recent experimental advances promise the individ-
ual control of hundreds of atoms[11, 32] and allow for the construction of three-dimensional
structures[4]. This motivates a promising ansatz for such a platform, given by individually
trapped neutral atoms that can be excited into Rydberg states.

Such excited Rydberg atoms exhibit strong interactions. In previous studies[38, 42, 30, 23] this
was often approximated via a blockade between nearby atoms in the PXP model, neglecting
interactions between distant atoms. In this thesis we consider more realistic, algebraic decaying
van der Waals (VdW) interactions U ∝ 1/r6 as a model for Rydberg interactions and we com-
pare our results with previous studies from the PXP model.

As one part of this thesis we work towards the elusive goal of realizing the paradigmatic sur-
face code with Abelian Z2 topological order. Additionally we consider the Fibonacci model as
a string-net condensate with non-Abelian anyons which promises applications in fault-tolerant
quantum computation. As such models are notoriously hard to realize we focus on a reductionist
approach via engineering elementary building blocks of synthetic quantum matter on the Ryd-
berg platform. This approach proposes carefully designed lattice structures which can give rise to
long-range entangled ground states under quantum fluctuations[42]. As one part of this thesis,
we derive the possible local mappings to the Rydberg platform and construct the elementary
building blocks in the VdW model. We also formulate general statements on how string-nets
with loops behave on tessellated Rydberg structures with algebraic decaying interactions and
study local excitations.

Besides the design of synthetic quantum matter, a promising near term application of the Ryd-
berg platform for the NISQ era is the geometric programming via encoding algorithmic problems
in the geometry of the atomic structure. A reductionist approach considers the construction
of the logic elementaries on the Rydberg platform which can be concatenated to construct
larger logic circuits. This has been demonstrated for the PXP model within in the blockade
approximation[38]. The study of logic circuits in the context of algebraic decaying VdW inter-
actions makes the second part of this thesis.

The studies in this thesis are supported by an exhaustive list of provably minimal and optimal
building blocks for two and three-dimensional structures within the VdW framework which we
thoroughly compare with the building blocks from the PXP model.





||| Kurzzusammenfassung

In dieser Arbeit betrachten wir die Konstruktion von funktionalen Hilberträumen als Niedri-
genergiesektor eines mikroskopischen Systems. Die Konstruktion solcher Hilbert-Räume ist von
großem Interesse, da sie einen Weg zur Realisierung von Quantenphasen mit weitreichender Ver-
schränkung, stabilen Quantenspeichern und fehlertoleranten Quantencomputern bietet.
Um einen solchen Hilbert-Raum zu konstruieren, muss eine geeignete Plattform eine feinkörnige
Kontrolle ihrer Freiheitsgrade bieten und die Umgebung entkoppeln. Jüngste experimentelle
Fortschritte versprechen die individuelle Kontrolle von Hunderten von Atomen[11, 32] und ermöglichen
die Konstruktion dreidimensionaler Strukturen[4]. Dies motiviert einen vielversprechenden Ansatz
für eine solche Plattform; durch einzeln gefangene, neutrale Atome, die in Rydberg-Zustände an-
geregt werden können.

Solche angeregten Rydberg-Atome weisen starke Wechselwirkungen auf. In früheren Studien
wurde dies oft durch eine Blockade zwischen nahegelegenen Atomen im PXP-Modell approx-
imiert, wobei Wechselwirkungen zwischen entfernten Atomen vernachlässigt wurden. In dieser
Arbeit betrachten wir realistischere, algebraisch abklingende van der Waals (VdW)-Wechselwirkungen
U ∝ 1/r6 als ein Modell für Rydberg-Wechselwirkungen und vergleichen unsere Ergebnisse mit
früheren Studien aus dem PXP-Modell.

Als ein Teil dieser Arbeit arbeiten wir auf das schwer fassbare Ziel hin, den paradigmatischen
‘Surface Code’ mit abelscher Z2 topologischer Ordnung zu realisieren. Zusätzlich betrachten wir
das Fibonacci-Modell als ‘String’-Netz-Kondensat mit nicht-abelschen Anyonen, das Anwendun-
gen in der fehlertoleranten Quantenberechnung verspricht. Da solche Modelle bekanntermaßen
schwer zu realisieren sind, konzentrieren wir uns auf einen reduktionistischen Ansatz, bei dem
elementare Bausteine der synthetischen Quantenmaterie auf der Rydberg-Plattform entwickelt
werden. Dieser Ansatz schlägt sorgfältig entworfene Gitterstrukturen vor, die unter Quanten-
fluktuationen verschränkte Grundzustände mit langer Reichweite hervorbringen können[42]. Im
Rahmen dieser Arbeit leiten wir die möglichen lokalen Projektionen auf die Rydberg-Plattform ab
und konstruieren die elementaren Bausteine im VdW-Modell. Wir formulieren auch allgemeine
Aussagen darüber, wie sich ‘String’-Netz-Kondensate mit Schleifen auf mosaikartigen Rydberg-
Strukturen mit algebraischen abklingenden Wechselwirkungen verhalten und untersuchen lokale
Anregungen.

Neben dem Entwurf synthetischer Quantenmaterie ist eine vielversprechende kurzfristige An-
wendung der Rydberg-Plattform für die NISQ-Ära die geometrische Programmierung über die
Kodierung algorithmischer Probleme in der Geometrie der atomaren Struktur. Ein reduktion-
istischer Ansatz sieht die Konstruktion von Logikelementen auf der Rydberg-Plattform vor, die
zur Konstruktion größerer logischer Schaltungen verkettet werden können. Dies wurde für das
PXP-Modell im Rahmen der Blockade-Näherung demonstriert[38]. Die Untersuchung logischer



Schaltungen im Zusammenhang mit algebraisch abklingenden VdW-Wechselwirkungen bildet
den zweiten Teil dieser Arbeit.

Die Untersuchungen in dieser Arbeit werden durch eine erschöpfende Liste von bewiesen min-
imalen und optimalen Bausteinen für zwei- und dreidimensionale Strukturen im Rahmen des
VdW-Modells unterstützt und gründlich mit den Bausteinen aus dem PXP-Modell verglichen.
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1 ||| Summary

In this thesis we study functional structures of Rydberg atoms interacting via VdW interactions
in two and three dimensions. The thesis can be thematically split in four parts which include one
or two chapter each. We refer to previous overview for a visualization of the parts, the chapters
and the main topics of this thesis. The first part introduces the theoretical framework, the
formulation of the problem and the tools we developed to tackle this problem. The remaining
parts can be thematically split between the two main topics of this thesis, namely geometric
programming and the engineering of synthetic quantum matter. For latter topic we focus on two
important string-net models with loop degrees of freedom: the paradigmatic surface code and
the Fibonacci model which supports non-Abelian anyons. In the following we want to give a brief
overview over the chapters and their main results:

➔ In chap. 2 (part 1) we introduce the physical model and the mathematical framework.
We rigorously define the important concepts of languages, L-manifolds and L-complexes
in sec. 2.2. With this new vocabulary in sec. 2.3 we rigorously formulate the objective of
this thesis as to construct functional Rydberg structures. Such a construction is generally
highly nontrivial for more complex targets which motivates us to introduce a reductionist
approach called ‘amalgamation’ (sec. 2.4). To evaluate our results we introduce useful
measures of quality in sec. 2.5.

➔ In chap. 3 (part 1) we discuss the problems which arise during the construction of functional
Rydberg complexes and introduce tools and methods to tackle these problems. Finally, we
exemplarily apply the tools to complexes to picture their advantages and disadvantages.
In sec. 3.1 we start by introducing a rejection sampling algorithm which constructs sample
structures implementing a given target. The problem arises that such samples are generally
not quite optimal. Therefore in sec. 3.2 we introduce a minimization algorithm to optimize
the sample structures in the measures of quality. Especially for large structures this is
numerically intensive. This motivates us to formulate alg. 3.3 which allows for an efficient
calculation of the relevant quantities based on lemma III. Still such a numerical algorithm
has troubles achieving perfect quality. In sec. 3.3 we formulate theorem V and multiple
corollaries which guarantee perfect quality. In sec. 3.4 we study the effect of symmetries.
We introduce the formalism of effective languages which allow us to generalize theorem V



for symmetric targets. Theorem V and its derived corollaries are central to this thesis and
are frequently used. This chapter concludes part 1 of the thesis.

➔ We consider elementary logic gates in chap. 4 (part 2). For all gates of this chapter we were
able to achieve perfect quality. In sec. 4.1 we start by reconstructing and optimizing the
known logic gates from the PXP model[38] in the VdW model. We add additional gates
to complete the list of elementary logic gates for the PXP model. We continue with VdW
specific elementary gates in sec. 4.2 and sec. 4.3. For every elementary logic gate we find a
more atom-efficient implementation in the VdW model. We prove that these gates are the
most atom-efficient gates and that the list of gates is complete. The VdW-specific gates
are mainly based on the intermediate and low-energy regime which can not be accurately
portrayed in the PXP model. This suggests that the simplification by the PXP ‘blockade-
approximation’ removes important degrees of freedom which are useful for the construction
of more atom-efficient Rydberg structures. As a trade-off the VdW-specific gates based
on the low-energy regime possess a smaller energy gap to the excited states. Nevertheless
the VdW-specific gates based on the intermediate energy regime possess similar or larger
energy gaps than the PXP-inspired gates.

➔ In chap. 5 (part 2) we focus on the elementary building blocks of the tessellated string-net
Hilbert spaces, namely the surface code and the Fibonacci model, in two dimensions. We
introduce and discuss the different mappings to the Rydberg platform in sec. 5.1.1 and
5.2.1. In the next sections 5.1.2 and 5.2.2 we reconstruct the elementaries of the PXP
model. We find that they can not be implemented in the VdW model with perfect quality
due to the additional long-range interactions. In the following subsections 5.1.3, 5.1.4 and
5.2.3 we derive more atom-efficient realizations in the VdW model, for some of which we are
able to achieve perfect quality. For the surface code we find that the asymmetric mapping
is more natural to implement on the Rydberg platform. This concludes part 2 of this thesis.

➔ We continue with a study on tessellated structures constructed from the elementary building
blocks in chap. 6 (part 3). We start with a numerical analysis of tessellated structures in
sec. 6.1 however this is only possible for small structures due to numerical limitations. Thus
from sec. 6.2 onward we concentrate on an analytical approach: We formulate the central
theorem XI which excludes the existence of systems with independent loop (Boolean)
degrees of freedom on tessellated structures in the VdW model. For the analogous case we
formulate theorem XIV for tessellated languages on the honeycomb grid which quantifies
the interplay between the quality, the size of the grid and the distance between vertices.
In sec. 6.4 we consider the case of local languages on the honeycomb grid. We determine
quantitative upper and lower bounds on the quality and study them in sec. 6.5.

➔ In chap. 7 (part 3) we consider general Boolean functions for which we want to achieve
perfect quality. This leads us to the concept of virtual ancillaries (sec. 7.1). We generalize
this concept in sec. 7.2 with theorem XVII which guarantees that the implementation
of any Boolean or check function with exponentially many ancillaries in the number of
variables. In the outlook 7.3 we offer an argument why for general cases we can not expect
a realization of Boolean functions with sub-exponentially many ancillaries.

➔ Lastly in part 4, in the most comprehensive chap. 8 we consider quasiplanar (‘almost two-
dimensional’) and three-dimensional structures of atoms. We find that some elementary
structures profit from an embedding in three dimensional space (subsec. 8.1.1). In sec.
8.2 we construct a complete list of atom-efficient ternary logic gates with perfect quality:
some noteworthy examples ar the minority-gate, the Toffoli gate and the Fredkin gate.



We consider gates which realize multiple logical connectives simultaneously in sec. 8.4 and
subsec. 8.1.2. Especially latter gates are highly symmetric such that they promise an
equal-weight superposition of the ground states when perturbatively introducing quantum
fluctuations. In the final two sections 8.5 and 8.6 we focus on surface code and Fibonacci
model elementaries in three dimensions. Especially for the surface code we can more
efficiently implement a unit cell by including the third dimension. For the Fibonacci
model we include a comparative study between all possible atom-efficient realizations in
two and three dimensions.

In conclusion we find for each elementary building block a more atom-efficient implementation
in the VdW model with at most one ancillary. It turns out useful to consider different mappings
to the Rydberg platform or to include the third spatial dimension. The VdW model introduces
additional DOFs in the long-range interactions. They can be useful for the construction of
efficient gates but they also perturb larger structures. This can prevent the construction of
tessellated Hilbert spaces. The perturbations can be balanced with additional atoms.





2 ||| Theoretical Foundation

“The great book of nature can be read only by those who know
the language in which it was written. And this language is math-
ematics.”

– Galileo Galilei

In this chapter we introduce the physical foundation for this thesis. As this is a work on theoret-
ical physics it includes a considerable amount of mathematics. In this chapter we do not want
to repeat the mathematical basics but instead refer to common literature. We start with a brief
overview over this chapter:

In sec. 2.1 we describe the physical model we consider for this thesis. We introduce the important
definitions and concepts in sec. 2.2. This allows us to precisely formulate the goal of this thesis
in sec. 2.3 as to construct functional structures on the Rydberg platform. As this is generally
hard to fulfill for larger systems we follow a reductionist approach which we introduce in sec. 2.4.
Afterwards in sec. 2.5 we introduce some measures which allow us to evaluate the constructed
structures. We conclude with some general preliminary remarks and assumptions on which this
thesis is based in sec. 2.6.

In this thesis in chap. 5 and chap. 6 we exemplarily consider two tessellated systems character-
ized by local gauge constraints, namely the surface code and the Fibonacci model. We do not
want to introduce their fundamentals in this chapter but instead refer to subsec. 5.1.1 for the
surface code and subsec. 5.2.1 for the Fibonacci model.
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2.1 ||| Introduction of the Model

We consider an arrangement of trapped neutral atoms in two- or three dimensional flat space
interacting via isotropic Van der Waals interactions. The set of atoms is denoted by N , the atoms
are denoted by Fraktur letters i, j, k, l, . . . ∈ N and the number of atoms is denoted by N = |N |.
The atoms are placed at positions rrri ∈ Rd where d ∈ {2, 3} is the dimension we are considering.
Within two-level approximation the atoms are assumed to behave as a spin-1/2 particle with an
electronic ground state |n = 0⟩ and an excited Rydberg state |n = 1⟩. The electronic ground
state of each atom i ∈ N is coupled to the Rydberg state via an external laser fields of Rabi
frequency Ωi. The detuning of the driving lasers from the Rydberg state is denoted by ∆i which
is potentially different for every atom.

The VdW model. In the Van der Waals (VdW) model we assume repulsive VdW interac-
tions UVdW(rij) = C/r6ij between excited Rydberg atoms at distance rij = ∥rrri−rrrj∥. C is denoted
the coupling strength or interaction strength. Here we are only interested in the classical limit
of low Rabi frequencies Ωi → 0. The quantum dynamics of this system is (within rotating wave
approximation) governed by the Hamiltonian

H[C] = −
∑
i∈N

∆ini +
1

2

∑
i̸=j

UVdW(rij)ninj. (2.1)

The tuple C = (rrri,∆i | i ∈ N ) is called the (Rydberg) structure of the system. It is determined
by the geometry GC = (rrri | i ∈ N ) and the detunings ∆C = (∆i | i ∈ N ). In the following we are
only interested in physical geometries with some finite distance between atoms. The Hamiltonian

acts on the Hilbert space H = (C2)⊗N ∼= C2N of states |nnn⟩ = |ni, nj, . . . ⟩ with representation
ni = |1⟩⟨1|i. By ramping up the Rabi frequencies Ωi we can perturbatively introduce quantum
fluctuations.

The PXP model. At this point we want to mention the general concept of γ-models with
power-law interaction Uγ(rij) = C/rγij with inverse exponent γ > 0[25]. In the case γ = 6 we
recover the VdW model U6(rij) ≡ UVdW(rij), in the case γ = 3 we recover a model for dipole-
dipole interaction. In the limit γ →∞ we recover the blockade model or PXP model.

The PXP model is defined by unit blockade radii rB,i = 1 where U∞(rij) ≡ UPXP(rij) = U∞Θ(1−
rij). Here Θ is the Heaviside (unit) step function. In the PXP model we consider the limit
U∞ →∞. Two atoms are said two be in blockade if they are of distance smaller than the blockade
radius. Such eigenstates are energetically gapped out, i.e. it is energetically unfavorable to excite
atoms which are in blockade in the PXP model. This motivates to the definition of the blockade
graph B = (V,E). Its vertices V = N are the atoms and two atoms i, j ∈ V are connected via
an edge {i, j} ∈ E if and only if the are in blockade. In the PXP model with unit blockade radii
this corresponds to a unit-d-ball graph. The blockade graph fully incorporates the kinematic
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constraints of the PXP model. Only the independent sets (ISs) of the blockade graph possess
finite energies, i.e. sets of vertices such that no two vertices are connected via an edge in the
blockade graph. It is always energetically favorable to construct a maximal independent set
(MIS) which is an IS that is no subset of any other IS. The energetic ground states of a Rydberg
structure in the PXP model are the maximum weighted independent sets (MWIS) of the blockade
graph and the detunings, i.e. the MIS of atoms/ vertices which maximizes the sum its detunings
∆C .

The PXP model has been studied as a reasonable approximation for the low-energy physics
of Rydberg structures[38, 43]. However it can not accurately depict the intermediate energy
regime and omits residual long-range interactions. Particularly for these cases the VdW model
is physically more accurate. On the one hand its finite interaction energies offer new degrees of
freedom (DOFs) which promise new possibilities and qualitatively new behavior in the regime
of intermediate energies. On the other hand the long-range interaction energies between atom
perturb structures constructed in the PXP model which introduces new difficulties. In this thesis
we focus on the VdW model unless stated otherwise. Nevertheless many statements and findings
are valid for different γ-models (for finite γ <∞) as well or may be generalized straightforwardly.

Blockade Radii. In analogy to the PXP model we can also introduce the concept of blockade
radii in other γ-models. For each atom i ∈ N we associate a blockade radius rB,i = (C/∆i)

1/γ

which is defined as the radius of atom i where the interaction energy with a test atom would
equal the detuning ∆i. For finite γ < ∞ the blockade radii will be in general different for
different atoms however the dependence on the detuning becomes quite weak for large γ ≫ 1.
Note that in the limit γ → ∞ we recover the unit blockade radii rB,i = 1 of the PXP model.
Two atoms are then said to be in blockade with each other if at least one of the atoms lies in the
blockade radius of the other atom. In this case the state where just one atom (the atom with the
larger detuning) is excited is energetically favorable compared to the state where both atoms are
excited simultaneously. This allows us to generalize the concept of a blockade graph B = (V,E)
to different γ-models. The concept of blockade radii and the blockade graph is going to be used
all over this thesis. The reader should be aware however that these concepts lose some physical
relevance for finite γ ≪ ∞. While the concepts encompass the VdW interaction between two
atoms, the physics of more than two atoms is not fully portrayed by these concepts.

Example 1. (Blockade Radii in the VdW model)

For instance consider the case of three atoms where no two atoms are in blockade with each
other in the VdW model. The state where all three atoms are excited simultaneously might
still be energetically disfavourable compared to the states where only two or one atoms are
excited. This is the case if their distances are (barely) larger than the blockade radii however
the sum of any two interactions is larger than the third detuning. One could interpret this as
a ’collective blockade radius’.

Nevertheless the blockade radii are going to be useful for a clear visualization of the geometry
and to obtain a notion of distance in plots especially in d = 2 dimensions. The blockade graph
only contains edges between nearby atoms and offers a quick overview of vicinity of atoms.

||| 21



Chapter 2 Theoretical Foundation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 ||| Languages, L-Manifolds and L-Complexes

The goal of this thesis is going to be to construct structures C such that the Hamiltonian H[C]
possesses a gapped low-energy eigenspace H0 = H0[H[C]] ’equal’ to some target Hilbert space
Ht. More precisely, we are interested in target Hilbert spaces defined by some (formal) language
L on the binary alphabet F2 = {0, 1} in the following way: A word xxx = (x1, . . . xN ) ∈ FN

2 on
the binary alphabet is a string of letters (also called bits) xi ∈ F2 of the alphabet. The set of
all words is denoted by F∗

2 =
⋃

N∈N FN
2 . A (formal) language is then defined as a set of words

L ⊆ F∗
2. in the following we are interested in uniform languages with words of equal length N ,

i.e. L ⊆ FN
2 . Such a uniform language naturally defines a Hilbert space called L-manifold via

the linear span

H(L) = span ({|xxx⟩ | xxx ∈ L}) ≤ (C2)⊗N , (2.2)

where we identified the words xxx ≃ |xxx⟩ with vectors and L as the spanning set of vectors. The
language realizing a target Hilbert space Ht = H(L) is also denoted the target language Lt or
the ground state manifold G, its words xxx ∈ G are called the ground states. Conversely, the words
of the same length which are not element of the target language are called the excited states and
they define the excited state manifold E = FN

2 \G. The length of the ground state manifold will
be denoted by g = |G| and the length of the excited state manifold will be denoted by e = |E|. It
is easy to see that g + e = 2N . In the following we are particularly interested in two families of
target languages: tessellated languages and Boolean languages. We start by introducing latter
concept.

Boolean target Languages. Consider some Boolean function v : Fk
2 → Fm

2 of arity k ∈ N
with m ∈ N≥1. For m = 1 the Boolean function v is scalar, for m > 1 it is vector-valued. It
naturally defines a Boolean language

L[v] = {(x1, . . . xk, y1, . . . ym) | xxx ∈ Fk
2 , yyy = v(xxx)} ⊂ Fk+m

2 (2.3)

where each word equals one row of its truth table. Languages of this family possess 2k words.

Note that there exist a total of 22
km Boolean functions with dimension m of the codomain and

arity k of which 2(k+1)m are symmetric (this will become important later).

Tessellated target Languages. The second family of languages studied in this thesis are
tessellated languages on lattices. Consider for simplicity a finite square lattice L with periodic
boundary conditions and one vertex per lattice point. The set of vertices is denoted by V(L)
and is of cardinality V , the set of the edges is denoted by E(L) and is of cardinality E. With
each edge e ∈ E(L) we associate K classical bits (in the following usually K = 1) and which each
vertex v ∈ V(L) we associate M classical bits. The number of bits on edges is called k = KE,
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the number of bits on vertices is called m = MV . The generalization to non-square lattices,
different boundary conditions or larger bases is straightforward.

The system is described by a bit configuration xxx ∈ Fk+m
2 assigning every bit xi ∈ F2 a Boolean

value. For each vertex v ∈ V(L) we define a bit-projector Pv : Fk+m
2 → F4K

2 which maps a
bit configuration to the bits on the edges e1, . . . e4 ∈ E(L) emanating from vertex v: Pv(xxx) =
(xe1,1, . . . xe4,K). A tessellated language LL[fc] = LL[fc;w] in some realization w : F4K

2 → FM
2

is defined as the set of words which locally fulfill the check function fc : F4K
2 → F2 for each

vertex v ∈ V(L):

LL[fc] =
{
(xe1,1, . . . yvV ,M )

∣∣ ∀v ∈ V(L) : fc(Pv(xxx)) = 1, yyyv = w(Pv(xxx))
}
. (2.4)

The first k letters correspond to the bit configuration on the edges, the last m letters correspond
to the bit configuration on the vertices. Both the realization w and the check function fc are
Boolean functions, however latter is scalar and former may be vectorial. The check function is
effectively constraining the domain of w. The Hilbert space realized by a tessellated language is
called a tessellated Hilbert space HL[fc] = H(LL[fc]). It is the state space of a system of k +m
qubits with K qubits placed on each edge e ∈ E(L) and M qubits placed on each vertex v ∈ V(L)
locally realizing the check function fc and the Boolean function w.

Rydberg L-complexes. The structure C together with a tuple (K, Q) of disjoint sets of atoms
defines a (Rydberg) complex CQK (independent of any language). Consider a structure C of N
atoms and a (Boolean or tessellated) language L with words of length k+m = N . For a Boolean
language we choose q ∈ N≤m (in the following usually q ∈ {1, 2, 3}), for a tessellated language
choose q = 0. To connect the two notions of languages and complexes we define a (bijective)
labeling function

L : {1, . . . k +m} → N (2.5)

which identifies letter positions and atoms one-to-one. When given a labeling L we can thus
use the notions of atoms and indices interchangeably. We define K = L({1, . . . k}) and Q =
L({1+k, . . . k+q}). This defines the complex CQK with |K| = k and |Q| = q. The triple (CQK , L,L)
is called a (Rydberg) L-complex.

Further we define P =
⋃̇

K,Q with p = |P| and A = N\P with a = |A| accordingly. We call
the atoms in K the input ports, the atoms in Q the output ports, the atoms in their union P the
ports and the remaining atoms A the ancillas. The inverse labeling L−1 associates with each
set of atoms a set letter positions which we call input bits, output bits, port bits or ancillary bits
respectively. Via L the bits define the states of their atoms.

As the m = q + a output and ancillary bits of the languages are (Boolean) functions of the k
input bits they do not introduce additional degrees of freedom (DOFs) in the language. In the
L-complex of a Boolean language v we can define the projection of v on the output bits,

fb : Fk
2 → Fq

2 : xxx 7→ (v1(xxx), . . . vq(xxx)), (2.6)

and on the ancillary bits,

w : Fk
2 → Fa

2 : xxx 7→ (v1+q(xxx), . . . vq+a(xxx)). (2.7)

In the reverse we write

v ≡ (fb, w) : Fk
2 → Fm

2 : xxx 7→ ((fb)1(xxx), . . . (fb)q(xxx), w1(xxx), . . . wa(xxx)) (2.8)

||| 23



Chapter 2 Theoretical Foundation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

as the concatenation of fb and w. The projected (vectorial) Boolean fb is called the logical
connective (of the L-complex) and the L-complex is called the logic gate (of the Boolean v). Its
orthogonal projection w is called the realization (just as with tessellated languages), it determines
the state of the ancillas. The ancillas are (often) needed to adjust the energy structure of the
L-complex. For simplicity of notation we sometimes write L[fb] = L[fb;w] ≡ L[v] to denote
a Boolean language and LL[fc] = LL[fc;w] to denote a tessellated language. The projected
Boolean fb and the check function fc are jointly called target functions ft. For one target
function ft there exist many different realizations w.

At this point it is to stress that that the introduced terminology is inspired from the common
usage in electronic circuits. However in the present context there is no dynamics involved (we
never wrote down any equation of motion) in the sense that information is flowing into the
input ports and exits the output ports. Secondly, although the definitions and notation is closely
related to the formalism introduced by Stastny et al. [38], it slightly deviates at some points
(e.g. the definitions of the languages in (2.3) and (2.4) include ancillary bits which makes the
labeling function (2.5) is bijective).

2.3 ||| Setting the Objective

With the newly defined concepts we can summarize the main goal of this thesis as following:

Given some uniform target language Lt we want to construct L-complexes (CQK , Lt,L) such
that the Hamiltonian H[C] (cf. eq. (2.1)) realizes the target Hilbert space Ht = H(Lt)
(cf. eq. (2.2)) as its gapped low-energy eigenspace H0 = H0[H; C]:

H0

!∼=L Ht (2.9)

The languages we are particularly interested in are Boolean languages L[w] (cf. eq.
(2.3)) and tessellated languages LL[fc] (cf. eq. (2.4)) given by some target function ft
(and a grid L).

If eq. (2.9) is fulfilled by the the complex we say the complex ’implements’ the target Hilbert
space, the target language or the target function. To keep track of the different quantities and
steps in the construction it is important to stick to a precise language. Thus we are strictly
separating the notion of a realization w which defines the L-manifold Ht = H(L[ft;w]), and the
notion of an implementation CQK of Ht.

Loosely speaking the construction (2.9) can be understood as a ’reverse-engineering’ process
where we want to construct the inverse of the mapping H0[H; •] on the structure C (with labeling
L) for a given target Hilbert space Ht. However this mapping is neither injective and nor
surjective. Before we can start the construction we have to think about what realizations w
could be eligible and why others are not. Then we have to find a structure of length N = p+ a
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with an g-fold gapped low-energy eigenspace and determine a fitting labeling such that the L-
complex implements the target L-manifold, i.e. that the words in the target language map one-
to-one to the low-energy eigenstates. Obviously not every g-fold gapped low-energy eigenspace
can be interpreted by a labeling can be interpreted by some labeling as a given language L.
However a structure might be interpreted as different languages by different labelings. Hence the
construction of an L-complex for a given target poses a highly non-trivial question. Especially
for large target languages this makes a reductionist approach most promising.

2.4 ||| A reductionist Approach

We are going to start by constructing (small) ’primitives’ of L-complexes and we construct
larger ones by gluing the primitives together. This process is called amalgamation and was first
introduced by Stastny et al. in [38] for the PXP model. In the following we are going to
introduce the mathematical framework to this process for the VdW model.

Consider two L-complexes (C1Q1

K1
, L1,L1) and (C2Q2

K2
, L2,L2). In the following the subscripts

l ∈ I = {1, 2} index the languages and structures and their properties. We start by introducing
a concept to combine their languages.

The γ-Product of Languages. Let γ ⊂ {(n1, n2) | ∀l∈I : nl ∈ {1, . . . pl}} be a set of tuples of
port indices where the tuples are pairwise distinct in both arguments. Let γl = {nl | (n1, n2) ∈ γ}
such that |γ| = |γl| for l ∈ I. For a word xxxl ∈ Ll, let xxxl/γl denote the word where the bits at the
indices in γl are removed.

We define the γ-product of L1 and L2 as

Lγ = L1 ⊗γ L2 = {xxx1 ⊗γ (xxx2/γ2) | xxxl ∈ Ll,∀(n1,n2)∈γ : (x1)n1 = (x2)n2}. (2.10)

This is a language with words of length Nγ = N1 + N2 − |γ|. The construction restricts to
pairs of words from L1 and L2 fulfilling the compatibility condition: (x1)n1

= (x2)n2
for every

(n1, n2) ∈ γ. Then ⊗γ : FN1
2 × FN2−|γ2|

2 → FNγ

2 concatenates the words and orders the letters
such that the first letters are the input bits followed by the output bits and the last letters
are the ancillary bits. Therefore the lengths of the words are added (up to the number |γ| of
redundant letters) while the lengths of the languages are multiplied (up to the words not fulfilling
compatibility condition).

The bits (x1)n1 = (x2)n2 of (n1, n2) ∈ γ are identified as input bits or ancillary bits depending
on the context:

1 If we concatenate two Boolean languages where γl are output bit indices and γ3−l are
input bit indices then the concatenated bits provide redundant information (they functions
of the input bits of Ll). Thus they should be interpreted as ancillary bits. Thus the number
of input and output port for the γ-product is kγ = kl + k3−l − |γ| and qγ = ql + q3−l − |γ|
respectively.
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2 If we concatenate two tessellated languages where γl and γ3−l are input bit indices then
the bits of the concatenated language are still interpreted as input bits. This defines the
number of input and output ports kγ = kl + k3−l − |γ| and qγ = 0.

L-manifold. The L-manifold defined by Lγ isH(Lγ) = H(L1⊗γL2) ≤ (C2)⊗Nγ . It is isomorphic
to a quotient space of the tensor product:

H(Lγ) ∼= [H(L1)⊗H(L2)]/span({|xxx1⟩|xxx2⟩ | xxxl ∈ Ll,∃(n1,n2)∈γ : (x1)n1
̸= (x2)n2

}). (2.11)

The isomorphism corresponds to the projection of vectors fulfilling the compatibility condition
to vectors with the (redundant) components removed, and a relabeling of the basis vectors. In
that sense the γ-product can be understood as the ’partial product’ of languages constraint by
the compatibility condition.

The Amalgamation of Structures. The definition of the γ-product of L1 and L2 is useful

because it is paralleled by the combination of their structures Cl = (rrr
(l)
i ,∆

(l)
i | i ∈ Nl) called

amalgamation. Consider a set γ of tuples of port indices such that Lγ ̸= ∅. We assume that
the ports Ll(γl) are located at the boundary of their structure Cl. Further we assume that the
structures do not overlap in their geometry but that the ports identified by γ are at the same

position: rrr
(1)
L1(n1)

= rrr
(2)
L2(n2)

for each (n1, n2) ∈ γ.

We can then combine the two structures by identifying the atoms paired in γ, i.e. for all
(n1, n2) ∈ γ we consider L1(n1) = L2(n2) the same atom. Thus N1 and N2 have the intersection
N1 ∩ N2 = Ll(γl) of length |γ|. We label Nγ = N1 ∪ N2 the amalgamated set of atom which is

now of length Nγ = |Nγ | = N1+N2−|γ|. The amalgamated structure Cγ = (rrr
(γ)
i ,∆

(γ)
i | i ∈ Nγ)

consists of positions rrr
(γ)
i = rrr

(l)
i for i ∈ Nl

1 and detunings ∆
(γ)
i = ∆

(l)
i for i ∈ Nl△N3−l and

∆
(γ)
i = ∆

(1)
i +∆

(2)
i (2.12)

for i ∈ N1 ∩N2.

The labeling Lγ : {1, . . . Nγ} → Nγ is naturally defined by the labelings L1 and L2 (and the
ordering in ⊗γ). Again, the labeling defines the set of input ports Kγ = Lγ({1, . . . kγ}), the set

of output ports Qγ = Lγ({1 + kγ , . . . kγ + qγ}), the set of ports Pγ =
⋃̇

Kγ ,Qγ
with pγ = |Pγ |

and the set of ancillaries Aγ = Nγ\Pγ with aγ = |Aγ |. This yields the amalgamated L-complex

(CγQγ

Kγ
, Lγ ,Lγ).

The interaction Hamiltonian. The Hamiltonian of the amalgamated structure is the sum of
the Hamiltonians of the subcomplexes plus an additional correction term:

H[Cγ ] = (H[C1] +H[C2] +Hint[C1; C2])L1,2(γ)
. (2.13)

The index formally notes that atoms L1(n1) and L2(n2) associated by their indices (n1, n2) ∈ γ

are identified. For i ∈ N1 ∩ N2, the eigenenergies of the terms −∆(1)
i ni and −∆(2)

i ni add up

1It is rrr
(1)
i = rrr

(2)
i for i ∈ N1 ∩N2 by assumption thus this is well-defined.
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as defined previously; this yields −∆(γ)
i ni. Hint denotes the additional interactions arising in-

between atoms of different subcomplexes minus the double-counted interactions in-between ports
of their intersection:

Hint =

 ∑
i∈N1\N2, j∈N2\N1

−1

2

∑
i ̸=j∈N1∩N2

UVdW(rij)ninj. (2.14)

In the PXP model Hint = 0 vanishes and the Hamiltonian H[Cγ ] splits into the Hamiltonians

of its parts. Lets assume that ClQl

Kl
implements Ll via Ll in the PXP model. Then for the

PXP model the amalgamated complex CγQγ

Kγ
implements the amalgamated language Lγ with the

derived labeling Lγ : The eigenenergies of H[Cγ ] are lower bounded by the lowest eigenenergies
of its summands H[Cl]. This lower bound is only realized by the words xxx ∈ Lγ ̸= ∅.
In the VdW model the interaction term Hint ̸= 0 does not vanish and is in general different for
each eigenstate. This poses new challenges: even though the VdW interactions decay quickly
for large distances, the interaction term is in general sufficiently large such that it can not
be neglected. By amalgamating multiple primitives their VdW interactions might add up and
disarrange the energy structure. For Boolean languages and for tessellated languages this will
be discussed in sec. 7 and sec. 6 respectively. For the moment however, we are going to ignore
this issue and continue formalizing the mathematical framework.

2.5 ||| Measures of Quality

We have now formulated a mathematical framework to construct (large) L-complexes from
(small) primitives by the process of amalgamation as a reductionist approach to solve eq. (2.9).
However it is interesting for academic reasons as well as relevant for an experimental implemen-
tation to minimize the number of atoms in the L-complex. In particular we are interested in
determining the minimal primitives which realize a given target ft. Secondly, we want to quan-
tify (and possibly maximize) the quality of an implementation via the low-energy eigenspace
H0[C]. Thus we have to find some measure by which we determine the quality. Both goals, the
minimization of the number of atoms and the maximization of the quality, might interfere with
each other. In that cases the experimentalist has to choose the measure.

Counting Degrees of Freedom. The structure C possesses dN degrees of freedom (DOFs) in
its geometry GC and further N DOFs in its detunings ∆C . However, in the Hamiltonian only
relative distances rrrij are relevant. Thus the energy structure remains invariant under d(d− 1)/2
rotations and d translations. Furthermore for any α ∈ R ̸=0 the mapping

fα : C = (rrri,∆i | i ∈ N ) 7→ C̃ = (rrri/α, α
6∆i | i ∈ N ) (2.15)
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only rescales the Hamiltonian (and its energy eigenvalues) by a factor of α6: H[C̃] = α6H[C].
This does not impact the energy structure in any meaningful way and leaves ratios of energies
invariant. Thus the energy structure is fully determined by only (d + 1)(N − d/2) − 1 DOFs.
Formally speaking we have an equivalence class of (d + 1)d/2 + 1 physically similar structures.
As a representative we typically choose a structure where ∆max = maxi∈N ∆i = 1, i.e. we choose

α = 1/∆
1/6
max as normalization, or we measure in units of ∆max.

Lastly note that we did not yet fix the interaction strength C as a constant in the Hamiltonian.
Choosing a different (repulsive) interaction strength C̃ = αC for α ∈ R>0 is equal to a simple
rescaling of the geometry GC by α1/6. A useful notion of distance is given by the blockade radii.
In the following we are often going to measure in units of rB,min = (C/∆max)

1/6 or draw the
blockade radii.

The Quality Factor. As the Hamiltonian is scale invariant (up to some factor) we should
define unit-free quantities to describe and judge the quality of the implementation. It is intuitive
to start by defining the spectral width or energy splitting

δE = max
xxx∈G

E(|xxx⟩)−min
xxx∈G

E(|xxx⟩) (2.16)

and the energy gap

∆E = min
xxx∈E

E(|xxx⟩)−max
xxx∈G

E(|xxx⟩) (2.17)

as two important characteristics of H0. E(|xxx⟩) = ⟨H[C]⟩xxx denotes the energy eigenvalue of the
Hamiltonian with respect to the word xxx ∈ FN

2 = G ∪̇ E . By definition δE ≥ 0 is non-negative
but ∆E may become negative if there exists an eigenstate |xxx⟩ /∈ H(Lt) of lower energy than an
eigenstate in H(Lt). We can now introduce their ratio

Q = δE/∆E. (2.18)

The ratio is unit-free and thus scale invariant and it is crucial in latter discussion. It is in some
sense the natural measure for the energy structure. However the ratio may still diverge and
become negative for vanishing or negative energy gap. Thus a reasonable choice for a quality
factor would be

Q =

{
exp−Q, if Q ≥ 0

0, if Q < 0

}
= Θ(Q) exp (−Q). (2.19)

Here Θ denotes the Heaviside (unit) step function which is one if the argument is greater-equal
zero and zero else. The quality factor is one if H0 = Ht is the degenerate and gapped low-energy
eigenspace of the Hamiltonian. Note that this is independent of the size of the energy gap for a
vanishing energy splitting. The larger the energy splitting compared to the energy gap the more
the quality decreases. The quality converges to zero as the energy gap vanishes.
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The Robustness. The quality factor is a useful measure of quality and we are going to use in
many cases. However for the case of a degenerate and gapped low-energy eigenspace H0 = Ht it
does not yields any information about the size of the energy gap relative to the energy scaling.
Thus it is useful to define the unit-free robustness

r = max
i∈N

∆E/∆i ≤L 1 (2.20)

of the realization as the ratio of the energy gap to the smallest detuning. The robustness
quantifies the stability of the structure against perturbations. If there are multiple structures
of unit quality factor an experimentalist might prefer a realization of larger robustness even if
non-minimal in the number of atoms. The robustness is upper-bounded by one for the families
of target languages we are interested in for this thesis. This is formally noted by the index L of
the inequality symbol (we refer to app. 2.A for a more detailed discussion):

Proof 1. (An upper Bound to the Robustness)

We may assume that every bit is excited at least once in the ground state manifold due to
ass. 2. Consider an atom i = L(i) ∈ N with the smallest detuning ∆i = ∆min and some word
xxx ∈ Lt with xi = 1. As we assume repulsive interactions between excited atoms the state
|x̃xx⟩ = |x1, . . . 0i, . . . xN ⟩ is of energy E(|x̃xx⟩) ≤ E(|xxx⟩) + ∆L(i). We can now assume that the
derived word x̃xx /∈L Lt for some xxx ∈ Lt with xi = 1 and formally note this by an index L. Note
that this is going to be fulfilled for the target languages of this thesis; for every Boolean
language and for most tessellated languages. This assumption is discussed in more detail in
app. 2.A. Then the energy gap ∆E ≤L ∆i = ∆min is upper-bounded by the smallest detuning
and thus the robustness r ≤L 1 by one.

The robustness is a particularly interesting quantity as in the PXP model every L-complex with
quality factor Q = 1 possesses robustness r = 1 due to the lack of long range interactions. In
that sense the above inequality is sharp. Note that in Ref. [38, 37] Stastny et al. choose
∆min = mini∈N ∆i = 1 as energy scaling for the PXP model. Thus they obtain a unit energy
gap r ≡ ∆E = 1 for every L-complex. In the PXP model the robustness is natural choice as a
measurement for the energy gap.

The Effective Energy Gap. However, for an experimentalist it might be more interesting to
consider the ratio of the energy gap to the largest detuning which determines the largest energy
scale the experimentalist has to control. We thus define the effective (energy) gap

∆Eeff = min
i∈N

∆E/∆i ≤ 1 (2.21)

as the energy gap in units of the largest detuning. It is unit-free and thus scale invariant as
well. The effective gap is smaller than the robustness by the ratio of the detunings. Therefore
the effective gap is usually not one in the PXP model. More precisely Stastny et al. showed
that in the PXP model “all Boolean functions can be realized by a complex with bounded
detuning range {1∆, 2∆, 3∆}”[38] and thus ∆Eeff ≥ 1/3 for the PXP model2. The effective gap
is upper-bounded by one as well.

2This however may contradict minimality in the number of atoms.
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Proof 2. (An upper Bound to the effective Gap)

The effective gap is upper-bounded by the robustness which is upper-bounded by one for the
target languages of this thesis; for any Boolean language and most tessellated languages.
We thus only have to discuss the tessellated languages where r > 1 is possible. ∆E > ∆max

could only be the case if the derived word x̃xx = (x1, . . . 0i, . . . xN ) ∈ Lt for any word (xxx⟩ ∈ L
and any i ∈ {1, . . . N}. Then (if L ̸= ∅) the zero-word 000 = (0, . . . 0) ∈ L would be element of
the language. We do not consider such languages by ass. 4 as they can not be successfully
realized in this model anyway. Therefore the energy gap ∆E ≤ ∆L(i) is upper-bounded by
the largest detuning and thus the effective energy gap ∆Eeff ≤ 1 by one.

This inequality is generally less sharp than for the robustness as the effective gap is smaller
and generally smaller one in the PXP model. However this inequality is valid for every language
(which is not the case for the robustness). Thus we do not add an index to the inequality symbol.

At this point it is to note that the definition of the effective gap is not redundant to the definition
of the robustness. There exist complexes which implement a language with unit quality Q = 1 on
a finite-size sub-manifold of the parameter space on which the effective gap and the robustness
are maximized for disjoint sets of parameters (cf. fig. 4.3). Here the effective gap turns out the
more useful measure because the robustness it artificially increased by arbitrarily suppressing
the lowest detuning compared to the other detunings. This decreases the effective gap but still
increases the robustness. As we are not interested in such limiting cases we generally stick to
the effective gap as measure of quality (e.g. during optimization via algorithm 3.2). Still for all
structures we mention the robustness as a comparison to the PXP case from Ref. [38].

2.6 ||| Some general Remarks

In the end of this section we want to make some general remarks and assumptions about the
languages and structures we want to consider in the following thesis.

0 We only consider non-constant target languages Lt of length g = |Lt| ≥ 2 because target
languages of length g = 0, 1 are physically not interesting. Such languages would be
realizing e.g. constant Boolean functions or tessellated languages without DOFs.

1 We do not consider factorizable languages, i.e. languages L∅ = L1⊗∅L2 that are amalgama-
tions with γ = ∅. For such languages the associated L-manifolds H(L∅) = H(L1)⊗H(L2)
would describe a tensor product. Such languages are simply implemented by the complexes
of their factor languages placed in sufficiently large distances to suppress interactions.
Therefore such languages are physically not interesting.

2 Furthermore, we can restrict ourselves to target languages Lt = L[ft] where each bit is
excited at least once. Otherwise we could delete the bit and remove its corresponding
atom and obtain a L-complex which implements the same target function ft with fewer
atoms and a greater-equal quality and effective gap. Remember that this assumption is
the starting point for proof 1.
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3 Thirdly, we restrict ourselves to positive detunings: informally we write ∆C > 0. For the
moment assume that the detuning ∆i ≤ 0 of some atom i = L(i) is not positive. Then it
is never energetically favorable to excite atom i. We may assume that there exists a word
xxx ∈ Lt with xi = 1 by remark 2. Then the state |x̃xx⟩ ≡ |x1, . . . 0i, . . . xN ⟩ where atom i is
not excited is energetically lower than state |xxx⟩ ∈ H(L) by at least ∆i

3. Thus if the x̃xx /∈ Lt

(as for languages of this thesis or if i /∈ K) this would yields a negative energy gap ∆E ≤ 0.
If word x̃xx ∈ Lt for all xxx ∈ Lt with xi = 1 then we would obtain a finite energy splitting
δE ≥ ∆i and therefore no good quality factor.

4 We restrict ourselves to target languages Lt = L[ft] with the word 000 = (0, . . . 0) /∈ Lt.
For positive detunings ∆i > 0 (motivated by remark 3) the unit vector state |eeei⟩ =
|0, . . . 1i, . . . 0⟩ would be of lower energy than the zero-vector |000⟩ by ∆i. If there are any
ancillaries or output ports they would need to be a function of the input ports. Then
there would exist some unit vectors eeei /∈ Lt which would not be element of the target
language. Thus we would have a negative energy gap ∆E < 0. Note that this is the case
for all languages of this thesis and all Boolean languages. Even if eeei ∈ Lt would be all
elements of the target language then we still have a finite energy splitting δE ≥ ∆max. As
∆E ≤ ∆Emax from proof 2 this would imply Q ≤ 1/e for the quality. Thus even for such
artificial languages we would obtain a bad quality factor.

5 Finally, it is useful to restrict ourselves to target languages where each bit is not excited
at least once (analogous to ass. 2). This can be justified as a corollary of ass. 1 and ass.
0: Such a language would be factorizable into a constant factor language with g = 1.

6 Lastly, we assume that no two atoms are located at the same position. Instead one should
physically motivate a minimal distance rrrmin and constrain rrrij ≥ rrrmin in numerical simula-
tions.

3If 000 /∈ Lt by remark 4 then x̃xx ̸= 000 and this is a strict inequality due to finite interaction energies
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||| Appendix

2.A ||| An upper bound for the Robustness

This section is dedicated to discussing the limits of the assumptions made in proof 1. Remember
that the assumptions are fulfilled for all languages of this thesis which justifies them a posteri-
ori. In this section we find that the assumptions are justified more generally for all Boolean
languages. However, they may be violated for general tessellated languages. We formulate an
example language which violates the assumption and thus violates the upper bound.

Consider the smallest detuning ∆min = mini∈N ∆i. Proof 1 is based on the assumption that
there exists an atom i = L(i) ∈ N with ∆i = ∆min which is excited in some ground state
xxx = (x1, . . . 1i, . . . xN ) but the derived state x̃xx = (x1, . . . 0i, . . . xN ) ∈ E is an excited state. This
is the case for all languages of this thesis. In the following we want to discuss the validity of this
assumption for general languages.
By remark 2 we can assume that every atom is excited in some ground state. Thus the assump-
tion is always fulfilled if for some i ∈ N with ∆i = ∆min, i ∈ A ∪Q is an ancillary or an output
port because their state is a function v of the state of the input ports. Thus for such an atom
i the derived state must be an excited state. The assumption might only be not fulfilled if for
every i = L(i) ∈ N with ∆i = ∆min, i ∈ K is an input port.

Consider a Boolean language where ft = fb. Then v = (fb, w) would need to be independent
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of xi. Such a language would (trivially) factorize:

L[fb;w] = {(0), (1)} ⊗∅ L[fb;w]/{i}.

As discussed in remark 1, we do not want to consider factorizable languages as they are physically
not interesting. The factorized input port i does not influence the states of remaining atoms at
all and does not convey any information. Such a language would be hard (or usually impossible)
to realize in the VdW model with degenerate ground states as atom i would need to be placed
at a position where it interacts equally strong with every ground state of L[fb;w]/{i}.
Consider a tessellated language with check function ft = fc. Again any atom i = L(i) ∈ N with
∆i = ∆min needs to be a port and w needs to be independent of xi. In any ground state xxx =
(xi, . . . 1i, . . . xN ) ∈ G we can always de-excite the i-th bit to obtain x̃xx = (xi, . . . 0i, . . . xN ) ∈ G.
In other words: the bit xi is never determined to be excited in any ground state xxx/{i} of the other
atoms. Such Boolean functions are called negative unate in the bits xi whose atoms i = L(i)
possess the smallest detuning ∆i = ∆min. Symmetric negative unate Boolean functions are
necessarily antimonotonic (i.e. their negation is monotonic). The only symmetric, antimonotonic
check functions fc contradicting the assumption are the ones representing an upper bound of the
form fc(Pv(xxx)) = 1⇔ ∥Pv(xxx)∥1 ≤ n ∈ N.

Example 2. (Minority-Model Unit-Cell (MINU))

As an example, consider on a honeycomb grid L with p = 3 (input) ports the ‘minority
language’

LL[MINU] = {(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 1), (1, 0, 0, 1)}.

Here f [MINU] is defined by ∥Pv(xxx)∥1 ≤ n with n = 1. We need one ancillary 0 ∈ A to realize
the check function. Fig. 2.1 portrays the minority-model unit-cell for r ∈ {1, 10, 100}.
We assume a D3-symmetry in the structure, i.e. in particular ∆i = ∆j for each port i, j ∈ P.
To achieve degeneracy in the ground states, we choose Ii0 = ∆i constant for i ∈ P. Then each
ground state xxx ∈ G is of energy E(|xxx⟩) = −∆0. W.l.o.g. by rescaling the energies using fα
from eq. (2.15) with α = ∆

1/6
min, we can set Ii0 = ∆i = 1 for i ∈ P. We apply this choice of

units in the following.
To maximize both r and ∆Eeff for a given value of ∆0, we need to choose Iij ≤ max(∆0, 2)−1
for i ̸= j ∈ P sufficiently small. In fig. 2.1 this is denoted by the gray-shaded circles. For
the portrayed structures we chose the limiting case Iij = max(∆0, 2)− 1 which is most useful
to decrease residual energies during tessellation. Then the excited states xxx ∈ E are of energy
E(|xxx⟩) ≥ −1. Thus for ∆0 > 1 we obtain a positive energy gap r = ∆E > 0. The robustness
and the effective gap are given by r = ∆0 − 1 and ∆Eeff = 1 − 1/∆0 respectively; note that
∆Eeff = r/(r + 1). We can send r → ∞ by arbitrarily increasing ∆0 (compared to ∆i|i∈P).
In this limit ∆Eeff → 1. This is visualized in fig. 2.1 with ∆0 = r + 1 for r ∈ {1, 10, 100}. Of
course, the upper bound ∆Eeff ≤ 1 still holds in the limit r →∞ as the proof is valid for all
languages.

However remember that we are not very interested in such languages and for each other language
of this thesis r ≤L 1 holds. This example is merely of academic interest to visualize the limits of
the upper bound. Note that this example can not be realized in the PXP model as it is heavily
based on the intermediate energy regime which allows for the degeneracy of the ground states.
Thus the equality r = 1 for all languages with Q = 1 in the PXP model still holds.
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Figure 2.1: Realization of the minority-model unit-cell MINU. The language conflicts the assumptions
of proof 1, thus we can achieve arbitrarily large r-values. The effective gap remains upper-bounded.
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3 ||| The Problem and Methods

“Pure mathematics is, in its way, the poetry of logical ideas.”

– A. Einstein in tribute to E. Noether, ‘New York Times’ (1935)

In chap. 2 we introduced the main goal of this thesis as to find solutions of eq. (2.9). We shortly
discussed why this might be in general a non-trivial problem and we concluded that a reductionist
approach would be most useful. For this purpose we created the mathematical framework for a
process called amalgamation. Amalgamation is a useful tool to construct (larger) L-complexes
by gluing (smaller) building blocks together.

In this thesis we focus particularly on the elementary building blocks of logical connectives,
of the surface code and of the Fibonacci model. Within the PXP ‘blockade-approximation’
such elementary building blocks were already proposed in Refs. [38, 30, 23]. However, the VdW
model more closely resembles the physical interactions between Rydberg atoms. Such ‘long-range’
interactions can behave qualitatively different than the PXP model with a finite cutoff-radius.
On the one hand, the finite interaction energies between atoms can provide additional degrees
of freedom to adjust the energy structure. On the other hand the physical interaction energies
are a non-trivial function of the geometry. Therefore a natural question is whether it is possible
to reconstruct the elementary building blocks from the PXP model within the VdW framework.
Analogously, the question arises whether there are PXP-languages which can not be implemented
in the VdW model. To answer these questions and to deal with the more complicated framework,
we require appropriate tools and theory.

In this chapter we want to focus on developing the tools and the theory which allow us tackle
these and further relevant questions in the following chapters 4, 5, . . . We illustrate these tools in
subsec. 3.1.2 and 3.2.6 exemplarily for the simplest elementary block of the logical connectives,
namely the NOR. This is a particularly relevant example as the NOR is functionally complete: The
singleton {NOR} is a universal gate set for Boolean logic.
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3.1 ||| Rejection Sampling Algorithm

The implementation of the logical connectives for the PXP model were studied by Stastny et
al. in Ref. [38]. Here multiple logic gates were found and proven to be minimal (in the number
of atoms). The VdW model introduces additional interactions between atoms which are discon-
nected in the PXP blockade graph and it consider only finite interactions between atoms which
are connected. This generally disarranges the energy structure.

Thus the first part of this thesis focuses on studying the known languages from the PXP model
in the context of VdW interactions. The goal is to find out whether it is possible to implement
these languages in the VdW model and if so to construct samples. This is studied by formu-
lating a rejection sampling algorithm (also called accept-reject algorithm, a type of Monte Carlo
Sampling):

Input (�): Target Language Lt

Output (�): L-complex (CQK , Lt,L) with gapped H0[H; C] ∼=L H(Lt)

The algorithm should consider the languages Lt = Lv with v ≡ (fb, w) proposed by Stastny et
al.[38] as input and outputs configurations with positive quality factors.

The following subsec. 3.1.1 formulates the problems in constructing such samples. It explains
an ansatz for solving these problems via linear programming, rejection sampling and graph em-
bedding. This outlines the steps of the rejection sampling algorithm which is summarized in
flowchart 3.1. Readers only interest in the results of the algorithm can skip to the next subsec.
3.1.2. Here we exemplarily apply the algorithm to the PXP-minimal NOR-gates to illustrate the
advantages and disadvantages of the algorithm.

3.1.1 ||| Construction of Samples

The goal of this subsection is to explain the problems which arise when constructing samples and
to illustrate an ansatz for solving these problems. This outlines the rejection sampling algorithm
presented in flowchart 3.1 which offers a quick overview over this subsection.

Consider the Hamiltonian (2.1). The goal is going to be to find a L-complex with a gapped low-
energy eigenspace corresponding to the target Hilbert space. For simplicity, we start by ignoring
the eigenstates |xxx⟩ for xxx ∈ E of the excited state manifold and focus on the energy splitting δE of
the eigenstates |xxx⟩ for xxx ∈ G. Ideally, we want to find a L-complex with a degenerate eigenspace
δE = 0.

Definitions. Consider the target language L = Lt. In the following we label its words xxxi ∈ L by
indices i ∈ {1, . . . g}, thus fixing an arbitrary ordering. We start by defining the language matrix

LLL ∈ Fg×N
2 by Lij := (xi)j where the (i, j)-th index corresponds to the j-th bit of the i-th word.

A different ordering would correspond to a permutation of the rows in LLL The labeling chooses
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Algorithm 3.1: Flowchart of the Rejection Sampling Algorithm. The rejection sampling itself is
applied to the solution space from linear programming. The constructed samples are checked for the
triangle inequalities (TIs), for their curvature and dimension and for their energy gap. The accepted
metric spaces are embeddable in Euclidean d-space.

a representative LLL ∈ [LLL] ∼= L. We continue by defining another matrix LLL2 ∈ Fg×N(N−1)/2
2 by

(LLL2)iα := LikLil with some (bijective) ordering α = α(k, l) for k < l. We define the matrix

MMM ∈ Fg×[N+N(N−1)/2]
2 by concatenating LLL and LLL2 in the direction of the second index:

Mij :=

{
Lij , if j ≤ N

(LLL2)iα, if α = j −N > 0

}
. (3.1)

Finally we define the configuration vector ccc ∈ RN+N(N−1)/2 by rewriting the structure C =
(rrri,∆i | i ∈ N ) as a vector of the detunings ∆C and the interaction energies:

cj :=

{
−∆L(j), if j ≤ N

IL(k)L(l), if α(k, l) = j −N > 0

}
. (3.2)

For latter we introduce the shorter notation Iij ≡ UVdW(rij) and we apply the labeling function
L to associate (bit) indices with the atoms. For the interaction energies we define their tuple
IC = (IL(k)L(l) | α(k, l) ∈ {1, . . . N(N − 1)/2}).

The linear System. We now want to find configuration vectors solving the linear system of
equations1

Mijcj = E (3.3)

1Here (and in the remaining thesis) we assume Einstein notation, i.e. we sum over paired bit indices.
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for equal eigenenergies E ∈ R. If |E| > 0 without loss of generality we may assume E ∈ ±1 by
rescaling the energies using fα with α = |E|−1/6, see eq. (2.15). In other words: we measure
energies in ‘units of the right-hand side’. Thus we have to consider only the three cases E ∈
{−1, 0,+1} for the right-hand side of linear system (3.3).

In general the matrix MMM of the linear system (3.3) is non-invertible (it is in general not even a
square matrix). The minimal norm solution (in Euclidean 2-norm) of such a system can easily
be found using the Moore–Penrose pseudoinverse MMM+ of the matrix: ccc∗ = EMMM+111 fulfills
∥ccc∗∥2 ≤ ∥ccc∥2 for all solution vectors ccc of eq. (3.3). Here 111 is a vector with 1i = 1 in each
component. The solution space of eq. (3.3) is an affine linear space:

MMMccc = E111 ⇔ ccc ∈ ccc∗ + kerMMM. (3.4)

The dimension of the solution space is the corank of MMM .

A semimetric Space. The linear system (3.3) formulates a a necessary condition to implement
the target Hilbert space as the degenerate, low-energy eigenspace (2.9), however it is sufficient.
It treats the N(N − 1)/2 interaction energies IC as independent variables, however they are
functions of d(N − (d+1)/2) physical DOFs, given by the geometry GC and the potential UVdW.
Physical interaction energies should thus be positive, we (informally) write IC > 0.
As mentioned shortly in the beginning, we are interested in physical geometries with some finite
distance between atoms. This distance may be motivated from experimental limitations or
simply because the VdW model for interactions between Rydberg atoms breaks down at short
distances. We can now formalize this notion by introducing a (unit-free) minimal radius d̂min

such that dmin = d̂minrB, min
2 is the minimal distance between atoms. Thus the interaction

energies should be upper-bounded by some maximal interaction energy Imax ≡ UVdW(dmin), we
(informally) write IC ≤ Imax.

If both conditions are met, then the solutions of eq. (3.3) introduce a semimetric3

d(i, j) ≡ U−1
VdW(Iij) = (C/Iij)

1/6 (3.5)

between two atoms i, j ∈ N . Thus (N , d) denotes a semimetric space. In general (N , d) will
not be a metric space as is does not fulfill the triangle inequalities. The triangle inequalities
are additional necessary conditions for (N , d) to be embeddable in Euclidean space, i.e. to
correspond to a physical structure of atoms. However they will be discussed later as they are
nonlinear inequalities on the interaction energies. We first want to focus on formulating further
necessary linear inequalities in the detunings ∆C and the interaction energies IC .

A lower Bound. We now again incorporate the excites states into the discussion to find
necessary linear conditions for a positive energy gap. From remark 3 we know that useful
detunings should be positive, we (informally) write ∆C > 0. However we can sharpen this
inequality by including the interactions: Consider any atom i = L(i) ∈ N with bit index i.
Consider any word xxx ∈ L where xi = 1. Such a word always exists as discussed by remark 2. Let

N1(|xxx⟩) := {i ∈ N | xi = 1, i = L(i)} ⊆ N (3.6)

2Remember that rB, min = mini∈N rB,i.
3A semimetric fulfills (similarly as a metric) the conditions of positivity, positive definiteness and symmetry

but in general does not fulfill the triangle inequality.
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be the subset of atoms excited in eigenstate |xxx⟩ and correspondingly N0(|xxx⟩) := N\N1(|xxx⟩) the
subset of atoms not excited in eigenstate |xxx⟩. We define its magnitudes N1(|xxx⟩) := |N1(|xxx⟩)| and
N0(|xxx⟩) := |N0(|xxx⟩)|. Again we consider the derived state |x̃xx⟩ = |x1, . . . 0i, . . . xN ⟩. It is of energy
E(|x̃xx⟩) = E(|xxx⟩) +∆i −

∑
j∈N1(|xxx⟩)\{i} Iij. If x̃ ∈ L as well, as we want the linear system (3.3) to

be fulfilled we conclude ∆i =
∑

j∈N1(|xxx⟩)\{i} Iij. If on the other hand x̃ /∈ L, as we want ∆E > 0

to be fulfilled we conclude ∆i >
∑

j∈N1(|xxx⟩)\{i} Iij. To summarize we require the inequality

∆i ≥
∑

j∈N1(|xxx⟩)\{i}
Iij (3.7)

for every atom i ∈ N in every state |xxx⟩ ∈ L with xi = 1. Informally we write ∆C ≥ ΣIC .

An upper Bound. Now consider some ground state xxx ∈ L. Let i = L(i), j = L(j) and k = L(k)
denote the atoms associated by L with the indices i, j and k. Consider any atom k ∈ N1(|xxx⟩) (it
is N1(|xxx⟩) ̸= ∅ by remark 4. The eigenenergy of state |xxx⟩ ∈ H(L) can be rewritten as

E(|xxx⟩) = ⟨H[C]⟩xxx = −
∑

i∈N1(|xxx⟩)\{k}

∆i −
∑

j∈N1(|x̃xxi⟩)∪{k}
Iij

−∆k. (3.8)

where |x̃xxi⟩ ≡ |01, . . . 0i, xi+1, . . . xN ⟩. As N1(|x̃xxi⟩) ∪ {k} ⊆ N1(|xxx⟩)\{i}, we may apply eq. (3.7)
to obtain E(|xxx⟩) ≤ −∆k. This inequality is valid for all atoms k ∈ N excited in some eigenstate
|xxx⟩ ∈ H(L) (such an eigenstate exists for all k ∈ N by remark 2). For ∆C > 0 is positive (by
remark 3) we have negative eigenenergies E(|xxx⟩) < 0. W.l.o.g. we may thus choose E = E(|xxx⟩) =
−1 on the right-hand side of linear system (3.3). As ∆i ≤ −E(|xxx⟩), we obtain an upper bound
∆i ≤ 1 for every atom i ∈ N : informally we write ∆C ≤ 1.

Linear Inequalities. To summarize, we have now derived a linear system of equations (3.3)
and several linear inequalities

IC > 0, IC ≤ Imax, ∆C ≥ ΣIC and ∆C ≤ 1 (3.9)

in the energies of the system with constrain the affine linear solution space (3.4). In general
there might be interaction energies IL(k)L(l) ∈ IC which correspond to zero-columns in MMM , i.e.
Mij = 0 for j = N + α(k, l) and i ∈ {1, . . . g}. Such interactions do not contribute to the
energy of the system in any ground state because the atoms L(k) and L(l) are never excited
simultaneously. Such interaction energies are only upper-bounded by Imax, i.e. their distance is
only lower-bounded by dmin. In particular such atoms may lie within each others blockade radii
(i.e. be in blockade), however they do not need to.

Example 3. (NOT1-Gate)

As the simplest example we anticipate the NOT1-gate from fig. 4.1 with N = 2 atoms in
blockade. Its language LNOT1 = {(0, 1), (1, 0)} with g = 2 is based on two bits which are
each others negatives. Thus they are not excited simultaneously in any ground state. Their
interaction energy in the third column of MMM ∈ F2×3

2 is zero in every ground state.

For any other interaction energy Ikl ∈ IC which is contributing to the energy of the system
in some ground state xxx ∈ L with xk, xl = 1, the upper-bound to the interaction energies can
be sharpened: Ikl ≤ ∆k,∆l ≤ 1. Otherwise both atoms would be located within each others
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blockade radii and it would be energetically not favorable to excite them simultaneously in xxx. In
the case of an equality in eq. (3.7) the two states with the atom (not) excited can be of the same
energy. This is a feature of the VdW model which is excluded by the PXP-approximation. This
ansatz is going to be useful in many cases to achieve degeneracy using fewer ancillary atoms and
to construct elementaries of higher quality or larger effective gap.

Linear Programming. The solution space of the linear system is the affine linear space given
in eq. (3.4). The linear inequalities constrain the physical (and useful) solutions within a
bounded convex subspace. The goal of this algorithm is to sample (physical) solutions from
this subspace. The idea is to construct the minimal hyperrectangle of dimension corank(MMM) in
N +N(N − 1)/2-dimensional parameter space which encloses the space of physical solution. As
we restrict ourselves to linear inequalities (for now), the construction of the hyperrectangle is a
problem solved by linear programming :

Input (�): Vectors aaa ∈ Rm, bbbeq ∈ Rneq , bbbin ∈ Rnin ,

Matrices AAAeq ∈ Rneq×m, AAAin ∈ Rnin×m

Output (�): Vector xxx ∈ Rm which minimizes aaaTxxx

w.r.t. AAAeqxxx = bbbeq and AAAinxxx ≤ bbbin

In our case we useAAAeq =MMM , bbbeq = E111 and xxx = ccc. The inequalities of eq. (3.9) are summarized in
the linear system AAAinxxx ≤ bbbin. We may now sample this hypercube to construct random solutions
of the linear system and check the linear inequalities for these solutions (Rejection Sampling).
However not every solution constructed by this algorithm yields a valid physical implementation
yet.

Triangle Inequalities. We continue with the (nonlinear) triangle inequalities: For N atoms
there are in total 3

(
N
3

)
triangle inequalities we need to check. We eliminate the samples which do

not fulfill all triangle inequalities. The remaining samples now each define a metric space (N , d)
with d defined in (3.5).

Isometric Embeddings of Metric Spaces. We are interested in the isometric embeddings of
these finite metric spaces into the d-dimensional Euclidean space. Embeddings of metric spaces
into other metric spaces are well studied in mathematics[27]. Not every finite metric space can
be isometrically embedded in Euclidean space[5] and in general finding an embedding is NP-
hard[7, 8]. A necessary and sufficient condition for the isometric embeddability of a given metric
space in a Euclidean space of any dimension d was discovered by C. L. Morgan in Ref. [28]. C.
L. Morgan introduced the notions of flatness and dimension for the metric spaces and proved
that a metric space can be embedded in Euclidean d-space if and only if the metric space is flat
and of dimension less than or equal to d.

By random chance it is likely that some sampled metric space of cardinalityN will be of dimension
d = N − 1 and not quite flat. However we want to consider two- or three-dimensional Euclidean
spaces which generally not allows the embedding of such metric spaces. To solve this issue we
introduce some finite tolerance radius lt in the orthogonal directions to some two- or three-
dimensional flat subspace. If the constructed metric space lies within the tolerance radius it
is almost two- or three-dimensional and flat and we project it onto two- or three-dimensional
hyperplane. This of course will slightly modify the interaction energies and thus shift the energy
levels and cause some finite energy splitting δE > 0. The upper bound to the energetic shift of
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the states can be controlled by setting the tolerance lt. A smaller tolerance lt implies a smaller
energy splitting δE which comes at the cost of increasing the runtime.

The output is a structure in two- or three-dimensional Euclidean space. It remains to check
whether the energy gap ∆E > 0 is finite. If this is the case then the structure is a valid
implementation of the target language in the VdW model with some finite quality.

3.1.2 ||| Application of the Algorithm

The last subsec. 3.1.1 offered a rejection sampling algorithm 3.1 which takes a target language as
input and outputs samples of structures which realize the target language. In this subsection we
apply this algorithm exemplary to the target languages of the NOR-gates introduced by Stastny
et al. [38] in the PXP model. The objective is to generate samples which implement the same
logic connectives with the same language but in the VdW model.

Families of Languages. In general there can exist more than one minimal language for the
same logical connective which can be implemented. There are groups of such minimal logic gates
which differ by only a single amalgamation but they possess the same general structure. We
call such a group of such languages a (logic) family of languages. In the PXP model there are
three families of minimal logic languages for the logic elementaries and this list is proven to be
exhaustive[37]. We are going to label such families by arabic indices 1, 2, . . . in this thesis.

Using the rejection sampling algorithm 3.1 we are able to rediscover all PXP-realizations of
the logic elementaries in the VdW model. For the NOR-gate there exist three PXP-minimal
realizations (one for each family). Fig. 3.1 portrays one sample generated by the rejection
sampling algorithm for each of the three realizations in the VdW model. Such samples are going
to be labeled by lower case roman numerals i, ii, . . . in the following thesis. If there is only one
sample in the whole thesis we leave-out this index to streamline the notation.

Interpretation of the Figures. The three samples NOR-0, NOR-1i and NOR-2i of the different
realizations of the NOR-gate are presented in the second column. The black lines represent the
edges of the blockade graph from the PXP model. The dashed circles correspond to the blockade
radii rB,i which are possibly different for each atom i ∈ N . They define the length scale of
the geometry. The detunings are denoted by the color of each atom (see colorbar). Energies
are measured in units of the largest detuning ∆max := maxi∈N ∆i. Ancillaries are denoted by
circles and they are indexed by integers 0, 1, 2, . . .. The input ports are denoted by squares and
labeled by the letters A,B, . . . and the output ports are denoted by diamonds and labeled by the
letters Q,R, . . .. The third column shows the energy structure of each realization with its energy
splitting δE (in units of ∆max), its (effective) energy gap ∆Eeff and its robustness r. Note that by
choice of the energy scaling the energy gap equals the effective energy gap4. The fourth column
presents the ground state configurations of each gate. The ground states are labeled by indices
1, 2, . . .. Excited atoms are colored in orange while atoms which are not excited are colored in
black. Again, the ancillaries, input ports and output ports are denoted by circles, squares and
diamonds respectively. The last column portrays the language matrix of each realization. In the
following chapters of this thesis we continue to use this representation and these labels for other
gates.

4This differs from the choice of the energy scaling in Ref. [38] where energies are measured in units of the
smallest detuning such that the energy gap equals the robustness.
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Figure 3.1: Three PXP-minimal NOR-realizations implemented in the VdW-model. The structures are
constructed using the rejection sampling algorithm 3.1. The languages were introduced by Stastny
et al. in Ref. [38, 37]. In the PXP model the realizations are minimal in their number of atoms and
the list of minimal realizations is proven exhaustive[37].

Analysis of the Samples. For each realization the ratio is of magnitude Q ≈ 1/10 leaving
a quality factor Q ≈ 90%. There is a finite splitting δE > 0 due to the projection onto the
2D-Euclidean plane as explained in the previous subsec. 3.1.1. As the black lines only represent
the edges of the blockade graph from the PXP model, they do not posses much physical signif-
icance in the VdW model. In the VdW model there exists no clear distinction between atoms
in blockade and atoms which are not in blockade. Nevertheless, they present a helpful tool for
a clearer visualization and they offer an intuition about vicinity. We see that realization NOR-0

and realization NOR-1 differ only in their unphysical blockade graph but they possess the same
language (see tables in the last column of fig. 3.1). They are therefore actually two implemen-
tations of the same realization w which makes them redundant in the VdW formalism.

In the PXP model the additional blockade in realization NOR-0 connects the two atoms 0 and Q
which are not simultaneously excited in the language. In realization NOR-1 in the PXP model,
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we could thus just move these two atoms closer and add the blockade as well. The advantage
of realization NOR-0 and the additional blockade in the PXP model is however that it removes
the need for the larger detunings of the atoms 1 and B. A circular graph of five vertices with
equal weights would have five maximum weight independent sets (MWISs). Thus such a blockade
graph with equal detunings possesses five ground states in the PXP model. In realization NOR-1

the larger detunings of atom 1 and atom B secure that the words xxx ∈ L are energetically lower
than the fifth maximum independent set (MMIS) (0A, 0B, 1Q, 10, 01) /∈ L. The equal detunings of
all atoms in realization NOR-0 in the PXP model could be considered an experimental advantage
as they are simpler to implement. At this point we want to note that such ‘equi-detuned’ imple-
mentations of the NOR0-gate are also possible in the VdW model. However we are not going to
focus further on such implementations as this restriction yields a smaller energy gap.
In the PXP model realization NOR-2 can be derived from realization NOR-0 by introducing an
additional blockade between atom Q and atom 1. Then it is energetically not favorable anymore
to excite these two atoms simultaneously. We achieve degeneracy with the new ground state
|0A, 0B, 1Q, 00, 01⟩ by doubling the detuning of atom Q.

The remaining elementary Gates. Using the rejection sampling algorithm we were also
able to rediscover all PXP-minimal realizations of the remaining logical connectives in the VdW
model. However we do not want to discuss them at this point. They are presented and discusses
in chapter 4 with an optimized structure. The reason for that is that the energy structure
in fig. (3.1) is far from perfect: although the quality factor Q ≈ 90% is already quite large
there remains a finite energy splitting δE > 0. It remains an open question for now whether
it is possible to achieve perfect ground state degeneracy for these realizations. Furthermore we
want to maximize the effective energy gap and robustness as much as possible. Although the
current rejection sampling algorithm is useful to generate samples for the realization of gates,
the samples are generally not quite optimal for a finite runtime. In the following subsec. 3.2 we
want to discuss this problem and introduce a minimization algorithm for the optimization of the
quality measures.
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3.2 ||| Minimization Algorithm

The previous sec. 3.1 introduces the rejection sampling algorithm which solves the problem of
constructing samples realizing a given target language in the VdW model. In the final subsec.
3.1.2 we exemplarily apply this algorithm to the PXP-minimal target languages of the logic
elementaries to construct their logic gates. The constructed samples possess a positive quality
factor however they are not yet optimal.

Given such a L-complex in this section we are now interested in optimizing its energy structure,
i.e. in maximizing its quality factor, its effective energy gap and/or its robustness. This is gen-
erally a complicated problem of multivariate global optimization in the variables of the structure
C = (rrri,∆i | i ∈ N ). The relevant quantities are generally highly non-linear functions of the
structure and usually possess multiple local optima.

We going to solve this problem numerically by implementing a minimization algorithm:

Input (�): L-complex, Settings

Output (�): Optimized L-complex

In the following subsec. 3.2.1 we are going to discuss this minimization algorithm 3.2. We
formulate an important lemma I which makes an argument about the energy structure on very
general ground. We formulate an algorithm 3.3 for the efficient calculation of the relevant
quantities. This algorithm is based on the efficient calculation of maximal independent sets
(MISs) of the blockade graph for amalgamated L-complexes for which we formulate lemma III.
Readers only interested in the results can skip to subsec. 3.2.6 where we exemplarily apply the
minimization algorithm to the sample logic gates from fig. 3.1.

3.2.1 ||| Numerical Optimization of Samples

In the following we start by introducing the general ideas of the minimization algorithm. The
algorithm is summarized in the flowchart 3.2.

Libraries. The minimization algorithm in this thesis is based on the external global optimization
functions scipy.optimize provided by the SciPy library. Specifically we apply the SciPy im-
plementation scipy.optimize.dual annealing[34] of the dual annealing (DA) algorithm which
consists of a generalized simulated annealing (GSA) algorithm coupled to the local search ’L-
BFGS-B ’ algorithm. GSA is a stochastic approach first introduced by Tsallis et al.[41] and
developed and tested by Xiang et al.[47, 46]. It combines classical simulated annealing (CSA)
with fast simulated annealing (FSA) and is especially efficient for large number of variables in
the objective function[46]. In this thesis the DA algorithm proved to be very efficient compared
to other global optimization algorithms.
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Minimize f1(C)

Minimize f2(C)
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Finish

�
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Algorithm 3.2: Flowchart of the minimization algorithm. f1 and f3 may vary whether we focus on
maximizing ∆Eeff or r.

The Objective Functions. Depending on the context it is useful to minimize different cost
functions fi : C → R. In the beginning we have to check whether the initial L-complex possesses
a positive energy gap. If this is not the case it is useful to start by minimizing the first cost
function

f1(C) = −∆Eeff ( or f1(C) = −r ) (3.10)

until reaching the threshold f1(C) < 0. Otherwise we can directly continue by minimizing the
second cost function

f2(C) =
{

Q, if Q > 0

∞, if Q ≤ 0

}
. (3.11)

Here it is useful to punish negative energy gaps by some large value to prevent a relapse in the
regime of negative energy gaps. We minimize f2 until:

1 we may apply the theorem V (or one of its corollaries) from sec. 3.3. This requires
f2(C) < Q∗ where the target quality Q∗ is given by theorem V (or its corollaries). Then
we define the constraint Qc ≪ Q∗ and we apply theorem V (or its corollaries).

2 f2 saturates. It may be that f2 saturates at some value Qsat and we can not apply theorem
V (or its corollaries). This may be because the minimization saturates due to numerical
limitations (e.g. because f2 ≪ 1 or because the minimizer is stuck in a too large local
minimum) or because f2 possesses no zero in the parameter space of structures. In this
case we define Qc ≳ Qsat.

Now we want to maximize the effective energy gap ∆Eeff (or the robustness r) while (approxi-
mately) constraining the value of f2. We define the third cost function

f3(C) = −∆Eeff +R+(Q/Qc − 1)
(
or f3(C) = −r +R+(Q/Qc − 1)

)
(3.12)
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which equals −∆Eeff (or −r) if the constraint Q ≤ Qc implied by the unit ramp function (or
rectifier function) R+(x) := xΘ(x) is fulfilled. Here Θ : R → {0, 1} is the Heaviside unit step
function. Otherwise f3 is punished by the cost R+(Q/Qc − 1) ∝ Q/Qc linearly depending on
the magnitude of the violation. We minimize f3 until it saturates and then we terminate. The
algorithm outputs the final structure C. This algorithm is summarized in the flowchart in fig.
3.2.

General Remarks. For this algorithm we have to input the L-complex consisting of an initial
complex and a target language connected via a labeling. Besides that we have to input some
settings:

1 We have to choose the mode, i.e. whether to maximize ∆Eeff or r. This defines the
minimization function f1 and f3.

2 We should input a maximum number of iterations after which the algorithm terminates as
a halting condition.

3 We have to choose reasonable bounds for the variables. In particular the linear inequalities
from eq. (3.9) should be fulfilled. We quantify upper bounds of the ‘jumping distances’ by
(inverse) variances in the energy scaling.

4 For unit-cells of tessellated languages we should decide whether we want to constrain the
ports on the corners of a C2-symmetric parallelogram (and the ancillaries within the paral-
lelogram) to allow for tessellation. We can also choose periodic boundary conditions (PBCs)
for the unit-cell.

5 We have to decide whether we want to constrain variables and if so which ones. This is
going to be discussed in more detail in the following

3.2.2 ||| Exponential Time Complexity

One execution of the minimization algorithm requires a multitude of iterations and thus a mul-
titude of calculations of fi. As the number of states 2N increases exponentially with the number
of atom N , the asymptotic time complexity T = O(2poly(N)) for the ‘brute-force’ calculation of
the energy gap (and thus the ratio, the effective gap and the robustness) increases exponentially
as well. Furthermore as the number of DOFs increases polynomially with the number of atoms,
the dimension of the parameter space increases polynomially. This requires the minimization
algorithm to perform more iterations to find the global minimum which again increases the run-
time. For large number of atoms (from N ≳ 10 atoms upwards) the runtime for one calculation
of the energy structure becomes too slow and the minimization algorithm becomes infeasible. In
the following we are going to discuss four ansatzes to tackle this issue:

1 One simple ansatz would be not to calculate the energies of the whole manifold E but only
of some random set S ⊂ E of sample states. The hope would be that there always is some
sample state sufficiently close to the (energetically) lowest excited state (LES) which allows
us to approximate the energy gap. However this ansatz turns out to be not very promising:
The excited state manifold seems to be not dense enough in its low-energy regime. The
probability that the sample manifold includes a sample energetically close to the LES seems
to be too small such that the fluctuations in the approximation of ∆E are too large.
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2 Another ansatz is to constrain the number of variables in a useful way to reduce the DOFs
and the dimension of the parameter space in the algorithm. For tessellated languages, the
language is approximately5 transnational invariant. Thus it is intuitive to tessellate one
unit-cell to construct the tessellated structure. In the following for tessellated languages
we minimize only the unit-cell in the minimization algorithm and constrain that the atoms
in the other unit-cells differ only by a lattice translation vector. This constrains the ports
of the unit-cell on a parallelogram.

3 We can additionally constrain the number of variables by imposing a symmetry on the
structure. This is useful as many useful languages are symmetric (e.g. in their ports)
and symmetric eigenstates are degenerate in a symmetric structure. However this also
artificially reduces the DOFs which could prevent finding the global minimum (cf. the
ICRS2-gate in fig. 4.8). It can also be useful to constrain the variables in a different way
e.g. by minimizing primarily only the detunings or only the geometry.

4 This last point is arguably the most important ansatz: The intuitive way to calculate the
energy gap is to ‘brute-force’ calculate the energy of each excited state and each ground
state and to take the difference of their respective minimum and maximum. This algorithm
follows directly the definition (2.17) of the energy gap. With this naive algorithm we have
to calculate the eigenenergy for each of the 2N states which is infeasible for large number of
atoms N . As a first ansatz we note that usually the number of ground states g ≪ e ∼ 2N

is way smaller than the number of excited states. In the first point we mentioned that the
excited state manifold is not very dense in the low-energy regime. This suggests that it is
actually not necessary to calculate the eigenenergy for each excited state. In the following
we derive a more efficient algorithm to compute the LES. The energy gap can then be
calculated directly by evaluating only the energies of the g ≪ e ground states.

3.2.3 ||| The Energy Structure in the VdW Model

Consider a ground state manifold G and an excited state manifold E . We start by calculating the
eigenenergies of each ground state. The difference of its maximum and its minimum yields the
energy splitting as defined in eq. (2.16). To calculate the energy gap we require the energy of the
(energetically) lowest excited state (LES). A naive ansatz would be to consider only ’bit-flipped ’
excited states x̃xx ∈ E which emerge by single bit-flips of some bit j ∈ {1, . . . N} from the ground
states xxx ∈ G:

x̃i = xi(1− δij) + (1− xi)δij (3.13)

However it can be seen easily that even if the ground states are energetically lower than the bit-
flipped excited states, there still might exist other excited states which are energetically lower
than the ground states implying a negative energy gap:

Example 4. (A minimal Counterexample)

Consider the singleton G = {(0A, 1B)}. Its bit-flipped excited states are (0A, 0B), (1A, 1B) ∈ E .
However for (1A, 0B) ∈ E in a structure C with IAB > ∆A > ∆B > 0 it is

E(|1A, 0B⟩) < E(|0A, 1B⟩) < E(|0A, 0B⟩), E(|1A, 1B⟩).

5Up to boundary effects, i.e. depending on the boundary conditions and the size of the lattice
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Therefore the bit-flipped excited states are gapped-out while the energy gap ∆E < 0 remains
negative.

The bit-flipped excited states do not contain sufficient information to calculate the energy of the
LES (and thus the energy gap or even the sign of the energy gap). To calculate the energy of
the LES we start with two important observations:

Observation 1. In the PXP model the energetically lowest states are given by maximum weight
independent sets (MWISs) of the blockade graph. However the kinematic constraint of the PXP
blockade-approximation does not fully incorporate the effect of the VdW interactions. Due to
finite long-range interactions it might be energetically favorable to excite less atoms compared
to a maximal independent set (MIS). However in the VdW model it is remains energetically
disfavourable to excite pairs of atoms which are in blockade. This allows us to formulate a
weaker, analogue statement for the VdW model:

Remark 1. (A necessary Condition)

The energetically lowest states are independent sets (ISs) of the blockade graph from the
structure.

This directly excludes large sets of states as candidates for the energetically lowest state. We
perform rough estimation: For a blockade graph B = (V,E) of degree ∆, the magnitude of the
maximum independent sets (MMISs) is given by the independence number α(B) ≤ |V |− |E|/∆6.

This bound is credited to P. K. Kwok[44]. Thus we can exclude at least
∑|E|/∆−1

n=0

(|V |
n

)
states

where less than |E|/∆ atoms are not excited.

Obervation 2. The energetically lowest states in the PXP model are given by the MWISs of
the unit-disk blockade graph. Thus the words in PXP-languages need to correspond to these
MWISs to achieve unit quality. In particular the words of PXP-languages need to be maximal
with respect to the blockade graph, i.e. no ground state can be a substate of any other ground
state.
In the following we want to transfer this idea to the VdW model. However this is non-trivial
because in the VdW model the energetically lowest states are generally not maximal on (and in
particular no MWISs of) the blockade graph. Before formulating the second observation we first
have to introduce some new concepts:

Definition 1. (Substates and Adjacency)

1 We define xxx′\xxx as the set of indices i ∈ {1, . . . N} with xi = 0 and x′
i = 1. Further, we

say xxx ⊆ xxx′ for xxx,xxx′ ∈ FN
2 if xxx\xxx′ = ∅.

2 If additionally xxx′\xxx ̸= ∅, then we define xxx ⊂ xxx′. If xxx ⊂ xxx′, we call xxx a subword of xxx′ and
xxx′ a superword of xxx. Correspondingly we call |xxx⟩ a substate of |xxx′⟩ and |xxx′⟩ a superstate
of |xxx⟩.

3 We call two words xxx,xxx′ ∈ FN
2 with xxx ⊂ xxx′ (or their corresponding states) adjacent if

there exists no third word x̃xx ∈ FN
2 such that xxx ⊂ x̃xx ⊂ xxx′. If xxx ⊂ xxx′ is a non-adjacent

subword we also write xxx ⋐ xxx′.

6There are multiple possible upper-bounds on the independence number α of a graph B. For sharper bounds
on α(B), see [45].
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In other words: if xxx ⊂ xxx′ but xxx /⋐xxx′ is an adjacent substate then xxx emerges from xxx′ by one bit
flip from 1 to 0. Note that ⊆ (and ⊂) introduces a (strict) partial order on the set of all uniform
words FN

2 . We can now formulate the second observation:

Lemma I (Transitivity of Energies).

Consider three words xxx1,xxx2,xxx3 ∈ FN
2 with xxx1 ⊂ xxx2 ⊂ xxx3. For n := ∥xxx2∥22 we define the

intermediate states

Sxxx1,xxx3
(n) := {xxx ∈ FN

2 | xxx1 ⊂ xxx ⊂ xxx3 ∧ ∥xxx∥22 = n}.

Then we formulate:

1 If E(|xxx1⟩) ≤ E(|xxx2⟩) for all xxx2 ∈ Sxxx1,xxx3
(∥xxx1∥22 + 1), then E(|xxx1⟩) ≤ E(|xxx2⟩) <

E(|xxx3⟩).

2 If E(|xxx3⟩) ≤ E(|xxx2⟩) for all xxx2 ∈ Sxxx1,xxx3(∥xxx3∥22 − 1), then E(|xxx3⟩) ≤ E(|xxx2⟩) <
E(|xxx1⟩).

In the above sense the energies of the subsets of words are transitive. The number of intermediate
states is |Sxxx1,xxx3(n)| =

(∥xxx3∥2−∥xxx1∥2

n−∥xxx1∥2

)
, thus |Sxxx1,xxx3(n)| = ∥xxx3∥2 − ∥xxx1∥2 in both cases 1 and 2. If

the energies of some states fulfill the conditions of lemma I, the transitivity allows us to exclude
further states as candidates for the energetically lowest state.

Proof.

Statements 1 and 2 are dual, their proof is very similar:

1 As E(|xxx1⟩) ≤ E(|xxx2⟩) for all xxx2 ∈ Sxxx1,xxx3
(∥xxx1∥22 + 1), it is ∆i ≤

∑
j∈L(xxx1\000) Iij for all i ∈

L(xxx3\xxx1). Thus ∆k <
∑

j∈L(xxx1\000)∪{i} Ikj for all i ∈ L(xxx3\xxx1), k ∈ L(xxx3\xxx1)\{i}. Now we

fix some xxx2 ∈ Sxxx1,xxx3
(∥xxx1∥22+1) and thus {i} = L(xxx2\xxx1). This yields E(|xxx3⟩)−E(|xxx2⟩) ≥∑

k∈L(xxx3\xxx2)
[−∆k +

∑
j∈L(xxx2\000) Ikj] =

∑
k∈L(xxx3\xxx1)\{i}[−∆k +

∑
j∈L(xxx1\000)∪{i} Ikj] > 0 and

thus E(|xxx1⟩) ≤ E(|xxx2⟩) < E(|xxx3⟩).

2 As E(|xxx3⟩) ≤ E(|xxx2⟩) for all xxx2 ∈ Sxxx1,xxx3
(∥xxx3∥22−1), it is ∆i ≥

∑
j∈L(xxx3\000)\{i} Iij for all i ∈

L(xxx3\xxx1). Thus ∆k >
∑

j∈L(xxx3\000)\{i,k} Ikj for all i ∈ L(xxx3\xxx1), k ∈ L(xxx3\xxx1)\{i}. Now we

fix some xxx2 ∈ Sxxx1,xxx3
(∥xxx3∥22−1) and thus {i} = L(xxx3\xxx2). This yields E(|xxx2⟩)−E(|xxx1⟩) ≤∑

k∈L(xxx2\xxx1)
[−∆k +

∑
j∈L(xxx2\000)\{k} Ikj] =

∑
k∈L(xxx3\xxx1)\{i}[−∆k +

∑
j∈L(xxx3\000)\{i,k} Ikj] < 0

and thus E(|xxx3⟩) ≤ E(|xxx2⟩) < E(|xxx1⟩).

At this point we want to formulate the corollary II of lemma I which becomes very important
later to exclude realizations as candidates for target functions:
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Corollary II (Transitivity of Energies).

Consider two ground states xxx1, xxx3 ∈ G where xxx1 ⋐ xxx3 is s non-adjacent substate.

1 Then the quality Q < 1 is necessarily not perfect.

2 If Sxxx1,xxx3
(n) /⊂G for any n ∈ N(∥xxx1∥2

2,∥xxx3∥2
2)
, then the quality Q = 0 vanishes.

Note that corollary II is valid on general ground for any intermediate states Sxxx1,xxx3
(n) with

n ∈ N(∥xxx1∥2
2,∥xxx3∥2

2)
. However this is not necessary for most relevant cases: If xxx1 ⋐ xxx3 differ by at

most three bit flips then n ∈ {∥xxx1∥22 +1, ∥xxx3∥22− 1} implies an adjacent intermediate state. This
is the case for every target function of this thesis. Even if xxx1 ⋐ xxx3 differ by more than three
bit flips then some adjacent intermediate state is generally an excited state. For these cases the
proof simplifies to only its first part as it removes the need for the recursion.

Proof.

Corollary II is a direct consequence of lemma I when considering ground states xxx1, xxx3 ∈ G:

1 Consider Sxxx1,xxx3(∥xxx1∥22+1) ⊂ G. To achieve δE = 0 it must be E(|xxx1⟩) = E(|xxx2⟩). Then
we can apply statement 1 from lemma I such that E(|xxx1⟩) < E(|xxx2⟩) and thus δE > 0.

2 The following two cases are dual and we apply the dual statements 1 and 2 from lemma
I respectively:

a If Sxxx1,xxx3
(∥xxx1∥22 + 1)/⊂G = FN

2 \E then there exists an xxx2 ∈ Sxxx1,xxx3
(∥xxx1∥22 + 1) which

is an excited state xxx2 ∈ E . To achieve ∆E > 0 it must be E(|xxx1⟩) < E(|xxx2⟩). Then
we can apply statement 1 from lemma I such that E(|xxx1⟩) < E(|xxx2⟩) < E(|xxx3⟩)
and thus ∆E < 0.

b If Sxxx1,xxx3
(∥xxx3∥22 − 1)/⊂G = FN

2 \E then there exists an xxx2 ∈ Sxxx1,xxx3
(∥xxx3∥22 − 1) which

is an excited state xxx2 ∈ E . To achieve ∆E > 0 it must be E(|xxx3⟩) < E(|xxx2⟩). Then
we can apply statement 2 from lemma I such that E(|xxx3⟩) < E(|xxx2⟩) < E(|xxx1⟩)
and thus ∆E < 0.

Thus if there exists an adjacent, intermediate excited state then the quality Q = 0 < 1
vanishes (in particular it is not perfect). The only way to circumvent this case is if all
adjacent, intermediate states would be ground states.

If every adjacent, intermediate state is a ground state, then we could apply the argument to
these ground states as well. This implies that the only way to achieve a positive energy gap is
that Sxxx1,xxx3

(n)/⊂G for every n ∈ N(∥xxx1∥2
2,∥xxx3∥2

2)
. This proves the second statement of corollary

II.

If Sxxx1,xxx3(n)/⊂G for every n ∈ N(∥xxx1∥2
2,∥xxx3∥2

2)
then we can still follow the argument from the first

point to conclude δE > 0. Then we can again conclude Q < 1 not perfect which proves the
first statement of corollary II.

Corollary II is going to be very useful later as it allows us to exclude multiple realizations for
the VdW model which do not need to be tested. For these realization we already know that
the quality must vanish for every possible implementation. In contrast we find that for the
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the elementary target functions we consider in this thesis, every realization allowed by corollary
II can be implemented at least on three-dimensional Rydberg platform with finite quality. In
most cases we are actually able to achieve unit quality. The simple elementaries can be also
implemented on the two-dimensional Rydberg platform although this sometimes impedes the
(effective) energy gap. This illustrates that the necessary condition for a positive energy gap
introduced by corollary II is actually really sharp for elementary languages in the sense that we
can always implement the elementary languages allowed by corollary II.

3.2.4 ||| Efficient Computation of LESs

Combining observation (1) (cf. remark 1) and observation (2) (cf. lemma I) we want to compute
the LES efficiently. We interpret this as a global minimization problem on N bits subject to
the constraint of excluding ground states. The constraint determines the finite feasible set E of
words. In the following we shortly outline the key ideas of the algorithm which is formulated in
fig. 3.3.

A Trickle-Down Ansatz. We only need to consider ISs as candidates for the energetically
lowest states according to observation (1). Each IS is a subset of a MIS of the graph by definition,
thus we start by considering the set of MISs on the blockade graph. The MISs include in particular
the MWISs which are the energetically lowest states in the PXP-limit γ →∞. We trickle-down
from the MISs by flipping excited bits to construct new ISs as subwords. This can be roughly
interpreted as an ‘expansion around the PXP solutions’.
We trickle-down until reaching an IS where the flip of any excited bit would increase the energy.
This IS is energetically lower than any of its subwords according to observation (2). We call such
an IS a local minimum (of the MIS)7. For each MIS we obtain a set of such local minima. Now,
we want to exclude the ground states as candidates. For that we iterate through the ordered set
of local minima. If a state we consider is a ground state we instead consider its adjacent states.
Finally, we compare the energies of the excited states until finding the energetically lowest one
which is the local LES of the MIS. This procedure is somewhat similar to the naive ansatz we
attempted in subsec. 3.2.3 (cf. example 4) where we considered only the bit-flipped excited
states. However now the local minima include potentially excited states.
We perform this ’trickle-down’ algorithm separately for each MIS. In the end we compare the
local LESs of each MIS. This guarantees to find the global energetic minimum of E , i.e. the LES.

This algorithm is formulated rigorously in fig. 3.3. We want to illustrate this (abstract) algorithm
via example 5 and fig. 3.2:

Example 5. (Cycle graph C6C6C6)

As an example of alg. 3.3 consider the cycle graph B′ = C6. There are five MISs given by the
states in the boxes in fig. 3.2. Note that the tree only comprises the 18 ISs of B′ for a clearer
visualization. Thanks to observation (1) we may directly exclude the 46 non-independent sets
(NISs) as candidates for the energetically lowest state. Adjacent substates are connected by
arrows in tree 3.2.

7The notion of a local minimum is mathematically not fully correct as there might still exist an adjacent
superstate of lower energy. It can be interpreted as a ‘local minimum’ with respect to only its substates.
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Starting with a MIS (boxes) the alg. 3.3 compares the eigenenergies of the adjacent substates
(arrows) trickling down the tree 3.2. It stops as soon as every substate is energetically higher.

Consider an L-complex (CQK , L,L) of the target language L = {eee1 + eee3 + eee5, eee2 + eee4 + eee6} with
a D6-symmetric structure C of equal detunings ∆ = ∆i and equal distances d between the
atoms. Note that the ground states are the MMISs (or equivalently the MWISs) of B′. In
the following we assume that B′ is a spanning subgrapha of B[C], i.e. that d < (C/∆)1/6, such
that we may apply the alg. 3.3:

1 In case d > (2C/33∆)1/6, the MISs are energetically favorable compared to their (ad-
jacent) substates. Then the algorithm compares the adjacent excited states (including
the adjacent non-independent superstates) of the ground states with the MISs |eee1 +eee4⟩,
|eee2 + eee5⟩ and |eee3 + eee6⟩ to find the LES. In this case latter would be the LESs.

2 For distance (C/33∆)1/6 < d < (2C/33∆)1/6 the six non-maximal substates with two
excited bits are energetically lower than the two ground states and the words with one
excited bit. In this case the algorithm would compare the words with two excited bits.
Again, the LESs would be the MISs of two atoms.

3 In case (C/26∆)1/6 < d < (C/33∆)1/6 the MISs of two atoms remain favourable com-
pared to their substates but the states |eeei⟩ are favourable compared to the six non-
maximal ISs of two atoms. Thus again, we determine the LESs as the MISs of two
atoms.

4 Lastly consider the case d < (C/26∆)1/6. Here B′ ̸= B as E′ ⊂ E. We may still apply
alg. 3.3 and the algorithm trickles-down to the ISs of one atom. Each of these states
|eeei⟩ is of equal energy, thus there are six LESs.

aA spanning subgraph B′ = (V ′, E′) of B[C] = (V, E) includes the same set of vertices V ′ = V but a subset
E′ ⊆ E of the edges. Due to the D6-symmetry of C, this assumption only excludes only the edgeless blockade
graph B[C] = K6 with E = ∅.

Especially for ‘large’ (inverse) exponents γ ≫ 1 of the interaction potential this ’trickle-down’ alg.
3.3 is far more efficient than the brute-force calculation of the energy for all 2N eigenstates. For
γ = 6 in the VdW model, the VdW potential UVdW(rij) ∼ 1/r6ij decays fast and the PXP model
is a reasonable approximation. This makes the MISs good approximations of the energetically
lowest states and alg. 3.3 converges fast.

3.2.5 ||| Efficient Computation of the MISs

Note that this alg. 3.3 requires the calculation of all MIS which is a well-known NP-hard
problem[24]. This means that for large number of atoms this algorithm remains slow. Luckily,
many interesting L-complexes are constructed from smaller ones using amalgamation: Tessellated
languages are realized by amalgamating unit-cells on a lattice and complex Boolean functions
can be decomposed into small primitives. This allows for a more efficient calculation of the MISs
which we are going to discuss in this subsection. In the following we often denote a word xxx as
an IS when formally L(xxx\000) ∼= xxx is the IS (the labeling is a one-to-one mapping).
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Input: Blockade Graph B[C] = (V,E)

Output: Energetically lowest excited state xxx ∈ E and its energy E(|xxx⟩)

1 We fix a spanning subgraph B′ = (V,E′) where E′ ⊆ E. Calculate the set of

words xxx ∈ FN
2 where L(xxx\000) is a MIS of B′.

2 Continue the algorithm for each MIS separately (using multiprocessing).

We want to substitute the word xxx of the MIS by its the sub- or superword

with the lowest eigenenergy:

a Calculate the eigenenergy E(|xxx⟩).
b For general IS, B(xxx) is going to be the set of indices of excited bits

for which it is potentially energetically favourable not to excite

them. Initially, we define B(xxx) := xxx\000.
c We want to construct a list l of (locally minimal) IS. Initially, we

define l := {xxx}.
d For word xxx, eigenenergy E(|xxx⟩) and bit indices B(xxx), perform the

following loop:

i For each bit i ∈ B(xxx) it is xi = 1 by construction. Consider the

bit-flipped subwords xxx(i) = (x1, . . . 0i, . . . xN ) of xxx.

ii Check whether we have already examined the word xxx(i) by comparing

with a global Hashlist. If we have already examined xxx(i), break

this loop and continue. Otherwise add this word to the global

Hashlist and continue this loop.

iii Calculate the eigenenergy E(|xxx(i)⟩).
iv Start with B′ = ∅. For each subword xxx(i) with E(|xxx(i)⟩) < E(|xxx⟩), we

add i to B′.

v If B′ ̸= ∅, we discard xxx from l. For each i ∈ B′, we add xxx(i) to l and

restart this loop with xxx(i) 7→ xxx, E(|xxx(i)⟩) 7→ E(|xxx⟩) and B′ 7→ B(xxx).
Otherwise we continue.

e Sort l by the energy of its states. Consider the first state of

the sorted list (the state of lowest energy), we define it as x̃xx.
Initially, we set E(|x̂xx⟩) =∞.

f Consider two cases: (i) If x̃xx is an excited state: If E(|x̃xx⟩) < E(|x̂xx⟩)
we define x̂xx := x̃xx; else we continue. (ii) If x̃xx is a ground state we

calculate its adjacent sub- or superstate of lowest energy and define

it as x̃xx (if any of the adjacent states are ground states we also

consider their adjacent states and so on), such that x̃xx is an excited

state. If E(|x̃xx⟩) < E(|x̂xx⟩), we define x̂xx := x̃xx.

g Consider the next state of l and define it as x̃xx. If E(|x̂xx⟩) < E(|x̃xx⟩), we

continue. Otherwise we restart previous point with the new x̃xx.

h Return x̂xx and E(|x̂xx⟩).

3 For each word xxx of a MIS, we identified an excited state x̂xx with

eigenenergy E(|x̂xx⟩). Now for all MIS, we pick the word with the lowest

eigenenergy and return it.

Algorithm 3.3: Algorithm for the efficient calculation of the energy gap. As input the algorithm
requests the blockade graph B[C] of the structure. It returns the energetically lowest excited state
(LES).
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Figure 3.2: Tree of ISs for the cycle graph C6. Adjacent substates are connected via arrows. The
boxed states are the MISs of C6. The axis denotes the number of atoms in the IS. The remaining 46
states corresponding to non-independent sets (NISs) are not noted in this tree as they are excluded
by observation (1). The alg. 3.3 starts with the MISs and trickles down the tree following the arrows
until finishing at the energetically lowest substate.

MISs of a Tessellated System. Consider the L-complex complex ([CL]QK , LL,L) of a tessellated
language LL on a lattice L8. The structure CL is constructed by placing a unit-cells C on each
vertex v ∈ V(L). By amalgamating the corresponding ports of adjacent unit-cells this yields a
structure Cv with modified detunings for each vertex v ∈ V(L).

Lemma III (MISs of a Tessellated System).

We assume that no two ports are connected in the blockade graph B[C] and that no two
atoms of different unit-cells are connected in B[CL]. For each vertex v ∈ V(L) we assign
a MIS xxxv from of the blockade graph B[Cv] with the following restriction:

‘‘If an excited port and a ground-state port are identified,

then each nearest neighbour of the excited port must have an

excited nearest neighbour itself, besides any excited ports

which are identified with a ground-state ports.’’

(3.14)

Then, for each tuple (xxxv | v ∈ V(L)) of MISs on B[Cv] following restriction (3.14), we
can identify exactly one MIS xxx on B[CL].

8Possibly finite or with PBCs
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Proof.

We proof this statement constructively by constructing a bijection between the set of tuples
and the set of MISs on B[CL]. Consider an arbitrary tuple (xxxv | v ∈ V(L)) of MISs on B[Cv]
following restriction (3.14). We define the γ-product of MISs by the following rules:

0 Ancillary bits are excited in the amalgamated MIS if and only if they are excited in the
MIS xxxv of their vertex v.

1 If two excited bits are identified during amalgamation, then the result is an excited bit.

2 If two ground-state bits are identified during amalgamation, then the result is a ground-
state bit.

3 If an excited bit and a ground-state bit are identified during amalgamation, then the
result is a ground-state bit.

Note that no two atoms of different unit-cells are connected in B[CL]. Thus B[CL] is constructed
from B[Cv]|v∈V(L) by identifying the ports but we do not need to add further edges. As the
tuple (xxxv | v ∈ V(L)) consisted of ISs on B[Cv]|v∈V(L), the resulting (amalgamated) word
xxx is an IS on B[CL] by construction. xxx is maximal, if every ground-state atom possesses
an excited nearest neighbour. This is trivially true for any port and for ancillaries adjacent
only to ancillaries. Condition 3.14 secures that this remains true for ancillaries adjacent to
ports subject to the 3rd rule, where an excited bit is flipped to its ground state. Thus this
construction yields a MIS on B[CL] for any initial tuple of MISs on B[Cv] following restriction
(3.14).
Now we have a construction which identifies a MIS on B[CL] with each tuple (xxxv | v ∈ V(L)) of
MISs on B[Cv] following restriction (3.14). It remains to prove that this function is bijective.
As no two ports are connected in B[C], there are no connected ports in B[Cv]|v∈V(L) and B[CL]
either. In a MIS xxx any bit i can be viewed as a function of its adjacent bits:

xi =
∏

j∈NN(i)

(1− xj). (3.15)

Here L(NN(i)) denotes the set of nearest neighbours of vertex L(i) ∈ V . Thus for any MIS of
a blockade graph where no two ports are adjacent, the states of the ports are a function of
the states of their adjacent ancillaries. This means in a MIS of such a graph, the states of the
ancillaries store the full information. As the states of the ancillaries is conserved (according to
the 0th rule), there is no information lost during the construction. We can uniquely identify
each tuple with each MIS on B[CL] using the ancillaries. Thus no two different tuples yield
the same MIS of B[CL] and vice versa. Therefore, the described function is an bijection.

Note that the 3rd rule in the proof of lemma III and the constraint (3.14) is what distinguishes the
‘product’ of MISs from the γ-product of languages where we instead consider the compatibility
condition.

In the proof of lemma III we have constructed the bijection

{xxx | xxx is MIS of B[CL]} ∼=
{
(xxxv | v ∈ V(L)) | (3.14) ∧ ∀v∈V(L) : xxxv is MIS of B[Cv]

}
(3.16)

between the MISs of the tessellated system and the MISs on every vertex following condition
(3.14). By calculating the MIS of B[Cv] for any vertex v ∈ V(L), this allows for the efficient
calculation of every MIS of the tessellated system. If L has PBCs then the system is transnational
invariant and Cv is identical for all v ∈ V(L). Otherwise Cv may differ at the boundary.
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Closing Remarks. At this point I want to make some closing remarks on alg. (3.3) and lemma
III:

1 In lemma III we assume that no two ports are connected in the blockade graph B[C]. Note
that this is a very weak assumption. If two ports were in blockade, it would be energetically
disfavourable to excite them simultaneously. However in most interesting target functions
(in particular the ones considered in this thesis) any two ports are excited simultaneously
in some ground state. Such a ground state would be energetically gapped out if the ports
were in blockade. Thus such a structure would be no good choice as a unit cell.

2 Furthermore, in lemma III we assume that no two atoms of different unit cells are connected
in the blockade graph. This is for general unit-cells not the case. However alg. (3.3)
requests only the MISs of a spanning subgraph as its input. We can thus apply lemma III
to calculate the MISs of the spanning subgraph which excludes edges between atoms of
different unit-cells. This algorithm turned out to be very useful and is heavily used for the
calculation of the energy structure throughout this thesis.

3 A disadvantage of alg. (3.3) compared to the direct ‘brute-force’ calculation is that it
only yields the lowest excited state but not the full energy structure. This is sufficient for
the minimization algorithm and alg. (3.3) heavily used in the minimization of structures
throughout this thesis. For the figures with the full energy structure we have to apply the
slow direct algorithm calculating the energy of every state. This is still quite acceptable as
now we only need to calculate the full structure just once but not in every minimization
iteration.

4 We can directly generalize lemma III to calculate MISs of amalgamated Boolean L-
complexes. In fact in the proof of lemma III we never really use that CL is a tessellated
structure and the structures Cv of each vertex v ∈ L differ (in the detunings) anyway.
However we do not require such an algorithm for this thesis.

This concludes the theoretical part of this section. In the following we want to apply the derived
tools exemplary to logic elementaries from fig. 3.1.

3.2.6 ||| Optimization of the NOR-Gates

The last subsections 3.2.1 - 3.2.5 focused on the problem of optimizing a given L-complex for its
measures of quality, namely Q, ∆Eeff and r. For that purpose we introduced a numerical mini-
mization algorithm 3.2 in subsec. 3.2.1. In this subsection we want to illustrate this algorithm
by applying it exemplarily to the NOR-gates 3.1 from subsec. 3.1.2 which were constructed by
the rejection sampling algorithm. The goal is to optimize the structures such that they imple-
ment their languages with a larger quality factor. We do not yet want apply theorem V (or its
corollaries) which we are going to introduce in the following sections 3.3 and 3.4. Here we only
want to illustrate the numerical optimization.

We apply the minimization algorithm to the three samples presented in fig. 3.1 which were
constructed by the rejection sampling algorithm 3.1. The samples implement the PXP-minimal
NOR-realizations. The samples optimized by the minimization algorithm are portrayed in fig.
3.3. Again we measure the energy scaling in units of the largest detuning ∆max thus the energy
gap equals the effective energy gap. For a detailed explanation of this presentation we refer to
subsec. 3.1.2.
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Figure 3.3: Three PXP-minimal NOR-realizations implemented in the VdW-model. The structures are
optimized for the quality factor using the minimization algorithm 3.2. The languages were introduced
by Stastny et al. in Ref. [38, 37]. In the PXP model the realizations are minimal in their number
of atoms and the list of minimal realizations is proven exhaustive[37].

Symmetry Constraints. For fig. 3.3 we apply a D1-symmetry as a constraint during mini-
mization for all three samples. In the following we shortly motivate this ansatz. Remember that
the languages LNOR0 ≡ LNOR1 are identical and in particular they are the same realization: they
differ only in their (unphysical) blockade graph. The generated permutation group ΣN [NOR1] =
⟨(0 Q) ◦ (1 B)⟩ ⊂ SN is the symmetry group of LNOR1 acting on the atoms via L. For LNOR2 the
symmetry group on the atoms is the permutation group ΣN [NOR2] = ⟨(A B) ◦ (0 1)⟩ ⊂ SN . Here
(i j k) denotes the cyclic permutation of the atoms i, j, k ∈ N .

The energy structure remains invariant under ΣN if and only if we request the D1-symmetry.
This is in particular sufficient to achieve degeneracy between the symmetric ground states. Note
that the logic gates in the PXP model possess a D1-symmetry in their detunings and their block-
ade graph9 as well[38]. Numerically we find that the symmetry constraint does not impede the

9In the PXP model we can modify the geometry in some small region without modifying the energy structure.
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optimization (it supports the optimization) which legitimizes the constraint a posteriori.
Note that in contrast to LNOR1 and LNOR3, the language LNOR2 is symmetric in the input ports:
ΣN [NOR2] does not permute ports with ancillaries. Thus in the second realization the symmetry
between the ports in target function is conserved. This is going to help us in chapter 3.3 to
define an effective language matrix.

A finite Energy Splitting. We find that the minimization algorithm successfully achieves al-
most perfect ground degeneracy δE ≲ 10−8∆max. Nevertheless, even though the energy splitting
is very small it is not exactly zero and thus the quality is not quite perfect. Only by applying
the minimization algorithm we are not going to achieve such a perfect energy splitting within a
finite runtime.
In the following want to find a systematic way to determine whether it is possible to achieve a
vanishing energy splitting. If so, we want to find a way to modify the samples such that they
possess perfect quality. Furthermore, ideally we do not want to use the minimization algorithm
until reaching Q ≲ 10−7 as this becomes very time-expensive for larger L-complexes. We want
to find a criterion to determine just how long we have to apply the minimization algorithm to
secure that we can achieve degeneracy in the ground states.
These issues are are going to be discussed in the following sec. 3.3. There we introduce theo-
rem V which is a conceptually important and very helpful theorem in this thesis. Further, we
introduce new concepts such as the extended language matrix which we are going use to derive
corollary VII. In sec. 3.4 we are going to continue with a discussion about symmetries and we
introduce the effective description.

Thus here consider the blockade graph instead.
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3.3 ||| Achieving Ground State Degeneracy

The two previous sections 3.1 and 3.2 discuss the problems of implementing L-complexes in the
VdW model. As a solution in each section we propose an algorithm: Sec. 3.1 discusses a rejection
sampling algorithm 3.1 to construct samples of Rydberg complexes for a given target language.
Sec. 3.2 discusses a minimization algorithm 3.2 to efficiently optimize a given L-complex for the
measures of quality. In both sections we exemplarily apply the algorithms to the PXP-minimal
NOR-languages which allows to construct and optimize their Rydberg complexes. This yields
high-quality implementations as presented in fig. 3.3.

However these algorithms will for a finite runtime always terminate in L-complexes with a finite
energy splitting and thus non-optimal quality. In the following we are interested in whether it
is possible to achieve perfect degeneracy of the low-energy eigenspaces for these samples. This
is not only interesting for academic reasons: Firstly, finite energy splittings can add up under
amalgamation. We are going to see that this can disarrange the energy structure for large
amalgamated complexes, e.g. in the case of tessellated loop models in chap. 6. Furthermore
such energy splittings introduce a phase shift in the state when introducing quantum fluctuations
by ramping up the Rabi frequencies Ωi > 0 in the Hamiltonian. This motivates the following
chapter.

An introductory Remark. It is easy to see that we can not achieve ground state degeneracy
for every target language in the VdW-model, even if that target language possesses an L-complex
with a positive energy gap:

Example 6. (A minimal Counterexample)

An simple example is Lt = F3
2\{(0, 0, 0)} which has δE ≥ ∆E/3, i.e. Q ≲ 71%. This

can be easily seen with corollary II because the ground states are non-adjacent substates
without intermediate excited states. Equality Q = 1/3 is only achieved in the D3-symmetric
configuration with Iij = 2∆k/3 for i, j, k ∈ N . In this case it is E(|1, 1, 1⟩) = E(|1, 0, 0⟩) and
E(|1, 1, 0⟩) = 4/3E(|1, 0, 0⟩).

We are going to discover more such target languages later in chap. 5 or chap. 6 where we prove
the absence of a structure with vanishing energy splitting. In particular we encounter target
languages which possess a L-complex with maximal quality factor in the PXP model but where
no L-complex of unit quality factor exists in the VdW model. Nevertheless such languages might
remain physically useful if their quality if sufficiently large.

On Ground State Degeneracy. To achieve degeneracy we search for physical solutions of the
linear system (3.3). As it is not easy to check whether any given solution (3.4) is physical (cf. the
rejection sampling algorithm 3.1), we instead start by considering a physical L-complex which
approximately solves eq. (3.3), i.e. which possesses a (small) finite energy splitting δE > 0. Such
a complex may for example be constructed using the algorithms from previous sections 3.1 and
3.2. We now formulate the lemma IV:
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Lemma IV (Existence of Degeneracy).

Consider some L-complex (CQK , Lt,L) with target language L = Lt of length g = |Lt|. If
the eigenvectors |xxx⟩ of the words xxx ∈ Lt are linear independent, then there exists a L-
complex (C̃QK , Lt,L) where Ht = H(Lt) is a g-dimensional eigenspace of the Hamiltonian

H[C̃].

In other words: in Hamiltonian H[C̃] each vector |xxx⟩ ∈ Ht possesses equal energy (in particular
each vector |xxx⟩ with xxx ∈ Lt), thus the energy splitting δE = 0 vanishes. For the following proof(s)
we again denote the set of atoms by N and its magnitude by N , then the target language is
Lt ⊆ FN

2 .

Proof.

To proof lemma IV, we rewrite the problem as a linear system similar as in (3.3):

Lij∆̃j
!
= b̃i with b̃i = −Ẽ +

∑N

j,k=1
LijIL(j)L(k)Lik, (3.17)

Here LLL ∈ Fg×N
2 is the language matrix of L = Lt as defined above. The solution vector ∆̃∆∆

is defined via the labeling ∆̃j := ∆̃L(j) and the parameter Ẽ ∈ R is the new eigenenergy in

Hamiltonian H[C̃]. There are N independent variables in this linear system.

According to the Rouché–Capelli theorem a system of linear equations has no solution if
the rank of the augmented matrix is greater than the rank of the coefficient matrix. If on
the other hand the ranks of these two matrices are equal the system must have at least one
solution. As the words are linear independent we know that the matrix LLL has full row rank,
i.e. rank(LLL) = g. Thus the augmented matrix with the augmented rows must be of rank g
as well. Therefore the linear system from eq. (3.17) has at least one solution ∆̃∆∆ = LLL+bbb for
any energy Ẽ ∈ R, independent of the geometry. Here again LLL+ denotes Moore–Penrose
pseudoinverse of the matrix LLL.

Thus for structure C̃ = (rrri, ∆̃i | i ∈ N ) the eigenstates |xxx⟩ with xxx ∈ L possess equal eigenenergy
⟨H[C̃]⟩xxx = Ẽ for any word x ∈ L.

It should be mentioned that solutions of this linear system might not be physically useful (yet).
Solutions of this linear system might include negative detunings which we do not consider (by
remark 3). Further, the lemma IV does not yet consider the energy gap ∆E and the new
eigenenergy Ẽ ∈ R is still left a parameter. As discussed in sec. 3.1 (see eq. (3.8) eq seq.)
we may restrict ourselves to Ẽ > 0 to achieve ∆E > 0. Nevertheless, in general Ht is no
gapped low-energy eigenspace of the Hamiltonian H[C̃] for any choice Ẽ ∈ R>0 because the
energy gap becomes negative. This might even be the case if the target Hilbert space has been
a gapped low-energy eigenspace of the L-complex (CQK , L,L) (with δE > 0), i.e. if the condition
H0[H; C] ∼=L Ht from eq. (2.9) is met: By shifting the detunings the states shift as well and
thus the energetic arrangement of the states might get corrupted in the process.
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Securing positive Quality. However the energy structure is a continuous, linear function of
the detunings. Thus for a finite change in the detunings the states are shifted energetically only
by a finite amount (depending on the magnitude of the change in the detunings). This allows for
an upper bound on the energetic disarrangement and thus a lower bound on the energy gap. This
solves the issues we discussed above for lemma IV. We formalize this argument in the following
central theorem V of this thesis:

Theorem V (Degenerate Ground States 1).

Consider some L-complex (CQK , L,L) with target language L = Lt of length g = |Lt|. If
the eigenvectors |xxx⟩ of the words xxx ∈ Lt are linear independent and if the quality factor
Q > exp [−2/(g∥LLL+∥1)] is sufficiently large, then there exists a L-complex (C̃QK , L,L)
where Ht = H(Lt) is a g-dimensional gapped low-energy eigenspace of the Hamiltonian
H[C̃].

In other words: H0[H; C̃] ∼=L Ht with Q = 1. The eigenstates |xxx⟩ with xxx ∈ L are degenerate and
energetically lower than the eigenstates |xxx⟩ with xxx ∈ FN

2 \L. To proof this statement, we start
with previous lemma IV and derive an upper bound on the energetic shift.

Proof.

In structure C = (rrri,∆i | i ∈ N ), the linear system

Lij∆j = bi with bi = −Ei +
∑N

j,k=1
LijIL(j)L(k)Lik (3.18)

is solved by the detunings ∆j = ∆L(j). Here Ei ≡ ⟨H[C]⟩xxxi
is the eigenenergy of the i-th state

associated with the i-th row of the language matrix LLL ∈ Fg×N
2 . From lemma IV, we know that

there exists a structure C̃ = (rrri, ∆̃i | i ∈ N ) with constant energy Ẽ = ⟨H[C̃]⟩xxxi
for all xi ∈ L

for any parameter Ẽ ∈ R. By subtracting eq. (3.18) from eq. (3.17), we obtain the new linear
system Lijδj = δEi, where we defined δj ≡ ∆̃j −∆j and δEi ≡ Ei − Ẽ.
For any two words x,y ∈ FN

2 , we can identify their energy difference in structure C as

∆Exy ≡ Ey − Ex = −∆i (yi − xi) +
∑N

i,j=1
IL(i)L(j) (yiyj − xixj) . (3.19)

In C̃ the energy difference is then modified by

δ(∆Exy) ≡ ∆Ẽxy −∆Exy = −δi (yi − xi) (3.20)

as the geometries GC̃ = GC and thus the interactions IC̃ = IC are identical by construction.

Choosing x ∈ L and y ∈ FN
2 \L, we want to show ∆Ẽxy > 0. As ∆Exy ≥ ∆E, this is fulfilled

in particular if ∆E > −δ(∆Exy). An upper bound on −δ(∆Exy) is given by

−δ(∆Exy) = δi (xi − yi) ≤ |δi (xi − yi)| ≤ |δi| |xi − yi| ≤ |δi| = ∥δ∥1, (3.21)

where ∥·∥ denotes the 1-norm of the δ-vector. By definition δ is the solution of the linear
system Lijδj = δEi. The minimal solution (with respect to the 2-norma) can be constructed
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using the Moore–Penrose pseudoinverse LLL+. Hence its 1-norm respects the upper bound

∥δ∥1 = ∥LLL+ · δE∥1 ≤ ∥LLL+∥1∥δE∥1, (3.22)

where the operator 1-norm is the norm induced by the vector 1-norm. We may now choose
Ẽ as the arithmetic mean Ē = 1/g ·∑g

i=1 Ei. Given some arbitrary but fixed ground state
splitting δE = maxi∈{1,...g} δEi −mini∈{1,...g} δEi, then ∥δE∥1 is maximized for ground state
energies δEi ∈ {maxi∈{1,...g} δEi,mini∈{1,...g} δEi} in (approximately) equal number. This
yields

−δ(∆Exy) ≤ ∥δ∥1 ≤ ∥LLL+∥1
δE

2

{
g, if g even

g − 1/g, if g odd

}
≤ ∥LLL+∥1

g

2
δE. (3.23)

Thus it is ∆E > −δ(∆Exy) in particular fulfilled if ∆E > ∥LLL+∥1gδE/2 or equivalently

Q > exp [−2/(g∥LLL+∥1)]. Latter is fulfilled by assumption, hence we obtain ∆Ẽxy > 0 for all

x ∈ L and y ∈ FN
2 \ L. Thus the L-complex (C̃QK , L,L) with the structure C̃ = (rrri, ∆̃i | i ∈ N )

constructed in lemma IV possesses a positive energy gap. Therefore (C̃QK , L,L) realizes the
target language with a degenerate ground state manifold.

aUnfortunately, there is no linear operator creating the minimal solution of the 1-norm for general right-
hand sides, see [10].

The target quality factor condition Q > exp [−2/(g∥LLL+∥)] is generally very different for different
target languages L = Lt. Here the operator 1-norm ∥LLL+∥1 can be computed from the language
directly. This is easily done numerically. However analytically this computation is generally
cumbersome and the condition Q > exp [−2/(g∥LLL+∥)] above offers little intuition yet.

Rephrasing the Theorem. Thus it might be very useful to rephrase this condition in terms of
the dimensions of the language matrix LLL ∈ Fg×N

2 , i.e. the number of the ground states g = |L|
and the number of atoms N = |N |. We formulate corollary VI:

Corollary VI (Degenerate Ground States 2).

Consider some L-complex (CQK , L,L) with target language L = Lt of length g = |Lt|. If
the eigenvectors |xxx⟩ of the words xxx ∈ Lt are linear independent and if the quality factor

Q > exp [−2/
√
N2g−1gg+2] is sufficiently large, then there exists a L-complex (C̃QK , L,L)

where Ht = H(Lt) is a g-dimensional gapped low-energy eigenspace of the Hamiltonian
H[C̃].

Proof.

Using the singular value decomposition (SVD), we can decompose the language matrix LLL ∈
Fg×N
2 in LLL = UDV T for some (real) orthogonal matrices U ∈ Rg×g and V ∈ RN×N and

diagonal non-negative matrix D. The diagonal elements are the (up to permutations uniquely
determined) singular values of LLL. As rank(LLL) = g, there are g singular values and all of them
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are positive. We are going to denote them by σi = σi(LLL) > 0 with i ∈ {1, . . . g} and we assume
the usual ordering σ1 ≥ . . . ,≥ σg. Using the SVD, the Moore–Penrose pseudoinverse of
the language matrix can be written as LLL+ = V D+UT where D+ is constructed from D by
inverting the (positive) diagonal elements. The natural matrix norm induced by the 1-norm
is the maximum absolute column sum norm. The matrix 1-norm of D+ is therefore given
by the inverse of the smallest (positive) singular value: ∥D+∥1 = 1/σg. As UT ∈ Rg×g and
V ∈ RN×N are orthogonal, the vector 2-norm of its columns are one. Thus their matrix 1-
norm is maximized for equal elements (up to a phase) in one column: ∥U∥1 ≤ g/

√
g =
√
g and

∥V ∥1 ≤ N/
√
N =

√
N . From the proof of previous theorem V we know that if Q < 2/g∥LLL+∥1,

then the energy gap ∆Ẽ > 0 of (C̃QK , L,L) is positive. We reformulate this inequality by
introducing a new lower-bound:

2

g∥LLL+∥1
=

2

g∥V D+UT ∥1
≥ 2

g∥V ∥1∥D+∥1∥U∗∥1
≥ 2σg√

Ng3
. (3.24)

Note that as σg = σg(LLL) > 0, it is exp [−2σg/
√

Ng3] < 1.

A lower bound on the minimal singular value of a binary matrix LLL ∈ Fg×N
2 may be found

in the following way: The Gramian matrix AAA = LLLLLLT ∈ Fg×g
N is symmetric and possesses

eigenvalues λi(AAA) = σi(LLL)
2 for i ∈ {1, . . . g}. As σi > 0 it is λi > 0 and AAA is positive definite.

As LLL is binary, AAA is constructed from natural number n ∈ FN . As the determinant of AAA is a
polynomial function of integers with coefficients ±1, it must be an integer as well. However
we know that the eigenvalues are positive thus the determinant (which is their product) must
be positive as well. Thus we follow det(AAA) ≥ 1. The largest eigenvalue of an integer matrix
AAA ∈ Fg×g

N may be upper-bounded by
√
gN . Thus the smallest eigenvalue λg must fulfill

σg(LLL)
2 = λg(AAA) = detAAA/

∏
i∈{1,...g−1}

λi ≥ 1/(
√
gN)g−1 (3.25)

We may apply this lower bound to reformulate

2

g∥LLL+∥1
≥ 2σg√

Ng3
≥ 2√

N2g−1gg+2
. (3.26)

Thus Q > exp [−2/(g∥LLL+∥)] is fulfilled in particular if Q > exp [−2/
√

N2g−1gg+2] and we
may apply theorem V.

Note that this inequality Q > exp [−2/
√
N2g−1gg+2] of corollary VI is less sharp than the

previous inequality of theorem V. However corollary VI offers a very simple algebraic expression
consisting of only the matrix dimensions g and N which can be evaluated easily by hand to get
an intuition on the target quality factor.

An exponential Decay. We find that the lowest singular value σg (and thus the inverse of
the 1-norm ∥LLL+∥−1

1 ) in general decays exponentially in the dimension g of the matrix. Here we
derived the correct asymptotic behavior as proven in Ref. [1] for the more special case of binary
square matrices AAA ∈ Fg×g

2 . There is a simple and clear argument in ‘Matrix Computations’ by
Golub et al.[16] (cf. section 2.4.2.) with explains why increasing the matrix dimension generally
decreases the lowest singular value:
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Remark 2. (The intuitive Argument behind Corollary VI)

For LLLT = V DUT ∈ FN×g
2 we label by uuug the last column of the orthogonal matrix U ∈ Rg×g.

It is rank(LLL) = g thus N ≥ g, by assumption. We augment the matrix LLLT by an arbitrary

column b ∈ FN
2 and call it LLLT

Aug =
[
LLLT

∣∣ b]. Then we obtain

σmin(LLL) = ∥LLLTuuug∥2 =

∥∥∥∥∥LLLT
Aug

[
uuug

0

]∥∥∥∥∥
2

≥ σmin(LLL
T
Aug)

∥∥∥∥∥
[
uuug

0

]∥∥∥∥∥
2

= σmin(LLLAug), (3.27)

i.e. in a nutshell σmin(LLL) ≥ σmin(LLLAug) for any augmentation b ∈ FN
2 .

However this implies that for large languages of length g = |L| it is exponentially hard in g to
achieve degeneracy, because the ratio Q needs to be exponentially small in g for theorem V to
apply.

General Remarks. In the following thesis we prefer to apply theorem V instead of corollary
VI as we evaluate the 1-norm of the pseudoinverse of the language matrix numerically to obtain
a sharper bound. It should be mentioned that theorem V (and thus corollary VI) only offer a
sufficient but not a necessary condition to achieve a positive energy gap when applying lemma
IV. We find numerically that in general if we violate the inequalities only slightly but still apply
lemma IV we still obtain a positive energy gap in (C̃QK , L,L). In the following we conclude these
proofs with a few remarks and discuss generalizations of theorem V.

In lemma IV we assumed that the eigenvectors |xxx⟩ of the words xxx ∈ L = Lt are linear inde-
pendent, i.e. that the language matrix LLL is of rank rank(LLL) = g. In particular this restricts to
specific ground-state manifolds with g ≤ N . Luckily, this condition will be fulfilled by for logic
elementaries. For the remaining more complex languages we have to generalize this concept.

Generalizations. It is in general not necessary to fulfill rank(LLL) = g for the linear system
(3.17) to be consistent, it is only sufficient. According to the Rouché-Capelli theorem a linear

system of equations is consistent if and only if the rank of the augmented matrix LLLAug := [LLL | b̃bb ]
equals the rank of the coefficient matrix LLL. This means that if the eigenvectors |xxx⟩ of the words

xxx ∈ Lt are linear dependent, then the right-hand side b̃bb of the linear system must share this
linear dependency.

In the following we denote the rank of the coefficient matrix by r := rank(LLL). This allows us to
generalize lemma IV and theorem V10:

It is not necessary to assume that the eigenvectors |xxx⟩ of the words xxx ∈ Lt are linear
independent. It is sufficient (and necessary) to assume rank(LLLAug) = r.

In the case r = g we recover the previous consistency condition of lemma IV. The new generalized
consistency condition is explicitly dependent on the right-hand side b̃bb, i.e. it is determined by the
geometry GC and possibly by Ẽ. Still however for a given target language with r < g, a general
geometry (possibly sampled and optimized using the algorithms from sections 3.1 and 3.2) does

10The generalization of corollary VI is more subtle. We denote it as corollary X and attach it in the app. 3.A.
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not fulfill this consistency condition. If we optimize the quality factor using the minimization
algorithm 3.2, a geometry solving the consistency condition is at best approximated due to
numerical errors. Thus we can not yet profit from this generalization.

In the following we consider two cases: In case (1) the cokernel is orthogonal to the 111-vector, i.e.
the vector elements from the cokernel sum to zero, and in case (2) the cokernel is not orthogonal
to the 111-vector. We start with the former case:

1 If the cokernel is orthogonal to the 111-vector, the consistency condition can be reformulated

as an equality of linear functions on the interaction energies (independent of Ẽ). Such a
condition can not be solved for d-dimensional Euclidean geometries in every case11. If the
language possesses a permutation symmetry in its bits12 such a condition might correspond
only to a symmetry constraint on the structure. It might therefore be useful to constrain
this symmetry in the structure during the optimization to fulfill rank(LLLAug) = r.

2 Consider now the case where the vector elements of the cokernel do not sum to zero: Then

the consistency condition is a function of Ẽ. In theorem V we made the choice for Ẽ = Ē
as the arithmetic mean of the current eigenenergies in order to express ∥δEEE∥1 as a linear
function of the energy splitting δE. As it turns out however there are cases where this is
not the most useful choice, i.e. where for Ẽ = Ē the linear system is inconsistent but by
some other choice of Ẽ one can make the linear system consistent. Thus sometimes we can
profit from the additional DOF in the choice of Ẽ − Ē and we want to incorporate this
additional DOF in the linear system. In a nutshell this corresponds to a substitution of LLL

by an extended language matrix L̃LL := [LLL |111] ∈ Fg×(N+1)
2 in the proof of theorem V. This of

course will then change (more precisely worsen) the upper bound requested in theorem V.

Let r̃ = rank(L̃LL) denote the rank of the extended language matrix. We can now formulate a
generalized version of theorem V:

Corollary VII (Generalization of Theorem V).

Consider some L-complex (CQK , L,L) with target language L = Lt of length g = |Lt|.
If rank(L̃LLAug) = r̃ and if the quality factor Q > exp [−2/(g∥L̃LL+∥1)] is sufficiently large,

then there exists a L-complex (C̃QK , L,L) where Ht = H(Lt) is a g-dimensional gapped

low-energy eigenspace of the Hamiltonian H[C̃].

Proof.

The proof in analogous to the proof of theorem V, we only note the differences. Analogous to
eq. (3.17) we formulate a linear system

L̃ij∆̃j
!
= b̃i with b̃i = −Ē +

∑N

j,k=1
LijIL(j)L(k)Lik, (3.28)

11E.g. consider app. 5.A.1 or app. 5.B.2 or simply the introductory exmpl. 6
12E.g. if the (vectorial) Boolean function v is symmetric.

||| 65



Chapter 3 The Problem and Methods
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

now using the extended language matrix L̃LL. This linear system is consistent by assumption; its
solution is given by the Moore-Penrose pseudoinverse. The solution vector is now defined
via ∆̃j ≡ ∆L(j) for j ∈ {1, . . . N} and ∆̃N+1 ≡ Ẽ − Ē. By subtracting (3.18) from eq. (3.28),

we obtain the new linear system L̃ij δ̃j = δEi, where we defined δ̃j ≡ ∆̃j−∆j for j ∈ {1, . . . N},
δ̃N+1 ≡ Ẽ − Ē and δEi ≡ Ei − Ē. We can proceed similarly as in theorem V with the new
upper bound

−δ(∆Exxxyyy) ≤ ∥δδδ∥1 ≤ ∥δ̃δδ∥1 ≤ ∥L̃LL
+ · δEEE∥1 ≤ ∥L̃LL

+∥1∥δEEE∥1 ≤ ∥L̃LL
+∥1

g

2
δE. (3.29)

This yields a substitution of LLL by L̃LL in the final term. Thus it is ∆E > −δ(∆Exy) in particular

fulfilled if ∆E > ∥L̃LL+∥1gδE/2 or equivalently Q > exp [−2/(g∥L̃LL+∥1)].

Note that corollary VII is more general than theorem V. This comes at the cost that the rank
of L̃LLAug and thus the condition is now explicitly dependent on the geometry. Furthermore the

extended language matrix L̃LL possesses a smaller singular value σmin following remark 2. This
makes the target quality factor larger and thus the bound less sharp compared to theorem V.

Note that corollary VII includes two generalizations, via the effective language matrix and via
the rank. It is clear that one could also consider only one generalization of theorem V at the time.
Here we only note corollary VII including directly both generalizations to avoid redundancies.

Generalization of Corollary VI. We want to conclude with some remarks on the gener-
alization of corollary VI: Although the generalization of theorem V to corollary VII is quite
straight-forward this is not the case for corollary VI. The proof of corollary VI is heavily based
on the assumption that rank(LLL) = g ≤ N such that all singular values σi(LLL) > 0 are positive.
It may be generalized to the condition rank(LLL) = rank(LLLAug) by substituting the determinant
by the pseudodeterminant, accounting for the (possibly) reduced number of eigenvalues. The
detailed and rigorous (and beautiful) proof is attached in the app. 3.A.
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3.4 ||| Exploiting Symmetries

This section is based directly on previous sec. 3.3. There we already mentioned that, if the
language possesses permutation symmetries in the bits then the consistency condition might
impose symmetry constraints on the structure. To fulfill the consistency condition and apply
corollary VII it is useful to constrain these symmetries on the structure. In this section we want
to continue on this ides and derive an effective description which is equivalent for structures
respecting the symmetries.

Reformulation of the Consistency Condition. For any matrix AAA ∈ Fg×n
2 it is rank(AAA) =

rank(AAAT ) = g− def(AAAT ) = g− codef(AAA). Here ‘def’ denotes the defect (or nullity), i.e. the rank
of the kernel, and ‘codef’ denotes the codefect (or corank), i.e. the rank of the cokernel13. With

AAA = L̃LL ∈ Fg×N
2 and AAA = L̃LLAug ∈ Fg×(N+1)

2 , the consistency condition rank(L̃LLAug) = rank(L̃LL) can

be reformulated as codef(L̃LLAug) = codef(L̃LL). As coker(L̃LLAug) ⊆ coker(L̃LL) are vector spaces, we
can further reformulate the consistency condition as

coker(L̃LLAug) = coker(L̃LL). (3.30)

In other words: if |yyy⟩ ∈ coker(L̃LL) then ⟨yyy|b̃bb⟩ = 0 where |b̃bb⟩ is the right-hand side of the linear

system (3.28). This means that |b̃bb⟩ should share the linear dependencies of the states of L̃LL. Note
that this reformulation is equal to the initial consistency condition.

As |b̃bb⟩ is a linear function of IC and Ē, this imposes linear constraints on the interactions. In the
following we are interested in the effect of symmetries on these constraints. We want to know
whether symmetries can help us to strengthen theorem V (and its corollaries). In the following
we leave the tilde of the extended language matrix for a more streamline notation. The following
arguments are similarly true for the extended and the non-extended language matrix.

Symmetries and Constraints. Consider a language L possessing some symmetry group Σ, i.e.
σ(L) = L for σ ∈ Σ. Here the symmetry σ acts element wise on each word xxx ∈ L by permuting
the bit indices. As σ leaves L invariant this means that each word is either projected onto itself
or to another word in L:

∀xxx ∈ L : σ(xxx) ∈ L with (σ(xxx))i = xσ(i). (3.31)

If L possesses a symmetry group Σ, it is not surprising that (some of) the linear constraints
on IC can correspond to symmetry constraints. The symmetry constraints request that the
interactions respect (some of) the symmetries of the language under permutation (i.e. relabeling)
of the atoms. Thus just by imposing these symmetry constraints on the interactions (e.g. while

13The cokernel is the kernel of the transpose.
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applying the minimization algorithm 3.2) we are able to fulfill (some of) the constraints on the
interactions. In the following we assume that we impose some symmetry constraints Σ on the
complex, i.e. on the subspace H(L) the complex remains invariant to the Hamiltonian under
a relabeling of atoms according to σ ∈ Σ. The goal of this section now is to find a simpler
consistency condition (3.30) for such symmetric cases.

An effective Description. We define an effective language Leff by identifying bits which are
projected onto each other under σ. These bits of L construct equivalence classes:

xi ∼ xj ⇔ ∃σ ∈ Σ : xj = xσ(i). (3.32)

We associate an effective bit x̃ ∼= [x] in Leff with their equivalence class and define its value in
some state i as the sum of the values of all bits in the equivalence class: x̃i =

∑
x∈x̃ xi. If the

bit x ∈ [x] ∼= x̃ of L is associated with the effective bit x̃ of Leff, we write symbolically x ∈ x̃ to
streamline notation. The new effective language we just constructed is non-binary as its letters
can possess integer values larger one. However for simplicity we still call the letters of the effective
language its bits. The effective language generally consists of fewer words geff := |Leff| ≤ g and
each word possess a smaller bit length Neff ≤ N .

The effective language matrix defined by the effective language is denoted by LLLeff ∈ Ngeff×Neff

0 .
In the following we denote the indices of the effective language matrix ĩ, j̃, . . . with a tilde to
distinguish them visually from indices of the actual language matrix. For the ĩ-th row x̃xxĩ in LLLeff

there is an equivalence class [i] of rows xxxi in LLL which projects to x̃xxĩ under previous construction.
Again we identify ĩ ∼= [i] and we write symbolically i ∈ ĩ to streamline notation. This induces a
(linear) ‘projection’ 14

P : Rg → Rgeff : (P (|yyy⟩))ĩ =
∑
i∈ĩ

yi (3.33)

on the states. In the following we write ỹĩ := (P (|yyy⟩))ĩ.
Now we need to show that these constructions are useful. We formulate lemma VIII:

Lemma VIII (Projection to effective Languages).

Consider some |yyy⟩ ∈ coker(LLL). Then it is:

1 P (coker(LLL)) = coker(LLLeff).

2 ⟨yyy|b̃bb⟩ = 0 by the symmetry of the interactions if and only if |yyy⟩ ∈ ker(P ).

This means that under the projection P precisely the constraints for the consistency of the linear
system which are fulfilled by the symmetry of the interactions are discarded and the remaining
ones are conserved.

14P is not a projection in the mathematical definition as P is a linear function between different vector spaces.
We just call it that way as it projects to a vector space of lower dimension.
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Proof.

We start by showing (1) that P : coker(LLL)→ coker(LLLeff) is a well-defined Surjection. Consider
some |yyy⟩ ∈ coker(LLL). Then for any bit x we have

∑g
i=1 yixi = 0. Here xi is the bit-value of x

in the i-th state. We now sum over the elements of the same equivalence class of bits:

0 =
∑
x∈x̃

g∑
i=1

yixi =

g∑
i=1

yi

(∑
x∈x̃

xi

)
︸ ︷︷ ︸

equal for i1, i2 if i1 ∼ i2

=

geff∑
ĩ=1

∑
i∈ĩ

yi

 x̃ĩ =

geff∑
ĩ=1

ỹĩx̃ĩ. (3.34)

As this is true for all bits x̃, we obtain |ỹyy⟩ = P (|yyy⟩) ∈ coker(LLLeff). It is easy to see that
this projection is surjective by constructing its right inverse: yi ≡ (P+(|ỹyy⟩))i = ỹĩ/|̃i| fulfills
(P (P+(|ỹyy⟩)))ĩ =

∑
i∈ĩ ỹĩ/|̃i| = ỹĩ. Thus (1) is proven.

As the projection is in general not injective, the construction of the right-inverse is not unique.
The reason is that the kernel of P may be nontrivial: ỹĩ =

∑
i∈ĩ yi may vanish for all ĩ even

if yi ̸= 0. As P is linear, we could add any element of its kernel to P+ and obtain a different
right inverse. We find that ker(P ) consists of the vectors |yyy⟩ with ∑i∈ĩ yi = 0 for all ĩ:

|yyy⟩ ∈ ker(P ) ⇔ ∀ĩ :
∑
i∈ĩ

yi = 0. (3.35)

However due to the symmetry of the interactions, for each state i1, i2 ∈ ĩ the right-hand side
b̃i1 = b̃i2 ≡ b̃ĩ

a is constant because each state ’looks the same’ to the Hamiltonian. Thus the
vectors |yyy⟩ with∑i∈ĩ yi = 0 for all ĩ are the vectors which are orthogonal to general symmetric

|b̃bb⟩:

⟨yyy|b̃bb⟩ =
g∑

i=1

yib̃i =

geff∑
ĩ=1

∑
i∈ĩ

yi

 b̃ĩ = 0 ⇔ ∀ĩ :
∑
i∈ĩ

yi = 0 (3.36)

Combined with eq. (3.35), this proves (2).

aNote that b̃ĩ is not defined as the sum of its b̃i with i ∈ ĩ but it equals them.

We find that the vectors |yyy⟩ ∈ coker(LLL) ∩ ker(P ) of the intersection subspace are exactly the
vectors with which the right-hand side of the linear system is already consistent due to the
symmetry of the interactions. The remaining vectors |yyy⟩ ∈ coker(LLL)\ker(P ) convey the remaining
consistency conditions and they are translated into non-zero vectors |ỹyy⟩ ∈ coker(LLLeff) surjectively.
Thus (only) the relevant consistency conditions are conserved in the effective description via LLLeff

and the effective description is equivalent to the description via the full language matrixLLLmodulo
symmetries. We want to illustrate this abstract concept via an example:

Example 7. (The ternary NOR-function)

As an example consider the Boolean language matrix LLL[NOR3a] of the (symmetric) 3-bit
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NOR-function in realization a and its effective language matrix LLLeff[NOR3a]:

LLL[NOR3a] =


0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

1 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0



T

←→ LLLeff[NOR3a] =


0 1 0

1 0 1

2 0 0

3 0 0

 . (3.37)

Here the input port bits are lumped together into one effective input port bit and the states
{2, 3, 5} and {4, 6, 7} are lumped together in the effective states 2̃ and 3̃ respectively. Thus
geff = 4 < g = 8 and Neff = 3 < N = 5. The geometry is assumed to be D3-symmetric. We
can represent the linear projection P by a matrix

PPP =


1 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0

0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1

 ∈ Fgeff×g
2 . (3.38)

For the matrices of eq. (3.37) we find the cokernels

coker(LLL[NOR3a]) = span





[
0 0 1 −1 −1 1 0 0

]T
,[

0 2 −1 −1 −1 −1 2 0
]T

,[
0 0 0 −1 0 −1 −1 2

]T



 , (3.39)

coker(LLLeff[NOR3a]) = span

({[
0 0 −3 2

]T})
. (3.40)

We find that the last basis vector in the spanning set of coker(LLL[NOR3a]) projects to the
spanning vector of coker(LLLeff[NOR3a]) under P :[

0 0 −3 2
]T

= PPP
[
0 0 0 −1 0 −1 −1 2

]T
. (3.41)

The condition imposed by these vectors requests that Iij = −Ē/3 where i ̸= j are input ports.
This constraint has to be fulfilled in addition to the symmetry constraints. Using Ē = −3∆i/2
we can rephrase this as Iij = ∆i/2, which is just what we expect to degenerate the third and
fourth effective state.
The remaining two vectors (and their span) lie in the kernel of P and project to zero. This is
just what we want as their constraints are trivial for a symmetric geometry:

⟨yyy|b̃bb⟩ =
4∑

ĩ=1

∑
i∈ĩ

yi

 b̃ĩ = 0 for |yyy⟩ ∈ span



[
0 0 1 −1 −1 1 0 0

]T
,[

0 2 −1 −1 −1 −1 2 0
]T

 .

Here b̃1̃ = b2 = b3 = b5 and b̃2̃ = b4 = b6 = b7. The equivalence classes of the states are
1̃ ∼= {1}, 2̃ ∼= {2, 3, 5}, 3̃ ∼= {4, 6, 7} and 4̃ ∼= {8}.
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We conclude this discussion with a few remarks on symmetries and then use the above definitions
and lemma VIII to reformulate corollary VII:

1 In the following we are going to call a L-complex symmetric under some symmetry σ, if its
language is symmetric under σ and if the interactions and detunings are symmetric under
σ for the ground states. Latter means that the structure looks identical to the Hamiltonian
for the ground states under σ. Note that this does not necessarily imply that the geometry
is symmetric as the interactions may still be asymmetric under σ for the excited states (cf.
the ICRS2-gate in fig. 4.8). However this is more the exception than the rule and usually
the geometry also obeys the symmetry σ.

2 It is possible that for a symmetric language there only exist (partially) asymmetric im-
plementations on the d-dimensional Rydberg platform, i.e. where the L-complex is not
symmetric (cf. the CRS2-gates in fig. 4.8). Thus one has to be cautious when assuming
symmetries (e.g. during optimization via the minimization algorithm 3.2).

3 In the remaining thesis we are going to use the effective description of symmetric L-
complexes frequently as most interesting target languages Lt are symmetric (often they
are symmetric in the ports). A symmetric (vectorial) Boolean function v of k input ports
possesses g = 2k words and thus 2k rows in its language matrix. The visualization of the
symmetric language matrix can be improved enormously by discarding redundant rows and
reducing the rows to only geff = k + 1 in the effective language matrix.

4 It should be noted that there are symmetric target functions ft where it is useful to choose
a (partially) asymmetric realization w to be able to construct H(Lt) as a gapped low-
energy eigenspace. This is a known phenomenon as the atom-efficient realizations in the
PXP model are (partially) asymmetric[38].15 This means in particular that it is a priori
not obvious whether it is useful to search for a (partially) symmetric realization and if so
with which symmetries. Introducing more symmetries generally helps to achieve ground
state degeneracy but at the cost of reducing available DOFs. It turns out that for small
L-complexes it is often useful to obey the symmetries but for larger L-complexes it is more
useful to break symmetries.

In the following we denote r̃eff = rank(L̃LLeff) the rank of the effective extended language matrix.
Now we can reformulate corollary VII within the effective description:

Corollary IX (Degenerate Ground States of Symmetric languages).

Consider some symmetric L-complex (CQK , L,L) with target language L = Lt of length

g = |Lt|. If rank(L̃LLeff, Aug) = r̃eff and if the quality factor Q > exp [−2/(g∥L̃LL+

eff∥1)] is
sufficiently large, then there exists a symmetric L-complex (C̃QK , L,L) where Ht = H(Lt)

is a g-dimensional gapped low-energy eigenspace of the Hamiltonian H[C̃].

15A relevant example is the PXP-minimal surface code unit-cell SCUI-1 in fig. 5.1 whose language is fully
symmetric in the ports which is partially broken by its ancillaries.
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Proof.

The proof is analogous to the proof of corollary VII, we only note the differences. In the
following when indexing the effective language matrix when are going to use tilde-indices
ĩ, j̃, . . . but we leave the subscript eff for a more streamline notation. We keep the subscript
when denoting the effective matrix. Analogous to eq. (3.28) we formulate a linear system

L̃ĩj̃∆̃j̃
!
= b̃ĩ with b̃ĩ ≡ b̃i|i∈ĩ = −Ē +

∑N

j,k=1
LijIL(j)L(k)Lik, (3.42)

now using the effective language matrix L̃LLeff. This linear system is consistent by assumption
and equivalent to the linear (3.28) due to the symmetry as proven above. The solution to
eq. (3.42) is given by the Moore-Penrose pseudoinverse. The solution vector is defined via
∆̃j̃ ≡ ∆L(j) for j ∈ [j] ∼= j̃ ∈ {1, . . . Neff} and ∆̃Neff+1 ≡ Ẽ − Ē. Similarly we can reformulate
eq. (3.18) as

Lĩj̃∆j̃ = bĩ with bĩ ≡ bi|i∈ĩ = −Ei +
∑N

j,k=1
LijIL(j)L(k)Lik. (3.43)

By subtracting eq. (3.43) from eq. (3.42), we obtain the new linear system L̃ĩj̃ δ̃j̃ = δEĩ,

where we defined δ̃j̃ ≡ ∆̃j̃ −∆j̃ for j̃ ∈ {1, . . . Neff}, δ̃Neff+1 ≡ Ẽ − Ē and δEĩ ≡ Ei − Ē for

i ∈ [i] ∼= ĩ ∈ {1, . . . geff}. We can proceed similarly as in theorem V with the new upper bound

−δ(∆Exxxyyy) ≤ ∥δδδ∥1 ≤ ∥δ̃δδ∥1 ≤ ∥L̃LL
+

eff · δEEEeff∥1 ≤ ∥L̃LL
+

eff∥1∥δEEEeff∥1 ≤ ∥L̃LL
+

eff∥1
g

2
δE. (3.44)

In the last inequality we used that ∥δEEEeff∥1 ≤ ∥δEEE∥1 as δEEEeff possesses the same components
as δEEE but (some) identical components from symmetric states are removed. This yields a
substitution of L̃LL by L̃LLeff in the final term. Thus it is ∆E > −δ(∆Exy) in particular fulfilled

if ∆E > ∥L̃LL+

eff∥1gδE/2 or equivalently Q > exp [−2/(g∥L̃LL+

eff∥1)].

This concludes the introductory part of this thesis. In the following part 4 and 5 we consider
the elementary building blocks of logical connectives and tessellated languages.
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||| Appendix

3.A ||| The Generalization of Corollary VI

In the following let L̃LL := [LLL | 1̃11] denote the effective language matrix. Let r̃ ≡ rank(L̃LL) denote
the rank of the effective language matrix and m ≡ min (g,N), n ≡ max (g,N) its dimensions.

By L̃LLAug := [ L̃LL | b̃bb] we denote the effective language matrix augmented by the right-hand side of
the linear system.

Corollary X (Generalization of Corollary VI).

Consider some L-complex (CQK , L,L) of the target language L = Lt with length g = |Lt|.
If rank(L̃LLAug) = r̃ and if the quality factor Q > exp [−2/nr̃−1

√
Ng3mr̃−1] is sufficiently

large, then there exists a L-complex (C̃QK , L,L) where Ht = H(Lt) is a g-dimensional

gapped low-energy eigenspace of the Hamiltonian H[C̃].

The assumption rank(L̃LLAug) = r̃ is explicitly dependent on b̃bb and thus on the geometry. Note
that in the case r̃ = m = g and n = N we recover corollary VI.
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Proof.

There exist m ≡ min (g,N) singular values σ1 ≥ . . . σr̃ > σr̃+1 = . . . σm = 0 and exactly m− r̃

of them are zero. Again we can use the SVD to derive 2/g∥LLL+∥1 ≥ 2σr̃/
√

Ng3, analog eq.
(3.24). If g ≤ N we define the Gramian matrix AAA = LLLLLLT ∈ Fg×g

N , else if g > N we define the
Gramian matrix AAA = LLLTLLL ∈ FN×N

g .

AAA possesses m eigenvalues λi(AAA) = σi(LLL)
2 with the first r̃ of them positive and the last m− r̃

of them zero. Thus AAA is positive semidefinite. By det+(AAA) := limα→0 α
r̃−m|AAA + α IIIm| we

denote the pseudodeterminant of AAA. The pseudodeterminant corresponds to the product of
the non-zero eigenvalues of AAA. Before we apply the limit α → 0, the function in the limit
is is polynomial function of integers and α with coefficients ±1. We can interpret this as a
polynomial function of α with integer coefficients. As rank(AAA) = r̃, the coefficients of each
monomial of degree smallerm−r̃ vanish. For α→ 0 the term |AAA+α IIIm| decays with αm−r̃ thus
the pseudodeterminant converges to the lowest non-zero integer coefficient. As the non-zero
eigenvalues of AAA are positive, the integer pseudodeterminant (which is their product) must be
positive as well: therefore det+(AAA) ≥ 1.

Let n ≡ max (g,N), then AAA ∈ Fm×m
n and the largest eigenvalue of AAA may be upper-bounded

by
√
mn. We can now proceed similarly as in eq. (3.25) and eq. (3.26):

2

g∥LLL+∥ ≥
2σr̃√
Ng3

≥ 2√
Ng3

1

(
√
mn)r̃−1

=
2

nr̃−1
√
Ng3mr̃−1

. (3.45)

Thus Q(L) > exp [−2/(g∥LLL+∥)] is fulfilled in particular if Q(L) > exp [−2/nr̃−1
√

Ng3mr̃−1]
and we may apply theorem V.
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4 ||| Logic Elementaries

“Computers are composed of nothing more than logic gates stretched
out to the horizon in a vast numerical irrigation system.”

– Stan Augarten, ‘State of the Art’ (1983)

This chapter presents the first part of the results of this thesis. We apply the theory derived
in the previous chapters and apply it to logical connectives in two dimensions. In sec. 4.1 we
present the optimized results for all the PXP-minimal logic elementaries, and in particular for
those we used as a motivation in the previous chap. 3. For each PXP-minimal elementary gate
we are able to achieve a perfect quality. We complete the list of PXP-minimal gates proposed
by Stastny et al. in Ref. [38].

We find that the additional DOFs introduced in the VdW model offer the possibility to construct
new logic gates using fewer atoms. Such gates are based on the intermediate and low energy
regime which is excluded in the more simple PXP model. We present and discuss such VdW-
specific gates in sec. 4.2 and sec. 4.3. In particular we present a complete list of minimal
elementary gates for the VdW model in subsec. 4.2.
For each VdW-specific gate we are able to achieve (almost) perfect quality. Especially the VdW-
specific gates based on the intermediate-energy regime are of interest because they possess a
similarly large or larger energy gap compared to their PXP-minimal analogue. Other gates
which are based on the low-energy regime generally possess only a small energy gap. For these
gates it might be preferable to consider non-minimal implementations with more atoms and a
larger ennergy gap instead. Such non-minimal elementary gates are discussed in subsec. 4.3.
Some of the minimal gates, namely the XNOR3-gate from fig. 4.9, also profit from embedding
them in three-dimensional space. For the discussion of such three-dimensional logic gates we
refer to chap. 8.
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Figure 4.1: Minimal logic primitives optimal in ∆Eeff and r. The LNK1-gate is constructed by
amalgamating two NOT1-gates. The logic primitives are necessary to construct logic circuits on the
Rydberg platform using the gates introduced later.

4.1 ||| PXP-minimal logic Elementaries

We are going to start this chapter by presenting the results for the PXP-minimal logic elemen-
taries, some of which were used as a motivation in the previous chap. 3. Most of the PXP-minimal
elementaries discussed in this chapter were first introduced by Stastny et al. in Ref. [38]. As
an introduction and for completeness we start which the somewhat trivial logic primitives.

4.1.1 ||| PXP-minimal Primitives

In this subsection we want to present the primitive PXP-minimal logic gates. They are somewhat
trivial but they are necessary for the construction of any logic circuit. They include the NOT1-gate
and the LNK1-gat presented in fig. 4.1 and the CPY- and ICPY-gates presented in fig. 4.2.

76 |||

https://git.itp3.uni-stuttgart.de/simonfell/MastersThesis_LibraryOfVdWRydbergStructures/src/branch/master/LogicPrimitives/NOT-1i
https://git.itp3.uni-stuttgart.de/simonfell/MastersThesis_LibraryOfVdWRydbergStructures/src/branch/master/LogicPrimitives/LNK-1i


PXP-minimal logic Elementaries S. Fell
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The NOT1-Gate. Just like in the PXP model, we see that the NOT1-gate is the natural building
block on the Rydberg platform corresponding to a simple Rydberg blockade. The two atoms
should be of equal detuning to achieve degeneracy between the two ground states, i.e. ∆i = ∆j

for i, j ∈ N . The symmetry between the two atoms is denoted by the dashed symmetry axis in
fig. 4.1. In the following we always draw the axes of symmetry iff the ground state manifold is
degenerate thanks to the symmetry of the structure.

Without loss of generality we can choose ∆i = ∆j = 1 by rescaling the energies using fα with

α = ∆
−1/6
i , see eq. (2.15). Thus for the NOT1-gate the robustness and the effective gap are

equal. If the two atoms are closer than their blockade radii then two atoms are in blockade and
the energy gap is positive. To maximize the effective gap (and simultaneously the robustness)
we need to choose rij ≤ (C/2∆i)

1/6. Then E(|1, 1⟩) ≥ 0 and r = ∆Eeff = 1. Note that for
such a structure the effective gap and the robustness not only are maximized but they also equal
the theoretical upper bound derived in (2.20) and (2.17). This confirms our intuition that the
NOT1-gate is the most natural gate on the Rydberg platform. If we fix the position of atom A and
vary the position of atom Q then the solutions to the above inequality describe a d-ball around
atom A. In fig. 4.1 for d = 2 the d-ball is the disk shaded in gray. For most practical purposes it
is going to be useful to maximize the distance between atoms to suppress residual interactions.
Thus in the portrayed realization we choose the position of atom Q on the boundary of the disk.
By the above construction the given L-complex is maximized for both the effective gap and for
the robustness. We note this by the superscript ∗ to ∆Eeff and r in the energy structure. In
the following we always add this superscript to the quantity which is optimized. For sufficiently
simple L-complexes we derive the optimal structure analytically.

The LNK1-Gate. To physically realize the edges in logic circuits we can interpret them as a
unary logic function (the identity function) LNK which returns its input. Although edges are the
fundamental building block of logic circuits the LNK-gates are not the natural building block on
the Rydberg platform. They must be constructed by amalgamating an even number of NOT1-
gates where we can choose the length of the LNK-gate depending on the application. In any
amalgamation of two structures we can amalgamate a realization of the LNK-gate in-between the
structures. This reduces residual long-rang interactions without modifying the target function.
If we are not able to achieve degeneracy in the amalgamated L-complex (e.g. using theorem V)
this can be used to artificially decrease the energy splitting thus increasing the quality. If we
can achieve degeneracy this may be used to increase the effective gap or the robustness. This
ansatz comes at the cost of a larger number of atoms for the realization. Such a realization of
more atoms is less useful for the physicist as it is harder to implement experimentally and more
intensive to simulate numerically.

Fig. 4.1 presents the ∆Eeff- and r-optimal realization of the LNK1-gate with N = 3 atoms.
This realization is not just PXP-minimal but also minimal in the VdW model as we require the
ancillary such that 000 /∈ Lt (following remark 4). To achieve degeneracy in the ground states
we set ∆0 = ∆A + ∆Q − IAQ. For LLNK1 the symmetry group on the atoms is the permutation
group ΣN [LNK1] = ⟨(A Q)⟩. To achieve a positive energy gap we request that the blockade graph
consists of edges E = {{A, 0}, {0,Q}} and that ∆0 > ∆A,∆Q. Then, candidates for LESs are
(1A, 0Q, 10), (1A, 0Q, 00) and its permutations (0A, 1Q, 10), (0A, 1Q, 00). The remaining states are
energetically larger following alg. 3.3. The energy gap is given by

∆E = min(∆0 −∆A,∆0 −∆Q, IA0 −∆A, IQ0 −∆Q).

To maximize the effective gap (and simultaneously the robustness) we want to achieve degeneracy
between the states. This implies a D1-symmetry constraint ∆A = ∆Q and IA0 = IQ0 = ∆0 on the
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structure (as expected). Introducing the angle α = ∠(Q, 0,A) this determines rAQ = 2rA0 sinα/2.
To maximize the energy gap E(|1A, 1Q, 00⟩) − E(|1A, 0Q, 00⟩) = ∆Q − IAQ, we want to minimize
IAQ leaving α = ∠(Q, 0,A) = π. This leaves essentially one DOF (and one corresponding to a
rescaling of the structure). This is determined via

C/r6A0 = IA0 = ∆0 = 2∆A − IAQ = 2∆A − C/(2rA0)
6.

For ∆0 = 1 this construction yields the structure of fig. 4.1. We confirm numerically that the
structure is optimal. We note this again via the superscript ∗ to ∆Eeff and r in the energy
structure. Note that her we derived the symmetry of the structure from scratch. In the following
we often assume that the structure respects the symmetries of the language. This reduces the
number of DOFs which we have to determine in the numerical optimization process or the
analytical derivation. Then in retrospect we check numerically that the symmetric structure is
the global optimum in the parameter space.

The Family of (inverted) Copies. In logic circuits the splitting of edges is usually not
considered a gate but fundamentally assumed. To physically realize such a copy operation on
the Rydberg platform we interpret the branching of an edge as a unary logic function CPY which
copies the input to q outputs.

In d = 2 dimensions on the Rydberg platform with only one ancillary we can realize q ≤ 4 copies
with a positive energy gap1. The CPY-gate with q copies is constructed by amalgamating q + 1
NOT-gates at the same atom into a star-shape (for q = 0, 1 we essentially recover the NOT- and
the LNK-gate respectively). Stastny et al.[38] mentioned only the CPY-gate with q = 2, here for
completeness we generalize to gates with q ∈ {2, 3, 4}. Further, for completeness we introduce
the logic function ICPY which realizes q inverted copies of the input bit. The ∆Eeff-optimal
minimal realizations of the ICPY- and CPY-gates in the VdW model are portrayed in fig. 4.2. We
find that for both families the maximal effective gap decreases with increasing q as the residual
interaction strength increases.

Note that the ∆Eeff-optimal realization of the ICPY-gate of q copies is constructed by relabeling
of the CPY-gate with q − 1 copies. The input port is relabeled as the qth output port and the
ancillary is relabeled as the input port:

CQK 7→ CK∪Q
N\{K∪Q}.

Thus for minimal ICPY-gates we do not need any ancillaries. The ICPY-gates are in that sense
more natural to realize on the Rydberg platform. However the realizations of ICPY-gates in fig.
4.2 are no useful building blocks for logic circuits in two dimension. For each ICPY-gate the input
port is in the center of the complex thus we can not address it via an LNK-link or another gate in
two dimensions. These gates are onlz useful to implement logic circuits on the three-dimensional
Rydberg platform.

The realizations in fig. 4.2 are not just PXP-minimal but they are also minimal in the VdW
model. For the ICRS-gates this is trivial as they possess no ancillaries. For the CPY-gates we need
the ancillary such that 000 /∈ Lt (as required by remark 4 ). We want to note that the robustness
is not maximal for these gates. We could pull out one of the ports while decreasing its detuning.
This is shown in fig. 4.3 for q = 2. This decreases the effective gap but still ‘artificially’ increases
the robustness by suppressing the smallest detuning. In the following we will stumble across

1For q ≥ 5 output ports the q + 1 ≥ 6 ports would either be in blockade with each other or not in blockade
with the ancillary.
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Figure 4.2: Family of ∆Eeff-optimal minimal ICPY- and CPY-gates. All gates of this family are
constructed by amalgamating 1− 5 NOT-gates at the same atom. The L-complexes are symmetric in
the (output) ports. This allows for a description via the effective language matrix which summarizes
the (output) ports in one equivalence class (see tables in the right column).
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Figure 4.3: r-optimal realization of the CPY2-gate. This structure is found numerically. Note that
we increased the robustness compared to fig. 4.2 by decreasing ∆0 and IA0. Thus the structure is
not D3-symmetric anymore.

more such languages where we can artificially increase r. We conclude that the robustness might
be for some languages less suitable as a measure for the size of the energy gap as the effective
gap. Thus in the following we mainly focus on the effective gap and optimize for ∆Eeff.

4.1.2 ||| The Crossing of Edges

Before we continue with the PXP-minimal logic gates we first have to discuss the crossing of
edges. Just like CPY, the crossing of edges is usually not considered a gate in logic circuits
but fundamentally assumed. To implement such a crossing on the d = 2-dimensional Rydberg
platform we interpret it as a binary Boolean function CRS with two outputs. The CRS-function
just copies its inputs to its outputs. Such a function would be trivially realized by two LNK-gates.
The point is that we want an implementation via an L-complex in the 2D-plane where the output
bits are exchanged compared to the input bits. Secondly, we also consider the inverted crossing
ICRS which inverts and exchanges the input bits. The CRS- and ICRS-gates were first introduced
in Ref. [38] for the PXP model. The PXP-minimal ICRS1- and the CRS1-gate are portrayed in fig.
4.4. We are able to implement both gates with perfect quality Q = 1. The portrayed structures
are optimized for ∆Eeff and r. We see that the PXP-minimal realization of the inverted crossing
ICRS1 requires less ancillaries than the PXP-minimal realization of the non-inverted crossing
CRS1. In fact the CRS1-gate emerges from the ICRS1-gate by amalgamating two more NOT-gates.
This is no surprise as the Rydberg platform is based on the Rydberg blockade with the NOT-gate
as its fundamental building block. Thus the ICRS1-gate is more natural to realize than the CRS1-
gate.
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Figure 4.4: PXP-minimal (inverted) crossing optimal in ∆Eeff and r. The CRS1-gate emerges
from the ICRS1-gate by amalgamating two NOT-gates to the output or input atoms. For a clearer
visualization we summarize the ancillaries in one column portraying only their number of excitations.

In the ICRS1-gate there always the same number of ports and ancillaries excited. This helps to
achieve a positive energy gap. In contrast in the CRS1-gate the number of excited ports varies
thus we need more ancillaries to balance the energies of the ports. Note that the language LICRS1

of the inverted crossing is highly symmetric via

ΣN [ICRS1] = ⟨(AB) ◦ (QR) ◦ (1 3), (ABRQ) ◦ (0 1 2 3)⟩. (4.1)

This is reflected in the D4-symmetry of the ICRS1-gate. Thanks to this symmetry the effec-
tive language consists of only one word. Thus if we respect the symmetry during optimiza-
tion the ground states are trivially degenerate. The axes of symmetry of the ICRS1-gate are
drawn as dashed lines in fig. 4.4. For the ICRS1-gate it only remains to optimize the effec-
tive energy gap and the robustness. In the optimized ICRS1-gate of fig. 4.4 the LESs are
(0A, 0B, 0C, 0D, 10, 01, 12, 03), (1A, 0B, 0C, 0D, 00, 11, 02, 03), (1A, 1B, 1C, 0D, 00, 11, 02, 03) and
(1A, 1B, 1C, 1D, 00, 01, 02, 03) and its 15 permutations under σ ∈ ΣN [ICRS1]. The CRS1-gate is
harder to optimize as it lacks the C4-symmetry. We can not use symmetry arguments to achieve
degeneracy in the ground state thus we have to apply theorem V.
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4.1.3 ||| Family 1 of Elementary Logic Gates

In this subsection we want to continue with the PXP-minimal elementary logic gates. There
exist three families of minimal logic gates in the PXP model for the logic elementaries[37]. We
continue to label these families by indices 1, 2, 3 as done previously. As discussed in chapter
3.1.2, the families 1 and 3 differ only by an additional blockade but their languages are identical.
Therefore they are are only different implementations (via different structures) but not different
realizations. Thus in this chapter and in the following we only consider the families 1 and 2 of
languages.

The gates of family 1 are presented in fig. 4.5. We are able to implement each elementary gate
with perfect quality Q = 1. The gates are optimized for the effective energy gap.

The NOR1-Gate. The realization NOR1 is an interesting case: The language LNOR1 possesses the
symmetry group ΣN [NOR1] = ⟨(Q0)◦ (B1)⟩ ⊂ SN acting on the atoms via L. If we constrain the
D1-symmetry corresponding to the central dashed symmetry axis the energy structure remains
invariant under application of ΣN [NOR1]. This is the symmetry which was already constrained
in fig. 3.3. Then two pairs of symmetric ground states are of equal energy leaving two effective
ground states. We can set each ground state energetically equal by introducing one more sym-
metry corresponding to the two remaining dashed axes. Note that these symmetries are only
fulfilled on G but not on E .
Let di denote the distance of atom i from the intersection point of the symmetry axes. Then we
have essentially three DOFs left: ∆Q = ∆A = ∆0, ∆B = ∆1, dQ = dA = d0 and dB = d1 (one
DOF corresponds to a rescaling of the structure). Note that we do not constrain the relation
between ∆Q and ∆B as (0A, 0B, 1Q, 10, 01) /∈ LNOR1 is no ground state. Here we use the same
labeling L as in the right column of fig. 4.5. We want to determine solutions of the (symmet-
ric) parameter space maximizing ∆Eeff and/ or r. The solution spaces maximizing ∆Eeff and
r are finite dimensional subspaces and incomparable, however they intersect. The NOR1-gate
presented in fig. 4.5 maximizes both ∆Eeff and r. In this implementation there are three LESs:
(0A, 0B, 1Q, 10, 01), (0A, 1B, 0Q, 00, 01) and (1A, 1B, 0Q, 00, 11). If we loosen the above constraints
varying all variables the optimizer is able to improve neither ∆Eeff nor r any further. This is
reason to assume that we actually found the global optimum in the structure for the NOR1-gate.

The remaining Gates. The other gates of the family are constructed by amalgamating one or
multiple NOT-gates to some atom and relabeling the structure. In contrast to the NOR1-gate we
can not apply symmetry arguments to achieve degeneracy, thus we apply theorem V.

Firstly, it is noticeable that the effective gap of the other gates is slightly smaller than the effective
gap of the NOR1-gate. This might be partially for numerical reasons as they lack symmetries and
thus are harder to optimize. Hence they might only be approximately ∆Eeff-optimal. This can
be seen in the low-energy subspace of E which remain energetically slightly spread-out (e.g. for
the NAND1b-gate). Nevertheless, we can not expect much more improvement. It is expected
that they possess a smaller effective gap as they have more residual interactions between distant
atoms. This is especially true for the NAND1a- and the AND1a-gate as their additional atom is in
blockade with two atoms. Even though we did not optimize the robustness for the remaining
gates (only the NOR1-gate is r-optimal), the robustness can profit from adding further atoms.
The additional detunings can be smaller thus artificially increasing r.

Secondly, we want to note that for the connectives AND and NAND only realization b was found by
Stastny in [38, 37]. In Ref. [37] it was claimed that the portrayed list is exhaustive. Nevertheless
realization a is an equally valid PXP-minimal realization.
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Figure 4.5: Family 1 of PXP-minimal logic elementaries optimal in ∆Eeff. In family 1 there are two
realizations of the NAND- and AND-gate but no realizations of the XOR- and XNOR-gate.
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The realizations AND1a and NAND1a can be interpreted as somewhat analogous to the realizations
of the XOR- and XNOR-gates in family 2 in fig. 4.6. As discussed in subsec. 3.1.2 we can construct
family 3 from family 1 simply by adding an additional blockade between atom Q and atom
0. Family 2 is constructed from family 3 by connecting atom Q and atom 1 in the blockade
graph modifying the first ground state such that only atom Q is excited: (0A, 0B, 1Q, 00, 11) ⇆
(0A, 0B, 1Q, 00, 01). Applying this construction to NAND1a and AND1a we obtain the XOR- and
XNOR-gates of family 2. In that sense realization 1 (and 3) can be interpreted as inefficient or
redundant in the choice of the ground state manifold. In LNOR1 = LNOR3 there is no ancillary bit
which is only excited if atom A is excited but atom B is not. In realization 2 the new output port
is amalgamated to ancillary 2 to construct an XOR- and XNOR-gate. Instead in realization 1 (and
3) the ancillary 2 negates the state of atom B yielding only somewhat redundant information.

4.1.4 ||| Family 2 of Elementary Logic Gates

Fig. 4.5 presents the optimized gates of family 2. For each gate we are able to achieve perfect
quality Q = 1. Again only the effective gap but not the robustness is optimized. The effective
gaps are of similar magnitude as in realization 1. Family 2 allows for the realization of a PXP-
minimal XOR- and XNOR-gate. The realization w of the NOR-, OR-, XNOR- and XOR-gate is symmetric
in the ports whereas in family 1 every gate was asymmetric in the ports (even LNOR1 which was
highly symmetric). This allows for a description via the effective language matrix in the right
column. In particular the XNOR2-gate is D3-symmetric; it respects the full permutation symmetry
between the ports of the target function. This helps in the numerical optimization process which
is probably the reason for the slightly larger effective gap (compared to the NOR2-gate).

4.1.5 ||| An additional PXP-minimal XOR-gate

At this point for completeness we should also mention the second PXP-minimal realization 2b

of the XOR-gate portrayed in fig. 4.7. The XOR2b-gate differs from the XOR2a-gate not only in
its structure and its blockade graph but also in the language. This makes it a new realization
(and not just a new implementation with different blockade graph). This realization was also
not mentioned by Stastny et al. in Refs. [37, 38].

The XOR2b-gate is D3-symmetric, i.e. it respects the full permutation symmetry between the
ports of the target function. Thus thanks to its symmetries it particularly easy to construct and
optimize (similarly as the XNOR2-gate). The implementation portrayed in fig. 4.7 is optimized
for ∆Eeff and r. Note that the optimized effective gap of the XOR2b-gate is slightly smaller than
the effective gap of the XOR2a-gate because it is more compact and thus possesses larger residual
interactions.

The XOR2b-gate differs from the other PXP-minimal logic gates in the sense that its blockade
graph is not planar (its edges overlap). This however is only a mathematical peculiarity of the
blockade graph but of no physical significance.
At this point one should refer to the FMS2-site from fig. 5.5. This FMS2-site is somewhat analogous
to the XOR2b-gate as can be seen in their structure. Similarly, we can draw the analogy between
the FMS1-site and the XOR2a-gate (which is less apparent in their optimized structures). For a
discussion about the origin of this similarities we refer to sec. 4.1.
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Figure 4.6: Family 2 of PXP-minimal logic elementaries optimal in∆Eeff. Family 2 offers a realization
of the NAND- and AND-gate but no realizations of the XOR- and XNOR-gate.
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Figure 4.7: XOR2b-Gate optimal in ∆Eeff and r. This is an additional PXP-minimal realization of
the XOR-gate from family 2.

Conclusion. This concludes our list of PXP-minimal logic gates and primitives. We were able
to reconstruct every PXP-minimal gate proposed by Stastny et al. with perfect quality factor
Q = 1 and with an effective gaps ∆Eeff ≳ 20% in the VdW model. In some cases we were
able to exploit symmetries to achieve a vanishing energy splitting or to simplify the optimization
process. However in most cases we had to apply theorem V to achieve ground state degeneracy.
We find that inversion gates of all kinds (i.e. NOT, ICRS, NOR1, NOR2) are natural to realize on the
Rydberg platform. Amalgamating NOT-gates to obtain other gates of the same family in general
decreases the effective gap due to additional residual interactions.

4.2 ||| VdW-minimal logic Elementaries

So far we only discussed PXP-derived logic elementaries. Many of the PXP-derived gates were
introduced by Stastny et al. in [38, 37]. We completed these lists with further PXP-minimal
gates. The VdW model possesses finite interaction energies and long-range interactions. Nev-
ertheless we were able to reconstruct every PXP-minimal gate in the VdW model with perfect
quality factor Q = 1. For these elementary PXP-derived gates the finite and residual interactions
do not impede the reconstruction in the VdW model.

In the following section we want to study whether we can exploit this intermediate and low
energy regime to construct more atom-efficient gates in the VdW model. In particular we are
interested in determining the VdW-minimal logic gates. This is interesting for academic reasons
but also simplifies an experimental implementation or a numerical simulation of the gate.
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4.2.1 ||| VdW-minimal Primitives

It is easy to see that the logic primitives in fig. 4.1 and 4.2 are VdW-minimal: they possess
either no ancillary in the first place or only one ancillary which is necessary such that 000 /∈ Lt (we
exclude such languages by ass. 4). For those gates which require an ancillary the choice of the
ancillary is unique to achieve a positive energy gap. This is shown in the following quick proof:

Proof 3. (Minimality and Uniqueness of Logic Primitives)

We follow the argument from corollary II. In a nutshell corollary II forbids ground states which
are non-adjacent substates (with any intermediate excited state) because they imply a finite
energy splitting (a negative energy gap).

Now each primitive of fig. 4.1 or fig. 4.2 with one ancillary possesses two states: In xxx1 we
require an excited ancillary to prevent 000 ∈ Lt (which we exclude by remark 4). Thus the
primitives are minimal for the number of atoms in the VdW model. In xxx2 for each primitive
there are at least two excited ports. The ancillary can not be excited in xxx2 because otherwise
xxx1 ⋐ xxx2 is a non-adjacent substate.

Thus the list of VdW-minimal gates for the above primitives is complete. The goal of this chapter
is to find all VdW-minimal gates for the (inverted) crossing ICRS and CRS and the elementary
logic gates. As in previous chapter we start with the (inverted) crossings.

4.2.2 ||| VdW-minimal (inverted) Crossings

The VdW-minimal realizations of the (inverted) crossings ICRS and CRS are portrayed in fig. 4.8.
We were able to reduce the number of ancillaries by four atoms compared to the PXP-minimal
realization. The ICRS2-gate does not require any ancillaries at all in the VdW model. Thus the
ICRS2-gate is trivially VdW-minimal and unique in that attribute. The CRS2-gates possesses two
ancillaries. In the following we show that the realizations are VdW-minimal and that the list of
VdW-minimal realizations is complete:

Proof 4. (Minimality and Completeness of LCRS2)

As above we argue with corollary II. In a nutshell corollary II forbids ground states which
are non-adjacent substates (with any intermediate excited state) because they imply a finite
energy splitting (a negative energy gap).

To circumvent that xxx1 ⋐ xxx2,x3x3x3,x4x4x4 there must exist an ancillary which is excited in xxx1 but not
excited in state xxx2, x3x3x3, x4x4x4. Furthermore to prevent xxx2,xxx3 ⋐ x4x4x4 there must exist an ancillary
which is excited in xxx2 and xxx3 but not in xxx4. Thus we require two ancillaries which makes
the CRS2-gates from fig. 4.8 VdW-minimal. Up to a permutation of the ancillaries there exist
only four possible choices for two ancillaries which respect the above condition: w[CRS2a] =
(NOTA, NOTB), w[CRS2b] = (NAND, NOR), w[CRS2c] = (XOR, NOR) and w[CRS2d] = (NAND, XNOR).
These realizations determine the languages presented in fig. 4.8. This makes the portrayed
list of realizations complete.

Thus we need at least two ancillaries to achieve a positive energy gap and fig. 4.8 presents all
possible CRS-gates with two ancillaries in the VdW model. The four possible gates are labeled

||| 87



Chapter 4 Logic Elementaries
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A

RB

Q
Q

A

B

R
∆E∗

eff =0.00758

r∗ =0.0149

−1.0075

−1.0050

−1.0025

−1.0000

E
n
er
gy

E
/
∆

m
a
x

δE =0

11

Q

A

B

R

22

Q

A

B

R

33

Q

A

B

R

44

Q

A

B

R

X A B Q R

1 0 0 1 1

2 0 1 0 1

3 1 0 1 0

4 1 1 0 0

ICRS2 (X)

A

RB

Q
0

A

B

1

Q

R

∆E∗
eff =0.00322

r∗ =0.00944

−1.345

−1.344

−1.343

−1.342

−1.341

E
n
er
gy

E
/
∆

m
a
x

δE =1e-08

11

A

B

Q

R

22

A

B

Q

R

33

A

B

Q

R

44

A

B

Q

R

X A B Q R 0 1

1 0 0 0 0 1 1

2 0 1 1 0 0 1

3 1 0 0 1 1 0

4 1 1 1 1 0 0

CRS2a (X)

A

RB

Q

0

A

B

1

Q

R

∆Eeff =0.00025
r =0.000649

−0.0006

−0.0005

−0.0004

E
n
er
gy

E
/
∆

m
a
x

−1.141

δE =0

11

A

B

Q

R

22

A

B

Q

R

33

A

B

Q

R

44

A

B

Q

R

X A B Q R 0 1

1 0 0 0 0 1 1

2 0 1 1 0 1 0

3 1 0 0 1 1 0

4 1 1 1 1 0 1

CRS2b (X)

A

RB

Q

0

A

B

1

Q

R

∆Eeff =0.00185
r =0.00593

−1.0000

−0.9995

−0.9990

−0.9985

−0.9980

E
n
er
gy

E
/
∆

m
a
x

δE =0

11

A

B

Q

R

22

A

B

Q

R

33

A

B

Q

R

44

A

B

Q

R

X A B Q R 0 1

1 0 0 0 0 0 1

2 0 1 1 0 1 0

3 1 0 0 1 1 0

4 1 1 1 1 0 0

CRS2c (X)

A

RB

Q
0

A

B

1

Q

R

∆Eeff =0.000326
r =0.000976

−0.0007

−0.0006

−0.0005

−0.0004

−0.0003

E
n
er
gy

E
/
∆

m
a
x

−1.007

δE =0

11

A

B

Q

R

22

A

B

Q

R

33

A

B

Q

R

44

A

B

Q

R

X A B Q R 0 1

1 0 0 0 0 1 1

2 0 1 1 0 1 0

3 1 0 0 1 1 0

4 1 1 1 1 0 1

CRS2d (X)

Detuning ∆ / ∆max

0 1

Figure 4.8: Complete list of VdW-minimal (inverted) crossings optimal in∆Eeff and r. The crossings
require only two ancillaries in VdW model, the inverted crossing does not require any ancillaries.
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by the letters a, b, c, d respectively. In the following we discuss some interesting properties of
the gates.

Necessary but not Sufficient. First note that the condition mentioned in proof 4 is only
necessary but not sufficient. Specifically for the crossings we have the additional constraint on
the geometry that we want to interchange the ports (that is why we construct such a CRS-gate in
the first place). Without the numerical simulation it very unclear whether there exists such an
implementation (on the d = 2-dimensional Rydberg platform) which realizes the CRS-languages
with a positive energy gap. It is somewhat surprising that here and in the following we are
always able to construct such implementations.

The ICRS2-Gate. The inverted crossing ICRS2 is optimal for ∆Eeff and r. The portrayed struc-
ture was derived analytically but an almost optimal structure was also found numerically. Similar
to LICRS1 the language LICRS2 is highly symmetric via ΣN [ICRS1] = ⟨(AB) ◦ (QR), (ABRQ)⟩.
Contrary to the ICRS1-gate the ICRS2-gate is not D4-symmetric. More precisely the ICRS2-gate
can not be D4-symmetric without destroying the energy gap. The ground state manifold consists
of the four states where two neighboring atoms of one edge of the quadrilateral are excited. In a
D4-symmetric (i.e. square) geometry of the atoms with equal detunings it would be energetically
favorable to excite the non-adjacent atoms from opposite corners.

In the structure C[ICRS1] the symmetry between the two input atoms (the two output atoms)
is broken. However the constructed structure D2-symmetric: the geometry is rhomboidal where
opposite atoms possess equal detunings. The distance between neighboring atoms is equal. Thus
for each ground state there is an equal contribution by the interaction energies and detuning
energies to the Hamiltonian. In that sense the structure respects the symmetries of the language
on the level of the ground state manifold. This is not true for excited states where opposite atoms
of the rhomboid may be excited. By constraining the D2-symmetry, the effective language of the
ICRS2-gate consists of only one word. Thus the D2-symmetry is sufficient to achieve degeneracy
in the ground states. The axes of symmetry of the ICRS2-gate are drawn as dashed lines in fig.
4.8.

The CRS2a-Gate. The CRS2a-gate emerges from the ICRS2-gate by amalgamating two NOT-
gates to the output or input atoms. Its structure in fig. 4.8 is optimized for ∆Eeff and r. Note
that the the structure is fully asymmetric (even when restricted to the ground state manifold)
while the language LCRS2 is symmetric via ΣN [CRS2a] = ⟨(AB) ◦ (QR) ◦ (0 1), (AR) ◦ (BQ)⟩. We
can not symmetrize the structure without destroying the energy gap. This is a consequence
of the asymmetry of the ICRS2-gate on which the CRS2-gate is based on. This is conceptually
interesting: naively one could have assumed that for a symmetric language there always exists
a symmetric structure which optimally realizes the language on the Rydberg platform. However
this counterexample illustrates that a symmetric structure is in general not optimal and might
even imply a negative energy gap while there may exist an asymmetric structure which success-
fully realizes the language. Furthermore, the ICRS2-gate illustrates that a permutation symmetry
of the language might only be conserved on the level of the interactions and detunings which
contribute to eigenenergies of ground states. Here the symmetry is broken for interactions and
detunings which contribute only to excited states and in particular for the structure. Therefore
we have to be cautious when assuming symmetries: When constraining symmetries during nu-
merical optimization we always have to check retrospectively whether the constructed symmetric
structure is truly an optimal structure (with respect to Q, ∆Eeff or r). Furthermore, the opti-
mal structures for the simple, highly symmetric gates in this thesis are constructed analytically;
usually by assuming that the structure respects the symmetry of the language to reduce the
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number of DOFs. These analytical derivations can not be considered proofs for optimality in full
parameter space but only in the symmetric subspace. Here again we have to check numerically
whether these structures are optimal in the full parameter space.

Note that for the CRS2a-gate the energy splitting δE ≈ 10−8 is very small but non-zero and thus
the quality factor is Q ≈ 0.999995858 is almost but not exactly one. This is due to the fact that
the CRS2a-gate is the first structure we encounter where we can neither apply theorem V nor its
corollaries nor we can exploit any symmetries. The lack of symmetries of the structure is a direct
consequence from the breaking of the symmetries of the language (which was discussed above).
It seems however that there does exist a structure with perfect degeneracy and the numerical
optimization algorithm approximated in to very good precision. Only due to numerical error
we can not achieve an energy splitting of precisely zero just with the optimization algorithm. If
such a structure exists then its geometry fulfills rank(L̃LLAug) = rank(L̃LL) = 3. Here the augmented

column of L̃LLAug is a function of the interaction energies an thus of the geometry. We can use the

smallest singular value σ4 of L̃LLAug as a measure for how strongly the above condition is broken in
the CRS2a-gate of fig. 4.8: The singular value σ4 ≈ 2.95967587 · 10−9 ≳ 0 is very small thus the

condition rank(L̃LLAug)
!
= 3 from corollary VII is just barely broken. The geometry is a very good

approximation of an optimal geometry. To achieve perfect ground state degeneracy, we can add
an additional virtual ancillary to achieve full row-rank for the language matrix and then apply
V. This idea is discussed thoroughly in chapter 7.1, the optimized structure with the virtual
ancillary is portrayed in fig. 7.1.

The remaining CRS2-Gates. The remaining CRS2-gates b, c and d portrayed in fig. 4.8
possess similar star-like structures which are D1-symmetric in the vertical direction. Thus in
contrast to the ICRS2- and CRS2a-gate they conserve the symmetry between input and output
ports in their structure. Again, the symmetry between the two input (output) ports broken
in the implementation but not in the realization. For these CRS2-gates we can achieve perfect
degeneracy using V. In principle the gates are optimized for both ∆Eeff and r (just like the
others). However this is not noted by an asterisk in fig. 4.8 as they are numerically hard to
optimize (probably due to their partially asymmetric star-like structure). Thus we can not claim
confidently that the portrayed structures are optimal for the gates.

4.2.3 ||| Family 3 of Elementary Logic Gates

Now we continue with the elementary logic gates in the VdW model. Fig. 4.9 portrays the
minimal logic elementaries in the VdW-model optimal in ∆Eeff and r. We are able to reduce the
number of ancillaries by up to four atoms (for the NAND3-gate) compared to the PXP-minimal
case. The logic gates of family 3 possess at most one ancillary. In the following we briefly
show that these logic gates are VdW-minimal and that the list of VdW-minimal realizations is
complete:

Proof 5. (Minimality and Uniqueness of the Logic Elementaries)

Again, we argue with corollary II. In a nutshell corollary II forbids ground states which are
non-adjacent substates (with any intermediate excited state).

1 The NOR3- and the NAND3-gates possess no ancillary at all. Thus they are trivially VdW-
minimal and unique in that attribute.
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Figure 4.9: Family 3 of VdW-minimal logic elementaries optimal in ∆Eeff. Each elementary logic
gate requires at most one ancillary in the VdW model.
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2 The OR3-, AND3- and XOR3-gate require one ancillary such that 000 /∈ Lt (which we exlude
by remark 4). They are the only possible VdW-minimal realizations of their connective
by corollary II: For the OR3- and the XOR3-gate to circumvent that xxx1 ⋐ xxx2,x3x3x3,x4x4x4 there
must exist an ancillary which is excited in xxx1 but not excited in xxx2, xxx3 and xxx4. This
determines the realizations w[OR3] = w[XOR3] = NOR. For the AND3-gate to circumvent
that xxx1,xxx2,xxx3 ⋐ x4x4x4 there must exist an ancillary which is not excited in xxx4 but which is
excited in xxx1, xxx2 and xxx3. This determines w[AND3] = NAND.

3 Similarly, for the XNOR3i-gate to circumvent that xxx1,xxx2,xxx3 ⋐ x4x4x4 there must exist an
ancillary which is not excited in xxx4 but which is excited in xxx1, xxx2 and xxx3. Thus we can
not realize XNOR without ancillaries which makes the XNOR3i-gate is VdW-minimal. The
condition fixes the realization w = NAND.

Thus the realizations portrayed in fig. 4.9 are VdW-minimal and the list is complete.

In the proof above we frequently exploited corollary II. We want to illustrate the argument
behind corollary II via an example:

Example 8. (Non-adjacent ground States of XNOR)

Consider the language L[v = XNOR] without ancillaries consisting of the four 3-bit words with
either one or three excited port bits. Let i, j, k ∈ P denote any pairwise different ports. For
∆E > 0 it must be E(|1i, 1j, 1k⟩) < E(|0i, 1j, 1k⟩). Thus its is ∆i > Iij + Iik > Iij. This implies
E(|1i, 1j, 0k⟩) < E(|0i, 1j, 0k⟩) and hence ∆E < 0. Thus we can not realize fb = XNOR without
ancillaries in the VdW model with a positive energy gap.

Binary Gates without Ancillaries. We can also reverse the above reasoning and ask the
question which further (symmetric) binary gates without any ancillary are allowed by corollary
II in the VdW model. To prevent that xxx1 ⋐ xxx4 the output port needs to be excited in xxx1 but not
in xxx4. If we want to construct a symmetric language in the input ports we only have two choices
for Q where it is or is not excited in states xxx2 and xxx3. This yields the NOR3- and the NAND3-gate
from fig. 4.9. The asymmetric choices would yields the unary negations NOTA and NOTB of the
input ports. Latter languages are factorizable and we are not interested in factorizable languages
(by remark 1).

Binary Gates with one Ancillary. The next logical step would be to ask what symmetric
binary connectives with one ancillary are allowed by corollary II. There are three effective words
in the effective language thus for vectorial v with m = 2 there are 22·3 = 64 languages. We
exclude languages with non-adjacent ground states by corollary II. This reduces the number to
only 2 ·10 = 20 VdW-realizable languages (the factor of two emerges from the relabeling Q ⇆ A).

1 We recover six realizations for both Boolean connectives fb = NOR, NAND with one ancil-
lary: For fb = NOR there is w = True, False, NAND, NOR, OR, XOR and for fb = NAND there
is w = True, False, NOR, NAND, AND, XNOR. These are realizations not interesting as we can
implement the connectives NOR and NAND without any ancillary with perfect quality and
large energy gap.

2 There are two realizations for both constant Boolean functions fb = True, False via
w = NOR, NAND which are not interesting.
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3 The four remaining languages of fb = OR, AND, XNOR and XOR are the languages portrayed
in fig. 4.9.

In the following we shortly want to summarize the most important findings of this subsection:

1 The logic gates in the VdW model need at most one ancillary.

2 The NOR3- and the NAND3-gate do not require any ancillary. They are the only
binary gates which can be realized in the VdW model without ancillaries.

3 The logic gates portrayed in fig. 4.9 are VdW-minimal, i.e. minimal in their number
of atoms.

4 The list of VdW-minimal logic gates in fig. 4.9 is complete for the logic elementaries.
For each logic elementary there exists only one unique VdW-minimal realization
which allows for a positive energy gap.

This concludes the discussion of the minimal realizations for the logic elementaries in the VdW
model. We want to continue by discussing some important properties of the portrayed gates.

The NOR3-Gate. It is interesting that the NOR3- and the NAND3-gate do not require any
ancillaries at all. In particular in the NOR3-gate the effective gap and the robustness both equal
their theoretical upper bound derived in the proofs 2 and 1. In that sense the upper bounds
introduced for the effective gap and the robustness are sharp. The only other gate in this thesis
where we maximize the theoretical bound is the somewhat trivial unary NOT1-gate. In that sense
the NOR3-gate is the most natural binary logic gate on the Rydberg platform in the VdW model.
This result parallels the finding of Stastny et al. for the PXP model.

The possibility of the NOR3-gate in the VdW model with only three atoms was already mentioned
by Stastny et al. in [38] and independently found here. In contrast to what Stastny et al.
noted such a NOR3-gate does not require an arrangement “in a triangle with precisely defined
shape”. When fixing the positions of the input ports A and B the NOR3-gate possesses a finite-size
volume in which we may position the output port Q. The volume is the intersection of the two
d-balls enclosed by the d − 1-spheres of radii (C/2∆i)

1/6 around the input ports i ∈ K. Inside
this volume the interaction between the input and output port is sufficiently strong such that the
excited states (0A, 1B, 10), (1A, 0B, 10) ∈ E are energetically larger-equal than the excited state
000 ∈ E (which upper bounds the energy gap). The surface of the volume is the subspace where
the energy of one of these excited states becomes zero. In the shell between the d − 1-spheres
and the blockade radii ∆Eeff and r remain positive but they are smaller than one. In fig. 4.9 for
d = 2 the volume is the ‘lens’ shaded in gray.
In particular the NOR3-gate can be realized by a one-dimensional geometry and the output port
does not even need to be centered between the input ports. For fig. 4.9 we chose a realization with
maximal distance between the output port and the input ports because this geometry minimizes
residual interactions when amalgamating further gates (e.g. LNK-gates).

We require equal detunings ∆i in all three atoms i ∈ N such that the first three states are

degenerate. The only constraint for the geometry of the NOR3-gate is the distance rAB
!
= rB,i

between the two input ports i ∈ K. This secures that it is energetically indifferent to excite the
second input port if the first input port is already excited adjusting that the fourth ground state
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to the same energy. In other words: the input ports must be just barely (not) in blockade. In
fig. 4.9 this is visualized by a dashed line.

The intermediate-energy regime is lost in the simplified PXP approximation thus the NOR3-gate
is not possible in the PXP model. In general the PXP model forbids ground states which are
substates of other ground states as each ground state must be a MWIS (and thus in particular
as MIS). This directly forbids binary, scalar logic gates without ancillaries in the PXP model.
Here, the PXP model is more restrictive.

The NAND3-Gate. The NAND3-gate is also based on the intermediate-energy regime, now

between the input ports i ∈ K and the output port Q: riQ
!
= rB,i. This secures that it is

energetically indifferent to excite one input port when only the output port is excited such that
the first three states are degenerate. To achieve degeneracy with the fourth ground state we
need to choose ∆Q = ∆A + ∆B − IAB. Here, the NAND3-gate differs from the NOR3-gate by
exploiting the long-range interactions: The input ports need to be sufficiently distant such that
it is energetically disfavourable to excite only one input port, but they need to be sufficiently
close such that if both input ports are excited it is energetically disfavourable to excite the output
port. The optimal realization is somewhere in-between and needs to be fine-tuned to maximize
∆Eeff and r. It is defined by requiring the LESs (1A, 0B, 0Q), (0A, 1B, 0Q) and (1A, 1B, 1Q) to
be of equal energy. This implies equal detunings ∆A = ∆B of the input ports and determines
the optimal angle α = ∠(A,Q,B) between the input ports by IAB = ∆Q −∆A. This yields the
NAND3-gate of fig. 4.9. We check numerically that ∆Eeff and r are truly optimal for NAND3.

The effective gap and the robustness of the NAND3-gate are smaller than of the NOR3-gate (smaller
than one). This is a direct consequence of exploiting ‘long-range’ interaction energies which are
smaller than the detunings. Nevertheless, the effective gap ∆Eeff = 33.3% is still of order one
and comparable with the effective gaps of the NAND1a,b- and NAND2-gates. The robustness is
less useful to compare as NAND1 and NAND2 possess four more ancillaries than NAND3 and thus
naturally a larger range in the detunings which increases the robustness.

The OR3- and the AND3-Gate. We continue with some remarks to the remaining gates
in fig. 4.9. First we note that the OR3- and the AND3-gate emerge by simply amalgamating a
NOT1-gate to the NOR3- and NAND3-gate respectively. In the OR3-gate there is no dashed blockade
anymore: rAB > rB,i is now slightly larger than blockade radius of input port i ∈ K because
the amalgamated atom Q introduces additional interactions which need to be included in the
detuning ∆i = IAB + IiQ > IAB.

The XOR3- and the XNOR3-Gate. The languages LXOR3 and LXNOR3 are inverses of each
other (up to permutations of words). They are realized via w = NOR and w = NAND respectively.
They are highly symmetric via ΣN [XOR3] = ΣN [XNOR3] = ⟨(AB), (ABQ)⟩. Correspondingly we
find that the optimal implementations of both languages are D3-symmetric.

The XOR3-gate is based on the long-range interactions between the ports: The interactions be-
tween the ports should be sufficiently small such that they are not in blockade with each other
but the ports need to interact sufficiently strong such that it is energetically disfavourable to
excite all of them simultaneously. The LESs are the words (1A, 0B, 0Q, 00), (1A, 1B, 1Q, 00) and
the cyclic permutations under ΣN [XOR3] where only one or all three ports are excited.

In the XNOR3i-gate we exploit the long-range interactions between the ports and the ancillary.
The complex needs to be sufficiently large such that it is energetically favorable to excite all three
ports at once. However in such such a large complex the residual VdW interactions between the
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ports are suppressed with the sixth power of their distance. This is the reason for the extremely
small effective gap of the XNOR3i-gate. The XNOR3i-gate is realized via w = NAND which is less
natural to implement on the Rydberg platform than w[XOR3] = NOR. Again, the optimal size
of the complex is determined by its lowest excited states: the interaction of the ancillary with
a port should be small enough such that they are not in blockade but large enough such that
it is energetically disfavourable to excite a second port simultaneously. In the optimum the
LESs of XNOR3i are the states (0A, 1B, 1Q, 10), (0A, 0B, 0Q, 10) and the cyclic permutations under
ΣN [XNOR3] where only one or all three ports are not excited (the LESs of the XOR3-gate inverted).

Note that the XNOR3i-gate is essentially constructed from the XNOR2-gate by unifying the three
ancillaries into one ancillary. The ancillary in XNOR3 is excited in the states where any of the
three ancillaries was excited for realization XNOR2. In the PXP model the three ancillaries were
necessary to block the two other ports from being excited while not blocking one ancillary. In
the VdW model the blockade is achieved via the long-range interactions.

Similarly, the XOR3-gate is constructed from the XOR2a- and the XOR2b-gate essentially by remov-
ing the three ancillaries 1, 2 and 3. In the PXP model these ancillaries were necessary to block
the third port from excitation, in the VdW model this is achieved via the long-range interactions.
Thus in the VdW model we only need one ancillary which is excited iff no port is excited.

4.3 ||| Non-minimal VdW-Elementaries

The previous chapter portrayed the VdW-minimal realizations for the (inverted) crossings 4.8
and the elementary logical connectives 4.9. We were able to achieve perfect quality for almost2

all gates and drastically reduce the number of ancillaries. For most elementary logic gates
the optimized effective gap of the VdW-minimal gate is of similar magnitude as for the PXP-
minimal gates in fig. 4.5 and 4.6 and sometimes even larger. However for the XNOR3i-gate and
the (inverted crossings) the optimal effective gaps turned out very small (about two orders of
magnitude smaller than for the PXP-minimal realizations) as these gate are based on the long-
range interaction between distant atoms. As proven above, the portrayed realizations are the
only VdW-minimal realizations. Therefore for an experimentalist implementing a logic circuit on
the Rydberg platform it might be useful to consider other non-minimal realizations as a building
blocks to achieve a larger effective gap. In the following we are going to focus on fb = XNOR. The
non-minimal NOT- and LNK-gates (which are essential to amalgamate logic circuits) are discussed
in app. 6.A.1.

4.3.1 ||| The XNOR4-Gate

As a reasonable ansatz we restrict ourselves to languages symmetric in the input ports as this
reduces the number of effective ground states to only three. Constraining we permutation sym-

2Except for the CRS2a-gate which had 1 ≈ Q ≫ 0.
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Figure 4.10: XNOR4a-gate optimal in ∆Eeff and r. This realization is based on two ancillaries
which makes it non-minimal. The VdW-minimal XNOR3-gate in fig. 4.9 requires one ancillary less
but possesses possesses a 40 times smaller effective gap. The PXP-minimal XNOR2-gate in fig. 4.6
requires one more ancillary and possesses a similar effective gap. Realization 4a is just one seven
possible realizations with two ancillaries which are noted in the app. 4.A.

metry between all ports would be too strict of a constraint. Then the realization must be a
symmetric (vectorial) Boolean function with w(0, 1) ≡ w(1, 0). The unique VdW-minimal
realization XNOR3 possesses one ancillary and the PXP-minimal realization possesses three an-
cillaries. Thus we want to determine the realizations of XNOR with two ancillaries which can
be implemented in the VdW model with a large effective energy gap. We are not interested in
realizations which differ only by a relabeling/ permutation of the two ancillaries as they corre-
spond to the same physical L-complex. Up to a permutation of the ancillaries at most seven
realizations qualify for an implementation in the VdW model. The proof of this statement is in
app. 4.A.

Arguably the most promising realization is wXOR4a = (wXOR3, wXOR3) which is constructed by the
γ-product LXOR3⊗γ LNOT1. We present the XNOR4a-gate in fig. 4.10. The XNOR4a-gate corresponds
simply to the XOR3-gate with a NOT1-gate amalgamated to the output port. Therefore its effective
energy gap is of the same order of magnitude as for the XOR3-gate. The robustness is significantly
larger as the amalgamated new output port possesses a small detuning which artificially increases
the robustness.

The remaining six realizations are denoted by 4b – 4g. Surprisingly, we are able to find implemen-
tations on the two-dimensional Rydberg platform with unit quality for each of these realizations.
They are discussed in app. 4.A. They do not profit from the additional ancillary. They pos-
sess essentially the same structure as the XNOR3i-gate with some additionally ancillary ‘glued’
somewhere. This ancillary is not used to mediate information between other atoms. Instead
it somewhat separately realizes an additional gate. Without this ancillaries we would simply
recover the XNOR3i-gate. Therefore the effective gap of these gates is of similar magnitude as
the effective gap of XNOR-3i. These realizations are not useful to construct a XNOR-gate with a
larger effective gap.
Nevertheless, these gates are conceptually interesting as they shows that we can implement mul-
tiple logic gates with the same two input ports without using additional CPY-gates. This is very
efficient in the number of atoms.
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||| Appendix

4.A ||| The VdW-specific XNOR-Gates with two An-
cillaries

In subsec. 4.3.1 we introduced the XNOR4a-gate as an alternative to the VdW-minimal XNOR3-
gate from fig. 4.9 and the PXP-minimal XNOR2-gate from fig. 4.6. The idea is to construct
a XNOR-gate in the VdW-model with similarly good effective gap as the XNOR2-gate but only
two ancillaries. In this section we want rigorously categorize the possible XNOR-gates with two
ancillaries to complete the list and exclude further candidates. As mentioned in subsec. 4.3.1
there exist seven viable realization for the XNOR-gate with two ancillaries in the VdW model:

Proof 6. (Completeness of XNOR4)

We consider the case of two ancillaries for which there are in total there exist 22·3 = 64
symmetric realizations. In the following we are interested only in the realizations modulo per-
mutation of the two ancillaries. The proof is again based on corollary II. In a nutshell corollary
II forbids ground states which are non-adjacent substates (with an intermediate excited state).

To circumvent that xxx1,xxx2,xxx3 ⋐ xxx4 there must exist an ancillary which is not excited in xxx4

but which is excited in xxx1, xxx2 and xxx3. This forbids in particular w(xxx4) = (1, 1). Thus w.l.o.g.
we can restrict ourselves to w(xxx4) = (0, 0) and w(xxx4) = (1, 0). If w(xxx4) = (0, 0) we can
choose w(xxx1), w(xxx2) ∈ {(1, 0), (0, 1), (1, 1)}. If w(xxx4) = (1, 0) we can choose w(xxx1), w(xxx2) ∈
{(0, 1), (1, 1)} independently. We exclude the realizations w = (NAND, False) and w = (NAND, True)
and it permutations where one ancillary is constant. This is legitimated by 2 and 5 respec-
tively. This yields (modulo permutation of the ancillaries) exactly the seven realizations from
fig. 4.10, fig. 4.11 and fig. 4.12.
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Figure 4.11: The non-minimal realizations XNOR-4b – 4d optimal in ∆Eeff. These realizations use
two ancillaries, i.e. more than the VdW-minimal XNOR3i-gate in fig. 4.9 but less than the PXP-
minimal XNOR2-gate in fig. 4.6. Realization XNOR4a possesses a larger effective gap and is portrayed
in chap. 4.3 in fig. 4.10.

The seven realizations we derived above are w = (NOR, XOR) and w = (NAND, NOR), (NAND, NAND),
(NAND, XNOR), (NAND, OR), (NAND, AND), (NAND, XOR). We denote these realizations by 4a – 4g

respectively.

Note that wXOR3 = NOR and wXNOR3 = NAND. Thus the first realization is wXOR4a = (wXOR3, wXOR3)
which is studied in subsec. 4.3.1. Its language LXOR4a simply corresponds to the γ-product
LXOR3⊗γ LNOT1 where γ includes the output bit of LXOR3 and the input bit of LNOT1 as a tuple. The
XOR4a-gate is portrayed in fig. 4.10.
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Figure 4.12: The non-minimal realizations XNOR-4d – 4g optimal in ∆Eeff. These realizations use
two ancillaries, i.e. more than the VdW-minimal XNOR3i-gate in fig. 4.9 but less than the PXP-
minimal XNOR2-gate in fig. 4.6. Realization XNOR4a possesses a larger effective gap and is portrayed
in chap. 4.3 in fig. 4.10.

The remaining six realizations are essentially (wXNOR3, fb) where fb is any of the six non-constant3,
symmetric, binary logical connectives. We are able to find implementations on the two-dimensional
Rydberg platform with unit quality for each of these realizations. These gates are presented in
fig. 4.11 and 4.12. They are optimized for the effective gap however their effective gap are only of
the same order of magnitude as for the XNOR3i-gate. They essentially correspond to XNOR3i-gate
with some ancillary ‘glued’ somewhere. This is discussed in the main text 4.3.1.

3i.e. neither True nor False
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5 ||| Elementaries of tessellated Languages

“I call our world Flatland, not because we call it so, but to make
its nature clearer to you, my happy readers, who are privileged
to live in Space.”

– Edwin A. Abbott, ‘Flatland’, Chap. 1, Line 1 (1884)

So far we only considered Boolean languages of the form L[fb;w]. As discussed in sec. 2.2
this is only one of the two interesting classes of languages which we want to study in this thesis.
In the following chapter we focus on tessellated languages of the form LL[fc;w] defined in eq.
2.4. Here L is a lattice, fc is the local check function and w is the realization. The goal is
the implementation of tessellated target Hilbert spaces of systems characterized by local gauge
constraints on the Rydberg platform. We focus exemplary on two important models which were
already studied by Stastny et al. in their paper [38] for the PXP model: The surface code SC

and the Fibonacci model FM.

In this chapter we first introduce the two models and discuss the local mapping on the Rydberg
platform. Then we focus on the implementation of their elementary building blocks in the
VdW model. We apply the theory introduced in chap. 3 to construct the optimal structures
of the elementaries. As results we present the PXP-minimal realizations and the VdW-minimal
realizations for both systems. We are going to find that the VdW model allows for more efficient
realizations of the elementaries.

The theory for tessellated system is not studied in this chapter but in the next chap. 6. The
elementaries on the d = 3-dimensional Rydberg platform are studied in chap. 8.
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5.1 ||| Surface Code

We are going to start by introducing the surface code SC. The surface code describes a gapped
phase with Z2 topological order by the mechanism of string-net condensation[26]. Its local excita-
tions are Abelian anyons[20] which lead to ground-state degeneracies on topologically nontrivial
surfaces. The prime example of a spin-liquid with long-range entangled ground states is the
toric code on the two-dimensional plane with periodic boundary conditions[6, 14]. Surface codes
present a promising candidate for fault-tolerant quantum computation[19] by storing local qubits
in topological delocalized DOFs[9]. Thus the implementation of the surface code is interesting
not only from an academic but also from an applied perspective[35, 2].

In the following subsec. 5.1.1 we recapitulate the main concepts of the surface code and discuss
viable mappings to the Rydberg platform. The reader only interested in the results may skip to
the subsequent subsections 5.1.2, 5.1.3 and 5.1.4 where we discuss the implementations of the
surface code elementaries in the VdW model.

5.1.1 ||| General Theory

In the following we start by briefly recalling the definition and the properties of the surface code.
We introduce the Hamiltonian and derive the ground state. In the the subsequent paragraph we
discuss the implementation of the Hamiltonian on the Rydberg platform. We find two different
local mappings for the surface code.

Summary of the Surface Code. We consider the surface code on a finite square lattice L
with either open boundary conditions (OBCs) or periodic boundary conditions (PBCs). On each
edge e ∈ E(L) we place K = 1 qubits. We denote the set of plaquettes of the lattice as P(L). To
each vertex v ∈ V(L) and each plaquette p ∈ P(L) we assign a stabilizer operator

Av =
∏

e∈star(v)

σ(z)
e and Bp =

∏
e∈bound(p)

σ(x)
e . (5.1)

The stabilizer operator are called star and plaquette operators respectively. Here star(v) ⊆ E(L)
denotes the set of edges emanating from v and bound(p) ⊆ E(L) denotes the set of edges bounding
p. σ

(α)
e for α ∈ {x, y, z} denotes the Pauli matrix acting on the qubit placed on edge e. With

the stabilizer operators we can write down the Hamiltonian

HSC = −JB
∑

v∈V(L)

Av − JB
∑

p∈P(L)

Bp (5.2)

which operates on the qubits of the edges e ∈ E(L).
As the stabilizer operators overlap on an even number of edges they commute: [Av, Bp] = 0.
Assuming JA, JB > 0, the ground state |G⟩ of the Hamiltonian 5.2 is characterized by Av|G⟩ =
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|G⟩ = Bp|G⟩ for all v ∈ V(L) and p ∈ P(L). To construct an invariant eigenvector of Av

for all v ∈ V(L) one can choose the product state |000⟩ characterized by σ
(z)
e |000⟩ = |000⟩ for all

edges e ∈ E(L). This state however is no invariant eigenvector of Bp. Thus we construct the
superposition

|G⟩ ∝
∑

CB∈B

CB |000⟩ (5.3)

by summing the full (multiplicative) group B := span ({Bp | p ∈ P(L)}) generated by the pla-
quette operators Bp. This is an invariant eigenvector of Bp by construction as the sum of the
group elements is invariant under the application of Bp. This construction is useful because the
commutativity of Av and Bp secures that the superposition (5.3) remains an invariant eigenvector
of Av. Thus |G⟩ is a ground state of the Hamiltonian. Assuming OBCs there is no ground-state
degeneracy and |G⟩ is (up to normalization) the unique ground state.

The states |CB⟩ := CB |000⟩ correspond to the product states with closed loops of flipped qubits
on the lattice1. The state |1⟩ = |000⟩ without any flipped qubits is interpreted as the loop-free
state. Each CB imprints its closed loops on |000⟩. The qubits are flipped on edges e ∈ bound(p)
bounding the plaquettes p where the plaquette operators Bp act. Thus |G⟩ is the equal-weight
superposition of all closed-loop configurations on the square lattice which makes it a string-net
condensate[26] with long-range entanglement.

Implementation of the Hamiltonian. The goal is to prepare the ground state |G⟩ in a
physical system. Straightforwardly, one could try to implement the Hamiltonian (5.2) in a
physical system and cool the system to its ground state. However the four-body interaction
between the qubits of adjacent edges is notoriously hard to realize. On the Rydberg platform an
alternative and more promising approach is introduced in Ref. [38]. This approach is summarized
in the following.

The idea is to prepare the invariant eigenspace of the star operators

H0[H; Cloop]
!∼=loc Hloop :=

⋂
v∈V(L)

Eig(Av, 1) = span ({|CB⟩ | CB ∈ B}) (5.4)

by locally mapping it one-to-one to the low-energy manifold of a Rydberg structure Cloop of atoms
(cf. eq. (2.9)). The eigenspace of the star operators is spanned by the states with an even number
of flipped qubits for each vertex, i.e. the states of all closed-loop configurations on the square
lattice. For the surface code H0[H; Cloop] is a Hilbert space of dimension dimHloop ∼ 2V 2 (up to
boundary effects) which can not be decomposed into factors of local Hilbert spaces. Hloop is the
Hilbert space of a Z2 lattice gauge theory on a charge-free (i.e. divergence-free) background[21].
This is the ground state manifold of Hamiltonian HSC from eq. (5.2) for JA > 0 and JB = 0. For
JB > 0, the Bp-terms introduces quantum fluctuations on Hloop which gaps-out the string-net
condensate |G⟩ as the (unique) ground state. On the Rydberg platform quantum fluctuations are
introduced perturbatively by ramping up the Rabi frequencies Ωi of the atoms in Hamiltonian
(2.1). This motivates the construction of the structure Cloop.

1We consider loops terminating at dangling edges at an open boundary as closed.
2Recall that V = |V(L)|.
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Introduction of Edge Levels. Before we can start with the construction of the Rydberg
structure Cloop we first need to specify the local mapping denoted by the isomorphism ∼=loc. We
want to map the closed-loop Hilbert space Hloop locally, one-to-one to the derived L-manifold
H(LL[fc]) of a tessellated language LL[fc] with check function fc to define our target Hilbert
space:

H0[H; Cloop]
!∼=L Ht = H(LL[fc]) ∼=loc Hloop. (5.5)

Here the lattice of the language is the same lattice L as for the surface code. The construction
for the first isomorphism is studied in the next three subsections 5.1.2, 5.1.3 and 5.1.4. The local
mapping ∼=loc will in general be not unique. This allows for the definition of multiple equally
valid target functions which represent the same physical closed-loop Hilbert space.

This parallels the concept of logic levels in logic circuits: In binary logic the two levels are
logical high and logical low. On the Rydberg platform we want to represent the logical levels
via the states of the Rydberg ports. This leaves for binary logic circuits two definitions of the
active state: active high (positive logic) associates the excited Rydberg state with the logical
high and analogously active low (negative logic) associates the electronic ground state with the
logical high. For the logic gates above we (arbitrarily but intuitively) chose the active high
representation3 of the logic. We could have similarly chosen the active low representation which
would have shuffled the logic gates. When implementing a logic circuit it might be useful to
choose a suitable active level or to mix active levels in a circuit. The appropriate choice might
simplify the logic design (following the De Morgan laws) and the appropriate gates might be
more natural to implement in the blockade formalism of the Rydberg platform.

Similarly, in loop models such as the surface code with Z2 DOFs we identify two edge levels:
edge high is called an excited edge and edge low is called an edge which is not excited. Consider
a loop model where each vertex possesses p adjacent edges and g ≤ 2p valid edge states. Then
we can choose either the edge high or the edge low representation for each edge. This leaves in
total 2p possible representations for the edges. They define a equivalence class [fc] of 2

p equally
valid check functions fc : Fp

2 → F2.
For the surface code on a square lattice there are p = 4 edges adjacent to each vertex and g = 8
edge states where an even number of edges is excited. Thus we search for uniform languages of
length g = 8 to represent the surface code states, i.e. check functions fc : F4

2 → F2 with

Hamming weight4 wH [fc] = g = 8. There are in total
(
24

8

)
= 12.870 such check functions of

which only 24 = 16 define valid candidates for the surface code. As in the surface code the valid
vertex states are permutation symmetric in the edges this boils down to only 6 check functions
(up to rotations). The eigenspace Hloop is highly symmetry as it contains all states with an even
number of excited edges for each vertex. If we choose for all edges the edge high representation
this projects the states to check function

fc[SC-I] : xxx 7→
∨4

i=1
xi ≡ 1−

∨4

i=1
xi (5.6)

which is one iff the number of excited port bits is even. Thus any even number of additional
bit flips maps to the same check function. Here ∨ is the logical XNOR and ∨ is the logical XOR as

3The label representation is commonly used for logic levels and we expand this notion to the edge levels. In this
thesis we use the label representation for the local mapping between the physical setup and the target function
ft, while the label realization is reserved for the function w defining the ancillary bits. The label implementation
is reserved for the Rydberg complex CQ

K which implements the derived L-manifold of a language as its low-energy
eigenspace via the labeling L. Thus the representation determines the states of the port bits while the realization
determines the states of the ancillary bits.

4The Hamming weight of a Boolean function is the magnitude of its support.
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defined5 in chap. 4. Note that this is the representation of the surface code with was discussed
in by Stastny et al. in Ref. [38] for the PXP model. In contrast any odd number of bit flips
maps to the check function

fc[SC-II] : xxx 7→
∨4

i=1
xi ≡ 1−

∨4

i=1
xi (5.7)

which is one iff the number of excited port bits is odd. Thus in the end there are essentially
only two check functions representing the surface code. Here and in the following we label
representations by roman numeral I, II, . . ..

Interpretation of the Check Functions. We find that fc[SC-I] can be interpreted as a 4-
ary generalization of XNOR (∨) while fc[SC-II] can be interpreted as a 4-ary generalization of
XOR (∨). As we want to restrict ourselves to the support of the check function this yields the
constraint fc[SC](xxx) = 1 for both representations.

As a naive ansatz one could treat fb = fc[SC-I] as a Boolean function to define a Boolean

language L[fb] = L
⊗γ3
XNOR as the γ-product of three XNOR-languages. We can construct the L-

complex by amalgamating the three corresponding XNOR-gates while adding LNK-gates in-between
to connect the ports. As gates we could utilize the elementaries portrayed in chap. 4. Finally,
to enforce fc[SC-I](xxx) = 1 we increase the detuning of the final output port. This yields a valid
implementation CSCU-I of a surface code unit-cell in representation I. This construction can be
done similarly for representation II using XOR-gates. However such realizations would be highly
non-minimal and require an enormous amount of ancillaries.

Instead we can use that the logical connectives XNOR and XOR are invertible. This allows us to
rewrite the constraint fc[SC](xxx) = 1 as

(I) x4 =
∨3

i=1
xi ≡

∨3

i=1
xi and (II) x4 = 1−

∨3

i=1
xi = 1−

∨3

i=1
xi (5.8)

for representation I and representation II respectively. This suggests the interpretation of any
bit as a ternary Boolean function of the three remaining bits. Similarly, we can rewrite the
constraint as

(I) x1∨x2 = x3∨x4 ⇔ x1∨x2 = x3∨x4, (5.9)

(II) x1∨x2 = 1− x3∨x4 ⇔ x1∨x2 = 1− x3∨x4, (5.10)

which suggests the interpretation of the constraint as an equality. Such an equality is realized on
the languages by the γ-product of the output bits. A concatenation of two logical connectives is
realized by the γ-product of the output bit with an input bit of the other language. This yields
a more efficient recipe for the construction of surface code unit-cells by utilizing only two logic
elementaries of XNOR or XOR (e.g. the elementaries from chap. 4). Surprisingly6, for the PXP
model in representation I using the PXP-minimal XNOR2-gate from fig. 4.6 it turns out that this
realization is minimal for the PXP model[38]. Note that as the XNOR2-gate is symmetric in all
ports, both of the above interpretations (as a concatenation and as an equality) are equal. As
in the PXP model there are no long-range interactions perturbing the energy structure of the
amalgamated L-complex this constructing yields Q = 1 = r for the PXP model. For the VdW
model we can expect a more efficient realization with less ancillaries using the VdW-minimal

5Note that the above iteration is well-defined due to the associativity of XNOR and XOR.
6Usually amalgamated L-complexes are no minimal realizations.
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Figure 5.1: Optimized PXP-minimal surface code unit-cell in the VdW model. The unit-cell is
optimized for the quality achieving Q ≈ 99.3% < 1. The underlying edges are colored in gray, the
excited edges are colored in orange. The tables in the last column portray only the number # of
excited ancillaries for a clearer visualization.

XNOR3i-gate from fig. 4.9. The XNOR3i-gate is symmetric in all ports too, thus again both of
the above interpretations are equal. However such an amalgamated L-complex is perturbed by
the long-range interactions (2.14) between the atoms of different gates in the VdW model. This
can decrease the quality factor and the robustness. Such effects are going to be discussed in the
next two subsections 5.1.2 and 5.1.3.

5.1.2 ||| PXP-minimal Surface Code Elementaries

In this subsection and the two following subsections 5.1.3 and 5.1.4 we discuss implementations
of the surface code unit-cell in d = 2 dimensions. We present the optimized results for the PXP-
minimal realization in the VdW-model and we introduce new VdW-specific realizations which
are more atom-efficient. For that we apply the theory derived in chap. 3. Some of the presented
realizations are based on amalgamations of the logic elementaries introduced in chap. 4.

Quasiplanar7 and tetrahedral unit-cells on the d = 3-dimensional Rydberg platform are not
discussed in this chapter, for that we refer to chap. 8. Tessellated structures are discussed in
chap. 6.

Following the PXP Model. Like for the logic elementaries of chap. 4 it is natural to start
by reconstructing the PXP-minimal elementaries found by Stastny et al. in Ref. [38]. These
PXP-minimal elementaries are based only representation I thus we consider the check function
fc[SC-I] from eq. (5.6). Fig. 5.1 presents the PXP-minimal unit-cell of the surface code opti-
mized in the VdW model. We label such unit cells of the surface code by SCU, followed by the
representation I, the realization 1 and the implementation i. In the second and fourth column
the underlying lattice of the unit-cell is colored in gray. In representation I the excited ports
are mapped locally one-to-one to excited edges of Hloop. The excited edges are colored orange
in the states represented in the fourth column.

7Only the ports lie in a two-dimensional plane.
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Remember that the PXP-minimal language LSCUI-1 is constructed as the γ-square of the XNOR2-
language. Thus the overall structures looks like a distorted amalgamation of two PXP-minimal
XNOR2-gates from fig. 4.6. The distortion is caused by the optimization due to the minimization
algorithm 3.2. Note that due to residual long-range interactions there remains a finite energy
splitting δE ≈ 0.2% ∆max > 0. Thus the quality factor Q ≈ 99.3% < 1 is not perfect. The
optimization algorithm was not able to improve the ratio any further even with intensive com-
putation. This suggests that even though the quality is not perfect, the portrayed structure is
(almost) optimal and that there exists no structure with perfect quality. We are not able to
apply theorem V (or its corollaries) as there are not sufficient DOFs in the detunings for this
language. The consistency condition rank(L̃LLAug) = rank(L̃LL) is not fulfilled. This is not surprising
as the γ-product of two languages parallels the tensor product of their Hilbert spaces (2.11) (up
to the compatibility constraint). Thus for general amalgamations of gates we can not expect to
achieve perfect quality (via theorem V).

Symmetries. Note that the check function is symmetric under any permutation of the ports.
However the chosen realization of the language partially breaks this symmetry. The symmetry
group of the language LSCUI-1 is given by

ΣN [SCUI-1] = ⟨(A B) ◦ (D C) ◦ (1 5) ◦ (2 4) ◦ (3 6), (A D) ◦ (B C) ◦ (1 2) ◦ (5 4)⟩.

The structure in fig. 5.1 possesses two D2-symmetries respecting the symmetries of the language.
Thus the ports of the portrayed structure lie on some rectangle and construct a centered rect-
angular (orthorhombic) lattice. As the realization partially breaks the symmetry between the
ports it is no surprise that the rectangle traced-out by the ports of the optimized structure is no
square, i.e. that the underlying lattice of the unit-cell is non-square but angled.
In particular the ports of the unit-cell lie on the corners of some parallelogram with the ancil-
laries inside the parallelogram. This is necessary for the tessellation of the structure such that
we can amalgamate adjacent ports. This property should be constrained during the numerical
optimization. Numerically we find that breaking the D2-symmetries (i.e. only conserving the
C2-symmetry of any unit-cell) does not help to further improve the quality factor.

A Finite Quality Factor. At this point it is reasonable question whether the finite energy
splitting is only caused by numerical difficulties or whether it is a fundamental feature of this
language. This is studied in app. 5.A.1. Here we summarize the main observations:

1 It is not possible to achieve a perfect quality factor Q = 1 for the SCUI-1 unit cell
(in any symmetric implementation).

2 There exist PXP-derived languages which can not be implemented in the VdW
model with degenerate ground states. In particular such languages possess only
imperfect quality Q < 1.

Realization SCUI-1 is an example of a PXP-minimal language which can not be implemented in
the VdW model with degenerate ground states. To be precise for the proof of this statements
we assumed the D2-symmetry of the SCUI-1 unit cell. This is (‘only’) legitimized via intensive
numerical simulation where we find that breaking theD2-symmetries does not help to improve the
quality. We are going to find an additional, less simple example of such a PXP-derived languages
which are necessarily imperfect in the VdW model later with tessellated loop structures in chap.
6.
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The finite energy splitting seems to be consequence of the amalgamation of the gates which
causes residual interactions between the product states. These residual interactions can not
be compensated by the given DOFs in the detunings. To maximize the quality the numerical
optimization algorithm suppresses the residual interactions by maximizing the distances between
the atoms of the two amalgamated gates. This decreases the ratio but decreases the effective
energy gap as well. We can circumvent this issue by adding additional DOFs with virtual
ancillaries. This concept is discussed in sec. 7.1.

Surface Code on the square Lattice. In the PXP model there always is some wiggle-room
in which the blockade graph does not change. Thus in the PXP model one can always slightly
customize the geometry. In particular in the PXP model it is possible to implement the surface
code on a square grid[38]. This freedom of choice is lost in the VdW model as the interaction
energies are highly sensitive on the geometry with the (inverse) exponent γ = 6. It is therefore
a natural question whether we can implement the surface code unit-cell on a square grid in the
VdW model as well. This is studied in the app. 5.A.2 with implementation SCUI-1iii. Here we
optimized a SCUI-1 unit cell while constraining the ports on a square grid reducing the parameter
space. This impaired the quality factor by ∼ 12.8% compared to the SCUI-1i unit cell from fig.
5.1.

Local Minima. Furthermore, in app. 5.A.2 we add the implementation SCUI-1ii. The
SCUI-1ii unit cell possesses a slightly worse quality factor than implementation SCUI-1i from
fig. 5.1 (by ∼ 5.4%) however a very different structure. This is an illustrative example of two
quite different local minima in parameter space. Such local minima make it sometimes difficult
to determine the true global minimum in parameter space.

5.1.3 ||| VdW-specific SC Elementaries in Representation I

As discussed in chap. 4, in the VdW model we can reduce the number of ancillaries compared
to the PXP model by exploiting the intermediate and low-energy regime. In fig. 4.9 the VdW-
minimal realizations of the logic elementaries are portrayed with only one ancillary. The PXP-
minimal SCUI-1 unit-cell is constructed by amalgamating two PXP-minimal XNOR2-gates[38].

SCUI-2a Unit Cell. Similarly, in the VdW model we can realize a more atom-efficient SCUI
unit-cell by amalgamating the VdW-minimal XNOR3i-gates. The constructed unit-cell is por-
trayed as realization 2a in fig. 5.2. As the XNOR3i-gate is based on the low-energy regime is
possess only a small the effective gap. This also impedes the effective gap of the SCUI-2a unit
cell. Here ∆Eeff[SCUI-2a] ≈ 0.1% is more than two orders of magnitude smaller than for the
SCUI-1i unit cell.

SCUI-2b Unit Cell. As discussed in the previous subsec. 5.1.1 we can interpret the check
function fc[SC-I] as an equality or a concatenation of either two XNOR- or two XOR-functions.
In a nutshell the two negations we introduce in XNOR cancel themselves out. Thus we can
also amalgamate two XOR3-gates to construct the SCU-I unit-cell. This realization SCUI-2b is
portrayed in the second row of fig. 5.2. The advantage of this realization compared to realization
SCUI-2a is clearly that the XOR3-gate possesses a way larger effective gap than the XNOR3i-gate.
This also assists the effective gap ∆Eeff[SCUI-2bi] ≈ 1.7% of the SCUI-2b unit cell which is
more than an order of magnitude lager than for the SCUI-2a unit cell. Nevertheless, the effective
gap remains relatively small compared to the PXP-minimal implementation SCUI-1i. The main
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Figure 5.2: Optimized VdW-specific surface code unit-cell. The unit-cell is optimized for the quality
achieving QSCUI-2a ≈ 98.4% and QSCUI-2b ≈ 99.0%. The underlying edges are colored in gray, the
excited edges are colored in orange. The tables in the last column portray only the number # of
excited ancillaries for a clearer visualization

reason is that the smaller XOR3-gate needs to be heavily distorted to suppress the distance
between the atoms of the amalgamated gates. This also decreases the advantage of the XOR3-
based SCUI-2bi unit cell compared to the realization via the larger XNOR3-based SCUI-2a unit
cell. The larger XNOR3-gate naturally possesses smaller residual interactions under amalgamation.

Finite Energy Splitting. All of the presented unit cells possess a finite energy splitting δE > 0
and thus an imperfect quality. For realization 2a it is QSCUI-2a ≈ 98.4%, for realization 2b it is
QSCUI-2bi ≈ 99.0%. There are residual long-rang interactions which impede us from achieving
perfect degeneracy. We can not apply theorem V or its corollaries to compensate for the residual
interactions as we have not sufficient DOFs in the detunings of this language. During optimization
the residual interactions are suppressed by maximizing the distance between the two gates. This
is achieved in the minimization algorithm by decreasing the detuning of the central ancillary
0. This comes at the cost of increasing the energy range of the detunings and decreasing the
effective energy gap. Thus increasing the quality factor comes at the cost of decreasing effective
energy gap. At this point it is a legitimate question whether it is theoretically possible to achieve
δE = 0 but numerically we are not able to find such a structure. This is discussed in the app.
5.A.1. We summarize the main results proven in app. 5.A.1:
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It is not possible to achieve a perfect quality factor Q = 1 for the unit cells SCUI-2a and
SCUI-2b (in any symmetric implementation).

The structures of the SCUI-2a and SCUI-2bi unit cells are D2-symmetric conserving the sym-
metries of the target language (similar as for the SCUI-1i unit cell). For the proof in app. 5.A.1
we assume this D2-symmetry to reduce the number of DOFs. Numerically we find that we do
not profit from breaking the symmetries of the language. This legitimizes the assumption for the
prove.

Elongation of the Unit Cells. The underlying grid of the D2-symmetric unit cells SCUI-2a
and SCUI-2bi is a non-square centered-rectangular (orthorhombic) lattice now with a narrow
angle. In the app. 5.A.2 we add two more implementation SCUI-2bii and SCUI-2biii (fig.
5.9) with larger effective gaps at the cost of a smaller quality factor. To optimize the quality
the minimization algorithm suppresses the residual interactions between the atoms by elongating
the unit cell which causes the narrow angle. In fig. 5.9 the unit-cells are less angled and less
elongated which causes stronger residual interactions. Interestingly the detunings of implemen-
tation 2b-iii seem somewhat inverted compared to implementation 2bi where the detuning of
the central ancillary is suppressed.

On Minimality. The realizations SCUI-2a and SCUI-2b possess only three ancillaries. They
emerge somewhat naturally by amalgamating their respective logic elementaries. At this point
a reasonable question is whether they are minimal in the VdW model or whether we could
theoretically construct a more atom-efficient unit cell for representation SCU-I. As it turns out
representation SCU-I requires only two ancillaries for a realization:

Proof 7. (Minimality in Representation I)

We argue with corollary II. Corollary II forbids ground states which are non-adjacent substates
with any intermediate excited state. Without ancillaries it would be xxx1 ⋐ xxxi for i > 1 and
xxxi ⋐ xxx8 for i < 8. Thus we require two ancillaries: Firstly, in xxx2, . . .xxx7 there must be one
ancillary which is excited and which is not excited in xxx8. Secondly in xxx1 there must be one
ancillary which is excited and which is not excited in xxx2, . . .xxx7. Thus in particular for each xxxi

with i ∈ {2, . . . 7} there needs to be one ancillary excited and one which is not excited.

However numerically it seems that such a language with two ancillaries can not be implemented
as the low-energy eigenspace on the d = 2-dimensional Rydberg platform. Remember that
the ports need to construct some C2-symmetric parallelogram to yield a valid unit cell. This
heavily constrain the structure of only six atoms. The six states with two excited ports (and one
excited ancillary) necessarily look different to the Hamiltonian because the interaction energies
are different if two diagonal or two adjacent ports are excited. This explains also why for
quasiplanar structures on the three dimensional Rydberg platform (cf. fig. 8.15) we observe a
large energy splitting. However here we have sufficient DOFs in the positioning of the ancillaries
to achieve a positive energy gap with two ancillaries. For truly three-dimensional, tetragonal
structures we are successful in implementing the surface code unit cell with only two ancillaries
(fig. 8.17). This observation is not quite surprising: the argument of proof. 7 is based on
corollary II which considers only the energy gap (i.e. the ordering of the energy structure). It
does not include any consideration of the energy splitting or of the embeddability in smaller
dimensions. Such higher dimensional structures are going to be studied in chap. 8.
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Figure 5.3: SCUII-1 unit cell. In representation II we can construct a unit-cell with Q = 1 with
only two ancillaries.

5.1.4 ||| VdW-specific SC Elementaries in Representation II

So far we only considered the representation SCU-I which is the one studied for the PXP model
by Stastny et al.[38]. In the following we want to focus on the second representation SCU-II.
Representation SCU-II possesses only two effective ground states (in a D2-symmetric L-complex)
where only one of the ports is (not) excited8. Here the ground states of similar number of
excited ports look identical to the Hamiltonian9. This turns out as an advantage compared
to representation SCU-I as it is easier to achieve a positive energy gap and degeneracy when
considering fewer effective ground states.

On Minimality. Following a similar argument as in proof 7 we find that for representation II

we require at least only one ancillary:

Proof 8. (Minimality of Representation II)

Again, we argue with corollary II. Corollary II forbids ground states which are non-adjacent
substates with any intermediate excited state. We follow the labeling of the ground states
from fig. 5.3, i.e. the lexicographic order of the edge states. Without ancillaries it would be
xxx1 ⋐ xxx2,xxx3,xxx4, xxx5 ⋐ xxx2,xxx3,xxx8, xxx6 ⋐ xxx2,xxx8,xxx8 and xxx7 ⋐ xxx3,xxx4,xxx8 non adjacent substates.
Thus representations SCU-II requires an ancillary. If we assume only one ancillary it needs to
be excited in xxx1,xxx5,xxx6,xxx7 and not excited in xxx2,xxx3,xxx4,xxx8.

Thus a reasonable goal would be to construct a SCU-II unit cell with only one ancillary which is
only excited in the ground states where only one port is excited. We call this realization SCUII-2.
It is studied for the d = 2-dimensional Rydberg platform in app. 5.A.3. Here we summarize the
main results:

8Remember that representation SCU-I possesses five effective states.
9This is not the case for representation SCU-I if two ports are excited: if two diagonal ports are excited they

experience different interaction energies compared to when two adjacent ports are excited.
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1 It is not possible to achieve perfect quality Q = 1 with a = 1 ancillary in d = 2
dimensions.

2 Numerically we find that it is not possible to achieve even a positive energy gap
∆E > 0 with a = 1 ancillary in d = 2 dimensions.

The ancillary needs to be sufficiently distant from the ports such that both can be excited
in simultaneously. On the other hand the ports need to interact sufficiently strong such that
the states where two ports are excited alongside the ancillary are gapped-out. It seems that
there are simply too few DOFs left with only one ancillary in d = 2 dimensions to fulfill both
conditions simultaneously. Thus we have two possibilities of lowering our requirements: The first
is to consider a quasiplanar10 structure in d = 3 dimensions where the ancillary may be placed
outside the plane of the ports. This adds an extra DOF which is useful to achieve a positive
energy gap ∆E > 0 (and even perfect quality Q = 1). This is studied in chap. 8. This again
illustrates that the argument of corollary II on which (proof 8 is based) is on very general ground
and does not take the dimensionality of the space in consideration.

With two Ancillaries. In the following we consider the other ansatz where we choose a = 2
ancillaries to construct a realization of the SCU-II unit cell in d = 2 dimension. This is portrayed
in fig. 5.3. Compared to the one-ancillary case we effectively split the ancillary such that only
one of the two ancillaries is excited iff only one of the ports is excited. This elongates the unit-
cell such that the geometry is only D2- but not D4-symmetric. Thus the underlying grid is a
non-square centered-rectangular (orthorhombic) lattice. However the permutation symmetries
of the ports remain conserved on the level of the ground states (cf. the ICRS2-gate from fig. 4.8)
thus we only have two effective ground states. This is in contrast to the SCUI-realizations where
the permutation symmetry of the ports was broken by the realization. For this D2-symmetric
unit cell we are even able to achieve perfect quality Q = 1. The effective gap ∆Eeff ≈ 2.1%
is larger than for the SCUI-2a and SCUI-2bi unit cells however it remains smaller than for the
SCUI-1 unit cell. Nevertheless, for these unit cells of representation SCU-I it is not possible to
achieve ground state degeneracy.

10With ‘quasiplanar’ we denote that we constrain only the ports in one plane. The ancillary may be shifted
outside the plane of the ports.
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5.2 ||| Fibonacci Model

Topological quantum computation has emerged as one of the most promising approaches for
constructing a fault-tolerant quantum computer. The proposal relies on topological states of
matter whose quasiparticle excitations are anyons (i.e. neither bosons nor fermions) obeying
non-Abelian statistics. Here unitary gate operations are implemented by braiding of localized
excitations. The fault-tolerance arises from the nonlocal encoding of the quasiparticle states
which makes them immune to local perturbations. Quantum information is stored in states with
multiple quasiparticles which have topological degeneracy[29].

The surface code studied in chap. 5.1 only supports Abelians anyons which are not sufficient to
achieve universal topological quantum computation. The simplest model with non-Abelian anyons
supporting universal quantum computation by braiding is known as the Fibonacci model FM.
The Fibonacci model was examined in the Rydberg PXP-blockade formalism by Stastny et
al. in Ref. [38]. This motivates us to study the Fibonacci model on the Rydberg platform
with VdW interactions.

In the following subsec. 5.2.1 we recapitulate the key concepts of the Fibonacci model and
discuss possible target functions. The reader only interested in the results may skip to the
subsequent subsections 5.2.2 and 5.2.3 where we discuss the implementations of the Fibonacci
model elementaries in the VdW model.

5.2.1 ||| General Theory

In the following we briefly recall the definition and the properties of the Fibonacci model. We
write down the ground state and discuss its preparation. Then we introduce the local mappings
to the Rydberg platform.

The Fibonacci Model Ground State. The properties of the Fibonacci model quasiparticles
are a consequence of the entanglement patterns of the ground state. The ground state can be
represented as a string-net condensate with weights[26]. In the following we consider a honeycomb
lattice with qubits on the edges. Then the ground state of the Fibonacci model is given by the
superposition

|G⟩ =
∑
sss∈SSS

Φ(sss)|sss⟩ (5.11)

where we sum over the set SSS of all string-net patterns on the edges where no single string ends
at any site[12]. Note that the string-net patterns of the Fibonacci model differ from the closed-
loop patterns of the surface code (cf. eq. (5.3)) as they allow for a fusion of three strings at
any site. The coefficients Φ(sss) are nontrivial functions of the string-net pattern sss such that the
condensate is no equal-weight superposition like for the surface code.
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Preparation of the Ground State. The goal is to prepare the ground state |G⟩. Straightfor-
wardly we could write down a solvable, local Hamiltonian for the Fibonacci model with exact
ground state |G⟩ (like for the surface code, see eq. (5.2)). Then we could try to implement the
Hamiltonian in a physical system and cool the system to its ground state. Such a solvable, local
Hamiltonian does in fact exist, however it is very complicated and thus essentially useless for an
implementation of the ground state[26].

This motivates us to follow the approach from previous chap. 5.1.1 on the Rydberg platform[38].
We want to prepare the string-net Hilbert space

H0[H; Cloop]
!∼=loc Hloop := span ({|sss⟩ | sss ∈ SSS}) (5.12)

by locally mapping it one-to-one to the low-energy manifold of a Rydberg structure Cloop of atoms
(cf. eq. (5.4)). The Hilbert space Hloop is now spanned by the string-net patterns where no
single edge ends on any site. Note that on the honeycomb grid every unit cell vertex consists of
two sites. By V = |V| we still denote the number of vertices of the underlying hexagonal lattice.
Then H0[H; Cloop] is a Hilbert space of dimension[33] dimHloop ∼ (1+φ2)V +(1+φ−2)V which
can not be decomposed into factors of local Hilbert spaces (similar to the surface code). Here
φ = (1 +

√
5)/2 is the golden ratio. On the honeycomb grid each site is now trivalent with

K = 1 logical bits associated with each edge. This redefines the bit projector Ps : FN
2 → F3K

2

which maps the bit configuration to the bits on the edges emanating from site s. Again, we
can perturbatively introduce quantum fluctuations on the Rydberg platform by ramping up the
Rabi frequencies Ωi of the atoms in Hamiltonian (2.1). To construct the structure Cloop we first
have to define the check function fc on the Rydberg platform.

Definition of the Check Functions. To define the check function we need to specify the local
mapping denoted by the isomorphism ∼=loc. For a detailed introduction to these concepts and to
avoid repetitiveness we refer to subsec. 5.1.1.

For the Fibonacci model on the honeycomb grid there are p = 3 edges adjacent to each site
and g = 5 states: The two states where either no or all three edges are excited and the three

states where two edges are excited. There exist in total
(
23

5

)
= 56 check function with Hamming

weight wH = g = 5. For each adjacent edge we can choose one of two representations. This
makes 23 = 8 possible representations for the edges defining an equivalence classes [fc] of 8
check functions. Like for the surface code, for the Fibonacci model the valid states of a site
are symmetric under permutations of the edges. This effectively boils down the number check
functions to only four11 (up to rotations):

fc[FM-I] : xxx 7→ (x1∨x2∨x3) ∨ (x1 ∧ x2 ∧ x3) = (x1∨x2∨x3) ∨ (x1 ∧ x2 ∧ x3) (5.13)

fc[FM-II] : xxx 7→ (x1∨x2∨x3) ∨ (x1 ∧ x2 ∧ x3) = (x1∨x2∨x3) ∨ (x1 ∧ x2 ∧ x3) (5.14)

fc[FM-III] : xxx 7→ (x1∨x2∨x3) ∨ (x1 ∧ x2 ∧ x3) = (x1∨x2∨x3) ∨ (x1 ∧ x2 ∧ x3) (5.15)

fc[FM-IV] : xxx 7→ (x1∨x2∨x3) ∨ (x1 ∧ x2 ∧ x3) = (x1∨x2∨x3) ∨ (x1 ∧ x2 ∧ x3) (5.16)

Here we chose two equivalent, simple Boolean expressions which manifestly respect the per-
mutation symmetries of the check functions. The expressions consist of a disjunction of two
terms:

1 The first term is a ternary XNOR- or XOR-function which implements the closed-loop con-
straint. Note that the two negations when exchanging ∨ and ∨ cancel out. We can also

11In contrast to the surface code the Fibonacci model has no additional internal symmetries which further
reduce the number of representations.
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reformulate the term as an equivalence condition in the ports by breaking their manifest
permutation symmetry:

x1∨x2∨x3 = (x1∨x2 ≡ x3), x1∨x2∨x3 = (x1∨x2 /≡x3) (5.17)

Here ∨, ≡ denotes both the exclusive nor but latter suggests the interpretation as an
equivalence condition. The reformulation (5.17) suggests the interpretation of the closed-
loop constraint on the trivalent site as the binary logic function XOR.

2 The second term is aminterm. The minterm adds an additional word to the language which
allows for the fusion of three strings. Without the minterm the model would only contain
closed loops and would essentially correspond to the surface code on the honeycomb grid.
For the natural representations all edge high FM-I and all edge low FM-IV the minterm
includes the word where all three bits are (not) excited. The other two representations
FM-II and FM-III partially break the permutation symmetry between the edges. Here the
minterm describes a state where two bits are (not) excited.

Due to the minterm there are in total g = 5 ground states. Thus the FM site can not be realized
by a single logic gate (like the surface code on the honeycomb grid via the XOR-gate). As a
first, naive ansatz we could decompose the check function into a circuit of logic elementaries. A
concatenation of an even number of logic elementaries always yields an even number of ports,
thus we would need at least three logic elementaries. This comes at the cost of gaining a lot of
ancillaries which we deem to much overhead for a single site. Instead a more promising approach
is to directly implement the L-complex for a single site as a fundamental building block. This is
studied in the following subsec. 5.2.2 and the subsequent subsec. 5.2.3.

5.2.2 ||| PXP-derived Fibonacci Model Elementaries

In this subsection and the following subsec. 5.2.3 we present implementations of the Fibonacci
model site and the Fibonacci model unit cell for the honeycomb grid optimized in the VdW
model. In this subsection we start by reconstructing the Fibonacci model site and unit-cell of
representation FM-I which was first introduced by Stastny et al. for the PXP model[38]. We
introduce a more atom-efficient realization of the FM site in the PXP-model which we also im-
plement in the VdW model. In the next subsec. 5.2.3 we construct a VdW-minimal realizations
of the FM-I site.

In both subsections we exemplarily consider only the representation FM-I. The other three rep-
resentations partially profit from embedding them on the three-dimensional Rydberg platform.
Thus we want to discuss them collectively in sec. 8.6 in a comparative study with their three-
dimensional counterparts.

Reconstruction of the PXP-model Elementaries. Like for the surface code elementaries
of subsec. 5.1.2, we start by reconstructing the elementaries introduced by Stastny et al. for
the PXP-model[38]. These PXP-model elementaries only use the all edge high representation I

thus we consider the check function fc[FM-I] from eq. (5.13). Fig. 5.4 presents the elementaries
of the Fibonacci model for realization FMI-1 optimized in the VdW model. In the all edge
high representation excited ports are mapped locally one-to-one to excited edges of Hloop. In the
second and the fourth column the underlying honeycomb grid is colored in gray. Excited edges
are colored in orange in the foruth column.
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Figure 5.4: Optimized PXP-elementaries of the Fibonacci model. The FMSI-1 site is optimized
for ∆Eeff and r. The FMUI-1 unit cell is optimized for the quality Q ≈ 93.2% < 1. The underlying
edges are colored in gray, the excited edges are colored in orange.

The first row shows the FMSI-1 site. Here we can apply theorem V to achieve a vanishing energy
splitting of the ground states. Both the effective gap ∆Eeff[FMSI-1] ≈ 25.3% and the robustness
rFMSI-1 ≈ 40.0% are optimized. In the table of the last column we summarized the number of
excited ancillaries # in one column. Note that the check function fc[FM-I] is symmetric under any
permutation of the ports but realization FMSI-1 breaks this symmetry. The structure possesses
only a D2-symmetry.

The second row portrays the amalgamation of two FMSI-1 sites constructing a unit-cell of the
hexagonal lattice. The structure is optimized for its quality factor Q ≈ 93.2% < 1. It possesses
a finite energy splitting δE ≈ 1%∆max. Due to the relatively high number of ancillaries the
unit-cell is computationally intensive to optimize thus its quality might only be almost optimal.
Like for the SCUI-1- and SCUI-2-unit cells we can not apply theorem V. There are not sufficient
DOFs in the detunings of the language to compensate the residual interactions between the
amalgamated sites. This comes as no surprise as the language a the γ-square (of LFMSI-1).

Non-Minimality. In Ref. [38] Stastny et al. claimed that they proved that realization FMSI-1

is PXP-minimal, i.e. optimal in the number of atoms for the PXP model. However this turns out
as not correct as fig. 5.5 presents a PXP-model realization FMSI-2 of the site with only 7 atoms
of which 4 are ancillaries. This makes one ancillary less than in realization FMSI-1. Note that the
blockade graph for this realization is not planar. This however is only a mathematical peculiarity
of the blockade graph and of no physical significance (as the blockade graph is unphysical).
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Figure 5.5: Optimized PXP-minimal elementaries of the Fibonacci model. The FMSI-2 site is
optimized for ∆Eeff and r, the FMUI-2 unit cell is optimized for the quality Q ≈ 93.6%. The
underlying edges are colored in gray, the excited edges are colored in orange.

On Uniqueness and PXP-Minimality. Now again it arises the question whether the newly
constructed atom-efficient PXP-realization is PXP-minimal and whether it is the only PXP-
minimal solution. Otherwise it would be interesting to construct (further) PXP-minimal solu-
tions. This is discussed in app. 5.B.1. In the following we summarize the main results:

1 Realization FMSI-2 is PXP-minimal for representation FM-I.

2 It is the only PXP-minimal realization of representation FM-I.

Thus there exist no further PXP-minimal realizations which could be added to the ‘list’ from
fig. 5.5; FMSI-2 is unique.

Construction. The construction of this FMSI-2 site from the FMSI-1 site can be interpreted
quite intuitively: First note that in the FMSI-1 site the ancillaries 1 and 4 are excited simulta-
neously iff no other atom is excited (i.e. in state xxx1). This allows us to combine them into one
ancillary. This ancillary is excited iff no other atom is excited thus it needs to be in blockade
with all other atoms.

The advantage of this construction compared to realization FMSI-1 is (besides fewer ancillar-
ies) its symmetry in the ports: It respects the permutation symmetries of the target function
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fc[FM-I]. Thus the optimized structure is D3-symmetric. This helps with the construction
and the optimization. Furthermore, as the central ancillary needs to be in blockade with all
other atoms the FMSI-2 site is more compact than the FMSI-1 site. Note that the effective gap
∆Eeff[FMSI-2] ≈ 24.3% and the robustness r[FMSI-2] ≈ 68.4% of the FMSI-2 site are similar as
for the FMSI-1 site.

Analogies to other Structures. At this point we should draw the analogy of the FMSI-2

site to the XOR2b-gate from fig. 4.7. Their similarity is not only apparent in their structure but
also in their language: The language LFMSI2 emerges from the XOR2b-language by additionally
including the word where all port bits are excited simultaneously but no ancillary bits. This
reflects eq. (5.13) where the minterm modified the ternary XOR-function implementing the fusion
of three strings. In the PXP-model this is achieved by setting the detunings of the ports equal
to the detunings of the ancillaries 1, 2 and 3.
Similarly, the FMSI-1 site from fig. 5.4 and the XOR2a-gate from fig. 4.6 are somewhat analogous.
This however is less apparent in their optimized structure. The FMSI-1 site emerges from the
XOR2a-gate by adding an additional ancillary 4 between the ports B and Q with the additional
blockades {4, B}, {4, Q}, {4, 2}, {4, 3}. This ancillary is only excited in simultaneity with ancil-
lary 0 (in state xxx1). As discussed above this ancillary is somewhat redundant as we can construct
realization FMSI-2.

Unit-Cells. The second row portrays the FMUI-2i unit cell. Here the D3-symmetry of both
sites is distorted by the residual interactions with the other site. The quality factor is QFMUI-2i ≈
93.6% < 1 which is similar as for the FMUI-1 unit cell. Again, we are not able to apply theorem
V. It arises the question whether there exists a structure with degenerate ground states which
we simply are not able to find numerically. This is discussed in app. 5.B.2. We summarize that:

It is impossible to achieve a perfect quality factor Q = 1 for the PXP-minimal realization
FMUI-2 in any symmetric implementation.

The assumption for a symmetric implementation is legitimized numerically as we find that break-
ing the D2-symmetry does not help to improve the quality factor. This means that the FMUI-2

unit cell is another example for a PXP-derived (even PXP-minimal) structure which we can not
implement in the VdW model with perfect quality.
The effective gap ∆Eeff[FMUI-2i] ≈ 7.4% of the FMUI-2i unit cell is a little smaller than for
the FMUI-1 unit cell. This is not quite surprising as we already mentioned that the FMSI-2 site
is necessarily more compact than the FMSI-1 site. This increases residual interactions with the
neighboring unit cell decreasing the effective gap.

Note that the FMUI-2i unit cell is D2-symmetric and it is distorted along the axis of symmetry.
The reason is that the optimization algorithm suppresses residual interactions by increasing the
distances between the atoms of different sites. However, we would not expect such a distortion
of the D3-symmetry to be of advantage when constructing the D3-symmetric tessellated struc-
ture on the hexagonal honeycomb grid. Therefore, in app. 5.B.3 we introduce implementation
FMUI-2ii where we constrain the D3-symmetry of each site. This constrains the parameter space
thus impeding the quality factor to Q ≈ 72.2%.
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Figure 5.6: Optimized VdW-minimal elementaries of the Fibonacci model. The FMSI-3 site is
optimized for ∆Eeff and r, the FMUI-3 unit cell is optimized for the quality Q ≈ 99.1% < 1. The
underlying edges are colored in gray, the excited edges are colored in orange.

5.2.3 ||| VdW-specific Fibonacci Model Elementaries

In the following we discuss whether we are able to construct a more atom-efficient realization in
the VdW model. Again, in this subsection we want to consider only representation FM-I defined
by check function (5.13). For the remaining three representations we refer to sec. 8.6.

The VdW-minimal FMI-elementaries are presented in fig. 5.6.

On Minimality. This realization FMI-3 is VdW-minimal and it is the only VdW-minimal
realization of representation I:

Proof 9. (Minimality and Uniqueness of Realization FMI-3)

We follow the argument of corollary II. Corollary II forbids the existence of ground states
which are non-adjacent substates with an intermediate excited state. Without ancillaries it
would be xxx1 ⋐ xxxi for i > 1 (and it would be 000 ∈ Lt which we exclude by remark 4). Thus this
representation requires one ancillary. The ancillary needs to be excited in xxx1 but not excited
in xxxi for i > 1. This is the only choice for one ancillary to circumvent non-adjacent substates
with intermediate excited states.

Note that we can also argue differently following the reformulation (5.17) of the check function
to proof minimality: the check function fc[FMS-I] is one in particular if one ports is equivalent to
the XOR of the other two ports. However for XOR we know from proof 5 that it requires at least one
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ancillary in the VdW model. The minterm adds an additional ground state which only tightens
the constraints. Thus a realization with one ancillary must be necessarily VdW-minimal.

Construction of the Site. In implementation FMSI3 we exploit the intermediate energy regime
to achieve degeneracy between the four ground states where two or three ports are excited
simultaneously. This is very efficient compared to the PXP-model where we already need three
ancillaries only to achieve degeneracy between these four ground states. The ancillary 0 is then
required to additionally achieve degeneracy with the first ground state xxx1. It is excited iff no
other atom is excited. Thus the position of the ancillary is not fixed but can be chosen freely is
some finite volume where it interacts sufficiently strong with the ports. In this volume the quality
factor and the energy gap are constant. This region is shaded gray in the FMSI3 site in fig. 5.6.
This might be considered an additional advantage compared to the PXP-minimal FMSI2-site as it
simplifies an experimental construction. For the structure in fig. 5.6 we choose the D3-symmetric
implementation which is most useful for tessellation to minimize residual interactions.

Analogies. Note that the VdW-minimal FMSI3 site mirrors the VdW-minimal XOR3-gate the
same way the PXP-minimal FMSI2 site mirrored the PXP-minimal XOR2b-gate. The VdW-
minimal FMSI3 site can be constructed from the PXP-minimal FMSI2 site by removing the three
non-central ancillaries 1, 2 and 3. In the PXP model these ancillaries were vital to block the third
port from excitation. In the VdW model this is achieved via the intermediate-range interactions
between the ports. As the FMSI3 site is based on relatively strong interactions between the ports
its effective gap ∆Eeff = 33.3% is relatively large. In particular the effective gap is larger than
the effective gap of both PXP-derived realizations FMSI1 and FMSI2.

Compared to the XOR3-language the FMSI3-language additionally includes the word where all
three port bits are excited. This is described by the minterm of the check function (5.13). In the
VdW model this is accomplished simply by appropriately increasing the distance between the
ports. This reduces the interaction energy between the ports (compared to their detunings) and
thus the energy of the fifth ground state until achieving degeneracy. This explains the apparent
similarity between the FMSI3 site and the XOR3-gate.

Unit Cell. The second row presents the FMUI-3 unit cell. Similarly to the surface code unit
cells SCUI-2 from fig. 5.2 the optimization algorithm elongates the unit cell to minimize residual
interactions between the sites. Intuitively, by elongating the unit cell the interaction energies
between two diagonal ports approach the interaction energies between two ports on its long side.
This achieves a high quality factor Q ≈ 99.1% < 1. Again, there are not sufficient DOFs in
the detunings to apply theorem V to achieve ground state degeneracy because the language is a
γ-square (of LFMSI-3).
It arises the question whether there exists a structure with degenerate ground states which we
simply are not able to find numerically. This is discussed in app. 5.B.2. Here we summarize the
main result:

It is impossible to achieve a perfect quality factor Q = 1 for the VdW-minimal realization
FMUI-3 in any symmetric implementation.

Again, the assumption for a symmetric implementation is legitimized numerically as we find that
breaking the D2-symmetry does not help to improve the quality factor.
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To elongate the unit cell the detuning of the central ancillary is suppressed which decreases the
effective gap ∆Eeff ≈ 0.4%. In app. 5.B.2 we add implementation FMU-3ii with a larger effective
gap at the cost of a smaller quality factor. Here the unit cell is less elongated which causes
stronger residual interactions. Interestingly the detunings seem somewhat inverted compared to
the FMU-3i unit cell because the detuning of the central ancillary is now significantly larger.

D3-symmetric Unit Cells. We would not expect such an elongation of the unit cell to be
optimal in a tessellated structure as here the honeycomb grid is D3-symmetric. Thus we add
implementation FMU-3iii in app. 5.B.2. Here we constrain the parameter space only allowing
for D3-symmetric sites. This impedes the quality factor Q ≈ 88.4%. Note that this quality is still
significantly larger than for the FMUI-2ii unit cell. It is interesting to note that for the VdW-
minimal FMU-3iii unit cell with D3-symmetric sites tessellated on the hexagonal honeycomb
grid there would be precisely one ancillary centered on every site and one port centered on every
edge in-between the sites.
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||| Appendix

5.A ||| Surface Code Unit Cells

This first section of the appendix is dedicated to the surface code. In subsec. 5.A.1 we proof
that the SCUI unit cells from sec. 5.1 possess a finite ground state splitting for every symmetric
structure. We continue presenting further implementations of the SCUI unit cells in subsec.
5.A.2. Finally, in subsec. 5.A.3 we proof the non-existence of two-dimensional SC unit cells with
one ancillary.

For the Fibonacci model we refer to the second sec. 5.B of this appendix.
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Figure 5.7: The measure ∆I as a function of the parameters rAB and rAD. We measure in units
of I12 and r12. Note that the graph remains positive in the full parameter space.

5.A.1 ||| Finite Energy Splitting of the SC-I Unit Cells

In the following we show that:

For any D2-symmetric implementation of the realization SCUI-1, SCUI-2a and SCUI-2b,
we can not achieve a vanishing energy splitting and therefore only an imperfect quality
Q < 1.

The assumption about symmetry is legitimized via intensive numerical optimization because we
find that breaking the symmetries does not help to improve the quality factor.

Proof 10. (Finite Energy Splitting)

In general we use the labeling of ports and ancillaries as in fig. 5.1 and 5.2 with one exception:
To parallel the labeling of the ancillaries in realizations 2a,b, we relabel in realization 1 the
ancillaries

3, 6 7→ 1, 2

respectively. Here we do not need to define new labels for the remaining ancillaries as we are
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only going to consider the ground states xxx1,xxx2,xxx7 and xxx8 where none of these ancillaries are
excited.

As mentioned above, we assume that the unit-cell is D2-symmetric to reduce the number of
DOFs. The ports construct a rectangle of side lengths rAD and rAB . The diagonal is denoted
by rAC .

To achieve a vanishing energy splitting, each ground state xxx ∈ G should be of the same energy.
In the following we consider the ground states xxx1,xxx2,xxx7 and xxx8. Then in particular it should
be

(1) E(|1, 1, 0, 0; 1, 0, 1⟩) + E(|0, 0, 1, 1; 1, 1, 0⟩) !
= E(|1, 1, 1, 1; 1, 0, 0⟩) + E(|0, 0, 0, 0; 1, 1, 1⟩),

(2a) E(|1, 1, 0, 0; 1, 0, 1⟩) + E(|0, 0, 1, 1; 1, 1, 0⟩) !
= E(|1, 1, 1, 1; 1, 0, 0⟩) + E(|0, 0, 0, 0; 1, 1, 1⟩),

(2b) E(|1, 1, 0, 0; 0, 0, 1⟩) + E(|0, 0, 1, 1; 0, 1, 0⟩) !
= E(|1, 1, 1, 1; 0, 0, 0⟩) + E(|0, 0, 0, 0; 0, 1, 1⟩)

for the sum of their energies in realization 1, 2a and 2b respectively. Here for realization 1 for
a clearer visualization we left out the remaining ancillaries which are not excited in any of the
four ground states anyway. This illustrates the analogy between realization 1 and realization
2a. Thus we find that the constraint induced for realization 1 and realization 2a is the same
while the constraint for realization 2b differs as here the ancillary zero is excited in addition
in every of the four ground states.

By exploiting the D2-symmetries, this can be rewritten for all three realizations as the same
constraint:

4IA2
!
= 2(IAC + IAD) + I12. (5.18)

Here we cancelled all detuningsa and some interaction energies on both sides. Note that
even though the initial ground states differed between realization 2a and 2b they yield the
same constraint. The interaction energies IAC = UVdW(rAC), IAD = UVdW(rAD) and I12 =
UVdW(r12) on the right-hand side are functions of the distance between their atoms. W.l.o.g
we can choose our energy scaling such that I12 = 1 by applying fα with α = |I12|−1/6,
see eq. (2.15). We rewrite rAC(rAB , rAD) =

√
r2AB + r2AD such that we can choose the two

remaining distances rAB and rAD on the right-hand side independently. The interaction energy
IA2 = UVdW(rA2) on the left-hand side is a function of the distance rA2. We can express the
distance rA2(rAB , rAD) =

√
r2AB + (rAD + r12)2/2|r12=C1/6 as a function of the distances on

the right-hand side.

Now we can simply plug in rAC = rAC(rAB , rAD) and rA2 = rA2(rAB , rAD) in eq. (5.18) and
define the measure

∆I(rAB , rAD) := 2IAC |rAC(rAB ,rAD) + 2IAD|rAD
+ 1− 4IA2|rA2(rAB ,rAD). (5.19)

We are interested in the solution space where ∆I(rAB , rAD)
!
= 0. Fig. 5.7 shows the con-

tour graph of ∆I(rAB , rAD) in logarithmic scaling. It is almost constant in rAB and decays
exponentially in rAD. Thus for large rAD our measure ∆I can become very small. However
∆I remains positive and in particular non-zero in the full parameter space. Thus the solution
space is empty and δE > 0 remains positive. This means that for all realizations SCUI the
quality factor is Q < 1.

aWe chose the above equation such that the detunings cancel.

||| 123



Chapter 5 Elementaries of tessellated Languages
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SCUI-1ii 0

1

2 3

4

56

A

B

C

D

∆Eeff =0.134
r =0.346

−1.70

−1.65

−1.60

−1.55

E
n
er
gy

E
/
∆

m
a
x

δE =0.00843

11

A

B

C

D

22

A

B

C

D

33

A

B

C

D

44

A

B

C

D

55

A

B

C

D

66

A

B

C

D

77

A

B

C

D

88

A

B

C

D

SCUISCUISCUI A B C D #

1 0 0 0 0 3

[2] 0 0 1 1 2

[3] 0 1 0 1 2

[4] 0 1 1 0 2

8 1 1 1 1 1

SCUI-1iii

(square)
0

1

2 3

4

56

A

B

C

D

∆Eeff =0.13
r =0.36

−1.65

−1.60

−1.55

−1.50
E
n
er
gy

E
/
∆

m
a
x

δE =0.0189

11

A

B

C

D

22

A

B

C

D

33

A

B

C

D

44

A

B

C

D

55

A

B

C

D

66

A

B

C

D

77

A

B

C

D

88

A

B

C

D

SCUISCUISCUI A B C D #

1 0 0 0 0 3

[2] 0 0 1 1 2

[3] 0 1 0 1 2

[4] 0 1 1 0 2

8 1 1 1 1 1

Detuning ∆ / ∆max

0 1

Figure 5.8: PXP-minimal SCUI-1 unit cells. The tables in the last column portray only the number
# of excited ancillaries for a clearer visualization. Implementation SCUI-1ii is not optimal but
visualizes another local minimum. Implementation SCUI-1iii is optimized while constraining the
port on a square lattice.

5.A.2 ||| Additional SC-I Unit Cells

In this subsection we present additional surface code unit cells in representation I.

PXP-minimal SCUI-1 Unit-Cells. In fig. 5.8 we present two additional implementations
of the PXP-minimal realization SCUI-1. The optimized SCUI-1i unit cell is presented in fig.
5.1. The SCUI-1ii unit cell visualizes a different local minimum of the ratio in parameter space.
The SCUI-1iii unit cell is optimized while constraining the ports on a square such that they
trace-out a square lattice. In the VdW model constraining the implementation to the square
grid impedes the quality factor Q[SCUI-1iii] ≈ 86.5%.

For such a square lattice we can arbitrarily choose the orientations of each D2-symmetric unit
cells under tessellation. However in each unit cell only the two diagonal quadrants are occupied
by ancillaries. Thus it is quite clear that the translational symmetric choice minimizes residual
interaction energies between atoms of adjacent unit cells. Thus this choice might be preferable
to maximize the quality of the tessellated structure.
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Figure 5.9: Two additional SCUI-2b unit cells. The tables in the last column portray only the
number # of excited ancillaries for a clearer visualization. The Q-optimized SCUI-2bi unit cell is
presented in fig. 5.10. Both unit cells presented here posses a larger effective gap at the cost of a
reduced quality.

VdW-specific SCUI-2b Unit-Cells. In fig. 5.9 we present two additional implementations of
the VdW-specific SCUI-2b unit cells. The optimized SCUI-2bi unit cell is presented in fig. 5.10.
However the SCUI-2bi unit cell possesses a significantly smaller effective gap. The quality factor
is maximized by ‘stretching’ the unit cell to suppress residual interactions. This decreases the
effective gap is the process. Thus there is a trade-off between optimizing the quality factor and the
effective gap. If an experimentalist requires a large effective gap this suggests an implementation
of fig. 5.9.
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Figure 5.10: Ansatz for a SCII unit cell in d = 2 dimensions with one ancillary. The energy gap is
negative.

5.A.3 ||| Impossibility of two-dimensional the SC Unit Cells with one Ancillary

In the following we show that:

It is impossible to achieve Q = 1 for a Surface Code unit cell unit in d = 2 dimensions
with only a = 1 ancillary.

For representation SCU-I this proven in proof 7. The proof for representation SCU-II needs to
include the geometry and thus is more complex. It is based on the fact that any valid unit cell
should be C2-symmetric to allow for tessellation.

Proof 11. (Finite Energy Splitting of SCU-II with one Ancillary)

We use the same labeling as in fig. 5.10. Note that any unit cell must be C2-symmetric thus
r0A = r0C and r0B = r0D. Note that we do not make any assumptions about the detunings.
Let i ∈ P denote any port of the unit cell. To achieve degeneracy between the states xxx1, xxx5,

xxx6 and xxx7 it must be ∆i − I0i
!
= consti. This directly implies that the two opposite atoms

each must possess the same detunings: ∆i = ∆ĩ. By ĩ we denote the port which is projected
to port i when inverting the unit cell. Similarly, to achieve degeneracy between the states xxx2,
xxx3, xxx4 and xxx8 it must be

0
!
= ∆i −

∑
j∈P\{i}

Iji − consti = ∆i − Ĩii − consti = ∆i − I0i/2
6 − consti.

Here in both equalities we applied the C2 symmetry constraint. In the first equality due to
the C2 symmetry the other two interaction energies are constant for all ports and thus can
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be pushed into consti. In the second equality due to the C2 symmetry the distance dĩi = 2d0i

is inserted. Thus we obtain ∆i − I0i/2
6 !
= consti. By subtracting the first constraint (times

1/26) we obtain I0i = consti (and ∆i = consti). Thus the structure must be D4-symmetric
and we only have two effective ground states.

Now w.l.o.g. we choose ∆0 = 1 for the only ancillary by rescaling the energies by fα with

α = ∆
−1/6
0 , see eq. (2.15). The detunings ∆i = (∆0 + IAC + 2IAB − I0A)/2 of the ports i ∈ P

are fixed to achieve degeneracy between the two effective states. This reduces the number
of DOFs to only one: the radius r0A of the ports which also fixes the distances between the
ports. However the energy gap ∆E < 0 remains negative for all choices of r0A. This can be
understood as follows: We can choose r0A = [C(1 + 2−2 + 2−6)/2]1/6 =: r which maximizes
the (negative) effective gap and the robustness simultaneously. This optimal implementation
is portrayed in fig. 5.10. Here the LESs (4̄A, 00) and (0̄A, 10) where all ports are (not) excited
are of equal energy. If we would choose r0A > r then the LES (4̄A, 00) would energetically fall
faster than any ground state thus further decreasing the energy gap. Similarly, if we would
choose r0A < r then the ground states would energetically rise faster than the LES (0̄A, 10)
(which would not change energetically) thus further decreasing the energy gap. Because the
energy gap in fig. 5.10 is negative and because every modification of the structure further
decreases the energy gap, the energy gap of every structure (without energy splitting) must
be negative.

The assumptions about the vanishing energy splitting only seems to be useful for the calculation
to reduce the number of DOFs. Numerically we find that the energy gap ∆E < 0 is always
negative even if we allow a finite energy splitting. For a rigorous proof in the D4-symmetric case
we could proceed similarly as proof 10: In the D4-symmetric case we only have only two DOFs
in the structure. This would allow us to construct a contour plot of the energy gap.

As the energy gap of two-dimensional structures seems to be necessarily negative, in subsec.
5.1.4 we study the SCUII-1 unit cell with a = 2 ancillaries in d = 2 dimensions. If we allow for a
quasiplanar structure in d = 3 dimensions where the ancillary may be placed outside the plane
of the ports this adds an additional DOF. Then we can actually achieve a perfect quality factor
Q = 1 (i.e. and in particular a positive energy gap) with only one ancillary. This is studied in
chap. 8.
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Figure 5.11: Sketch of the blockade graph. Ports are drawn as squares, ancillaries are drawn as
circles. (a) FMS-I-site with three or four ancillaries. Black edges have to be in the blockade graph
(the atoms are in blockade), red edges can not be in the blockade graph (the atoms are not in
blockade). Edges which are not drawn are not yet determined to be (not) in the blockade graph.
(b) Non-planar blockade graph of realization FMSI-2. (c) FMS-II-site with three ancillaries. Again,
black edges have to be in the blockade graph, green edges can not be in the blockade graph.

5.B ||| Fibonacci Model Elementaries

This second section of the appendix is dedicated to the Fibonacci model. In subsec. 5.B.1 we
proof that the FMSI-2 site from subsec. 5.2.2 is PXP-minimal and that it is unique in the sense
that it is the only PXP-minimal structure. We continue in subsec. 5.B.2 by proving that the
FMI-2 and FMI-3 unit cells from subsec. 5.2.2 and 5.2.3 possess a finite ground state splitting
for every symmetric structure. Lastly, in subsec. 5.B.3 we present further implementations of
the FMI-2 and FMI-3 unit cells from subsec. 5.2.2 and 5.2.3.

For the surface code we refer to the first sec. 5.A of this appendix.

5.B.1 ||| Minimality and Uniqueness for the FMSI-2 Site

As portrayed in fig. 5.5 we found a more atom-efficient PXP-realization compared to realization
FMSI-1 introduced in Ref. [38]. Thus naturally it arises the question whether this realization
is PXP-minimal and whether it is the only PXP-minimal realization. In the following we show
that:

1 Realization FMSI-2 is PXP-minimal for representation FM-I.

2 It is the only PXP-minimal realization of representation FM-I.
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Proof 12. (Uniqueness and Minimality of the FMSI1-site)

Consider representation I with check function fc[FMSI]. It includes the state where all three
ports are excited. We label the ports as A, B and C in the following. Thus no two ports may
be in blockade with each other. Further fc[FMSI] includes the three words where two ports
j, k ∈ P are excited but one port i ∈ P is not excited. For each of these words to be a MIS
there needs to exist one excited ancillary i ∈ A which is in blockade with port i but not in
blockades with ports j, k ∈ P. Thus we need three ancillaries 1, 2 and 3 where each one is
in blockade with exactly one port A, B and C. This is summarized in sketch 5.11a. In the
following we only consider blockade graphs of this form.
Lets assume that we only have these three ancillaries 1, 2 and 3 (i.e. we ignore the grayed-out
ancillary 0 in fig. 5.11a). Then each port is in blockade with precisely one atom. In the ground
state with no excited ports, the ports can only be blocked if all of the three ancillaries are
excited simultaneously. This fully defines the language:

LFMSI∗ = {(0, 0, 0; 1, 1, 1), (0, 1, 1; 1, 0, 0), (1, 0, 1; 0, 1, 0), (1, 1, 0; 0, 0, 1), (1, 1, 1; 0, 0, 0)}

Here the labeling is such that the first three bits are mapped to the ports A, B, C while latter
three bits are mapped to the ancillaries 0, 1, 2 respectively. In particular no two ancillaries
can be in blockade with each other. This fully defines the blockade graph. The language
factorizes in the product of three primitive NOT1-languages and the corresponding blockade
graph is disconnected. Such an blockade graph obviously can not realize the language as all
three ports are independent.
Thus we need at least four ancillaries (this was already proven in Ref. [38]) which makes the
realization FMSI-2 PXP-minimal. As we are only interested in PXP-minimal realizations, in
the following we consider the case of four ancillaries. We label the additional ancillary as 0. It
is drawn grayish in fig. 5.11a. Remember that the three ancillaries 1, 2 and 3 are in blockade
with precisely one port each and that any two ports can not be in blockade with each other.
Thus every port is only in blockade with at least one but at most two atoms/ ancillaries. In
the following we distinct these two cases:

1 Consider the case where each port is in blockade with two ancillaries: Then the ancillary
0 needs to be in blockade with all three ports. Hence it can only be excited in the
ground state where no ports are excited. In the remaining ground states there are two
or three ports excited. To achieve degeneracy between these ground states the detunings
∆A = ∆1, ∆B = ∆2, ∆C = ∆3 must be pairwise equal. To gap-out the excited states
where two ancillaries and one port is excited, any two ancillaries need to be in blockade.
This fully defines the blockade graph of realization FMSI-2 in fig. 5.11b.

2 Now we consider we three remaining cases where three, two or one ports are connected
to only one ancillary each:

a Consider the case where all three ports are connected to only one ancillary each.
Then the language is the γ-product of three primitive NOT1-languages multiplied
with a kernel language of four-bit words. The kernel language is of the form FMS-IV

and possesses only one ancillary bit. In this language some ground state would be
a subword of another ground state. This makes it impossible to implement in the
PXP model.

b Consider the case where two ports are connected to only one ancillary each. This
language is the γ-product of two primitive NOT1-languages multiplied with a kernel

||| 129



Chapter 5 Elementaries of tessellated Languages
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

language of five-bit words. The kernel language is of the form FMS-III and possesses
two ancillary bits. It includes the three words where two ports are excited. However
as discussed above to realize these ground states in the PXP model we need three
ancillaries where each one is connected to precisely one port. Thus this language is
impossible to implement in the PXP model.

c Lastly, consider the case where one port is connected to only one ancillary. W.l.o.g.
we label this port as A. Then the other two ports B and C are connected to two
ancillaries each. This language is the γ-product of one primitive NOT1-language
multiplied with a kernel language of six-bit words. The kernel language is of the
form FMS-II and possesses three ancillary bits. It possesses three ports A’, B and
C. It includes the three states where only one port is excited, the state where three
ports are excited and the state where the two ports B and C are excited. In latter
state there must exist one excited ancillary 1 which is in blockade with port A but
not in blockade with the ports B and C. Consider the state where only the port
B is excited. There must exist one excited ancillary 3 which in blockade with port
C but not in blockade with port B. This can not be ancillary 1 because ancillary
1 is only in blockade with port A but not with the ports B and C. Similarly, in
the state where only the port C is excited, there must exist one excited ancillary 2
which in blockade with port B but not in blockade with port C. This is sketched in
fig. 5.11c. As there are only three ancillaries, the ports B and C can only connected
via a blockade to the ancillaries 2 and 3 respectively but to no other atom. This
contradicts the initial assumption that port A is connected to one ancillary but that
ports B and C are connected to two ancillaries each.

Thus languages of this form are impossible to implement in the PXP model.

To summarize, we find that realization FMSI-2 is PXP-minimal and the only PXP-minimal
realization in representation I.
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Figure 5.12: The measure ∆I as a function of the parameters rBC and rBE . The inset box is the
value r23. We measure in units of I01 and r01. Note that the graph remains positive in the full
parameter space.

5.B.2 ||| Finite Energy Splitting of the FMUI Unit Cells

In the following we show that:

For any D2-symmetric implementation of the realizations FMUI-2 and FMUI-3 we can not
achieve a vanishing energy splitting.

This implies in particular that the quality Q < 1 can not be perfect. The assumption about
symmetry is legitimized numerically because we find that breaking the symmetries does not help
to improve the quality factor.

Note that the following proof is analogous to proof 10 from app. 5.A.1: For FMUI-2 we are able
to recover the same argument as for SCUI but for FMUI-3 we need to consider its additional
DOFs. This makes the proof more complex than proof 10.
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Proof 13. (Finite Energy Splitting of FMUI Unit Cells)

We follow the labeling of ports as in fig. 5.5 and 5.6. For the ancillaries of realization FMUI-2

we choose a different labeling to parallel the labeling of the ancillaries in realization FMUI-3

and SCUI. We relabel the ancillaries

0, 4, 1, 5 7→ 0, 1, 2, 3

respectively. Here we do not need to define a new label for the remaining ancillaries as we are
only going to consider the ground states xxx1,xxx2,xxx3 and xxx4 where none of these ancillaries are
excited.

As mentioned above, we assume that the unit-cell is D2-symmetric to reduce the number of
DOFs. The ports construct a rectangle of side lengths rBC and rBE . The diagonal is denoted
by rBD.

To achieve a vanishing energy splitting, each ground state xxx ∈ G should be of the same energy.
In the following we consider the ground states xxx1,xxx2,xxx3 and xxx4. Then in particular it should
be

(2) E(|0, 1, 1, 0, 0; 0, 1, 1, 0⟩) + E(|0, 0, 0, 1, 1; 1, 0, 0, 1⟩)
!
= E(|0, 1, 1, 1, 1; 0, 0, 1, 1⟩) + E(|0, 0, 0, 0, 0; 1, 1, 0, 0⟩),

(3) E(|0, 1, 1, 0, 0; 0, 1⟩) + E(|0, 0, 0, 1, 1; 1, 0⟩) !
= E(|0, 1, 1, 1, 1; 0, 0⟩) + E(|0, 0, 0, 0, 0; 1, 1⟩),

for the sum of their energies in realization 2 and 3 respectively. Here for realization 2 for a
clearer visualization we left out the remaining ancillaries which are not excited in any of the
four ground states anyway. This illustrates the analogy to realization 3.

By exploiting the D2-symmetries, this can be rewritten as the constraints:

(2) 4IB1 + 2I03
!
= 2(IBD + IBE) + I01 + 4IB3 + I23. (5.20)

(3) 4IB1
!
= 2(IBD + IBE) + I01. (5.21)

Here we cancelled all detuningsa and some interaction energies on both sides. Note that
the second eq. (5.21) is essentially the same constraint as eq. (5.18) only with a different
labeling. As proven in app. 5.A.1 we can not fulfill this constraint in the parameter space
which completes the proof for the FMUI-3 unit cell.

The proof for the FMUI-2 unit cell is a little more subtle. Here we have additional DOFs in
the distance r23 which could theoretically help us achieve degeneracy. Thus just like in proof.
10 we rewrite the interactions energies Iij = UVdW(rij) as functions of the variables rBC , rBE ,
r01 and r23 by exploiting the D2-symmetry:

rBD =
√

r2BC + r2BE , rB1 =
√

r2BC + (rBE + r01)2/2,

r03 = (r01 + r23)/2, rB3 =
√

r2BC + (rBE + r23)2/2.

W.l.o.g we can choose our energy scaling such that I01 = 1 by applying fα with α = |I01|−1/6,
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Figure 5.13: PXP-minimal FMUI-2 unit cell. The FMUI-2ii unit cell possesses quality Q ≈ 72.2%.
The unit cell is optimized while constraining the D3-symmetry of the hexagonal honeycomb grid on
each site.

see eq. (2.15). We plug in these expressions in eq. (5.20) and define the measure

∆I(rBC , rBE , r23) := 2IBD|rBD(rBC ,rBE) + 2IBE |rBE
+ 1− 4IB1|rB1(rBC ,rBE)

+ 4IB3|rB3(rBC ,rBE ,r23) + I23|r23 − 2I03|r03(r01,r23).
(5.22)

We are interested in the solution space where ∆I(rBC , rBE , r23)
!
= 0. Fig. 5.12 shows the

contour graph of ∆I(rBC , rBE) in logarithmic scaling for multiple choices of the parameter
r23. It is almost constant in rBC and decays exponentially in rBE and r23. The measure ∆I
can become very small in parameter small but remains positive and in particular non-zero for
the whole parameter space. Note that for r23 = 1 = r01 the atoms 0 and 1 are at the same
positions as the atoms 2 and 3 respectively. This case is unphysical but mathematically many
terms in ∆I cancel causing interesting behaviour in the limit.

Thus we find that for both the FMUI-2 and the FMUI-3 unit cell the solution space is empty
and δE > 0 remains positive. This means that for both realizations FMUI-2 and FMUI-3 the
quality factor Q < 1 remains smaller one.

aWe chose the above equation such that the detunings cancel.

5.B.3 ||| Additional FMUI Unit Cells

Figures 5.13 and 5.14 portray three additional FMUI unit cells.

Fig. 5.13 presents implementation FMUI-2ii. Implementation FMUI-2ii is optimized for the
quality factor while constraining theD3-symmetry of the underlying honeycomb grid on each site.
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Figure 5.14: VdW-minimal FMUI unit cells. The FMUI-3ii unit cell possesses quality Q ≈ 98.4%
and the FMUI3-iii unit cell possesses quality Q ≈ 88.4%. Implementation FMUI-3ii possesses a
larger effective gap ∆Eeff ≈ 24.6% at the cost of a smaller quality than FMUI-3i. FMUI-3iii is
optimized while constraining the D3-symmetry of the hexagonal honeycomb grid on the structure.

This restricts the parameter space reducing the optimal quality factor to Q ≈ 72.2%. We expect
this D3-symmetric FMUI-2ii site to be more optimal in a D3-symmetric tessellated structure.
Note that the optimized implementation FMUI-2ii emerges not simply by an amalgamation of
two optimized FMSI2-implementations.

The first row of fig. 5.14 presents a less elongated version FMUI-3ii of the unit cell compared to
implementation FMUI-3i in fig. 5.6. This comes with a larger effective gap ∆Eeff ≈ 24.6% but
at the cost of a smaller quality factor Q ≈ 98.4% (however this is still very good). Therefore it
might be preferable to choose this implementation.

The second row portrays implementation FMUI-3iii. Similar to the FMUI-2ii unit cell it is
optimized for the quality factor while constraining theD3-symmetry of the underlying honeycomb
grid on each site. Note that by tessellating this implementation FMUI-3iii on the hexagonal
lattice there would be precisely one ancillary centered on every site and one port centered on
every edge in-between the sites.
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6 ||| Tessellated Theory

“Equations are just the boring part of mathematics. I attempt
to see things in terms of geometry.”

– Stephen Hawking, ‘A Biography’ (2005)

In the previous chap. 5 we introduced and discussed the elementaries of two string-net models:
the surface code and the Fibonacci model. In this chapter we want to discuss these models
more broadly: We consider non-elementary loop structures and we formulate a key no-go theorem
about tessellating loop structures to large scales. Afterwards we consider local excitations on
these loop structures. In the following sec. 6.1 we want to start by introducing non-elementary
loop-structures.

6.1 ||| Non-elementary loop Structures

In this section we want to study non-elementary loop structures exemplarily with the PXP-
minimal SCUI-1 unit cell. For each structure we consider both open boundary conditions (OBCs)
and periodic boundary conditions (PBCs).
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The Energy Structure. The SCUI-1 unit cell consists of 11 atoms, 7 of which are ancillaries.
By tessellating a m×n grid of unit cell we obtain N ∼ 11mn atoms and thus 2N ∼ 211mn excited
states (up to the number of amalgamations and the number of ground states). The runtime
increases exponentially in the total number of atoms N . To optimize the energy structure we
would need to calculate the quality factor a multitude of times. This makes it computationally
very intensive to simulate such tessellated Rydberg structures for the VdW model.

Example 9. (2× 2 SCI-1 Lattice)

As an example consider a tessellated SCI-1 structure on a 2 × 2 grid. This is the minimal
structure which includes a full loop as a ground state. Here we have already N = 40 atoms
(36 atoms) with OBCs (with PBCs) implying e ∼ 240 (∼ 236) excited states. In contrast there
are only g = 28 (25) ground states.

Note that there are way fewer ground states that excited states, thus we can simply ‘brute-force’
calculate their energies. This defines the energy splitting (2.16) and the energetically highest
ground state. Both quantities are necessary to calculate the quality factor (2.19). Thus in the
energy structures presented in this thesis we always plot all the ground state energies (red lines).

As discussed in sec. 3.2 we are not interested in the full energy structure of the excited states
but only in the energy of its lowest excited state (LES). The LES allows for the calculation of
the energy gap (2.17) and thus defines the quality factor. In sec. 3.2 we introduce alg. 3.3
which allows for the efficient calculation of the LESs. This allows for the optimization of such
tessellated structures with up to four SCI-1 unit cells in a reasonable runtime. Without alg. 3.3
it would be computationally too intensive to optimize such loop structures which are presented
in this section.

The 1x1-Grid. In the following we consider three grids with m × n = 1 × 1, 1 × 2 and 2 × 2
respectively. Fig. 6.1 presents the SCI-1 unit cell on a 1× 1 grid with PBCs. For completeness
we also included the SCI-1i unit cell with OBCs from fig. 5.1. For clearer visualization (and
to reflect the D2-symmetry) of the SCI-1 unit cell with PBCs, we also portrayed the two ports
of the adjacent unit cells (without labels). Due to the PBCs they are excited if and only if
their opposite counterpart is excited. Thus the SCI-1 unit cell with PBCs includes only four
ground states and three effective ground states. As the (effective) ground states are linearly
independent we can apply theorem V to achieve ground state degeneracy and unit quality Q = 1.
Note that this is not possible for OBCs (see app. 5.A.1) and we can not apply theorem V
for larger tessellated structures. The unit cell is optimized for the effective gap ∆Eeff ≈ 8.5%.
Interestingly the optimized SCI-1 unit cell with PBCs looks very different from the SCI-1 unit
cell with OBCs due to the additional residual interactions with its neighboring unit cells.

The unit cell with PBCs simulates the ground states and excited states with fundamental period
one1 on an infinite grid. Its energies correspond to the energy densities of the 1-periodic states
on the infinite grid. Note that as we consider only the 1-periodic states, there are no independent
loop DOFs and the theorem XI from chap. 6 does not apply. Thus the ground state degeneracy
in fig. 6.1 is not that surprising.

1In units of the unit cell scaling.
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Figure 6.1: SCI-1 unit cell on a 1 × 1 grid with OBCs and PBCs respectively. The SCI-1 unit
cell with OBCs from the first row is the structure from fig. 5.1. The second row we portrays the
SCI-1 unit cell with PBCs. We added two atoms from the adjacent unit cell (without labels) for a
clearer visualization. Note that for the SCI-1 unit cell with PBCs we obtain Q = 1, it is optimized
for ∆Eeff ≈ 8.5%.

The 1x2-Grid. A natural next step is to consider 1 × 2 grids of SCI-1 unit cells. This is
portrayed in the first two rows of fig. 6.2. Here g = 25 and g = 23 for OBCs and PBCs
respectively. To optimize such a tessellated 1× 2 structure with the minimization algorithm 3.2
it turns out efficient to start with the structure of the smaller 1×1 grid as input. Then the states
are energetically clumped into ‘bands’ of similar energy. The excited states of the shorter period
are already sorted and the ground states of the shorter period are already of similar (or the
same) energy. The optimization algorithm only needs to sort and optimize the additional states
with the larger fundamental period which is computationally less intensive. The optimization
seems to accentuate the energy bands. During the optimization process for the 1 × 2 grids the
ground states energetically condensate on two levels. This can be seen in the energy structures
in the first two rows of fig. 6.2. If we initially start the optimization process with an arbitrary
structure which is not yet optimized such clumping naturally arises. This can be seen in the
unit cells of figs. 5.1, 5.2, 5.4, 5.5 and 5.6 where the ground states also seem to condensate on
two energy levels during optimization. For the ground state-degenerate logic gates of chap. 4,
the ∆Eeff-optimal structures are characterized by the LESs condensing on equal energies. Thus
the energetic clumping of ground states and excited states seems to be a general phenomenon
which optimizes the effective gap or the quality factor in (amalgamated) structures throughout
this thesis. This is an interesting phenomenon which can not be resolved by the relatively coarse
measures Q and ∆Eeff studied in this thesis. The measures Q and ∆Eeff only consider the ground
and excited states of extremal energies which can not quantify a clumping of the remaining states.
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Figure 6.2: SCI-1 2×1 and 2×2 grid with OBCs and PBCs respectively. Note that again we added
the atoms from the adjacent unit cell (without labels) for a clearer visualization. One can notice a
clumping of the ground states in the energy structure.
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This suggests that possibly a finer measure for such structures is necessary. This leaves room
for further studies and is discussed in the outlook 9.

For the optimization of the 1× 2 grid (and later for the 2× 2 grid) we constrain the unit cells to
the same D2-symmetric structure. This assumption reduces the number of DOFs and thus the
runtime. The translational symmetry is reasonable to assume to allow for further tessellation
on larger grids. Physically we are mainly interested in large tessellated structures which allow
for the excitation of many loops. In the bulk of such a tessellated structure (e.g. with PBCs)
the language is translational, inversion and reflection symmetric thus one can reasonably expect
identical D2-symmetric unit cells to be optimal.

The 2x2-Grid. For the optimization of the 2× 2 SCI-1 grid we use the optimized 1× 2 grid as
input. The 2 × 2 grids with OBCs and PBCs are presented in the third and fourth row of fig.
6.2 respectively. As mentioned in the example above, the 2 × 2 grid is particularly interesting
as it is the minimal grid including a full loop. The case with OBCs is harder to optimize. This
may be partly due to the a little larger number of atoms which increases the runtime but mainly
due to the larger number of ground states. There are g = 28 and g = 25 ground states for OBCs
and PBCs respectively. Especially for the 2× 2 grid with OBCs we can notice a strong clumping
of the ground states into multiple bands of states with similar energy. For the 2 × 2 grid with
PBCs it is interesting to note that the unit cells actually looks quite different from the unit cells
in the 1× 2- and the 1× 1-grid with PBCs. This suggests that the 2× 2 grid with PBCs is in a
different local minimum of the ratio in parameter space.

A choice for Tesselation. At this point it should be noted that we made a(n arbitrary) choice
during the amalgamation of the unit cells: To construct the tessellated language as the ground
state manifold of a tessellated structure we translated and amalgamated the same D2-symmetric
unit cells of fig. 6.1. These unit cells are slightly skewed because the realization SCUI-1 breaks
the permutation symmetry between the ports in the check function (5.6). In the VdW model the
quality factor of the unit cell profits from breaking the rotational symmetry of the underlying grid
yielding a non-square centered rectangular grid. In contrast in the PXP model we can implement
a rotational symmetric, square grid without modifying the blockade graph[38]. This can be also
accomplished in the VdW model at the cost of impeding the quality factor, see in app. 5.A.2 the
SCUI-1iii unit cell (fig. 5.8). If we consider such a non-D4-symmetric unit cell for a square grid,
then there are multiple possibilities to tessellate the structure: each unit cell could be rotated by
90◦ without modifying the language. This constructs a different structure which implements the
same language. In particular within the PXP model such structures are equally valid because
the PXP model excludes long-range interactions. Within the VdW model the residual long-
range interactions in different implementations are generally different. Here it seems reasonable
that the 1-periodic tessellated structure suits best for an implementation of the surface code
as it minimizes residual interactions in-between neighboring unit cells. As in each unit cell the
atoms are only positioned within two diagonal quadrants, a 1-periodic ‘checkerboard-pattern’ of
such quadrants is the only implementation which prevents adjacent (i.e. strongly-interacting)
quadrants. This motivates us to stick to this implementation for this section.
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6.2 ||| On Tessellated Loop Structures

In the previous sec. 6.1 we simulated small, finite SCI-1 grids with OBCs and with PBCs. We
are computationally very limited in the number of atoms which we can simulate because the
number of states increases exponentially. This limits the size of the grid which we can study
numerically. Nevertheless, we want to make some statements about large tessellated grids which
are not accessible computationally. Such large grids are studied in this chapter.

We start with an important and central theorem of this thesis:

Theorem XI (Energy Levels of States with Loop DOFs).

Consider a tessellated L-complex ([CL]QK , LL,L) on a grid L in the VdW-model. For any
tessellated language LL with loop-DOFs, the energy splitting δE → ∞ diverges and the
effective gap ∆Eeff → −∞ is negative and diverges.

Proof.

Consider the state where no port is excited and tessellate it on the periodic grid L with
V → ∞. In the following, this state of the tessellated language with no loops is denoted by
|0⟩ ∈ LL. We define a one-loop state |1⟩ ∈ LL, where just one loop is excited. Similarly, we
define a two-loop state |2⟩ ∈ LL, where two non-adjacenta loops are excited. We start with
some short comments on the notation used in the following calculation:

1 By Eloop (Enoloop) we denote the ‘self-energy’ of a loop-cell (of a no-loop-cell). This
includes its detunings and its internal interactions. It excludes interactions with the
surrounding grid, i.e. it considers the loop in empty space.

2 By Iloop,noloops (Inoloop,noloops), we denote the interaction energy of a loop-cell (of a
no-loop-cell) with the surrounding grid (which has no loops).

3 Lastly, by Iloop,loop (Inoloop,noloop, Iloop,noloop) we denote the interaction energy of a loop-
cell (no-loop-cell, loop-cell) with some other loop-cell (no-loop-cell, no-loop-cell) of the
surrounding grid.
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We measure the energies relative to E0 ≡ E(|0⟩). We obtain the relative energies of the states

∆E0 = E0 − E0 = 0, (6.1a)

∆E1 = E(|1⟩)− E0 = Eloop − Enoloop + Iloop,noloops − Inoloop,noloops =: −∆, (6.1b)

∆E2 = E(|2⟩)− E0

= −2∆ + (Iloop,loop + Inoloop,noloop − 2Iloop,noloop) =: −2∆ + I,
(6.1c)

Each loop state |n⟩ for n ∈ {0, 1, 2} needs to possess equal energy to obtain a vanishing energy
splitting δE = 0, thus ∆E2 = ∆E1 = ∆E0 = 0. Then the linear system (6.1) implies that
∆ = 0 = I, i.e.

∆ = 0 ⇔ Eloop + Iloop,noloops = Enoloop + Inoloop,noloops, (6.2a)

I = 0 ⇔ Iloop,loop + Inoloop,noloop = 2Iloop,noloop. (6.2b)

Note that eq. (6.2b) is a constraint on the interaction energies and thus on the geometry of
the structure but it includes no detunings. Furthermore eq. (6.2b) needs to be fulfilled for all
possible distances between the two cells.

We denote the set of atoms in a cell excited during a loop as Nloop and the set of atoms excited
if there is no loop as Nnoloop. Depending on the representation any port p ∈ P is excited (not
excited) if and only if its edge is excited. Thus the ports p ∈ P are either elements of Nloop

or of Nnoloop but can not be elements of both sets. The set of ports P ⊆ Nloop △ Nnoloop of
the cell needs to be a subset of the symmetric difference. We choose two cells which are next-
nearest neighbours and denote the vector between those cells as x1. The vector xn = nx1

with n ∈ N points to another cell due to translational invariance. W.l.o.g. we choose the
x-axis of our coordinate system parallel to x1, i.e. ex || x1. We can rephrase eq. (6.2b) as∑

i,j∈Nloop

∥xex + ri − rj∥−6 +
∑

i,j∈Nnoloop

∥xex + ri − rj∥−6

x=xn=
n∈N

2
∑

i∈Nloop

∑
j∈Nnoloop

∥xex + ri − rj∥−6.
(6.3)

Here ri for i ∈ Nloop (i ∈ Nnoloop) denotes the position of the i-th atom in the (no)loop. Both
sides of eq. (6.3) are rational functions on x ∈ R which have to be equal for a countably
infinite number of points xn = nx1 ∈ for n ∈ N. This is only possible if both sides are the
same rational functionb. Two rational functions (without any polynomial part) are equal if
and only if their poles have the same position and are of equal amplitude. In particular the
sum of the amplitudes on both sides must be equal, thus

|Nloop|2 + |Nnoloop|2 !
= 2|Nloop||Nnoloop| ⇔ |Nloop| = |Nnoloop|. (6.4)

We find that the number of atoms excited in a loop and without a loop must be equal; we
denote it by N∗.

In any physical case, two different atoms i, j ∈ Nloop∪Nnoloop with i ̸= j should not occupy the
same position, i.e. ri ̸= rj. Thus the left side has a pole at x = 0 of amplitude 2N∗. The right
side should have the same pole of the same amplitude. However, this means that there are N∗
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atoms i ∈ Nloop occupying the same position ri = rj as an atom in j ∈ Nnoloop; they must be
the same atoms. As there are only N∗ atoms in Nloop and Nnoloop (by definition), it is Nloop =
Nnoloop. However this would imply that their symmetric divergence Nloop △ Nnoloop = ∅ is
empty. This contradicts the above observation that ∅ ̸= P ⊆ Nloop △ Nnoloop. Thus the two
sets Nloop and Nnoloop can not be equal and therefore eq. (6.2b) has no solution. However
eq. (6.2b) is necessary condition for a vanishing energy splitting δE = 0 of the states of the
language LL. Therefore we always have δE > 0.

Now assume that I = ε ̸= 0, possibly small but non-zeroc. Then ∆ = ε/2 minimizes the
energy splitting δEL ≥ |ε|/2d for the states |n⟩ with n ∈ {0, 1, 2}. We consider NL ∈ N of
such n-loop states which are sufficiently distant from each other such that their interactions
may be neglected. This is possible as for large distances any interaction between the atoms
of both cells decays as the potential decays. The relative energy of such a ground state is
then given by ∆En(NL) = NL∆En with ∆En given by eq. (6.1). With I = ε ̸= 0 finite, the
energy splitting δEL(NL) ≥ NL|ε|/2 again is minimized for ∆ = ε/2. We find that the energy
splitting diverges for configurations with NL →∞.
Consider the energetically lowest state |x⟩ ∈ LL of the tessellated language LL. We choose
one arbitrary site and construct a state |x∗⟩ ∈ FN

2 \LL by de-exciting and exciting some
atoms (including amalgamated ports) of this site. As any two different atoms are in different
positions, the energy of the constructed state |x∗⟩ is shifted from the energy of |x⟩ by some
finite difference. However the energy splitting δEL(NL) between |x⟩ and the energetically
highest state of LL diverges for NL → ∞. Thus the constructed state |x∗⟩ ∈ FN

2 \LL is of
(infinitely) lower energy than the energetically highest state of LL. Thus we have a diverging
energy splitting δEL → ∞ between the states of LL and a negative diverging energy gap
∆EL → −∞.

aNo unit cell should be part of both loops.
bThis can be seen by multiplying each side by every denominator to obtain a polynomial on both sides.

Both polynomials possess the same values at countably infinite number of points, thus they must be the same
polynomial. Hence the rational functions on both sides must have been the same function.

cNote that it can be I < 0 and ∆ < 0. This is not ill-defined as ∆ and I are a mesoscopic quantities
composed of differences in detunings and interaction energies.

dFor ∆ = I/2 it is ∆E0 = ∆E2 = 0 and ∆E1 = −I/2, i.e. δEL = |I|/2. Consider ∆ = I/2 > (<)0: By
decreasing (increasing) ∆, ∆E2 = −2∆+I ∝ −2∆ increases (decreases) faster than ∆E1 = −∆, i.e. δE > I/2.
By increasing (decreasing) ∆, ∆E1 = −∆ decreases (increases) faster than ∆E0 = 0, i.e. δE > I/2.

The intuition behind the Argument. We shortly want to summarize the argument of the
proof in an intuitive way: In a nutshell we interpret loops as independent local excitations for
which we can associate some mesoscopic ‘self-energy’ ∆ and some mesoscopic interaction energy
I. We find that such independent Boolean DOFs can only be degenerate if their self-energy and
their interaction energy vanishes. The interaction energy is independent of the detunings thus
I = 0 imposes a constraint on the geometry. In a periodic structure the interaction energy must
vanish for all possible distances between the loops. However I is a non-trivial function of the
distance and we only have finitely many DOFs in the geometry of the unit cell. Thus we find that
the I only vanishes for all possible distances if the loop-state is the same state as the no-loop-
state. Obviously we do not want them to be the exactly same state which implies that we can not
achieve degeneracy in the ground states. By tessellating such loop states on the (infinitely) large
grid we sum up their energy splittings and obtain an (infinitely) large energy splitting: δE ↗∞.
The LES is at most by ∆max energetically higher than the energetically lowest ground state thus
for large tessellated structures the energy gap must be (infinitely) negative: ∆E ↘ −∞.
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Some concluding Remarks. We conclude theorem XI with a few remarks:

1 Theorem XI is valid for all loop models and thus in particular for the Fibonacci model and
the surface code. Thus the (infinite) Fibonacci model and the (infinite) surface code both
are exemplary systems which can be implemented in the PXP model but which can not
be implemented in the VdW-model for any L-complex. Here the finite residual interaction
energies cause qualitatively different physics. Further examples of PXP-languages which
can not be implemented perfectly in the VdWmodel are the SCUI-1,2a,2b and the FMUI-2,3
unit cells which are discussed in the appendices 5.A.1 and 5.B.2.

2 The argument behind theorem XI is very general. Thus theorem XI can be generalized to
any tessellated system with any independent Boolean DOFs in the ground state manifold.
This result can be understood intuitively: For any tessellated system with independent
Boolean DOFs we have ∼ 2p ground states but only ∼ poly(p) DOFs in the structure of
the unit cell. This prevents from achieving a sufficiently small energy splitting to ‘sort’ the
excited states.

3 Furthermore, theorem XI can be generalized to any model with algebraically decaying in-
teractions (e.g. to γ-model with power-law potential) following similar reasoning: Then
I(xn) is a general algebraic function of the distance xn between the loops. Any algebraic
function is either aperiodic or constant. Then the condition I(xn) = 0 for countably infinite
n ∈ N implies again that the mesoscopic interaction energy I = 0 must vanish (is constant)
and we can continue like for the VdW-case for γ = 6.

4 The theorem XI remains valid if one considers only the physically relevant excitations in
some local environment of the grid. The proof of theorem XI considers the global ground
states of the tessellated structure and derives their energy splitting. However the local
energy gap is still upper bounded by ∆max. Thus the (infinitely) large energy splitting still
causes a(n infinitely) large negative energy gap.
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Figure 6.3: Hexagonal Fibonacci model grid with hexagonal cells 1 and 2. The length scale of the
cells is 2r where r is the radius of each site.

Example 10. (Energy Splitting of the Fibonacci Model)

For an illustrative example of theorem XI and the mesoscopic interaction energies we consider
the Fibonacci model. We want to calculate a lower bound on the mesoscopic loop interaction
energy I = ε from eq. (6.1) in the VdW-model. We consider the (simple) D3-symmetric
FMSI3-site from fig. 5.6 and we amalgamate adjacent sites directly without adding interstitial
LNK-gates on the edges: NE = 0. A section of this structure is visualized in the sketch 6.3.
We choose two hexagonal cells which are next-nearest neighbors such that their unit cells do
not overlap and linear system (6.1) is valid. Numerically[18] we find

I ≥ C

(2r)6
(0.306872︸ ︷︷ ︸

Iloop,loop

+ 0.390862︸ ︷︷ ︸
Inoloop,noloop

−2 · 0.327425︸ ︷︷ ︸
Iloop,noloop

) = 0.042884
C

(2r)6
. (6.5)

Here r denotes the radius of the FMSI3 site and thus 2r the length scale of the hexagonal cells.
In the optimal FMSI3 site from fig. 5.6 it is r/rmin = 3−1/3 which yields I ≥ 0.4523%∆max.
Considering that we only included two cells of the grid, this is actually quite large because we
assumed no interstitial LNK-gates.
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6.3 ||| A lower bound on the Quality Factor

In the previous section we showed that we can not implement the surface code or the Fibonacci
model on arbitrarily large grids, even if we consider only local excitations. Depending on the
size of the system there seems to be a general upper bound to the quality factor for all systems
with loop-DOFs. Therefore naturally the analogous question arises how good of a quality factor
we can achieve (as a function of the size of the grid). In sec. 6.1 we implemented the surface
code grid with one loop. In this section we want to study larger tessellated structures which are
not accessible via a numerical simulation. We start by introducing lemma XII (subsec. 6.3.1)
which is necessary to formulate lemma XIII (subsec. 6.3.2). Finally in subsec. 6.3.3 we formulate
theorem XIV.

6.3.1 ||| A Chain of Atoms

By CNE
we denote a chain of N = NE + 1 equidistant atoms where the ports (at the boundary)

and ancillaries (in the bulk) possess equal detunings ∆ and ∆̃ respectively. The distance between
adjacent atoms is denoted by a, the length of CNE

is denoted by d = NEa. We define the language

LNE
:= L

⊗γNE

NOT1 . We can formulate lemma XII:

Lemma XII (NE-Chain of arbitrary Length).

The language LNE
can be implemented as the low-energy eigenspace of a structure CNE

with quality factor Q = 1, robustness r ≳ 91.23% and effective energy gap ∆Eeff ≳ 46.66%
for any NE ∈ N.

First we want to emphasize that the lower bound introduced in lemma XII is valid for all number
of links NE ∈ N, i.e. in particular for NE ↗∞. If the number of links NE = 2m−1 with m ∈ N
is odd the L-complex implements a NOTm-gate in realization m. If the number of links NE = 2m
with m ∈ N is even the L-complex implements a LNKm-gate in realization m. In the following

we unify the notion of both gates as NE-chains ([CNE
]
{Q}
{A} , LNE

,L) with N = NE + 1 atoms.

The Proof. The proof of lemma XII is noted and discussed in app. 6.A.1. Here were only want
to give an short overview and mention a few important points. The proof is constructive and
formulates an algorithm which generates NE-chains of arbitrary length. In the proof we derive a
lower bound to the energy gap independent of NE . Then we choose the parameters of CNE

such
that the ground states become degenerate and such that the lower bound becomes maximal.
Afterwards in app. 6.A.1 we introduce and discuss exemplary four NE-chains with NE ∈
{1, 2, 9, 10} links for m = 1 and m = 5. They are portrayed in fig. 6.11. We find that
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the lower bound derived in the proof is very tight for large NE . Note that ∆Eeff ≳ 46.66% and
r ≳ 91.23% of the NE-chains are exceptionally large compared to other gates in the VdW model
because the linear geometry of the NE-chains maximizes the distance between non-adjacent
atoms which minimizes residual interactions. As a comparison, in the PXP model such a chain
trivially possesses ∆Eeff|PXP = 50% and r|PXP = 1.

6.3.2 ||| Appendage of atomic Chains

In the following we want to apply lemma XII to derive lemma XIII. We consider a kernel structure
Ck of Nk atoms and some uniform language Lk of Nk bits. We assume that the atoms of Ck
are placed inside some circular area of radius r with pk ≤ 4 ports spaced equally around the
circumference. One could think of any Dpk

-symmetric site of a tessellated language, for example
the FMSI-3 site with pk = 3.
We define the structure Ck∪NE

where a NE-chain CNE
is amalgamated radially to each port of

Ck. In the following we assume that Ck∪NE
implements the γ-product Lk∪NE

= Lk ⊗γ L
⊗γpk

NE
as

its low-energy eigenspace with Q[Ck∪NE
] = 1. Here each γ associates one port bit of Lk with the

input port bit of one LNE
.

Now we consider aN ′
E-chain with structure CN ′

E
constructed from lemma XII with equal distances

a′ = a between the atoms. We can now formulate lemma XIII:

Lemma XIII (Appendage of NE-Chains).

We assume that the energy gap of the amalgamated structure Ck∪NE
fulfills the condition

0 < ∆Elb(NE) := min

(
∆E[Ck∪NE ], 20

C

(2a)6

)
− C

(2a)6

[
2ζ(5)P +

(
1 + ∥L+

k ∥1
|Lk|
2

)
× P (P − 1)

(NE + 1)4

(
4.8 +

25.6 + 6.4Nk/(P − 1)

NE + 1
+

65.3 + 110.7Nk/(P − 1)

(NE + 1)2

)]
.

(6.6)

Then Ck∪(NE+N ′
E) implements Lk∪(NE+N ′

E) as its low-energy eigenspace with
Q[Ck∪(NE+N ′

E)] = 1 for any N ′
E ∈ N0. The energy gap is ∆E[Ck∪(NE+N ′

E)] ≥ ∆Elb(NE).

First note that for essentially every relevant case it is ∆E[Ck∪NE
] < 20C/(2a)6 ≲ ∆E[CN ′

E
]

because the energy gap of a N ′
E-chain is exceptionally large compared to other gates in the

VdW model (see subsec. 6.3.1). This means the min(•)-term of ∆Elb generally evaluates as
∆E[Ck∪NE

].

In a nutshell lemma XIII argues that one can amalgamate a N ′
E-chain for any N ′

E ∈ N0 to every
port of Ck∪NE

and still achieve Q = 1 if the energy gap ∆E[Ck∪NE
] of the initial kernel structure

is sufficiently large. The energy gap after amalgamation is lower-bounded by ∆Elb(NE). The
proof of this lemma is quite straightforward: the idea is to determine an upper-bound to the
interactions energies which distort the energy structure. This requires evaluating multiple series.
This makes the proof lengthy, hence we note it in app. 6.A.2.
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6.3.3 ||| Tessellated Languages on the Honeycomb Grid

Given lemma XIII we now focus on the main theorem XIV of this section.

The Formalism. Consider a honeycomb grid of S = |S(L)| = 2V sites s ∈ S(L) on a hexagonal
lattice L with V = |V(L)| vertices v ∈ V(L). With each site s ∈ S(L) we want to associate
an identical structure Cs of Ns atoms and some uniform language Ls of Ns bits. The atoms of
Cs are placed inside some circular area of radius r with ps = 3 ports spaced equally around its
circumference.
The amalgamated structure Cs∪NE

is constructed by radially amalgamating NE-chains CNE
with

an even number of links NE = 2m for m ∈ N to each port. In the following we assume that Cs∪NE

implements the language Ls∪NE
= Ls ⊗ L

⊗γ3
NE

as its low-energy eigenspace with Q[Cs∪NE
] = 1.

The tessellated structure CL is constructed by amalgamating the sites at their full edge2. The

tessellated language is denoted by LL = L
⊗γS
s∪NE

.
By NA(s) we denote the number of amalgamated edges which connect site s with another site
s′ ∈ S(L), i.e. the number of edges in the bulk emanating from site s3. As a useful mathematical
construct we define the local Hamiltonian Hloc[Cs∪NE

] := H[Cs∪NE
]−Hsr[Cs∪NE

]/2. The ‘short-
range’ Hamiltonian Hsr[Cs∪NE

] corresponds to the second term (the correction term) of the
interaction Hamiltonian (2.14). It includes only the interactions between the atoms of the same
edge which connects site s with another site s′ ∈ S(L). Thus in Hsr[Cs∪NE

] the atoms of NA(s)
edges contribute.

The Theorem. With this formalism we can now formulate the following theorem:

Theorem XIV (Tessellated Languages on the Honeycomb-Grid).

We assume that the local energy gaps fulfill the condition

0 < ∆E∞ := min
NA∈{1,...ps}

{
min

(
∆Eloc[Cs∪N

(0)
E

], 10
C

(2a)6

)
−

C

(2a)6

[
2ζ(5)P − ζ(5)NA+

(
1 + ∥L+

s ∥1
|Ls|
2

)
P (P − 1)

(N
(0)
E + 1)4

(
4.8 +

25.6 + 6.4Ns/(P − 1)

N
(0)
E + 1

+
65.3 + 110.7Ns/(P − 1)

(N
(0)
E + 1)2

)]} (6.7)

for some N
(0)
E ∈ N0. Then for any target Qt ∈ R(0,1) and any size S of the grid there

exists a N∗
E ∈ N such that for all NE ≥ N∗

E the quality factor is Q[CL] > Qt.

This means that there is a balance between the size S = 2V of the grid, the number of links
NE in the chain between adjacent sites and the quality factor Q[CL] of the tessellated grid. To
achieve the target Q[CL] > Qt, the ratio S/N4

E needs to be sufficiently small. This means that:

Twice the number of links between adjacent sites can achieve the same quality factor for
a lattice of (at least) 16 -times the size.

2That is why we assumed that NE = 2m for m ∈ N is even.
3For PBCs every site is in the bulk of the tessellated structure thus it necessarily is NA = ps = 3
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There is an interplay between the size of the grid S, the number of links NE between sites and
the quality factor Q[CL]. We can also interpret theorem XIV differently:

For some fixed implementation Cs∪NE
of the sites (with fixed NE <∞) we can formulate

an upper bound to the number of sites S below which we can achieve the target quality
factor Q[CL] > Qt.

The theorem XIV does not make any statements for larger tessellated structures. In fact we
expect that the bound is not that sharp as the derivation requires a lot of approximations. In
particular we do not specify a language for theorem XIV but only the underlying grid. Thus the
results are more of conceptual than of quantitative interest: They describe the correct qualitative
behavior and they offer an estimate for the orders of magnitude.

The idea behind theorem XIV can be transferred straightforwardly to other grids, but this
requires evaluating different series in the proof. This yields a quantitatively different condition
(6.7) in theorem XIV. In this thesis we exemplary restrict ourselves to the honeycomb grid.

Note that theorem XIV (of course) does not contradict the results from theorem XI: In theorem
XI we also consider some fixed implementation Cs∪NE

and consider the limit S/N4
E ↗ ∞. In

theorem XIV for this limit, the lower bound on the energy gap diverges to negative infinity
consistent with theorem XI.

The Proof. The proof of theorem XIV is very lengthy as it includes the evaluation of multiple
series, thus we note it in app. 6.A.3. We shortly want to summarize the main ideas of the proof:
As already mentioned above we amalgamate the full edge and we introduce the concept of the
local Hamiltonian. This allows us to treat the tessellated structure similarly to the PXP model
as the sum of its parts with some additional perturbation Hamiltonian Hlr[CL]. Without the
perturbation term the low-energy eigenspace would be degenerate and the energy gap would be
given by the minimal local energy gap of the sites. The perturbation term introduces a finite
energy splitting and may reduce the energy gap. Thus we determine an upper bound to the
perturbation term which monotonically decreases as S/N4

E . To determine a lower bound to the
local energy gaps (which now depend on NA(s)) we need to apply some modified version of
lemma XIII. This introduces condition (6.7) in theorem XIV. If condition (6.7) is fulfilled we can
arbitrarily suppress the perturbation term by increasing the number of links NE .

Example 11. (Fibonacci Model Grid)

We want to conclude this subsection with an illustrative example. We consider the Fibonacci
model site with ps = 3 ports and |Ls| = 5 ground states. For realization FMSI-3 (see fig. 5.6)

we have ∥L+
s ∥1 = 10/7. In the following we assume N

(0)
E = 4, then we obtain the lower bound

∆E[C
s∪(N

(0)
E +NE)

] > 5.7%∆E[C
s∪N

(0)
E

] for any NE ∈ N similar to lemma XIII.

1 If we choose S = 100 sites for NE = 8, then we have Q[CL] > 48.9%.

2 For S = 1000 sites, we need NE = 14 to obtain Q[CL] > 46.44%.
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6.4 ||| Local Languages on the Honeycomb Grid

In the previous sections of this chapter we studied the possibilities and the limits for implementing
tessellated languages with loop-DOFs in the VdW model.
In sec. 6.2 we proved it impossible to implement (infinitely) large tessellated languages with
loop-DOFs on very general ground. Afterwards we shortly argued that this argument also holds
in the case where we only consider locally excited states. However the reasoning of theorem XI
yields only a qualitative statement for (infinitely) large grids but makes no statements about the
interplay between the size S of the grid, the number of links NE between sites and the quality
factor Q.
In sec. 6.3 we answered the analogous question how good of a quality factor we are able to
achieve. For that we exemplary focused on the honeycomb-grid. For the honeycomb-grid we
made quantitative statements about the interplay between S, NE and Q.

6.4.1 ||| The local Energy Structure

In this section we are interested in the local energy structure, i.e. we want to compare only
the states which differ locally on the Rydberg platform. This can be understood an the logical
continuation of global languages (with locally excited states).

Locality is characterized by some ‘support’ on the Rydberg platform. For simplicity we consider
a circular support Uloc(R) defined by some radius R ∈ R>0. The area of Uloc(R) is denoted by
Aloc(R) := |Uloc(R)| = πR2. The number of atoms located in Uloc(R) is denoted by NR, the
total number of atoms is denoted by N . We define the local language/ the local ground state
manifold

LR(xxx) ≡ GR(xxx) :=
{
x̃xx ∈ G | ∀rrrL(i) /∈UR(xxx) : x̃i = xi

}
⊆ G, (6.8)

and similarly the local excited state manifold

ER(xxx) :=
{
x̃xx ∈ E | ∀rrrL(i) /∈UR(xxx) : x̃i = xi

}
⊆ E . (6.9)

The argument xxx fixes some arbitrary state |xxx⟩ as ‘background’ outside of the local environment.
Thus GR(xxx) and ER(xxx) are languages with a ‘large’ number N of bits which differ only within
the ‘small’ local support of NR bits.

For the local energy structure we now want to define our measures of quality. We associate the
local energy splitting
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δER[CL] := max
xxx∈G

δE[CL]|GR(xxx) = max
xxx∈G

[
max

x̃xx∈GR(xxx)
E(|x̃xx⟩)− min

x̃xx∈GR(xxx)
E(|x̃xx⟩)

]
. (6.10)

Similarly we define the local energy gap

∆ER[CL] := min
xxx∈G

∆E[CL]
∣∣∣∣GR(xxx)
ER(xxx)

= min
xxx∈G

[
min

x̃xx∈ER(xxx)
E(|x̃xx⟩)− max

x̃xx∈GR(xxx)
E(|x̃xx⟩)

]
. (6.11)

Note that we restrict ourselves to xxx ∈ G such that GR(xxx) ̸= ∅. Thus x̃xx ∈ ER(xxx) are locally excited
states which are only excited on the support of the local language. Intuitively we now associate
the local ratio QR[CL] = δER[CL]/∆ER[CL] which defines the local quality factor

QR[CL] = Θ(QR[CL]) exp (−QR[CL]). (6.12)

6.4.2 ||| A lower Bound on the Honeycomb Grid

As in subsec. 6.3 we consider in the following a tessellated honeycomb grid on the hexagonal
lattice L. We continue with the notation introduced in the previous sections. The relevant
quantities are sketched in fig. 6.4. The goal is to make quantitative statements about the
interplay between the R, NE and Q. We formulate corollary XV:

Corollary XV (Lower Bounds to local Languages on the Honeycomb Grid).

We assume that the local energy gaps fulfill the condition

∆E∞ := min

(
∆Eloc[Cs∪N

(0)
E

], 10
C

(2a)6

)
−

C

(2a)6

[
(2P − 3)ζ(5) +

(
1 + ∥L+

s ∥1
|Ls|
2

)

×
P (P − 1)

(N
(0)
E + 1)4

(
4.8 +

25.6 + 6.4Ns/(P − 1)

N
(0)
E + 1

+
65.3 + 110.7Ns/(P − 1)

(N
(0)
E + 1)2

)]
> 0

(6.13)

for some N
(0)
E ∈ N0. Then for any target Qt ∈ R(0,1) and any radius R of Uloc(R) there

exists a N∗
E ∈ N such that for all NE ≥ N∗

E the local quality factor is QR[CL] > Qt.

We denote this statement only the rank of a corollary because it can be essentially reduced
to theorem XIV. Corollary XV essentially argues that the local energy structure on a local
environment with Sloc sites behaves similarly to the energy structure of S = Sloc sites. There
is an interplay between the size Sloc(R) of the local environment, the number of links in the
NE-chain between adjacent sites and the local quality factor QR[CL]. To achieve the target
QR[CL] > Qt the ratio R/lN2

E needs to be sufficiently small. This means that:
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l

r

d

a

NE = 6

Figure 6.4: Sketch of the honeycomb grid. Left: Uloc(R) is sketched by its circumference. The
radius of the circular local environment is denoted by R. Right: Zoom on two adjacent cells of the
grid inside Uloc(R). For visualization we chose NE = 6 links between adjacent sites. The length of
each link (i.e. the distance between adjacent atoms on the edge) is denoted by a. The length of the
amalgamated NE-chains (per site) is denoted by d = NEa/2. By r we denote the radius of Cs. The
length of each edge is denoted by l = 2(d+ r).

Twice the number of links between adjacent sites allow for the same quality factor in a
local environment of (at least) four-times the radius.

As for the previous lemmata and theorem XIV, the proof is noted in the app. 6.B.1. In the
following we briefly want to illustrate the interplay between R, NE and the local ratio QR

exemplary for the Fibonacci model in realization FMI-2 on the honeycomb grid. Note that the
lower bound on the quality now corresponds to an upper bound on the ratio. Here we consider
the ratio as it is the more natural quantity than the quality (although arguably less intuitive).

Example 12. (Fibonacci Model Grid 2)

In this example we want to apply corollary XV to illustrate the interplay of the radius R, the
number of links NE and the local ratio QR. Exemplary we choose the Fibonacci model in
realization FMI-2 on the honeycomb grid. The results are represented in tab. 6.1. We measure
the radius R in units of l (cf. sketch 6.4). We consider three target ratios Qt ∈ {0.01, 0.1, 1}
which are represented in tab. 6.1a, 6.1b and 6.1c respectively. Remember that ratio Q = 0
corresponds to unit quality Q = 1. For the target Qt we want that QR[CL] < Qt. We evaluate
the upper bound Qub(NE , R) > QR[CL] on the local ratio for R/l ∈ {2, 3, 5, 10, 20, 40, 80}
and choose NE just large enough such that Qub(NE , R) < Qt.
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R/l NE/2 Qub

2 7 0.0095

3 8 0.0099

5 10 0.0090

10 14 0.0077

20 19 0.0082

(a) Qt = 0.01
Qt = 99.0%

R/l NE/2 Qub

2 4 0.010

3 5 0.070

5 6 0.076

10 8 0.080

20 11 0.080

40 15 0.088

80 21 0.088

(b) Qt = 0.1
Qt = 90.5%

R/l NE/2 Qub

2 3 0.40

3 4 0.19

5 4 0.57

10 5 0.98

20 7 0.86

40 10 0.71

80 14 0.71

(c) Qt = 1
Qt = 36.8%

Table 6.1: Upper Bounds Qub on the ratio for multiple choices of the local radius R. We consider
three target ratios Qt ∈ {0.01, 0.1, 1} which are represented in tab. 6.1a, 6.1b and 6.1c respectively.
We choose the number of links NE between two sites such that Qub < Qt.

6.4.3 ||| A upper Bound on the Honeycomb Grid

In analogy to corollary XV we want to determine the limits for the construction of a local
environment. We formulate corollary XVI:

Corollary XVI (Upper Bounds to local Languages on the Honeycomb Grid).

Consider a tessellated L-complex ([CL]QK , LL,L) on a honeycomb grid of lattice L where
LL is a tessellated language with loop-DOFs. Then for any target Qt ∈ R[0,1] there exists
a finite critical radius Rc(Qt) < ∞ such that for all radii R ≥ Rc(Qt) the local quality
factor is QR[CL] ≤ Qt in the local environment Uloc(R).

We attach the proof in app. 6.B.2 of this thesis. We denote this statement only the rank of a
corollary because the argument of the proof is similar to the proof of theorem XI. However there
are some key differences: The proof from the ‘no-go’-theorem XI works on very general ground
for any system with loop-DOFs on any lattice. It offers a qualitative argument for (infinitely)
large systems that they can not be implemented in the VdW model. In contrast the proof of
corollary XVI is constructive as it derives the interplay between the size of the local environment
(given by its radius R), the quality factor Q and the number of links NE between the sites4.
However for this derivation we need to fix an underlying grid to evaluate the series. In this proof
we exemplary considered the honeycomb grid as used in the Fibonacci model. However the
argument of this proof can be generalized to other grids straightforwardly. Note that the exact
evaluation of the parameters (see eq. (6.54) in app. 6.B.2) can only be done numerically for a
specific implementations of a specific language. This allows for the discussion in the next sec. 6.5
which compares the lower bound from corollary XV and the upper bound from corollary XVI.

4NE determines the mesoscopic loop-loop-interaction energy I(l+).
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6.5 ||| A Comparative Study on the Bounds

In the previous sec. 6.4 we discussed the behavior of local tessellated languages defined by a
circular support Uloc(R) of radiusR. In a nutshell we traced-back the properties of local languages
to the properties of global languages which are defined only within the local environment. We
derived an upper and a lower bound to the quality factor as a function of the size of the local
environment and of the length of the edges. Note that so far the discussion is based on general
tessellated languages on the honeycomb grid although it would be straightforward to generalize
these concept to other grids.

In this section we want to exemplarily apply the derived bounds to the Fibonacci model on
the honeycomb grid. More specifically we are interested in the VdW-minimal realization FMI-3

presented in fig. 5.6. In the next subsec. 6.5.1 we want to visualize and compare the lower and
the upper bounds on the local ratio for the VdW-minimal realization FMI-3. We continue in
subsec. 6.5.2 with discussing the asymptotic behavior which we explain via a model based on the
multipole expansion from electrodynamics. Here we compare with the FMI2-realization (see fig.
5.5) of the Fibonacci model.

6.5.1 ||| Visualizing the Bounds

In this subsection we want to visualize and study the bounds on the quality factor (2.19). More
precisely we are interested in the ratio QR = δER/∆ER which is the more natural quantity as
it only includes the energy splitting and the inverse of the energy gap (while the quality is its
negative exponent). Remember that a ratio QR = 0 means unit quality QR = 1 and the larger
the ratio the smaller the quality which becomes zero as the ratio diverges.

Upper Bounds on the Ratio. We want to start by comparing the upper bounds on the ratio
(i.e. lower bounds on the quality) for realization FMS3. The upper bounds presented in this
subsection are based on corollary XV. Fig. 6.5 presents the upper bounds on the ratio as a
contour plot of the radius R and the number of links NE . Remember that Aloc(R) = πR2 is
the size of the local environment Uloc(R). d = NEa is the length of the NE-chain which is
amalgamated to each site and l = 2d + 2r is the distance between adjacent sites characterized
by NE LNK2-gates on the edges (cf. sketch 6.4).

The calculations are based on numerical simulations of sites with NE = 4, 6 attached LNK1-gates.
This is visualized via the horizontal dashed black line in fig. 6.5. For larger NE > 4, 6 we require
lemma XIII as discussed in corollary XV. This introduces additional uncertainties and makes
the bound less tight. For smaller NE we do not require lemma XIII thus the final bound on QR

is tighter for NE < 6. This causes the cut in the ratio at NE = 4, 6 at the dashed black line.

In fig. 6.5 one can clearly see that for large NE , R/l ≫ 1 the curves NE ∝
√
R/l possess

constant local ratio as it was predicted in previous sec. 6.4. This asymptotic behavior is studied
in more detail in the next subsec. 6.5.2. In general, by increasing NE we can arbitrarily suppress
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(a) Based on NE = 4.
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(b) Based on NE = 6.

Figure 6.5: Upper bounds on the local ratio QR = δER/∆ER for the Fibonacci model in real-
ization FMI-3 as a function of the radius R and the number NE of LNK1-gates on the edges. The
calculations for fig. 6.5a and fig. 6.5b are based on numerical simulations of the FMSI-3 sites with
NE = 4 and NE = 6 attached NOT1-gates respectively. The value with NE = 4 and NE = 6 is
marked by a dashed black line respectively. The continuous black line separates the region with a
negative lower bound on the local energy gap where corollary XV makes no statement.

the ratio increasing the quality. In contrast by choosing NE too low the upper bound on QR

becomes negative (as the lower bound on ∆ER becomes negative) and corollary XV does not
make any useful statement anymore. This is visualized via the continuous black line separating
the white-colored regime without upper bound. Similarly by choosing R too large the upper
bound becomes negative and we again fall into the white-colored regime.

For NE = 6 in subplot 6.5b one can see that the upper bound of the ratio decreases as the
bound becomes tighter compared to subplot 6.5a with NE = 4. Here the calculation is based on
a larger initial value of NE which sharpens the inequalities. With more extensive simulations we
could increase the number NE on which the calculation is based and further tighten the bound
provided by corollary XV. This illustrates the interplay between the numerical simulations (on
which the proof is based) which we can improve to tighten the bound provided by the analytical
corollary XV.

Lower Bounds on the Ratio. We continue by discussing the lower bounds on the ratio (i.e.
upper bounds on the quality) for realization FMSI-3. These bounds are provided by corollary
XVI. Fig. 6.6 presents the lower bounds on the ratio as a contour plot of the radius R and the
number of links NE . Again the calculations are based on numerical simulations of sites with
NE = 4 and NE = 6 attached NOT1-gates.

Firstly we want to emphasize that this plot is linear-log to allow the presentation of larger values
for the radius: R/l ≤ 1010. We want to include the white-colored regime on the right of the
plot. Here the lower bound on the ratio diverges implying a negative energy gap and a vanishing
quality. We can not implement such large local environments with the given number NE of
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Figure 6.6: Lower bounds on the local ratio QR = δER/∆ER for the Fibonacci-model in real-
ization FMI-3 as a function of the radius R and the number NE of LNK1-gates on the edges. The
calculations for fig. 6.6a and fig. 6.6b are based on numerical simulations of the FMSI-3 sites with
NE = 4 and NE = 6 attached NOT1-gates respectively.

LNK1-gates on the edges. However for any given radius R/l we can always choose NE sufficiently
large to obtain an arbitrarily small lower bound on the ratio.
In the white-colored regime on the left corollary XVI makes no statement about the ratio. We
require a sufficiently large local environment to obtain loops and loop-loop interactions (and to
exclude boundary effects) such that the lower bound on QR does not vanish. Here we find that
for NE = 6 in fig. 6.6b the lower bound on the ratio increases as the bound becomes tighter
compared to subplot 6.5a with NE = 4.

Comparing the Bounds. To compare the upper an the lower bounds we consider one-
dimensional ‘slices’ of the NE , R/l-plane. Fig. 6.7a and fig. 6.7b present the upper and the
lower bounds on the ratio as a function of NE and R/l respectively. The other variable is given
parametrically by the selected values portrayed in the legend. Both figures are based on the
FMSI-3 site with NE = 4 attached NOT1-gates. Again we want to emphasize that fig. 6.7a is a
log-linear plot while fig. 6.7b is a log-log plot. Fig. 6.7a possesses a linear x-axis because NE

is given by integer values. In both plots the upper bound is visualized by a dotted line and the
lower bound is visualized by a dashed line. The intervals allowed by the inequalities are colored.
One can see that there are quite large discrepancies between the upper and the lower bound as
we made quite ‘rough’ approximations in the derivation. One could improve these derivations by
fixing a language and an implementation if this is deemed necessary. Especially for the log-log
plot 6.7b one can see that both bounds follow the same qualitative behavior.
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Figure 6.7: The bounded interval of the local ratio QR = δER/∆ER for the Fibonacci-model
in realization FMI-3. The calculations are based on numerical simulations of the FMSI-3 sites with
NE = 4 attached NOT1-gates. Fig. 6.7a and fig. 6.7b portray the interval as a function of the number
NE of LNK1-gates on the edges and of the radius R/l respectively. The lower bound is represented
by the dashed line, the upper bound is represented by the dotted line. The colored area describes
possible values for the local quality factor.

6.5.2 ||| The asymptotic behavior of the Bounds

In this subsection we want to study the asymptotic behavior of the upper bound (see corollary
XVI) and of the lower bound (see corollary XV) on the local quality. For that we employ an
analogy to the multipole expansion from electrodynamics.

The multipole Analogy. As a starting point we realize that the mesoscopic loop-loop-
interaction energy

I = Iloop,loop + Inoloop,noloop − 2Iloop,noloop (6.14)

consists of three parts (cf. eq. (6.1c)): It includes the interactions between the atoms excited
in (no-)loops with a positive sign and the interactions excited between loops and no-loops with
a negative sign. This allows us to interpret the atoms excited in a loop as possessing a positive
charge +1, and the atoms excited in a ’no-loop’ as possessing a negative charge −1. Such a
charged atomic (no-)loop structure with VdW interactions would precisely reproduce the meso-
scopic interaction energy I.

Realization FMI-3. In realization FMI-3 there are as many atoms excited in a loop as when
there is no loop. Both the loop and the no-loop state possess a discrete D6-rotational symmetry.
This means the loop-loop interaction energy (6.14) is neither a monopole nor a dipole interaction
but needs to be interpreted as the interaction energy of a quadrupole in a quadrupole field. The
quadrupole VdW-potential decays as the eighth power of the distance to the quadrupole, i.e. as
∼ 1/N8

E . A quadrupole in a field has a potential energy proportional to the derivative of the field,
i.e. the second derivative of the potential. Thus we expect the interaction energy between the
two loops to decay by the tenth power of their distance. However the number of atoms for each
loop grows linearly with ∼ NE as well. Thus the number of interactions grows quadratically
as ∼ N2

E . Therefore we expect the loop-loop interaction energy to behave asymptotically as
I ∼ constN−, R/N

8
E .
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Figure 6.8: Asymptotic behavior of the local energy splitting δER(NE) and the distance l−(R,NE)
between loops in state |−⟩ for realization FMI-3. The fit functions are represented by dashed lines.
The continuous lines correspond to selected slices of fig. 6.5a and fig. 6.6a.

The asymptotic behavior of the Upper Bound. For the asymptotic behavior as a function
of R we refer to the proof of corollary XVI in app. 6.B.2. To maximize the local energy splitting
δER, the condition (6.54) should be fulfilled for all NE :

I ′−,ub(N−)|R,NE

!∼ ε ∼ constN−, R/N
8
E . (6.15)

We can reasonably expect that x ≈ 4NEa/l− ≪ 15 (for large NE) because l+ ≳ 6NEa and
l− > l+ should grow faster in NE . This allows us to expand I−,ub(N−) ∼ N−(N2

E/l
6
−) ·NE/l−

(the second term) and solve eq. (6.15) in first order. This yields l− ∼ constRN
11/7
E

6 which
retrospectively confirms that asymptotically the expansion is justified. The area per excited
loop is a hexagon of side-length l−/

√
3 which yields the area Aloop =

√
3l2−/2 ∼ l2−. Thus up to

boundary effects (e.g. in the continuum limit R↗∞) it is

N− ≈ Aloc(R)/Aloop = 2πR2/
√
3l2− ∼ (R/l)2N2

E/l
2
− ∼ (R/l)2/N

8/7
E .

We obtain for the local energy splitting δER ∼ N−ε ∼ (R/l)2/N
9+1/7
E asymptotically in NE and

R/l. We verify this asymptotic behavior in fig. 6.8. All four fit functions for l− ∼ constR/lN
11/7
E

and for δER ∼ (R/l)2/N
9+1/7
E are portrayed and fit perfectly for large NE and R. Therefore

the curves of constant local energy splitting (and thus constant local quality factor7) follow the
behavior NE ∼ (R/l)7/32 for large NE and R/l.

Realization FMI-2. In realization FMI-2 the number of atoms excited in a loop is larger
than the number of atoms excited when there is no loop: In a loop there is one additional atom
excited per site , i.e. in total six additional atoms in the cell, independent NE . We can thus inter-
pret the loop-loop interaction as the monopole-monopole-interaction between two VdW-charges
which are independent of NE . Therefore we expect the loop-loop interaction energy to decay
as I ∼ constN−, R/N

6
E . We can now follow analogous arguments as for realization FMI-3: With

I ′−,ub(N−)|R,NE
∼ constN−, R/N

6
E we obtain l− ∼ constRN

9/7
E and N− ∼ (R/l)2/N

4/7
E . This

5This is also confirmed numerically.
6Remember that l− = constR is proven in app. 6.B.2. However this is also quite intuitive as for large R, l−

should only depend on l+ and thus on NE .
7The local energy gap can be upper bounded simply by the (constant) detuning ∆max.
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δĚR(NE) with NE = 50

Fit 1: f1(R) ∼ R2
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Figure 6.9: Asymptotic behavior of the local energy splitting δER(NE) and the distance l−(R,NE)
between loops in state |−⟩ for realization FMI-2. The fit functions are represented by dashed lines.

yields the asymptotical behavior δER ∼ N−ε ∼ (R/l)2/N
6+4/7
E of the local energy splitting for

large NE and R/l. Again, we verify this asymptotic behavior in fig. 6.9. Both fit functions for

l− ∼ constR/lN
9/7
E and for δER ∼ (R/l)2/N

6+4/7
E are portrayed and fit well for large NE and R.

We find that the curves of constant δER follow the behavior NE ∼ (R/l)7/23 for large NE and
R/l.

Comparison. Note that the lower bound of the local quality factor for realization FMI-3 decays
faster than the lower bound of the local quality factor for realization FMI-2 as its loops interact
via higher-order interactions. Furthermore the number of atoms per site in realization FMI-2 is
larger than in realization FMI-3 which also contributes to a larger lower bound on the energy
splitting. Both facts suggest that realization FMI-3 is better suited to implement the Fibonacci-
model because it allows (if implemented correctly) for smaller local energy splittings. This adds
to the advantage of realization FMI-3 that is a simpler structure with only one atom per site/
edge.

The asymptotic behavior of the Lower Bound. Note that the upper bound on the local
energy splitting follows a different asymptotic behavior. The reason is that its derivation is valid
on more general ground; independent of the L-complex. For some realizations (such as FMI-2)
there may be a monopole term contributing to the loop-loop interactions. If one further assumes
that the monopole charge is linear ∼ NE (as the number of atoms is linear in NE), one obtains
I ∼ constN−, R/N

4
E which yields l− ∼ constRNE and N− ∼ (R/l)2constNE

. This explains the
asymptotical behavior δER ∼ N−ε ∼ (R/l)2/N4

E which is found by the fits in fig. 6.8 and fig.
6.9.

158 |||



||| Appendix

6.A ||| Proofs for the lower bound on the Quality

This appendix is denoted to sec. 6.3. Here we include the proofs for lemma XII, lemma XIII
and theorem XIV.

6.A.1 ||| Proof for the NENENE-Chain

In this subsection we present the proof of lemma XII. The proof is constructive and describes
an algorithm to construct NE-chains of arbitrary length. Afterwards we illustrate this algorithm
via four examples. First we briefly recapitulate lemma XII:

Lemma XII (NE-Chain of arbitrary Length).

The language LNE
can be implemented as the low-energy eigenspace of a structure CNE

with quality factor Q = 1, robustness r ≳ 91.23% and effective energy gap ∆Eeff ≳ 46.66%
for any NE ∈ N.
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Figure 6.10: Sketch of the LNK4-gate with N = 9 atoms. We assume equal distances a between the
atoms and equal detunings for the ports and the ancillaries respectively. The detunings are visualized
by the coloring of the atoms. The blockade radii are drawn as dashed circles. The length and the
color scaling fits with the construction in the proof of lemma XII.

Proof.

We proof lemma XII constructively by formulating an algorithm which constructs the structure
CNE

for any NE ∈ N. We assume that the chain consists of N = NE+1 atoms 1, . . . N of equal
distance a. Further we assume equal detunings ∆1 = ∆N =: ∆ and ∆2 = . . . = ∆N−1 =: ∆̃.
The length of the chain is denoted by d = NEa. This is sketched in fig. 6.10. W.l.o.g. we can
set the detuning ∆ = 1 choosing the energy scaling using fα with α = ∆−1/6 (see eq. (2.15)).
We define ε := 2∆− ∆̃ for the atoms of the bulk.

Note that g = |LN
LNK| = 2. The ground states are the two alternating states where every

second atom is excited. In the following the state where atom 0 is not excited is denoted by
state 1 and the state where atom 0 is excited is denoted by state 2. In the PXP-model with
blockade radii rB,i = 1 we would need to choose ε = 0 to achieve ground state degeneracy and
1/2 < a < 1 to obtain the correct blockade graph. Here the energy gap would be ∆E = ∆,
i.e. r = 1 and ∆Eeff = 1/2. In the VdW-model there are residual interactions between distant
atoms. We have to distinguish two cases: (1) If the number of atoms N = 2m with m ∈ N1

is even, then the two alternating states are of equal energy thanks to the symmetry of the
structure. Thus the ground state manifold is degenerate for any choice of ε. We denote this
L-complex as a NOTm-gate in realization ma. (2) If the number of atoms N = 2m + 1 with
m ∈ N1 is odd, then the two alternating states possess a different number of excited atoms and
thus different interaction energies. We denote this L-complex as a LNKm-gate in realization
mb. Consider case (2), i.e. the LNKm-gate with N = 2m+ 1 atoms. To achieve ground state
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degeneracy the difference in the interaction energies needs to be compensated by a finite ε > 0.
For state 1 and state 2 the total interaction energies are

I1(N) =

m−1∑
i=1

m−i∑
j=1

C

(2aj)6
=

C

(2a)6

m−1∑
i=1

Hi,6 =
C

(2a)6
[mHm−1,6 −Hm−1,5] , (6.16a)

I2(N) =

m−1∑
i=0

m−i∑
j=1

C

(2aj)6
=

C

(2a)6

m∑
i=1

Hi,6 =
C

(2a)6
[(m+ 1)Hm,6 −Hm,5] (6.16b)

respectively. Here Hm,γ ≡
∑m

k=1 1/k
γ is the mth generalized harmonic number of order γ.

Hm,γ is monotonic growing in m and upper-bounded by the Euler–Riemann zeta-function
H∞,γ ≡ ζ(γ). The interaction energies (6.16) yield the energy splitting of the ground states

δE[C2m] = |⟨H[C2m]⟩2 − ⟨H[C2m]⟩1| = | − 2∆ + I2 + ∆̃− I1| =
∣∣∣∣ C

(2a)6
Hm,6 − ε

∣∣∣∣ . (6.17)

Thus for both cases (1) and (2) we choose εm = Hm,6C/(2a)6 for m = ⌊N/2⌋ to obtain a
vanishing energy splitting δE[C2m] = 0.

This leaves only one DOF which we need to fix to fully define the structure: the distance
a between adjacent atoms of the chain. We want to determine an implementation which
approximates the optimal effective energy gap and the optimal robustness. For that we derive
a lower bound to the energy gap and optimize it by gapping-out all excited states. First note
that the set of excited states E = E1∪E2 can be split into two (overlapping) subsets: There are
excited states xxx ∈ E1 where two adjacent atoms are excited and there are excited states xxx ∈ E2
where two adjacent atoms are not excited. Both sets together include every state except for
the two alternating ground states. In a nutshell the goal is to choose C/a6 sufficiently large
such that the excited states xxx ∈ E1 do not impair the energy gap but as small as possible to
maximally gap-out the excited states xxx ∈ E2.
First we consider set E1: To gap-out the excited states xxx ∈ E1 it is sufficient to request that
it is energetically never favourable to excite adjacent atoms. By exciting an atom we gain at
most ∆̃ energy. By setting the interaction energy between adjacent atoms as

C/a6 = ∆̃ +∆E1 = 2∆−Hm,6C/(2a)6 +∆E1 ≤ 2∆− C/(2a)6 +∆E1 (6.18)

we secure any excited state xxx1 ∈ E1 is energetically at least ∆E1 higher than the lowest
state xxxmin ∈ FN

2 \E1 = G ⊔ (E2\E1). If we would choose a such that ∆E|E2\E1
> 0 then

it would be xxxmin ∈ G and ∆E|E1
≳ ∆E1. Here ∆E|Ei

denotes the energy gap where the
excited state manifold is restricted to its subset Ei ⊂ E . Solving eq. (6.18) yields C/a6 =
(2∆+∆E1)/(1+2−6) (independent of m). This fixes a as a function of ∆E1 such that exciting
adjacent atoms energetically costs at least ∆E1 units of energy.

Secondly for set E2 it is now sufficient to consider only states xxx ∈ E2\E1 not covered by case
(1). If two adjacent atoms are not excited in the chain we call this a defect. In a defect the
distance between the nearest excited atoms is 3a. Adjacent defectsc may cause even larger
distances. Defects on the ground states may arise for two reasons: (2a) there are different
atoms excited and/ or (2b) there are fewer atoms excited than in an alternating state. Firstly
consider case (2a): To excite a defect while conserving the number of excited atoms without
exciting adjacent atoms is only possible if at least one atom at the boundary is not excited.
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In this case we can excite an atom at the boundary instead of an atom in the bulk. This
costs 1− εm of detuning energy but generates one defect. The defect reduces the interaction
energies between the atoms by

∆I ≤
∞∑

i,j=0

[
C

[(2i+ 1) + (2j + 1)]6
− C

[(2i+ 1) + (2j + 2)]6

]
n≡i+j

≤ C

(2a)6

∞∑
n=0

[
n+ 1

(n+ 1)6
− n+ 3/2

(n+ 3/2)6
+

1/2

(n+ 3/2)6

]
=

C

(2a)6

[
ζ(5)− ζ(5, 3/2) +

ζ(6, 3/2)

2

]
=

C

(2a)6

[
π6

30
− 30ζ(5)

]
=: ∆IDef.

(6.19)

Here ζ(γ, δ) ≡ ∑∞
k=0 1/(k + δ)γ is the Hurwitz zeta-function which recovers the Euler-

Riemann zeta-function ζ(γ) ≡ ∑∞
k=1 1/k

γ for δ = 1. During the proof ∆I should be inter-
preted as a placeholder symbolizing the difference in the total interaction energies. Thus the
total energetic cost for introducing such a defect is

∆− εm −∆I ≥ ∆− ζ(6)
C

(2a)6
−∆IDef = ∆− C

(2a)6

[
ζ(6) +

π6

30
− 30ζ(5)

]
=: ∆E2. (6.20)

We want that ∆E2 > 0 to derive a useful lower bound on ∆E|E2 .

Now consider case (2b): there may be fewer atoms excited either because we de-excited an
atom in the bulk or because we de-excited an atom at the boundary. If we de-excite an
atom in the bulk we loose ∆̃ of detuning energy but we generate two defects. Thus the total
energetic cost becomes ∆̃ − 2∆I ≥ 2∆E2 + εm. If we de-excite an atom at the boundary we
loose ∆ of detuning energy but we generate one defect. Here the total energetic cost becomes
∆ − ∆I ≥ ∆E2 + εm. Thus for ∆E2 > 0 defects of type (2b) are energetically even more
costly than defects of type (2a).

Thus the energetic cost of any defect can be lower-bounded by ∆E2 for ∆E2 > 0. Any excited
state xxx2 ∈ E2 is energetically at least ∆E2 higher than the lowest state xxxmin ∈ FN

2 \E2 =
G ∪ (E1\E2). Combining with case (1), if we choose C/a6 = (2∆ + ∆E1)/(1 + 2−6) with
∆E1, ∆E2 > 0 then this implies ∆E|E1

≳ ∆E1 and ∆E|E2
≳ ∆E2. We obtain the lower

bound ∆E ≳ min (∆E1,∆E2). Reasonably we can now set ∆E1 = ∆E2 =: ∆Elb to define
the lower bound on the energy gap. Then eq. (6.20) with C/a6 from (6.18) yields

∆Elb = ∆− 2∆ +∆Elb

26 + 1

[
ζ(6) +

π6

30
− 30ζ(5)

]
. (6.21)

Solving for the lower bound yields ∆E ≳ ∆Elb ≳ 0.91236 ∆. Note that

∆̃ ≤ 2∆− C

(2a)6
=

27∆−∆Elb

26 + 1
≲ 1.95520 ∆ ≡ ∆max

and ∆ ≡ ∆min. Thus we obtain the robustness r ≳ 91.236% =: rlb and the effective gap
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∆Eeff ≳ 46.664% =: ∆Eeff, lb. This defines the distance

a =

[
1 + 2−6

2 + ∆Elb/∆

]1/6
rB,max ≈ 0.83897 rB,max

N>2≈ 0.93817 rB,min

between adjacent atoms. The construction of the LNK4-gate with N = 9 atoms is exemplary
visualized in fig. 6.10 for ∆max = 1.

aNote that for m = 1 we recover the NOT1-gate from fig. 4.1.
bNote that for m = 1 we recover the LNK1-gate from fig. 4.1.
cTo minimize the interaction energies between the atoms defects tend to center themselves and distribute

equally along the chain.

In the following we want to illustrate the construction by the algorithm of the proof. We introduce
and discuss four examples constructed for m = 1 and m = 5. We find that the lower bound on
the energy gap introduced in the proof is very tight for large NE-chains.

Example 13. (NOTm-Gates and LNKm-Gates for m ∈ {1, 5})
Note that the optimal NOT1i- and the LNK1i-gate withm = 1 are already introduced in fig. 4.1.
For comparison we introduce the NOT1ii- and the LNK1ii-gate constructed by following the
algorithm of lemma XII. As another example we introduce the NOT5- and the LNK5-gate. We
want to calculate the energy structure of the gates and compare the lower bound introduced in
lemma XII. The constructed gates are portrayed in fig. 6.11. The lower bound rlb = 91.236%
is visualized as a dashed blue line in the energy structures.

The first row portrays the NOT1ii-gate. Here for m = 1 with NE = 1 there are only N = 2
atoms of equal detunings ∆max = ∆min. This is a somewhat special case as there are no
ancillaries of detuning ∆̃ in this chain. As a < 2−1/6 rB,max, it is r[C1] = ∆Eeff[C1] = 1. Note
that here the algorithm actually yields an r- and ∆Eeff-optimal implementation, although the
implementation is different from NOT1-i in fig. 4.1. For the LNK1ii-gate with NE = 2 and
N = 3 atoms in the second row the implementation is not quite optimal: ∆Eeff[C2] ≈ 48.9% <
49.2% and r[C2] ≈ 95.5% < 96.9%. However the algorithm yields a good approximation of the
∆Eeff- and r-optimal LNK1i-gate in fig. 4.1.

For m = 5 there are N = 10, 11 atoms in the NOT5- and LNK5-gate respectively. The effective
gaps ∆Eeff[C9] ≈ ∆Eeff[C10] ≈ 46.686% and the robustness r[C9] ≈ ∆r[C10] ≈ 91.243% are
very similar. Note that for such longer chains with NE = 9, 10 links the lower bounds from
lemma XII ∆Eeff, lb = 46.664% and rlb = 91.236% are very tight. In the energy structures
the lower bounds essentially coincide with the actual gaps. Note that (similar to the LNK1ii-
gate) the NOT5- and LNK5-implementations are constructed by the proof and thus are only
approximations of the ∆Eeff- and r-optimal gates. This main reason is that the condition
(6.18) to gap-out E1 is very simple which causes ∆Eeff|E1

≈ 95.771% > ∆Eeff ≈ 46.686%. To
determine the optimal structures we would need to allow for varying distances and detunings
along the chain.
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Figure 6.11: NOTm-Gates and LNKm-Gates for m = 1 and m = 5 constructed by the algorithm of
lemma XII. The constructed chains are characterized by equidistant atoms and equal detunings of
the ports and the ancillaries respectively. The lower bound rlb = 91.236% is visualized as a dashed
blue line in the energy structures. For long chains of atoms the lower bound becomes very tight (for
m = 5 it lies on top of the lowest excited state in the energy structure). The tables in the third
column portray the states of the ports and the number # of excited ancillaries.
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6.A.2 ||| Proof for the Appendage of NENENE-Chains

In this subsection we present the proof of lemma XIII. First we briefly recapitulate lemma XIII:

Lemma XIII (Appendage of NE-Chains).

We assume that the energy gap of the amalgamated structure Ck∪NE
fulfills the condition

0 < ∆Elb(NE) := min

(
∆E[Ck∪NE ], 20

C

(2a)6

)
− C

(2a)6

[
2ζ(5)P +

(
1 + ∥L+

k ∥1
|Lk|
2

)
× P (P − 1)

(NE + 1)4

(
4.8 +

25.6 + 6.4Nk/(P − 1)

NE + 1
+

65.3 + 110.7Nk/(P − 1)

(NE + 1)2

)]
.

(6.22)

Then Ck∪(NE+N ′
E) implements Lk∪(NE+N ′

E) as its low-energy eigenspace with
Q[Ck∪(NE+N ′

E)] = 1 for any N ′
E ∈ N0. The energy gap is ∆E[Ck∪(NE+N ′

E)] ≥ ∆Elb(NE).

Proof.

We consider the full Hamiltonian H[C∪NE∪N ′
E
] of the amalgamated structure. As discussed in

eq. 2.13 there arise residual interactions

Hint[C∪NE∪N ′
E
] = HE [C∪NE∪N ′

E
] +HKE [C∪NE∪N ′

E
] +HEE [C∪NE∪N ′

E
] (6.23)

in-between the substructures during amalgamation. There are three contributions to the
residual interactions: (1) There are edge (E) interactions between atoms of the same edge but
different substructures, (2) there are kernel-edge (KE) interactions between atoms of the kernel
structure and atoms of the amalgamated edge and (3) there are edge-edge (EE) interactions
between atoms of an amalgamated edge and atoms of a different edge. If we would ignore
this part of the Hamiltonian then the amalgamated structure would implement the γ-product
L∪NE∪N ′

E
= L∪NE

⊗ L
⊗γp

N ′
E

as its low-energy eigenspace with quality factor Q[C∪NE∪N ′
E
] = 1.

The energy gap of the Hamiltonian would be given by the minimal energy gap of its parts:

∆E[C∪NE∪N ′
E
] = min (∆E[C∪NE

], ∆E[CN ′
E
]) =: ∆E∞[C∪NE∪N ′

E
]. (6.24)

However in the VdW model the are finite residual interactions between the substructures.
This may cause an energy splitting and reduce an energy gap. The idea of the proof is the
following: First we want to upper bound the energy splitting. By assumption the language
L∪NE

is linearly independent. Thus L∪NE∪N ′
E
is linearly independent as well and we can apply

apply theorem V. This balances the energy splitting but may further reduce the energy gap.
Then we want to derive a lower bound for the energy gap.

First note that Hint[C∪NE∪N ′
E
] > 0, thus

0 ≤ ⟨Hint[C∪NE∪N ′
E
]⟩xxx∈FN

2
(6.25)
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yields a lower bound to the residual interaction energy. We still need to determine an upper-
bound ⟨Hint[C∪NE∪N ′

E
]⟩xxx∈G ≤ Iint(NE) to the residual interaction energies of the ground

states. We want the upper bound to be only a function of NE but to be independent of N ′
E .

As introduced in eq. (6.23) there are three contributions to Hint[C∪NE∪N ′
E
] which we have to

calculate in the following:

1 There are edge (E) interactions between the atoms of the same edge from different
substructures for each edge:

⟨HE [C∪NE∪N ′
E
]⟩xxx∈G ≤

∑
p∈P

NE//2∑
i=1

N ′
E//2∑
j=1

C

((2i− 1)a+ (2j − 1)a)
−6

n=i+j

≤
NE ,N ′

E→∞

CP

(2a)6

∞∑
n=1

n−5 ≤ CP

(2a)6
ζ(5) =: IE(NE).

(6.26)

Here ζ(s) ≡∑∞
n=1 1/n

s denotes the Euler–Riemann zeta-function. Note that IE(NE) =
constNE

is a constant.

2 There are kernel-edge (KE) interactions between the atoms of C and atoms of CN ′
E

of
each edge:

⟨HKE [C∪NE∪N ′
E
]⟩xxx∈G ≤

∑
p∈P

N ′
E∑

i=1

CNk

(d+ (2i− 1)a)
−6

N ′
E→∞
≤ CP

(2a)6
Nk

∞∑
i=0

(x+ i)−6
∣∣
x=

NE+1

2

≤ CP

(2a)6
Nk

120
S
(6)
2 (x)

∣∣∣
x=

NE+1

2

≤ CP

(2a)6
Nk

x5

[
1

5
+

2

3x
+

19

24x2
+

427

1728x3
+

847

41472x4
+

7

9216x5

]∣∣∣∣
x=

NE+1

2

≤ CP

(2a)6
6.4Nk

(NE + 1)5

(
1 +

17.3

NE + 1

)
=: IKE(NE).

(6.27)

Here we used Sterling’s formulaa in second order to upper bound the sixth logarithmic
derivative of the gamma-function Γ(z) ≡

∫∞
0

tz−1e−tdt. We find that IKE(NE) decays
as 1/N5

E .
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3 There are interactions edge-edge (EE) interactions between the atoms of CN ′
E of any

edge and the atoms of all other edges. We only consider the case where the number of
ports P ≤ 4:b

⟨HEE [C∪NE∪N′
E
]⟩xxx∈G ≤

∑
p,p′∈P
p ̸=p′

∑
i,j∈N0

C
[
(r + d+ a+ 2ai)2 + (r + a+ 2aj)2

]−3

=
CP (P − 1)

(2a)6

∑
i,j∈N0

[
j2 + n2

i

]−3
∣∣∣
ni=

N+1
2

+i

=
CP (P − 1)

(2a)6

∑
i∈N0

[
− 1

n6
i

+
3π cothniπ

16n5
i

+
3π2

16n4
i sinh

2 niπ
+

π3 cothniπ

8n3
i sinh

2 niπ

]∣∣∣∣
ni=

N+1
2

+i

≤ CP (P − 1)

(2a)6

∑
i∈N0

[
5π

16n5
i

coth

(
NE + 1

2
π

)
− 13

16n6
i

]∣∣∣∣
ni=

N+1
2

+i

≤ − C

(2a)6
P (P − 1)

20
S

(5)
2 (x)

∣∣∣
x=

NE+1
2

≤ CP

(2a)6
(P − 1)

x4

[
3

10
+

4

5x
+

19

24x2
+

61

288x3
+

847

55296x4
+

7

13824x5

]∣∣∣∣
x=

NE+1
2

≲
CP

(2a)6
4.8(P − 1)

(NE + 1)4

(
1 +

5.3̄

NE + 1
+

13.6

(NE + 1)2

)
=: IEE(NE).

(6.28)

We find that IEE(NE) decays as 1/N
4
E .

Thus the residual interaction energies of the ground states are upper-bounded by

Iint(NE) = IE(NE) + IKE(NE) + IEE(NE). (6.29)

With the lower bound (6.25) on the residual interaction energies, we obtain δE[C∪NE∪N ′
E
] ≤

Iint(NE) and ∆E[C∪NE∪N ′
E
] ≥ ∆E∞[C∪NE∪N ′

E
] − Iint(NE). The idea is to use the detunings

of different atoms to compensate for the different components of Iint(NE). As the languages
L (LN ′

E
) are linear independent, we may use the detunings of atoms in C (CN ′

E
) to correct the

energy splitting introduced by IKE(NE)+ IEE(NE) (IE(NE)) following lemma IV. Then, the
energy splitting vanishes: δE[C∪NE∪N ′

E
] = 0. In the progress the energy gap may be reduced

as described by theorem V:

∆E[C∪NE∪N ′
E
]
th.V
≥ ∆E∞[C∪NE∪N ′

E
]− Iint(NE)−

∑
i
∥L+

i ∥1
|Li|
2

Ii(NE)

≥ ∆E∞[C∪NE∪N ′
E
]− C

(2a)6

[
2ζ(5)P +

(
1 + ∥L+∥1

|L|
2

)
P (P − 1)

(NE + 1)4

×
(
4.8 +

25.6 + 6.4Nk/(P − 1)

NE + 1
+

65.3 + 110.7Nk/(P − 1)

(NE + 1)2

)]
=: ∆Elb(NE).

(6.30)

Here i symbolically iterates over the three contributions toHint[C∪NE∪N ′
E
]. Note that ∆Elb(NE)

is independent of N ′
E except for ∆E∞[C∪NE∪N ′

E
]. Applying lemma XII we can lower bound

∆E∞[C∪NE∪N ′
E
] = min (∆E[C∪NE

], ∆E[CN ′
E
]) ≳ min (∆E[C∪NE

], 20.36238 C/(2a)6) (6.31)

independent of N ′
E . Note that the gap ∆E[CN ′

E
] ≳ 0.31816 C/a6 will be larger than ∆E[C∪NE

]
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for almost all relevant cases. If we assume that ∆Elb(NE) > 0 for some NE we obtain
Q[C∪NE∪N ′

E
] = 1 independent of N ′

E ∈ N.

aSterling’s formula: ln Γ(x) ≲ S2(x) ≡ ln [
√

2π/x (x/e)x
(
1 + 1/12x+ 1/288x2 +O

(
1/x3

))
] for x > 2

bNotation: a//b ≡ ⌊a/b⌋ where ⌊·⌋ denotes the floor function.

6.A.3 ||| Proof for Tessellated Languages on the HC-Grid

In this subsection we present the proof of theorem XIV. First we briefly recapitulate theorem
XIV:

Theorem XIV (Tessellated Languages on the Honeycomb-Grid).

We assume that the local energy gaps fulfill the condition

0 < ∆E∞ := min
NA∈{1,...ps}

{
min

(
∆Eloc[Cs∪N

(0)
E

], 10
C

(2a)6

)
−

C

(2a)6

[
2ζ(5)P − ζ(5)NA+

(
1 + ∥L+

s ∥1
|Ls|
2

)
P (P − 1)

(N
(0)
E + 1)4

(
4.8 +

25.6 + 6.4Ns/(P − 1)

N
(0)
E + 1

+
65.3 + 110.7Ns/(P − 1)

(N
(0)
E + 1)2

)]} (6.32)

for some N
(0)
E ∈ N0. Then for any target Qt ∈ R(0,1) and any size S of the grid there

exists a N∗
E ∈ N such that for all NE ≥ N∗

E the quality factor is Q[CL] > Qt.

Proof.

Consider the full Hamiltonian H[CL] of the tessellated structure. As discussed in eq. 2.13
there arise residual interactions Hint[CL] during amalgamation which we need to consider.
The residual interactions prevent us from treating amalgamated L-complexes of the VdW
model as the sum of its parts like it is possible in the PXP model. This proof is based on two
main ideas to circumvent this issue:
The first idea is to consider the amalgamation of the full edge, i.e. γ includes for each edge
NE+1 atoms. The second idea is to split the residual interaction energies of the amalgamated
system in the two sums from eq. (2.14). They correspond to a ‘long-range’ Hamiltonian
Hlr[CL] a ‘short-range’ Hamiltonian Hsr[Cs∪NE

] respectively:

Hint[CL] = Hlr[CL]−
1

2

∑
s∈S(L)

Hsr[Cs∪NE
]. (6.33)

The short-range Hamiltonian is the correction term from eq. (2.14) which prevents double-
counting of the interactions between atoms of amalgamated edges. Each edge in the bulk of
the tessellated structure is adjacent to two sites. Hsr[Cs∪NE

] includes the interactions between
the atoms of same amalgamated edges emanating from site s. Edges at the boundary of CL
emanate from only one site s ∈ S(L); they are not amalgamated thus do not contribute in
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Hsr[Cs∪NE
]. The ‘long-range’ Hamiltonian

Hlr[CL] = HEE [CL] +HSE [CL] +HSS [CL] (6.34)

includes the remaining interaction energies which we did not account for in the Hamiltonian
H[Cs∪NE

] of each site s. It possesses three contributions: (1) There are edge-edge (EE)
interactions between atoms of non-adjacent edges of the honeycomb grid, (2) there are site-
edge (SE) interactions between atoms of sites and atoms of non-adjacent edges and (3) there
are site-site (SS) interactions between atoms of any two sites. The point is that by increasing
the number of atoms 2NE on each edge the distance between the pairs of atom contributing
to Hlr[CL] increases as well. Thus we can arbitrarily suppress Hlr[CL] by increasing NE . This
allows us to consider the ‘long-range’ Hamiltonian as a perturbation. However the ‘short-
range’ Hamiltonian can not be suppressed by increasing NE . The goal is to split the full
Hamiltonian

H[CL] =
∑

s∈S(L)
Hloc[Cs∪NE

] +Hlr[CL] (6.35)

into a sum over local Hamiltonians Hloc[Cs∪NE
] = H[Cs∪NE

]−Hsr[Cs∪NE
]/2 plus the pertur-

bation term. Hloc treats the NE + 1 atoms of the amalgamated edge in the bulk differently
as ‘dummy’ atoms. The atoms of edges at the boundary are adjacent to only one site and
thus are not treated as ‘dummies’. A ‘dummy’ i interacts via a reduced interaction strength
C̃ := C/2 with other ‘dummies’ j of the same edge:

ŨVdW(rrrij) := C̃/rrr6ij = UVdW(rrrij)/2. (6.36)

A ‘dummy’ of an edge adjacent to a site s interacts normally via UVdW with an atom of the site
s or with a ‘dummy’/ atom of a different edge adjacent to s. This prevents over-counting of the
interaction energies between atoms of the same edge in the sum. Thus the local Hamiltonians
Hloc[Cs∪NE

] of the sites s ∈ S(L) differ only in the number of amalgamated edges in the bulk
which self-interact via the reduced interaction strength C̃.

The splitting of the full Hamiltonian (6.35) allows us to treat the structures similarly as used to
in the PXP model: If for now we ignore Hlr[CL] (e.g. by increasing NE ↗∞) then the energy
gap of the full Hamiltonian is given by the minimal energy gap of the local Hamiltonians:

∆E[CL] Hlr=0
= min

s∈S(L)
∆Eloc[Cs∪NE

] =: ∆E∞(NE). (6.37)

As the energy splittings of the local Hamiltonians vanish the energy splitting of the full Hamil-
tonian must vanish as well: δE∞(NE) := 0. Note that for OBCs the local effective gap
∆Eloc[Cs∪NE

] from sites at the boundary may differ from sites in the bulk due to a different
number of amalgamated edges NA. This means for ps ports at each site site we need to cal-
culate the energy gap of up to ps + 1 local Hamiltonians with NA = 0, . . . ps to determine
the energy gap ∆E∞(NE) of the tessellated structure. For PBCs due to the translational
invariance we only need to calculate the energy of one local Hamiltonian where all ps = NA

adjacent edges are amalgamated.

However physically we are interested in a finite number NE < ∞ of links. This introduces
finite ‘long-range’ interactions which may cause a finite energy splitting and reduce the energy
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gap. The goal is to determine an upper-bound to the energy splitting and a lower-bound to
the energy gap. First note that Hlr[CL] > 0, thus

0 ≤ ⟨Hlr[CL]⟩xxx∈FN
2

(6.38)

yields a lower bound to the ‘long-range’ interaction energy. We still need to determine an
upper-bound ⟨Hlr[CL]⟩xxx∈G ≤ Ilr(NE , S) to the ‘long-range’ interaction energies of the ground
states. As already noted in eq. 6.34, there are three contributions to the long-range Hamilto-
nian which we have to calculate in the following:

1 There are edge-edge (EE) interactions between atoms of non-adjacent edges of the hon-
eycomb grid:

⟨HEE [CL]⟩xxx∈G ≤
E

2

C

a6

∑
(i,j)∈Z2
b∈{0,1,2}
no nNs

NE∑
k,l=1

∥∥∥∥∥(NE + r/a)

[
3(i + j)√
3(i − j)

]
+ (2k − 1 + r/a)

[
cos 2πb/3

sin 2πb/3

]
− (2l − 1 + r/a)

[
1

0

]∥∥∥∥∥
−6

m=i+j
≤

n=i−j

3S

4

C

a6

N2
E

(NE + r/a)6

[ ( 8

43
+

14

123

)
+

∑
(m,n)∈(2Z)2∪(2Z+1)2

b∈{0,1,2}
higher orders

(∥∥∥∥∥
[

3m√
3n

]
+

[
cos 2πb/3

sin 2πb/3

]
−
[
1

0

]∥∥∥∥∥ − 1

)−6 ]

[18]
≲

CS

a6

0.09982638̄ + 0.00093604011

(NE + r/a)4
≲

CS

(2a)6

6.4488

(NE + r/a)4
=: IEE(NE, S).

(6.39)

We find that IEE(NE , S) decays as S/N
4
E .

2 There are site-edge (SE) interactions between atoms of sites and atoms of non-adjacent
edges:

⟨HSE [CL]⟩xxx∈G ≤ ECNs

∑
(i,j)∈Z2\{0}

b∈{0,1}

NE∑
l=1

(∥∥∥∥∥
[
3/2(i + j) + b√

3/2(i − j)

]
− 2l − 1 + r/a

NE + r/a

[
1/2

0

]∥∥∥∥∥ (2d + 2r) − r

)−6

m=i+j

≤
n=i−j

3S

2

C

a6

NsNE

(NE + r/a)6

[(
4

43
+

8

123

)
+

∑
(m,n)∈(2Z)2∪(2Z+1)2

b=±1
higher orders

(∥∥∥∥∥
[
3m + b√

3n

]∥∥∥∥∥− 1

)−6 ]

[18]
≲

CS

a6

(0.100694̄ + 0.002413936807)Ns

(NE + r/a)5
≲

CS

(2a)6
6.5990Ns

(NE + r/a)5
=: ISE(NE , S).

(6.40)

We find that ISE(NE , S) decays as S/N
5
E .
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3 There are site-site (SS) interactions between atoms of any two sites:

⟨HSS [CL]⟩xxx∈G ≤ S

2
CN2

s

∑
(i,j)∈Z2

b∈{0,1}
(i,j,b)̸=0

[∥∥∥∥∥i
[

3/2√
3/2

]
+ j

[
3/2

−
√
3/2

]
+ b

[
1

0

]∥∥∥∥∥ (2d+ 2r)− 2r

]−6

m=i+j

≤
n=i−j

S

2

C

a6

N2
s

N6
E

∑
(m,n)∈(2Z)2∪(2Z+1)2

b∈{0,1}
(m,n,b)̸=0

[
(3m+ 2b)2 + 3n2]−3

[18]
≲

CS

(2a)6
1.65300633N2

s

N6
E

=: ISS(NE , S).

(6.41)

We find that ISS(NE , S) decays as S/N
6
E .

Thus the ‘long-range’ interaction energies of the ground states are upper-bounded by

Ilr(NE , S) = IEE(NE , S) + ISE(NE , S) + ISS(NE , S)

=
CS

(2a)6
6.4488 + 6.5990Ns/NE + 1.6530N2

s /N
2
E

N4
E

= O
(
S/N4

E

)
.

(6.42)

With the lower bound (6.38) on the ‘long-range’ interaction energies, we obtain δE[CL] ≤
δE∞(NE) + Ilr(NE , S)

a and ∆E[CL] ≥ ∆E∞(NE)− Ilr(NE , S).

Note that ∆E∞(NE) is still a function of NE . To obtain a lower bound ∆E∞ ≤ ∆E∞(NE)
independent of NE ∈ N we need to transfer lemma XIII to the local Hamiltonians. The
local Hamiltonians Hloc[Cs∪NE

] may differ in the number of amalgamated edges NA(s) which
are shared with another site. In the following we want to discuss the effects of the reduced
interaction strength on lemma XIII parametrically dependent on NA:
In lemma XIII we amalgamate an LNK-chain CN ′

E
of length d′ = N ′

Ea to each port of Cs∪NE

where a is defined by Cs∪NE
. In the local Hamiltonian the dummies of CN ′

E
interact via C̃

with other dummies in CN ′
E
. For C̃ lemma XII of course remains valid by substituting C 7→ C̃.

This essentially corresponds to a rescaling of the chain.
The dummies in CN ′

E
and the dummies in Cs∪NE

of the same edge may interact via C̃ in the

local Hamiltonian. In lemma XIII these interactions are upper-bounded by IE(NE). Thus

need to substitute C 7→ C̃ in the upper bound IE(NE). For residual interactions with the
kernel structure and residual interactions between different edges the interaction strength is C
and the upper bounds IKE(NE) and IEE(NE) introduced in the proof of lemma XIII remain
valid.
Thus for general NA we can reformulate the lower bound (6.6) as

∆E∞ := min
NA∈{1,...ps}

{
min

(
∆Eloc[Cs∪N

(0)
E

], 10
C

(2a)6

)
− C

(2a)6

[
2ζ(5)P − ζ(5)NA

+

(
1 + ∥L+

s ∥1
|Ls|
2

)
P (P − 1)

(N
(0)
E + 1)4

(
4.8 +

25.6 + 6.4Ns/(P − 1)

N
(0)
E + 1

+
65.3 + 110.7Ns/(P − 1)

(N
(0)
E + 1)2

)]}
.

(6.43)

independent of NE . The lower-bound ∆E∞ parametrically depends only on some N
(0)
E < NE

for which we can calculate ∆Eloc[Cs∪N
(0)
E

] numerically. First note that for NA = 0 we recover
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the lower bound from lemma XIII. Secondly note that for almost all relevant L-complexes it
is ∆Eloc[Cs∪N

(0)
E

] < 10C/(2a)6 as the energy gap of the LNK-chain is very large compared to

other gates of this thesis (cf. lemma XII). Then the lower bound (6.32) is greater-equal than
the lower bound (6.6) from lemma XIII. Then we can apply lemma XIII directly but this
yields a less-sharp bound.

Note that Ilr(NE , S) decays monotonically as S/N4
E and becomes negligible for N4

E ≫ S.
Thus for any size S ∈ N of the grid and any gap ∆E∞ > 0, there exists an N∗

E ∈ N such that
Ilr(NE , S) < ∆E∞/2 for all NE > N∗

E . If we assume that ∆E∞ > 2Ilr(NE , S), we obtain a
positive quality factor

Q[CL] = exp

[
− δE[CL]
∆E[CL]

]
≥ exp

[
−
(

∆E∞
Ilr(NE , S)

− 1

)−1
]

≳ 2−
[
1− Ilr(NE , S)

∆E∞

]−1

=: Qlb(NE , S).

(6.44)

Note that latter approximation is only good for Ilr(N
∗
E , S) ≪ ∆E∞/2. By choosing N4

E/S
sufficiently large we can achieve arbitrarily large lower bounds Qlb(NE , S) > 1 − ε for any
ε≪ 1. In the limit NE ↗∞ we recover Qlb(NE , S)↗ 1.

aNote that we can not apply theorem V to compensate for the energy splitting of the linear dependent
tensor product states of the tessellated language.
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6.B ||| Proofs for Local Languages on the HC-Grid

This appendix is denoted to sec. 6.4. Here we include the proofs to corollary XV and corollary
XVI.

6.B.1 ||| Proof for Lower Bounds to local Languages on the HC-Grid

In this subsection we present the proof of corollary XV. First we briefly recapitulate corollary
XV:

Corollary XV (Lower Bounds to local Languages on the Honeycomb Grid).

We assume that the local energy gaps fulfill the condition

∆E∞ := min

(
∆Eloc[Cs∪N

(0)
E

], 10
C

(2a)6

)
−

C

(2a)6

[
(2P − 3)ζ(5) +

(
1 + ∥L+

s ∥1
|Ls|
2

)

×
P (P − 1)

(N
(0)
E + 1)4

(
4.8 +

25.6 + 6.4Ns/(P − 1)

N
(0)
E + 1

+
65.3 + 110.7Ns/(P − 1)

(N
(0)
E + 1)2

)]
> 0

(6.45)

for some N
(0)
E ∈ N0. Then for any target Qt ∈ R(0,1) and any radius R of Uloc(R) there

exists a N∗
E ∈ N such that for all NE ≥ N∗

E the local quality factor is QR[CL] > Qt.

Proof.

On the honeycomb grid there exist two sites per vertex. One site possesses the area

As =
l2

2

∣∣∣∣∣
[
3/2 3/2√
3/2 −

√
3/2

]∣∣∣∣∣ = 33/2

4
l2, (6.46)

where l := 2(d+ r) denotes the distance between adjacent sites (cf. chap. 6.3 or fig. 6.4). The
radius R can be directly identified with the number of sites Sloc(R) in the local environment
(and vice versa). We can upper-bound the number of sites in the local environment

S ≲
Aloc(R+ l)

As
=

4π

33/2
(R/l + 1)

2
=: Sloc(R). (6.47)

We use a larger effective radius R+ l such that the area of each site near the boundary of the
local environment is fully emerged inside the effective radius.
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The main idea is to split the full Hamiltonian of the full tessellated system

H[CL] = Hin[CL] +Hout[CL] +Hint[CL] (6.48)

into three parts: (1) Hin[CL] considers only the local contributions from inside the local en-
vironment, i.e. detunings from atoms inside the environment and interactions between atoms
inside the environment. (2) Similarly, Hout[CL] considers only the detunings from atoms out-
side the environment and interactions between atoms outside the environment. (3) Lastly
there are residual interactions Hint[CL] between atoms inside and outside the environment.
As we are only interested in relative energies on some ‘fixed background’ of states outside the
environment Hout[CL] only contributes to an absolute energy shift of the local states. Thus
Hout[CL] neither influences the local energy splitting nor the local energy gap. Thus we essen-
tially only need to consider Hin[CL] and the additional contribution by Hint[CL].
In the proof of theorem XIV we found that the energy splitting is caused only by the long-
range interactions Hlr[CL]. Without the long-range interactions the energy splitting (and thus
in particular the local energy splitting) would vanish. Without the long-range interactions the
energy gap of the tessellated structure would be the minimal energy gap of the local Hamilto-
nians. For the local energy gap the local environment is inside the bulk thus we only consider
identical local Hamiltonians with NA = ps = 3. Thus given some initial structure C

c∪N
(0)
E

of

each site with N
(0)
E amalgamated links the local energy gap would be lower-bounded by (cf.

eq. (6.43))

∆E∞ := min

(
∆Eloc[Cs∪N

(0)
E

], 10
C

(2a)6

)
− C

(2a)6

[
(2P − 3)ζ(5) +

(
1 + ∥L+

s ∥1
|Ls|
2

)

× P (P − 1)

(N
(0)
E + 1)4

(
4.8 +

25.6 + 6.4Ns/(P − 1)

N
(0)
E + 1

+
65.3 + 110.7Ns/(P − 1)

(N
(0)
E + 1)2

)]
.

(6.49)

In the following we assume that the lower bound ∆E∞ > 0 is positive. Now for the local
energy structure we only need to consider long-range interactions contributing in Hin[CL] or
Hint[CL], i.e. long-range interactions which include an atom inside Uloc(R) (the second atom
may be either inside or outside of Uloc(R)). In the proof of theorem XIV the upper bound
Ilr(NE , S) was calculated by considering the long-interactions of a section of S sites with the
infinite honeycomb grid. Hence Ilr(NE , Sloc(R)) can also be applied as an upper bound to the
long-range interactions of the S ≲ Sloc(R) sites inside the local environment.

We obtain δE[CL] ≤ Ilr(NE , S) and ∆E[CL] ≥ ∆E∞−Ilr(NE , S) with S = Sloc(R). Following
this substitution, we obtain the upper-bound for the quality factor

QR[CL] ≥ exp

[
−
(

∆E∞
Ilr(NE , Sloc(R))

− 1

)−1
]
≥ Qlb(NE , Sloc(R)) (6.50)

where Qlb(NE , Sloc(R)) is defined in chap. 6.A.3. If we choose N2
E ≫ R/l sufficiently large

we suppress Ilr(NE , Sloc(R)) and achieve an arbitrarily good lower bound Qlb(NE , Sloc(R)) to
the quality factor.
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6.B.2 ||| Proof for Upper Bounds to local Languages on the HC-Grid

In this subsection we present the proof of corollary XVI. First we briefly recapitulate corollary
XVI:

Corollary XVI (Upper Bounds to local Languages on the Honeycomb Grid).

Consider a tessellated L-complex ([CL]QK , LL,L) on a honeycomb grid of lattice L where
LL is a tessellated language with loop-DOFs. Then for any target Qt ∈ R[0,1] there exists
a finite critical radius Rc(Qt) < ∞ such that for all radii R ≥ Rc(Qt) the local quality
factor is QR[CL] ≤ Qt in the local environment Uloc(R).

Proof.

We want to proceed similarly as in the proof of theorem XI by calculating the energy splitting.
However now we consider the local splitting and we want to quantify it as a function of the
local radius R of Uloc(R) (the proof of theorem XI was qualitative for infinite grids). To
determine a lower bound to the local energy splitting we consider the language LR(0) where
no loops are excited outside of Uloc(R). We measure relative to the energy E0 := E(|0⟩) of the
state |0⟩ where no loops are excited. Additionally we consider the two states |±⟩ where N±
loops are excited in Uloc(R). The loops are positioned on a hexagonal ‘superlattice’ with equal
distances l− > l+ between adjacent loops. We assume that l+ ≥ 3l such that two adjacent
loops are not in adjacent cells. Further we assume that l+ is sufficiently large such that the
mesoscopic loop-loop-interaction energy I(l̃) ≡ Iloop,loop(l̃) + Inoloop,noloop(l̃) − 2Iloop,noloop(l̃)

(cf. eq. (6.1c)) between two loops of distance l̃ decays monotonically for l̃ > l+
a. Such a

distance l+ always exists as I is an algebraic function consisting of finitely many terms which
themselves all monotonically decay to zero with (inverse) exponent γ.

For the three states |0⟩, |+⟩ and |−⟩ we obtain the relative energies

∆E0 = E(|0⟩)− E(|0⟩) = 0, (6.51a)

∆E+ = E(|+⟩)− E(|0⟩) = −N+∆+ I+, (6.51b)

∆E− = E(|−⟩)− E(|0⟩) = −N−∆+ I− (6.51c)

respectively. In eqs. (6.51b) and (6.51c) I± denotes the sum of the loop-loop-interaction
energies I between all pairs of loops. Note that sgn(I+) = sgn(I−) because the summands I
decay monotonically to zero. ∆ ≡ Enoloop − Eloop + Inoloop,noloops − Iloop,noloops was already
defined in eq. (6.1b) for the proof of theorem XI. It corresponds to the difference in the
intrinsic energy of a cell embedded in an environment without loops. Thus ∆ is a function
of the geometry and the detunings while I and thus I± are only functions of the geometry.
Note that state |−⟩ has the same structure as state |+⟩ however the distances l− > l+ between
adjacent loops are larger. Thus for some fixed radius R state |−⟩ possesses less excited loops
than state |+⟩: N− < N+. Further state |−⟩ possesses less interaction energy per loop than
state |+⟩ due to the larger distances l− > l+ between the loops and due to the monotony of
I(l̃) for l̃ > l+: |I−|/N− < |I+|/N+.
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To minimize the splitting of the energies in eq. (6.51) we need to choose ∆ = I+/N+
b such

that ∆E+ = ∆E0 = 0 and ∆E− = −N−(I+/N+ − I−/N−). We assume that R ≥ l+ + 2l is
sufficiently large such that N+ ≥ 3. Then we can lower-bound |∆| = |I+|/N+ ≥ |I(l+)|c. Here
I(l+) is the mesoscopic loop-loop-interaction energy between adjacent loops of distance l+.
Remember that I(l̃) = 0 can only be zero for finitely many values of l̃ as proven in theorem
XI. As we chose l+ sufficiently large such that I(l̃) decays monotonically to zero for l̃ > l+
it is I(l+) = ε ̸= 0. As state |−⟩ has less interaction per loop than state |+⟩, we obtain
∆E− < (>) 0 for I+ > (<) 0. Thus the local energy splitting can be lower-bounded by

δER[CL] ≥ δE[CL]|LR(000) ≥ |∆E−| = N−(|I+|/N+ − |I−|/N−) ≥ N−|ε| − |I−|. (6.52)

Thus to make the lower bound useful we need to determine an upper bound to the interaction
energy I−:

I± ≤ [6(Ns + NE)]
2

∑
i,j∈Z2\0

N±C

2

(
2

[∥∥∥∥∥
[
i + j/2√

3j/2

]∥∥∥∥∥ l± − 2(l + r)

]−6

− 2

[∥∥∥∥∥
[
i + j/2√

3j/2

]∥∥∥∥∥ l± + 2(l + r)

]−6)

≤ 36CN±(Ns + NE)
2
(
[l± − 2(l + r)]

−6 − [l± + 2(l + r)]
−6
) ∑

i,j∈Z2\0

[
i
2
+ ij + j

2
]−6

[18]
≲ 229.53

N±C

l6±
(Ns + NE)

2
[
(1 − x)

−6 − (1 + x)
−6
]∣∣∣

x=2(l+r)/l±
=: I±,ub(N±, l±).

(6.53)

This now defines the lower bound δElb(N−, l−) := N−|ε|− |I−,ub| to the energy splitting. For
sufficiently large distances l− > l+ it is |I−,ub|/N− < |ε| and thus δElb(N−, l−) > 0. In the
following want to choose the distance l− = l∗−(R) > l+ such that the lower bound δElb(N−, l−)
becomes maximal for some fixed R (note that N− = N−(R, l−)). This can be formulated as

I ′−,ub(N−)|R
!≈ ε = constN−, R. (6.54)

Note thatN− is discrete thus this condition can in general be only be fulfilled in approximation.
Further note that the local maxima are not at the boundaries because in the limiting cases
l− = l+, ∞ it is δElb(R) ≤ constR.

Solving condition (6.54) can be easily done numerically (see sec. 6.5). In the following we want
to derive the qualitative behavior to conclude this proof analytically. Note that the area per
excited loop is a hexagon of side-length l±/

√
3 and area Aloop :=

√
3l2±/2. Thus up to boundary

effectsd (e.g. in the continuum limit N± ≪ R↗∞) it is N± ≈ Aloc(R)/Aloop = 2πR2/
√
3l2±.

In eq. (6.53) it is I±,ub = N±f(l±) = N±f̄(N±/R2) with some functions f, f̄ : R → R.
Thus the derivative I ′−,ub(N−)|R = f(N−/R2) +N−/R2f ′(N−/R2) =: f̃(N−/R2) yields some

function f̃ : R → R of N−/R2. Hence condition (6.54) implies N∗
−(R) ∝ R2 and therefore

l∗−(R) = constR. This means that |I−|/N− = constRO(l−7
− ) and we can choose l− = l∗− =

constR such that δElb(N−, l−) > 0. Then the lower bound δElb(R) := δElb(R)|l∗− ∝ R2 on

the energy splitting from eq. (6.52) diverges quadratically with the number of loops N− in
state |−⟩.
As the local energy splitting diverges (quadratically) with the local radius R we can now
argue similarly as in theorem XI. Consider a ground state xxx ∈ L for which the energy splitting
δE[CL]|GR(xxx) is maximized. Now consider the ground state x̃xxmin ∈ LR(xxx) of lowest energy
Emin := E(|x̃xxmin⟩). Note the locally modified ground state of largest energy x̃xxmax ∈ LR(xxx) is
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of energy

Emax := E(|x̃xxmax⟩) = Emin + δER[CL] ≥ Emin + δElb(R). (6.55)

Consider any site s ∈ S of the grid inside Uloc(R) with atoms Ns. In ground state |x̃xxmin⟩ we
can always de-excite some atom(s) (e.g. one ancillary if there is one) to obtain an excited state
x̃xx∗ /∈ L. Exemplary consider the word x̃xx∗ with x̃∗

i = 0 for i ∈ Ns and x̃∗
i = (x̃min)i else

e. In
x̃xx∗ all atoms (including the ports) of site s are not excited. As 000 /∈ L (by remark 4) we know
that x̃xx∗ ∈ ER(xxx) is a locally excited state. The energy of x̃xx∗ can be upper-bounded by

E∗ := E(|x̃xx∗⟩) ≤ Emin +
∑
i∈Ns

∆i. (6.56)

Eq. (6.56) in combination with eq. (6.55) yields an upper bound ∆ER[CL] ≤
∑

i∈Ns
∆i −

δElb(R) =: ∆Eub(R). The ratio Qlb(R) := δElb(R)/∆Eub(R) defines the upper bound
Qub(R) := Θ(Qlb(R)) exp [−Qlb(R)] to the quality factor. As δElb(R) ∝ R2 grows quadrati-
cally there exists some finite critical radius Rc(Qt) such that Qub(R) < Qt for R ≥ Rc(Qt).
In particular for Qt = 0 there exists some finite critical radius Rc(Qt) such that ∆Eub(R) < 0
for R > Rc(Qt).

aRemember that I may be negative. I(l̃) may be zero for finitely many values of l̃.
bFor ∆ = I+/N+ it is ∆E0 = ∆E+ = 0 and ∆E− = −N−(I+/N+ − I−/N−), i.e. δER = N−(|I+|/N+ −

|I−|/N−). Consider ∆I+/N+ > (<)0: By decreasing (increasing) ∆, ∆E+ = −N+∆+ I+ ∝ −N+∆ increases
(decreases) faster than ∆E− = −N−∆ + I− ∝ −N−∆, i.e. δER increases. By increasing (decreasing) ∆,
∆E− = −N−∆+ I− ∝ −N−∆ decreases (increases) faster than ∆E0 = 0, i.e. δER increases.

cIn the limit R → ∞ we would find ∆ ≳ 3|I(l+)|
dThe total number of loops can be upper-bounded (lower-bounded) by:

N±(R, l±) ≲ (≳) Aloc(R+ (−) l±/
√
3)/Aloop = π(R+ (−) l±/

√
3)2/

√
3l2±/2.

eThis choice is possible for every language but arguably not the best choice for most languages.
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“Information is the resolution of uncertainty.”

– C. Shannon, ‘A Mathematical Theory of Communication’[36] (1948)

In chap. 4 we introduced the logic elementaries as building blocks for the amalgamation of
larger Rydberg complexes. Here, for all PXP-minimal logic elementaries (sec. 4.1) we were able
to achieve a perfect quality factor. Furthermore for all VdW-specific logic elementaries (sec.
4.2, sec. 4.2 and app. 4.A) except for the CRS2a-gate, we were able to achieve perfect quality.
However for the asymmetric CRS2a-gate (see fig. 4.8) we were not able to apply theorem V (or
its corollaries) therefore there remains a numerical error in the quality. Similarly for the SCUI

unit cells from sec. 5.1 we showed in app. 5.A.1 that we can not achieve perfect ground state
degeneracy. These are peculiar cases for which we would like to possess tools which guarantee us
to achieve perfect quality. This motivates to introduce the concept of virtual ancillaries in the
next sec. 7.1.

In the VdW model there arise residual interactions (2.14) between amalgamated structures. This
leads us to generalize the concept of virtual ancillaries to general target functions in sec. 7.2. We
derive theorem XVII which is a key result of this theses. It secures that any Boolean function or
any check function can be constructed from the elementary building blocks with perfect quality.
The downside is that theorem XVII requires generally exponentially1 many ancillaries. This
problem is discussed in outlook 7.3. Here we introduce a counting argument which suggests
that we require in general exponentially many ancillaries to implement target functions on the
Rydberg platform. However this is far from a rigorous proof and leaves room for future research.

1Exponential in the number of DOFs.
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7.1 ||| Virtual Ancillaries

In the previous chapters we rarely stumbled across elementaries for which we were not able
to achieve perfect quality. For most of them we were even able to achieve very good qualities.
These were most notably the CRS2a-gate from fig. 4.8 and the amalgamated loop model unit cells
SCUI-1, SCUI-2a,b and FMUI-1,2,3 from figs. 5.1 - 5.6. Here we are not able to apply theorem
V: There are too few DOFs in the detunings and too many ground states such that we are not
able to compensate for the residual long-range interactions in the ground states. Furthermore
there are too few intrinsic symmetries which could be exploited to effectively reduce the number
of ground states for corollary IX. Thus restricts us to numerically optimizing the quality factor
using the the minimization algorithm 3.2. For the CRS2a-gate this seems to work great as we
can achieve almost perfect quality Q ≈ 99.9996%. There seems to exist a structure with perfect
degeneracy however numerically we can only approximate it (to good precision). For larger
structures like the amalgamated loop model unit cells SCUI-1, SCUI-2a,b and FMUI-2,3 the
numeric optimization is computationally more intensive. It is problematic that for these unit
cells a better quality factor seems to imply a smaller effective gap. In app. 5.A.1 and 5.B.2 we
are able to proof that there can not exist a (symmetric) structure with a vanishing ground state
splitting for these languages. Thus to achieve a vanishing energy splitting for such complexes we
need to invent a new strategy which is introduced in the following.

The Concept. We want to start with an initial high-Q L-complex. The goal is to apply theorem
V or its corollaries. The idea is to modify the languages by introducing virtual ancillaries. These
ancillaries are not necessary to implement the language in the model but only serve the purpose
to introduce additional DOFs to the complex (that why we call them virtual). Ideally the virtual
ancillaries should not strongly modify or impede the energy structure and we want to introduce
as few virtual ancillaries as possible. In the following we formalize this concept. Consider a(n
effective and/or extended) language matrix LLL of rank rank(LLL) = r with g > r ground states.
The issue is that rank(LLLAug) = r + 1 > r. The idea is to modify the language by appending

ancillary bits such that the modified language matrix L̃LL is of rank rank(L̃LL) = g. Then the words
are linear independent and we can apply theorem V. This concept is generalized in sec. 7.2 with
theorem XVII to general Boolean functions.

Achieving perfect Quality. In the following we want to illustrate this concept by exemplary
applying it to the VdW-minimal crossing CRS-2a, the PXP-minimal SCUI-1 unit cell and the
VdW-minimal SCUI-2b unit cell. As a naive ansatz one could try to append only a single virtual
ancillary i finely tuning its detuning ∆i and position rrri to its ground states. However this turns
out as no useful ansatz: adding only one ancillary without modifying the other atoms heavily
distorts the energy structure. Ground states where the virtual ancillary is excited would be
energetically shifted by the detuning (plus additional interactions) whereas ground states where
the virtual ancillary is not excited would not be shifted energetically. The energetic shift from
the detuning can not be compensated by strong interaction energies, because then the state
where the virtual ancillary is not excited would be energetically equally favorable. Furthermore
the interaction energies would be generally very different for different ground states.
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Figure 7.1: Virtual ancillaries (dashed nodes) appended to the VdW-minimal CRS-2a-gate 4.8, the
PXP-minimal SCUI-1 unit cell 5.1 and the VdW-minimal SCUI-2b unit cell 5.2. We only include the
language matrix of the CRS-2a-gate as the other language matrices would be quite large. Here we
note only the states of the appended ancillary. The L-complexes without the virtual ancillaries are
displayed in figure 4.8, 5.1 and 5.2 respectively.
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Instead, to minimize the distortion we have essentially two possibilities:

1 We amalgamate a virtual logic gate C2 for which we can apply theorem V (e.g. a logic
gate from chap. 4) to the initial structure C1. Here γ2 should include the input ports of
C2 such that no additional input ports are introduced in the appended language Lγ . Then
the atoms of the virtual gate C2 are a function of the initial input ports of C1. Thus such
an amalgamation does not change the number of the ground states.
Natural candidates for the amalgamation are the NOR3- and the NAND3-gates as they intro-
duce only one additional ancillary (the output port of C2) and they possess a large effective
gap. This ansatz is applied in the first row in fig. 7.1 by amalgamating a NOR3-gate to the
input ports of the CRS2a-gate. The additional long-rang interactions between the amalga-
mated structures slightly distort the energy structure. The downside of this ansatz is that
it may not be atom-efficient for every geometry. The virtual ancillary might need to be a
function of atoms which are quite distant of each other. Then one would need to introduce
additional LNK-gates which would create a large overhead of ancillaries. Therefore for the
SCUI unit cells we choose the second ansatz.

2 A second ansatz is to append a logic gate (e.g. a NOT1-gate) to the L-complex finely tuning
its detuning and position such that the necessary ground states are gapped-out. This
directly relies on exploiting the long-range interactions between atoms and is not based on
amalgamation. Thus it can be expected that this ansatz in general yields smaller effective
gaps. This ansatz might be more atoms-efficient but the fine-tuning might be complicated
and numerically intensive for larger structures. This ansatz is applied in the second and
third row where we appended two NOT1-gates to the SCUI-1 and the SCUI-2b unit cell.
Here the NOT1-gates are fine-tuned such that one of its atoms is excited in precisely one
ground state. This increases the rank by one for each gate.

Using these methods we can construct a language matrix which is of full rank and which allows
the application of theorem V. Thus all the elementaries portrayed in fig. 7.1 possess perfect
quality Q = 1. The elementaries are optimized for ∆Eeff. Note that the appended bits break
some symmetries of the SCUI-languages, thus their optimized structures are not C2-symmetric
anymore. Furthermore the virtual ancillaries are positioned outside of the unit cell and would
strongly interact with the atoms of a neighboring unit cell. Thus we can not directly tessellate
the SCUI-structures. First we would need to add interstitial NOT- or LNK-gates to the ports.
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7.2 ||| Implementability of Boolean Functions

In the following consider an arbitrary Boolean function ft : Fk
2 → Fq

2 with k input bits and q
output bits. For q > 1 the Boolean functions is vectorial. A corresponding L-complex possesses
k input ports and q output ports. We formulate the theorem:

Theorem XVII (Implementability of Boolean Functions).

For every Boolean function ft = fb ∈ (Fq
2)

Fk
2 or for every check function ft = fc ∈

(F2)
Fk
2 , there exists an L-complex (CQK , L[ft],L) which implements the target function ft

as its gapped low-energy eigenspace

H0[C] ∼=L H(L[ft]) (7.1)

with quality factor Q = 1 in the VdW model on the d ≥ 2-dimensional Rydberg platform.

The Algorithm. The proof of this theorem is constructive, i.e. we formulate an algorithm
which outputs the structure C. We do not want to portray the proof in this section but instead
attach it in the app. 7.A. The main idea for the construction is that we require a structure
with sufficient DOFs such that we can apply theorem V. The algorithm is inspired from the
proof from theorem XIV in app. 6.A.3: In the proof we split the Hamiltonian and argue that
we can achieve an arbitrarily small ratios Q[C] for the structure choosing a sufficiently large
edge-length NE between adjacent gates. In this proof we are not interested in quantitative
estimates but only in the conceptual argument thus we stick to qualitative reasoning. It would
be straightforward however time-consuming to calculate a lower bound to the energy gap ∆E[C]
analogous to theorem XIV. We do not consider this as useful because such a construction would
be in general far from minimal in the number of atoms. The argument is more of academic
interest: It illustrates the possibility of the Rydberg platform to implement any target function.
This is based on a ‘beautiful’ interplay between numerics and analytics: Numerically we calculate
and optimize the energy structure of the logic elementaries we require to construct the target
function. Analytically with theorem V we achieve degeneracy.

The Target Functions. Theorem XVII treats target functions defined by Boolean functions
ft = fb and target functions defined by check functions ft = fc equally, the statement is valid
for both cases. This has been applied in sec. 7.1 where we added virtual ancillaries to known
L-complexes to incorporate additional DOFs and achieve degeneracy. In fact the proof for check
functions is inferred as a ‘corollary’ from the statement for Boolean functions. We can treat
target functions defined by check functions simply like Boolean functions. Then theorem XVII
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yields a structure which implements the Boolean target function as its degenerate, gapped
low-energy eigenspace. This includes some states where fc(xxx) = 0. By increasing the detuning
of the output port we can lower the eigenenergy of the eigenstates with fc(xxx) = 1 by equal
amount. This gaps-out the eigenstates with fc(xxx) = 0 and we obtain a positive energy gap while
conserving the degeneracy of the ground states with fc(xxx) = 1. This yields theorem XVII for
ft = fc.

Exponentially Many Ancillaries. At first glance it might come as a surprise that theorem
XVII is valid for check functions as target functions because we know from theorem XI that we
can not implement tessellated languages with loop-DOFs as the gapped low-energy eigenspace
of a structure. However theorem XVII only makes claims about check functions which repre-
sent one site or vertex of the tessellated structure. Theorem XVII states that we can achieve
degeneracy for any such vertex or site but makes no statement about how they behave under
tessellation. This was exemplarily applied to the surface code unit-cells SCUI-1 and SCUI-2b

in fig. 7.1 from sec. 7.1. As proven in app. 5.A.1 we can not achieve degeneracy for these
(symmetric) unit-cells but we can add the additional DOFs from the virtual ancillaries to apply
theorem V. To make statements about the tessellated structure we would require to treat the
full ‘tessellated target functions’ as one check function and apply theorem XVII. In such a way
we could implement the language as the low-energy eigenspace of a structure. However such a
structure constructed by theorem XVII would never be a tessellated structure. Theorem XVII
requires exponentially2 many ancillaries which is fundamentally incompatible with a tessellated
structure which possesses linearly many ancillaries due to translational invariance. Therefore
theorem XVII (of course) is perfectly compatible with theorem XI.

Independent Boolean DOFs. Similarly we can not simply generalize the argument of the
‘no-go’-theorem XI to Boolean functions. As a quick reminder in the proof of theorem XI we
introduced mesoscopic ‘loop-loop’ interaction energies which were only functions of the geometry.
As the loops are independent Boolean DOFs, these mesoscopic interaction energies need to
vanish such that we can achieve ground state degeneracy. Using the translational invariance of
the tessellated structure we were able to proof that the mesoscopic interaction energies in general
can not vanish. Then we argued that the energy splittings introduced by finite mesoscopic
interactions energies add up such that they are always larger than the energy gap for large
tessellated structures. We want to make some remarks why one can not simply generalize this
argument to Boolean functions:
Firstly we note that Boolean functions possess in general no independent Boolean DOFs. If
we disassemble a Boolean function into any concatenation of logic elementaries the independent
inputs in general need to be evaluated multiple times. For simplicity we can consider the special
case of a read-once Boolean function with a ‘tree-level’ realization. Still any input bits can
modify the other bits on the same ‘branch’ below itself in the tree. Analogously to theorem XI
we can now try to derive a mesoscopic interaction energy between these ‘branches’ (instead of
loops) of the tree. However such branches of two bits always overlap somewhere down the tree.
Thus the two bits are not independent DOFs iff the information of one bit is not annihilated in
the branch before intersecting the other branch. This is in particular the case if the output is
dependent on the state of both bits. In this case such a mesoscopic ‘branch-branch’ interaction
energy always depends on the detunings of the atoms on the branch. Now we can assume that
our Boolean-function is non-linear such that there exist some bits in some state where the
information of one bit is annihilated along the branch before intersecting the other branch. Then
again the mesoscopic ‘branch-branch’ interaction energy is only dependent on the geometry and

2in the number of ports
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we have independent Boolean DOFs. The mesoscopic interaction energy needs to vanish which
yields a condition similarly to eq. (6.2b) which. However still Boolean functions are not
translational invariant which was applied in the proof of theorem XI to derive a contradiction.
For some realizations of the Boolean function where every other bit is fully independent of one
input bit this actually yields a contradiction. However this only tells us that there exist some
implementations of Boolean functions for which we can not achieve ground state degeneracy
(which is not very surprising). However this makes no statement at all about whether we can
achieve ground state degeneracy in any realization of the Boolean function (with polynomial
many ancillaries). Thus in a nutshell, the ansatz of treating Boolean functions analogous to
the mesoscopic independent loop-DOFs from theorem XI turned out not very fruitful.
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7.3 ||| Outlook: Sub-exponential Realizations

Note that for Boolean target functions with k input bits there are g = 2k (exponentially)
many ground states. Thus the construction from theorem XVII requires exponentially many
ancillaries. For the d = 2-dimensional case the realization requires additional CRS- or ICRS-
gates which further increases the number of required ancillaries. The construction ‘blows up’
the target function to obtain sufficient DOFs and sufficiently small residual interactions such
that we can apply theorem V. Reasonably the question arises whether this upper bound to the
number of required ancillaries is good or whether we can construct Boolean functions with only
polynomial many ancillaries. In this section we want to motivate that in general one does require
exponentially many ancillaries. We start with a counting argument against such sub-exponential
realizations (in the number of ancillaries) in the next subsec. 7.3.1. This is illustrated in subsec.
7.3.2 via limiting or high-dimensional examples for which the counting argument does not apply.

7.3.1 ||| A counting Argument against sub-exponential Realizations

In this subsection we want to introduce a counting argument which leads us to believe that for
general target functions we do in fact require exponentially many ancillaries to implement a gen-
eral Boolean function on the Rydberg platform as a degenerate, gapped low-energy eigenspace.
Note that this argument is far from a rigorous proof. Instead it should be understood as an
outlook, a motivation or a starting point for possible future research.

Consider the Rydberg L-complex of a Boolean function with a gapped, degenerate low-energy
eigenspace. As the structure is degenerate the linear system (3.28) is solvable with ∆̃i = ∆i

and hence it must be rank(L̃LLAug) = rank(L̃LL). This implies that coker(L̃LLAug) = coker(L̃LL) where

coker(AAA) = ker(AAAT ) is the cokernel of a matrix AAA. In other words: if the ground states in L̃LL are

linear dependent via some vector yyy ∈ coker(L̃LL), then the right-hand side of the linear system b̃bb
must share this linear dependency:

⟨yyy | b̃bb⟩ !
= 0. (7.2)

Now we assume that we have exponentially many ground states g ∼ 2k but polynomial many
ancillaries a ∼ p(k). Here p ∈ R[X] denotes some polynomial function. This implies that the

structure possesses N ∼ p(k) atoms, thus the language matrix L̃LL ∈ Fg×N
2 is very tall-and-skinny

for large k. The rank of the language matrix is r := rank(L̃LL) ≤ N therefore the cokernel is of
dimension g − r ≳ 2k − p(k) ∼ 2k. This means that there exist ∼ 2k linear independent vector

yyy ∈ coker(L̃LL) which need to be orthogonal to the right-hand side of the linear system b̃bb. b̃bb is
a function of the interaction energies and thus of the geometry but independent of the detun-
ings. Thus for g ∼ 2k (exponentially) many ground states there are exponentially many linear
independent constraints of the form (7.2) on the geometry. However there are only dN ∼ p(k)
(polynomial many) DOFs in the geometry which we can use to fulfill the exponentially many
linear independent constraints.
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Such exponentially many constraints can in fact be fulfilled with polynomial many ancillaries in
highly symmetric L-complexes. For such L-complexes we can introduce effective ground states
and the effective language matrix which effectively reduces the rows in the language matrix to
geff ∼ p(k). However to achieve such high symmetries between k ports it seems that we require a
Rydberg platform of dimension d ∼ k. This is illustrated via brief examples in the next subsec-
tion. This leads us to believe that for general Boolean functions fb on the d ≤ 3-dimensional
Rydberg platform we can not choose a realization with polynomial many ancillaries which we
can implement in the VdW model. The constraint on the dimension and thus on the symmetry
seems to imply that a proof for this conjecture can not be formulated on general ground on the
level of the linear system (3.28) (as done above). Instead it seems that this is a question about
the embeddability of geometries fulfilling exponentially many constraints (7.2).

As a closing remark we want to note that if we do not require perfect degeneracy then this
question becomes qualitatively different. In theorem XVII we require exponentially many an-
cillaries to apply theorem V and to achieve perfect degeneracy. However even without theorem
V the algorithm from the proof of theorem XVII can achieve arbitrarily small energy-splitting
by choosing sufficiently large distances between gates. However only for infinite distances (and
therefore infinite number of ancillaries) this would yield perfect degeneracy.

7.3.2 ||| Examples in limiting cases

In this chapter we want to illustrate that there may exist unphysical or high-dimensional struc-
tures with linearly3 many ancillaries for which it is possible to achieve a degenerate, gapped
low-energy eigenspace.

The regular k-Polygon of NOT-Gates. As a simple but somewhat artificial (and unphysical)
example consider the structure of k ports and a = k ancillaries. The ports and ancillaries
construct two concentric Dk-symmetric regular k-polygons of radii rK and rA respectively. Each
atom possesses equal detuning. We consider the product language L = L

⊗∅k
NOT1 where each

port is in blockade with its nearest ancillary. It is easy to see that for rA ≈ rK ≫ krB,i the
structure implements the language L as its gapped low-energy eigenspace. In this case the L-
complex essentially reduces to k distant NOT1-gates. In the limit rA → rK the ground states are
degenerate because each ground state looks the same to the Hamiltonian. This limit however
is quite unphysical as it requires two different atoms to inhabit the same position. Nevertheless
this illustrates that for almost-degenerate, gapped low-energy eigenspaces there may very well
exist physical structures and that for fully-degenerate, gapped low-energy eigenspaces there may
exist unphysical structures. The language above is constructed as a factorizable language. We
are interested in whether we can construct a more physical, non-factorizable L-complex.

The Polytope of Ports. Consider a regular 2k − 1-polytope of k input ports and a = k
ancillaries of equal detunings ∆i < kC/r6ij and ∆i > (k− 1)C/r6ij. For such a polytope-structure
on the 2k − 1-dimensional Rydberg platform each state where exactly k atoms are excited is
degenerate and gapped-out. However, this is no well-defined Boolean language.
Instead we consider a regular k − 1-polytope of k input ports of equal detunings. The idea is to
choose the structure highly symmetric such that we can reduce the language to k + 1 effective
ground states where 0, 1, . . . k ports are excited. We add ancillaries along orthogonal directions
to prevent breaking the symmetries between the ports. It turns out the most useful ansatz

3in the number k of input ports
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to choose the (equal) distances between the input ports such that the effective ground states
with k − 2n and k − 2n − 1 (for n ∈ N0) excited input ports are degenerate. Furthermore it
turns out useful to choose the realization such that only the n− 1-th ancillary is excited in the
effective ground states with k − 2n and k − 2n− 1 (for n ∈ N0) excited input ports. In this way
we are able to formulate an algorithm which constructs L-complexes of a Boolean language
with Q = 1 as a function of the number of input ports k. This algorithm however has two
important downsides: First it works only for k ≤ 9 input ports because for larger numbers of
port the energy gap seems to become negative. Secondly it requires an Rydberg platform of large
dimension d = N − 1 = k+ ⌊k/2⌋− 1 to achieve sufficiently many symmetries and to reduce the
number of effective ground states. This illustrates that for high-dimensional structures it might
be possible to choose linearly many ancillaries to achieve ground state degeneracy. However such
structures are not embeddable in the three-dimensional Rydberg platform.
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7.A ||| Proof of the Implementability of Boolean Func-
tions

In this section we present the proof of theorem XVII. The proof is constructive and describes an
algorithm to construct the structure C. First we briefly recapitulate theorem XVII:

Theorem XVII (Implementability of Boolean Functions).

For every Boolean function ft = fb ∈ (Fq
2)

Fk
2 or for every check function ft = fc ∈

(F2)
Fk
2 , there exists an L-complex (CQK , L[ft],L) which implements the target function ft

as its gapped low-energy eigenspace

H0[C] ∼=L H(L[ft]) (7.3)

with quality factor Q = 1 in the VdW model on the d ≥ 2-dimensional Rydberg platform.

The following proof is based on the unique representation of each Boolean function as a full
disjunctive normal form (fDNF). Note that this choice for the proof is arbitrary and we could
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Figure 7.2: Sketch of the the construction for a scalar, ternary Boolean function ft = fb according
to the proof of theorem XVII. There are k = 3 input ports and g = 23 ground states and minterms.
The q = 1 fDNF of the Boolean function is the disjunction of wH(fb) = 5 of these minterms. For
a vectorial Boolean function there would be multiple outputs.

similarly consider the de Morgan-dual realization with the full conjunctive normal form (fCNF)
which is based on the conjunction of maxterms. Other normal forms are less natural to choose
for the proof.

Proof.

We want to prove theorem XVII for general target functions either defined by a (vectorial)
Boolean function ft = fb or by a check function ft = fc. Thus for ft = fb we associate
fc := 1 and for ft = fc we associate fb := fc. Then for k input bits there exist g = wH(fc)
ground states xxx ∈ L[ft]. Here wH is the Hamming weight which gives the cardinality of the
support.

The idea is to consider the unique full disjunctive normal form (fDNF) of the check-function

fc : Fk
2 → F2 : xxx 7→

g∨
i=1

k∧
j=1

(¬)ijxj . (7.4)

The fDNF consists of g disjunctions of pairwise different minterms. Each minterm is a con-
junction of k literals including each variable precisely once. Note that the i-th minterm
Qi :=

∧k
j=1(¬)ijxj of state xxx is one if and only if xxx = xxxi is the i-th ground state. The j-th

literal of the i-th minterm (¬)ijxj is positive iff the j-th bit in the i-th ground state is pos-
itive. To realize the Boolean functions fb we construct its fDNF as the disjunction of the
pairwise different minterms Qi. If ft = fb is vectorial then we construct one such fDNF for
each component.

Now we want to implement each minterm Qi for i ∈ {1, . . . g} and fb on the Rydberg platform
in the VdW model. An example of the construction is sketched in fig. 7.2. The g minterms in-
clude in total at most NAND = g(k−1) binary conjunctions AND (and negations NOT). The fDNF
of fb additionally includes at most NOR = g−1 binary disjunctions OR. We need NCPY = k(g−1)
CPY2-gates with two outputs to multiply the input ports for the AND-gates. For the d = 2-
dimensional Rydberg platform we also need NCRS = δd,2NAND(NAND − 1)k(k − 1)/4 crossings
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CRS. We denote the set of these AND-, OR-, CPY- and CRS-gates as G. Thus the total number of
(non-triviala) gates is

|G| = NAND +NOR +NCPY +NCRS = O(gk) + δd,2O(g2k4), (7.5)

linear (quadratic) in g for the d ≥ 3 (d = 2)-dimensional Rydberg platform. Each gate g ∈ G
is connected via at most (k + 1)g + 2NCRS NE-chains (this includes NOTm-gatesb) such that
the distance between gates scales with NE . Each NE-chain consists of NE +1 atoms, thus we
can estimate the total number of atoms N = O(gk) (N = O(g2k4)) for the two-dimensional
(three-dimensional) Rydberg platform.

Now we follow the argument from the proof of theorem XIV in app. 6.A.3. We split the full
Hamiltonian of the amalgamated system

H[C] =
∑

g∈G
Hloc[Cg∪NE

] +Hlr[C] (7.6)

in local Hamiltonians H[Cg∪NE
] and a long-range Hamiltonians Hlr[C]. Here Cg∪NE

denotes
gate g with NE + 1 amalgamated dummies which (in a nutshell) interact with themselves via
the reduced interaction strength C̃ (cf. eq. (6.36)). They are formally defined in app. 6.A.3.
The introduction of dummies prevents over-counting of interaction energies between atoms of
the same edge. Thus the local Hamiltonians may differ in the type of the gate g and in the
number of edges which are associated with dummies. The idea of this artificial splitting (7.6)
is the following: Ignoring the long-range Hamiltonian (i.e. for NE ↗∞) the energy gap of the
amalgamated structure would be given by the minimal energy gap of the local Hamiltonians
(cf. eq. (6.37)):

∆E[C] Hlr=0
= min

g∈G
∆Eloc[Cg∪NE

] =: ∆E∞(NE). (7.7)

If condition (6.43) is fulfilled with s 7→ g for some N
(0)
E and all g ∈ G (i.e. if ∆Eloc[Cg∪N

(0)
E

] is

sufficiently large) then there exists a lower bound ∆E∞(NE) > ∆E∞ independent of length
NE of the chains. Note that for all the PXP-minimal elementaries from fig. 4.6 and for the
VdW-minimal elementaries from fig. 4.9 we can construct such structures numerically such
that ∆E∞ > 0. This allows us to assume that ∆E∞(NE) > 0 and Q[C]|NE↗∞ = 1.

Now we need to include the long-range interactions. We constructed the structure above such
that the distance between adjacent gates scales with NE . As the number of atoms at the edges
scales with NE as well the long-range interactions energies Hlr[C] = O(1/N4

E) are suppressed
withNE (cf. eq. (6.42)). If we chooseNE sufficiently large then we can arbitrarily suppress the
perturbation introduced by Hlr[C]. In particular ∆E[C] ≥ 0 of the full Hamiltonian remains
positive and δE[C]≪ 1 of the full Hamiltonian is arbitrarily small.

Note that so far the proof treated target functions defined via Boolean functions ft ≡ fb and
target functions defined via check functions ft ≡ fc equally. For latter case we treat the check
function as a Boolean function fb ≡ fc. With sufficient ancillaries we are able to construct a
structure which implements fb as its gapped low-energy eigenspace. However this low-energy
eigenspace includes every configuration xxx ∈ FN

2 of the ports independent whether fc(xxx) = 1 or
fc(xxx) = 0. To gap-out the support of the check-function we increase the detuning of the output
port of fb ≡ fc. This energetically lowers the eigenenergy of the eigenstates with fc(xxx) = 1 by
equal amount while conserving the energy splitting of the support and the energy gap to the
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excited states of fb ≡ fc. We can gap-out the excited states xxx with fc(xxx) = 0 sufficiently much
such that they do not impede the energy gap. Then we can again continue for both cases is
similar way.

Thanks to our construction from above for each ground state xxxi for i ∈ {1, . . . g} there exists
a minterm Qi which is one if and only if the system is in state |xxx⟩ = |xxxi⟩. Thus the language
matrix necessarily is of full row rank g and the ground states are linear independent. If we
choose NE sufficiently large such that Q[C] is sufficiently small, this allows us to apply theorem
V to achieve Q[C] = 1.

aWe do not consider the primitive gates NOT and LNK here. They are included in the NE-chains below.
bFor NE = 2m even with m ∈ N we obtain an LNKm-gate, for NE = 2m − 1 odd with m ∈ N we obtain a

NOTm-gate.
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“In the history of science it happens not infrequently that a re-
ductionist approach leads to a spectacular success. Frequently
the understanding of a complicated system as a whole is impos-
sible without an understanding of its component parts.”

– Freeman Dyson, ‘The Scientist as Rebel’ (2006)

So far in this thesis we considered structures on the d = 2-dimensional Rydberg platform. In
two dimensions we were able to reconstruct the PXP-minimal logic elementaries (sec. 4.1) and
introduce new more atom-efficient VdW-specific elementaries (cf. sec. 4.2 and sec. 4.3) with
degenerate ground states. For most of them the energy gap turned out sufficiently large with
only few exceptions such as most notably the XNOR3i-gate. Thus one could reasonably question
whether we are able to improve the XNOR3i-gate when including the third spatial dimension.
Afterwards in chap. 5 we studied the elementaries of two exemplary tessellated languages. For
the surface code we found that we can not implement the unit cell on the d = 2-dimensional
Rydberg platform with only one ancillary. Here the question arises whether we are able to
implement the surface code unit cell in three dimensions with only one ancillary if we allow the
ancillary to be located outside the plane of the ports.
These are two interesting examples which motivate us to study Rydberg structures in higher
(mainly in three) dimensions. As it turns out including the additional DOFs offered by the
additional spatial dimension is very fruitful to construct new and more efficient gates in the
VdW model.

Constructing Rydberg structures in three dimensions can be considered the logical next step for
constructing elementary Rydberg structures. However, controlling atoms in three dimensions is
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experimentally much more demanding. In d = 2 dimensions one can exploit the third dimension
to access and control the atoms. Quantum gas microscopes[22] allow for the preparation of two-
dimensional lattices of hundreds of atoms. Another ansatz uses large arrays of optical tweezers[3,
31] which allow individual control of ∼ 50 atoms. More recently individual control of ∼ 100
atoms was achieved for arbitrarily shaped three-dimensional arrays in d = 3 dimensions[4]. Thus
experimentally implementing the Rydberg structures portrayed in this chapter is within reach
of state-of-the-art technology.

Quasiplanarity. In this context we want to introduce the concept of ‘quasiplanarity ’. In the
following Rydberg complexes or their geometries are called ‘quasiplanar’ if the ports of the
complex lie within a two-dimensional plane. The ancillaries of the quasiplanar complex may
be shifted outside the plane of the ports. Note that every complex with only three ports is
necessarily quasiplanar, e.g. the elementary logic gates with two input ports and one output
port or the Fibonacci model sites. For complexes with four ports (e.g. for the (inverted)
crossings or the surface code unit cells) requesting quasiplanarity restricts the DOFs of the ports.
Such quasiplanar geometries allow for the amalgamation into large, ‘thin’ Rydberg complexes
where only the elementary building blocks themselves are three-dimensional. The idea is that
such quasiplanar geometries may be experimentally less demanding than true three-dimensional
geometries with a bulk of atoms, and thus allow for the control of large numbers of atoms. Thus
in this chapter we want to focus particularly on quasiplanar structures.

Visualizing three-dimensional Structures. Before we can start with the results we want to
conclude this introduction with some remarks about the visualization. The Rydberg structures
are now three-dimensional which which we need to visualize as a two-dimensional figure. For the
following figures we use the oblique graphical projection which uses angled parallel rays to project
onto the two-dimensional plane. This corresponds to the point of view of an infinitely distant
observer looking at the structure under an angle. We choose the polar angle ϑ ≈ 6.40◦1 and the
azimuthal angle φ ≈ 26.50◦ in spherical coordinates where the reference plane is the projection
plane. This ‘shifts’ atoms with a positive z-coordinate to the bottom-left and atoms with a
negative z-coordinate to the top-right. This prevents that atoms of the same x,y-coordinates
‘hide’ behind each other.
The orthographic-projected position of the atoms (with orthogonal rays where ϑ = 0) is denoted
by a dashed line from the oblique-projected position. For quasiplanar structures we choose the
plane of the ports as the projection plane. For non-quasiplanar structures (with at least four
ports) we choose the plane of three ports (usually defined by their D3-symmetry). Black lines
between the atoms are used for a clearer visualization. Note that they can not be interpreted as
blockades anymore. Inspired from the Natta projection we visualize atoms in the foreground
with wedge-shaped bold bonds and atoms in the background with wedge-shaped thin bonds.
As for the two-dimensional structures we continue drawing the blockade radii as dashed circles
around the oblique-projected positions of the atoms. Note that in three dimension the blockade
radii now trace-out 2-spheres from which we draw only the projection of the equatorial great
circle. Thus for three-dimensional structures one has to be even more cautious about the physical
interpretation of the circles: they can only make clear statements about the blockade of two atoms
if the atoms posses the same z-coordinate.

In this chapter we want to start (similarly as for the two-dimensional structures) with the logic
elementaries in sections 8.1 – 8.4. Then we continue studying the surface code in sec. 8.5 and
we finish with the Fibonacci model in sec. 8.6.

1Note that the polar angle is relatively small. Thus the projection is almost orthographic.
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8.1 ||| Binary Logic Elementaries

In this section we study implementations of the binary logic elementaries in three dimensions.
Initially we consider the VdW-minimal logic gates and in particular the XNOR3i-gate (fig. 4.9)
which was already mentioned above as an introductory example. Then we continue by introduc-
ing a family of gates based on the PXP-minimal ICRS1-gate from fig. 4.4. Ternary logic gates
are studied in the next sec. 8.2.

8.1.1 ||| VdW-specific logic Elementaries

In this subsection we want to focus on the VdW-minimal realizations of the logic elementaries
which were presented in sec. 4.2. Here we ignore the (inverted) crossings introduced in fig. 4.8.
We need to introduce these crossing gates to implement logic circuits on the two-dimensional
Rydberg platform. However for the three-dimensional Rydberg platform there is no necessity for
introducing such gates. Here the edges may be skewed to exchange bits without a crossing. Thus
it is of little use to discuss implementations for the (inverted) crossings in three dimensions.
For all the remaining VdW-specific gates presented in the sec. 4.2 and sec. 4.3 (and app.
4.A2) we are able to achieve ground state degeneracy. For all of them except for the XNOR3i-
gate we obtained effective gaps of order ∆Eeff ∼ 50%, i.e. similar as for the PXP-minimal
logic gates from fig. 4.5 and 4.6. However for the XNOR3i-gate (see fig. 4.9) the effective
gap ∆Eeff[XNOR3i] ≈ 0.633% is by two orders of magnitude smaller than for the PXP-minimal
realization in fig. 4.6. Thus it is interesting to study whether the XNOR3i-gate can profit from
the additional DOFs introduced by the additional spatial dimension.

The remaining VdW-specific logic Elementaries. For all the other VdW-specific logic
gates from sec. 4.2 and sec. 4.3 except for the XNOR3i-gate we reasonably expect no improvement
in the effective gap by embedding in three dimensions: the NOR3- and the NAND3-gate possess
only three atoms which lie in a 2D-plane anyway. In the optimized XOR3-gate of fig. 4.9 the
ports are located in an equilateral triangle of a fixed distance which optimizes the effective gap.
The ancillary needs to be sufficiently close to the ports to remain in blockade but it can be
located anywhere in the finite gray-shaded volume without modifying the effective gap. Here
we can for simplicity just choose a planar structure without impeding the effective gap. The
OR3-, the AND3- and the non-minimal XNOR4a-gate are constructed as a negation of the previous
three gates by amalgamating a NOT1-gate to the output port. Here to maximize the effective
gap we want to minimize the residual interactions. Thus reasonably the amalgamated output
ports should be as distant as possible from the two input ports without breaking the blockade
with the ancillary. This is achieved if the output port lies in-plane with the other three atoms
respecting the reflection symmetry in the z-direction. This makes the XNOR3i-gate not only the

2In the following we ignore the VdW-specific non-minimal XNOR4b-g-gates with two ancillaries from app. 4.A
because they are essentially the XNOR3i-gate from 4.9 with an additional ancillary ‘glued’ somewhere from which
they do not profit. They are added in the appendix only for completeness.
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Figure 8.1: The XNOR3ii-gate optimal in ∆Eeff and r. The quasiplanar XNOR3ii-gate profits from
the additional DOF for the ancillary: Its effective gap is more than one order of magnitude larger
than for the planar XNOR3i-gate from fig. 4.9.

most interesting but also the only possible candidate which may profit from the additional DOFs
in d = 3 dimensions.

The XNOR3-Gate. The XNOR3i-gate requires that the ports are sufficiently distant from the
ancillary such that they are not in blockade however they should be sufficiently close such that
exciting two ports alongside the ancillary is energetically not favorable. For a planar geometry the
ports are necessarily distant from each other thus they possess only a small interaction energies
which block the respective other ports. Here the advantage of a quasiplanar geometry on the
d = 3-dimensional Rydberg platform comes into play. By shifting the ancillary outside the plane
of the ports we can decrease the distance between the ports without modifying the distance with
the ancillary. This allows for a greater interaction energy between the ports increasing the gap
to the excited state where both ports are excited in simultaneity with the ancillary. This is
portrayed in fig. 8.1 optimized in ∆Eeff and r. Here the effective gap ∆Eeff[XNOR3ii] ≈ 23.5%
is 20 times larger than for the two-dimensional XNOR3i-gate and of similar magnitude as the
remaining logic gates in fig. 4.9. Remember that the VdW minimal realization XNOR3 is unique
for fb = XNOR. In the structure from fig. 8.1 the ports define the projection-plane and the
ancillary 0 possesses a positive z-coordinate and is therefore shifted to the bottom-left.

8.1.2 ||| PXP-derived logic Elementaries

In this subsection we want to discuss the PXP-minimal logic elementaries from sec. 4.1. In
particular we derive a family of gates based on the ICRS1-gate from fig. 4.4 which we call ICRS3.

Embeddings of PXP-blockade Graphs. In the previous subsec. 8.1.1 we discussed that the
XNOR3-gate from fig. 4.9 profits from introducing the third spatial dimension. This was based on
the residual interactions between the ports which needed to be increased to increase the effective
gap. The remaining VdW-specific gates did not profit from an embedding in three dimensions
because they need to decrease residual interactions to increase the effective gap. This already
hints at what we expect for PXP-model elementaries: PXP-model elementaries are defined by a
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blockade graph where atoms in blockade interact ‘infinitely strong’ and atoms without a blockade
do not interact at all. Here r = 1 and the effective gap ∆Eeff = ∆min/∆max profits from
reducing the range of the detunings. When implementing such a PXP-model elementary in the
VdW model the atoms in blockade possess only finite interaction energies and the atoms not
in blockade possess residual interaction energies. Thus exciting an additional atom in blockade
is punished by only a finite energy increase and de-exciting an atom is punished by the loss of
detuning energy (as in the PXP-case) but supported by the residual interaction energies. Thus
we need to suppress the residual interactions between the atoms which are not in blockade while
keeping sufficiently strong interactions between adjacent atoms in the blockade graph3. For a
two-dimensional PXP-elementary with a connected blockade graph it is now clear that this is
achieved in the VdW model for a planar structure (without any bumps or curvature in the third
dimension).

Symmetries. Therefore in this subsection we focus on PXP-model elementaries which are
already three-dimensional in the PXP model. This subsection is based on the ideas introduced
by Tobias Maier for the PXP model, transferred to the VdW model. As already noted in
sec. 4.1 for the ICRS1-gate we can achieve ground state degeneracy just by exploiting the
permutation symmetries (4.1) of the language4. For the D4-symmetric implementation from
fig. 4.4 the four ground states ‘look identical’ to the Hamiltonian and thus they trivially possess
equal eigenenergies. Thus for such a D4-symmetric structure it only remains to optimize the
effective gap of the L-complex.
We can perturbatively introduce quantum fluctuations on the Rydberg platform by ramping
up the Rabi frequencies Ωi of the atoms in Hamiltonian (2.1). As the ground states still look
identical to the Hamiltonian they obtain equal-weights in the superposition. This is rigorously
proven by T. Maier for the PXP-model. This motivates the following study of the ICRS1-gate
in the VdW model.

The ICRS3-Family of Gates. The ICRS1-gate from fig. 4.4 is of interest beyond realizing
an inverted crossing on the two-dimensional Rydberg platform. As proposed by T. Maier we
can relabel two ancillaries of the structure as output ports which yields the ICRS3a-gate. This
is portrayed in the first row fig. 8.2. Here the black lines represent the blockade graph. The
ICRS3a-gate is of course still two-dimensional and (as discussed above) does not profit from the
third dimension. Still we include it in this chapter for completeness as it is the basis for the
following gates 3b, 3c and 3d of the same family. The two additional output ports Q and R of
the ICRS3a-gate realize the connectives NOR and AND respectively. Thus the ICRS3a-gate unifies
two (of in total six nontrivial) binary, scalar logical connectives as well as the inverted crossing in
one gate with only two ancillaries. In the following we call such L-complexes whose output ports
realize multiple logical connectives simultaneously a multigate. This makes the ICRS3a-gate the
first example of a multigate we encounter.

Note that the output ports Q and R of the ICRS3a-gate are not quite at the boundary of the
gate. This makes it impossible to amalgamate further gates (e.g. LNKm-gates) to the output
ports in two dimensions. Therefore, even though the ICRS3a-gate is two-dimensional, this makes
it only useful in three dimensions. To construct the negated gate we access the third dimension.
We do not want to disrupt the symmetry of the structure by amalgamating NOT1-gates only to

3Think about two opposing ‘forces’ which need to be balanced: Connected atoms attract each other while
disconnect atoms repel each other to optimize the energy gap. Although this model has its limits as the blockade
graph is unphysical.

4Further examples of such ‘degenerating symmetries’ were found with the NOR1-gate and the ICRS2-gate (and
trivially the NOT1-gate).
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Figure 8.2: Family of ICRS3-multigates optimized for ∆Eeff and r. For all gates the ports of
the built-in ICRS-gate lie in a plane. The gates are based on the ICRS1-gate from fig. 4.4. The
structures are (except for the the ICRS3a-gate) non-quasiplanar but truly three-dimensional. In this
figure exceptionally the black lines do correspond to the blockade graph. In the tables of the right
column we only show the additional/ relabeled output ports but leave out the ports and ancillaries of
the ICRS1-gate.
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the output ports as the symmetry is what motivates the study of this structure. Therefore we
also amalgamate NOT1-gates to the two ancillaries as portrayed for the ICRS3b-multigate in the
second row of fig. 8.2. Here the ground states are again degenerate by symmetry and the black
lines correspond to the blockade graph. Note that the symmetry group is now the D2d dihedral
point group (this is the point group of a tetragonal disphenoid). The output ports S and T of
the multigate realize the connectives OR and NAND respectively.

Amalgamating LNK-Gates. An interesting ansatz introduced by T. Maier for the PXP
model is to amalgamate two LNK1-gates between opposite ancillaries of the ICRS1-gate. This
makes the blockade graph non-planar and the Rydberg structure necessarily three-dimensional.
In the VdW model the additional atoms introduce additional residual interactions which makes
the construction a priori non trivial. It turns out that it is possible to implement this language
in the VdW model by shifting adjacent ancillaries in opposite directions out of plane such that
they trace-out a tetragonal disphenoid. The amalgamated atoms are then centered above and
below the projection plane. The amalgamated structure ICRS3c is portrayed in the third row of
fig. 8.2.

The amalgamation is paralleled on the languages by their γ-product. It is important to note
that this γ-product conserves the permutation symmetries (4.1) of the language:

ΣN [ICRS3c] = ⟨(AB) ◦ (UV) ◦ (0 1), (ABUV) ◦ (Q0R1) ◦ (ST)⟩.

In the ICRS3c-gate from fig. 8.2 this is reflected in its D2d dihedral point group. In particular
the structure is invariant under a 4-fold improper rotation in the plane of the ports. This implies
that the four ground states of the amalgamated structure still look identical to the Hamiltonian.
Thus the amalgamation conserves the ground state degeneracy and quantum fluctuation still
produce equal-weights in the superposition of the ground states.

We label the amalgamated atoms as additional output ports. The amalgamation is of interest
as the additional output ports S and T realize the connectives XOR and XNOR respectively. The
output ports Q and R still realize the connectives NOR and AND respectively. Thus the ICRS3c-
multigate unifies four (of in total six nontrivial) binary, scalar logical connectives as well as the
inverted crossing in one gate with only two ancillaries. Note that the amalgamated output ports
S and T make the complex non-quasiplanar but truly three-dimensional.

Similarly as for the ICRS3b-gate we can again amalgamate four NOT1-gates to negate the two
output ports and construct the ICRS3d-gate. The ICRS3d-gate is portrayed in the last row of
fig. 8.2. The new output ports U and V realize the connectives OR and NAND respectively. The
output ports Q and R again realize the connectives XOR and XNOR respectively. Thus the ICRS3d-
multigate unifies again four (of in total six nontrivial) binary, scalar logical connectives as well
as the inverted crossing in one gate with six ancillaries.

Summary. In a nutshell with the ICRS3c-multigate and its negation the ICRS3d-multigate
we can realize every logical elementary (including the inverted crossing) on a D2d-symmetric
structure with equal-weight superposition. As a trade-off to conserve the symmetry we need to
treat the atoms (at least in the vicinity) equally. Especially if we do not need every output this
introduces an overload of ancillaries. Further the amalgamated output ports make the structure
non-quasiplanar and logical circuits constructed with these gates live necessarily on the three-
dimensional Rydberg platform. This makes the output of the built-in ICRS-gate not useful as in
three spatial dimensions we do not require such a(n inverted) crossing implemented as a gate.
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8.2 ||| Ternary Logic Elementaries

In this section we want to introduce ternary, scalar, symmetric logic elementaries.

The NOOR0-Gate. As an introductory, motivating example we start with the logic gate
NOOR-0 presented in fig. 8.3. It is constructed by amalgamating a NOT1-gate to a D3-symmetric
hexagon of atoms. The effective language matrix realized by NOOR-0 is portrayed in the right
column. The logical connective NOOR can be interpreted as follows:

“Q is Not excited iff any input bit A Or B OR C is excited”.

This generalizes the binary NOR-connective to three input bits which motivates the label NOOR of
the connective.

The NOOR0-gate is an example of a ternary logic gate on the two-dimensional Rydberg platform
in the VdW model. The NOOR0-gate requires four ancillaries which is a lot considering that the
binary NOR3-gate requires no ancillary at all in the VdW model. As the logic elementaries from
fig. 4.9 are functionally complete we can also simply amalgamate these elementaries to construct
another realization of the NOOR-function. For example the amalgamation of a NOR3-gate to the
output of a OR3-gate possesses only two ancillaries. However such an amalgamation introduces
additional residual interaction energies (2.14) which cause a finite energy splitting. In general
we can not fully suppress such energy splittings (e.g. with theorem V).

Example 14. (Surface Code Unit-Cellls)

For example the surface code unit cells SCUI-1 and SCUI-2a,b from chap. 5.1 are constructed
by amalgamating two binary XNOR- or XOR-gates. However as shown in proof 10 we can not
achieve degeneracy for them in any (symmetric) structure.

In contrast the language matrix LNOOR0 is of full rank which allows us to apply theorem V to
achieve ground state degeneracy in fig. 8.3.

More-advanced Building Blocks. Naturally the question arises whether we are able to con-
struct further more atom-efficient, high-Q (and ideally high-∆Eeff) ternary logic gates if we allow
for three-dimensional geometries. Such building blocks would allow us to reduce the number of
amalgamations between logic gates and simplify the logic circuit. This could help to reduce the
energy splitting (i.e. increase the quality) and make the logic circuit more atom-efficient. Latter
is relevant to reduce the requirements to the experimental setup. This motivates the following
study of ternary logic gates on the three-dimensional Rydberg platform in this section.

The goal is to offer a list of more advanced building blocks which can be used to efficiently imple-
ment logic circuits and to visualize the possibilities introduced with the third spatial dimension.
In this section we focus on ternary, scalar and symmetric logic elementaries. We are mainly
interested in the VdW-minimal realizations of the functions.
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Figure 8.3: Two-dimensional, ternary NOOR0-gate with four ancillaries. The gate is constructed as
an amalgamation of a hexagonal structure with a NOT1-gate.

For the symmetric Boolean functions we consider only symmetric realizations. With k = 3
input bits there are g = 23 ground states which reduce to only geff = 4 effective ground states
for symmetric implementations. With q = 1 output bit there exist in total 24 = 16 symmet-
ric Boolean functions. Two of them are constant and thus trivial which makes 14 nontrivial
Boolean functions. In the following for a clearer discussion we categorize the 14 nontrivial
symmetric Boolean function in sets distinguished by the number of effective ground states for
which the output bit is excited. We call this the effective Hamming weight wH of the Boolean
function (in analogy to the Hamming weight5 defined for general Boolean functions). In a
nutshell there exist four connectives with effective Hamming weight wH = 1 or wH = 3 and
there exist six connectives with effective Hamming weight wH = 26. The first two sets of con-
nectives are dual to each other under negation of the output bit while latter set is self-dual. In
the following two subsections 8.2.1 and 8.2.2 we start with the first two sets of connectives.

Labels of the Connectives. Note that the names associated with the following Boolean
functions are not common in literature. They are either motivated from their binary counterparts
or they are chosen such that they offer an interpretation of the function. The negation of a
connective is usually denoted by the prefix ‘N’. The functions are defined by their logic circuit
(in the first column) or by their truth table (in the last column). We already encountered an
example of this labeling with the NOOR0-gate in fig. 8.3. We want to illustrate the labeling
scheme briefly via two more examples:

Example 15. (Nomenclature of the ternary logic Gates)

1 The logical connective XXOR can be interpreted as: “iff eXclusively A or eXclusively B OR

exclusively C is excited then Q is excited”. Its negation is the logical connective NXXOR.

2 The logical connective XXNOR can be interpreted as: “iff eXclusively A or eXclusively B
OR exclusively C is Not excited then Q is excited”. Its negation is the logical connective
NXXNOR.

5The Hamming weight of a Boolean function is defined as the cardinality of its support.
6The two Boolean functions with effective Hamming weight wH = 0 and wH = 4 are the constant Booleans.
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Figure 8.4: Family of ternary, scalar, symmetric logic gates with unit effective Hamming weight
wH = 1. The portrayed connectives emerge from the connectives from fig. 8.5 via negation. Further
gates are portrayed in fig. 8.22. Completeness and minimality are shown in proof 16.
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8.2.1 ||| Unit effective Hamming Weight

First we consider the ternary, scalar, symmetric logic gates with effective Hamming weight
wH = 1. Here the output bit is excited in precisely one effective ground state. This includes
the four logical connectives NOOR, XXOR, XXNOR and AAND which are defined in fig. 8.4. Note
that fig. 8.4 portrays only one representative of the possible realizations. Further realizations
are attached in app. 8.A.1 (see fig. 8.22). There in proof 16 we show two important statements
which we briefly want to summarize in the following:

1 Every realization portrayed in fig. 8.4 and fig. 8.22 is VdW-minimal : The connec-
tives NOOR, XXOR and XXNOR require only one ancillary. The AAND-gates require at
least two ancillaries.

2 For the connectives NOOR, XXOR and XXNOR the combined list of realizations in fig. 8.4
and fig. 8.22 is exhaustive. For AAND there exist in total seven possible realizations.

For AAND we restrict ourselves for simplicity to the two realizations which we identified as the
most promising ones. The portrayed AAND1a- and AAND1b-gate are the negations of the NAAND1a-
and the NAAND1b-gate from fig. 8.5 and fig. 8.23 respectively.

The NOOR1-gate is essentially constructed from the NOOR0-gate in fig. 8.3 by unifying the four
ancillaries from which at most one is excited in any state.

8.2.2 ||| Effective Hamming Weight Three

In this subsection we consider the ternary, scalar, symmetric logic gates with effective Hamming
weight wH = 3. It is natural to continue with these connectives because they are dual to the
connectives with unit effectiveHamming weight: They emerge by a simple negation of the output
from the gates of previous subsec. 8.2.1. Thus the output bit is not excited in precisely one
effective ground state. This includes the four logical connectives OOR, NXXOR, NXXNOR and NAAND

which are defined in fig. 8.5. They are the negations of the connectives NOOR, XXOR, XXNOR and
AAND which is denoted by the prefix ‘N’. Again, fig. 8.5 portrays only one representative of the
possible realizations. Further realizations are attached in app. 8.A.2 (see fig. 8.23). There in
proof 17 we show two important statements which we briefly want to summarize at this point:

1 Every realization portrayed in fig. 8.5 and fig. 8.23 is VdW-minimal. The connec-
tives NAAND, NXXNOR and NXXOR require only one ancillary. The OOR-gates require at
least two ancillaries.

2 For the connectives NAAND, NXXNOR and NXXOR the combined list of realizations in
fig. 8.5 and fig. 8.23 is exhaustive. For OOR there exist in total seven possible
realizations.
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Figure 8.5: Family of ternary, scalar, symmetric logic gates with effective Hamming weight wH = 3.
The portrayed connectives emerge from the connectives from fig. 8.4 via negation. Further gates are
portrayed in fig. 8.23. Completeness and minimality are shown in proof 17.

For OOR we restrict ourselves for simplicity to the four realizations which we identified as the
most promising ones. The portrayed OORa,b,c,d-gates are the negations of the NOORa,b,c,d-gates
from fig. 8.4 and fig. 8.22 respectively.
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Figure 8.6: Part 1 of the family of ternary, scalar and symmetric logic gates with effective Hamming
weight wH = 2. The portrayed connectives emerge from the connectives in part 2 (see fig. 8.7).
Completeness and Minimality are discussed in app. 8.A.3 (see proof 18).

8.2.3 ||| Effective Hamming Weight Two

Lastly we consider the ternary, scalar, symmetric logic gates with effective Hamming weight
wH = 2. Here the output bit is (not) excited in precisely two effective ground states. This
includes the three logical connectives MIN, NEQ and EVEN and their respective negations MAJ, EQU
and ODD. The connectives are defined by the logic circuits (first column) or the effective language
matrix (last column) in fig. 8.6 and fig. 8.7 respectively.

In app. 8.A.3 in proof 17 we show two important statements about these gates which we briefly
want to summarize:
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Figure 8.7: Part 2 of the family of ternary, scalar and symmetric logic gates with effective Hamming
weight wH = 2. The portrayed connectives emerge from the connectives in part 1 (see fig. 8.7).
Completeness and Minimality are discussed in app. 8.A.3 (see proof 18).

1 Every realization portrayed in fig. 8.6 and fig. 8.7 is VdW-minimal. The connectives
require at most one ancillary. The MIN-gate requires no ancillary at all.

2 The list of VdW-minimal realizations in fig. 8.6 and fig. 8.7 is exhaustive. For each
gate there exists only one unique VdW-minimal realization.

The MIN1-gate (‘minority’-gate) requires no ancillary at all which makes it the most ‘natural’
ternary gate on the three-dimensional Rydberg platform. In comparison even the NOOR1-gates
(see fig. 8.4) require at least one ancillary7.

7Remember that the NOR-gates were the most natural binary gates on the two-dimensional Rydberg platform
(cf. subsections 4.1.3, 4.1.4 and 4.2.3).
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Figure 8.8: Full Adders based on different Gates. The ternary logic gates MAJ and ODD allow for a
simpler implementation (left) than the standard XOR-based full adder (right).

8.2.4 ||| Interpretations of the Connectives

In the following we want to offer some brief interpretations and applications of the gates from
the previous subsections 8.2.1, 8.2.2 and 8.2.3.

Full Adders. The negation of the MIN1-gate is the MAJ1-gate (‘majority’-gate) which requires
at least one ancillary. MAJ-gates are well-known for being used in full adders[17] to calculate the
carry bit Cout:

Cout = MAJ(A,B,Cin), S = ODD(A,B,Cin). (8.1)

The sum-bit S is evaluated as the ODD-gate of the inputs. This is visualized as a logic circuit in
fig. 8.8a. This illustrates the possibilities introduced with ternary logic gates: With the ternary
elementaries we require only two gates for the full adder, one for each output bit. In contrast,
with the binary elementaries the calculation of the sum and the carry bit requires two and four
gates respectively. The standard XOR-based implementation of the full adder requires in total
five gates (plus additionally more CPY-gates):

Cout = (A∧B)∧ (Cin ∧ (A∨B)), S = (A∨B)∨Cin. (8.2)

The logic circuit for the standard XOR-based full adder is visualized in fig. 8.8b. The implemen-
tation of the full adder based only on the singleton {NOR} as the ‘natural universal gate set’ on
the Rydberg platform requires nine NOR-gates (plus additionally a lot CPY-gates).

Additionally the MAJ1-gate is very robust with ∆Eeff[MAJ1] ≈ 19.7%. This is the disadvantage
of the ODD1-gate which possesses a relatively low effective gap ∆Eeff[ODD1] ≈ 0.6%. Thus experi-
mentally it might be preferable to instead implement the sum S instead via two binary XOR3-gates
or to construct the full-adder only with MAJ- and/ or MIN-gates[17].

Generalizations of XOR. The connectives NEQ (‘not-equal’) and ODD (‘odd’) from fig. 8.6 can
be interpreted as different generalizations of the binary XOR. NEQ generalizes the interpretation
of XOR as ‘non-equivalence’ (/≡) which yields one if and only the inputs are not equal. Similarly,
ODD generalizes the interpretation of XOR as a linear parity function (⊕) which performs addition
modulo 2 (i.e. in Z2). Here the output bit (parity bit) is one if and only if an odd number of input
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bits is excited. Due to this interpretation XOR-gates are used to implement binary addition in
computers. A simple half adder consists of an XOR-gate which outputs the sum and an AND-gate
which output the carry [39].
The binary XOR can also be interpreted as a the logic gate analogous to the ‘exclusive or’ from
mathematical logic. This interpretation suggests the generalization as the XXOR-gate (see fig.
8.4) which is one if and only if exclusively one input bit is excited.
Lastly the binary XOR can also be interpreted as a ‘programmable inverter’ or ‘controlled not’
in which one input (the switch or control) determines whether to invert the other input (the
target) or to pass it along. Such an interpretation suggests the generalization as an asymmetric
Toffoli-gate or a SWITCH-gate which we are going to discuss in the following sec. 8.3.

For binary operations the XNOR-gate is the logical complement of the XOR-gate. Analogously the
connectives EQU, EVEN and NXXOR (see fig. 8.7 and fig. 8.5) are the negations of NEQ, ODD and
XXOR (see fig. 8.6 and fig. 8.4). They represent the generalizations of the binary XNOR following
similar interpretations.

8.2.5 ||| Non-minimal Gates

The previous subsections 8.2.1, 8.2.2 and 8.2.3 presented a (complete) list of the VdW-minimal
realizations for the ternary, symmetric logical connectives. The VdW-minimal gates require at
most two ancillaries; the MIN1-gate requires no ancillary at all. We were able to achieve perfect
quality for almost all gates except for MAJ-1, EVEN-1 and ODD-1 for which we were able to
suppress the ground state splitting up to numerical errors. The effective gaps of most gates are
at least of magnitude ∆Eeff ∼ 10% with some exceptions: The effective gaps of the gates NXXOR1,
NXXNOR1, EVEN1, EQU1 and ODD1 are of order ∆Eeff ∼ 1%. For the NXXOR1-, NXXNOR1- and EQU1-
gates their negations XXOR1, XXNOR1 and NEQ1 possess a significantly larger effective gap. This
suggests a realization based on these gates by amalgamating a NOT1-gate. Such a realization then
possesses a significantly larger effective gap which comes at the cost of an additional ancillary.
These gates then possess two ancillaries which makes them non-minimal in the VdW-model.
The three amalgamated gates are denoted by NXXOR-2, NXXNOR-2 and EQU-2 respectively; they
are presented in fig. 8.9. Note that the portrayed non-minimal gates are of course not unique in
the sense that there exist further non-minimal realizations of the connectives with two ancillaries.
However the portrayed realizations are the most promising ones for a large effective gap. The
gates possess effective gaps of order ∆Eeff ∼ 10%, i.e. one order of magnitude larger than their
minimal realizations.

For the linear Boolean connectives EVEN-1 and ODD-1 it is of no use to express them via
their negation as both gates possess a low effective gap. Note that the VdW-minimal ODD1-gate
already requires two ancillaries. It seems that linear Boolean functions are inherently hard
to implement on the Rydberg platform. It can be argued that this was already observed for
the binary linear connectives XOR and XNOR: In the PXP-model (see sec. 4.1) these connectives
posses fewer realizations and they require more ancillaries than the other binary gates. In the
VdW model the two-dimensional XNOR3i-gate from fig. 4.9 possesses only a small effective gap
which even in three dimensions for the XNOR-3ii-gate (see fig. 8.1) remains smaller than for the
other two-dimensional binary gates in fig. 4.9.
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Figure 8.9: Non-minimal ternary, scalar and symmetric logic gates with two ancillaries. The gates
are constructed as negations of the XXOR1-, XXNOR1- and NEQ1-gate from fig. 8.4 and fig. 8.6 by
amalgamating a NOT1-gate to the ouput port. The effective gaps of these non-minimal realizations
is one order larger than for the VdW-minimal realizations from fig. 8.5 and fig. 8.7 with only one
ancillary.
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8.3 ||| Asymmetric Ternary Logic Gates

In previous sec. 8.2 we introduced a complete list of symmetric, ternary logic elementaries. For
the symmetric, ternary logic gates there are only geff = 4 effective ground states and thus 24 = 16
scalar, symmetric logical connectives; 14 of which are non-constant. For asymmetric logic gates
we can not reduce the number of ground states by introducing effective ground states. Here we
have to consider the full g = 23 = 8 ground states. Thus there exist in total 28 − 24 = 240
asymmetric logical connectives. It is not practical to consider all of them. However most of
them are not of interest for practical applications anyway. In this section we want to focus
on three asymmetric connectives we identified as the most important ones. The paradigmatic
Toffoli-gate TOFF and the logical conditional SWITCH were already mentioned in previous chapter
as asymmetric generalizations of the binary XOR-gate. Additionally we want to introduce the
Fredkin-gate FRED. In the following subsec. 8.3.1 we start with the Toffoli-Gate.

8.3.1 ||| The Toffoli-Gate

In this subsection we want to introduce the Toffoli-gate (also called ‘controlled-controlled-not’
gate) on the three-dimensional Rydberg-platform. In a Toffoli-gate the states of two control
bits control whether to invert the third target bit. If both control bits are one then the target
bit is inverted. Otherwise the Toffoli-gate outputs the target bit. The Toffoli-gate can be
decomposed/ defined using two binary elementaries (see chap. 4):

Q = A∨ (B ∧ C). (8.3)

Commonly the two control bits are also passed along as output bits making theBoolean function
CCNOT := (1, 1, TOFF) vectorial. Such a CCNOT-gate is reversible because the concatenation CCNOT◦
CCNOT = 1 is the identity. For a clear distinction in the following we denote by TOFF the
scalar, controlled component of the vectorial CCNOT. Note that this slightly differs from common
literature where the notions of the Toffoli- and CCNOT-gate are usually used interchangeably.

A reversible and universal Gate. The CCNOT-gate generalizes the binary reversible CNOT-gate
(‘controlled-not’) on two input bits. The vectorial CNOT := (1, XOR)-gate is just the well-known
XOR-gate where the control bit is passed along to the output as well. The problem with the
CNOT-gate is that the set {NOT, CNOT} is no universal gate set, i.e. not every logical connective
can be constructed just from NOT and CNOT. In contrast the singletons {NOR} and {NAND} while
universal are not reversible. T. Toffoli proposed in 1980 the CCNOT-gate as a universal and
reversible gate[40]. This allows to construct any classical logic circuit in a reversible way using
only CCNOT-gates.

Implementation of the Toffoli-Gate. In this subsection we are interested in the scalar version
TOFF with only one output bit. One could add CPY-gates to the control input ports to implement
the vectorial CCNOT-gate discussed above. Fig. 8.10 presents the optimized TOFF-gate. Like
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Figure 8.10: Toffoli-gate (TOFF) with one ancillary. The implementation conserves the bilaterally
symmetry between the control ports B and C. The output bit corresponds to (the negation of) the
target bit (if both control bits are one).

for the previous three-dimensional gates the input ports lie in the projection plane. The input
port A is the target bit, the input ports B and C are the control bits. For the TOFF-gate we
require at least one ancillary such that 000 /∈ LTOFF. For the realization in fig. 8.10 we choose the
ancillary such that it is excited if no input bit is excited or if only one control bit is excited.
This preserves the symmetry between the two control bits. The ports of the TOFF-gate in fig.
8.10 construct a bilaterally symmetric tetrahedron. In fig. 8.10 the plane of symmetry is the
y, z-plane. The ancillary lies inside this tetrahedron on the y, z-plane. This allows us to reduce
the ground states to six effective ground states presented in the table of the right column. We
can not apply theorem V (or its corollaries) but we are able to achieve ground state degeneracy
up to numerical errors. The effective gap is ∆Eeff[TOFF-1] ≈ 2.9%.

Minimality and Completeness. Naturally the question arises whether there are further
VdW-minimal realizations of the Toffoli-gate in the VdW-model:

Realization TOFF-1 is VdW-minimal and unique, i.e. there exist no further Toffoli-gates
with less than two ancillary in the VdW-model.

Thus the ‘list’ of realizations in fig. 8.10 is complete. We show this statement in the following
proof 14:

Proof 14. (Uniqueness and Minimality)

We argue with corollary II. In a nutshell corollary II forbids ground states which are non-
adjacent substates (with any intermediate excited state). This makes the statement is rel-
atively straightforward: Realization TOFF-1 possesses one ancillary bit. The ancillary bit is
necessary such that xxx1 /⋐xxx3,xxx4,xxx5,xxx6 and such that xxx2 /⋐xxx3,xxx5,xxx6 (and such that 000 /∈ LTOFF).
This makes realization TOFF-1 VdW-minimal. We need to choose the ancillary bit such that
it is excited in xxx1 but not in xxx3, xxx4, xxx5 and xxx6 and such that it is excited in xxx2 but not in xxx3,
xxx5 and xxx6. This uniquely determines realization TOFF-1.
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Figure 8.11: ISWITCH-gate with one ancillary defined in eq. (8.4). The switch A determines whether
the gate outputs B̄ or C̄. The connective and the language are intrinsically asymmetric.

8.3.2 ||| Inverted SWITCH-Gate

A logical next step is to consider a switch between two of the inputs. More precisely we want
to consider an inverted switch ISWITCH which is more natural to implement in the VdW model.
From such an inverted switch we expect the following behavior:

Q = (A ∧ B̄) ∨ (Ā ∧ C̄). (8.4)

This can be interpreted as:

“If the switch A is excited then the output inverts target bit B,
otherwise the output inverts target bit C.”

Note that such a switch is inherently asymmetric between the target bits, thus we can not
expect a symmetric implementation. Two optimized ISWITCH-gates are presented in fig 8.11.
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The implementations are asymmetric thus we can not introduce effective ground states. We
claim that:

Realizations ISWITCH-1a and ISWITCH-1b are VdW-minimal. There exist at most 24

possible VdW-minimal realizations for ISWITCH.

We show this statement in the following proof 15:

Proof 15. (Uniqueness and Minimality)

Again, we argue with corollary II which forbids ground states which are non-adjacent substates
(with any intermediate excited state). Both realizations ISWITCH-1a and ISWITCH-1b posses
one ancillary bit. The ancillary bit is necessary such that xxx1 /⋐xxx6 and such that xxx2 /⋐xxx6,xxx8.
This makes the realizations ISWITCH-1a,b VdW-minimal. We need to choose the ancillary bit
such that it is excited in xxx1 and xxx2 but not excited in xxx6 and xxx8. The state of the ancillary
bit remains undetermined in the remaining ground states xxx3, xxx4, xxx5 and xxx7 by this criterion.
This leaves up to 24 possibilities for the realizations in these four states.

For the realizations in fig. 8.11 we choose two promising representatives where the ancillary is
excited either in no or in all ground states where exactly two ports are excited. This list is of
course not complete. We find that former realization ISWITCH-1a seems to work significantly
better because here the effective gap ∆Eeff[ISWITCH-1a] ≈ 6.5% is by one order of magnitude
larger than ∆Eeff[ISWITCH-1b] ≈ 0.5%. We are not able to apply theorem V (or its corollaries)
however for both gates we are able achieve ground state degeneracy up to numerical errors.

8.3.3 ||| Controlled SWAP-Gate

In previous subsec. 8.3.2 we introduced the ISWITCH-gate where the output inverts either target
bit B or C depending on the state of the switch A. We add the prefix I to emphasize that the gate
inverts the bits, otherwise the gate is simply a switch. A natural generalization of the (inverted)
SWITCH-gate would be the (inverted) Fredkin-gate (or ‘controlled swap’ gate) which outputs
both target bits A and B in the outputs R and Q but swaps them if the switch/ control C is
excited. The Fredkin-gate can be decomposed/ defined using three (if one includes NOT four)
of the binary elementaries (see chap. 4):

R = (C̄ ∧ A) ∨ (C ∧ B), Q = (C̄ ∧ B) ∨ (C ∧ A). (8.5)

In the following we are interested in the negation of the Fredkin-gate FRED which we call the
IFRED-gate. The IFRED-gate additionally inverts the input bits which is more natural to imple-
ment on the Rydberg platform. One could recover the common Fredkin-gate by amalgamating
NOT1-gates to the output or input ports. By considering only one output port of the IFRED-gate
one recovers the inverted switch ISWITCH from previous subsec. 8.3.2.
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Figure 8.12: Inverse Fredkin-gate in two realizations. They are inspired from the inverted crossing
ICRS1 from fig. 4.4. If the switch A is not excited the outputs are swapped (and inverted), if the
switch A is excited the outputs are not swapped (but still inverted).

A reversible and universal Gate. Note that usually in common literature the notions of a
Fredkin-gate and a controlled-swap gate are used interchangeably. Here we specifically define
the FRED-connective as a Boolean function which outputs only the two (swapped) target bits.
We reserve the label controlled-swap gate for the vectorial connective CSWAP = (1, FRED) which is
usually also denoted as the Fredkin-gate. Here the switch/ control bit C is also passed along in
the output. This can be easily achieved on the Rydberg platform by amalgamating a CPY2-gate to
the switch. Implementing such a CSWAP-gate on the Rydberg platform is of large interest because
(like the CCNOT-gate in subsec. 8.3.1) the CSWAP-gate is a universal and reversible ternary logic
gate. The CSWAP-gate is reversible because the concatenation CSWAP ◦ CSWAP = 1 is the identity.
This means that any logic gate can be constructed entirely of CSWAP-gates in a reversible manner.
The CSWAP-gate was first introduced by E. Fredkin and T. Toffoli in 1982[13].

Implementation of the Fredkin-Gate. The construction of an inverted Fredkin-gate is
highly nontrivial on the Rydberg platform. The gate possesses five ports of which two are out-
put ports. As a starting point we consider again the inverted crossing ICRS1 from fig. 4.4. Here
the output ports are swapped (and inverted) compared to the input ports. We can ‘conserve’
these ground states if we assume that the switch or additional ancillaries are not excited. Then
we only need to achieve degeneracy with the remaining four ground states where the switch is
activated and the ground states are not swapped. This includes two ground states where either
only the input or the output ports are excited and two ground states where the ports along a
diagonal are excited.
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An intuitive wat to implement the IFRED-gate is presented with realization IFRED-1: Here we
conserve the D4-symmetric structure of the planar ICRS1-gate and introduce two additional
ancillaries. The switch is centered above the planar ICRS1-gate. If the switch is excited, one ad-
ditional ancillaries is excited if either only the input or only the output ports are excited. In that
sense the additional ancillaries substitute the two ancillaries from the swapped ground states.
This leaves sufficient DOFs for the diagonal ground states to achieve ground state degeneracy.
The IFRED1-gate is by construction D2-symmetric. We are able to achieve perfect quality
by applying theorem V. The IFRED1-gate was only optimized for rIFRED1 ≈ 34% and it is
computationally intensive (due to six ancillaries), thus it is probably not quite optimal in
∆Eeff[IFRED1] ≈ 6.3%.

The IFRED2-Gate. The additional ancillaries of the IFRED1-gate are actually not necessary
to implement the gate. Instead we can realize the IFRED-gate by exciting the ancillaries of
the LICRS1-ground states and (heavily) modify the structure. This yields the IFRED2-gate from
the second row of fig. 8.12. The IFRED2-gate is D2-symmetric respecting the permutation
symmetries of the language. The target and output ports remain in a plane (they trace-out a
rectangle within the projection plane) while the ancillaries are shifted out of plane. We are able
to achieve perfect quality by applying theorem V. The IFRED2-gate is extensively optimized such
that we can confidently claim that it is optimal in ∆Eeff[IFRED2] ≈ 15% and rIFRED2 ≈ 24.2%.
Note that the effective gap is surprisingly large for a language of this complexity.
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8.4 ||| Binary Multi Logic Gates

In subsec. 8.1.2 we presented the ICRS3-multigates which are based on the ICRS1-gate from chap.
4.1. They implement multiple logic gates simultaneously, i.e. vectorial Boolean functions with
q > 1, without requiring additional CPY- or LNK-gates or any further elementary logic gates. We
want to elaborate on this idea in this section. The goal is to find atom-efficient multigates in the
VdW model for the binary logical connectives. Such gates expand out toolbox and allow us to
implement logic circuits more efficiently on the Rydberg platform.

8.4.1 ||| Double Logic Gates

In this chapter we want to implement the vectorial logical connectives with q = 2 output bits
where each component is a different scalar, symmetric, binary logical connective. We call the L-
complexes implementing two logical connectives double logic gates. As a natural ansatz we start
with the logic elementaries from chap. 4. Then we show that they do yield the VdW-minimal
multigates.

The initial Ansatz. First consider the PXP-minimal elementary gates from sec. 4.1. Due to
the positioning of the atoms we can not directly amalgamate two PXP-minimal gates without
inheriting strong residual interactions which would heavily distort the energy structure. Further-
more these gates possess quite a large number of ancillaries and we are interested in atom-efficient
implementations. Instead starting with the VdW-minimal logic gates from fig. 4.9 seems to be
the more promising ansatz. Furthermore, for simplicity we can restrict ourselves to the three
logical connectives NOR, NAND and XOR. The remaining connectives OR, AND and XNOR are obtained
as the respective negations. We could obtain these multigates by amalgamating a NOT1-gate to
the complexes introduced in the following.

Amalgamations of two elementary Gates. We can efficiently construct double logic gates
by amalgamating the input ports of the VdW-minimal elementary gates from fig. 4.9. These
amalgamated gates are portrayed in fig. 8.13. There are six combinations of the three elementary
gates NOR3, NAND3 and XOR3. We label the amalgamated gates by the labels of their components
from which they are constructed, i.e. for example NORNOR = (NOR, NOR) is the vectorial connectives
where both components are a NOR. The gates are optimized for the effective energy gap (and
except for the NORNAND3-gates they are also optimized for the robustness). The vectorial NORNOR1-
gate is particularly natural to implement on the Rydberg platform because it consists of two
NOR3-gates which are the natural binary, scalar logic gates. Nevertheless the remaining logic
gates still posses large effective gaps ∆E > 16%.

Completeness and Minimality. Note that such amalgamations of VdW-minimal logic gates
are in general not VdW-minimal. To complete the list with the VdW-minimal double logic gates
we attach further gates in app. 8.B.1 (see fig. 8.24). This allows is to formulate the following
statements:
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Figure 8.13: Double Logic Gates constructed by amalgamating two elementary gates from fig. 4.9
by their input ports.
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Figure 8.14: Triple Logic Gates constructed by amalgamating elementary gates from fig. 4.9.
Realization NXN-2 is VdW-minimal and unique in that sense.

The double logic gates NORNOR-1, NANDNAND-1, XORXOR-2, NORNAND-1 and NORXOR-2 are
VdW-minimal and unique. The two gates NANDXOR1 and NANDXOR2 are both VdW-
minimal and the only VdW-minimal realizations.

This statement is shown in proof 19. Nevertheless it might be preferable to rely on the logic gates
presented in fig. 8.13 to implement a logic circuit as they possess significantly larger effective
gaps. This concludes our discussion about double logic gates. In the next subsec. 8.4.2 we want
to focus on triple logic gates.

8.4.2 ||| Triple Logic Gates

In this brief subsection we want to implement the vectorial logical connectives with q = 3 output
bits where each component is a different scalar, symmetric, binary logical connective.

The NXN1-Gate. As an ansatz we consider again the VdW-minimal logic gates NOR-3, NAND-3
and XOR-3 from fig. 4.9. We can efficiently construct the triple logic gate by amalgamating the
input ports of three VdW-minimal elementary gates. The amalgamated gate NORXORNAND-1

(NXN-1) is presented in the first row of fig. 8.14. Note that this amalgamated gate possesses
only one ancillary but it implements three logic elementaries simultaneously with effective gap
∆Eeff ≈ 11%. We require three dimensions to amalgamate the three logic elementaries. The
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three output ports and the ancillary lie in the projection plane while the input ports are lo-
cated orthogonally above and below the plane respectively. The input ports can be accessed by
connecting them (e.g. via an NE-chain) in the vertical dimension.

The NXN2-Gate. The NXN1-gate is not VdW-minimal because its ancillary is always in the
same state as output port Q. In fact by relabeling the ancillary from the NANDXOR1-gate in
fig. 8.13 as a third output port we obtain the VdW-minimal and unique NXN2-gate from the
second row in fig. 8.14. Minimality and uniqueness are obvious as realization NXN-2 possesses no
ancillaries. Note that the optimized structure is actually two-dimensional but the output port Q
can only be accessed efficiently via the vertical dimension. Nevertheless it is possible to embed
this gate in a logic circuit on the two-dimensional Rydberg platform. This is illustrated via the
ORXORNAND2 (OXN2)-gate which is attached in the app. 8.B.2. However such a dimensionality
constraint implies strong residual interactions which impairs the effective gap.
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8.5 ||| Surface Code Unit Cells

The previous section concluded our discussion about three-dimensional gates for logical con-
nectives. In the following two sections we want to focus again on tessellated languages, more
precisely the unit cell of the surface code and the single site of the Fibonacci model. In this
section we want to start with the surface code unit cells. We split this subsection logically in
two parts: in the first part we consider quasiplanar unit cells for the surface code. In the second
part we discuss higher dimensional implementations.

8.5.1 ||| Quasiplanar Surface Code

In this subsection we want to consider quasiplanar unit cells of the surface code where the ports
lie in one plane. Such quasiplanar structures can be tessellated on the two-dimensional lattice
such that the tessellated structure possesses little extent in the vertical direction. Such (quasi)
two-dimensional structures are experimentally less demanding as the atoms can be accessed via
the third dimension. With state-of-the-art technology it is currently possible to prepare hundreds
of atoms in a two-dimensional structure[22, 3, 31].

Representation I. We want to start by considering the check function (5.6) in representation
I. In this representation for the VdW model we require at least two ancillaries to achieve a
positive energy gap. This follows directly from corollary II: The two ancillaries are necessary
such that the ground states xxx1 /⋐xxxi|i>1 and xxxi|i<8 /⋐xxx8 are no non-adjacent substates. Fig. 8.15
exemplarily portrays two symmetric VdW-minimal realizations which we identified as the most
promising ones. For both realizations we were able to achieve a positive energy gap however at a
miserable ratio Q ≈ 148 implying Q ≈ 8.315× 10−7. Note that the portrayed structures are D4-
symmetric respecting the permutation symmetries of the ports. Breaking these symmetries (only
constraining the C2-symmetry in the ports) only seems to worsen the quality factor and even
with extensive simulation we were not able to improve the quality factor. This is conceptually
interesting as this is the first structure we encounter where we can achieve a positive energy
gap but only at a miserable quality. Such a structure is not viable for tessellating the surface
code. It seems that we require three ancillaries to construct a viable (quasi)planar unit cell in
representation I. Examples for such realizations are the planar, non-VdW-minimal SCUI-2a,b
unit cells presented in fig. 5.2. In the following we want want to consider representation II

which already turned out more promising in the two-dimensional case.

Representation II. We continue by considering the check function (5.7) in representation II.
As already mentioned in sec. 5.1 we require at least one ancillary in this representation to achieve
a positive energy gap. For the two-dimensional case this was studied in app. 5.A.3. Here we found
that it is impossible to achieve degeneracy (or a positive energy gap) with a planar structure.

8Astonishingly the ratio of both implementations seems to converge to exactly Q ↘ 14.
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Figure 8.15: Quasiplanar SCUI unit cells in two realizations 3a,b. For these realizations of represen-
tation I we are not able to achieve a good quality factor.

We can introduce an additional DOF to the ancillary by embedding the structure in three-
dimensional space constraining the ports in the projection plane. Implementation SCUII-2ii

in fig. 8.16 portrays the quasiplanar surface code unit cell in representation II. The unit cell
SCUII-2ii possesses unit quality Q = 1 and ∆Eeff ≈ 1.5% with only one ancillary. This again
illustrates that representation II is more natural to implement on the Rydberg platform. Note
that the effective gap is of the same order of magnitude as in the planar unit cell SCUII-1 from
fig. 5.3 with two ancillaries. The additional DOF in the ancillary turned out really useful to
obtain a positive energy gap.

Note that the optimized unit cell SCUII-2ii is D4-symmetric. This reduces ground states to
only two effective ground states and the number of DOFs to only two. One DOF is required
to achieve ground state degeneracy between the effective ground states while the last DOF is
chosen such that the effective gap and the robustness are both maximized.

8.5.2 ||| Surface Code in higher Dimensions

In this brief subsection we want to introduce and discuss higher-dimensional unit cells in rep-
resentation I. More precisely we consider the surface code unit cell in three dimensions and
conclude with a short comment on four dimensions.
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Figure 8.16: Quasiplanar SCUII-2ii unit cell with one ancillary. The optimized unit cell possesses
unit quality and the optimized effective gap is similar to the effective gap of the SCUII-1 unit cell in
fig. 5.3. The planar implementation SCUII-2i is presented in fig. 5.10 and discussed in app. 5.A.3.

The tetrahedral SCUI-4 Unit Cell. We want to start by introducing the three-dimensional
implementation SCUI-4 of the surface code unit cell. The structure is presented in fig. 8.17. The
ports B, C and D lie in the projection plane while the port A and the ancillaries are centered
above the projection plane. The structure is D3-symmetric thus there are four effective ground
states (similarly as for theD4-symmetric SCUI3 unit cells in fig. 8.15). However theD3-symmetry
constrains fewer DOFs than theD4-symmetry leading to two more useful DOFs. Thus in contrast
to the quasiplanar SCUI-3 unit cells we are able to achieve ground state degeneracy (up to
numerical errors) with only two ancillaries. The effective gap is ∆Eeff[SCUI-4] ≈ 0.6% which is
smaller than for the SCUII-2ii or the SCUII-1 unit cell.

Such a tetrahedral surface code unit cells can be used to tessellate the surface code on the
diamond lattice. Here each unit cell is placed on one site of the lattice and amalgamated with
its four adjacent unit cells in a tetrahedral structure.

The four-dimensional Unit Cell. As a closing remark we want to note on a four-dimensional
SCUI unit cell which would be somewhat trivial to construct.
Consider a regular tetrahedron of ports. We position the two ancillaries in the orthogonal fourth
dimension equidistant to each port to conserve the S4-symmetry of the ports. We choose the
realization such that ancillary 0 is excited iff only two ports are excited, and ancillary 1 is excited
iff no port is excited. One DOFs in the position and the detuning of ancillary 0 is fixed such
that the ground states with two excited ports achieve degeneracy with the ground state where
all four ports are excited. The second DOF is used to optimize the effective gap. The ports and
the ancillary 0 now construct a ‘squeezed’ tetrahedral pyramid. Finally ancillary 1 is centered
between the other atoms such that it is in blockade with all of them (this defines a finite volume).
The detuning is fixed to achieve full ground state degeneracy.

This construction requires a four-dimensional Rydberg platform. The structure is actually ‘quasi-
planar’ however the ‘plane’ is now a three-dimensional hyperplane in four-dimensional space.
This is not quite surprising as four ports lie necessarily in a three-dimensional hyperplane. Nev-
ertheless the construction requires four dimensions which makes it only conceptually interesting.
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Figure 8.17: VdW-minimal (inverted) crossings optimal in ∆Eeff and r. For a clearer visualization
we summarize the ancillaries in one column portraying only their number of excitations.

It illustrates the advantage provided by additional dimensions: In higher dimensions we can
construct more-symmetric structures which simplify the implementation of highly symmetric
languages, such as the surface code in representation I.
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8.6 ||| Fibonacci Model Sites

In this section we want to discuss Fibonacci model sites on the three-dimensional Rydberg
platform. Note that Fibonacci model sites only possess three ports thus the following sites
are necessarily quasiplanar. We are interested in constructing VdW-minimal realizations and
compare them with the VdW-minimal FMSI-3 site from fig. 5.6. In particular we are interested
in realizations optimizing the effective gap.

The FMSI3-Site. First we recapitulate the FMSI-3 site portrayed in fig. 5.6. Representation
I is the all edge high representation where an excited port is identified with an excited edge.
It is in some sense the natural representation and it is the only representation studied in Ref.
[38] for the PXP model. For the FMSI-3 site we were able to chose the ancillary anywhere
inside the gray-shaded area without modifying the energy gap. The ancillary only needed to be
sufficiently close to each port such that it does not impede the energy gap. This was founded in
the similarity to the XOR3-gate from fig. 4.9 where we first encountered this behavior. On the
three-dimensional Rydberg platform the gray-shaded area is a volume but we can still choose
a planar structure. Thus the FMSI-3 site does not profit from the additional DOF provided by
three-dimensional space.

Other Representations. As an introductory example of this chapter we considered the
XNOR3ii-gate (see fig. 8.1) which drastically improved by more than one order of magnitude
compared to the two-dimensional case XNOR-3i from fig. 4.9. In sec. 5.2 we first introduced
the four different representations of the Fibonacci model. Analogously to how representation
FMSI parallels XOR3 (adding one more state) the representation FMSIV parallels XNOR. We only
need to include the additional ground state where no port is excited. This motivates that for
representation FMSIV we expect a significantly better effective gap in three-dimensional space.
This is the reason why we directly study the remaining Fibonacci model representations on the
three-dimensional Rydberg platform. We compare the two-dimensional cases where we consider
it relevant.

8.6.1 ||| Representation IV

Representation IV is the all edge low representation where an excited port is identified with a
de-excited edge. It is dual to representation I and thus its check function (5.16) is also symmetric
in the port bits. It includes the five ground states where zero, one or three port bits are excited.

Fig. 8.18 presents the two-dimensional (i) and three-dimensional (ii) ∆Eeff-optimized struc-
tures for the FMSIV site in realization 1. The effective gap ∆Eeff[Cii] ≈ 16.6% of the quasi-
planar structure FMSIV-1ii is more than one order of magnitude larger than the effective gap
∆Eeff[Ci] ≈ 1.3% of the planar structure FMSIV-1i. Thus as reasoned above the structure prof-
its from embedding it in three-dimensional space. Shifting the ancillary out-of-plane allows to
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Figure 8.18: Fibonacci model site with check function (5.16) in representation IV. FMSIV-1i is
planar while FMSIV-1ii is quasiplanar. The effective gap profits from including the additional DOF
in the ancillary because it allows to increase the interactions between pairs of ports (cf. XNOR3ii-gate
from fig. 8.1).

increase the residual interaction energies between the ports without modifying the distance to
the ancillary. This further gaps-out the excited state where two ports are excited simultaneously
with the ancillary. Still the effective gap ∆Eeff[Cii] is only half as large as the effective gap of the
planar structure FMSI-3 from representation I. In that sense representation I is more natural to
implement on the Rydberg platform than representation IV. This is similar to how the effective
gap of the quasiplanar XNOR3ii-gate (∆Eeff = 12.5%) remains half-as large as the effective gap
of the planar XOR3-gate (∆Eeff = 25%).

Realization FMSIV-1 is VdW-minimal and the only VdW-minimal realization of representation
IV. This follows directly from corollary II. We require the ancillary such that such that the
ground states xxx2,xxx3,xxx4,xxx5 /⋐xxx1 are no non-adjacent substates of xxx1 (and such that 000 /∈ Lt). Thus
the ancillary needs to be excited in xxx2,xxx3,xxx4,xxx5 but not excited in xxx1 which defines the VdW-
minimal realization 1.

Note that realization w[FMSIV-1] = MIN is excited if at most one port is excited. This realiza-
tion and both implementations FMSIV-1i and FMSIV-1ii are symmetric thus we can reduce the
ground states to three effective ground states defined only by the number of excited input ports.
Note that in the states of the fourth column in fig. 8.18 and in the table of the last column we
stick to the lexicographic order of the edge states. As the edge states are now inverted compared
to the ground states this shuffles the order of the ground states compared to the other figures
throughout this thesis.
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Figure 8.19: Fibonacci model site with check function (5.14) in realization FMSII-1. FMSII-1i is
planar while FMSIV-1ii is quasiplanar. The effective gap profits from including the additional DOF
in the ancillary because it allows to increase the interactions between pairs of ports (cf. XNOR3ii-gate
from fig. 8.1).

8.6.2 ||| Representation II

Representation II is defined by the edge low representation for one edge. Thus the check func-
tion (5.14) is intrinsically asymmetric in the port bits. It includes the four words where either
one or three port bits are excited but also the asymmetric word where only the two port bits
associated with edges in positive representations are excited. In the following we associate the
edge in negative representation with port A and the edges in positive representations with the
ports B and C. Thus the permutation symmetry between the ports B and C remains conserved
on the level of the check function.

For this representation we require at least one ancillary. Again, we follow the argument from
corollary II. We require the ancillary such that such that the ground states xxx1,xxx3,xxx4 /⋐xxx2 are
no non-adjacent substates of xxx2 (and such that 000 /∈ Lt). Thus the ancillary needs to be excited
in xxx1,xxx3,xxx4 but not excited in xxx2. This leaves two choices for the state of the ancillary in xxx5:
Realization w[FMSII-1] = MIN and realization w[FMSII-2] = NAAND are presented in fig. 8.19
and fig. 8.20 respectively. This makes the realizations of figs. 8.19 and 8.20 VdW-minimal and
the list of VdW-minimal realizations complete. For each realization we consider one planar (i)
and one quasiplanar (ii) implementation.

As the check function is only permutation symmetric between two ports the four sites FMSII-1i,ii
and FMSII-2i,ii are only D1-symmetric as well. For the quasiplanar sites FMSII-1ii and
FMSII-2ii we draw the underlying grid such that it conserves the angle 120◦ between the edges
(but therefore not necessarily the equal lengths of the edges). The grid is visualized as the gray-
shaded lines in the sites. For the planar implementations FMSII-1i and FMSII-2i the ports
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Figure 8.20: Fibonacci model site with check function (5.14) in realization FMSII-2. FMSII-2i is
planar while FMSIV-2ii is quasiplanar. The effective gap profits from including the additional DOF
in the ancillary because it allows to increase the interactions between pairs of ports (cf. XNOR3ii-gate
from fig. 8.1).

enclose the angle ∠(A,B,C) > 120◦: Here we draw the edges such that they connect to the an-
cillary. The planar implementations FMSII-1i and FMSII-2i are too deformed such that we can
not directly amalgamate two of such sites to construct a unit cell without corrupting the energy
structure. Such an amalgamation would either require intermediate LNK-gates or a deformation
of the structure. Additionally the planar site possesses only a small effective gap ∆Eeff ∼ 1%
which is at least one order of magnitude smaller than the effective gap of the planar FMSI-3 site.
This realization seems not very natural to implement on the two-dimensional Rydberg platform.

The quasiplanar FMSII-1ii and FMSII-2ii sites possess an effective gap ∆Eeff ≈ 14% similarly
as for the FMSIV-1ii site. Thus this realization profits heavily from the third dimension for
the ancillary. Still, the energy gap is smaller than for the FMSI-3 site. This behavior is very
similar to the XNOR3ii-gate from fig. 8.1 as the language LFMSI1 = XNOR3 ∪ {(0A, 1B, 1C, 00)}
are identical up to the fifth ground state. If we constrain the structure to the two-dimensional
Rydberg platform the effective gap suffers similarly as for XNOR3i. On the three-dimensional
Rydberg platform the XNOR3ii-gate still possesses a smaller effective gap than the XOR3-gate
which parallels the FMSI-3 site.
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Figure 8.21: Fibonacci model site with check function (5.15) in representation III. There exist
two VdW-minimal realizations FMSIII-1 and FMSIII-2 which can both be chosen planar without
impeding the effective gap (cf. XOR3-gate from fig. 4.9). The effective gaps are comparable to the
FMSI-3 site from fig. 5.6.

8.6.3 ||| Representation III

Lastly, we consider representation III which is dual to representation II. Representation III is
edge low for two edges which we identify with the ports B and C. Like for representation II the
check function (5.15) is only permutation symmetric in the ports B and C. It includes the four
words where either no or two port bits are excited but also the asymmetric word where only the
port A is excited.

Again we require one ancillary for this representation. We argue with corollary II. We require
the ancillary such that such that the ground state xxx2 /⋐xxx1,xxx3,xxx4 is no non-adjacent substate of
xxx1, xxx3 and xxx4 (and such that 000 /∈ Lt). Thus the ancillary needs to be excited in xxx2 but not
excited in xxx1,xxx3,xxx4. This leaves two choices for the state of the ancillary in xxx5: Realization
w[FMSIII-1] = NOOR and realization w[FMSII-2] = MIN are presented in the first and second row
of fig. 8.21 respectively. This makes the realizations of fig. 8.21 VdW-minimal and the list of
VdW-minimal realizations complete.

The FMSIII-1,2 site is similar to the XOR3-gate from fig. 4.9. The language LFMSI1 = XNOR3 ∪
{(0A, 1B, 1C, 00)} are identical up to the fifth ground state. In the fifth ground state of realization
FMSIII-1 the ancillary is not excited. Thus the ancillary only needs to be sufficiently close to
the ports such that it does not impede the energy gap. Thus the FMSIII-1 site possesses again
a gray-shaded volume in which we can arbitrarily position the ancillary to optimize the effective
gap. We choose a planar implementation where the distance with the port A is maximal because
this emphasizes the similarity with theFMSIII-2 site.
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In the FMSIII-2 site the ancillary is excited in the fifth ground state. To optimize the energy
gap for the FMSIII-2 site the distance between port A and the ancillary needs to be maximized.
Here the only choice left is the positioning of the ancillary on the two-dimensional spherical cap
between the ports B and C. We choose a planar and symmetric implementation for fig. 8.21.
Note that for both realizations we choose a planar implementation within the solution space
which optimizes the effective gap. This solution space includes quasiplanar structures as well.

8.6.4 ||| Summary and Conclusion

The effective gaps of both realizations FMSIII-1,2 are large and comparable with the FMSI-3

site in fig. 5.6. Especially the effective gap ∆Eeff ≈ 33.3% of realization FMSIII-1 is besides
the FMSI-3 site the largest one we encountered. Similarly both sites possess tolerance in the
positioning of the ancillary which supports an experimental implementation. In contrast the
effective gaps of representations II and IV are smaller and require the third dimension. They
possess no tolerance in the positioning of the ancillaries. This can be explained by the similarity
of representations I and III to the XOR3-gate and from representations II and IV to the XNOR3-
gate. Negating two edges maps the eigenstates of XOR/ XNOR with even/ odd number of excited
ports to themselves. Thus the even/ odd representations differ only in their fifth ground states
which seems to require only small modifications. In sec. 4.2 we already found that XOR3 can be
implemented as a planar structure with choice left in the positioning of the ancillary. Instead
the XNOR-gate possesses only a low effective gap for a planar structure and even with the third
dimension the effective gap is only half as large as for XOR3.
For the even/ odd representations there is one representation with a symmetric and one with an
asymmetric check function. The asymmetric check functions possess two VdW-minimal realiza-
tions each, the symmetric check functions possess only one VdW-minimal realization each.

In conclusion the most promising VdW-minimal realizations for the Fibonacci model seem to
be the FMSI-3 and the FMSIII-1 site with one ancillary each. Tessellating the FMSI-3 site yields
a hexagonal structure where one ancillary is positioned on each site and one port is positioned
on each edge. Tessellating the FMSIII-1 sites constructs a similar honeycomb grid however
‘squished’ in the vertical direction.
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||| Appendix

8.A ||| Completeness and Minimality of the Ternary
Logic Elementaries

In this appendix we want to include the remaining ternary, scalar, symmetric logic elementaries
which were not yet mentioned in sec. 8.2. Furthermore we want to proof minimality and
completeness of the portrayed lists. Again, we structure this section by the effective Hamming
weight.
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8.A.1 ||| Unit effective Hamming Weight

In this subsection we prove the following statement:

1 Every realization portrayed in fig. 8.4 and fig. 8.22 is VdW-minimal : The connec-
tives NOOR, XXOR and XXNOR require only one ancillary. The AAND-gates require at
least two ancillaries.

2 For the connectives NOOR, XXOR and XXNOR the combined list of realizations in fig. 8.4
and fig. 8.22 is exhaustive. For AAND there exist in total seven possible realizations.

Proof 16. (Completeness and Minimality for unit effective Hamming Weight)

We follow the argument from corollary II. In a nutshell corollary II forbids ground states which
are non-adjacent substates (with any intermediate excited state).
We start with fb = NOOR. The realizations NOOR-1a,b,c,d posses one ancillary. The ancillary
bit is necessary such that xxx2 /⋐xxx4. Thus the realizations NOOR-1a,b,c,d are VdW-minimal.
We need to choose the ancillary bit such that it is excited in xxx2 but not excited in xxx4. This
leaves 22 = 4 choices for xxx1 and xxx4 which are presented as a, b, c and d in fig. 8.4 and fig.
8.22. Thus the list of VdW-minimal realizations is complete.
We continue with fb = XXOR. Realization XXOR-1 possesses one ancillary. The ancillary bit is
necessary such that xxx1 /⋐xxx2,xxx3,xxx4 (and such that 000 ̸= xxx1 ∈ G which is excluded by remark 4).
Thus realization XXOR-1 is VdW-minimal. We need to choose the ancillary bit such that it is
excited in xxx1 but not excited in xxx2,xxx3,xxx4. This leaves only one choices which is presented in
fig. 8.4. Thus realization XXOR-1 is VdW-minimal and unique.
Now consider fb = XXNOR. Realization XXNOR-1 possesses one ancillary. The ancillary bit is
necessary such that xxx1,xxx2 /⋐xxx3,xxx4 (and such that 000 ̸= xxx1 ∈ G which is excluded by remark 4).
Thus realization XXNOR-1 is VdW-minimal. We need to choose the ancillary bit such that it
is excited in xxx1,xxx2 but not excited in xxx3,xxx4. This leaves only one choices which is presented
in fig. 8.4. Thus realization XXNOR-1 is VdW-minimal and unique.
Lastly consider fb = AAND. The realizations AAND-1a,b posses two ancillaries. We need (an)
ancillary bit(s) such that xxx1 /⋐xxx3 and such that xxx1,xxx2,xxx3 /⋐xxx4. Thus in particular (at least) one
ancillary bit needs to be excited in xxx1 which is not excited in xxx3 and (at least) one ancillary
bit needs to be excited in xxx3 but not excited in xxx4. This requires at least two ancillary bits
which makes realizations AAND-1a,b VdW-minimal. As mentioned above the portrayed list
of VdW-minimal AAND-gates is not complete. In the following we derive a complete list of
candidates. W.l.o.g. assume that ancillary bit 0 is excited in xxx1 but not excited in xxx3 and
ancillary bit 1 is excited in xxx3 but not excited in xxx4:

1 First assume that bit 0 is excited in xxx4. Then bit 1 needs to be excited in xxx1 and xxx2

such that xxx1,xxx2 /⋐xxx4. This leaves two possibilities for the realizations: w = (EQU, NAAND)
and w = (NXXNOR, NAAND).

2 Now consider the case where bit 0 is not excited in xxx4 (this is the case for both realizations
1a and 1b):
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Figure 8.22: Additional ternary, scalar, symmetric logic gates with unit effective Hamming weight
wH = 1. The portrayed connectives emerge from the connectives from fig. 8.23 via negation. Further
gates are portrayed in fig. 8.4. Completeness and minimality are shown in proof 16.
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a If bit 1 is not excited in xxx2 then bit 0 needs to be excited xxx2 such that xxx2 /⋐xxx4. This
leaves two possibilities for the realizations: w = (MIN, XXNOR) and w = (MIN, EVEN).

b If bit 1 is excited in xxx2 then bit 0 can be either excited or not excited in xxx2:

i If bit 0 is excited in xxx2 then bit 1 needs to be excited in xxx1 such that xxx1 /⋐xxx2.
This yields realization w[AAND1a] = (MIN, NAAND).

ii On the other hand if bit 0 is not excited in xxx2 this yields two possibilities for
the realizations: w[AAND1b] = (NOOR, NAAND) and w = (NOOR, NEQ).

Thus in total we obtain seven realization for fb = AAND and recover the two realizations 1b

and 1a from fig. 8.4 and fig. 8.22 respectively which are .

8.A.2 ||| Effective Hamming Weight Three

In this subsection we prove the following statement:

1 Every realization portrayed in fig. 8.5 and fig. 8.23 is VdW-minimal. The connec-
tives NAAND, NXXNOR and NXXOR require only one ancillary. The OOR-gates require at
least two ancillaries.

2 For the connectives NAAND, NXXNOR and NXXOR the combined list of realizations in
fig. 8.5 and fig. 8.23 is exhaustive. For OOR there exist in total seven possible
realizations.

Proof 17. (Completeness and Minimality for effective Hamming Weight Three)

We follow the argument from corollary II. In a nutshell corollary II forbids ground states which
are non-adjacent substates (with any intermediate excited state).
We start with fb = NAAND. The realizations NAAND-1a,b,c,d posses one ancillary. The
ancillary bit is necessary such that xxx1 /⋐xxx3. Thus the realizations NAAND-1a,b,c,d are VdW-
minimal. We need to choose the ancillary bit such that it is excited in xxx1 but not excited in
xxx3. This leaves 22 = 4 choices in bit 1 for xxx2 and xxx4 which are presented as a, b, c and d in
fig. 8.4 and fig. 8.23. Thus the list of VdW-minimal realizations is complete.
We continue with fb = NXXNOR. Realization NXXNOR-1 possesses one ancillary. The ancillary
bit is necessary such that xxx1,xxx2,xxx3 /⋐xxx4. Thus realization NXXNOR-1 is VdW-minimal. We need
to choose the ancillary bit such that it is excited in xxx1, xxx2 and xxx3 but not excited in xxx2,xxx3,xxx4.
This leaves only one choices which is presented in fig. 8.4. Thus realization NXXNOR-1 is
VdW-minimal and unique.
Now consider fb = NXXOR. Realization NXXOR-1 possesses one ancillary. The ancillary bit
is necessary such that xxx1,xxx2 /⋐xxx4 and such that xxx1 /⋐xxx3. Thus realization NXXOR-1 is VdW-
minimal. We need to choose the ancillary bit such that it is excited in xxx1 and xxx2 but not
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Figure 8.23: Additional ternary, scalar, symmetric logic gates with effective Hamming weight
wH = 3. The portrayed connectives emerge from the connectives from fig. 8.22 via negation.
Further gates are portrayed in fig. 8.5. Completeness and minimality are shown in proof 17.
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https://git.itp3.uni-stuttgart.de/simonfell/MastersThesis_LibraryOfVdWRydbergStructures/src/branch/master/TernaryGates/EffectiveHammingWeightThree/NAAND-1/NAAND-1d
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excited in xxx3 and xxx4. This leaves only one choices which is presented in fig. 8.4. Thus
realization NNXXOR-1 is VdW-minimal and unique.
Lastly consider fb = OOR. The realizations OOR-1a,b,c,d posses two ancillaries. We need (an)
ancillary bit(s) such that xxx1 /⋐xxx2,xxx3,xxx4 and such that xxx2 /⋐xxx4. Thus in particular (at least) one
ancillary bit needs to be excited in xxx1 which is not excited in xxx2 and (at least) one ancillary
bit needs to be excited in xxx2 but not excited in xxx4. This requires at least two ancillary bits
which makes realizations OOR-1a,b,c,d VdW-minimal. As mentioned above the portrayed
list of VdW-minimal OOR-gates is not complete. In the following we derive a complete list of
candidates. W.l.o.g. assume that ancillary bit 0 is excited in xxx1 but not excited in xxx2 and
ancillary bit 1 is excited in xxx2 but not excited in xxx4:

1 First assume that bit 0 is excited in xxx4. Then bit 1 needs to be excited in xxx1 such
that xxx1 /⋐xxx4. In xxx3 the two bits must be different because for both bits (de-)excited it
is xxx1 /⋐xxx3 (xxx3 /⋐xxx4). This leaves two possibilities for the realizations: w = (NXXOR, NAAND)
and w = (EQU, NAAND).

2 Now consider the case where bit 0 is not excited in xxx4 (this is the case for all realizations
1a,b,c,d):

a If bit 1 is excited in xxx3 then bit 0 needs to be not excited xxx3 such that xxx2 /⋐xxx3. This
leaves two possibilities for the realizations: w = (NOOR, NAAND) and w = (NOOR, NEQ).

b If bit 1 is excited in xxx3 then bit 0 can be either excited or not excited in xxx3:

i If bit 0 is excited in xxx3 then bit 1 needs to be excited in xxx1 such that xxx1 /⋐xxx3.
This yields realization w = (EVEN, MIN).

ii On the other hand if bit 0 is not excited in xxx3 this yields two possibilities for
the realizations: w = (NOOR, MIN) and w = (NOOR, XXOR).

Thus in total we obtain seven realization for fb = OOR and recover the two realizations
1a,b,c,d from fig. 8.4 and fig. 8.22 respectively which are .

8.A.3 ||| Effective Hamming Weight Two

In this subsection we prove the following statement:

1 Every realization portrayed in fig. 8.6 and fig. 8.7 is VdW-minimal. The connectives
require at most one ancillary. The MIN-gate requires no ancillary at all.

2 The list of VdW-minimal realizations in fig. 8.6 and fig. 8.7 is exhaustive. For each
gate there exists only one unique VdW-minimal realization.
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Proof 18. (Completeness and Minimality for effective Hamming Weight Two)

Again, we follow the argument from corollary II. In a nutshell corollary II forbids ground
states which are non-adjacent substates (with any intermediate excited state).
We start with fb = MIN. The realization MIN-1 presented in fig. 8.4 possesses no ancillary.
This makes this realization trivially VdW-minimal and unique.
We continue with fb = MAJ. Realization MAJ-1 possesses one ancillary. The ancillary bit
is necessary such that xxx1,xxx2 /⋐xxx3,xxx4. Thus realization MAJ-1 is VdW-minimal. We need to
choose the ancillary bit such that it is excited in xxx1 and xxx2 but not excited in xxx3 and xxx4. This
leaves only one choice which is presented in fig. 8.4. Thus realization MAJ-1 is VdW-minimal
and unique.
Thirdly consider fb = NEQ. Realization NEQ-1 possesses one ancillary. The ancillary bit is
necessary such that xxx1 /⋐xxx2,xxx3,xxx4. Thus realization NEQ-1 is VdW-minimal. We need to
choose the ancillary bit such that it is excited in xxx1 but not excited in xxx2, xxx3 and xxx4. This
leaves only one choice which is presented in fig. 8.4. Thus realization NEQ-1 is VdW-minimal
and unique.
Now we consider fb = EQU. Realization EQU-1 possesses one ancillary. The ancillary bit
is necessary such that xxx1,xxx2,xxx3 /⋐xxx4. Thus realization EQU-1 is VdW-minimal. We need to
choose the ancillary bit such that it is excited in xxx1, xxx2 and xxx3 but not excited in xxx4. This
leaves only one choice which is presented in fig. 8.4. Thus realization EQU-1 is VdW-minimal
and unique.
Finally consider fb = EVEN. Realization EVEN-1 possesses one ancillary. The ancillary bit is
necessary such that xxx1 /⋐xxx3 and such that xxx2 /⋐xxx4. Thus realization EVEN-1 is VdW-minimal.
We need to choose the ancillary bit such that it is excited in xxx1 but not in xxx3 and such that is
is excited in xxx2 but not in xxx4. This leaves only one choice which is presented in fig. 8.4. Thus
realization EVEN-1 is VdW-minimal and unique.
Lastly consider fb = ODD. The realizations OOR-1 posses two ancillaries. We need (an) ancillary
bit(s) such that xxx1 /⋐xxx2,xxx3,xxx4 and such that xxx2,xxx3 /⋐xxx4. Thus in particular (at least) one
ancillary bit needs to be excited in xxx1 which is not excited in xxx2 and (at least) one ancillary
bit needs to be excited in xxx2 but not excited in xxx4. This requires at least two ancillary
bits which makes realizations ODD-1 VdW-minimal. As mentioned above the portrayed list
of VdW-minimal ODD-gates is not complete. In the following we derive a complete list of
candidates. W.l.o.g. assume that ancillary bit 0 is excited in xxx1 but not excited in xxx2 and
ancillary bit 1 is excited in xxx2 but not excited in xxx4:

1 First assume that bit 0 is excited in xxx4. Then bit 1 needs to be excited in xxx1 and xxx3

such that xxx1,xxx3 /⋐xxx4. Further bit 0 needs to be not excited in xxx3 such that xxx1 /⋐xxx3. This
yields realization w = (EQU, NAAND).

2 Now consider the case where bit 0 is not excited in xxx4 (this is the case for realization 1):

a If bit 1 is excited in xxx1 then in xxx3 either bit 0 or 1 needs to be (not) excited such that
xxx1 /⋐xxx3 and xxx3 /⋐xxx4. This leaves two possibilities for the realizations: w = (EVEN, MIN)
and w = (NOOR, NAAND).

b If bit 1 is not excited in xxx1 then in xxx3 bit 1 (0) needs to be (not) excited such that
xxx1 /⋐xxx3 and xxx3 /⋐xxx4. This yields realization w = (NOOR, NEQ).

Thus in total we obtain five realizations for fb = ODD and recover the two realizations 1 from
fig. 8.5.
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8.B ||| Completeness and Minimality of the Multi Gates

In this appendix we want to include the remaining VdW-minimal binary, double and triple logic
gates which were not yet mentioned in sec. 8.4. Furthermore we want to proof minimality and
completeness for the double logic gates.

8.B.1 ||| Double Logic Gates

In this subsection in fig. 8.24 we present further double gates which complete the list portrayed in
fig. 8.13. We claim that fig. 8.13 and fig. 8.24 together include the complete list of VdW-minimal
double gates constructed from the three logical connectives NOR, NAND and XOR:

Proof 19. (Completeness and Minimality of Double Logic Gates)

The double gates NORNOR-1, NANDNAND-1, NORNAND-1 and NORXOR-2 are trivially the unique
VdW-minimal realizations because they possess no ancillaries. Thus we only need to show
that for the two remaining connectives NANDXOR and XORXOR we found the complete list of
VdW-minimal realizations. We follow the argument from corollary II. In a nutshell corollary
II forbids that there are two ground states which are non-adjacent substates (with any inter-
mediate excited state).
The realizations NANDXOR-1 and NANDXOR-2 posses one ancillary each. The ancillary bit is
necessary such that xxx1 /⋐xxx2,xxx3. This makes both realizations VdW-minimal. We need to
choose the ancillary bit such that it is excited in xxx1 but not excited in xxx2,xxx3. The state of the
ancillary bit remains undetermined in xxx4. This leaves only 2 possibilities for the realizations:
w[NANDXOR1] = NOR and w[NANDXOR2] = XNOR. This makes the list of VdW-minimal NANDXOR-
gates complete.
Realizations XORXOR-2 possesses one ancillary. The ancillary bit is necessary such that xxx1 /⋐xxx2,xxx3,xxx4

(and such that 000 /∈ Lt), thus realization XORXOR-2 is VdW-minimal. We need to choose the
ancillary bit such that it is excited in xxx1 but not excited in xxx2,xxx3,xxx4. This fully determines
the realizations w[XORXOR2] = NOR which makes XORXOR-2 the unique VdW-minimal realiza-
tion.

The XORXOR2-Gate. The XORXOR1-gate is not VdW-minimal because it includes two ancillaries
in identical states. The VdW-minimal XORXOR2-gate in the first row of fig. 8.24 is constructed
by removing one of the two ancillaries. Interestingly the ∆Eeff, r-optimized L-complex seems to
remain two-dimensional. However there are necessarily strong residual interaction between the
two output ports which cause a small effective gap ∆Eeff[XORXOR2] ≈ 3.8%. It might therefore
be more useful to rely on realization XORXOR-1 for the implementation of a logic circuit.

The NANDXOR2-Gate. Similarly the VdW-minimal realization NANDXOR-1 is not unique. One
could imagine an equally valid realization w[NANDXOR2] = XNOR as presented in the second row
of fig. 8.24. The effective gap is ∆Eeff[NANDXOR2] ≈ 9.4%.
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Figure 8.24: Further double logic Gates which implement vectorial connectives with q = 2. The
remaining gates are portrayed in fig. 8.13.

The NORXOR2- and the ORXOR2-Gate. Lastly realization NORXOR-1 is not VdW-minimal either
because here the ancillary 0 is always in the same state as output port Q. In fact by relabeling
the ancillary from the XOR3-gate in fig. 4.9 as another output port we obtain the VdW-minimal
and unique NORXOR2-gate from the third row in fig. 8.24. Note that we can choose the output
port Q inside the gray-shaded volume freely without modifying the effective gap. In particular
we can choose the optimized structure as two-dimensional. However the output port Q can only
be accessed efficiently via the third dimension. Nevertheless it is possible to embed this gate in
a logic circuit on the two-dimensional Rydberg platform. This is illustrated via the ORXOR2-gate
in the first row of fig. 8.25. Here we amalgamated a NOT1-gate to output port Q such that it
lies in-plane with the remaining atoms. Such an amalgamation on the two-dimensional Rydberg
platform introduces strong residual interactions between the output ports. This impairs the
effective gap ∆Eeff ≈ 0.6% of the ORXOR2-gate.
The ORXOR2-gate is actually VdW-minimal and unique. Here the ancillary bit is necessary such
that xxx1 /⋐xxx2,xxx3,xxx4 thus the ancillary needs to be excited in xxx1 but not excited xxx2,xxx3,xxx4. This
fully determines realization w[ORXOR2] = NOR.
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Figure 8.25: Two-dimensional multi gates which include OR. They are constructed by amalgamating
a NOT1-gate in-plane with the other atoms to the NORXOR2- and NXN2-gate from fig. 8.24 and fig.
8.14 respectively.

8.B.2 ||| Triple Logic Gates

In fig. 8.25 in the second row we portray the OXN2-gate. Here we amalgamated a NOT1-gate to
output port Q of the NXN2-gate in fig. 8.14 such that it lies in-plane with the remaining atoms.
Such an amalgamation on the two-dimensional Rydberg platform introduces strong residual
interactions between the output ports which impairs the effective gap ∆Eeff ≈ 0.4% of the OXN2-
gate. This illustrates that it is possible to construct a logic circuit with the NXN2-gate on the
two-dimensional Rydberg platform however the dimensionality constraint impairs the effective
gap.
We can also interpret the OXN2-gate as a ORXOR2-gate where an additional NAND3-gate amalga-
mated to the input ports. As the effective gap of the ORXOR2-gate is very small this also explains
why the effective gap of the OXN2-gate is so small.
The OXN2-gate is VdW-minimal and but not unique. Here the ancillary bit is necessary such
that xxx1 /⋐xxx2,xxx3. One could imagine another realization with w = XNOR.
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9 ||| Outlook

In this chapter we want to give a brief overview over interesting, open questions and further
topics we deem worth studying.

➔ A first natural idea is to apply the developed machinery to further exemplary systems.
Most notably is the tessellated quantum spin-ice on the pyrochlore lattice1 which is found
in rare-earth ions[15]. Here each unit cell is a regular tetrahedron which Z2 degrees of
freedom on the corners which are shared with its adjacent unit cells. This results in an
effectively antiferromagnetic interaction that is frustrated.

➔ In (amalgamated) structures throughout this thesis we observed a ‘clumping ’ of the ground
states and the excited states to be optimal for the quality and the effective gap. However
both measures only consider the extremal energies; they are not able to resolve or quan-
tify such clumping. This suggests that a finer measure including the distribution of states
might be useful to consider in future studies. It is possibly interesting to study whether
this clumping is a general phenomenon and what determines the number of ‘bands’ which
arise during clumping.

➔ Another interesting ansatz for further studies is to consider quantum fluctuations on the
Rydberg platform in the VdW model by perturbatively ramping up the Rabi frequencies Ωi

of the atoms. This is particularly interesting for highly symmetric structures (cf. subsec.
8.1.2) which promise (due to their symmetry) equal weight-superpositions of the ground
states. In that context it is of large interest to find fully symmetric implementations of the
surface code unit cell.

1This is the dual lattice to the diamond lattice.
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➔ Lastly in sec. 7.3 we offered an argument for why we believe that one requires in general
exponentially many ancillaries to implement general Boolean functions. However this
is far from a rigorous proof it remains an open question to proof or disprove this state-
ment. This is relevant to continue on the idea of geometric programming as an overload of
exponentially many ancillaries is neither experimentally nor numerically feasible.
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