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Abstract

In this thesis, an interacting, particle number conserving model of spinless fermions in a
two-leg ladder system is analyzed in the context of topological edge states. As proven in
[1], where the model was proposed first, the ground state has a topologically protected
degeneracy and features edge states with non-Abelian braiding statistics for a special
choice of parameters.

In a first step, the model is treated using bosonization, allowing for a qualitative pre-
diction of the behaviour of the described system depending on the parameters. In this
description, the system can be separated into a symmetric and an antisymmetric sec-
tor with respect to wire exchange. Then, depending on the parameters, renormalization
group arguments can be employed to make statements about the possible occuring phases.
In this way, the topological phase is predicted as well as a Luttinger liquid phase and a
phase gapped in the antisymmetric sector. For half filling, a charge density wave and a
phase with a gap in the symmetric sector can occur. While the assignment of the occur-
ing phases to the appearing parameters can be made qualitatively, a quantitative phase
diagram could not be constructed for the initial model this way.

Hence, a numerical study using the density-matrix renormalization group is done. An
implementation of the algorithm for this task is written to gain maximal flexibility in
the available features. Then, the ground state properties of the model dependent on
the parameters are computed and a quantitative phase diagram is generated, which is
in good agreement with the expectations from bosonization. The qualitative predictions
from bosonization about the behaviour of correlation functions is employed to allow for a
comparison of the numerical results to the bosonized theory.

Also, the stability of the topological phase with respect to symmetry breaking is consid-
ered and the protection of the ground state degeneracy by both time-reversal invariance
and subchain parity conservation is verified and the analytical results obtained in [1] in
perturbation theory are confirmed.



Zusammenfassung

Im Rahmen dieser Arbeit wird ein wechselwirkendes, teilchenzahlerhaltendes Modell spin-
loser Fermionen in einem System zweier gekoppelter Ketten im Zusammenhang mit topol-
ogischen Randzuständen untersucht. Wie in [1], wo das Model zuerst vorgeschlagen
wurde, gezeigt werden konnte, liegt für eine spezielle Wahl der Parameter eine topolo-
gisch geschützte Grundzustandsentartung vor und Randzustände mit nichtabelscher Aus-
tauschstatistik treten auf.

In einem ersten Schritt wird das Modell mittels Bosonisierung untersucht, wodurch
eine qualitative Vorehrsage des Verhaltens des beschriebenen Systems abhängig von den
Parametern ermöglicht wird. Im Rahmen dieser Beschreibung kann das System in einen
Sektor symmetrischen und einen antisymmetrischen Sektor bezüglich Vertauschung der
Ketten zerlegt werden. Dann können Resultate aus der Renormierungsgruppentheorie
angewandt werden, um Aussagen über die auftretenden Phasen zu treffen. Auf diese Weise
ist es möglich die topologische Phase sowie das Auftreten einer Luttinger-Flüssigkeit und
einer Anregungslücke im antisymmetrischen Sektor vorherzusagen. Im Fall halber Füllung
können zudem eine Ladungsdichtewelle und eine Anregungslücke im symmetrischen Sek-
tor auftreten. Zwar können die möglichen Phasen qualitativ den einzelnen Parametern
der Theorie zugeordnet werden, es kann aber kein quantitatives Phasendiagram erstellt
werden.

Daher wird das System mittels der Dichtematrix-Renormierungsgruppe numerisch un-
tersucht. Zu diesem Zweck wird eine Implementierung des Algorithmus erstellt, um max-
imale Flexibilität bezüglich der verfügbaren Features zu erhalten. Damit können die
Grundzustandseigenschaften des Modells in Abhängigkeit von den Parametern berechnet
werden und ein quantitatives Phasendiagram erstellt werden, welches gute Übereinstimmung
mit den Erwartungen der Bosonisierung zeigt. Die Vorhersagen der bosonisierten Theorie
über das Verhalten von Korrelationsfunktionen können hier verwendet werden, um einen
Vergleich mit den numerischen Resultaten zu ermöglichen.

Zudem wird die Stabilität der topologischen Phase bezügliche Symmetriebrechung be-
trachtet und der Schutz der Grundzustandsentartung sowohl durch Zeitumkehrinvarianz
als auch durch Erhaltung der fermionischen Parität der einzelnen Ketten werden geprüft
und die störungstheoretischen Ergebnisse aus [1] werden bestätigt.
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Chapter 1

Introduction

After the concept of topological order [2, 3] was developed following the discovery of the
quantum Hall effect [4] and the fractional quantum Hall effect [5] and the connection
to non-Abelian anyons was made [6, 7, 8], topological states of matter have become a
very active research topic, both in condensed matter physics [9] and in cold atomic gases
[10, 11, 12]. The most promising perspective for non-Abelian anyons lies in fault-tolerant
quantum computation [13, 14] which is one of the main reasons for the rising interest in
topological states of matter.

The main focus in the context of non-Abelian anyons lies on topological p-wave su-
perconductors [15, 16, 17] where the existence of Majorana modes has been derived
in one [16] and two dimensions [18, 19] and recent experiments on indium antimonide
and iron nanowires showed signatures of zero-energy Majorana modes in one-dimensional
proximity-induced topological superconductors [20, 21].

The most prominent model for a topological superconductor is the Kitaev-chain [16]
which describes a one-dimensional p-wave superconductor of spinless fermions in mean-
field theory. It is described by the Hamiltonian

H =
L−1∑
i=1

(
−tc†ici+1 + ∆c†ic

†
i+1

)
+ h.c.− µ

∑
i

c†ici . (1.1)

This toy model already exhibits a topological phase with exponentially localized Majorana
edge states [16] which realize the braiding statistics of Ising anyons [22] and is an apt model
for plenty applications.

In systems like cold atomic gases in optical lattices however, where the mean-field pic-
ture might not fully describe the physics, a particle number conserving theory is desirable
to analyse the occurence of topological states. Such a theory then has to be an interacting
theory, and in contrast to mean-field theories like the Kitaev-chain, there are only few
exactly solvable models [1, 23] of interacting theories featuring non-Abelian edge states.
On the other hand, cold atomic gases feature unique possibilities for the realization of
quasiparticles with non-Abelian statistics and numerous proposals for potential candidates
exist [12, 24, 25].

Due to the available tools, most studies of particle number conserving models consider
one-dimensional systems. There, the powerful field theoretical method of bosonization
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Chapter 1 Introduction

[26, 27] can be applied and a numerical analysis can be performed using the density
matrix renormalization group (DMRG)[28, 29]. Numerous models of interacting systems
which are described as p-wave superconductors in mean-field theories have been discussed
using bosonization [23, 30, 31, 32, 33] with results similar to those presented in this thesis.
There are also several studies of those or similar models making use of the density matrix
renormalization group [23, 24].

1.1 Model Hamiltonian
The goal of this thesis is to give a detailed analysis of a generalization of the ladder system
model which was introduced in [1].

Consider a two-leg ladder lattice with open boundary conditions of spinless fermions
with annihilation operators ai for site i of the upper chain with chain index 1 and bi for
site i of the lower chain with chain index 2. Let nσi be the number of fermions on site i of
chain σ ∈ {a, b}.

H =
L−1∑
i=1

[
a†iai+1 + a†i+1ai + b†ibi+1 + b†i+1bi

+ J
(
nai + nai+1 − 2nai nai+1 + nbi + nbi+1 − 2nbinbi+1

)
+W

(
a†ia
†
i+1bibi+1 + b†ib

†
i+1aiai+1

)
+ g

(
nai n

a
i+1

(
1− nbi

)
(1− nbi+1) + nbin

b
i+1(1− nai )(1− nai+1)

)]
. (1.2)

The special case of W = J = g = 1 was analyzed thoroughly in [1], where an exact
solution for the low-energy physics was presented, explicitly demonstrating the existence
of topologically protected edge states with non-Abelian braiding statistics.

This model is not only particle number conserving, but it also features time-reversal
invariance and conservation of the fermionic subchain parity α on each chain. The latter
is analogous to the conserved fermionic parity in the Kitaev model and distinguishes
the degenerate ground states in the topological phase. As the model is particle number
conserving, it is safe to consider only sectors of fixed particle number N , or equivalently
fixed filling fraction ρ = N

2L where L is the chain length. While some properties do
depend on the filling factor, the existence of topological edge states turns out not to do
in principle, except for trivial cases like N = 0. For J = g = W = 1 it is shown in [1],
that the ground state is even degenerate with respect to N . As will be seen in section
3.4, this is a special property of that point and does not survive a variation of paramters.

The Hamiltonian (1.2) also has been analyzed in the absence of density-density in-
teractions, that is, for J = g = 0, in [24] using bosonization as well as the numerical
tool of density matrix renormalization group. There, the existence of a topological phase
was demonstrated for moderate W away from half filling. These results are particu-
larly interesting in the context of [1] as they show that the density-density interactions
can contribute to the occurence of Majorana-like edge states. A possible experimental
realization using cold atomic gases in an optical lattice with Raman assisted tunneling
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without explicitly including density-density interactions was also proposed in [24]. There
density-density interactions might naturally appear as perturbations [24].

A similar model was considered in [23], where the existence of topological edge states
was demonstrated using bosonization and density matrix renormalization group and by
deriving an exact solution for a special choice of parameters.
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Chapter 2

Introduction to the applied methods

2.1 The bosonization scheme

The bosonization scheme applied here is the one presented in [34]. Although the bosoniza-
tion procedure itself can be rigorously applied to any one-dimensional system e.g. via con-
structive bosonization as presented in [27], it might not be rewarding for arbitrary systems.
Certain interacting fermionic theories can however be treated easily in the language of
bosonization [26, 35, 36, 37], and this common framework of describing the system as a
Luttinger liquid with additional perturbations will be used here. In the following, a short
overview of the results from [34] shall be given.

Starting from a theory of free fermions with some filling fixed by the Fermi-wavenumber
kF and corresponding Fermi velocity v, the low-energy limit is considered. Excitations can
now be separated into left- and right-moving modes such that the fermionic annihilation
operators decompose [34]

ψi(x) = ψRσ(x)eikF x + ψLσ(x)e−ikF x , (2.1)

here, σ is the index denoting the type of fermion. From now on, the right-moving fermions
annihilated by ψRσ and the left-moving fermions corresponding to ψLσ are treated as two
distinct types of fermions, with the corresponding anticommutators.

It should be noted that the theory of free fermions is a conformal field theory and the
fermionic operators ψσ are primary fields [38]. The separation into left-/ right-movers
is nothing but the separation into a holomorphic and an antiholomorphic part as it is
common in the context of conformal field theories. In particular, the fermionic fields have
conformal weights

(
1
2 , 0

)
and

(
0, 1

2

)
, respectively [38]. In particular, they obey

〈ψ†σ(x)ψσ(x′)〉 = A

x− x′
. (2.2)

The constant A is only a normalization constant. If the fields are normalized such that
they obey canonical commutation relations, it is A = 1

2π .
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2.1.1 The free boson
It turns out [26, 35] that the fermionic operators ψRσ, ψLσ can be expressed in terms of
free boson fields φσ. The Hamiltonian density of the free boson is defined as

Hb,i = v

2
(
(∂vtφσ)2 + (∂xφσ)2

)
. (2.3)

And the field operators φσ are self-adjoint. It is convenient to introduce the dual boson
fields θσ as

∂xθσ = −∂vtφσ . (2.4)

Since ∂xθσ is the canonical momentum operator of φσ, this implies the commutation
relation

[φσ(x), θσ(x̃)] = −iθH(x− x̃) , (2.5)

where θH is the Heaviside step function, not to be confused with the dual boson.
This theory can be solved straightforwardly by Fourier transformation. It can also be

treated using the powerful tool of conformal field theory like presented in [34, 38], as the
theory is conformally invariant. Contrary to the fermionic theory, the boson fields φσ are
not primary, however [38]. In this content, the introduction of complex coordinates

z = −i(x− vt) (2.6)
z̄ = i(x+ vt) (2.7)

is useful and these shall be used within this section. The correspodning derivatives are

∂ ≡ ∂z = − i2 (∂vt − ∂x) (2.8)

∂̄ ≡ ∂z̄ = − i2 (∂vt + ∂x) . (2.9)

A separation of the boson field into left-/right-moving parts ϕσ and ϕ̄σ, or in the language
of conformal field theory into a holomorphic and antiholomorphic part, is possible [34]
such that

∂̄ϕσ = 0 = ∂ϕ̄σ . (2.10)

And the separation is given by

φσ = ϕσ + ϕ̄σ (2.11)
θσ = ϕσ − ϕ̄σ . (2.12)

This will become useful both in the bosonization formula as well as in treating density
terms. It is common to denote the (x, t)-dependence of these fields as φσ(z, z̄) to emphasize
the possibility to separate the field into a holomorphic and an antiholomorphic part.

The two-point function of φσ may be calculated in several ways, for example via the
mode expansion, by solution of the Poisson equation [34] or using the fact that ∂ϕσ is a
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primary field with conformal weight (1, 0) [38]. It is then

〈ϕσ(z)ϕσ(w)〉 = − 1
4π ln(z − w) (2.13)

〈ϕ̄σ(z̄)ϕ̄σ(w̄)〉 = − 1
4π ln(z̄ − w̄) (2.14)

〈ϕσ(z)ϕ̄σ(z̄)〉 = 0 . (2.15)

Inserting these correlation functions into those of φσ and θσ yields obviously

〈φσ(z, z̄)φσ(w, w̄)〉 = 〈θσ(z, z̄)θσ(w, w̄)〉 = − 1
2π ln(|z − w|) . (2.16)

This equation in it’s equal-time form will be the starting point for computing correlation
functions in the bosonized theory.

2.1.2 Boson-Fermion correspondence
From conformal field theory, it is known [38] that the vertex operators

Vαi(z) =: eiαϕσ(z) : (2.17)

are primary fields with conformal weight

(h, h̄) = (α
2

8π , 0) , (2.18)

and analogously for ϕ̄σ.
Recall the Fermionic fields being primary fields with conformal weights

(
1
2 , 0

)
and(

0, 1
2

)
, respecitvely. This already allows for the conjecture that these might be expressed

as vertex operators with α =
√

4π with some prefactor to ensure the fermionic statistics.
A thorough derivation of the bosonization identity shall not be demonstrated here but

can be found e.g. in [27, 34], but the results from these works shall be summarized here.
It turns out that the fermionic operators can indeed be expressed as vertex operators,

leading to the famed bosonization identity [27, 34, 39]

ψRσ = ησ√
2π

: e−i
√

4πϕσ := ησ√
2π

: e−i
√
π(φσ+θσ) : (2.19)

ψLσ = η̄σ√
2π

: e−i
√

4πϕ̄σ := η̄σ√
2π

: e−i
√
π(φσ−θσ) : . (2.20)

There are some additional assumptions concerning boundary conditions [38], but the more
important requirement is the compactification of the boson [34] as

φσ = φσ +
√
π (2.21)

θσ = θσ +
√
π . (2.22)
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The so-called Klein factors ησ, η̄σ are hermitian operators on an auxiliary space to ensure
anticommutation of the fermion operators, therefore they obey [27]

{ησ, ησ′} = {η̄σ, η̄σ′} = 2δij (2.23)
{ησ, η̄σ′} = 0 . (2.24)

However, in the system considered within this thesis, all products of Klein factors in
the Hamiltonian can be made diagonal by choice of an appropiate basis in the auxiliary
space. In this case, different eigenstates of the Klein factor products decouple and the
Klein factors are of no further concern. Also, since all correlation functions considered
are of the form 〈O(x)O†(x′)〉, Klein factors do not appear in the considered correlation
functions. Therefore, they are not written explicitly from now on.

Using equations (2.19) and (2.20), the fermionic densities can also be expressed via
the boson fields in an elegant way. This can be easily derived using point splitting as
demonstrated in [34]. Due to normal ordering, the exponentials do not obey the functional
equation of the exponential function but instead the identity

: eA : : eB :=: eA+B : e〈AB〉 (2.25)

holds [34], for some bosonic fields A, B.
The fermion densities can now be derived using point splitting as presented in [34]

(exemplary for ψRσ)

: ψ†RσψRσ := 1
2π lim

ε→0

(
: ei
√

4πϕσ(z+ε) : : e−i
√

4πϕσ(z) : −1
ε

)

= 1
2π lim

ε→0

 : ei
√

4π(ε∂ϕσ(z)+O(ε2)) : −1
ε


= i√

π
∂ϕσ . (2.26)

And analogously

: ψ†LσψLσ := −i√
π
∂̄ϕ̄σ . (2.27)

2.1.3 Relevant and irrelevant interactions
So far only free theories were considered, but of course, the subject of this thesis is not a
free theory. It is however possible to study the low energy physics of the full interacting
theory in proximity to the free theory by means of bosonization and conformal field theory
perturbatively.

While the free theory is conformally invariant and thereby scale invariant, the perturba-
tions are in general not and their coupling constants are therefore subject to renormaliza-
tion group (RG) flow [40, 41], that is, they depend on the energy scale. Perturbations then
can be categorized into three classes: relevant, irrelevant and marginal [42]. The coupling
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constants of irrelevant perturbations vanish algebraically under RG flow whereas those of
relevant perturbations increase algebraically upon renormalization and those of marginal
terms vary logarithmically [34]. Hence, the low energy physics is unaffected by irrelevant
terms and they can be neglected.

The behaviour of some operator O under renormalization is connected to its conformal
weights (h, h̄). For an operator with h = h̄, this is especially simple: It is relevant if
∆ < 2, irrelevant if ∆ > 2 and marginal if ∆ = 2 [42], where ∆ = h + h̄ is the scaling
dimension. From conformal field theory, it is straightforward to determine the scaling
dimension [38] as it is

〈O(z, z̄)O†(w, w̄)〉0 = 1
z2hz̄2h̄ , (2.28)

where the expectation value is here taken with respect to the free theory. Since the scaling
dimension of interactions is computed within the free theory, this approach is perturbative.
Also, the classification with respect to ∆ cited above only captures the behaviour under
RG flow when neglecting higher orders in the RG equations.

A useful and important identity in determining the scaling dimension of perturbations
is the neutrality condition [34]

〈: eiαϕσ(z)+iβϕσ(z′) :〉 6= 0⇒ α + β = 0 , (2.29)

and analogously for ϕ̄σ. Together with equation (2.25) this allows for a straightforward
determination of scaling dimensions of operators via the bosonization identities (2.19) and
(2.20), reducing the correlation function to a function of the boson correlation functions
(2.16).

Density-density interactions however do not need be treated using equations (2.25) and
(2.29) but instead can be bosonized directly using the identity (2.26).

An important result is that derivatives of the bosonic fields of order higher than two or
any higher power than two in the derivatives of the bosonic fields is irrelevant. This can
be readily seen using Wick’s theorem, for example for (∂ϕσ)3

〈: (∂ϕσ(z))3 : : (∂ϕσ(w))3 :〉 =〈: (∂ϕσ(z))3(∂ϕσ(w))3 :〉
+ 9〈∂ϕσ(z)∂ϕσ(w) : (∂ϕσ(z))2(∂ϕσ(w))2 :〉

+ 18〈(∂ϕσ(z)∂ϕσ(w))2 : (∂ϕσ(z))(∂ϕσ(w)) :〉

+ 18〈(∂ϕσ(z)∂ϕσ(w))3〉

=18〈(∂ϕσ(z)∂ϕσ(w))3〉

=18 (〈∂ϕσ(z)∂ϕσ(w)〉)3

=18 (∂z∂w〈ϕσ(z)ϕσ(w)〉)3

= 18
(4π)3

1
(z − w)6 . (2.30)

Therefore, (∂ϕσ)3 has a scaling dimension of ∆ = 3.
In general, the scaling dimension of (∂ϕσ)n is ∆ = n since it is

〈: (∂ϕσ(z))n : : (∂ϕσ(w))n :〉 ∝ (∂z∂w〈ϕσ(z)ϕσ(w)〉)n . (2.31)
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This further generalizes to products of different boson fields like (∂ϕσ)2∂̄ϕ̄σ′ . What can
be concluded is that any interaction of power three or higher in the fermion densities is
irrelevant as its scaling dimension is equal to the power of derivatives of the bose fields.

For simplicity, normal ordering is not explicitly written from now on, although all
exponentials are still normal ordered.
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2.2 The DMRG scheme
In contrast to the traditional approach to DMRG [28, 29], the contemporary formulation
of the DMRG algorithm is as a variational approach using matrix product states (MPS)
[43, 44]. While the core algorithm is mathematically equivalent [45], extensions thereof like
excited state search are not and it is often much easier or more efficient to formulate those
using the matrix product ansatz [46]. The numerical results in this thesis were obtained
using the variational MPS algorithm as described in [45, 47, 46]. In the following, a short
overview of the method shall be given, beginning with the concept of MPS. This is based
on the introduction to MPS in [45].

Consider a many-body system where the single-particle Hilbert space is of finite di-
mension. In solid-state physics, this is usually realized by a lattice of finite size with L
sites, but there are also applications in quantum chemistry (e.g. [48]) where the size of
the single-particle Hilbert space is given by the number of orbitals considered. As the
system can always be formulated in terms of lattice sites, it is enough to consider just a
lattice of L sites. In occupation number representation, the many-body Hilbert space can
be decomposed as

HFull =
L⊗
i=1

Vi , (2.32)

with a di-dimensional on-site Hilbert space Vi. The local dimension di is given by the
physical system and is just the dimension of the many-body Hilbert space on a single
site. For bosonic systems however, Vi is not finite dimensional. Since the algorithm can
only handle finite di, a truncation has to be made in this case and each site has to be
assigned a maxmimum particle number. In most applications, di is independent of i,
the i-dependence is hence omitted although the algorithm does not change if di is taken
explicitly i-dependent.

Let {|σi〉 |σi ∈ {1, . . . , di}} be a basis of Vi. Take some state |ψ〉 = ∑
σ cσ |σ〉 ∈ HFull

where σ = (σ1, . . . , σL) labels one vector of the product basis of HFull. This state can now
be brought into MPS form via singular value decomposition applied iteratively to the
vector cσ, a demonstration thereof can be found in [45]. That is, there are dL matrices
A[i]σi such that

|ψ〉 =
∑
σ

A[1]σ1A[2]σ2 · · ·A[L]σL |σ〉 . (2.33)

When unambigious, the matrices A[i]σi are henceforth denoted as Aσi for convenience. The
matrix elements are denoted as Aσiai−1 ai

. In principle, any state |ψ〉 ∈ HFull can be brought
into that form. Since the dimension of HFull however is dL but the number of matrices is
only dL, their dimension has to be exponential in L, which is in fact the case [45]. It is
common and useful to represent an MPS graphically as e.g. done in [45, 46, 47, 49]. This
common notation is depicted in figure 2.1 and 2.3, allowing for an intuitive handling of
those states.

The main approximation made in the variational MPS algorithm is now the truncation
of the dimension of the matrices Aσi , such that the variational ansatz is of the form (2.33)
where the matrices are of dimension (D × D) at maximum. In practice, most of the
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matrices Aσi will have size D ×D but not all of them, thus, the virtual bond dimension
Di has to be taken as site-dependent in the implementation. This ansatz effectively
limits the entanglement of the state, as the matrices Aσi are directly connected to the
entanglement entropy of the state [50]. Up to this point, no restrictions concerning the
spatial dimension of the lattice were made, and in the following, no assumptions of that
kind will be made. The reason why the variatonal MPS ansatz works well in one dimension
but struggles in higher dimensions lies only in the truncation. The entanglement entropy
of ground states of local Hamiltonians obeys area laws [51]. In one spatial dimension, the
ansatz is therefore very good for the ground state while in higher dimensions, the area
laws imply a rapid growth of entanglement entropy with system size.

Any linear operator O on HFull can also be viewed as a vector in H∗Full ⊗HFull. In the
trivial product basis, it can then also be brought into matrix product form, that is, there
are matrices W [i]σi σ′i with

O =
∑
σ σ′

W [1]σ1 σ′1W [2]σ2 σ′2 · · ·W [L]σL σ′L |σ〉 〈σ′| . (2.34)

This form is called matrix product operator (MPO) and the matrix elements of W σi σ
′
i are

denoted as W σi σ
′
i

bi−1 bi
. When using MPS, it is necessary to use also the MPO representation

of any operator appearing to have an efficient algorithm, in particular of the Hamiltonian.
Fortunately, local operators can be brought easily into MPO form, see for example [52].
Analogously to the MPS, a graphical representation of an MPO is common in the form
depicted in figure 2.2. While the MPO representation of an operator is in principle also an
MPS in a higher dimensional physical space, it is treated separately in the implementation
since it appears in another context in the algorithm. For example, its entries are fixed
from the beginning and the matrices W [i] are sparse for a typical Hamiltonian whereas
the matrices of the MPS are not necessarily sparse. A local Hamiltonian can usually be
expressed as an MPO with a comparably low bond dimension of DW ∼ 5 . . . 15. The
ladder system Hamiltonian (1.2) can be represented with a bond dimension of DW = 12
which is already quite high.

The ground state search is now reduced to the optimization of a number of parameters
scaling as O(L).

A short notice on boundary conditions shall be made at this point. Similar to the spatial
dimension of the system, no explicit assumptions have been made about the boundary
conditions implemented in the Hamiltonian. It is, however, much easier to represent the
ground state of a Hamiltonian describing a system with open boundaries as an MPS than
that of the same Hamiltonian with periodic boundary conditions [45]. The reason for
that is that the periodic boundaries act non-locally in a sense and therefore can cause
long-range entanglement between the first and the last site [45]. There are workarounds
which make handling periodic boundaries possible without largely increasing the bond
dimension [53, 54], but these require major modifications from the algorithm for open
boundaries.
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ai−1

σi

ai

Aσiai−1 ai
=

ai−1

σi

ai

A∗σiai−1 ai
=

Figure 2.1: Graphical representation of a single matrix of an MPS and the adjoint matrix. The
dot corresponds to the site i and each leg to one of the indices. Usually, vertical legs denote
physical indices σi and horizontal legs virtual bond indices which were introduced in the MPS
decomposition. This simple notation allows for an easy formulation of lots of common operations
on an MPS and also grants an intuitive access to a numerically efficient formulation of those
operations.

bi−1

σi

bi

σ′i

W
σiσ
′
i

bi−1 bi
=

Figure 2.2: Graphical representation of a single matrix of an MPO. The conventions are analogous
to the graphical representation of the MPS.

2.2.1 Computation of ground states
In the following section, a short overview of the ground state search using the variational
MPS ansatz shall be given, again closely following [45], where a detailed discussion can
be found. In principle, the MPS ansatz is just a variational ansatz, that is, the matrices
Aσi are to be varied such that

E[ψ] = 〈ψ |H |ψ〉
〈ψ |ψ〉

(2.35)

becomes minimal or equivalently, that |ψ〉 minimizes 〈ψ |H |ψ〉 under the constraint
〈ψ |ψ〉 = const. While the MPS ansatz in principle scales linearly with the system size L,
it is also a nonlinear ansatz, which is difficult to handle considering the still high number
of free parameters. A useful approach is to vary the tensors A[i], composed of all matrices
A[i]σi , one after another. In general, the notation A[i] shall be used for these tensors of
order three.

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8
cσ =

Figure 2.3: Graphical representation of the componentwise equation (2.33) exemplary for L = 8.
As for the single matrix, each dot represents a site and each leg a matrix index. Connected legs
correspond to contractions, i.e. a summation over all virtual bond indices is executed. Since the
vertical legs correspond to physical indices, they are unconnected.
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〈ψ |O |φ〉 =

Figure 2.4: Graphical representation of a matrix element of some operator O. Here, the squares
denote the matrices of the MPO representation of O, the blue dots the matrices of the MPS
representation of |φ〉 and the red dots the matrices of the MPS representation of 〈ψ|. Clearly,
the matrix element is obtained by complete summation over all indices.

ai−1

bi−1

a′i−1

T
[i−1]
ai−1 bi−1 a′i−1

= T
[i]
ai bi a′i

=

ai

bi

a′i

Figure 2.5: Graphical representation of one iteration in building T for the matrix element
〈ψ |O |φ〉 of some operator O. Again, the squares are the matrices of the MPO representa-
tion of O, the blue dots denote the MPS form of |φ〉 and the red dots that of 〈ψ|. The iteration
simply consists of adding the matrices of a new site to the contraction, advancing T by one site.
In this representation, the connection to the matrix elements is especially clear. In numerical
practice, it is much more efficient to add the new tensors one by one, such that intermediate
steps are performed.

Therefore, it is required to find tensors A[i] such that

∂

∂A∗σiai−1 ai

(〈ψ |H |ψ〉 − λ 〈ψ |ψ〉) = 0 (2.36)

for all A∗σiai−1 ai
for fixed i. Here, λ is a Lagrangian multiplier to enforce the constraint of

constant norm.
To do so efficiently, one of the major strenghts of the MPS framework can be employed:

Highly efficient caching of intermediate results and partial contractions of tensors. This
can be demonstrated when considering the calculation of a matrix element 〈ψ|O|φ〉 of
some operator O. Let Aσi be the MPS representation of |ψ〉 and Bσi that of |φ〉 as well as
W σi σ

′
i the MPO representation of O. In principle, the computation of the matrix element

is straightforward as the matrix elements of O and the vector coefficients of |ψ〉, |φ〉 in the
product basis can be obtained using the MPO/MPS representations. Then, the matrix
element is just obtained by total contraction of all tensors W [i], A[i] and B[i] as

〈ψ |O |φ〉 =
∑

A∗σ1
a0 a1W

σ1 σ′1
b0 b1 B

σ′1
a′0 a
′
1
· · ·A∗σLaL−1 aL

W
σL σ

′
L

bL−1 bL
B
σ′L
a′L−1 a

′
L
, (2.37)

where the summation goes over all appearing indices. Graphically, this can be written as
elegantly as in figure 2.4.

To obtain this expression in an efficient way, it is highly useful to compute the necessary
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ai

bi

a′i

R
[i+1]
ai bi a′i

= R
[i]
ai−1 bi−1 a′i−1

=

ai−1

bi−1

a′i−1

Figure 2.6: Graphical representation of one iteration in the iterative computation of matrix
elements when starting from the right end of the chain. The tensors R[i] are build analogously
to T [i] by contracting the previous tensor R[i+1] with the matrices of one site. Again, the
complete summation is not carried out explicitly but the matrices are added one after another.

tensor contractions iteratively for one site after another. Therefore, define

T
[0]
0,0,0 = 1

T
[i]
ai,bi,a′i

=
∑

σi,ai−1

A∗σiai−1, ai

 ∑
σ′i bi−1

W
σi σ
′
i

bi−1 bi

∑
a′i−1

T
[i−1]
ai−1 bi−1 a′i−1

A
σ′i
a′i−1 a

′
i


 . (2.38)

Then, T [i] is the contraction of the appearing tensors up to site i and one iteration
in building T corresponds to adding one to the contraction. This can be represented
intuitively using the graphical representation for MPS and MPO as depicted in figure
2.5. The iteration procedure in (2.38) was written such that each sum corresponds to
adding one tensor to the contraction. This is also precisely the order of summation that
is used in the algorithm since it allows for optimal caching of intermediate results. It
may readily be checked that the final iteration T [L] contains contractions over all indices
and is therefore nothing but 〈ψ|O |φ〉. This already allows for efficient computation of
matrix elements of general opertors, for example to obtain correlation functions. But
for the variational ground state search, the expectation value of the Hamiltonian, or its
derivative respectively, has to be computed anew quite often. It is therefore desirable to
cache as much intermediate results as possible.

Therefore, tensors R[i] may be defined iteratively by starting at the right end of the
lattice and iterating towards i = 0 analogously to the procedure in building T , see figure
2.6.

As the ordering of contraction does not matter, the expectation value can, for any value
of 0 < i < L+ 1 be rewritten as

〈ψ|O |φ〉 =
∑
ai bi a′i

R
[i+1]
ai bi a′i

 ∑
σi ai−1

A∗σiai−1 ai

 ∑
σ′i bi−1

W
σi σ
′
i

bi−1 bi

∑
a′i−1

Bσi
a′i−1 a

′
i
T

[i−1]
ai−1 bi−1 a′i−1



 .
(2.39)

Again, the bracketing is set to indicate the optimal ordering of contractings. Here, the
contractions are iteratively computed from the left from site 1 to site i− 1 and from the
right from site L to site i+1 and then combined at site i. This will just be formulation used
for evaluating the expectation value of the Hamiltonian in the optimization scheme. A
huge advantage is that the computation of 〈ψ|O |φ〉 now only explicitly uses the matrices

20



Topological edge states in a one-dimensional ladder system

ai−1 ai
σi

T [i−1] R[i+1]

∂
∂A
∗σi
ai−1 ai

〈ψ |H |ψ〉 =

Figure 2.7: Graphical representation of equation (2.40) using the notations introduced in figures
2.1 and 2.2. In this notation, it is clear that the derivative of 〈ψ |H |ψ〉 with respect to A∗[i] is
of the same form as A[i]. Also, the necessary contractions for performing the operation can be
read off easily.

on site i, whereas the contribution from other sites is contained only in T and R. That
is, when only varying the matrices of one site, recalculating the expectation value of the
Hamiltonian is cheap.

When varying one tensor A[i] after another, the formulation (2.39) of 〈ψ |H |ψ〉 is
particularly useful as it is quadratic in all matrix elements and the first derivative in
(2.36) becomes an ordinary matrix-vector product. Let W σi σ

′
i be the MPO matrices of

the Hamiltonian and Aσi the MPS representation of some state |ψ〉, it is then

∂

∂A∗σiai−1 ai

〈ψ |H |ψ〉 =
∑
a′i bi

R
[i+1]
ai bi a′i

 ∑
σ′i bi−1

W
σi σ
′
i

bi−1 bi

∑
a′i−1

T
[i−1]
ai−1 bi−1 a′i−1

A
σ′i
a′i−1 a

′
i


 ≡ H

[i]
effA

[i] ,

(2.40)
here, R[i] and T [i] are the partial contractions for the Hamiltonian with the state |ψ〉 and
are defined as in (2.38). In general, it is more efficient to directly execute the contractions
as this can be done in O(D3) operations while constructing the matrix H [i]

eff corresponding
to the matrix-vector product (2.40) requires O(D4) operations. The outer and inner
contractions are usually the dominant steps and scale as O(dDWD

3).
As T and R are build iteratively, intermediate results T [i]/R[i] for all sites to the left-

/right from i are available such that it is not necessary to compute T and R anew from
scratch when looking at a different i.

These properties make a ’sweeping’ variation of the matrices attractive, where the
matrices at site 1 are optimized first such that energy becomes minimal, then those on
site 2 and so on, changing direction of the sweep when hitting the end of the chain. These
sweeps can then be repeated until convergence is reached.

For the variation of the matrices, one further component is required, which is the nor-
malization of the state. The scalar product of two states and therefore the norm of a
state may be computed in a similar fashion as the matrix element of some operator in
equation (2.39), by inserting the identity operator and implicitly evaluating the contrac-
tions involving it. This yields the expression depicted in figure 2.8. In contrast to the
evaluation of matrix elements, the scalar product has not to be calculated explicitly for
normalization, instead the norm can be obtained in an elegant way by keeping the MPS
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〈ψ |φ〉 =

Figure 2.8: Scalar product of two MPS |ψ〉 and |φ〉 whose matrices are denoted as blue and
red dots respectively, using the graphical notation from figure 2.1. This directly follows from
equation (2.39) and can be evaluated efficiently using a similar approach as in the evaluation of
matrix elements.

in a so called mixed-canonical shape such that

∂

∂A∗σiai−1 ai

〈ψ |ψ〉 = Aσiai−1 ai
. (2.41)

Therefore, a gauge degree of freedom in the matrices Aσi is used to reshape them after
each step, such that one of the following holds∑

σi

(Aσi)†Aσi = id (left-normalization) (2.42)∑
σi

Aσi (Aσi)† = id (right-normalization) . (2.43)

A MPS is called left/right-canonical if all matrices are left/right-normalized and mixed-
canonical if all matrices Aσj for are left-normalized for j < i and right-normalized for
j > i for some i which is called orthogonality center. Normalization can be obtained via
thin QR/RQ-decomposition [55] where the rectangular matrix R is multiplied into the
matrices of the next site, destroying their normalization. Since the normalization of the
orthogonality center in a mixed-canonical state is of no importance, this does not cause
any problems however.

The normalization scheme is applied via operations on the matrices obtained by con-
catenating the Aσi , these are

A
[i]
l =


A[i] 1

...
A[i] d

 (2.44)

A[i]
r =

(
A[i] 1 · · · A[i] d

)
, (2.45)

with matrix elements A(ai−1 σi) ai and Aai−1 (σi ai), respectively. For a detailed discussion
including the usage of symmetries, see appendix B.

The normalization can be written in the graphical notation as in figure 2.9, revealing
that the optimal form of the MPS for the variation of A[i] is in fact the mixed-canoncial
form with orthogonality center i as this implies

〈ψ |ψ〉 =
∑

σi ai−1 ai

A∗σiai−1 ai
Aσiai−1 ai

. (2.46)

The variational problem (2.36) is now reduced to the eigenvalue problem

H
[i]
effA

[i] = λA[i] , (2.47)
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δai−1,a′i−1
=

a′i−1

ai−1

(right-normalization)

δai,a′i =

a′i

ai

(left-normalization)

Figure 2.9: Graphical notation for the left/right-normalization of matrices. Since the first/last
matrices of an MPS have row/column dimension of one, the summation over the left/right index
can also be omitted there, such that this form can be inserted into figure 2.8, yielding equation
(2.46).

which is of dimension dD2. As only the solution with lowest energy is of interest, the
eigenvalue problem can be solved iteratively, making the problem numerically treatable.

The ground state search algorithm may now be formulated as follows:

1. Pick an initial state ψ and get the right-canonical form of ψ. Then calculate R[i] of
the Hamiltonian for all i < L.

2. Perform the right-sweep: For 0 < i < L starting with i = 1:
a) Solve the eigenvalue problem (2.36) iteratively for the lowest eigenvalue, using

the matrix-vector mutliplication (2.40) and the normalization (2.46) implied
by the mixed-canonical form.

b) Bring the matricesAσi into left-normalized form by applying aQR-decomposition.
c) Compute T [i] from T [i−1] and the new matrices Aσi .
d) Go to the next site i→ i+ 1.

3. Perform the left-sweep: For 1 < i < L+ 1 starting with i = L:
a) Solve the eigenvalue problem (2.36) iteratively for the lowest eigenvalue.
b) Bring the matricesAσi into right-normalized form by applying aRQ-decomposition.
c) Compute R[i] from R[i+1] and the new matrices Aσi .
d) Go to the next site i→ i− 1.

4. Repeat steps 2 and 3 until either convergence is reached or a maximum number of
sweeps has been executed.

Convergence is defined via the variance of energy, the search is said to be converged
if (∆E)2 drops below some threshold. The variance can here be obtained using the
procedure of computing expectation values described above. Strictly spoken, since the
variance vanishes for any eigenstate of the Hamiltonian, this does not guarantee the
obtained state to be the ground state. Since the ansatz is usually better for the ground
state than for excited states and the minimization aims at the lowest lying state, this does
not pose a serious problem in practice [46].
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In addition, there is also the problem of converging into local minima, which occurs
mainly, but not exclusively [47], when including symmetries. Numerous schemes have
been developed to evade this issue, see also section 2.2.2 and appendix B.

2.2.2 Symmetries and MPS
A remarkable speedup can be achieved when additional global symmetries of the Hamil-
tonian are utilized [49]. A useful interpretation in this context is that of the matrices Aσi
being the coefficients of a decomposition of the form [47]

|ψ〉 =
∑

ai−1 σi ai

Aσiai−1 ai
|ai−1〉l ⊗ |σi〉 ⊗ |ai〉r , (2.48)

where the basis states |ai〉l/r are defined recursively via

|a1〉l =
∑
σ1

Aσ1
1 a1 |σ1〉

|ai〉l =
∑

σi ai−1

Aσiai−1 ai
|ai−1〉l ⊗ |σi〉 (i > 1) (2.49)

|aL〉r =
∑
σL

AσLaL 1 |σL〉

|ai〉r =
∑

σi ai+1

Aσi+1
ai ai+1

|σi+1〉 ⊗ |ai+1〉r (i < L) . (2.50)

In particular, it is |a0〉r = |aL〉l = |ψ〉.
If i is the orthogonality center, the decomposition (2.48) can be made a Schmidt-

decomposition via singular value decomposition of A[i]
l , that is, the left and right basis

states are orthonormal. This proves to be useful for obtaining the entanglement spectrum
[56].

Since only abelian symmetries are utilized here, only these are implemented and shall
briefly be discussed here. The usage of abelian symmetries is then realized via introducing
quantum numbers for the states |ai〉l/r to fix the quantum number of |ψ〉, meaning that
|ψ〉 is then fixed in one symmetry sector [45, 52]. For demonstration, U(1) is assumed
as a symmetry group, describing for example a conserved particle number. In the model
(1.2), there is both conserved particle number and conserved subchain parity, thus, the
symmetry group utilized in the calculations will be U(1)⊗ Z2.

As discussed in [45, 52, 57], this can be achieved by attributing the concatenated ma-
trices A[i]

l/r a block structure. Therefore, all states |ai〉l/r are labeled with some quantum
number qi(ai). The quantum numberN of |ψ〉 is then just qi(aL). If this is to be consistent,
the label qi(ai)r of |ai〉r has to be fixed by the label qi(ai)l of |ai〉l as qi(ai)r = N − qi(ai)l.
Therefore, the index r/l is dropped and qi(ai) henceforth refers always to qi(ai)l. Formally,
define also qi(a0) = 0. The physical indices σi have their quantum numbers q(σi) fixed by
construction of the product space as they correspond to states in the local Hilbert spaces.
As with the local Hilbert space dimension d, the quantum numbers of σi can in principle
depend on the site i, but it is assumed here for convenience that they do not as this does
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not influence the procedure described here. Together with (2.49) and (2.50) this already
fixes the block structure. It is then given simply by [45]

Aσiai−1 ai
6= 0⇒ qi−1(ai−1) + q(σi) = qi(ai) . (2.51)

To generalize this to other abelian symmetry groups like U(1) ⊗ Z2, the addition of
quantum numbers just has to be replaced by the corresponding group operation.

There are two subtleties appearing here that shall briefly be mentioned and are discussed
in detail in appendix B. The first one is of a more technical nature and has to be taken
care of in the implementation but does not affect the algorithm. The point is that the
constraint (2.51) is sufficient for |ψ〉 to have a fixed quantum number N but not necessary.
Therefore, it is possible for operations like normalization that conserve the total quantum
number to destroy the block structure with potentially fatal results. Thus, one has to
make sure that all operations conserve the block structure.

The second one is more of an obstacle to the algorithm and concerns the choice of
the functions qi. It turns out that the constraint put on the state |ψ〉 by the described
procedure is stronger than just fixing the quantum number of |ψ〉 [45, 47]. It is readily
seen that not only the quantum number of |ψ〉 is uniquely determined by (2.51) but also
that of the left/right basis for any Schmidt decomposition. Unfortunately, it is impossible
for the algorithm described in section 2.2.1 to dynamically adapt the labeling functions
qi. Therefore, in the likely case that the initial choice of qi does not fit the variationally
optimal state, it can not be found by the algorithm presented in section 2.2.1 [45].

There are several approaches that circumvent this obstacle, including the two-site
DMRG [28], the density matrix perturbation [58] and the center wavefunction formal-
ism [52]. In the implementation used here, the strictly-single-site algorithm DMRG3S
presented in [47] based on subspace expansion is used due to both its simplicity and the
low required numerical effort.

2.2.3 Computation of excited states
In order to calculate energy gaps or to consider the ground state degeneracy in the absence
of the Z2 symmetry, it is required to compute not only the ground state of a given
Hamiltonian but also other eigenstates. In practice and due to limited computational
resources, this is usually limited to a few low-energy states. Also, while the area law of
entanglement entropy guarantees that the MPS ansatz is a good approximation for the
ground state, I am unaware of an analogous result for excited states, these may or may not
be able to be expressed as an MPS with numerically treatable bond dimension. Here, the
approach presented in [46] is employed. The basic idea behind this excited state search
scheme is to limit the variation of the state |ψ〉 to the space orthogonal to all previously
obtained states |φk〉.

In principle, in addition to 〈ψ |ψ〉 = 1, the constraint 〈ψ |φk〉 = 0 is now imposed. The
local eigenvalue problem can then be reformulated [46] as

P [i]†H
[i]
effP

[i]A[i] = λA[i] , (2.52)
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with the projector P [i] onto the space orthogonal to all |φk〉. It is self-adjoint, the hermitian
conjugation can therefore be omitted. The construction and application of the projection
operator is done using the scheme presented in [46], a short description thereof can be
found in appendix C.

2.2.4 Implementation
The DMRG3S algorithm is implemented using C++11 and making use of the BLAS [59],
LAPACK [60] and Arpack [61] libraries. The BLAS and LAPACK routines and their C
interface from Intel MKL [62] are therefore used, as well as the Arpack++ interface for
Arpack [63]. The implementation contains functions for variationally obtaining ground
and excited state for a given Hamiltonian in MPO representation and for computing the
expectation value of obserables for the resulting states. Correlation functions can be
obtained in an efficient way without computing the full expectation value at each site
anew. The entanglement spectrum can also be obtained as described below.

Unfortunately, efforts to also implement the iDMRG algorithm did not succeed to
include the symmetries, in particular the Z2 symmetry, in a meaningful way.

The source code is freely available, please contact guther@itp3.uni-stuttgart.de for ac-
cess.

The evaluation of the results and the generation of the corresponding plots is done
using Python 2.7.6 and the matplotlib library [64].
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Chapter 3

Analysis of the ladder system

3.1 Bosonization approach to the ladder system
Apart from the numerical treatment, bosonization is employed to analyze the Hamiltonian
(1.2) perturbatively. This will yield a qualitative insight into the behaviour of correlation
functions and allow for a prediction of possible occuring phases. In the thermodynamic
limit, the potential term ∑

J
(
nai + nai+1 + nbi + nbi+1

)
is just a filling dependent constant

and it is therefore omitted in the bosonization analysis. In the numerical analysis it has
to be included however.

Since bosonization is a field theoretical method, the continuum limit a → 0 while
kFa = const. is considered, where a is the lattice spacing.

3.1.1 Bosonization of the Hamiltonian in continuum limit
Here, start from the on-chain kinetic part of the Hamiltonian (1.2) which is a theory of
free fermions. In bosonized form, this reads as shown e.g. in [39]

H0 = 1
2
∑
σ=a,2

∫
dx (∂xθσ)2 + (∂xφσ)2 , (3.1)

up to some constant prefactor which is the Fermi velocity v. The coupling constants are
then expressed in units of v. Here, σ is again the wire index. It is convenient for the
treatment of this system to express the boson fields in terms of the symmetric and the
antisymmetric combinations analogously to [32] which are defined as

φ± = 1√
2

(φa ± φb) (3.2)

θ± = 1√
2

(θa ± θb) . (3.3)

The new fields are also periodic with φ± = φ± +
√
π and θ± = θ± +

√
π. It may be

readily checked that the free theory does not change form under this transformation, it

27



Chapter 3 Analysis of the ladder system

reads now
H0 = 1

2
∑

η=+,−

∫
dx (∂xθη)2 + (∂xφη)2 . (3.4)

3.1.1.1 Intra-Chain interactions

To end up with the model (1.2), three interaction terms have to be added. The first one
is a local on-chain interaction of the form

H1 = −2J
∑
i

nai n
a
i+1 + nbin

b
i+1 , (3.5)

which has frequently been discussed using bosonization [27, 34, 65] in the framework of
the Luttinger liquid theory. This standard procedure will also be applied here. The
continuum limit is now taken using the procedure described in [38] by defining

ψa(ia) = ai√
a

(3.6)

ψb(ia) = bi√
a
, (3.7)

with ai (bi) being the fermionic annihilation operator on site i of wire a(b). Beware that
non-subscript a is the lattice spacing, which is only not completely unambigious at this
point. Left-/right-movers are then introduced using equation (2.1)

ψσ(x) = eikF xψRσ(x) + e−ikF xψLσ(x) , (3.8)

where ψRσ is the right-moving field and ψLσ the left-moving field on wire σ.
Using the bosonization identities (2.19), (2.19), the fermionic fields are now in terms of

φ± and θ± expressed as

ψασ = ηασ√
2π

exp
[
i

√
π

2 (θ+ + sσθ− + sαφ+ + sαsσφ−)
]
, (3.9)

where again σ is the wire index and α the left-/right-mover index. The x-dependence of
the fields is not explicitly noted, but all fields are taken at the same position. Here, the
sign prefactors

sR = 1 (3.10)
sL = −1 (3.11)
sa = 1 (3.12)
sb = −1 (3.13)

were defined. From now on, this definition holds for the rest of this thesis.
Taking the continuum limit for the perturbation (3.5) for kFa 6= π

2 gives

H1,c = −J
∑
σ=a,2

∫
dx (ψ†RσψRσ)2 + (ψ†LσψLσ)2 + 4 sin2(kFa)ψ†RσψRσψ

†
LσψLσ . (3.14)
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The umklapp terms ψ†RσψLσψ
†
RσψLσ etc. vanish upon integration away from half filling.

Bosonization is straightforward using the bosonization of density terms (2.26), leading to

H1,c = J

4π
∑
σ

∫
dx 1

4 (∂x(φσ + θσ))2 + 1
4 (∂x(φσ − θσ))2 + sin2(kFa)∂x(φσ − θσ)∂x(φσ + θσ)

= J

4π
∑
σ

∫
dx

(1
2 + sin2(kFa)

)
(∂xφσ)2 +

(1
2 − sin2(kFa)

)
(∂xθσ)2 (3.15)

Again, the transformation towards θ± and φ± can be applied and the resulting Hamilto-
nian density can be absorbed into H0 via introduction of two constants

K =

√√√√1 + J
4π (1 + 2 sin2(kFa))

1 + J
4π (1− 2 sin2(kFa))

(3.16)

ν =2
√

1 + 2J
4π + J2

16π2 (1− 4 sin4(kFa)) . (3.17)

The Luttinger parameter K leads to a rescaling of the fields θ± and φ± while the velocity
ν is just a global prefactor [34]. In principle, K and ν do not have to be the same for
the ±-sectors, but the sector index K± will not be denoted explicitly if it is clear which
Luttinger paramter is meant.

The Hamiltonian density including the perturbation is now

H0+1,c =
∑
η=±

ν

2

[
K(∂xθη)2 + 1

K
(∂xφη)2

]
, (3.18)

The rescaled fields φ̃± =
√
Kφ± and θ̃± = 1√

K
θ± are introduced, which are dual to each

other, as demonstrated in [34]. From now on, only the rescaled fields are considered, and
thereby they are denoted just as θ and φ. In terms of the rescaled fields, H0+1,c has now
the same form as the free theory H0,c. In particular, the rescaled fields in H0+1,c have the
same correlation fucntions as the bare fields in H0,c, that is

〈θ±(x)θ±(0)〉 = 〈φ±(x)φ±(0)〉 = − 1
2π log (|x|) (3.19)

〈θ±(x)φ±(0)〉 = −〈φ±(x)θ±(0)〉 = i

2sgn(x) + i

2 (3.20)

Also, the compactification is rescaled to φ± = φ±+
√

π
K

and analogously θ± = θ±+
√
πK.

3.1.1.2 Inter-Chain pair-hopping

The second perturbation considered is a pair-hopping with the discrete form

H2 = W
∑
i

a†ia
†
i+1bibi+1 + h.c. . (3.21)

Such interactions have previously been considered using bosonization in the context of
topological order e.g. in [32, 24] with similar results. See in particular [32] for a detailed
discussion including refermionization and the connection to topological edge states.
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Inserting expressions (3.6), (3.7) and (2.1) and taking the continuum limit yields

H2,c =W
∫

dx
(
e−ikF xψ†Ra + eikF xψ†La

) (
e−ikF (x+a)ψ†Ra + eikF (x+a)ψ†La

)
×
(
eikF xψRb + e−ikF xψLb

) (
eikF (x+a)ψRb + e−ikF (x+a)ψLb

)
+ h.c.

=W
∫

dx
[
2ψ†Raψ

†
LaψLbψRb + e−2ikF aψ†Raψ

†
LaψRbψLb + e2ikF aψ†Laψ

†
RaψLbψRb

+
(
ψ†RaψRb

)2
+
(
ψ†LaψLb

)2
]

+ h.c.

=W
∫

dx
[
2(1− cos(2kFa))ψ†Raψ

†
LaψLbψRb +

(
ψ†RaψRb

)2
+
(
ψ†LaψLb

)2
]

+ h.c.
(3.22)

The term ψ†Raψ
†
LaψLbψRb may be rewritten using the bosonization identity 3.9 as

ψ†Raψ
†
LaψLbψRb ∝

1
(2π)2 exp

[
−i
√
π

2

(
1√
K

(2sa − 2sb)θ− +
√
K(sA + sB − sA − sB)φ+

+
√
K(sasA + sasB − sbsB − sbsA)φ−

)]

= 1
(2π)2 exp

−i
√

8π
K
θ−

 . (3.23)

And the quadratic term can be rewritten analogously using

ψ†α1ψα2 ∝
1

2π exp
[
i
√

2π
(

1√
K
θ− + sα

√
Kφ−

)]
. (3.24)

Then, it is simply(
ψ†RaψRb

)2
+ h.c. ∝ cos

(√
8π
(

1√
K
θ− +

√
Kφ−

))
, (3.25)

and analogously for
(
ψ†LaψLb

)2
.

Let qi be the prefactors of the resulting terms, then the Hamiltonian density of H2,c
can be written as

H2,c =q1 cos
√8π

K
θ−

+ q2 cos
(√

8π
(

1√
K
θ− +

√
Kφ−

))

+ q3 cos
(√

8π
(

1√
K
θ− −

√
Kφ−

))
. (3.26)

The latter two terms turn out to be always irrelevant, the resulting Hamiltonian without
these is then in fact the well known sine-Gordon model [42, 56] which has already been
studied in the context of topological order [32] and is known for the Kosterlitz-Thouless
transition [66, 67]. In [32] it has been shown that the resulting Hamiltonian can be
refermionized to the continuum limit of the Kitaev chain in a special case and can therefore
describe the topological phase with the corresponding ground state degeneracy [30, 32].

Before further discussing this result, the last term shall be considered, that is, the
inter-chain density-density interaction.
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3.1.1.3 Inter-Chain density-density interactions

To end up with the analyzed model an additional perturbation has to be taken into
account. This is, on the microscopic level, an inter-chain density-density interaction of
the form

H3 = g
∑
i

nai n
a
i+1(1− nbi)(1− nbi+1) + (1↔ 2) . (3.27)

This decomposes into two-, three- and four-particle interactions. The respective terms
are defined as

H3 = g
∑
i

Ai +Bi + Ci (3.28)

Ai = nai n
a
i+1 + nbin

b
i+1 (3.29)

Bi = 2nai nai+1n
b
in

b
i+1 (3.30)

Ci = −nai nai+1n
b
i − nai nai+1n

b
i+1 − nbinbi+1n

a
i − nbinbi+1n

a
i+1 . (3.31)

The two-particle term Ai is proportional to H1 as described above.
Consider now the four-particle term Bσ. The prefactor of 2 comes from the sym-

metrization of H3 with respect to wire exchange. In contrast to the two-particle term, the
oscillating terms of nσ,inσ,i+1 do contribute here. The full lowest order continuum limit
Uσ for nσ,inσ,i+1 reads (all fields are taken at position x, an x-dependency is not explicitly
expressed):

Uσ =
(
e−ikF xψ†Rσ + eikF xψ†Lσ

) (
eikF xψRσ + e−ikF xψLσ

)
×
(
e−ikF (x+a)ψ†Rσ + eikF (x+a)ψ†Lσ

) (
eikF (x+a)ψRσ + e−ikF (x+a)ψLσ

)
=
(
ψ†RσψRσ + ψ†LσψLσ + e−2ikF xψ†RσψLσ + e2ikF xψ†LσψRσ

)
×
(
ψ†RσψRσ + ψ†LσψLσ + e−2ikF (x+a)ψ†RσψLσ + e2ikF (x+a)ψ†LσψRσ

)
=(ψ†Rσψ

†
Rσ)2 + (ψ†Lσψ

†
Lσ)2 + 4 sin2(kFa)ψ†RσψRσψ

†
LσψLσ

+ e4ikF x+2ikF aψ†LσψRσψ
†
LσψRσ + e−4ikF x−2ikF aψ†RσψLσψ

†
RσψLσ

+ e2ikF xψ†LσψRσ
(
ψ†RσψRσ + ψ†LσψLσ

)
(1 + e2ikF a)

+ e−2ikF xψ†RσψLσ
(
ψ†RσψRσ + ψ†LσψLσ

)
(1 + e−2ikF a)

=(ψ†Rσψ
†
Rσ)2 + (ψ†Lσψ

†
Lσ)2 + 4 sin2(kFa)ψ†RσψRσψ

†
LσψLσ

+ e2ikF xψ†LσψRσ(1 + e2ikF a) + e−2ikF xψ†RσψLσ(1 + e−2ikF a)
+ e4ikF x+2ikF aψ†LσψRσψ

†
LσψRσ + e−4ikF x−2ikF aψ†RσψLσψ

†
RσψLσ

=Vσ +Mσ + Fσ , (3.32)

Note that the two-particle term from H1 is just Ua + Ub, but the oscillating terms drop
out during integration away from half filling, leaving precisely the Hamiltonian density
of H1,c. In the last step, the anticommutation relations were employed to get rid of the
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density term in M . Here, it is defined

Vσ = (ψ†Rσψ
†
Rσ)2 + (ψ†Lσψ

†
Lσ)2 + 4 sin2(kFa)ψ†RσψRσψ

†
LσψLσ (3.33)

Mσ = e2ikF xψ†LσψRσ(1 + e2ikF a) + h.c. (3.34)

Fσ = e4ikF x+2ikF a
(
ψ†LσψRσ

)2
+ h.c. (3.35)

Also note that any term mixing V , M and F contains an oscillating prefactor and thus
does not contribute unless 4kFa = 2π which is the case at half filling. In the following,
any oscillating term is neglected as it drops out during integration save for special cases,
see also section 3.1.2. Therefore, it is

Bcont = VaVb +MaMb + FaFb . (3.36)

From equation (3.33) one can readily see that VaVb consists only of density terms and
these always appear with power of four. However, in bosonized form, density terms are
of the form ∂x(θ ± φ) and therefore, VaVb only contains derivatives of the boson fields
in powers of four. Such terms are irrelevant in the RG sense independent of any other
parameter as has been shown in section 2.1.3. Thus, VaVb is always irrelevant with a
scaling dimension of ∆ = 4. The second term on the other hand reads

MaMb =2(1 + cos(2kFa))ψ†LaψRaψ
†
RbψLb + h.c. . (3.37)

Now, the density terms dropped out and therefore, the term is not per se irrelevant. The
bosonized form of MaMb is now

MaMb ∝ 2(1 + cos(2kFa))
(
exp

(
2i
√

2πKφ−
)

+ exp
(
−2i
√

2πKφ−
))

=4(1 + cos(kFa)) cos(
√

8πKφ−) . (3.38)

Here, equation (3.62) was used in the form

ψ†RaψLa = const. × exp
(
−i
√

2πK(φ+ + φ−)
)

(3.39)

ψ†LbψRb = const. × exp
(
i
√

2πK(φ+ − φ−)
)
. (3.40)

The third term FaFb simply gives, neglecting oscillating terms, the square of MaMb

without the density-dependent prefactor. This is

FaFb =
(
ψ†LaψRa

)2 (
ψ†RbψLb

)2
∝ cos

(√
32πKφ−

)
, (3.41)

again using equation (3.62). Like MaMb, this term is also potentially relevant. Analo-
gously to the procedure in section 3.1.2, the scaling dimension may be computed yielding
∆ = 8K as scaling dimension for FaFb.

This can also be understood qualitatively using the naive argument that the continuum
limit of nai nai+1 should be of the same form as that of (nai )2. Since the density is idempotent,
this is just the same as nai , explaining why the four particle-interaction has a continuum
limit similar to that of the Hubbard interaction nai n

b
i . When taking into account the
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three-particle contribution however, it will become clear that the term MaMb drops out
in the final form of H3 and thus will not be of further concern.

To see that, consider the continuum limit of the three-particle interactions in H3. It will
now be shown that these only differ from MaMb in irrelevant terms. Since they appear in
H3 with the opposite sign, the potentially relevant contribution of MaMb will drop out of
H3. The three particle contribution is of the form

Ci = −nai nai+1n
b
i − n1,jn

a
i+1n

b
i+1 + (1↔ 2) . (3.42)

The continuum limit of the first term reads, while omitting oscillating terms that drop
out in integration

nai n
a
i+1n

b
i →Ua

(
e−ikF xψ†Rb + eikF xψ†Lb

) (
eikF xψRb + e−ikF xψLb

)
=
(
(ψ†RaψRa)2 + (ψ†LaψLa)2 + 4 sin2(kFa)ψ†RaψRaψ

†
LaψLa

) (
ψ†RbψRb + ψ†LbψLb

)
+ ψ†LaψRaψ

†
RbψLb(1 + e2ikF a) + ψ†RaψLaψ

†
LbψRb(1 + e−2ikF a) . (3.43)

The density terms are of third order and therefore have scaling dimension ∆ = 3 and are
irrelevant. Again, the oscillating terms drop in integration. The possibly relevant terms
are therefore the same as for the four-particle term. The second term appearing in Ci is
essentially of the same form, save for an additional eikF a:

nai n
a
i+1n

b
i+1 →Ua

(
e−ikF xψ†Rb + eikF xψ†Lb

) (
eikF (x+a)ψRb + e−ikF (x+a)ψLb

)
=
(
ψ†RaψRa)2 + (ψ†LaψLa)2 + 4 sin2(kFa)ψ†RaψRaψ

†
LaψLa

) (
ψ†RbψRb + ψ†LbψLb

)
+ ψ†LaψRaψ

†
RbψLb(1 + e−2ikF a) + ψ†RaψLaψ

†
LbψRb(1 + e2ikF a) . (3.44)

Thus, the only possibly relevant term in Ci is

−2
(
ψ†LaψRaψ

†
RbψLb + ψ†RaψLaψ

†
LbψRb

)
2(1 + cos(2kFa)) + h.c. = −2MaMb (3.45)

Again, the factor of 2 comes from symmetrization with respect to wire exchange.
This cancels precisely the term MaMb from the four particle contribution.
At half filling, an additional contribution of the form cos(

√
32πKφ+) arises, as terms

with oscillating prefactors remain. This is discussed in section 3.1.2.

3.1.2 Gapped phases
Perturbations can in principle open a gap in the gapless free theory. In the bosonized
theory, the opening of a gap can, in the low-energy limit, be described by one of the fields
φ±, θ± becoming massive [42, 56]. This also leads to exponential decay of the fermionic
correlation functions [68] as will be seen in section 3.2.1.

It should be kept in mind, that for the whole theory to become gapped, there has to be
a gap in both sectors. Hence, the topological phase is still gapless even though the field
θ− becomes massive as is demonstrated below.

All possible gaps in certain sectors discussed so far except for the charge gap in the
antisymmetric sector have been confirmed using DMRG.
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3.1.2.1 Topological phase

The hamiltonian density including all perturbations away from half filling can be written
in terms of the rescaled fields as

H =
∑
η=±

ν

2
[
(∂xθη)2 + (∂xφη)2

]
+ q1 cos

√8π
K
θ−


+ q2 cos

(√
8π
(

1√
K
θ− +

√
Kφ−

))
+ q3 cos

(√
8π
(

1√
K
θ− −

√
Kφ−

))

+ q4 cos
(√

32πKφ−
)
, (3.46)

with coupling constants qi. To determine whether the terms is relevant or not, the scal-
ing dimension has to be computed. This is done accordingly to [42]. Consider first the
cos

(√
8π
K
θ−
)
-term, which turns out to be responsible for the topological phase and char-

acterizes the sine-Gordon model [56] with well-known RG equations [67]. Here, the simple
argumentation from section 2.1.3 according to [42] shall be employed. A more detailed
discussion can be found in [32, 34, 67]. According to the neutrality condition (2.29)
together with (2.25), it is

〈ei
√

8π
K
θ−(x)ei

√
8π
K
θ−(0)〉 = 0 . (3.47)

And therefore〈
cos

√8π
K
θ−(x)

 cos
√8π

K
θ−(0)

〉 ∝ 〈ei
√

8π
K
θ−(x)e−i

√
8π
K
θ−(0)

〉
. (3.48)

According to equation (2.25), it is then〈
cos

√8π
K
θ−(x)

 cos
√8π

K
θ−(0)

〉 ∝ e 8π
K
〈θ−(x)θ−(0)〉 . (3.49)

Since the expectation value is taken with respect to the unperturbed groundstate, the
correlation functions (2.16) can be inserted, yielding〈

cos
√8π

K
θ−(x)

 cos
√8π

K
θ−(0)

〉 ∝ |x|− 4
K . (3.50)

The scaling dimension is therefore ∆ = 2
K

and the term is thus relevant for K > 1.
Analogously the scaling dimensions of the other terms from (3.46) can be computed.

The two terms with coupling constant q2,3 have scaling dimension ∆ = 2
(
K + 1

K

)
and

are therefore always irrelevant. The last term has a scaling dimension of ∆ = 8K and
therefore is relevant only for K < 1

4 . In particular, it is irrelevant in the topological phase.
Unfortunately, it is not possible to see this effect in the numerical results as there are no
accurate results in the corresponding parameter region away from half filling whereas at
half filling, there is a charge density wave anyway.
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The corresponding Lagrangian density taking into account only the cos
(√

8π
K
θ−
)
-term

is then

L = 1
2

[1
ν

(∂tθ+)2 − ν(∂xθ+)2
]

︸ ︷︷ ︸
L+

+ 1
2

[1
ν

(∂tθ−)2 − ν(∂xθ−)2
]
− q cos

√8π
K
θ−


︸ ︷︷ ︸

L−

. (3.51)

In [32], a detailed analysis of this and similar bosonized theories was made and it
was shown that this effective theory can be refermionized to the continuum limit of the
Kitaev chain [16] in a special case, and that this is a description of a topological phase in
general. See also [24] where the bosonized theory was derived for this model in absence
of density-density interactions leading to the same description of the topological phase.

For q > 0, that is, for W > 0, the cosine potential has two minima within the com-
pactification interval of θ−, these are θ− = ±

√
πK
4 . If the term is relevant, this leads to a

ground state degeneracy, and an effective low-energy treatment can be made by expanding
the cosine around the respective minima, leading to a massive Klein-Gordon Hamiltonian
in θ.

3.1.2.2 Charge density waves

At half filling, Umklapp scattering processes both from H1 and H3 now contribute to
the Hamiltonian [34] and are now capable of pinning φ+ − φ− and φ+ + φ−, leading to a
commensurate charge density wave on both wires. This implies that the fields φ+ and φ−
are pinned themselves, which can be checked using the correlations described in section
3.2.3.

The form of the Umklapp term may be read off from equation (3.32) as(
ψ†RσψLσ

)2
+ h.c. ∝ cos

(√
8πK(φ+ + sσφ−)

)
. (3.52)

The scaling dimension can be obtained from the correlator

〈ei
√

32π
(√

K+φ+(x)+sσ
√
K−φ−(x)

)
e−i
√

32πK(φ+(x)−sσφ−(x))〉
∝ e32π(K+〈φ+(x)φ+(0)〉+K−〈φ−(x)φ−(0)〉) ∝ |x|−32K , (3.53)

using the free-field correlator:

〈φ−(x)φ−(0)〉 = − 1
2π ln(|x|) (3.54)

Therefore, the scaling dimension is ∆ = 2(K+ +K−) and this term is relevant for (K− +
K+) < 1, neglecting couplings in the RG flow.

3.1.2.3 Charge gap in the symmetric sector

In addition to the Umklapp process, the density-density interaction H3 also gives rise
to an additional contribution at half filling. To obtain the form of this term, recall the
continuum limit of H3 from section 3.1.1.3.
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The oscillating terms for which the prefactor becomes 1 at half filling are then either on-
chain Umklapp terms as discussed in section 3.1.2.2 or inter-chain Umklapp interactions
of the form (

ψ†LaψRa
)2 (

ψ†LbψRb
)2

+ h.c. ∝ cos(
√

32πKφ+) . (3.55)

All other potential candidates have a prefactor of (1 + e2ikF a) which is 0 at half filling.
It may be readily checked that the scaling dimension of this term is ∆ = 8K and it is

therefore relevant for K < 1
4 , making the φ+-field massive.

In principle, there can also be a gap in the antisymmetric sector as demonstrated in
section 3.1.1.3 with the same properties. Such a phase could not be found in the numerical
results however, most likely due to the fact that there are no results of sufficient accuracy
away from half filling and the antisymmetric charge field is pinned in the corresponding
parameter regions at half filling anyway due to the occurence of a charge density wave.
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3.2 Correlation functions of the bosonized theory

3.2.1 Bosonization of correlation functions

Autocorrelation functions of fermionic operators or products thereof can be treated using
equation (2.25). Using this, a product of fermionic operators can first be expressed in
terms of the boson fields

ψασψβσ′ = 1
2π e−i

√
π
2 τασe−i

√
π
2 τβσ′ = 1

2π e−i
√

2
π

(τασ+τβσ′ )e−
√

π
2 〈ταστβσ′ 〉 , (3.56)

where it is

τασ = 1√
K

(θ+ + sσθ−) + sα
√
K(φ+ + sσφ−) =

ϕσ if α = A

ϕ̄σ if α = B
. (3.57)

Since the boson fields were rescaled but the fields appearing in (3.9) are the bare ones, the
factors of

√
K have to be added here. Physically, this corresponds to a mixing between

left- and right-moving fermions [34].
Equation (3.56) generalizes to the statement that any product of the fermion fields O

can be expressed in bosonized form as O ∝ eτO where τO is some linear combination of
the bosonic fields. One should however keep in mind that this is a rough simplification
and there are some subtle details to be aware of.

The neutrality condition (2.29) now implies

〈O(x)O†(x′)〉 ∝ e〈τ0(x)τ†0 (x′)〉 . (3.58)

This expectation value can now be computed using the known correlation functions of θ±
and φ±. Since these only depend on x − x′, it is safe to set x′ = 0 for convenience. Of
interest are mainly correlation functions of operators O of first and second order in the
left- and right-moving fermions. The fermionic operators for the left- and right-movers
are rewritten in terms of the rescaled fields θ± and φ±, omitting constant prefactors:

ψασ ∝ exp
[
i

√
π

2

(
1√
K
θ+ + sσ

1√
K
θ− +

√
Ksαφ+ +

√
Ksαsσφ−

)]
(3.59)

ψ†ασψβσ′ ∝ exp
[
−i
√
π

2

(
sσ − sσ′√

K
θ− +

√
K(sα − sβ)φ+ +

√
K(sαsσ − sβsσ′)φ−

)]
(3.60)

ψ†ασψ
†
βσ′ ∝ exp

[
−i
√
π

2

(
2√
K
θ+ + sσ + sσ′√

K
θ− +

√
K(sα + sβ)φ+ +

√
K(sαsσ + sβsσ′)φ−

)]
,

(3.61)

with sa = sR = 1 and sb = sL = −1. As discussed before, the correlations of fermionic
field operators can be reduced to functions of the bosonic Green’s function discussed in
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section 2.1.1.

〈ψ†ασ(x)ψβσ′(0)〉 ∝ δαβδijexp
[
π

2

( 1
K
〈θ+(x)θ+(0)〉+ 1

K
〈θ−(x)θ−(x)〉+K〈φ−(x)φ−(0)〉

+ K〈φ+(x)φ+(0)〉+ 〈θ+(x)φ+(0)〉+ 〈φ+(x)θ+(0)〉

+ 〈θ−(x)φ−(0)〉+ 〈φ−(x)θ−(0)〉
)]

(3.62)

〈ψ†ασ(x)ψβσ′(x)ψ†βσ′(0)ψασ(0)〉 ∝ exp
(
π

2

[
(sσ − sσ′)2

K
〈θ−(x)θ−(0)〉+ (sσ − sσ′)(sσsα − sσ′sβ)

× (〈φ−(x)θ−(0)〉+ 〈θ−(x)φ−(0)〉) +K(sα − sβ)2〈φ+(x)φ+(0)〉

+K(sσsα − sσ′sβ)2〈φ−(x)φ−(0)〉
])

(3.63)

〈ψ†ασ(x)ψ†βσ′(x)ψβσ′(0)ψασ(0)〉 ∝ exp
(
π

2

[
(sσ + sσ′)2

K
〈θ−(x)θ−(0)〉+ (sσ + sσ′)(sσsα + sσ′sβ)

× (〈φ−(x)θ−(0)〉+ 〈θ−(x)φ−(0)〉) +K(sα + sβ)2〈φ+(x)φ+(0)〉

+K(sσsα + sσ′sβ)2〈φ−(x)φ−(0)〉+ 4
K
〈θ+(x)θ+(0)〉

])
.

(3.64)

From the numerical results of DMRG, only correlation functions of the fermionic oper-
ators aσ and bσ can be obtained, whose behaviour in thermodynamic limit mirrors that
of ψa and ψb. That is, for an O of first or second order, only the functions

〈ψ†σ(x)ψσ′(0)〉 =2〈ψ†Ra(x)ψRa(0)〉 (3.65)
〈ψ†σ(x)ψσ′(x)ψ†σ′(0)ψσ(0)〉 =〈ψ†Ai(x)ψAj(x)ψ†Aj(0)ψAi(0)〉+ 〈ψ†Bi(x)ψBj(x)ψ†Bj(0)ψBi(0)〉

+ e−2ikF x〈ψ†Ai(x)ψBj(x)ψ†Bj(0)ψAi(0)〉
+ e2ikF x〈ψ†Bi(x)ψAj(x)ψ†Aj(0)ψBi(0)〉 (3.66)

〈ψ†σ(x)ψ†σ′(x)ψσ′(0)ψσ(0)〉 =〈ψ†Ai(x)ψ†Aj(x)ψAj(0)ψAi(0)〉+ 〈ψ†Bi(x)ψ†Bj(x)ψBj(0)ψBi(0)〉
+ e−2ikF x〈ψ†Ai(x)ψ†Bj(x)ψBj(0)ψAi(0)〉
+ e2ikF x〈ψ†Bi(x)ψ†Aj(x)ψAj(0)ψBi(0)〉 (3.67)

are of interest.
These formulas now allow for a qualitative prediction of fermionic correlation functions

for different phases and therefore yield qualitative criteria for identification of phases
characterized by one of the fields φ±, θ± becoming massive.

3.2.2 Correlation functions in the topological phase

3.2.2.1 Bosonic correlation functions

To obtain the correlation functions of the boson fields in the topological phase, consider
again the Lagrangian (3.51).

38



Topological edge states in a one-dimensional ladder system

From L+ the Green’s function of θ+,and thereby φ+ via duality, can be obtained. Since
L+ is the Lagrangian of a Luttinger liquid, they are both given by

G+(x, t = 0) = − 1
2π log(|x|) . (3.68)

In momentum space it is G+(k, w) = 1
ω2
ν
−νk2

, respectively [69].

Taking into account the periodicity of θ± in the form θ± = θ± +
√
πK reduces the

possible minima of the potential resulting from the pair-hopping. Therefore the pair-
hopping term is minimal for θ = ±

√
Kπ
8 for q > 0 and θ = 0,

√
Kπ
2 for q < 0, respectively.

Semiclassically, the field θ− can be viewed as pinned to a minimum of the cosine potential.
The cosine is expanded around a minimum θ0 and leads to a mass term in the Lagrangian
of the form

L− = 1
2

[1
ν

(∂tθ−)2 − ν(∂xθ−)2
]
− m2

2 (θ− − θ0)2 , (3.69)

with mass m2 = |q|8π
K

.
Therefore, the Green’s function of θ− is

Gθ−(k, ω) = 1
ω2

ν
− νk2 −m2

. (3.70)

Using the duality ∂xφ = −Πθ = − 1
ν
∂tθ, the Green’s function for φ is obtained as

Gφ− = ω2

ν2k2
1

ω2

ν
− νk2 −m2

. (3.71)

Although θ− and φ− are not uncorrelated, the correlation 〈θ−(x)φ−(0)〉 is still fixed by
the duality between θ and φ [34].

To explicitly compute the correlation function 〈φ−(x)φ−(0)〉, apply the duality on the
known function Gθ− without Fourier transforming the derivatives ∂2

x, yielding

∂2
x 〈φ−(x)φ−(0)〉 = − i

ν2

∫
dω ω2

ω2

ν
− νk2 −m2

= − m

π|x|
K1(m|x|) , (3.72)

with the Bessel function K1 [69]. As the Bessel function decays exponentially asymptoti-
cally for x→∞, the correlation function 〈φ−(x)φ−(0)〉 behaves asymptotically linear.

3.2.2.2 Fermionic correlation functions

The expressions for fermionic correlation functions from section 3.2.1 can now be used to
make qualitative statements about the two-point functions in the topological phase.

In [1] the effect of a symmetry breaking term of the form eiγa†ibi + h.c. were also
considered with the result that, in first order perturbation theory, the symmetry breaking
term cannot lift the ground state degeneracy if time-reversal symmetry is not broken
simultaneously, that is, only for γ 6= 0.
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To embed this result in the framework presented here, consider the continuum version
of such a symmetry breaking term

hγ = eiγψ†aψb + e−iγψ†bψa . (3.73)
To classify the effect of hγ, consider the correlation function 〈hγ(x)hγ(0)〉. Therefore,

in addition to those functions listed in section 3.2.1, the following function makes an
appearance.

〈ψ†ασ(x)ψβσ′(x)ψ†βσ(0)ψαj(0)〉 =const.× exp
(
π

2

[
− 4
K
〈θ−(x)θ−(0)〉+ 4K〈φ+(x)φ+(0)〉

])
,

(3.74)
for α 6= β and i 6= j.

Using this, it can be determined〈(
eiγψ†a(x)ψb(x) + e−iγψ†b(x)ψa(x)

) (
eiγψ†a(0)ψb(0) + e−iγψ†b(0)ψa(0)

)〉
=〈ψ†a(x)ψb(x)ψ†b(0)ψa(0)〉+ 〈ψ†b(x)ψa(x)ψ†a(0)ψb(0)〉

+ e2γ〈ψ†a(x)ψb(x)ψ†a(0)ψb(0)〉+ e−2γ〈ψ†b(x)ψa(x)ψ†b(0)ψa(0)〉
=2

(
〈ψ†Ra(x)ψRb(x)ψ†Rb(0)ψRa(0)〉+ 〈ψ†La(x)ψLb(x)ψ†Lb(0)ψLa(0)〉

+ e2ikF x〈ψ†La(x)ψRb(x)ψ†Rb(0)ψLa(0)〉+ e−2ikF x〈ψ†Ra(x)ψLb(x)ψ†Lb(0)ψRa(0)〉
)

+ e2γ2 cos(2kFx)〈ψ†Ra(x)ψLb(x)ψ†Lb(0)ψRa(0)〉+ e−2γ2 cos(2kFx)〈ψ†Rb(x)ψLa(x)ψ†La(0)ψRb〉
=2〈ψ†Ra(x)ψRb(x)ψ†Rb(x)ψRa(0)〉+ 2〈ψ†La(x)ψLb(x)ψ†Lb(0)ψLa(0)〉

+ C cos(2kFx)
(
e 2π
K
〈θ−(x)θ−(0)〉 + e− 2π

K
〈θ−(x)θ−(0)〉 cos(2γ)

)
x−K , (3.75)

for some C ∈ C. Note that the terms of the form 〈ψ†Ra(x)ψRb(x)ψ†Ra(0)ψRb(0)〉 vanish
exponentially and are not listed. Therefore, this autocorrelation decays algebraically
except for γ = γ0 with

cos(2γ0) = −e 4π
K
〈θ−(x)θ−(0)〉 , (3.76)

which gives (asymptotical) exponential decay. Due to
〈θ−(x)θ−(0)〉 → 0 , (3.77)

on large distances, it is γ0 = 0. In particular, γ0 does not depend on the expansion point
θ0.

3.2.3 Probing the gap
In section 3.2.1 the form of various correlation functions was calculated, including the
on-chain two-point correlation function

〈ψ†σ(x)ψσ(0)〉 = const. × δαβδijexp
[
π

2

( 1
K
〈θ+(x)θ+(0)〉+ 1

K
〈θ−(x)θ−(x)〉+K〈φ−(x)φ−(0)〉

+ K〈φ+(x)φ+(0)〉+ 〈θ+(x)φ+(0)〉+ 〈φ+(x)θ+(0)〉

+ 〈θ−(x)φ−(0)〉+ 〈φ−(x)θ−(0)〉
)]

(3.78)
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and the ’spin-flip’ correlation

〈ψ†a(x)ψb(x)ψ†b(0)ψa(0)〉 = const. × exp
(
π

2

[ 4
K
〈θ−(x)θ−(0)〉+ 4 (〈φ−(x)θ−(0)〉

+ 〈θ−(x)φ−(0)〉) + 4K〈φ−(x)φ−(0)〉
])

+ const. × cos(2kFx) exp
(
π

2

[ 4
K
〈θ−(x)θ−(0)〉+ 4K〈φ+(x)φ+(0)〉

])
(3.79)

as well as the pair-correlation

〈ψ†a(x)ψ†b(x)ψb(0)ψa(0)〉 = const. × exp
(
π

2

[ 4
K
〈θ+(x)θ+(0)〉+ 4K〈φ+(x)φ+(0)〉

])
+ const. × cos(2kFx) exp

(
π

2

[ 4
K
〈θ+(x)θ+(0)〉+ 4K〈φ−(x)φ−(0)〉

])
(3.80)

Assuming that not both, θ− and θ+ are pinned, it can be read of that the ’spin-flip’ cor-
relation decays asymptotically exponentially if and only if 〈θ−(x)θ−(0)〉 is asymptotically
linear in x, that is, if the φ−-field is pinned. Since there is no contribution in the model
that could somehow pin θ+, the assumption is safe.

The pair-correlation on the other hand decays asymptotically exponentially if and only
if the θ+ autocorellator is asymptotically linear, and therefore if and only if the φ+-field
is pinned, see also section 3.4.2 for numerical results.

Thus, these correlation functions are suited for determining the existence of a mass gap
of the charge fields φ±. The on-chain two-point correlation function on the other hand
will decay asymptotically exponentially as soon as any field has an asymptotically linear
autocorrelator and therefore if any sector is gapped and can thus be used as a consistency
check.

In the topological phase, both pair-correlations decays algebraically due to the 〈φ+(x)φ+(0)〉
contribution which occurs in both in a term that does not shrink exponentially.
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3.3 Numerical characterization of the topological
phase

The first step after testing the implementation of the DMRG3S algorithm with the
Heisenberg- and Hubbard model is to verify its applicability to the analyzed ladder sys-
tem (1.2) with open boundary conditions. The numerical analysis is always applied to
the system with open boundaries as edge states are only occuring in such systems for
obvious reasons. Also, it is much harder for DMRG to handle periodic boundary condi-
tions than open ones due to the long-range entanglement from the first to the last site in
systems with periodic boundary conditions. Still, the same phases are expected for the
open system than in thermodynamic limit studied using bosonization.

Therefore, the first point in parameter space considered is J = g = W = 1 which is
henceforth called the exact point, since there, analytical results are available [1]. Fortu-
nately, the exact ground state can be represented by an MPS with bond dimension of
D = min (2N, 2(L−N)) where N is the particle number [70]. Therefore, precise results
can be obtained there and, since the MPS form of the exact ground state is known [70],
the overlap of the normalized variationally obtained state with the exact ground state
can be determined. For chain lengths of L = 100 at half filling, the deviation of the
overlap from one is of order 10−9, showing that the exact ground state is found with high
precision. This upper bound for the bond dimension is no coincidence but precisely that
bond dimension that is required to have each possible quantum number at one bond i
assigned to exactly one left basis state |ai〉l at this bond, and is therefore the minimal
bond dimension required to represent an equal weight superposition of all states in a given
symmetry sector.

It was shown analytically [1] that the ground state at the exact point for a given particle
number is twofold degenerate and can be characterized by the fermionic parity on one
chain. The ground states are then equal weight superpositions of all states with the given
particle number and a fixed subchain parity α. To be precise, it is only an equal weight
superposition in the fermion ordering gauge used in [1]. Since DMRG is formulated in
terms of a product basis, the fermionic ordering is taken as

|σ〉 = (a†1)na1(σ1)(b†1)nb1(σ1)(a†2)na2(σ2) · · · (a†L)naL(σL)(b†L)nbL(σL) |0〉 . (3.81)

The four-dimensional site basis is chosen as an eigenbasis of the commuting subspace
particle number operators n̂ai and n̂bi and the labels σi are given by

nai (σi) = δσi,2 + δσi,4 nbi(σi) = δσi,3 + δσi,4 (3.82)

for σi ∈ {1, . . . , 4}.
Hence, the coefficients of the exact ground state in this product basis differ from that

of the equal weight superposition in a fermi sign due to reordering. Starting from the
equal weight superposition in the gauge from [1], each operator a†i now gets a prefactor
(−1)αi where αi is the subchain parity of chain 2 from sites 1 to i. Fortunately, there is
an easy way to implement this sign into the MPS when the Z2 symmetry is used. Then,
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Figure 3.1: (a) Two-point correlation function at the exact point for L = 100 at half filling.
The exponential decay and the revival at the other end of the chain are clearly visible. Also
the degeneracy of the ground state with respect to the subchain parity is reproduced. (b)
Entanglement entropy over the size of the subsystem that is considered at the exact point for
L = 100. The entanglement entropy is clearly not constant, indicating that the system is gapless.

each entry Aσiai−1 ai
simply obtains a prefactor qiα(ai−1)nai (σi), where qiα(ai−1) ∈ {1,−1} is

the subchain parity quantum number of the state |ai〉l as introduced in section 2.2.2.
Since the exact ground state is only known at this special point, in general, another

measure for convergence has to be applied. A common choice which is also used here is
the variance of energy (∆E)2 =

〈
(H − 〈H〉)2

〉
which is an indicator of how close to an

eigenstate the numerical result is. The energy scale is given by the parameters J , g and
W as well as the system size.

There are several signatures of a topological edge-state that can be probed here, cf.
the discussion of the analytical results in [1]. This allows for checking the applicability
of the numerical method to the system and will demonstrate that the implementation of
the DMRG3S algorithm is capable of identifying a topological edge state.

Therefore, the on-chain two-point correlation function 〈a†iaj〉 is considered, which fea-
tures an exponential decay and a revival at the edge, indicating the existence of an edge
state. An exemplary numerical result for the exact point J = g = W = 1 for the two-point
function can be seen in figure 3.1a.

The ground state is degenerate with respect to the subchain parity α [1], which is
correctly calculated numerically both by targeting the sectors α = ±1 independently
and by computing both the ground state and the first excited state without fixing the
Z2-symmetry.

Then, the entanglement spectrum and thereby also the entanglement entropy is com-
puted. Since the entangelement spectrum for a given bipartition of the system is given
by the coefficients of a Schmidt decomposition of the ground state. It can be extracted
from the MPS straightforward [50], as the matrices Aσi basically contain the coefficients
of a Schmidt decomposition, as discussed in section 2.2.2. The entanglement spectrum
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Figure 3.2: Entanglement spectrum for a bipartition at site i = 45 for a system of length L = 100
at half filling in the α = −1 sector. The degeneracy of the lower lying values is emphasized.
Since the coefficients of the Schmidt decomposition depend exponentially on the entanglement
spectrum, the higher values are highly insignificant and can be neglected.

ξi,j for a bipartition at site i is then given by the singular values λi,j of A[i]
l [50] as

ξi,j = −2 log(λi,j) , (3.83)

presumed that the left- and right basis states are orthonormal, which is equivalent to the
site i being the orthogonality center. Only in this case, the decomposition at site i is also
a Schmidt decomposition. The choice of picking A[i]

l over A[i]
r is arbitrary and corresponds

to counting site i to the left subsystem.
The twofold degeneracy in the entanglement spectrum [1] can then also be obtained

from the numerical data as depicted in figure 3.2. This degeneracy is in general an
indicator for a topological state [71].

Also, in contrast to the correlation function, the numerical results for the entanglement
entropy are surprisingly far away from the analytical result, which is most likely due to
the exponential dependency on of the entanglement spectrum on the singular values of
A[i].

Another important consitency check is the energy of low lying excited states at the
exact point, in particular the energy of the first excited state since this is obtained rather
easily. The analytical solution from [1] predicts the low energy states having energies of

En = 4 sin2
(
πn

2L

)
, (3.84)

where 0 ≤ n < L. In particular, the energy of the first excited state is E1 = 4 sin2( π
2L) with

E1 = O
(

1
L2

)
for L→∞. The numerical results show excellent agreement for L . 50 and

are still reasonably close for longer chains. This means, the excited state search algorithm
used is in principle capable of calculating gaps for the ladder system using moderate bond
dimensions of D ∼ 350.
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3.4 J − g phase diagram

3.4.1 Perturbations around the exact point
In [1], the prediction was made that certain perturbations at the exact point will lead to
a phase separation whereas the edge state is stable for other perturbations. In this sense,
the exact point is a critical point, as it marks a phase boundary. Although bosonization
fails to describe this transition, the numerical results obtained with DMRG3S verify the
occurence of a transition towards a phase separated state at the exact point. Here,
the coupling constants J of the on-chain interaction and g of the inter-chain density-
density interaction are varied while the pair-hopping is left constant. This allows for an
interpolation between the models studied in [1] and [24]. Variations of the parameter W
between 0.9 and 1.1 do not show any effect on the behaviour around the exact point. In
section 3.7, the phase diagram for small pair hopping is adressed.

The numerical results show two possible outcomes for small perturbations in J and g
around J = g = 1. Either the topological phase is retained, which is mainly the case for
J < 1, or the system enters phase separation, which is mainly the case for J > 1. In
principle however both, a stronger attractive interaction on-chain and a stronger repulsive
interaction between the chains can both lead to phase separation. As can be seen in figure
3.3 however, the on-chain interaction is dominant in determining whether phase separation
occurs or not. In this parameter regime, other phases do not occur, see section 3.4.2 for
a discussion of further phases.

As can be seen exemplary in figure 3.4a, the edge state and the ground state degeneracy
with respec to the subchain parity are preserved for weaker interactions, and the edge
state is still exponentially localized. The exponential decay of the greens function, the
algebraic decay of the pair correlations as depicted in 3.4b match the predictions from
bosonization and indicate a pinning of the θ−-field as discussed in section 3.2.1. The
correlation function

〈
a†ib
†
ibjbj

〉
is a ladder analogon to the on-chain two-point function

and also features a revival at the edge in the topological phase. This can also serve as an
indicator for edge state and can help to identify those in the numerical results.

Like at the exact point, the ground state is degenerate with respect to the subchain
parity. The degeneracy with respect to the particle number is lifted however. Still, for
each particle number, except for extreme cases in which sin(kFa) = 0, there is a ground
state degeneracy and a revival of the Green’s function at the end of the ladder. Also, the
entanglement spectrum still has degeneracies, although it is no longer completely degener-
ate. It can be concluded that the topological phase extends from the exact point towards
weaker interactions. See also figure 3.6b for a comparison of entanglement entropies. The
entanglement entropy also does not change form, as shown in figure 3.6a, indicating that
the system is still gapless, see also figure 3.7. The phase separation on the other hand is
close to a product state, having one dominant value in the entanglement spectrum and
vanishing entanglement entropy, save for boundary effects.

Note that the exact point in principle differs from what is identified as the topological
phase in the sense that it is not captured by the description using bosonization from
section 3.1.2. This manifests in some minor differences, but most properties of the exact
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Figure 3.3: (a) Phase diagram around the exact point, where the topological phase (green) and
the phase separation (black) are marked. (b) Local particle number expectation value in the
topological phase (red) and in the phase separation (purple) close to the exact point. The results
are both for a system of size L = 100 at half filling and lower subchain parity α = −1.

point are retained. Whereas the p-wave superconducting correlation
〈
a†ia
†
i+1ajaj+1

〉
is

constant at the exact point, it shows weak decay inside the topological regime. Also, the
pair correlations

〈
a†ib
†
iajbj

〉
and

〈
a†ibib

†
jaj
〉

show algebraic behaviour inside the topological
phase in constrast to the exponential behaviour at the exact point, see also figure 3.5 for
exemplary results. As mentioned above, the behaviour in the topological phase away from
half filling matches the expectations from bosonization. This description is not valid at
the exact point, however, and the exact point poses a special case in this aspect.

Since the ground state in the topological phase close to the exact point is expected
to be similar to the equal weight superposition which is the ground state at the exact
point, it seems to be a good initial state for ground state calculations close to the exact
point. In practice, this leads to a very fast convergence within the topological phase.
The phase separated state is very close to a product state, as can be seen in figure 3.6b,
and is therefore easily represented as an MPS, such that this phase can easily be handled
numerically anyway.

Recall the bosonized Hamiltonian from section 3.1 for the topological phase at low ener-
gies. There the system is separated into two sectors of which one is described by a massless
Klein-Gordon field whereas the other sector is described by a massive Klein-Gordon field.
In the end, this implies an excitation spectrum in the low-energy sector which is linear
in the momentum. Since momentum is quantized as k = π

L
n, n ∈ {0, . . . , L}, the energy

gap in a finite system is proportional to 1
L

, in contrast to the exact point where the gap
scales as 1

L2 . The numerical results do show a scaling close to 1
L

as shown in figure 3.7.
This might be an indicator for the results from the bosonization approach still being valid
for strong pair-hopping. The numerical results for the topological phase shwon here are
insensitive to the filling fraction, save for some special cases like N = 0. The parameter
regime in which this phase occurs is filling dependent, however.
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Figure 3.4: (a) Two point greens function for J = 0.91, g = 1.04 and W = 1 for a ladder of
length L = 50 with particle number N = 35 for both subchain parities. Both the exponential
localization at both edges and the degeneracy are still present. (b) Pair correlations for J = 0.9,
g = 0.9 and W = 1. Since the algebraic behaviour of the pair correlations is better visible for
lager systems, these are for a ladder of length L = 100 at half filling. Due to the edge state, they
both feature a revival at the other end of the ladder which is characteristic for the topological
phase.
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Figure 3.5: (a) Independence of the edge state from the filling fraction. These results are for
J = g = 0.9, W = 1 and a system of size L = 100 and subchain parity α = −1. (b) Pair
correlation at the exact point and in the topological phase away from it for L = 100, α = 1 and
N = 80, see also figure 3.4b. The exponential behaviour at the exact point indicates that this
point is not captured with the bosonization approach.
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Figure 3.6: (a) Entanglement entropy in the phase separaion (blue) and topological phase (red)
for a system of size L = 100 at half filling and lower subchain pariy L = 100. While the
entanglement entropy for J = g = 0.9 resembles that of the exact point, it vanishes in the phase
separaion. The peaks in the middle of the chain and at the boundary are numerical artifacts
here due to the gradual drop of particle density, see also figure 3.3b. (b) Entanglement spectrum
in the phase separation (blue) and topological phase (red) for a system of size L = 100 at half
filling and lower subchain parity α = −1 for W = 1. The entanglement spectrum is taken for
a bipartition of the system at site i = 40. The rapid growth of the entanglement spectrum for
the phase separated state indicates that the state is close to a product state.
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Figure 3.7: Scaling of the excitation gap over system size for J = g = 0.9 and α = −1 at half
filling with algebraic fit. Cleary, the gap vanishes algebraically and the fit reveals a behaviour
close to the 1

L -scaling found in bosonization. The results are obtained using bond dimension
D = 300.
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3.4.2 Strong interactions

Apart from the case of strong, repulsive interactions which lead to phase separation,
the bosonization is capable of qualitative predictions of occuring phases as discussed in
section 3.1. The low energy excitation spectrum at the exact point is quadratic [1] and
it can therefore only be described within bosonization by a divergence of the Luttinger
parameter K which corresponds to a theory of free bosons [34].

Recall the possible phases discussed in section 3.1, stating the appearance of a charge
density wave due to Umklapp processes for small Luttinger parameters.

As discussed in section 3.2.3, the charge density wave is characterized by the charge
fields becoming massive, thus the pair correlations

〈
a†ibib

†
jaj
〉

and
〈
a†ib
†
ibjaj

〉
decay expo-

nentially as can be seen exemplary in figure 3.10b. Apart from that, there is the obvious
density oscillation as depicted exemplary in figure 3.10a. There, and also in the pair cor-
relation, it is clearly visible that the charge density wave only exists at half filling. There
are multiple realizations of the charge density wave depending on the subchain parities,
particle number and system size. Due to the strong intra-chain repulsion in this regime,
a half filling of each chain is always favored. For odd particle numbers, this leads to the
sectors being degenerate, while for even particle numbers, the ground state is always in
the sector allowing for a symmetric distribution of particles and is fourfold degenerate
with the four realizations being those in figures 3.11 and 3.12 and their spatially inverted
counterparts.

If the charge fields for both wires become massive, the theory will be fully gapped,
which matches the numerical results shown in figure 3.9. The additional ground state
degeneracy for even particle number and α = −1 limits the system sizes which can be
considered in this sector, due to the drastic increase of computational cost for computing
higher excited states. Note that this drastic increase is not inherent to the excited state
search but is mainly due to the unavailability of a well suited initial state, the lack of
optimizations of the projector application in the used implementation and the high bond
dimension required for higher excited states in larger systems. The entanglement entropy
in the charge density wave is indeed constant, up to boundary effect, indicating a gapped
phase, see also figure 3.15a.

Away from half filling, the charge density wave vanishes continuously, but numerical
treatment of the system in this parameter regime becomes increasingly difficult, such that
a clear statement can not be made from numerical data.

Apart from the charge density wave for strong repulsion on the chains, at half filling
there is a phase of homogenous density with exponentially decaying correlations. As dis-
cussed in section 3.1, this can be understood within the framework of bosonization by one
of the boson fields becoming massive, leading to an exponential decay of the on-chain two
point function. As shown in section 3.2.3, the pair correlations

〈
a†ibib

†
jaj
〉

and
〈
a†ib
†
ibjaj

〉
are able to probe for a charge gap. As shown exemplary in figure 3.8b, the correlation
function

〈
a†ib
†
ibjaj

〉
decays exponentially whereas

〈
a†ibib

†
jaj
〉

does not, indicating that the
field φ+ is pinned here. In contrast to the charge density wave appearing for strong on-
chain repulsion, the density is homogeneous on both wires. Away from half filling, the
correlations decay algebraically, the gap in the symmetric sector vanishes.
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Figure 3.8: (a) Density correlations for J = −0.5, g = −1 and W = 1 on a chain of length
L = 50 in the α = −1 sector. There is a homogenous density on both chains in this parameter
regime. (b) Pair correlations for the same parameters. The saturation for N = 35 is due to
boundary effects at the end of the chain, as it is observed similarly for the free theory.

The numerical sampling of the phase diagram 3.13 then shows the occuring phases for
half filling depending on the density-density interaction strengths. It is not surprising
that a strong attractive inter-chain density-density interaction favors a phase separation
between the two chains, such that all particles gather on one chain, as the emergence
of a charge density wave for strong repulsive on-chain interaction is also quite intuitive.
In the same manner, one expects a phase separation on the chains for strong attractive
on-chain interaction. A strong repulsive inter-chain interaction however does supress the
pair-hopping, such that the system can be well describable as a Luttinger liquid.

For other fillings, the bond dimension required for accurate results is much larger, such
that a sampling of the full phase diagram can reveal only the phase separated regions
and the topological phase as shown in figure 3.14a. Apart from the regions of phase
separation or topological phase, obtaining accurate results is too costly for generating
data of the extent shown in figure 3.13. The reference data for N 6= L shown in figure
3.10a and 3.8b for example is obtained with variance of energy of (∆E)2 = 3.27 · 10−3

and (∆E)2 = 3.16 · 10−4 respectively, which is much worse than the accuracy of the same
calculations at half filling, for which it is (∆E)2 = 1.89 · 10−8 and (∆E)2 = 2.24 · 10−8

respectively for the same bond dimension.
It should be noted that the topological phase occurs at half filling only for J 6= 0 or

g 6= 0, which has already been demonstrated in [24] where the model in absence of inter-
chain density-density interactions and intra-chain interactions has been studied in detail.
This shows that the density-density interactions can in fact establish topological order.
The topological phase also features long-range p-wave superconducting correlations, as
can be seen exemplary in figure 3.15b, which confirms the interpretation of the model as
a microscopic theory.
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Figure 3.9: Scaling of the energy difference between the first excited state and the ground states
over the system size L for J = g = −2 and W = 1 in the α = −1 sector at half filling. The
energy gap becomes constant at a value of E1 −E0 = 0.4, indicating that the system is gapped
in thermodynamic limit. Results are obtained using bond dimension D = 350.
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Figure 3.10: (a) Local particle number expectation value for J = −4, g = −4, W = 1 and chain
length L = 50 in the α = 1 sector. While the results for N = 50 clearly show the occurence of
a charge density wave, it is nearly absent for N = 35, where the oscillations in particle number
are most likely numerical artifacts as the accuracy is also much lower than for N = 50. (b)
Exponential decay of pair correlations for the same parameters, indicating a pinning of the φ±
fields and therefore a gap in the energy spectrum. The system size is L = 100 at half filling.

51



Chapter 3 Analysis of the ladder system

0 10 20 30 40 50
|i−j|

0.0

0.2

0.4

0.6

0.8

1.0

〈 na i
〉

0.0

0.2

0.4

0.6

0.8

1.0

〈 nb i〉

(a)

0 10 20 30 40 50
|i−j|

10-3

10-2

10-1

100

〈 (n
a i

+
n
b i
)(
n
a j

+
n
b j
)〉

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

〈 (n
a i
−
n
b i
)(
n
a j
−
n
b j
)〉

(b)

Figure 3.11: Symmetric realization of a charge density wave on a chain of length L = 50 at half
filling in the α = −1 sector for J = −4, g = 4 and W = 1. For even particle number, like
in this example, this and the spatially inverted counterpart are two of the four ground states.
For odd particle number, there is no symmetric realization of the charge density wave. (a)
Local density on both chains, clearly showing the symmetry. (b) Symmetric and antisymmetric
density-density correlations, showing long-range correlations only for the symmetric part. This
correlation function can hence easily distinguish between the different realizations of the charge
density wave.
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Figure 3.12: Antisymmetric realization of a charge density wave on a chain of length L = 50 at
half filling in the α = −1 sector for J = −4, g = −4 and W = 1. For even particle number, like
in this example, this and the spatially inverted counterpart are two of the four ground states.
An analogous version also poses the ground state for odd particle number, with one realization
existing in both the α = 1 and the α = −1 sectors. (a) Local density on both chains, clearly
showing the asymmetry. (b) Symmetric and antisymmetric density-density correlations, showing
long-range correlations for both parts.
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Figure 3.13: J − g phase diagram obtained using DMRG for a system of size L = 50 at half
filling. The dots correspond to the numerical data, while the demarkation of the phases is
approximate and derived from the numerical data. The phases encoded are the charge density
wave (blue), the topological phase (yellow), a phase separation along the ladder (green), a phase
separation between the two subchains (pink), a gap in the symmetric sector (red) and a gapless
Luttinger liquid (grey). The algorithm to determine the color code takes into account the revival
of the on-chain two point function, the degeneracy with respect to subchain parity, the decay of
the on-chain two point function, the density fluctuations both on each chain and between the
chains and the entanglement entropy. The approximate phase boundaries are marked in black.
The saturation encodes the variance of energy, since it varies over orders of magnitude between
different parameter regimes, this is done on a logarithmic scale. Results are obtained using bond
dimension D = 300.
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Figure 3.14: (a) Numerical sampling of the J − g phase diagram obtained using DMRG for
a system of size L = 50 for N = 35 particles. The color code is the same as in figure 3.13.
The phase separated regions (green, pink) and the topological phase (yellow) remain, but no
statement can be met for the other phases from this data. Remarkably, the topological phase
is of much greater extend than at half filling. White dots represent unconverged calculations
where the variance of energy is (∆E)2 ' 0.03. Higher accuracy calculations for single points
show that both the charge density wave and the gap in the symmetric sector vanish, see figures
3.10a and 3.8b. (b) Algebraic decay of the on-chain two-point function for W = 1, J = −1
and g = 4 and L = 70 at half filling. The saturation is due to boundary effects. The algebraic
behaviour indicates a gapless phase that can be described as a Luttinger liquid, see also section
3.2.1.
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Figure 3.15: (a) Entanglement entropy in the charge density wave (red), indicating the existence
of a gap and Luttinger liquid phase (blue), which appears to be gapless. These data were
obtained for a chain of length L = 50 at half filling and α = 1. (b) p-wave superconducting
correlations in the topological phase (blue) and the gap in the symmetric sector (red) obtained
for chain of length L = 100 with α = 1 at half filling. The depicted behaviour of the latter for
large |i− j| is not meaningful as the values are way below accuracy. The exponential behaviour
however agrees with the occurance of a gap in the symmetric sector.
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3.5 Effects of symmetry breaking perturbations
In the topological phase, the degeneracy of the ground state and the entanglement
spectrum should be protected against local perturbations. This has been analyzed for
g = J = 0 in [24], where the effect of a symmetry breaking term was also considered,
and robustness against symmetry breaking was shown for a global, time-reversal invariant
single-particle hopping. In [1] it was demonstrated for the exact point, that within first
order perturbation theory, a local perturbation breaking the Z2-symmetry can lift the
degeneracy if and only if it also breaks time reversal invariance and has support at the
end of the ladder where the edge states on the two chains are not spatially separated. In
section 3.2.2.2, it was demonstrated that such a single particle inter-chain hopping of the
form eiγa†jbj + h.c. can only distinguish the two ground states for γ 6= 0 that is, if the
single particle hopping breaks time-reversal invariance. In the numerical calculations, the
amplitude of a global single particle inter-chain hopping is taken as site dependant with
a random local amplitude ti = rit0 where t0 is a global parameter adjusting the overall
strength and ri ∈ [0.9, 1.1] is an evenly distributed random variable. The single particle
hopping can be seen as a kind of disorder. Then, the disorder breaks time-reversal in-
variance if and only if t0 /∈ R. The local single particle hopping has just an amplitude of
ti = δi,pt0 where p is the position of the perturbation.

As is illustrated in figures 3.16a to 3.18b, the prediction from [1] holds in the topological
phase such that a single particle inter-chain hopping can only lift ground state degeneracy
and destroy the edge state if it also breaks time-reversal invariance.

Also, the perturbative arguments presented in [1] indicated that even when both sub-
chain parity conservation and time-reveral invariance are broken, the splitting of ground
state energy decays with the distance of the support of the perturbation from the end of
the chain as depicted in figure 3.19. The decay can not be safely classified, however. A
non-exponential decay might be explained by contributions from higher orders of pertur-
bation theory in the context of the arguments from [1]. As can be seen in figures 3.17b,
3.18b and 3.19, the inter-chain single-particle hopping indeed only has an effect if it has
support at the end of the chain and can hence connect the edge states. The agreement
with the perturbative arguments is remarkable, as the theory is gapless and the second
order perturbation theory therefore can be expected to contribute significantly to the
impact of the symmetry breaking.
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Figure 3.16: On-chain two-point function for the ground state and the first excited state in
presence of a global symmetry breaking term (a) with t0 = 0.05 and (b) with t0 = 0.05i.
Clearly, the perturbation can only destroy the edge state and lift the ground state degeneracy
if time-reversal symmetry is broken. The parameters used here are W = 1, J = g = 0.9 for a
system of length L = 50 with particle number N = 35, the results are averaged over 15 sets of
disorder.
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Figure 3.17: On-chain two-point function for the ground state and the first excited state in
presence of a local symmetry breaking term in the bulk (a) with t0 = 0.05 and therefore without
violation of time-reversal invariance and (b) with t0 = 0.05i and therefore also violation of time-
reversal invariance. In the bulk, the local perturbation cannot lift the ground state degeneracy.
The parameters used here are W = 1, J = g = 0.9 for a system of length L = 50 with particle
number N = 35.
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Figure 3.18: On-chain two-point function for the ground state and the first excited state in
presence of a local symmetry breaking term at the edge (a) with t0 = 0.05 and therefore without
violation of time-reversal invariance and (b) with t0 = 0.05i and therefore also violation of
time-reversal invariance. As for the global single-particle hopping the breaking of time-reversal
invariance is required for the symmetry breaking term to affect the edge states. The parameters
used here are W = 1, J = g = 0.9 for a system of length L = 50 with particle number N = 35.
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Figure 3.19: Splitting of ground state energies due to a local time-reversal breaking single-particle
hopping only at a single site. This is in the topological phase for W = 1 and J = g = 0.9 where
the ground state in absence of symmetry breaking is degenerate. The decay of the energy
splitting when moving the single-particle hopping away from the end of the chain is clearly
visible, as predicted in [1] for the exact point. For all points, a chain of length L = 61 with
N = 43 particles is considered and the ground state and the first excited state are computed.
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Figure 3.20: Effects of disorder on the ground state properties of the topological phase. (a) Edge
state and ground state degeneracy of the ladder system at J = g = 0.8 and W = 1.1 for a system
of length L = 83 with N = 74 with a disorder of strengh δ = 0.15. There is no notable effect of
the disorder. (b) Entanglement spectrum of the system for a bipartition at i = 36 with system
size L = 86 and N = 77 and α = −1 with a disorder strengh δ = 0.15. The degeneracy of the
entanglement spectrum is also retained, strongly indicating the presence of topological order.

3.6 Effects of disorder
Stability against disorder is one of the key properties of topological order [72], and previ-
ously it was demonstrated that it is stable under local symmetry breaking perturbations.
For a symmetry conserving disorder, the ground state degeneracy should clearly be con-
served, or the splitting should be exponentially small in the system size at least.

This is probed using an equally distributed local variation in the parameters J , g and
W by taking them to be site-dependent as Ji = J(1 + δri) where ri ∈ [−1, 1] is an equally
distributed random variable and δ is the strength of the disorder. For small δ, a stability
of the topological order is expected. This stability is found in the numerical results even
for rather strong disorder of δ = 0.15 independently from the exact choice of parameters
within the topological phase. For sufficiently large system sizes of L > 30, no splitting
of the ground state degeneracy or the degeneracy of the entanglement spectrum can be
found within numerical accuracy given by (∆E)2 ≈ 10−6 for bond dimension D = 350, as
exemplary depicted in figure 3.20.
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Figure 3.21: J − g phase diagram for W = 0.1 for a ladder of length L = 50 at half filling.
While the pair-hopping obviously has some influence, in particular on the transitions from the
topological phase, the qualitative structure of the phase diagram remains unaffected by a drastic
decrease in W . This indicates that the considerations for W = 1 are also valid for weak pair-
hopping.

3.7 Considerations for weak pair-hopping
Up to this point, most of the numerical results were for pair-hopping strength W = 1,
where the topological phase is good visible. The bosonization approach however starts
from a free theory, and the topological phase can hence be expected to exist also for
weak pair-hopping. A detailed analysis of the system without on-chain interactions and
inter-chain density-density interactions, that is, for J = g = 0, based on both low-energy
considerations employing bosonization and a numerical analysis using DMRG has been
presented in [24]. A main result of [24] is that there is a topological phase away from half
filling as long as |W | &, while a too large value of |W | will lead to a phase separation. This
already justifies considering W = 1 for small coupling constants J , g. As demonstrated
in figure 3.21, the occuring phases in the J−g phase diagram do not change qualitatively
when decreasing W , except that in the limit W → 0, the topological phase will disappear.
At this point, it is interesting that a pair-hopping of this strengh alone is not able to
establish a topological edge state, but in combination with density-density interactions,
it can. Also, the gap in the symmetric sector is much less prominent than for larger W
but it still exists for strongly attractive inter-chain interactions. It can be concluded that
the existence of the topological phase is very robuts against variation of the pair-hopping
strengh, but the density-density interactions are crucial therefore.
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Conclusion

An analytical and numerical analysis of a number conserving, interacting model of spinless
fermions in a one-dimensional ladder system was performed in this thesis. There, the focus
was put on the occurence of topological edge states as this is the initial motivation of the
model and the existence of non-Abelian edge states has previously been proven for a
special case in [1].

By means of bosonization, a qualitative analysis of the model is possible, which revealed
the possibility of a symmetry protected ground state degeneracy. The impact of the
different interactions assumed in the model was then characterized and it was shown that
there are no other relevant terms in the predicted topological phase.

A major part then concerned the numerical treatment of the model using the DMRG
algorithm in its formulation as a variational ansatz using a matrix product state. Here,
the stability of the special case from [1] was considered and stability against certain
perturbations as well as a possible phase separation was confirmed.

From the numerical data, a rich phase diagram could be constructed, showing good
agreement with the expectations from the bosonization. Therefore, the entanglement en-
tropy, the particle density, the on-chain two point function and various interchain correla-
tion functions were employed, where the latter have been picked to be easily comparable
to the predictions from the bosonized theory. Besides the topological phase and a phase
separation on the single chains, a phase separation between the chains, driven by density-
density interactions, is possible, as well as a Luttinger liquid phase featuring algebraic
correlations and in special cases also a commensurate charge density wave and a gapless
phase with exponentially decaying pair correlations.

The impact of symmetry breaking perturbations on the system has been analyzed by
numerical means and the symmetry protection of the edge state and the ground state
degeneracy in the topological phase have been demonstrated.

In the context of symmetry breaking, the numerical study of wire networks might be
particularly interesting as there, the stability of the edge states versus any local pertur-
bation could be shown.
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Appendix A

RG Analysis

To study the behaviour of Perturbations under RG flow [40, 41] real-space RG is used as
employed in [34], which is here introduced for a lattice since the initial RG step discretizes
the theory. In particular, integrals over discrete variables are to be understood with
respect to the counting measure. In the following, a short summary of the procedure and
results from [34] shall be given, closely following the steps from [34].

Space-time coordinates are denoted as x = (ντ, x) in this section where τ is the Wick
rotated time. Therefore, consider the action corresponding to the Hamiltonian 2.3 in
terms of the bare fields

S0 =
∫

d2x
1
2

[ 1
ν2 (∂τθ)2 + (∂xθ)2

]
. (A.1)

The RG step is defined as follows. The real space is divided into plaquettes of size L×L,
with L given in units of lattice spacing, which are denoted by plaquette coordinates x̂.
Then, for each real-space point x there exists a unique x̂ ∈ (LZ)2 and y ∈ [0, L]2 such
that x = x̂ + y. The transition to the block-spin variable x̂ is done by averaging over the
plaquettes

θ̂(x̂) = 1
L2

∫
[0,L]2

d2y θ(x̂ + y) . (A.2)

The original field θ is expressed in terms of θ̂ via the decomposition θ = θ̂ + ∆θ. The
action S0 separates with respect to θ̂ and ∆θ. Now, consider a perturbation S = S0 +Sint
with Sint = ∑

i gi
∫

d2xAi where Ai has scaling dimension ∆i and is expressed via the
operators θ and its derivatives. To obtain the rescaled action, consider the expansion of
the integrand of the partition function

e−S =e−S0[θ̂]
[
1−

∫
d2x giAi(x)

+ 1
2gigj

∫
d2x d2x′Ai(x)Aj(x′) +O(L3

int)
]

e−S0[∆θ] . (A.3)

To obtain an action for the new field θ̂, take the expectation value for the short-distance
field ∆θ. Since the action S0 separates as S0[θ] = S0[θ̂] + S0[∆θ], this does not affect S0.
For now, it is assumed that the expectation value Âi(θ̂) = 〈Ai(θ)〉∆θ with respect to ∆θ
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with weight exp(−S0[∆θ]) of the perturbations Ai can be brought into the same funtional
form as Ai. The first order term is then∫

d2x giÂi(x̂) =
∫

d2x̂ L2giÂi(x̂) 7→ giL
2−∆i

∫
d2x̂ Âi(x̂) , (A.4)

where in the last step, the coordinate x̂ is rescaled by x̂ 7→ 1
L
x̂ to regain the original scale.

Therefore, the scaling properties of Âi, which are the same as those of Ai, are employed.
The second order term is treated using the operator product expansion (OPE) of the
perturbation

Ai(x)Aj(x′) = Cijk
|x− x′|∆i+∆j−∆k

Ak(x′) . (A.5)

Note that not all operators Ak appearing in the expansion need to have gk 6= 0 in the
original action, i.e. compared to first order, there can be additional perturbations in
second order. This is precisely the reason for the renormalization of K. Using this short-
distance expansion, the second order term can be approximated the same way as the first
order term with the additional approximation of the integral over the relative coordinate,
leading to the second order term

gigj

∫
d2x Ai(x)Aj(x′) ≈ 2π gigjCijkL2−∆kVijk(L)Âk(x̂′) , (A.6)

with the approximate relative coordinate integral

Vijk(L) =

L2−∆i−∆j−∆k , 2−∆i −∆j −∆k 6= 0
lnL, 2−∆i −∆j −∆k = 0

. (A.7)

This motivates the introduction of a renormalized perturbation Ŝint via

e−S0[θ̂]−Ŝint[θ̂] ≈ e−S0

[
1−

∫
d2x̂

(
gkL

2−∆kÂk(x̂)− πgigjCijkL2−∆kVijk(L)Âk(x̂)
)]
. (A.8)

Here, new coupling constants can be introduced to regain the form of S = S0 + Sint. To
obtain the flow equations, consider L ≈ 1 and expand the constants in l = lnL. For
∆k 6= 2 this yields in leading order

ĝk = gkL
2−∆k ≈ gk (1 + (2−∆k)l) (A.9)

⇒ dgk
dl = (2−∆i)gk . (A.10)

In the case of marginal perturbations, the behaviour depends on the second order and
thereby on the operator product expansion of its coefficients. In the case of a set of
marginal perturbations closed under operator product expansion the resulting flow equa-
tions are then given by

ĝk = gk − πCijkgigjl (A.11)

⇒ dgk
dl = −πCijkgigj . (A.12)
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In the case of a mixing of relevant and marginal perturbations, the flow equations for the
marginal ones have to be derived using an expansion of Vijk in terms of l.

Recall the action S0 from equation (A.1) and consider a perturbation of the form

Sint = g
∫

d2xA(x) (A.13)

A(x) =: cos
(√

8πθ(x)
)

: . (A.14)

This is the well-studied sine-Gordon model [56] for which the RG analysis leads to the
Kosterlitz-Thouless equations [67]. To check that A meets the assumption about the
expectation value previously met, employ the remarkable identity (2.25) which is derived
from the cumulant expansion of the expectation value of the exponential and leads to〈

cos
(√

8π(θ̂ + ∆θ)
)〉

∆θ
= 1

2 cos(
√

8πθ̂)
〈
ei
√

8π∆θ + e−i
√

8π∆θ
〉
− 1

2i sin(
√

8πθ̂)
〈
ei
√

8π∆θ − e−i
√

8π∆θ
〉

= 1
2 cos(

√
8πθ̂)

(
e−4π〈∆θ2〉 + e−4π〈∆θ2〉

)
− 1

2i cos(
√

8πθ̂)
(

e−4π〈∆θ2〉 − e−
1
2
√

8π2〈∆θ2〉
)

= e−4π〈∆θ2〉 cos(
√

8πθ̂) . (A.15)

The necessary condition for this is basically the invariance of the expectation value under
transformation ∆θ 7→ −∆θ which is present due to S0 being quadratic. As mentioned
in section 3.1, this perturbation has scaling dimension ∆ = 2

K
, leading to the conjecture

that it is relevant for K > 1 and irrelevant for K < 1. The flow equation is according to
previous considerations

dg
dl = 2(1−K−1)g , (A.16)

for K 6= 1 .In the marginal case K = 1 it is indeed dg
dl = 0, but this case will not be

considered for now. This is already one of the well-known Kosterlitz-Thouless equations
[67]. However, the Luttinger parameter K is also subject to RG flow in this case since the
perturbation A generates a term of the form S0 in the operator product expansion in the
second order of the expansion of e−Sint , following from the OPE of A(x)A(x′). To obtain
it, use equation (2.29) keeping only the terms singular at x = x′

A(x)A(x′) = 1
4 :

(
ei
√

8πθ(x) + e−i
√

8πθ(x)
)

::
(
ei
√

8πθ(x′) + e−i
√

8πθ(x′)
)

:

≈ 1
4e8π〈θ(x)θ(x′)〉 :

(
ei
√

8π(θ(x)−θ(x′)) + e−i
√

8π(θ(x)−θ(x′))
)

:

= 1
2 |x− x′|−4 : cos

(√
8π(θ(x)− θ(x′)

)
: . (A.17)

Now expand the cosine around x = x′. It is convenient to do so in the complex space-time
coordinates z = ντ − ix and z̄ = ντ + ix. It is even common to express all fields in terms
of these coordinates instead of the real space-time coordinates. This leads to

cos
(√

8π(θ(x)− θ(x′))
)

=1− 4π(x− x′)2(∂zθ)(∂z̄θ)− 4π
(
(z − z′)2(∂zθ)2 + (z̄ − z̄′)(∂z̄θ)2

)
+O

(
(x− x′)4

)
, (A.18)
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Where the higher terms only contribute regular terms to the OPE and are therefore ne-
glected. The terms only depending on z respectively z̄ do not appear in the RG equations
[34]. This gives as the most divergent terms of the OPE

A(x)A(x′) = 1
2 |x− x′|−4 + 2π|x− x′|−2

[ 1
ν2 (∂τθ)2 + (∂xθ)2

]
. (A.19)

Thus, a term of the form S0 appears in second order, leading to a necessary redefinition
of the Luttinger parameter via

K̂ = K + πg2lnL , (A.20)

whereas the constant contribution is not physically relevant due to normalization of the
partition function. Therefore, the RG equation for K is given by the well known [67]
identity

dK
dl = πg2 . (A.21)
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Appendix B

Dynamical basis adaption and subspace expansion

In section 2.2.1, the necessity of a normalization of the matrices of the variational state
is introduced. The existence of a mixed canonical version of some state |ψ〉 given in
MPS form by matrices Aσi is an inherent property of the MPS [52]. Such a state can
iteratively be brought into the desired mixed canonical shape by repeated application of
thin QR−/RQ− decompositions [55] of the concatenated matrices A[i]

l/r [45]. For example,
for left-normalization, take A[i]

l and apply a thin decomposition

A
[i]
l =

(
Q1 Q2

)
·
(
R
0

)
= Q1R . (B.1)

Now, it is Q†1Q1 = 1 and Q1 is of the same dimension as A[i]
l . Now, the ambiguity of

matrices Aσi is employed: Whether the matrix R is multiplied into all matrices Aσi ,
which corresponds to the decomposition (B.1), or into all matrices Aσi+1 does not matter
as only the product AσiAσi+1 appears in the state. It is hence safe to define new matrices
Ãσi via Ã

[i]
l = Q1. This does not change the state if at the same time the matrices of

the next site are redefined as Ãσi+1 = RAσi+1 . Now, the state is left-normalized at site
i, while the possible normalization at the next site is lost. This step can be repeated
however, leaving a scalar R at the last site corresponding to the norm of the state as
the norm is given as in figure 2.8. Analogously, the matrices can be right-normalized
using a QR-decomposition of the adjoint matrix, which is an RQ-decomposition. When
performing these steps from site 1 to i− 1 from the left and from site L to i+ 1 from the
right, the desired mixed-canonical form is obtained. This description of the normalization
procedure is based on [45].

Now, turn towards the problem of fixing good quantum numbers in an MPS. The main
difficulty is here the definition of the labeling functions qi as introduced in section 2.2.2.
First, a set of labeling functions has to be defined initially such that the initial state
can be constructed, normalized and the initial contractions can be computed. This is
non-trivial as the initial functions also highly restrict the initial state. In particular they
have to be chosen such that there is a nonzero state satisfying the constraint (2.51) and
it has to be possible to bring this state into left-canonical form without violating (2.51),
which is another non-trivial constraint. The key idea here is to construct the functions qi
both from left to right and from right to left and then combining the results. In principle,
there is no need for an initial definition of the quantum number labels if they are updated
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dynamically, but omitting it will not only slow down the initialization but will also lead
to pretty bad initial states.

The more subtle difficulty is however not the initialization but the dynamic updating
of the labeling functions during runtime. If the initial choice is not optimal, which it
is probably only at the exact point within this thesis as the optimal choice is known
there, the labeling functions have to be adapted dynamically to reach an optimal state
[47]. However, it is not possible to do so in a meaningful way in the standard single-site
algorithm [45].

To achieve a dynamic choice of the qi, the subspace expansion method as presented in
[47] is employed. The main aspect of this extension of the algorithm is a modification of
the normalization scheme described above. In the following, the procedure and results
from [47] are sketched, for a thorough analysis of the method also in comparison to other
enrichment methods, see [47]. For demonstration, the left-enrichment at some site i will
be described, which replaces the left-normalization as described above.

Instead of just using a thin QR-decomposition, the matrices Aσi are expanded by
additional matrices P σi of size Di−1 ×DP , where Di−1 is the virtual bond dimension at
bond i− 1 and DP is at this point arbitrary. Now, replace

Aσi 7→ A′σi =
(
Aσi P σi

)
. (B.2)

If the matrices Aσi+1 are at the same time replaced by

Aσi+1 7→ A′σi+1 =
(
Aσi+1

0

)
, (B.3)

where the 0-block is of size DP ×Di+1, this does not change the state.
Next, the new matrix A

′[i]
l has to be normalized and at the same time truncated to

dimension dDi−1 ×Di. Therefore, apply an SVD to A′[i]l , resulting in a matrix U of size
dDi−1 × dDi−1, a matrix V † of size (Di + DP ) × (Di + DP ) and min(dDi−1, Di + DP )
singular values λj, in form of a diagonal matrix S of size dDi−1×(Di+DP ). Truncation is
then executed by keeping only the Di largest singular values and setting the other singular
values to 0. If the dimensions Di are build correctly, it is always Di ≤ dDi−1, such that
this truncation is always possible. Keeping only the first Di singular values means that
only the first Di columns of U and the first Di rows of V † contribute, therefore, the matrix
U is now of effective size dDi−1×Di and the matrix V † is of effective size Di× (Di+DP ).

Now, the labeling functions qi are redefined based on the kept singular values. Each
singular value λj can be assigned two indices ai−1 ∈ {1, . . . , Di−1} and σi ∈ {1, . . . , d}
as the singular values are initially just entries in a matrix of size dDi−1× (Di+DP ). After
truncation, there are Di singular values, each of those gets assigned an index ai. This can
be done arbitrarily, but the columns of U have to be labeled in the same way. The new
qi is now just defined via

qi(ai) = qi−1(ai−1) + q(σi) , (B.4)

using the indices ai, ai−1 and σi just assigned to the singular values. As mentioned below,
the SVD has to be implemented blockwise such that the truncated matrix U now fullfills
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σi

P σi = ε

Figure B.1: Heuristic expansion term [47] for the left-sided subspace expansion in the graphical
notation introduced in figures 2.1 and 2.2. It can be computed easily as the left side of the
expression is anyway available as T [i] in the main algorithm. With this term, it is DP = DiDw.
The scalar parameter ε is used to control the impact of the expansion.

the constraint (2.51) with the new labels. Then, the truncated matrix U of size dDi−1×Di

is the new matrix A[i]
l and is left-normalized by construction.

The truncated matrix SV † of size Di × (Di + DP ) on the other hand encodes the
transformation from the old labeling functions to the new ones for the tensor of site i+ 1.
As in the standard normalization procedure, it is multiplied into the matrices of the next
site. Since these were also expanded, this can be done as

A′σi+1 7→ SV †A′σi+1 , (B.5)

which works analogously to the standard normalization procedure as described above.
For the expansion term P σi , the heuristic term from figure B.1 is used, a discussion

thereof can also be found in [47].
The right-sided subspace expansion works analogously with the right-sided expansion

term, see [47].
In the end, a few comments shall be made about the implementation. In the description

of the algorithm so far, the operations are not guaranteed to conserve the block structure
given by equation (2.51). Both the normalization, or subspace expansion respectively, and
the optimization step have to be implemented such that the constraint (2.51) is retained.
Using a standard SVD for the subspace expansion will in general break the constraint for
example. Also, there is little gain in computational costs if the constraint (2.51) is just
imposed without making use of the highly diminished number of variational parameters.

To both make operations more efficient and conserve the structure given by (2.51), it
is useful to identify the blocks of the tenors A[i] for which qi(ai) = M for some constant
block quantum number M . Then, the operations like SVD or contractions of the tensors
A[i] with other tensors are performed blockwise on all those blocks. For the subspace
expansion, the implementation is a bit more subtle as only the expansion and the SVD
are performed blockwise, but not the truncation, since it is the role of that step to adapt
the functions qi and therefore also update the block structure.
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Appendix C

Construction of the projector for excited state search

In section 2.2.3 the idea behind the computation of excited states was sketched. The main
expansion to the algorithm is there the addition of an additional constraint on the state,
implemented as a modified eigenvalue problem for the variation of the single matrices.
To perform this step, a projection operator onto the space orthogonal to all previously
obtained states |φk〉 has to be constructed. This can be done efficiently such that both
the construction of the projector and its application scale as O(D2) [46]. This section
closely follows [46] for introducing the projection operator.

To be efficient, the projection has to be evaluated locally, like any other operation in
the MPS language. Since the scalar product of two states |ψ1,2〉 is just the matrix element
of identity, it can be computed iteratively analogously to the procedure for calculating
matrix elements of operators. Of course, the contractions with the identity MPO are
not carried out but the MPO is just omitted in the contractions. The local orthogonality
constraint can then be easily expressed using the partial contractions of the scalar product
as

F
[i]
k A

[i] = 0 , (C.1)

with F
[i]
k being defined like in figure C.1 as F [i]

k = ∂
∂A[i] 〈ψ |φk〉 [46]. The product is to be

understood as a contraction over all indices and the equation has to hold for all |φk〉 to
which orthogonalization is required.

The projector can then be constructed in terms of the matrices F [i]
k as derived in [46]

as
P [i] = 1−

∑
kk′
F

[i]
k F

[i]†
k′ (N+)kk′ . (C.2)

ai−1

σi
ai

F
[i]σi
k ai−1 ai

=

Figure C.1: Definition of the matrix F [i]
k . The blue dots represent the matrices of the variational

state |ψ〉 and the red dots to those of the state 〈φk| to which orthogonalization is desired. In
this notation, equation (C.1) follows straigtforward as a necessary and sufficient condition for
orthogonality since F [i]

k A
[i] = 〈φk |ψ〉.
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For the projector to be idempotent, the inverse of the Gram matrix Nkk′ = Tr
(
F

[i]†
k F

[i]
k′

)
has to be included [46]. For increased numerical stability [46], the Moore-Penrose pseu-
doinverse N+ [55] is used instead.

As the projector is required in each step of a sweep, it has to be construced anew for
each i. However, the matrices F [i]

k can be computed iteratively analogously to T and R
from the computation of matrix elements. Then, after optimizing the matrices at site
i, the new matrices have to be used to compute F [i±1]

k from F
[i]
k , which can be done in

O(D3) operations.
The matrices F [i]

k have dimension dD2 and therefore, using the form (C.2) of the pro-
jector would scale as O(D4). To reduce the operational cost, it is convenient to rewrite
the projector by introducing a auxiliary matrices G[i]

µ as discussed in [46]. Let Vµ be the
eigenvectors of the Gram matrix and λµ the corresponding eigenvalues which are greater
than some threshold. Then, define

G[i]
µ = 1√

λµ

∑
k

VkµF
[i]
k . (C.3)

These can obviously be be constructed with O(D2) operations. The projection can now
be executed directly in O(D2) operations [46] as

P [i]A[i] = A[i] −
∑
µ

Tr
(
G[i]†
µ A[i]

)
G[i]
µ . (C.4)

A generalization to two-site or many-site algorithms is straightforward and can be found
in [46].
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Appendix D

Performance of the DMRG implementation

To profile the performance of the implementation of the variational MPS algorithm used
here and to allow for efficient optimization, runtime and convergence are profiled for
some systems, where the focus is put on the ladder system (1.2). Here, some exemplary
results are listed. As a reference, the same calculations are done using the mps optim
function of ALPS [49]. The measurements are done using the performance profiler Intel R©

VtuneTM Amplifier XE 2016, which allows for function-resolved runtime analysis of parallel
programms, and run on an Intel R© Xeon R© E5-2630 v3 processor.

The implementation used within this thesis is compiled using the Intel R© C++ compiler
16.0 with optimization option -O3 and linked against OpenMP for parallelization.

Several systems are considered, which are the ladder system with Hamiltonian (1.2),
the spin-1

2 antiferromagnetic Heisenberg chain and the Bose Hubbard model. Runtimes
for computing the ground state of these models are depicted in figure D.1a. Some explicit
values together with reference values from the ALPS library are given in table D.1.

The runtimes from figure D.1a qualitatively agree with the expectations for the cost
of the dominant step of computing ∂

∂A
∗σi
ai−1 ai

〈ψ |H |ψ〉 of O(dDWD
3) in case DW � D,

showing an algebraic increase in runtime with D. Also, the Bose Hubbard model and the
spin-1

2 Heisenberg model both have a bond dimension of the Hamiltonian of DW = 5 and
differ only in the local Hilbert space dimension which is d = 2 for the Heisenberg model.
Since bosonic systems have an infinite dimensional local Hilbert space, a truncation has to
be made, and the number of bosons is limited to 3 per site. This is somewhat justified by
the repulsive interaction in the model that prevent the bosons from clustering at one site.
Therefore, the calculations referred in D.1a are done using d = 4 for the Hubbard model,
explaining the larger runtime. The ladder system (1.2) also has a local Hilbert space
dimension of d = 4 but a much larger bond dimension of the Hamiltonian of DW = 12.
However, optimizations for the computation of contractions using the sparse structure of
the Hamiltonian and the higher symmetry keep the additional cost at bay.

The convergence of the ground state energy shown in figure D.1b indicates that the
bond dimension required to obtain results with a comparable accuracy is much higher in
the topological phase away from the exact point than at the exact point, where D = 200
is enough to obtain a variance of energy in the order of magnitude of 10−9 for a chain
length of L = 100. Therefore, most of the calculations whose results are used in this
thesis use D ≥ 300 for L = 50.
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Model Runtime [s] Energy
Heisenberg 188.9 -21.9721

Bose Hubbard 383.7 -25.5983
Double ladder 774.4 -2.5759

(a)

Model Runtime [s] Energy
Heisenberg AFM 86.9 -21.9721

Bose Hubbard 132.4 -24.8611
Double ladder 437.2 -2.3973

(b)

Table D.1: Exemplary runtimes and obtained energies (a) for my implementation of the varia-
tional MPS algorithm and (b) reference values obtained using the mps optim function of ALPS.
All values are for system sizes of L = 50 with bond dimension D = 200 and 14 sweeps. For
the Heisenberg model, the total spin in z-direction is set to SZ = 0. For the Bose Hubbard
model, the total particle number is fixed to N = 50 and the number of bosons per site is lim-
ited to 3. The parameters U = 2, t = 1 are taken. The ladder system is considered with
W = 1, J = g = 0.9, a total particle number of N = 14. Note that the results depend on the
further parameters like tolerance of the iterative eigensolver, coefficient for the density matrix
perturbation or the details of the algorithm.
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Figure D.1: (a) Runtime of the program over bond dimension for the Bose Hubbard model, the
Heisenberg Spin-1

2 chain and the ladder system described by (1.2). Here, the scaling of the
algorithm as O(D3) can be observed. All systems are taken with a size of L = 50 and sweeping
is proceeded until either 14 sweeps have been executed or the variance of energy is below 10−7.
For the Heisenberg model, the total spin in z-direction is set to Sz = 0. The parameters of the
Hubbard model are U = 2, t = 1 and those of the ladder system W = 1, J = g = 0.9 at half
filling with subchain parity of the lower chain α = 1. (b) Computed ground state energy and
variance of energy for the ladder system with parameters W = 1, J = g = 0.9 at half filling with
α = 1 after 14 sweeps.

Note that the data given are exemplary and still dependent on internal parameters like
tolerance of the eigensolver, the rate at which the tolerance is adapted or the coefficient
of subspace expansion, or on the utilized library versions or on hardware specifications.
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