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Secondary Corrector: Priv.-Doz. Dr. H. Cartarius





Declaration

I declare that I have developed and written the enclosed Master Thesis completely by my-
self, and have not used sources or means without declaration in the text. Any thoughts
from others or literal quotations are clearly marked. The Master Thesis was not used
in the same or in a similar version to achieve an academic grading or is being published
elsewhere. Lastly, I assure that the electronic copy of this Master Thesis is identical in
content with the enclosed version.

Stuttgart, 14.11.2017

iii



Abstract

An ongoing progress in the physics of ultracold atomic gases provides ever deeper insights
to many-body physics on a fundamental level. By improved cooling and measurement
techniques experimental physicists enter regions, where a perturbation expansion in low-
est order is just not enough to describe the physical processes sufficiently. The correct
inclusion of higher order corrections is a major challenge to overcome for a better un-
derstanding of the mechanisms in quantum many-body physics.
In the course of this work, we will work out the fundamental concepts to treat weakly

interacting Bose gases beyond the mean-field level. Not only the treatment of the many-
body system is needed, but also the comprehension of the two-body scattering problem
is essential to handle the struggles, we will come across in this work. Thus, we will
give a short overview of low-energy scattering, before we consider scattering processes
in confined systems. The concepts of scattering theory in confined systems will become
important later in this work.
We will briefly discuss the most common approach to include beyond-mean-field cor-

rections, namely the Bogoliubov theory. We will notice that the inclusion of scattering
processes can lead to divergences in the theoretical description if not treated with care.
The central part of this work focuses on the diagrammatic approach of Hugenholtz

and Pines. The field-theoretic treatment of weakly interacting Bose gases will allow
us to prevent divergences and thus treat the scattering processes consistently within
the theory. We will use the diagrammatic approach to calculate the beyond-mean-field
corrections for a dipolar Bose gas. The approach of Hugenholtz and Pines allows for a
rigorous treatment of the dipolar interaction without any divergence appearing at all.
In addition, the consistent inclusion of scattering properties will make it possible to

describe confined systems. Here, we are interested in the description of a dimensional
crossover. We will consider a gas in a box with periodic boundary conditions. As we will
see, the system can exhibit three-dimensional as well as quasi-one-dimensional behavior.
In contrast to a truly one-dimensional system, the transverse degrees of freedom yield
an additional confinement-induced shift to the ground state energy. Using the field-
theoretic description, the confinement-induced shift appears naturally, which underlines
the beauty of the approach.
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Zusammenfassung

Der ständige Fortschritt im Bereich der tiefkalten Quantengase erlaubt immer tiefere
Einblicke in die Physik der Vielteilchensysteme auf einem fundamentalen Niveau. Im-
mer bessere Kühl- und Messverfahren erlauben es Experimentalphysikern in Regionen
vorzudringen, in denen eine störungstheoretische Beschreibung in niedrigster Ordnung
nicht mehr ausreichend ist, um alle auftretenden physikalischen Prozesse korrekt zu
beschreiben. Das fehlerlose Einbeziehen von Korrekturen höherer Ordnung stellt sich
dabei als große Hürde auf dem Weg zu einem tieferen Verständnis von quantenmecha-
nischen Vielteilchensystemen heraus.
Im Laufe dieser Arbeit werden wir die Hauptkonzepte ausarbeiten, welche für die Be-

handlung von Korrekturen, die über die Molekularfeldtheorie hinausgehen, eine entschei-
dende Rolle spielen. Darin eingeschlossen ist nicht nur die Behandlung von Vielteilchen-
systemen, sondern auch das Verständnis des Streuproblems zweier Teilchen ist von
großer Bedeutung, um später mit den auftretenden Schwierigkeiten umgehen zu kön-
nen. Aus diesem Grund werden wir einen kurzen Überblick über Tiefenergie-Streuung
geben, bevor wir uns mit Streuprozessen in begrenzten Systemen auseinander setzen.
Wir werden kurz auf Bogoliubovs Theorie eingehen, die den verbreitetsten Ansatz

darstellt, um Korrekturen zur Molekularfeldtheorie zu erhalten. Dabei werden wir fest-
stellen, dass das Einbeziehen von Größen aus der Streutheorie zu Divergenzen führen
kann, wenn dabei nicht mit ausreichender Vorsichtig vorgegangen wird.
Das Hauptaugenmerk dieser Arbeit liegt auf dem diagrammatischen Ansatz von Hugen-

holtz und Pines. Die feldtheoretische Behandlung von schwach wechselwirkenden Bose
Gasen wird Divergenzen verhindern und deshalb zu einer konsistenten Behandlung von
Streuprozessen innerhalb der Beschreibung führen. Wir werden den diagrammatischen
Ansatz verwenden, um höhere Korrekturen für dipolare Gase zu berechnen. Der Ansatz
von Hugenholtz und Pines erlaubt dabei eine rigorose Behandlung der dipolaren Wech-
selwirkung, ohne das Auftreten von Divergenzen.
Zudem wird das konsistente Einbeziehen von Streugrößen es ermöglichen beschränkte

Systeme endlicher Größe zu behandeln. Dabei sind wir insbesondere an der Beschrei-
bung eines dimensionellen Übergangs interessiert. Wir werden ein Gas in einer Box
mit periodischen Randbedingungen betrachten. Wie wir sehen werden, kann dieses Sys-
tem sowohl dreidimensionales als auch quasi-eindimensionales Verhalten aufweisen. Im
Gegensatz zu einem echt eindimensionalen System führen die transversalen Freiheits-
grade zu einem zusätzlichen physikalischen Effekt. Dieser Effekt erscheint dabei in der
feldtheoretischen Beschreibung ganz natürlich, was die Schönheit des Ansatzes unter-
streicht.
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1. Introduction

The realization of Bose-Einstein condensation in ultracold atom experiments in 1995
[1–3] marked a milestone in the experimental study of quantum mechanical many-body
systems and was honored by a Nobel prize for Cornell, Wieman, and Ketterle in 2001.
The evidence for Bose-Einstein condensates led to an enormous interest in the field of
ultracold atomic gases, which rapidly expanding ever since. The main reason for that is
the high level of control, these systems can provide. Using optical lattices, physicists can
model systems from scratch, which opens up new opportunities to investigate quantum
many-body systems. Besides, the interactions between the particles can be controlled
via Feshbach resonances [4, 5]. Thus, the field of ultracold atoms is a playground for
both experimental and theoretical physicists to explore the world of many-body quantum
mechanics on a macroscopic scale.
Over 20 years after the experimental evidence of Bose-Einstein condensation, the

interest in the field is still unbroken. In recent years, the steady progress in cooling,
trapping and measurement techniques made it possible for the group around T. Pfau
to produce Bose-Einstein condensates, consisting of dipolar atoms for the first time [6].
The condensation of dipolar atoms gathered a lot of interest as the anisotropic and long-
range nature of the dipole-dipole interaction provides additional possibilities to explore
new quantum phenomena. The most fascinating feature of the dipolar condensates is the
formation of patterns of droplets in regions, where a stable solution was not expected
[7, 8]. The droplets are a good candidate for a supersolid ground state [9]. These
novel quantum liquids are stabilized by the counterplay between the attractive dipolar
interaction and quantum fluctuations in the system [10].
Besides the tremendous work experimental physicists had to invest to come to the

point at which we are today, the theoretical description of the weakly interacting systems
is a huge challenge as well. For a long time, the mean-field Gross-Pitaevskii description
[11, 12], in which all particles are assumed to be part of the condensate, was sufficient
to describe the experimental observations. However, today it is possible to measure
higher order corrections like the depletion of the condensate [13] or beyond-mean-field
corrections to the ground state energy [14]. In addition, the mean-field theory fails to
describe phenomena like the droplets.
This work focuses on the treatment of beyond-mean-field corrections in weakly inter-

acting Bose gases. As the atomic clouds are kept in traps in experiments, our goal is
to build a consistent treatment of beyond-mean-field corrections in confined systems.
Before treating the many-body system, we will give a short insight to scattering theory
in chapter 2. The objective is to understand the physical processes involved in a scat-
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CHAPTER 1. INTRODUCTION

tering event and how to treat scattering in confined systems. In chapter 3, we give an
overview of the Bogoliubov theory [15], the most common approach to include beyond-
mean-field corrections. As we will see, the correct treatment of scattering processes is
involved and can lead to divergences in the theoretical description. Thus, we will intro-
duce the field-theoretic approach of Hugenholtz and Pines [16] in chapter 4, to prevent
the problems from the Bogoliubov theory. The field-theoretic approach will allow us to
calculate the beyond-mean-field correction for a dipolar Bose gas without the need of
curing divergences at all. In addition, the diagrammatic approach is a powerful tool for
the description of confined systems. In chapter 5, we will apply it to weakly interacting
bosonic particles restricted by periodic boundary conditions, which yields an insight to
the peculiarities of confined systems.
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2. Scattering Theory

In ultracold atomic gases, the particles interact via scattering processes. Hence, a funda-
mental understanding of low-energy scattering theory is essential for a consistent treat-
ment of weakly interacting Bose gases.
The gases are dilute, and so the densities n are very low. For such low densities, the

range of the interatomic potentials r0 is much smaller than the mean distance, 1/n1/3,
between the particles. Thus, treating binary collisions is sufficient for a theoretical
description.
The following sections 2.1-2.3 will give a short insight into scattering theory in one

and three dimensions. The aim of these sections is not to provide a complete overview
of the topic, but rather to understand the key mechanisms and concepts in low-energy
scattering. For a detailed coverage of scattering theory, the reader is referred to standard
quantum mechanics textbooks e.g., [17–19]. The last section 2.4 of this chapter will make
use of the introduced concepts by applying them to scattering processes in confined
systems.

2.1. Formal Scattering Theory

In what follows, the elastic scattering of two identical bosons of massm is treated in their
center-of-mass frame. The interaction potential V (r) between the particles is assumed
to be of short range,

rV (r) → 0 for r → ∞, (2.1)

and isotropic. Thus, it only depends on the distance r between the particles. The
stationary Schrödinger equation of this problem is then given by

H |Ψk〉 = Ek |Ψk〉 with H = H0 + V, (2.2)

where H0 denotes the Hamiltonian for a free particle H0 = p̂2/m. For energies Ek > 0
the states are unbound and asymptotically free, whereas energies Ek < 0 correspond to
bound states. To describe scattering processes, the energy is assumed to be positive,
and the Schrödinger equation (2.2) has a solution for every value of Ek. The remaining
task is therefore not to find the eigenenergies as the spectrum is continuous, but to find
the scattering states |Ψk〉. The eigenstates of H0 will be denoted by |φk〉 and fulfill

H0 |φk〉 = Ek |φk〉 with Ek =
~2k2

m
. (2.3)
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2.1. FORMAL SCATTERING THEORY CHAPTER 2. SCATTERING THEORY

With the use of the states |φk〉, it is now possible to give a formal solution for the
scattering states. This solution is known as the Lippmann-Schwinger equation,

|Ψk〉 = |φk〉+
1

E+
k −H0

V |Ψk〉 . (2.4)

Here, the notation

E+
k = lim

η→0+
Ek + iη (2.5)

was introduced. For simplicity, the limit η → 0+ will be implicit in the following. The
Lippmann-Schwinger equation consists of two parts. The first term on the right-hand
side of equation (2.4) describes a free incoming state, whereas the second one corresponds
to the scattered outgoing state. By choosing a positive sign for the imaginary part in
equation (2.5), we can ensure the causality of the Lippmann-Schwinger equation (2.4).
This can be seen by introducing the concept of Green’s functions.
The Green’s function of a free particle is defined by the equation

(i~∂t −H0)G0(t− t′) = δ(t− t′). (2.6)

There are two solutions to this equation, namely the retarded Green’s function

G+
0 (t− t′) = − i

~
Θ(t− t′) e−iH0(t−t′)/~, (2.7)

and the advanced Green’s function

G−
0 (t− t′) =

i

~
Θ(t′ − t) e−iH0(t−t′)/~. (2.8)

The function Θ(t − t′) denotes the Heaviside step function. Both solutions, (2.7) and
(2.8), contain the time-evolution operator of a free particle

U(t− t′) = e−iH0(t−t′)/~ (2.9)

and are therefore often called propagators as well.
With the use of these Green’s functions, the time-dependent form of the Lippmann-

Schwinger equation is

|Ψk(t)〉 = |φk(t)〉+
∫

dt′G0(t− t′)V |Ψk(t
′)〉 . (2.10)

The Green’s function mediates the impact of a scattering event at a time t′ onto a state
at the time t. As the solution |Ψk(t)〉 has to obey causality, the correct choice for the
Green’s function in (2.10) is the retarded one (2.6). Otherwise, the solution |Ψk(t)〉
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CHAPTER 2. SCATTERING THEORY 2.2. THREE DIMENSIONS

would depend on future solutions |Ψk(t
′)〉 at times t′ > t. A Fourier transformation of

the retarded Green’s function yields

G+
0 (E) = lim

η→0+

∫ ∞

−∞
dt eit(E+iη sgn(t))/~G+

0 (t)

=
1

E+ −H0

.

(2.11)

With the use of the free Green’s function, the Lippmann-Schwinger equation is reduced
to

|Ψk〉 = |φk〉+G+
0 (Ek)V |Ψk〉 , (2.12)

and can be solved iteratively,

|Ψk〉 = |φk〉+G+
0 (Ek)V |Ψk〉

= |φk〉+G+
0 (Ek)V |φk〉+G+

0 (Ek)V |Ψk〉

=
∞∑
n=0

(
G+

0 (Ek)V
)n |φk〉 .

(2.13)

The series expansion of the solution |Ψk〉 is known as the Born series. It is equivalent to
the standard perturbation theory in quantum mechanics. Hence, we get satisfying ap-
proximate solutions for the state |Ψk〉 by cutting off the series as long as the interactions
V are weak.
Another relevant quantity, which will frequently appear in the following, is the T -

matrix of the system. It is defined by

V |Ψk〉 = T |φk〉 . (2.14)

As it connects the incoming state |φk〉 with the solution |Ψk〉, it contains all information
of the scattering event. Therefore, finding the T -matrix is equivalent to solving the
Lippmann-Schwinger equation. The comparison of the definition of the T -matrix (2.14)
and the Lippmann-Schwinger equation (2.13) immediately yields the expression

T (E) =
∞∑
n=0

V (G0(E)V )n = V + V G0(E)V + V G0(E)V G0(E)V . . . . (2.15)

Hence, the full T -matrix takes into account an infinite number of interactions. Similar
to the Lippmann-Schwinger equation, we obtain approximate solutions for the T -matrix
by cutting off the Born series for the T -matrix (2.15).

2.2. Scattering in Three Dimensions

The previous section has introduced essential concepts of scattering theory like the
Lippmann-Schwinger equation, the Born series, or the T -matrix on a formal level. In
the particular case of low-energy scattering in three dimensions, we will now take them
under closer consideration.
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2.2. THREE DIMENSIONS CHAPTER 2. SCATTERING THEORY

2.2.1. The Scattering Amplitude

In coordinate representation, the Lippmann-Schwinger equation (2.12) reads

Ψk(r) = φk(r) +

∫
R3

d3r′G+
0 (r, r

′, Ek)V (r′)Ψk(r
′). (2.16)

The functions φk(r) are the coordinate representations of the states |φk〉, and for scat-
tering in free space they are given by plane waves,

φk(r) = eik · r. (2.17)

The coordinate representation of the Green’s function (2.11) is denoted by G+
0 (r, r

′, E)
and takes the form

G+
0 (r, r

′, Ek) =
〈
r
∣∣G+

0 (Ek)
∣∣ r′〉

=
m

~2

∫
d3k′

(2π)3
eik

′ · (r−r′)

k2 − k′2 + iη

= −m
~2

∫
d3k′

(2π)3
eik

′ · (r−r′)

(k′ + k + iη)(k′ − k − iη)

= − m

4π~2
eik|r−r′|

|r − r′|
,

(2.18)

where we have introduced |k| = k. In the course of this integration, we chose the vector
r − r′ to coincide with the z-axis, which allows performing the angular integration.
Afterwards, we used the residue theorem to obtain the final result.
Now that we know the form of the Green’s function (2.18), we can introduce another

important scattering quantity. The exact solution of the Lippmann-Schwinger equation
(2.16) for small distances r between the particles is of minor interest, as for an observer,
only the outcome of a scattering event is easily accessible. We can draw the same
conclusion for dilute gases. The mean distance between the particles in the gas is large,
and so two particles involved in a scattering event will travel a far distance until they
interact with other particles. Hence, the relevant region to consider in equation (2.16)
is the far field r → ∞. The only quantity that depends on the distance r between
the particles in the integral of the Lippmann-Schwinger equation (2.16) is the Green’s
function G+

0 (r, r
′, Ek). Its long-range behavior is determined the expression

lim
r→∞

|r − r′| =
√
(r − r′)2

= r

√
1− 2

er · r′

r
+
r′2

r2

≈ r − er · r′,

(2.19)
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CHAPTER 2. SCATTERING THEORY 2.2. THREE DIMENSIONS

where er denotes the unit vector in direction of r. With the use of the equations (2.18)
and (2.19), the far-field behavior of the Lippmann-Schwinger equation reads

lim
r→∞

Ψk(r) = φk(r)−
m

4π~2

∫
R3

d3r′ e−iker · r′
V (r′)Ψk(r

′)
eikr

r

= eik · r + f(k,k′)
eikr

r
.

(2.20)

In the far field, the wave function Ψk(r) consists of the incoming part given by a plane
wave and the outgoing part proportional to a spherical wave. The function f(k,k′) is
called scattering amplitude and is given by

f(k,k′) = − m

4π~2

∫
R3

d3r′ e−ik′ · r′
V (r′)Ψk(r

′) (2.21)

where k′ = ker. In three dimensions, it is connected to the T -matrix by

f(k,k′) = − m

4π~2
〈φk′ |V |Ψk〉

= − m

4π~2
〈φk′ |T (Ek) |φk〉 .

(2.22)

Like the T -matrix, the scattering amplitude contains the information of an infinite num-
ber of interactions between the particles. Note that for the scattering amplitude we
require |k| = |k′| as we are interested in elastic scattering processes. Therefore, only
matrix elements on the energy shell or short on-shell matrix elements of T are needed
for the scattering amplitude. In general, k′, k, and E can be chosen independently in
the matrix elements

〈φk′ |T (E) |φk〉 . (2.23)

2.2.2. Low-Energy Scattering

In the low-energy regime, the scattering amplitude takes a simple form, and the descrip-
tion of the scattering processes facilitates. The calculation of the scattering amplitude
for isotropic potentials at low energies is well-documented in the literature and can be
found in every standard quantum mechanics textbook. Therefore, the derivation of the
low-energy scattering amplitude will be skipped here, but can, for example, be found
in [17]. Expressing all occurring quantities by partial waves, inserting them into the
Schrödinger equation (2.2) and expanding for small energies gives the leading order of
the scattering amplitude,

f(k) = − 1
1
as
+ ik

. (2.24)

7



2.2. THREE DIMENSIONS CHAPTER 2. SCATTERING THEORY

It is now important to realize that the low-energy behavior of the scattering amplitude
is only determined by the constant as, which is known as the scattering length. As a
consequence, the low-energy scattering is universal. The outcome of a scattering event
is the same for two different potentials as long as they share the same scattering length.
The universal behavior can be understood from a physical point of view. For extremely
low energies, the de Broglie wavelength of the particles is much larger than the range
r0 potential V . As we cannot localize the particles within their de Broglie wavelength,
they are spread over a distance much larger than r0. Thus, the probability of finding the
particles within the range of interaction is small. The spread particles only witness an
averaged effect of the potential and cannot resolve the inner structure of the potential.
The exact shape of the interaction becomes unimportant. Throughout this work, the
three-dimensional scattering length is assumed to be positive, as > 0.
In the limit of vanishing momenta, the wave function (2.20) behaves like

Ψk→0(r) = 1− as
r

(2.25)

and has a node for r = as. We can observe the same behavior in the low-energy scattering
on a hard sphere of radius as. For this case, the Schrödinger equation is given by

0 =

{
(∇2 + k2)Ψk(r) for r > a

Ψk(r) for r ≤ a.
(2.26)

For momenta k → 0, the solution of (2.26) is

Ψk→0(r) =

{
1− as

r
for r > as

0 for r ≤ as.
(2.27)

Thus, for positive scattering lengths, a potential with scattering length as governs the
same scattering behavior as a hard sphere potential of radius as, which gives an intuitive
interpretation of the scattering length.
With the knowledge of the low-energy scattering amplitude f(k,k′), the low-energy

on-shell matrix elements of the T -matrix are given by

〈φk′=0 |T (Ek) |φk=0〉 =
4π~2as
m

. (2.28)

2.2.3. Replacement of the Potential

The universal low-energy scattering allows for drastic simplifications in the theoreti-
cal description of scattering processes. Instead of performing all calculations with the
intricate exact atomic potentials, we can obtain the correct results by much simpler
potentials. Hence, we replace the exact potential V by a pseudopotential,

Ṽpseudo(r) = g3Dδ(r), (2.29)
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CHAPTER 2. SCATTERING THEORY 2.3. ONE DIMENSION

that reproduces the correct scattering length if the coupling constant g3D is chosen
correctly. As previously mentioned, the Born series does not have to be evaluated com-
pletely, but can be cut off early for weak interactions. The Born series of the scattering
amplitude for the pseudopotential reads

f(k,k′) =− as

=− m

4π~2
〈
φk′

∣∣∣ Ṽpseudo ∣∣∣φk

〉
− m

4π~2
〈
φk′

∣∣∣ ṼpseudoG+
0 (Ek)Ṽpseudo

∣∣∣φk

〉
+ . . . .

(2.30)

In first approximation, which is also known as the first Born approximation, only the
leading term of the series in (2.30) is taken into account

as =
m

4π~2
Vpseudo(k

′ − k). (2.31)

The Fourier transform of the potential (2.29) is denoted by Vpseudo(k) and we arrive at
an expression for the coupling constant

g3D =
4π~2as
m

. (2.32)

Thus, the correct pseudopotential in first Born approximation reads

Vpseudo(k) =
4π~2as
m

. (2.33)

Note that in first Born approximation the pseudopotential (2.33) coincides with the exact
T -matrix (2.28). Hence, the usage of the pseudopotential in a theoretical description
replaces the interaction V by the T -matrix and so by an infinite series of interactions.
This is a crucial point to keep in mind while working with pseudopotentials. They can be
a powerful tool, as the inclusion of an infinite series of interactions becomes very simple
but we must treat them with care. They are no actual physical potentials in a sense that
their spectrum is unbound from below [20]. While the first Born approximation of the
scattering amplitude for the pseudopotential is still finite, all higher terms diverge, which
also reflects its unphysical behavior. An excellent discussion of the renormalization of
the delta-potential can be found in [21].

2.3. Scattering in One Dimension

The previous section covered the scattering processes in three spacial dimensions. In this
section, we will briefly discuss the same concepts for one-dimensional systems. We will
need a profound understanding of one-dimensional scattering processes for the treatment
of confined systems in section 2.4.
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2.3. ONE DIMENSION CHAPTER 2. SCATTERING THEORY

2.3.1. The Scattering Amplitude in One Dimension

First, we will introduce the coordinate representations of the Lippmann-Schwinger equa-
tion (2.4) and the Green’s function (2.7) in one dimension.
The Lippmann-Schwinger equation (2.12) in one spatial dimension is given by

Ψk(z) = φk(z) +

∫
R
dz′G+

0 (z, z
′, Ek)V (z′)ψk(z

′). (2.34)

The coordinate representation of the incoming state |φk〉 is denoted as φk(z). As they
are solutions to the free-particle Hamiltonian, they are given by plane waves,

φk(z) = 〈z |φk〉 = eikz. (2.35)

The incoming states might have the same form in three and one dimensions, but the
Green’s function obeys a different behavior,

G+
0 (z, z

′, Ek) =
〈
z
∣∣G+

0 (Ek)
∣∣ z′〉

=
m

~2

∫
R

dk′

(2π)

eik
′(z−z′)

k2 − k′2 + iη

= −m
~2

∫
R

dk′

(2π)

eik
′(z−z′)

(k′ + k + iη)(k′ − k − iη)

=
m

2~2
1

ik
eik|z−z′|.

(2.36)

We performed the integration using the residue theorem. For z > z′, we close the contour
in the upper half plane, whereas the contour is closed in the lower half plane for z < z′.
For the definition of the scattering amplitude, we need the far-field behavior of the

Green’s function. Similar to the three-dimensional Green’s function, its far-field behavior
is determined by

lim
z→∞

|z − z′| ≈ z − z′. (2.37)

With the use of the Green’s function (2.36) and equation (2.37), the far-field behavior
of the Lippmann-Schwinger equation (2.34) is

lim
z→∞

Ψk(z) = eikz +
m

2~2

∫
R
dz′

1

ik
eik|z−z′|V (z′)Ψk(z

′)

≈ eikz +
m

2i~2k

∫
R
dz′ e−ikz′V (z′)Ψk(z

′)eikz

= eikz + f(k) eikz.

(2.38)

The far-field of the one-dimensional Lippmann-Schwinger equation consists of an incom-
ing plane wave and an outgoing plane wave with the scattering amplitude

f(k) =
m

2i~2k

∫
R
dz′e−ikz′V (z′)Ψk(z

′). (2.39)

10
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Analog to the three-dimensional scattering amplitude (2.21), the one-dimensional scat-
tering amplitude (2.39) is connected to the T -matrix,

f(k) =
m

2i~2k
〈φk |V |Ψk〉

=
m

2i~2k
〈φk |T (Ek) |φk〉 .

(2.40)

In this definition of the scattering amplitude, the T -matrix and the scattering amplitude
f(k) differ in their momentum dependence. In the literature, also other definitions of
the scattering amplitude exist, so that it is still proportional to the T -matrix. Hence,
the additional factor 1/k appears in the far-field behavior of the wave function.

2.3.2. Low-Energy Scattering in one Dimension

For low-energies, the scattering amplitude f(k) is universal,

f(k) = − 1

1 + ika1Ds
. (2.41)

Like in three dimensions, it can be fully characterized by the scattering length a1Ds . The
exact form of the potential is irrelevant as long as the potential possesses the correct
scattering length.
The one-dimensional the delta-potential,

V1D(z) = g1Dδ(z), (2.42)

does not face the same problems as the three-dimensional delta-potential. Its spectrum
is not unbound from below [18], and the scattering amplitude is exactly solvable,

f(k) =
m

2i~2k

∫
R
dz′e−ikz′V1D(z

′)Ψk(z
′) =

(mg1D
2i~2k

)
+
(mg1D
2i~2k

)2
+
(mg1D
2i~2k

)3
+ . . .

=
∞∑
n=1

(mg1D
2i~2k

)n
= −

(
1− ik

2~2

mg1D

)−1

.
(2.43)

In the last step we made use of the geometric series. To reproduce the correct scat-
tering behavior, the scattering amplitude (2.43) has to match the low-energy scattering
amplitude (2.41). Thus, the coupling constant g1D has to take the form

g1D = − 2~2

ma1Ds
. (2.44)

We will restrict ourselves to negative scattering lengths, a1Ds < 0. Thus, the coupling
constant g1D is positive. Note that in one dimension, the delta-potential does not match
the T -matrix. Hence, the delta-potential (2.42) does not take into account an infinite
series of interactions, in contrast to the three-dimensional case.

11
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2.4. Scattering in Confined Systems

Up to this point, we have discussed the scattering properties of three- and one-dimensional
systems. In experimental setups, however, the geometric properties of the trap can com-
plicate a clear distinction of dimensionality. A good example where the boundaries
between a three- and a one-dimensional system get blurred is the cigar-shaped trap.
These traps are elongated in one direction but tightly confined in the transverse direc-
tions. If the energy of a particle in the system is small compared to the energy of a
transverse excitation, the transverse excitations are frozen out. Treating the system in
only one spacial dimension seems natural. Although the transverse excitations are frozen
out, the scattering between the particles is considered in three dimensions as long as the
three-dimensional scattering length as is much smaller than the range of the confine-
ment. In this case, the scattering process of two particles is not able to excite one of
the particles into a transverse mode. In contrast to truly one-dimensional systems, the
virtual processes during the scattering event can occupy transverse modes. Thus, a truly
one-dimensional treatment in terms of the one-dimensional scattering length a1Ds would
neglect the virtual processes and influence the validity of the description. The proper
way to describe these quasi-one-dimensional systems is to treat them in one spatial di-
mension but to describe the scattering processes in three dimensions. In other words, a
connection between the three-dimensional scattering length as and the one-dimensional
coupling constant g1D is needed. Then, we can describe the quasi-one-dimensional sys-
tems, using the one-dimensional delta-potential (2.42) without neglecting the effect of
virtual transverse excitations. The aim of this chapter is to derive the coupling constant
g1D for a system confined with periodic boundary conditions.

For a harmonic confinement in the transverse directions, the calculation of g1D has
already been performed by M. Olshanii [22]. In his work, Olshanii solves the three-
dimensional Lippmann-Schwinger equation, imposing the correct asymptotic behavior
for the wave function. The approach used in this work is different, and we will discuss
it in detail for periodic boundary conditions. In appendix A.2 we have applied the
approach to a harmonic confinement as well and obtain the same results as Olshanii.

2.4.1. Replacement of the Pseudopotential

In section 2.2.3, we discussed the advantages of the pseudopotential but mentioned
problems as well. We can determine the coupling constant g3D only within the first Born
approximation, as all higher approximations diverge. To describe the influence of the
confinement correctly, we need to take into account the entire Born series. Hence, we
must replace the pseudopotential by a ‘true’ potential. The potential

VΛ(r)ψ(r) = gΛh
∗
Λ(r)

∫
R
d3uhΛ(u)ψ(u) (2.45)
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allows a simple evaluation of the Born series. The functions hΛ satisfy

lim
Λ→0

hΛ(r) = δ(r), (2.46)

so we recover the delta-potential in the limit Λ → 0. An example of hΛ would be a
Gaussian,

hΛ(r) =
e−

r2

2Λ

(2πΛ)3/2
, (2.47)

but the exact form of the function hΛ is of minor interest.
We can now evaluate the Born series for the scattering amplitude (2.21) with the

potential VΛ and obtain

f(k,k′) = −

(
4π~2

mgΛh̃∗Λ(k
′)h̃Λ(k)

− 4π

h̃∗Λ(k
′)h̃Λ(k)

∫
R3

d3p

(2π)3
h̃Λ(−p)h̃∗Λ(p)

k2 − p2 + iη

)−1

, (2.48)

where h̃Λ(k) is the Fourier transform of the function hΛ(r). The derivation of this result
can be found in appendix A.1.
Next, we need to ensure that the potential VΛ reproduces the correct scattering length

as. Hence, we must solve the equation

f(0, 0) = −as = −

(
4π~2

mgΛ|h̃Λ(0)|2
+

4π

|h̃Λ(0)|2

∫
R3

d3p

(2π)3
h̃Λ(−p)h̃∗Λ(p)

p2 − iη

)−1

(2.49)

for gΛ. A short manipulation yields the final result

gΛ =
4π~2as

m|h̃Λ(0)|2

(
1− 4πas

|h̃Λ(0)|2

∫
R3

d3p

(2π)3
h̃Λ(−p)h̃∗Λ(p)

p2 − iη

)−1

. (2.50)

Note that for Λ → 0 the coupling constant gΛ vanishes as the integral in equation
(2.50) diverges. Thus, the scattering amplitude diverges, which is following the previous
considerations in section 2.2.3. For finite values of Λ, the function h̃Λ introduces a high
momentum cut-off, and the integral remains finite.
The coupling constant gΛ completes the potential VΛ. Thus, both the actual inter-

atomic potential V and the potential VΛ govern the same low-energy scattering proper-
ties. With the use of VΛ, we can now investigate the scattering properties of confined
systems.

2.4.2. Periodic Boundary Conditions

In chapter 5 of this work, we want to treat a gas of weakly interacting bosons confined
by periodic boundary conditions. Hence, we need to discuss the two-body scattering

13
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problem first, to treat the many-body system correctly. Our goal of this section is to
find the correct description of the quasi-one-dimensional limit of the system. Thus, we
need to find the connection between the three-dimensional scattering length as and the
coupling constant gpbc of the one-dimensional potential

Vpbc(z) = gpbcδ(z). (2.51)

If we find this connection, we can use the potential (2.51) for a one-dimensional descrip-
tion of the Bose gas, without neglecting the influence of the transverse modes.

Consider a box that is infinitely elongated along the z-direction, but of length l⊥ in
x- and y-direction. We impose periodic boundary conditions, therefore the allowed wave
vectors k are of the form

k =

kxky
kz

 with kz ∈ R, kx =
2π

l⊥
i ky =

2π

l⊥
j, and i, j ∈ Z. (2.52)

The background Hamiltonian is that of a free particle and its eigenstates are denoted by
|Φk〉. The corresponding eigenenergies Ek are

H0 |Φk〉 = Ek |Φk〉 =
~2(k2x + k2y + k2z)

m
|Φk〉 . (2.53)

We are interested in the low-energy regime. The particles occupy the transverse ground
state i = j = 0, and we assume that the kinetic energy along the z-axis is much smaller
than the energy to excite a transverse mode,

kz �
2π

l⊥
. (2.54)

The scattering process itself remains three dimensional as long as the scattering length
as is much smaller than the confinement,

as � l⊥. (2.55)

The Lippmann-Schwinger equation for the problem reads

Ψ0,0,kz(r) = eikzz +

∫
R3

d3r′G+
0 (r, r

′, kz)V (r′)Ψ0,0,kz(r
′). (2.56)

In order to define a scattering amplitude analog to the previous sections, we need to
consider the far-field behavior of the Lippmann-Schwinger equation. Thus, we need to

14
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calculate the far-field behavior of the Green’s function for the transverse ground state,

G+
0 (r, r

′, kz) =
m

~2

∫
R

dk′z
2π

1

l2⊥

∑
k′x, k

′
y

eik
′ · (r−r′)

k2z − k′2 + iη

=
m

2i~2l2⊥kz
eikz |z−z′| − m

2~2l2⊥

∑′

k′x, k
′
y

ei(k
′
x(x−x′)+k′y)(y−y′) e

−
√

k′2x +k′2y −k2z |z−z′|√
k′2x + k′2y − k2z

z→∞−−−→ m

2i~2l2⊥kz
eikz(z−z′).

(2.57)

For the second line we evaluated the integration over k′z and split off the term k′x = k′y = 0
from the sum. The primed sum does not contain this term. In the last line, we performed
the limit z → ∞. The result is only valid if

k′2x + k′2y − k2z 6= 0,

which is guaranteed by the condition (2.54).
With the far-field behavior of the Green’s function (2.57), the Lippmann-Schwinger

equation becomes

Ψkz(r) = eikzz +

∫
R3

d3r′G+
0 (r, r

′, kz)V (r′)Ψkz

z→∞−−−→ eikzz + fpbc(kz)e
ikzz.

We have introduced the scattering amplitude

fpbc(kz) =
m

2i~2l2⊥

∫
R3

d3r e−ikzzV (r)Ψkz(r) (2.58)

of the quasi-one-dimensional system. It describes the scattering processes along the z-
axis of the system. Hence, it does not surprise that the scattering amplitude fpbc closely
resembles the one-dimensional scattering amplitude (2.39).
The scattering amplitude fpbc describes the scattering processes correctly as long as

the potential V (r) possesses the same scattering length as as the interatomic potential.
For the potential VΛ(r), we have ensured this in the previous section. Thus, we will now
evaluate the scattering amplitude fpbc in complete analogy to the previous section with
the potential VΛ(r),

fpbc(kz) =
mgΛ

2i~2l2⊥kz
|h̃Λ(0, 0, kz)|2

∞∑
n=0

mgΛ
~2l2⊥

∑
k′x, k

′
y

∫
R

dk′z
2π

h̃Λ(−k′)h̃∗Λ(k
′)

k2z − k′2 + iη

n

. (2.59)
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In contrast to a truly one-dimensional system, the scattering amplitude (2.59) contains
the sum over the transverse modes. Making use of the geometric series and splitting off
the term involving k′x = k′y = 0, we arrive at

fpbc(kz) = −

1− 2ikz

|h̃Λ(0, 0, kz)|2

~2l2⊥
mgΛ

+
∑′

k′x, k
′
y

∫
R

dk′z
2π

h̃Λ(−k′)h̃∗Λ(k
′)

k′2 − iη

+O(k3z)

−1

.

(2.60)

A one-dimensional treatment of the quasi-one-dimensional system must reproduce this
scattering amplitude. Otherwise, the transverse degrees of freedom are not taken into
account properly.
We have evaluated the one-dimensional scattering amplitude (2.39) for the delta-

potential in section 2.3.2. Hence, we can immediately give the scattering amplitude for
Vpbc,

f(kz) = −
(
1− ikz

2~2

mgpbc

)−1

. (2.61)

In order to describe the interaction between the particles with Vpbc correctly, we must
solve the equation

fpbc(kz) = f(kz) (2.62)

for gpbc. A short calculation yields an expression for the coupling constant

gpbc =
g3D
l2⊥

1− 4πas

∫
R3

d3k′

(2π)3
h̃Λ(−k′)h̃∗Λ(k

′)

k′2 − iη
− 1

l2⊥

∑′

k′x, k
′
y

∫
R

dk′z
2π

h̃Λ(−k′)h̃∗Λ(k
′)

k′2 − iη

−1

.

(2.63)

The remaining task is to evaluate the sums and integrals that still appear in equation
(2.63).
In a one-dimensional description the problems of a delta-potential are absent, as we

have seen in section 2.3. Thus, we can take the limit Λ → 0. However, we have to keep
in mind that the functions h̃Λ(k) introduced a high-momentum cut-off for both terms
simultaneously. Let us first treat the term involving the sum over the transverse modes,

1

l2⊥

∑′

k′x, k
′
y

∫
R

dk′z
2π

1

k′2 − iη
=

1

2l2⊥

∑′

k′x, k
′
y

1√
k′2x + k′2y

=
1

4πl⊥

∑′

i,j

1√
i2 + j2

=
1

4πl⊥
lim
R→∞

∑′

i2+j2≤R

1√
i2 + j2

.

(2.64)
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We performed the integration over k′z first and then inserted the definition of the wave
vectors (2.52). In the last line, we made sure to treat the high-momentum cut-off cor-
rectly.
Next, we treat the term involving the integration over the entire k-space,∫
R3

d3k′

(2π)3
1

k′2 − iη
=

1

8π2

∫
R

∫
R
dk′xdk

′
y

1√
k′2x + k′2y

=
1

4πl⊥

∫
R

∫
R
didj

1√
i2 + j2

=
1

4πl⊥
lim
R→∞

2πR.

(2.65)

Analog to the expression before, we first evaluated the integration over k′z. To treat both
expressions equally, we made use of the substitutions k′x = 2πi/l⊥ and k′y = 2πj/l⊥. The
remaining integral is then evaluated in polar coordinates.
With the use of both terms (2.65) and (2.64), we arrive at the final form of the coupling

constant

gpbc =
4π~2as
m

1

l2⊥

(
1− as

l⊥
Cpbc

)−1

with Cpbc = lim
R→∞

2πR−
∑′

i2+j2≤R

1√
i2 + j2

 .

(2.66)

We determined the constant Cpbc numerically to Cpbc = 3.89 . . . . The general form
of the coupling constant gpbc is very similar to the coupling constant for a harmonic
confinement obtained by Olshanii [22],

gho =
4π~2as
m

1

πa2⊥

(
1− as

a⊥
Cho

)−1

with Cho = lim
s→∞

(∫ s

0

ds′
1√
s′

−
s∑
0

1√
s′

)
.

The derivation of gho can be found in appendix B.
Like gho, the coupling constant gpbc contains the three-dimensional coupling constant

g3D = 4π~2as/m divided by the area of the confinement. The scattering length is small
compared to the confinement, so the correction to the simple prefactor is small,

gpbc ≈
g3D
l2⊥

(
1 +

as
l⊥
Cpbc

)
. (2.67)

Note that we can obtain this approximate result also by only using the second Born ap-
proximation for all occurring scattering amplitudes. Higher order Born approximations
will lead to higher orders in the small parameter as/l⊥.
With the coupling constant gpbc we have found a way to treat the scattering processes

in quasi-one-dimensional systems confined by periodic boundary conditions consistently.
The result of this chapter will play a crucial role for the treatment of the confined weakly
interacting Bose gas in chapter 5.
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3. Bogoliubov Theory

The goal of this work is to understand the physics of weakly interacting Bose gases on
a fundamental, diagrammatic level. Before we introduce a field-theoretic method, it is
useful to study the most common approach for treating weakly interacting Bose gases,
namely the Bogoliubov theory. In his work “On the theory of superfluidity” in 1947
[15], N. Bogoliubov was the first to develop a microscopic theory of superfluidity in a
homogeneous system of weakly interacting bosons. His approach is based on simple
assumptions that allowed him to treat the ground state of the system. Even 70 years
later, his theory is still frequently used in recent theoretical descriptions, e.g., [23]. His
approach is straightforward and rather short, compared to field-theoretic descriptions
[16, 24, 25]. However, its simplicity can be a curse, since it can veil the physical processes
that contribute to the ground state energy if one is not careful enough. Thus, the
Bogoliubov theory has to be treated with care. Otherwise, divergences can appear in
the description.
The following chapter will give a short insight into the Bogoliubov theory by pointing

out the crucial steps and approximations. A more detailed coverage can be found, for
example, in [26, 27].

3.1. The Hamiltonian

In the following, we will treat a homogeneous system of N weakly interacting bosons of
mass m at temperature T = 0 in a box of volume Ω with periodic boundary conditions.
The particles interact via a pairwise interaction potential, which is given by V (q) in
momentum space. In second quantization we describe the system by the Hamiltonian

H = H0 +Hint =
∑
k

ε0(k)a
†
kak +

1

2Ω

∑
k,k′,q

V (q)a†k+qa
†
k′−qak′ak. (3.1)

The first term of the Hamiltonian corresponds to the kinetic energy of the particles,
where

ε0(k) =
~2k2

2m
(3.2)

is the kinetic energy of a free particle with momentum k. The operators ak and a†k are
the annihilation and creation operators of bosonic particles with momentum k. They
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obey the usual bosonic commutation relations[
ak, a

†
k′

]
= δk,k′ , (3.3)

where δk,k′ is the Kronecker delta. The second term of the Hamiltonian describes the
interaction between the particles. The particles are weakly interacting. Thus, the kinetic
energy is much larger than the interaction energy.

3.2. Bogoliubov Prescription

For low temperatures and weak interactions, the system undergoes a Bose-Einstein con-
densation. In the absence of any interaction between the particles, the ground state of
the system is given by

|Nk=0, 0k1 , 0k2 , . . .〉 . (3.4)

All N particles occupy the mode k = 0 and are part of the condensate. The number of
condensate particles is given by N0 = N . No other mode kn is excited.
Weak interactions V (q) act as small perturbation to this ground state. Not all particles

are part of the condensate anymore, N0 = N−N ′, and N ′ particles occupy excited states.
However, for weak interactions, the fraction N0/N stays finite with increasing system
size. For large enough systems, the condensate is always macroscopically occupied. For
the action of the operators a0 and a†0 this means

a0 |N0, . . .〉 =
√
N0 |N0 − 1, . . .〉 ≈

√
N0 |N0, . . .〉

a†0 |N0, . . .〉 =
√
N0 + 1 |N0 + 1, . . .〉 ≈

√
N0 |N0, . . .〉 .

(3.5)

Thus, we can replace the operators a0 and a†0 by the number
√
N0. The replacement of

the operators is known as the Bogoliubov prescription.
When we replace all creation and annihilation operators of the condensed state in the

Hamiltonian (3.1) by N0, we obtain

H =
∑
k

ε0(k)a
†
kak

+
N2

0V (0)

2Ω

+
∑′

k

[
N0

Ω
(V (0) + V (k))a†kak +

N0V (k)

2Ω

(
a†ka

†
−k + aka−k

)]
+
∑′

k,q

V (q)

2Ω

√
N0

(
a†k+qaqak + a†k+qa

†
−qak

)
+
∑′

k,k′,q

V (q)

2Ω
a†k+qa

†
k′−qak′ak.

(3.6)
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The Hamiltonian splits into terms of different order in N0. The primed sum indicates the
absence of the condensate mode. The number of condensate particles is large. Hence, a
good approximation is to keep only terms that are at least of order N0. This effectively
neglects the interaction between excited particles. The only interactions that are taken
into account are those between the condensate particles, described by the second line of
equation (3.6), and those between a condensate particle and an excited particle, described
by the third line of equation (3.6).
Next, we express the number of condensate particles by the total number of particles

using particle conservation,

N0 = N −
∑′

k

a†kak. (3.7)

We keep only terms of order N , which yields a quadratic Hamiltonian,

H =
∑
k

ε0(k)a
†
kak +

V (0)N2

2Ω
+
∑′

k

NV (k)

Ω

[
a†kak +

1

2

(
a†ka

†
−k + aka−k

)]
. (3.8)

3.3. Bogoliubov Transformation

The Hamiltonian (3.8) contains off-diagonal elements in the basis spanned by the opera-
tors ak and a†k. We will diagonalize it by a Bogoliubov transformation. The transforma-

tion introduces new operators αk and α†
k that are linear combinations of the operators

ak and a†k and fulfill the same commutation relations

ak = ukαk − vkα
†
−k, a†k = ukα

†
k − vkα−k,

[
αk, α

†
k′

]
= δk,k′ . (3.9)

The new operators couple creation and annihilation operators of opposite momenta. In
order to obey the bosonic commutation relations, the amplitudes uk and vk must satisfy

u2k − v2k = 1 (3.10)

and can not be chosen independently. We can now express the Hamiltonian (3.8) by
the new operators (3.9). The amplitudes uk and vk are then used to eliminate the
off-diagonal elements. A short calculation leads to

u2k =
1

2

[
ε0(k) +NV (k)/Ω

Ek

+ 1

]
, v2k =

1

2

[
ε0(k) +NV (k)/Ω

Ek

− 1

]
, (3.11)

where

E2
k = ε0(k)

2 +
2NV (k)

Ω
ε0(k). (3.12)

The final Hamiltonian reads

H =
V (0)N2

2Ω
− 1

2

∑′

k

[
ε0(k) +

NV (k)

Ω
− Ek

]
+
∑′

k

Ekα
†
kαk. (3.13)
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3.4. Ground State Energy and Excitation Spectrum

The Hamiltonian (3.13) is diagonal in the basis spanned by the operators αk and α†
k.

While the operator ak and a†k describe the bosonic particles in the gas, the new operators

αk and α†
k describe quasi-particles. The excitation spectrum of the quasi-particles is

given by Ek. If none of these quasi-particles is excited, the system is in its ground state.
The energy is then simply given by the first two terms of the Hamiltonian (3.13),

E = Emf −
1

2

∑′

k

[
ε0(k) +

NV (k)

Ω
− Ek

]
. (3.14)

The first term is called mean-field energy,

Emf =
V (0)N2

2Ω
, (3.15)

and corresponds to the interaction energy between condensate particles. The second term
describes beyond-mean-field corrections and contains the interactions between conden-
sate and excited particles.
To evaluate the ground state energy (3.14), we have to consider the potential V (k)

first. The particles in the gas interact via scattering processes. If the gas is dilute,
scattering events between two particles are rare and processes including more than two
particles are very unlikely. Hence, we can restrict ourselves to binary collisions. In
chapter 2, we discussed binary collisions in detail. For low energies the scattering between
the particles is universal. The outcome of a scattering event is only determined by the
scattering length as and does not depend on the exact form of the interaction. For
three-dimensional scattering processes, we introduced the pseudopotential (2.29)

Ṽpseudo(r) = g3Dδ(r)

that reproduces the correct scattering length in fist Born approximation. Thus, we chose
the potential

V (k) = g3D =
4π~2as
m

. (3.16)

With the potential (3.16), the excitation spectrum of the quasi-particles (3.12) takes the
form

Ek =

√(
~2k2

2m

)2

+ 2ng3D

(
~2k2

2m

)
, (3.17)

where we have introduced the density of the particles n = N/Ω. The spectrum exhibits
the low-momentum behavior

Ek
|k|�1
=

~2
√
4πnas
m

|k|, (3.18)
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which resembles the dispersion relation of phonons with the sound velocity

c =
~2
√
4πnas
m

. (3.19)

The evaluation of the ground state energy (3.14) is problematic for the potential (3.16).
Inserting the potential (3.16) into the energy (3.14) and replacing the sum over momenta
by an integral, the energy density takes the form

E

Ω
=

1

2
g3Dn

2 − 1

2

∫
R3

d3k

(2π)3

[
ε0(k) + ng3D −

√
ε0(k)2 + 2ng3Dε0(k)

]
. (3.20)

The integral in the second term behaves like∫
R3

d3k

(2π)3
1

k2
(3.21)

for large momenta and diverges. We discuss the reason for this unphysical behavior in
the following section.

3.5. Reason for Divergence

The divergence appearing in the energy density (3.20) is unphysical. We have to ask
ourselves where we were not careful enough in the description of the weakly interacting
Bose gas.
A detailed explanation of the occurring divergence in Bogoliubov’s theory can be found

in the book of David Pines and Philippe Nozières [27]. Here, we will point out the crucial
steps to understand the nature of the divergence.
To treat the occurring divergence, we have to understand the Bogoliubov transforma-

tion (3.9) on a physical level. In a paper of Brueckner and Sawada [28], the authors
are able to obtain the same ground state energy (3.14) without the use of a Bogoliubov
transformation. By comparing their approach to the Bogoliubov theory, we can identify
the physical concept behind Bogoliubov transformations.
In their paper, Brueckner and Sawada made use of Goldstone’s linked cluster expansion

[29],

E = E0 +∆E with ∆E =
∞∑
n=0

〈
Φ0(N)

∣∣∣∣Hint

(
1

E0 −H0

Hint

)n ∣∣∣∣Φ0(N)

〉
c

, (3.22)

for the ground state E. The Hamiltonian Hint from equation (3.13) is treated as a
perturbation to the Hamiltonian H0. In our case, the energy of the unperturbed ground
state is E0 = 0. The ground state of H0 will be denoted as |Φ0(N)〉. It contains N
particles in the condensed state as no interactions are present. The index c at the
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expectation value stands for connected. Only those expectation values contribute to the
ground state energy, which we cannot split into a product of two or more ground state
expectation values. Goldstone’s linked cluster expansion is equivalent to the standard
perturbation theory in quantum mechanics.
In leading order, the ground state energy,

E(0) = 〈Φ0(N) |Hint |Φ0(N)〉 = V (0)

2Ω

〈
Φ0(N)

∣∣∣ a†0a†0a0a0 ∣∣∣Φ0(N)
〉

=
V (0)

2Ω
N(N − 1) ≈ V (0)N2

2Ω
= Emf ,

(3.23)

is the mean-field expression (3.15) from Bogoliubov’s theory. Its energy stems from the
interaction of two condensate particles. The second order term,

E(1) = −
〈
Φ0(N)

∣∣∣∣Hint
1

H0

Hint

∣∣∣∣Φ0(N)

〉
c

= −V (k)2N2

2Ω2

∑
k

m

~2k2
,

(3.24)

describes the excitation of two particles after the interaction of two condensate particles.
The excited particles then propagate, which is described by 1/H0. During another
interaction, both particles become part of the condensate again.
We will now introduce a graphical representation of the occurring terms that will make

it easier to handle higher orders of the perturbation series. In addition, it will yield an
intuitive explanation for the divergence. A more detailed explanation of the diagram
technique is given in chapter 5 of this work, entirely dedicated to the diagrammatic
treatment of weakly interacting Bose gases. For now, it is sufficient to link physical
processes to diagrams. It will help us to understand which processes contribute to the
ground state energy. Condensate particles are visualized by dashed lines, while we draw
excited particles as solid lines. Interactions between particles are drawn with wavy lines.
To obtain the energy, we sum over all inner momenta. With these rules, we can represent
the mean-field contribution by

Emf =
V (0)N2

2Ω
=

V (0)
. (3.25)

The second order term is

E(1) = −V (k)2N2

2Ω2

∑
k

m

~2k2
= k

V (k)

V (k)

−k . (3.26)
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The third order contains three interaction lines. We find three distinct connected dia-
grams that contribute to the energy E(2),

E(2) =
k

k′

−k

−k′

+ k
−k

−k
+ k

−k

−k
. (3.27)

The first diagram contains an interaction between excited particles. Thus, two different
absolute values of momenta appear, namely k and k′. In the other two diagrams, two
condensate particles are involved in every interaction. As the condensate particles carry
no momentum, only a single pair of momenta (k,−k) appears. Like Bogoliubov, Brueck-
ner and Sawada argue that the interaction between excited particles can be neglected.
Hence, only the last two terms in equation (3.27) contribute to the ground state en-
ergy. Under this approximation, they can evaluate the sum in Goldstone’s linked cluster
expansion (3.22) and obtain the ground state energy (3.14).
When comparing both approaches, we realize that Bogoliubov’s transformation to a

new pair of operators (3.9) corresponds to summing up all possible connected diagrams,
which involve only a single pair of momenta (k,−k). Thus, we can represent the ground
state energy (3.14) by

E =
V (0)

+ k

V (k)

V (k)

−k + k
−k

−k
+ k

−k

−k

+ . . . .

(3.28)

The problem of a diverging ground state energy arises when the potential V (k) is
replaced by the pseudopotential (2.29)

Ṽpseudo(k) = g3D =
4π~2as
m

.

In section 2.2 we saw that the pseudopotential matches the low-energy T -Matrix of the
system

〈Φk′=0 |T (Ek) |Φk=0〉 =
4π~2as
m

.
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The T -matrix contains the information of an infinite series of interactions

〈Φk′=0 |T (Ek) |Φk=0〉 =

〈
Φk′=0

∣∣∣∣∣
∞∑
n=0

V (G0(Ek)V )n

∣∣∣∣∣Φk=0

〉
.

Using the diagrammatic description, we can represent the T -matrix by

T = + + + . . .

= +
T

.

(3.29)

Once we insert the pseudopotential into the ground state energy (3.28), the interactions
are replaced by T -matrices. The energy becomes

E = T +
T

T

+ . . . , (3.30)

and the reason for the divergence gets clear. The second term in equation (3.30) con-
tributes only diagrams that are already included by the first term, the mean field energy.
Thus, an infinite amount of physical processes is taken into account too often, and the
energy diverges.
To cure the divergence, we have to subtract the troublesome diagram

T

T

= −g
2
3DN

2

2Ω2

∑
k

m

~2k2
(3.31)

from the energy (3.14), to include the T -matrix properly. Note that the divergence occurs
in a term proportional to n2, which will be important for the field-theoretic approach in
chapter 4.
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3.6. Lee-Huang-Yang Correction

With the considerations of the previous section, we can finally give an expression for the
ground state energy, including beyond-mean-field corrections

E

Ω
=
1

2
g3Dn

2 +
mg23Dn

2

2~2

∫
R3

d3k

(2π)3
1

k2

− 1

2

∫
R3

d3k

(2π)3

[
ε0(k) + ng3D −

√
ε0(k)2 + 2ng3Dε0(k)

]
.

(3.32)

The integral only depends on the absolute value |k| = k. By the substitution

u =

√
~2

2mng3D
k, (3.33)

the integral becomes dimensionless

E

Ω
=

1

2
g3Dn

2 − (ng3D)
5/2

4π2

(
2m

~2

)3/2 ∫ ∞

0

duu2
(
u2 + 1− 1

2u2
−

√
u4 + 2u2

)
.

The remaining integral has the value −8
√
2/15, so the final energy is

E

Ω
=

1

2
g3Dn

2 +
8

15π2

(m
~2
)3/2

(ng3D)
5/2

=
2π~2as
m

n2

(
1 +

128

15
√
π

(
na3s
))

.
(3.34)

The correction to the mean-field expression was first calculated by Lee, Huang and Yang
[30, 31] and is called Lee-Huang-Yang (LHY) correction. The expansion parameter of
the weakly interacting Bose gas is given by the gas parameter na3s . We can obtain the gas
parameter by dimensional considerations as well. The density of the gas characterized
a length scale, and thus a wave vector

kn ∼ n1/3.

The gas is weakly interacting, so the interaction energy is much smaller than the kinetic
energy,

~2k2n
m

∼ ~2

m
n2/3 � ng3D.

Inserting the coupling constant g3D from equation (2.32) then gives

na3s � 1. (3.35)
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For low densities, the gas is weakly interacting.

A peculiarity of the LHY correction is its sign. From standard quantum mechanical
perturbation theory, we would expect that the second order correction to the ground
state always decreases the energy. The LHY correction increases the energy. The reason
for this unusual behavior can be found in the use of the pseudopotential. Using the T -
matrix in the mean-field expression already includes contributions that usually appear
in higher order terms. Thus, the mean-field energy is lower than one would expect
from a standard perturbation expansion. The higher orders that already lowered the
mean-field energy have to be subtracted from the beyond-mean-field terms. Hence, the
beyond-mean-field contributions are increased, and they become positive.

In the next section, we apply the Bogoliubov theory to the same system but in one
dimension.

3.7. Bogoliubov Theory in One Dimension

We will end this chapter with the consideration of Bogoliubov’s theory in one spatial di-
mension. Like in the previous section, we consider a Bose gas with repulsive interactions
described by a delta-potential

Ṽ (z) = g1Dδ(z). (3.36)

The exact solution for this system was found by Lieb and Liniger in 1963 [32, 33].
Here, we restrict ourselves to the weakly interacting case and search for a perturbative
solution for the ground state energy. Analog to the three-dimensional system, the one-
dimensional density n1D = N/L, where L is the size of the system, characterizes a wave
vector

kn1D
∼ n1D.

The system is weakly interacting, so the kinetic energy is much larger than the interaction
energy

~2k2n1D

m
∼ ~2

m
n2
1D � n1Dg1D.

By inserting the coupling constant obtained from scattering theory (2.44), we obtain

1

n1D|a1Ds |
� 1. (3.37)

In contrast to the three-dimensional case, the one-dimensional Bose gas is weakly inter-
acting for high densities.
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The same considerations as in the three-dimensional case yield an expression for the
ground state energy

E =
V (0)N2

2L
− 1

2

∑′

kz

[
ε0(kz) +

NV (kz)

L
−
√
ε0(kz)2 +

2NV (kz)

L
ε0(kz)

]
, (3.38)

where V (kz) is the Fourier transform of the potential (3.36). In the thermodynamic limit
L→ ∞, the one-dimensional energy density becomes

E

L
=

1

2
g1Dn

2
1D − 1

2

∫
R

dkz
2π

[
ε0(kz) + n1Dg1D −

√
ε0(kz)2 + 2n1Dg1Dε0(kz)

]
. (3.39)

The integral in equation (3.38) converges, in contrast to the three-dimensional case.
To understand this difference, we have to recall chapter 2 of this work. For the three-
dimensional system the divergence occurred once we inserted the pseudopotential. The
pseudopotential matched the exact low-energy T -matrix of the system. Hence, every
interaction was replaced by an infinite sum of interactions, and physical processes were
taken into account too often. The delta-potential in one dimension does not match
the low-energy T -matrix. Thus, the interactions are not replaced by an infinite series
of interactions, and no physical process is taken into account too often. The energy
converges without subtracting any terms.
With the substitution

u =

√
~2

2mn1Dg1D
kz, (3.40)

the energy density (3.39) becomes

E

L
=

1

2
g1Dn

2
1D − (n1Dg1D)

3/2

4π

(
2m

~2

)1/2 ∫ ∞

0

du
[
u2 + 1−

√
u4 + 2u2

]
,

=
1

2
g1Dn

2
1D − 2

3π

(m
~2
)1/2

(n1Dg1D)
3/2 .

(3.41)

The beyond-mean-field correction is of lower order in the density than the mean-field
expression. The sign of the beyond-mean-field corrections is negative, in contrast to the
LHY correction. The one-dimensional delta-potential does not match the T -matrix, and
hence a negative correction is expected from perturbation theory.
In this chapter, we have seen that Bogoliubov’s approach allows us to treat weakly

interacting Bose gases under simple assumptions. However, we also pointed out that
it must be used with care, especially when combining Bogoliubov transformations with
scattering properties. Otherwise, divergences in the description can occur. To obtain a
finite energy and include the T -matrix properly, we had to cure the divergence manually
by subtracting a troublesome diagram. The next chapter will introduce a field-theoretic
approach to the weakly interacting Bose gas. The diagrammatic approach will allows
us to treat the inclusion of the T -matrix consistently without the need to subtract any
diagram manually.
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4. Field-Theoretic Approach

In the previous chapter 3, we introduced Bogoliubov’s approach to the weakly interacting
Bose gas. Despite its simplicity, we have seen that the Bogoliubov theory has to be used
with care, to prevent divergences in the description.

A different way to treat weakly interacting Bose gases is to use methods from quantum
field theory. Field-theoretic methods were first applied to a Bose gas at temperature
T = 0 by Beliaev in 1958 [24, 25] and by Hugenholtz and Pines in 1959 [16]. While
Beliaev was able to reproduce the LHY correction, the approach of Hugenholtz and
Pines allowed them to go beyond the LHY correction and calculate the next order in
perturbation theory. Besides, Hugenholtz and Pines were able to connect the chemical
potential to the proper self-energies. The connection between the chemical potential and
the proper self-energies is known as the Hugenholtz-Pines theorem.

In this chapter, we will introduce the method used by Hugenholtz and Pines. The
approach will allow us to treat the divergences occurring in Bogoliubov theory consis-
tently and without the need to manually regularize the theory by subtracting terms.
Although the approach might seem more involved than the Bogoliubov theory, its con-
sistency will allow us to treat the dimensional crossover from a three-dimensional Bose
gas to a quasi-one-dimensional Bose gas in chapter 5.

We will introduce the field-theoretic methods briefly when they are needed. For a
detailed description of the methods used in this chapter, the reader is either referred to
standard books of many-body physics, e.g., [26, 27, 34], or to books on quantum field
theory, e.g., [35, 36]. We will follow the procedure discussed in [34].

4.1. The Hamiltonian

The following section lays the foundation to apply methods from quantum field theory to
a system of weakly interacting bosons. We have already introduced the Hamiltonian of
the system during Bogoliubov’s approach in section 3.1. By rewriting the Hamiltonian
with the field operators

Ψ(r) =
∑
k

1√
Ω
eik · rak and Ψ†(r) =

∑
k

1√
Ω
e−ik · ra†k , (4.1)
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it takes the form

H = H0 +Hint

= − ~2

2m

∫
R3

d3rΨ†(r)∇2Ψ(r) +
1

2

∫
R3

∫
R3

d3r d3r′Ψ†(r)Ψ†(r′)Ṽ (r − r′)Ψ(r′)Ψ(r).

(4.2)

The task is to find the ground state of the system that contains a fixed number of N
bosons. As already argued in section 3.2, the number of condensate particles is large,
and we can replace the creation and annihilation operators of the condensate mode by
the number

√
N0, where N0 is the number of condensate particles. By applying the

Bogoliubov prescription to the field operators (4.1), they split into two parts

Ψ(r) →
√
n0 +

∑′

k

1√
Ω
eik · rak =

√
n0 + ψ(r). (4.3)

The primed sum in equation (4.3) indicates the absence of the mode k = 0. The new
field operators ψ(r) do not describe condensate particles. The condensate particles
are described by their density n0 = N0/Ω. Under the Bogoliubov prescription, the
Hamiltonian H(n0) becomes a function of the density n0, and the interaction part splits
into eight terms

Hint(n0) =
8∑

i=1

Hi(n0), (4.4)

where

H1 =
1

2
n2
0

∫
R3

∫
R3

d3r d3r′ Ṽ (r − r′) =
1

2
n2
0V (k = 0),

H2 =
1

2
n0

∫
R3

∫
R3

d3r d3r′ Ṽ (r − r′)ψ(r′)ψ(r),

H3 =
1

2
n0

∫
R3

∫
R3

d3r d3r′ ψ†(r)ψ†(r′)Ṽ (r − r′),

H4 = n0

∫
R3

∫
R3

d3r d3r′ ψ†(r′)Ṽ (r − r′)ψ(r),

H5 = n0

∫
R3

∫
R3

d3r d3r′ ψ†(r)Ṽ (r − r′)ψ(r), (4.5)

H6 = n
1/2
0

∫
R3

∫
R3

d3r d3r′ ψ†(r)ψ†(r′)Ṽ (r − r′)ψ(r),

H7 = n
1/2
0

∫
R3

∫
R3

d3r d3r′ ψ†(r)Ṽ (r − r′)ψ(r′)ψ(r),

H8 =
1

2

∫
R3

∫
R3

d3r d3r′ ψ†(r)ψ†(r′)Ṽ (r − r′)ψ(r′)ψ(r).
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Due to the Bogoliubov prescription, the Hamiltonian H(n0) does not conserve the total
number of particles N , [

H0 +Hint(n0), N̂
]
6= 0.

Thus, we have to impose the additional condition

N = N0 +
∑′

k

〈Φint(n0)|a†kak|Φint(n0)〉 (4.6)

to the ground state |Φint(n0)〉 of the interacting system. As we are interested in the
ground state of the system, the energy is minimal,

dE

dN0

= 0. (4.7)

In Bogoliubov’s approach in section 3.2, we replaced the number of condensate particles
by

N0 = N −
∑′

k

a†kak,

and hence recovered particle conservation. To treat the non-conservation of particles
consistently, we will take a different route in the diagrammatic approach. In the follow-
ing, we will use the grand canonical Hamiltonian

H ′(n0, µ) = H(n0)− µN̂ ′ (4.8)

for the description of the system. The chemical potential µ can be seen as a Lagrange
multiplier of the condition (4.6). The ground state E of the Hamiltonian H(n0) with
the condition (4.6) is the same as the ground state E ′ of the Hamiltonian H ′, without
any further constraints. Thus, the ground state and the energy E are functions of n0

and µ. The correct chemical potential that fulfills the considerations above is

µ =
dE

dN
. (4.9)

To show this, we first consider the derivative

∂E

∂µ
=

∂

∂µ
(E ′ + µN ′) =

〈
Φint(n0, µ)

∣∣∣∣ ∂H ′

∂µ

∣∣∣∣Φint(n0, µ)

〉
+N ′ + µ

∂N ′

∂µ
= µ

∂N ′

∂µ
,

(4.10)

where we have used the Hellmann-Feynman-theorem for the derivative of the expectation
value. Next, we evaluate the derivative of the energy E with respect to the number of
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particles N by using (4.7),

dE(N0, µ)

dN
=

(
∂E

∂µ

)(
∂µ

∂N

)
N0

=

(
∂E

∂µ

)/(
∂

∂µ
(N ′ +N0)

)
N0

=

(
∂E

∂µ

)/(
∂N ′

∂µ

)
N0

.

(4.11)

Inserting (4.10) into the previous result (4.11) yields the desired result (4.9). Thus, the
Bogoliubov prescription does not alter the thermodynamic relation between the energy
and the chemical potential.
All calculations are performed with the grand canonical Hamiltonian H ′ and depend

on the chemical potential µ. To obtain an expression of the energy that only depends
on the number of particles N , we will use the relation (4.9) at the end.

4.2. The Green’s Function

For a field-theoretic description, we introduce the two-point Green’s function

iG(x, y) = 〈Φint|T
[
Ψ(x)Ψ†(y)

]
|Φint〉 . (4.12)

Note that x and y are four-vectors and the operators Ψ(x) and Ψ†(y) are given in the
Heisenberg picture. The time-ordering operator is denoted by T . When applying the
Bogoliubov prescription, the Green’s function (4.12) decomposes into two parts,

iG(x, y) = n0 + iG′(x, y),

where we have introduced the new Green’s function

iG′(x, y) = 〈Φint|T
[
ψ(x)ψ†(y)

]
|Φint〉 . (4.13)

In its momentum representation, the Green’s function G′ reads

iG′(k, t2 − t1) = 〈Φint|T
[
ak(t1)a

†
k(t2)

]
|Φint〉 . (4.14)

It only depends on a single momentum k, as the system is invariant under translations.
The energy of the system is conserved, so only the difference t2 − t1 appears in the
Green’s function. Keep in mind that there are no condensate operators in the Green’s
function G′(x, y).
The remaining task is to connect the physical observables to the Green’s function

G′(x, y). Using the Green’s function (4.14), we can express the number of particles by

N = 〈Φint|N̂ |Φint〉 = N0 + lim
η→0+

∑′

k

iG′(k, η) = N0 + Ω

∫
R4

d4k

(2π)4
iG′(k)eik0η. (4.15)
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The limit η → 0+ will be implicit in the following. Note that the argument k is not the
absolute value of k but a four-vector with the zero-component k0. The connection of
the ground state energy to the Green’s function G′ is given by

E =
1

2
µN +

Ω

2

∫
R4

d4k

(2π)4

(
~k0 +

~2k2

2m

)
iG′(k)eik0η. (4.16)

The derivation of this result can be found in the appendix B. It is important to realize
that equation (4.16) is a differential equation, as the chemical potential is the derivative
of the energy with respect to the total number of particles.

4.3. Perturbation Theory

In the previous section 4.2, we have introduced the Green’s function G′(x, y) and pointed
out its connection to the number of particles and the energy. Now we need to find a way
to calculate the Green’s function.
The grand canonical Hamiltonian can be split into two parts,

H ′ = H ′
0 +H ′

int. (4.17)

The Hamiltonian H ′
0 contains

H ′
0 = H0 − µN ′ +H1 , (4.18)

and we can state its its ground state directly

|Φ0〉 = |Nk=0, 0, . . .〉 . (4.19)

The Hamiltonian H ′
int contains the interactions that involve excited particles,

H ′
int =

8∑
i=2

Hi. (4.20)

Remember that H ′
int does not contain any condensate operators. Hence, any annihilation

operator within H ′
int annihilates the state |Φ0〉.

Under these considerations, we come to the following conclusion. The ground state
|Φ0〉 of H ′

0 can be seen as the non-interacting vacuum of a quantum field theory. The
Hamiltonian H ′

int is a perturbation to this ground state. Thus, the standard methods
from quantum field theory become applicable to the system and yield an expression for
the Green’s function

iG′(x, y) =
∞∑

m=0

(
−i

~

)m
1

m!

∫
R
dt1· · ·

∫
R
dtm 〈Φ0|T

[
H ′

int(t1) . . . H
′
int(tm)ψI(x)ψ

†
I (y)

]
|Φ0〉

c
.

(4.21)
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The index c on the expectation value indicates that only connected diagrams contribute
to the Green’s function. The operators ψI(x) and ψ†

I (x) are the field operators in the
interaction picture,

ψI(x) =
∑′

k

1√
Ω
exp (ik ·x− i (ε0(k)− µ) tx/~) ak. (4.22)

In 0th-order, the Green’s function reads

iG′(0)(x, y) = 〈Φ0|T
[
ψI(x)ψ

†
I (y)

]
|Φ0〉

=

{
0 , for tx < ty
1
Ω

∑′

k
exp

(
ik · (x− y)− i

~ (ε0(k)− µ) (tx − ty)
)

, for tx > ty.

(4.23)

The Green’s function G′(0) is that of a free Bose gas. As the Green’s function vanishes
for tx < ty, only propagations forward in time are allowed. In momentum space, the
0th-order becomes

G′(0)(k) =
1

k0 − (ε0(k)− µ) /~+ iη
=

k
, (4.24)

where we have introduced a graphical representation for the propagator.
The next contribution to the Green’s function is

G′(1)(x, y) = −1

~

∫
R
dt1 〈Φ0|T

[
H ′

int(t1)ψI(x)ψ
†
I (y)

]
|Φ0〉

c
. (4.25)

We will discuss its contributions exemplarily, to obtain the general rules for constructing
the relevant diagrams. The interactions described by H2, H3, H6 and H7 do not con-
tribute to the expectation value, as they alter the number of particles. The remaining
terms to consider are H4, H5 and H8.
We will start with the contribution of H4. By introducing

U(x1 − x2) = Ṽ (x1 − x2)δ(t1 − t2), (4.26)

the contribution of H4 is written as

−n0

~

∫
R4

∫
R4

d4x1 d
4x2 U(x1 − x2) 〈Φ0|T

[
ψ†
I (x2)ψI(x1)ψI(x)ψ

†
I (y)

]
|Φ0〉

c
. (4.27)

Making use of Wick’s theorem allows us to express the expectation value in terms of the
Green’s function G′(0)(x, y),

n0

~

∫
R4

∫
R4

d4x1 d
4x2 U(x1 − x2)G

′(0)(x, x2)G
′(0)(x1, y). (4.28)
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In momentum space, we obtain a shorter form,

n0

~
G′(0)(k)V (k)G′(0)(k). (4.29)

We draw each interaction as a wavy line,

V (k) =
k

, (4.30)

and each factor
√
n0 by a dashed line,

√
n0 = . (4.31)

Hence, we can represent the contribution of H4 by

n0

~
G′(0)(k)V (k)G′(0)(k) =

k
k

k . (4.32)

We calculate the contribution of H5 in complete analogy to H4 and obtain

n0

~
G′(0)(k)V (0)G′(0)(k) =

k

k

0
. (4.33)

The contribution of the remaining interaction H8 is

−1

~

∫
R4

∫
R4

d4x1 d
4x2 U(x1 − x2) 〈Φ0|T

[
ψ†
I (x1)ψ

†
I (x2)ψI(x2)ψI(x1)ψI(x)ψ

†
I (y)

]
|Φ0〉

c
.

(4.34)

The contribution of H8 vanishes, as can be seen by the use of Wick’s theorem. To
obtain a connected contribution from (4.34), we have to contract two field operators of
the interaction Hamiltonian H8. They are already normal-ordered and evaluated at the
same time, so the expectation value vanishes.
We come to the general conclusion that diagrams, which include the contraction of

field operators from the same Hamiltonian vanish. In terms of diagrams, no particle line
can close itself

,

37



4.4. DYSON EQUATIONS CHAPTER 4. FIELD-THEORETIC APPROACH

and no interaction line can start and end at the same particle line,

.

For the first order Green’s function, we finally obtain

G′(1)(k) =
n0

~
G′(0)(k) [V (k) + V (0)]G′(0)(k) =

k
k

k +

k

k

0
.

(4.35)

After the consideration of the first order Green’s function, we can conclude general
rules for the contribution of diagrams in momentum space. Every distinct diagram of
m-th order has to be counted once. The factors 1/2 that appear in the interactions H1,
H2, H3 and H8 cancel, as they are symmetric under the exchange of their integration
variables. An m-th order diagram carries the prefactor(

i

~

)m

(−i)c̃ (2π)4(c̃−m) , (4.36)

where c̃ denotes the number of condensate factors n0. Two field operators were replaced
for each condensate factor n0, and hence one less Green’s function G′(0) is introduced.
The factor 1/m! in equation (4.21) cancels, as the integration can be relabeled m! times.
Only propagations forward in time are allowed and loops are forbidden. In addition,
interaction lines are not allowed to start and end at the same particle line.

With these rules, the contributions to the Green’s function can be calculated. In the
following, we will represent the full Green’s function G′(k) by

G′(k) = . (4.37)

4.4. Dyson Equations in Presence of a Condensate

The Dyson equations allow us to sum over a whole class of diagrams. As the Hamiltonian
H ′

int does not conserve the number of particles, the form of the Dyson equations is
more complicated than for fermionic systems. Excited particles can become part of
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the condensate and vice versa. To treat these processes consistently, we introduce the
anomalous Green’s functions

G′
12(x, y) = −i 〈Φint | T [ψ(x)ψ(y)] |Φint〉 , (4.38)

G′
21(x, y) = −i

〈
Φint

∣∣ T [ψ†(x)ψ†(y)
] ∣∣Φint

〉
. (4.39)

In momentum space, we will represent them as

G′
12(k) =

−k k
G′

21(k) =
k −k

. (4.40)

The non-conservation of particles also affects the proper self-energies. Instead of a
single self-energy Σ11, two additional self-energies Σ12 and Σ21 are needed to describe
the condensate properly. We will represent them as

k

k

Σ11

k

k

Σ12

k

k

Σ21 . (4.41)

With the representations introduced above, we can write the Dyson equations in presence
of a condensate as

k = k +

k

k

Σ11 +

k

−k

k

Σ12 (4.42)

−k

k

=

k

k

Σ12 +

−k
k

k

Σ11 (4.43)

k

−k
=

k

−k

Σ21 +

k

k

−k
Σ11 . (4.44)
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The system of linear equations (4.44) yields an expression for G′(k) that depends on the
self-energies

G′(k) =
k0 + (ε0(k)− µ) /~+ S(k)− A(k)

[k0 − A(k)]2 − [(ε0(k)− µ) /~+ S(p)]2 + Σ12(k)Σ21(k)
, (4.45)

where we have introduced

S(k) =
1

2
[Σ11(k) + Σ11(−k)] and A(k) =

1

2
[Σ11(k)− Σ11(−k)] . (4.46)

The remaining task is to determine the self-energies, to complete the Green’s function.
For the chemical potential, we make use of a connection found by Hugenholtz and Pines
[16]. In their paper, Hugenholtz and Pines were able to connect the proper self-energies
to the chemical potential

µ = ~Σ11(0)− ~Σ12(0). (4.47)

This relation is known as the Hugenholtz-Pines theorem. It is correct in all orders of
perturbation theory. We will skip its derivation here and refer the reader to [26, 37],
where the proof is explained in detail.

4.5. Lowest-Order Contribution

In lowest order, the self-energies vanish

Σ11(k) = Σ12(k) = Σ21(k) = 0, (4.48)

and the Green’s function is simply given by the free Green’s function,

G′(0)(k) =
1

k0 − (ε0(k)− µ)/~+ iη
,

from equation (4.23). We can now use the lowest-order Green’s function G′(0)(k) to
calculate the lowest order of the ground state energy. The connection between the
Green’s function G′(k) and the ground state energy was pointed out in section 4.2. By
inserting the Green’s function (4.23) into the differential equation for the ground state
energy (4.16), we obtain

E − 1

2
Nµ =

Ω

2

∫
R4

d4k

(2π)4
[~k0 + ε0(k)] iG

′(0)(k)eik0η

=
iΩ

2

∫
R4

d4k

(2π)4
[~k0 + ε0(k)] (k0 − (ε0(k)− µ) /~+ iη)−1 eik0η

= 0.

(4.49)
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In the last line, we performed the k0-integration by closing the contour of the integration
in the upper half-plane. Thus, there are no poles enclosed by the contour and the
integral vanishes. In lowest order, the ground state energy and the chemical potential
are connected by

E =
1

2
µN. (4.50)

Using the Hugenholtz-Pines theorem leads to a vanishing chemical potential, and hence a
vanishing ground state energy. This is no surprise, as there are no interactions present.
To obtain a non-zero ground state energy, we need to consider higher orders in the
self-energies.
In the first non-vanishing order, the proper self-energies are given by

Σ11(k) =
n0

~
[V (0) + V (k)] =

k
k

k +

k

k

0
(4.51)

Σ12(k) =
n0

~
V (k) = k

k

k (4.52)

Σ21(k) =
n0

~
V (k) =

k kk
. (4.53)

Note that the particle and condensate lines are only drawn to illustrate the type of the
interaction and are not part of the self-energies. By inserting the proper self-energies
(4.53) to the Hugenholtz-Pines theorem (4.47), we arrive at an expression for the chem-
ical potential,

µ = n0V (0). (4.54)

Hence, the lowest-order ground state energy (4.50) becomes

E =
1

2
µN =

1

2
n0V (0)N. (4.55)

Under the assumption that the density of the condensate is approximately the same as
the full density, we recover the mean-field energy from the Bogoliubov theory (3.15),

Emf =
V (0)N2

2Ω
=
g3DN

2

2Ω
.

The validity of the assumption will be investigated in the course of the next section,
dedicated to beyond-mean-field corrections. For the potential V (k), we chose the pseu-
dopotential (3.16), with the same argumentation as in the previous chapter 3.
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4.6. Beyond-Mean-Field Corrections

We can now use the proper self-energies (4.53) and the chemical potential (4.54) to
calculate the next order of the Green’s function (4.45),

G′(k) =
k0 + [ε0(k) + n0V (k)] /~

k20 − [ε0(k)2 + 2n0V (k)ε0(k)] /~2
=
k0 + [ε0(k) + n0V (k)] /~

k20 − E2
k/~2

. (4.56)

A partial fraction decomposition then yields the final result for the Green’s function

G′(k) =
u2k

k0 − Ek/~+ iη
− v2k
k0 + Ek/~− iη

(4.57)

with u2k =
1

2

[
ε0(k) + n0V (k)

Ek

+ 1

]
(4.58)

v2k =
1

2

[
ε0(k) + n0V (k)

Ek

− 1

]
(4.59)

and E2
k = ε0(k)

2 + 2ε0(k)n0V (k). (4.60)

The quantities uk and vk match the amplitudes of the Bogoliubov transformation in
section 3.3. The poles of the Green’s function (4.57) correspond to the low-energy exci-
tations of the system and agree with the excitation spectrum obtained by the Bogoliubov
theory (3.12).
Before calculating the energy, we first consider the total number of particles in the

system. Inserting the Green’s function (4.57) into equation (4.15) yields

n− n0 =

∫
R4

d4k

(2π)4
iG′(k)eik0η

=

∫
R4

d4k

(2π)4
i

(
u2k

k0 − Ek/~+ iη
− v2k
k0 + Ek/~− iη

)
eik0η

=

∫
R3

d3k

(2π)3
v2k =

1

2

∫
R3

d3k

(2π)3

[
ε0(k) + n0V (k)√

ε0(k)2 + 2ε0(k)2n0V (k)
− 1

]
.

(4.61)

The integration over k0 was carried out by closing the integral in the upper half-plane.
We insert the pseudopotential (3.16) and substitute

u =

√
~2

2mng3D
|k|, (4.62)

so we arrive at

n− n0 =

(
2mn0g3D

~2

)3/2
1

(2π)2

∫ ∞

0

duu2
[

u2 + 1√
u4 + 2u2

− 1

]
=

8

3
√
π
(n0as)

3/2 ≈ 8

3
√
π
(nas)

3/2 .
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Thus, the fractional depletion of the condensate becomes

n− n0

n
=

8

3

(
na3s
π

)1/2

� 1 , for na3s � 1. (4.63)

The depletion of the weakly interacting Bose gas is very low, and we will replace n0 by
n in the following.
Like in the previous section, we can use the Green’s function to calculate the ground

state energy. By inserting the Green’s function (4.57) into equation (4.16), we obtain a
differential equation for the ground state energy,

E − 1

2
N

dE

dN
=

Ω

2

∫
R4

d4k

(2π)4
[~k0 + ε0(k)] iG

′(k)eik0η

=
iΩ

2

∫
R4

d4k

(2π)4
[~k0 + ε0(k)]

(
u2k

k0 − Ek/~+ iη
− v2k
k0 + Ek/~− iη

)
eik0η.

(4.64)

The integration over k0 is performed by closing the contour of the integration in the
upper half-plane, and we divide by the quantization volume Ω. We obtain a differential
equation for the energy density ε = E/Ω,

ε− n

2

dε

dn
=

1

2

∫
R3

d3k

(2π)3
[ε0(k)− Ek] v

2
k

=
1

4

∫
R3

d3k

(2π)3

[
2ε0(k)

2 + 3ε0(k)nV (k)√
ε0(k)2 + 2ε0(k)nV (k)

− 2ε0(k)− nV (k)

]
≡ f(n).

(4.65)

The form of the differential equation (4.65) allows determining the energy density except
for contributions of order n2. Contributions of order n2 remain undetermined, which
can be seen by inserting n2 for ε on the left-hand side of equation (4.65). This is not a
problem, as we already calculated the correct contribution of order n2 in the previous
section 4.5,

εmf(n) =
n2g3D
2

.

Hence, the general solution to the differential equation (4.65) can be written as

ε(n) = εmf(n)− n2

∫ n

nc

dn′ 2f(n
′)

n′3 . (4.66)

We must determine the constant nc by an additional constraint, which is needed as the
energy density is the solution of a first-order linear differential equation. The constraint
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we impose is the following. For extremely weak interactions, the mean-field energy has to
provide the dominant solution, as it is the leading order of the perturbation theory. The
three-dimensional Bose gas is weakly interacting if it is dilute. Thus, the contribution
of the beyond-mean-field energy has to vanish faster than n2. We can achieve this by
setting nc = 0, so the integral itself vanishes for n → 0. Under these considerations, we
can perform the integration over n′,

ε(n) = εmf(n)−
n2

2

∫ n

0

dn′
∫
R3

d3k

(2π)3
1

n′3

[
2ε0(k)

2 + 3ε0(k)n
′g3D√

ε0(k)2 + 2ε0(k)n′g3D
− 2ε0(k)− n′g3D

]

= εmf(n)−
n2

2

∫
R3

d3k

(2π)3
ε0(k) + n′g3D −

√
ε0(k)2 + 2ε0(k)n′g3D
n′2

∣∣∣∣∣
n

0

= εmf(n)−
1

2

∫
R3

d3k

(2π)3

[
ε0(k) + ng3D − n2g23D

2ε0(k)
−
√
ε0(k)2 + 2ng3Dε0(k)

]
,

(4.67)

and obtain the same finite integral as in Bogoliubov theory (3.32) after the subtraction
of the troublesome diagram. Hence, we arrive at the same ground state energy,

ε =
1

2
g3Dn

2 +
8

15π2

(m
~2
)3/2

(ng3D)
5/2,

without any divergences appearing at all. Note that the diagrammatic approach con-
tains the same mistake as the Bogoliubov theory. Combining the Dyson equations with
the T -matrix takes into account the same diagrams too often. Thus, the approach of
Hugenholtz and Pines contains the divergence as well. The advantage of the diagram-
matic approach lies in the differential equation and its clear illustration of the processes
that are taken into account. As the differential equation provides an additional freedom,
the divergence is cured automatically by imposing the correct constraint. This only
works, as the divergence is of order n2.

4.6.1. Dipolar Interaction

In this section, we want to make a short remark on the dipolar interaction. As already
mentioned in the introduction of this work, the beyond-mean-field corrections play a
crucial role for dipolar Bose gases. The beyond-mean-field correction of a dipolar Bose
gas was first obtained by Lima and Pelster [23, 38]. In their work, they used the Bo-
goliubov theory to include the dipolar interaction. Like for a short-range potential, they
obtain a divergent ground state energy. To treat this problem, Lima and Pelster subtract
the divergent expression by hand and obtain an expression for the ground state energy,
including beyond-mean-field corrections.
In the following, we will treat the dipolar interaction within the approach of Hugen-

holtz and Pines. With the same arguments as in the previous section, no divergences
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appear, and we obtain the same ground state energy as Lima and Pelster. Note that the
dipolar interaction is treated very briefly here, as the main focus of this work is the treat-
ment of confined systems. For a more elaborate discussion of the dipolar interaction,
the reader is referred to [39].

For the dipolar interaction, the pseudopotential can be written as [40, 41]

V (k) = g3D
[
1 + εdd

(
3 cos2(θ)− 1

)]
≡ g3Dd(θ), with εdd =

µ0m
2
d

3g3D
. (4.68)

The magnetic permeability is denoted by µ0 and the magnetic dipole moment is given
by md. The pseudopotential does not depend on the absolute value of k but only on
the angle θ between k and the direction of polarization. For k = 0, the potential V (k)
reduces to

V (0) = g3D. (4.69)

The considerations of the previous section remain unaltered, and so we can express
the ground state energy by equation (4.65),

ε− n

2

dε

dn
=

1

4

∫
R3

d3k

(2π)3

[
2ε0(k)

2 + 3ε0(k)nV (k)√
ε0(k)2 + 2ε0(k)nV (k)

− 2ε0(k)− nV (k)

]
.

Instead of solving the differential equation first and then performing the integration over
k, we chose to take the opposite route this time. We start by evaluating the integral
over k. In spherical coordinates, the integral becomes

1

4

∫ ∞

0

dk

∫ π

0

dθ
k2 sin(θ)

(2π)2

[
2ε0(k)

2 + 3ε0(k)ng3Dd(θ)√
ε0(k)2 + 2ε0(k)ng3Dd(θ)

− 2ε0(k)− ng3Dd(θ)

]
, (4.70)

where we have set the direction of the polarization along kz. As the potential V (k) does
not depend on the absolute value of k, we perform the radial integration analogous to
the previous section. Therefore we substitute

k =

√
2mng3D

~2
u, (4.71)

and we obtain

1

16π2

(
2m

~2

)3/2

(ng3D)
5/2

∫ ∞

0

du

∫ π

0

dθ u2 sin(θ)

[
2u4 + 3u2d(θ)√
u4 + 2u2d(θ)

− 2u2 − d(θ)

]
.

(4.72)
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The integration over u yields

ε− n

2

dε

dn
=

1

16π2

(
2m

~2

)3/2

(ng3D)
5/2

∫ π

0

dθ sin(θ)

[
−4

√
2

15
d(θ)5/2

]

= −64
√
π

15

~2

m
(nas)

5/21

2

∫ π

0

dθ sin(θ) (1 + εdd(3 cos(θ)− 1))5/2

= −64
√
π

15

~2

m
(nas)

5/2Q5(εdd)

= f(n),

(4.73)

where we have introduced the function

Q5(εdd) =
1

2

∫ π

0

dθ sin(θ) (1 + εdd(3 cos(θ)− 1))5/2 . (4.74)

The general solution to the differential equation (4.73) is the same as in the previous
section (4.66),

ε(n) =
V (0)n2

2
− n2

∫ n

nc

dn′ 2f(n
′)

n′3

=
2π~2as
m

n2 +
128

√
π

15

~2a5/2s

m
Q5(εdd)n

2

∫ n

0

dn′ n−1/2

=
2π~2as
m

n2 +
256

√
π

15

~2

m
(nas)

5/2Q5(εdd).

(4.75)

Note that we have set the constant nc = 0, using the same argumentation as in the
previous section. Our solution agrees with the expression from Lima and Pelster and
has the advantage that no divergence appears. Again we want to emphasize that the
approach of Hugenholtz and Pines allows for a consistent treatment of weakly interacting
Bose gases, even with dipolar interactions.
The application of the diagrammatic approach to the one-dimensional Bose gas is

briefly covered in the next section.

4.7. Diagrammatic Approach in One Dimension

The considerations of the previous sections of this chapter remain mostly valid for the
treatment of the one-dimensional weakly interacting Bose gas. The differential equation
for the ground state energy takes the same form as in the three-dimensional case,

ε1D − n1D

2

dε1D
dn1D

=
1

4

∫
R

dkz
2π

[
2ε0(kz)

2 + 3ε0(kz)n1Dg1D√
ε0(kz)2 + 2ε0(kz)n1Dg1D

− 2ε0(kz)− n1Dg1D

]
≡ f 1D(n1D).

(4.76)
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Like in three dimensions, the general solution can be given by

ε1D(n1D) = ε1Dmf (n1D)− n2

∫ n1D

nc
1D

dn′2f
1D(n′)

n′3 , (4.77)

and we need to impose a constraint to determine the constant nc
1D. To obtain the

constraint, we follow the same reasoning as in the three-dimensional case. In contrast
to the three-dimensional system, the one-dimensional Bose gas is weakly interacting for
high densities, as discussed in section 3.7. Thus, we have to ensure that the corrections
to the mean-field energy vanish faster than n2

1D for high densities, which we can ensure
by setting nc

1D = ∞. By performing the integration over the density, we obtain

ε1D = ε1Dmf −
n2
1D

2

∫ n1D

∞
dn′
∫
R

dkz
(2π)

1

n′3

[
2ε0(kz)

2 + 3ε0(kz)n
′g1D√

ε0(kz)2 + 2ε0(kz)n′g1D
− 2ε0(kz)− n′g1D

]

= ε1Dmf −
n2
1D

2

∫
R3

dkz
(2π)

ε0(k) + n′g1D −
√
ε0(kz)2 + 2ε0(kz)n′g1D
n′2

∣∣∣∣∣
n1D

∞

= ε1Dmf −
1

2

∫
R

dkz
(2π)

[
ε0(kz) + n1Dg1D −

√
ε0(kz)2 + 2n1Dg1Dε0(kz)

]
.

(4.78)

The last expression agrees with the result obtained by the Bogoliubov theory from equa-
tion (3.38), and we arrive at the same ground state energy,

ε1D =
1

2
g1Dn

2
1D − 2

3π

(m
~2
)1/2

(n1Dg1D)
3/2 .

In this chapter, we have seen that the diagrammatic treatment of the weakly interact-
ing Bose gas allows us to understand the underlying processes on a fundamental level.
The theory does not come across divergences, as we have encountered them during the
Bogoliubov theory. This is due to the differential equation, the ground state energy has
to fulfill. A further physical constraint is needed to solve the differential equation. With
the correct choice of the constraint, the divergence is cured automatically. Thus, we
have a powerful tool to treat the weakly interacting Bose gas consistently, without the
need to subtract terms manually.
In the next chapter, we will consider the dimensional crossover from a three-dimensional

to a quasi-one-dimensional system, where we will greatly profit from the consistency of
the diagrammatic approach.
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5. Confined Systems

In the previous chapters, we discussed approaches to three- and one-dimensional systems
in the thermodynamic limit. In experiments, however, the particles are often confined
in a trap, and finite size effects play a role. In a recent paper of Edler et al. [42], the
authors considered a system of dipolar bosons in a harmonic confinement. With the
use of the approach of Hugenholtz and Pines, discussed in the previous chapter, they
obtained the behavior of the quasi-one-dimensional system. Due to the complexity of
the system, Edler et al. had to rely on the numerical evaluation of parts of the theory.
The following chapter is dedicated to the description of confined systems. In particular,

we consider a system elongated in one direction, but tightly confined in the transverse
directions. In contrast to Edler et al., the system is confined by periodic boundary
conditions, and we will not include the dipolar interaction. These simplifications will
allow us to obtain the quasi-one-dimensional limit analytically. We will show that in the
quasi-one-dimensional limit, the finite-size effects appear naturally, and we can describe
a crossover between the three- and one-dimensional behavior of the system.

5.1. The Limiting Cases

In the following, we will consider a box of length L in the z-direction and height and
width l⊥ in x- and y-direction. The box is elongated along the z-direction,

L� 1, (5.1)

and tightly confined in the transverse directions,

l⊥
L

� 1. (5.2)

The density of particles is given by

n =
N

l2⊥L
. (5.3)

We impose periodic boundary conditions. Therefore, the allowed wave vectors are

k =

kxky
kz

 with kz ∈ R, kx =
2π

l⊥
i ky =

2π

l⊥
j and i, j ∈ Z. (5.4)
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Note that we will treat kz as a continuous variable, as the box is elongated along the
z-direction.
The scattering processes between the particles are treated in three dimensions, which

is valid as long as the three-dimensional scattering length as is much smaller than the
transverse confinement,

as
l⊥

� 1. (5.5)

If the chemical potential µ is much larger than the energy to excite transverse modes,

~2

ml2⊥
� µ = ng3D ⇔ κ ≡ Nas

L
� 1, (5.6)

scattering events can excite particles, and we can treat the system three-dimensionally.
Here, we have introduced the crossover parameter κ. The ground state energy, in this
case, is the three-dimensional expression from equation (3.34),

E3D

l2⊥L
=

1

2
g3Dn

2 +
8

15π2

(m
~2
)3/2

(ng3D)
5/2.

We can express the energy in terms of the crossover parameter κ and obtain

E3D =
2π~2

m

L

l2⊥as
κ2
(
1 +

128

15
√
π

as
l⊥
κ1/2

)
. (5.7)

Note that the beyond-mean-field correction is of order as/l⊥. We need to keep in
mind that the expression (5.7) is only valid if the interactions are weak. For a three-
dimensional system, this means

na3s � 1 ⇔ κ� l2⊥
a2s
. (5.8)

Thus, the three-dimensional description is correct for 1 � κ� l2⊥/a
2
s .

Next, we want to consider the quasi-one-dimensional regime. If the chemical potential
µ is much smaller than the energy to excite transverse modes,

~2

ml2⊥
� µ = ng3D ⇔ κ� 1, (5.9)

scattering events cannot excite the particles to transverse modes. In the absence of
transverse excitations, we obtain a quasi-one-dimensional system with energy

Epbc

L
=

1

2
gpbcn

2
1D − 2

3π

(m
~2
)1/2

(n1Dgpbc)
3/2 .
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The density n1D is connected to the full density n by

n1D = nl2⊥. (5.10)

As discussed in chapter 2 of this work, the one-dimensional treatment of the problem
holds if we use the correct coupling constant gpbc. In section 2.4.2, we have determined
the coupling constant to

gpbc =
4π~2as
m

1

l2⊥

(
1− as

l⊥
Cpbc

)−1

≈ g3D
l2⊥

(
1 +

as
l⊥
Cpbc

)
.

The beyond-mean-field correction itself is of order as/l⊥. Hence, we need to include
orders as/l⊥ for the coupling constant gpbc as well, but we will neglect all higher or-
ders in the following. With the previous considerations, we can express the quasi-one-
dimensional ground state energy Epbc by

Epbc =
2π~2

m

L

l2⊥as
κ2
(
1 +

as
l⊥
Cpbc −

8

3
√
π

as
l⊥
κ−1/2

)
. (5.11)

The confinement causes an additional term of order κ2. The description of a crossover
between the three-dimensional and quasi-one-dimensional behavior later in this chapter
has to reproduce this confinement-induced shift.

Keep in mind, that the energy (5.11) is only valid in the weakly interacting regime.
In section 3.7 we saw that the one-dimensional system is weakly interacting for

g1Dm

n1D~2
� 1.

Regarding the crossover parameter, this means

κ� a2s
l2⊥
. (5.12)

Taking into account the previous considerations, we can express the energy as a func-
tion of κ

E =
2π~2

m

L

l2⊥as
κ2

1 +


as
l⊥
Cpbc − 8

3
√
π
κ−1/2, for a2s

l2⊥
� κ� 1

128
15

√
π

as
l⊥
κ1/2, for 1 � κ� l2⊥

a2s

 . (5.13)

The remaining task is to connect the limiting cases κ� 1 and κ� 1 consistently.
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5.2. Description of the Crossover

In the previous chapter 4, we saw that the ground state energy has to fulfill a differential
equation,

E − n

2

dE

dn
= f(n).

For the confined system, the function f(n) is given in analogy to equation (4.65),

f(n) =
L

4

∑
kx, ky

∫
R

dkz
2π

[
2ε0(k)

2 + 3ε0(k)ng3D√
ε0(k)2 + 2ε0(k)ng3D

− 2ε0(k)− ng3D

]
. (5.14)

The parameter κ describes the crossover. Hence, we need to express the differential
equation in terms of κ. With the definitions of the previous section 5.1, we obtain

E(κ)− κ

2

dE

dκ
= f(κ), (5.15)

where the function f(κ) is given by

f(κ) =
L

4

∑
kx, ky

∫
R

dkz
2π

 2ε0(k)
2 + 3ε0(k)

4π~2
ml2⊥

κ√
ε0(k)2 + 2ε0(k)

4π~2
ml2⊥

κ
− 2ε0(k)−

4π~2

ml2⊥
κ



=
~2L

√
π

l3⊥m

√
πκ
∑
i,j

∫
R
du

[
2ε̃0(i, j, u, κ)

2 + 3ε̃0(i, j, u, κ)√
ε̃0(i, j, u, κ)2 + 2ε̃0(i, j, u, κ)

− 2ε̃0(i, j, u, κ)− 1

]

≡ ~2L
√
π

l3⊥m
f̃(κ).

(5.16)

In the second line, we have replaced the integration over kz by an integration over
u = l⊥kz/2π, so the dimensionless function ε̃0 is

ε̃0(i, j, u, κ) =
π

2κ

(
i2 + j2 + u2

)
. (5.17)

In the limiting cases, we can give the functions f(κ) and f̃(κ) explicitly. For a three-
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dimensional system, f3D reads

f3D =
l2⊥L

4

∫
R3

d3k

(2π)3

[
2ε0(k)

2 + 3ε0(k)ng3D√
ε0(k)2 + 2ε0(k)ng3D

− 2ε0(k)− ng3D

]

= − 2

15π2
l2⊥L

(m
~2
)3/2

(ng3D)
3/2

=
~2L

√
π

l3⊥m

(
−64

15
κ5/2

)
=

~2L
√
π

l3⊥m
f̃3D(κ).

(5.18)

In a one-dimensional description, we obtain

f1D =
L

4

∫
R

dkz
2π

[
2ε0(kz)

2 + 3ε0(kz)n1Dg1D√
ε0(kz)2 + 2ε0(kz)n1Dg1D

− 2ε0(kz)− n1Dg1D

]
(5.19)

= − L

6π

(m
~2
)1/2

(n1Dg1D)
3/2 (5.20)

=
~2L

√
π

l3⊥m

(
−4

3
κ3/2

)
=

~2L
√
π

l3⊥m
f̃1D(κ). (5.21)

To illustrate that the function f̃(κ) from equation (5.16), indeed, reproduces the limiting
cases correctly, we have plotted the expressions −f̃(κ)/k3, −f̃1D(κ)/κ3 and −f̃3D(κ)/κ3
in figure 5.1 on a double logarithmic scale. As expected, f̃(κ) connects the limiting cases
smoothly.
Analogous to the considerations in the previous chapter, we can give the general

solution of the differential equation (5.15) as

E(κ) =
2π~2

m

L

l2⊥as
κ2 − κ2

∫ κ

κc

dκ′
2f(κ′)

κ′3
(5.22)

=
2π~2

m

L

l2⊥as
κ2

(
1− as

l⊥
√
π

∫ κ

κc

dκ′
f̃(κ′)

κ′3

)
. (5.23)

The question that arises is how to chose the constant κc, to describe the system correctly.
For a consistent treatment, we chose a different route than in the previous chapter.
Instead of thinking about the constant kc, we fix the lower bound of the integration
to an arbitrary value κ∗ and introduce a constant A(κ∗) to obtain the correct physical
behavior,

E(κ) =
2π~2

m

L

l2⊥as
κ2

(
1 + A(κ∗)− as

l⊥
√
π

∫ κ

κ∗
dκ′

f̃(κ′)

κ′3

)
. (5.24)
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Figure 5.1.: Dimensionless function f̃(κ)/κ3 (black dots) compared to the limiting cases
f̃1D(κ)/κ

3 (red line) and f̃3D(κ)/κ
3 (blue line) on a double logarithmic scale.

For the evaluation of f̃(κ), 2000 transverse modes were taken into account
for both transverse directions. The function f̃(κ) connects the limiting cases
smoothly and agrees with our expectations.

We will determine the constant A(κ∗) so that the solution (5.24) provides the correct
result for the three-dimensional case. For κ� 1, we can write equation (5.24) as

E(κ) =
2π~2

m

L

l2⊥as
κ2

(
1− as√

πl⊥

∫ κ

0

dκ′
f̃3D(κ

′)

κ′3

+
as√
πl⊥

∫ κ

0

dκ′
f̃3D(κ

′)

κ′3
+ A3D(κ

∗)− as
l⊥
√
π

∫ κ

κ∗
dκ′

f̃(κ′)

κ′3

)
.

(5.25)

The first line leads to the correct ground state energy (5.7). Thus, we have to choose

A3D(κ
∗) =

as√
πl⊥

(∫ κ∞

κ∗
dκ′

f̃(κ′)

κ′3
−
∫ κ∞

0

dκ′
f̃3D(κ

′)

κ′3

)
, (5.26)

to make the second line vanish. Remember, A3D(κ
∗) does not depend on κ. As f̃(κ)

matches f̃3D(κ) for large values of κ, A3D(κ
∗) does not depend on the newly introduced

quantity κ∞ as long as it is large enough. Hence, we are interested in the limit κ∞ → ∞.
Note that we can fix the constant A(κ∗) to the quasi-one-dimensional case as well, but

we must keep in mind to include the confinement-induced shift. Fixing the constant to
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the three-dimensional case will provide the confinement-induced shift automatically, as
we will see in the following.
With the previous considerations, we ensured that equation (5.24) describes the three-

dimensional system correctly. Next, we need to check if the energy (5.24) reproduces
the correct results in the quasi-one-dimensional regime. In the limit κ� 1, we can write
the energy (5.24) as

E(κ) =
2π~2

m

L

l2⊥as
κ2

(
1− as√

πl⊥

∫ κ

∞
dκ′

f̃1D(κ
′)

κ′3

+
as√
πl⊥

∫ κ

∞
dκ′

f̃1D(κ
′)

κ′3
+ A3D(κ

∗)− as
l⊥
√
π

∫ κ

κ∗
dκ′

f̃(κ′)

κ′3

)
κ�1
=

2π~2

m

L

l2⊥as
κ2

(
1 + A3D(κ

∗)− A1D(κ
∗)− as√

πl⊥

∫ κ

∞
dκ′

f̃1D(κ
′)

κ′3

)

=
2π~2

m

L

l2⊥as
κ2
(
1 + A3D(κ

∗)− A1D(κ
∗)− 8

3
√
π

as
l⊥
κ−1/2

)
,

(5.27)

where we have introduced

A1D(κ
∗) =

as√
πl⊥

(∫ κ0

κ∗
dκ′

f̃(κ′)

κ′3
−
∫ κ0

∞
dκ′

f̃1D(κ
′)

κ′3

)
. (5.28)

The constant A1D(κ
∗) does not depend on the newly introduced quantity κ0 as long as

κ0 is small enough. Thus, we will consider the limit κ0 → 0 in the following.
In the quasi-one-dimensional regime κ� 1, we see a shift to the mean-field expression

appearing. If our approach is consistent, this shift has to match the confinement-induced
shift from equation (5.11),

A3D(κ
∗)− A1D(κ

∗) =
as
l⊥
Cpbc. (5.29)

In the next section, we will calculate the shift explicitly.

5.3. Confinement-Induced Shift

In the previous section, we obtained a shift to the mean-field energy of the form

A3D − A1D =
as√
πl⊥

(∫ κ∞

κ0

dκ′
f̃(κ′)

κ′3
−
∫ κ∞

0

dκ′
f̃3D(κ

′)

κ′3
−
∫ ∞

κ0

dκ′
f̃1D(κ

′)

κ′3

)
. (5.30)
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With the definitions (5.18) and (5.21) of the functions f̃3D and f̃1D, we can evaluate the
last two integrals immediately,

A3D − A1D =
as√
πl⊥

(∫ κ∞

κ0

dκ′
f̃(κ′)

κ′3
+

128

15
κ1/2∞ +

8

3
κ
−1/2
0

)
. (5.31)

Next, we consider the first integral of the shift,∫ κ∞

κ0

dκ′
f̃(κ′)

κ′3
=

ml3⊥
4
√
π~2

∑
kx, ky

∫
R

dkz
2π

∫ κ∞

κ0

dκ′
1

κ′3

[
2ε0(k)

2 + 3ε0(k)g̃κ√
ε0(k)2 + 2ε0(k)g̃κ

− 2ε0(k)− g̃κ

]
.

(5.32)

We have introduced the constant

g̃ =
4π~2

ml2⊥
(5.33)

for a shorter notation. The integration over κ′ can be performed analogously to the
integration over n′ in equation (4.67), and we obtain

∫ κ∞

κ0

dκ′
f̃(κ′)

κ′3
=
ml3⊥
4~2

1√
π

∑
kx, ky

∫
R

dkz
2π

[
ε0(k) + g̃κ∞ −

√
ε0(k)2 + 2ε0(k)g̃κ∞
κ2∞

]

− ml3⊥
4~2

1√
π

∑
kx, ky

∫
R

dkz
2π

[
ε0(k) + g̃κ0 −

√
ε0(k)2 + 2ε0(k)g̃κ0
κ20

]
.

(5.34)

Keep in mind that we are interested in the limits κ0 → 0 and κ∞ → ∞. Let us start
with the first term of the right-hand side of equation (5.34). As κ∞ is very large, we
can replace the sum over the transverse modes by an integration, analogously to the
procedure for f(κ) in the region κ� 1. Hence, we obtain

ml3⊥
4~2

1√
π

∑
kx, ky

∫
R

dkz
2π

[
ε0(k) + g̃κ∞ −

√
ε0(k)2 + 2ε0(k)g̃κ∞
κ2∞

]

=
ml5⊥

4~2
√
π

1

κ2∞

∫
R3

d3k

(2π)3

[
ε0(k) + g̃κ∞ −

√
ε0(k)2 + 2ε0(k)g̃κ∞

]
.

(5.35)

The remaining integral is the same as the beyond-mean-field term from Bogoliubov the-
ory (3.20), before the troublesome diagram was subtracted. Thus, the integral diverges.
To extract the divergence, we proceed with adding and subtracting the divergent term
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of the integral,

ml5⊥
4~2

√
π

1

κ2∞

∫
R3

d3k

(2π)3

[
ε0(k) + g̃κ∞ −

√
ε0(k)2 + 2ε0(k)g̃κ∞

]

=
ml5⊥

4~2
√
π

1

κ2∞

∫
R3

d3k

(2π)3

[
ε0(k) + g̃κ∞ −

√
ε0(k)2 + 2ε0(k)g̃κ∞ − g̃2κ2∞

2ε0(k)
+

g̃2κ2∞
2ε0(k)

]

= −128

15
κ1/2∞ + 4π3/2l⊥

∫
R3

d3k

(2π)3
1

k2
.

(5.36)

We can evaluate a part of the integral in analogy to equation (3.32). Note that the first
term of equation (5.36) exactly cancels the second term appearing in the shift (5.31).
Next, we consider the second term in equation (5.34),

−ml
3
⊥

4~2
1√
π

∑
kx, ky

∫
R

dkz
2π

[
ε0(k) + g̃κ0 −

√
ε0(k)2 + 2ε0(k)g̃κ0
κ20

]
.

We split off the term kx = ky = 0 to ensure the numerator does not vanish when taking
the limit κ0 → 0,

−ml
3
⊥

4~2
1√
π

∑′

kx, ky

∫
R

dkz
2π

[
ε0(k) + g̃κ0 −

√
ε0(k)2 + 2ε0(k)g̃κ0
κ20

]

+

∫
R

dkz
2π

[
ε0(kz) + g̃κ0 −

√
ε0(kz)2 + 2ε0(kz)g̃κ0
κ20

]]
.

(5.37)

For the first term, we take the limit κ0 → 0 and the integral of the second term is
evaluated in analogy to equation (3.39). A short calculation yields

−4π3/2 1

l⊥

∑′

kx, ky

∫
R

dkz
2π

1

k2
− 8

3
κ
−1/2
0 . (5.38)

We can now insert both terms (5.36) and (5.38) into the shift (5.31) and obtain

A3D − A1D = 4πas

∫
R

d3k

(2π)3
1

k2
− 1

l2⊥

∑′

kx, ky

∫
R

dkz
2π

1

k2

 . (5.39)

The same expression already appeared in section 2.4.2, during the calculation of the
coupling constant gpbc. If we compare equations (2.63) and (2.66) to the shift (5.39), we
immediately arrive at

A3D − A1D =
as
l⊥
Cpbc,
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which is what we wanted to show. Thus, the ground state energy (5.27) reads

E(κ)
κ�1
=

2π~2

m

L

l2⊥as
κ2
(
1 +

as
l⊥
Cpbc −

8

3
√
π

as
l⊥
κ−1/2

)
, (5.40)

which agrees with the quasi-one-dimensional description given by equation (5.11).
We have seen that the ground state energy (5.24) reproduces the correct behavior

in the three- and quasi-one-dimensional case. The confinement-induced shift appears
naturally in the description. In the next section, we illustrate the crossover behavior.

5.4. Crossover Behavior

In the last section of this chapter, we will briefly illustrate the behavior of the ground
state energy

E(κ) =
2π~2

m

L

l2⊥as
κ2

(
1 + A3D(κ

∗)− as
l⊥
√
π

∫ κ

κ∗
dκ′

f̃(κ′)

κ′3

)
.

For illustrative reasons, we introduce the dimensionless energies

Ẽ(κ) = κ2

(
1 + A3D(κ

∗)− as
l⊥
√
π

∫ κ

κ∗
dκ′

f̃(κ′)

κ′3

)
, (5.41)

Ẽpbc = κ2
(
1 +

as
l⊥
Cpbc −

8

3
√
π

as
l⊥
κ−1/2

)
, (5.42)

Ẽ3D = κ2
(
1 +

128

15
√
π

as
l⊥
κ1/2

)
, (5.43)

and the dimensionless beyond-mean-field corrections

∆Ẽ(κ) = κ2

(
l⊥
as
A3D(κ

∗)− 1√
π

∫ κ

κ∗
dκ′

f̃(κ′)

κ′3

)
, (5.44)

∆Ẽpbc(κ) = κ2
(
Cpbc −

8

3
√
π
κ−1/2

)
, (5.45)

∆Ẽ3D(κ) = κ2
(

128

15
√
π
κ1/2

)
. (5.46)

Figure 5.2a) illustrates the crossover behavior by comparing the numerically obtained
data of ∆Ẽ(κ)/κ2 with the limiting cases for κ � 1 and κ � 1. For the numerical
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evaluation of Ẽ(κ), 2000 modes in each transverse directions were taken into account.
For the ratio as/l⊥, we chose as/l⊥ = 1/1000. The numerical data agrees with the
limiting cases and connects them smoothly.
In figure 5.2b), we compare the numerical data for ∆Ẽ(κ) with the limiting cases

∆Ẽpbc(κ) and ∆Ẽ3D(κ). If κ is small, the energy correction is negative, as one would
expect from a one-dimensional system. The transverse degrees of freedom play a minor
role. Increasing κ first decreases the energy correction. By increasing κ, the transverse
modes gain in importance, and the energy correction reaches a maximal negative value
at κ ≈ 0.07. Afterwards, increasing κ increases the energy correction as well. For
κ ≈ 0.12 the beyond-mean-field correction vanishes entirely. As expected from a three-
dimensional system, the energy correction is positive for larger values of κ.
The diagrammatic approach, discussed in chapter 4, allowed us to treat the con-

fined system consistently. By restricting the considerations to periodic boundary con-
ditions, we were able to give analytic expressions for the quasi-one-dimensional and
three-dimensional limit. We were able to connect both regions smoothly and saw that
in the crossover, the confinement-induced shift appears naturally.
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∆Ẽpbc(κ)
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Figure 5.2.: a) Behavior of the dimensionless ground state energy Ẽ(κ)/κ2 as a func-
tion of κ on a double logarithmic scale. The exact ground state energy
Ẽ(κ)/κ2 (black dots) is compared to the three-dimensional ground state
energy Ẽ3D(κ)/κ

2 (blue line) and the quasi-one-dimensional ground state
energy Ẽpbc(κ)/κ

2 (red line). The exact ground state energy matches the
limiting cases perfectly and describes a smooth crossover. For the numerical
evaluation, 2000 transverse modes in each direction were taken into account,
and we set as/l⊥ = 1/1000. b) Dimensionless beyond-mean-field correction
∆Ẽ(κ) of the ground state energy as a function of κ. We compare the exact
energy correction (black line) to the quasi-one-dimensional (red line) and
three-dimensional (blue line) energy correction for small values of κ. The
exact energy correction is negative for small values of κ but becomes posi-
tive for larger values, as more and more transverse modes become important.
The correction vanishes entirely for κ ≈ 0.12. For the numerical evaluation,
2000 transverse modes in each direction were taken into account.
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6. Conclusion

With the rising interest in beyond-mean-field corrections in both experimental and the-
oretical physics, the goal of this work was to understand the underlying mechanisms on
a fundamental level.
Before treating many-body systems, the interaction processes between only two par-

ticles were discussed in detail in the first part of this work. In the low-energy regime,
the scattering processes are completely characterized by the scattering length of the po-
tential. Thus, the actual form of the potential is of minor interest, and we can model
the interaction by a pseudopotential. In three dimensions, however, the pseudopotential
matches the exact T -matrix of the system, which one has to keep in mind when using
it in a theoretical description. In one dimension, the delta-potential does not match
the T -matrix but the low-energy scattering processes are universal as well. The un-
derstanding of scattering processes in one and three dimensions allowed us to treat the
scattering problem in confined systems. We were able to calculate the coupling constant
of a quasi-one-dimensional system, confined in periodic boundary conditions.
With the knowledge we gained from scattering theory, we were able to understand

the concepts behind the Bogoliubov theory. Bogoliubov’s theory allows obtaining an
expression for the ground state energy of a weakly interacting Bose gas under simple
assumptions. However, the inclusion of scattering properties can lead to divergences
and must be treated with care. We saw that the Bogoliubov transformations effectively
sums up an entire class of interaction diagrams, and hence can get in conflict with the
pseudopotential.
The main focus of this work was on the field-theoretic treatment of the weakly in-

teracting Bose gas. In the approach of Hugenholtz and Pines, the ground state energy
has to fulfill a first order differential equation. For its solution, an additional constraint
is needed. The correct constraint allowed for a consistent treatment of the weakly in-
teracting Bose gas. Within the field-theoretic approach, we could include the dipolar
interaction as well. In contrast to the approach of Lima and Pelster [23, 38], who relied
on the Bogoliubov theory, we were able to calculate the beyond mean-field correction of
the dipolar Bose gas, without coming across any divergence at all.
Having understood the principles of the field-theoretic treatment, we were able to dis-

cuss the dimensional crossover in a system confined with periodic boundary conditions.
A similar, but more complicated system was already discussed by Edler et al. [42], who
considered dipolar bosons in a harmonic confinement. The complexity of the system
forced the authors to rely on numerical results for the chemical potential. For periodic
boundary conditions, however, we showed that the quasi-one- and three-dimensional
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limit can be obtained analytically. Using the results from scattering theory, we saw that
the confinement-induced shift automatically appears in the quasi-one-dimensional limit.
Lastly, we want to give a short outlook on interesting aspects that are still open for

considerations. Although weakly interacting dipolar bosons in a harmonic confinement
have already been treated by Edler et al., the treatment of the same system using contact
interactions is still open. The simpler nature of the interaction compared to the dipolar
interaction might allow to give analytic results and thus lead to a deeper understanding
of the crossover. In this work, we focused on weakly interacting Bose gases in one and
three dimensions. Hence, the application of the field-theoretic approach of Hugenholtz
and Pines to a two-dimensional system seems natural. This could allow for a consistent
treatment of dipolar Bose gases in two dimensions. In addition, the dimensional crossover
from three to two dimensions should work in the same manner as the crossover from three
to one dimension, discussed in this work.
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A. Scattering Theory

A.1. Born Series in Three Dimensions

We want to determine the scattering amplitude f(k,k′) for the potential

VΛ(r)ψ(r) = gΛh
∗
Λ(r)

∫
R
d3uhΛ(u)ψ(u).

As a reminder, the scattering amplitude is given by

f(k,k′) = − m

4π~2

∫
R3

d3r′e−ik′ · r′
V (r′)Ψk(r

′) ,

and the wave function Ψk(r) fulfills the Lippmann-Schwinger equation

Ψk(r) = eik · r +
∫
R3

d3r′G+
0 (r, r

′, Ek)V (r′)Ψk(r
′).

For a shorter notation, we introduce

Gk(r − r′) = G+
0 (r, r

′, Ek).

By calculating the first few Born approximations, the form of the entire Born series
becomes clear.
The first Born approximation yields

− m

4π~2

∫
R3

d3r e−ik′ · rVΛ(r)eik · r

= − m

4π~2

∫
R3

d3re−ik · rgΛh∗Λ(r)
∫
R3

d3uhΛ(u)e
ik · u

= −mgΛ
4π~2

(∫
R3

d3r e−ik′ · rh∗Λ(r)
)(∫

R3

d3u e−ik · uh∗Λ(u)
)∗

= −mgΛ
4π~2

h̃∗Λ(k
′)h̃Λ(k),

where h̃Λ(k) is the Fourier transform of the function hΛ(r). The second term in the
series expansion becomes

− m

4π~2

∫
R3

∫
R3

d3r d3r′e−ik′ · rV (r)Gk(r − r′)V (r′)eik · k

= −mg2Λ
4π~2

h̃∗Λ(k
′)

[∫
R3

∫
R3

d3u d3r′hΛ(u)Gk(u− r′)h∗Λ(r
′)

]
h̃Λ(k).
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The third term of the series is the last we will give explicitly,

− m

4π~2

∫
R3

d3r

∫
R3

d3r′
∫
R3

d3r′′ e−ik′ · rV (r)Gk(r − r′)V (r′)Gk(r
′ − r′′)V (r′′)eik · r′′

= −mg3Λ
4π~2

h̃∗Λ(k
′)

[∫
R3

d3u

∫
R3

d3u′ hΛ(u)Gk(u− u′)h∗Λ(u
′)

]2
h̃Λ(k)),

as the structure of the series becomes clear now. The entire Born series of the potential
can be written as

f(k,k′) = −mgΛ
4π~2

h̃∗Λ(k
′)h̃Λ(k)

∞∑
n=0

[
gΛ

∫
R3

d3u

∫
R3

d3u′ hΛ(u)Gk(u− u′)h∗Λ(u
′)

]n
= −mgΛ

4π~2
h̃∗Λ(k

′)h̃Λ(k)
∞∑
n=0

[
mgΛ
~2

∫
R3

d3p

(2π)3
h̃Λ(−p)h̃∗Λ(p)

k2 − p2 + iη

]n
.

Using the geometric series, the scattering amplitude finally becomes

f(k,k′) = −mgΛ
4π~2

h̃∗Λ(k
′)h̃Λ(k)

1− mgΛ
~2
∫
R3

d3p
(2π)3

h̃Λ(−p)h̃∗
Λ(p)

k2−p2+iη

= −

(
4π~2

mgΛh̃∗Λ(k
′)h̃Λ(k)

− 4π

h̃∗Λ(k
′)h̃Λ(k)

∫
R3

d3p

(2π)3
h̃Λ(−p)h̃∗Λ(p)

k2 − p2 + iη

)−1

.

A.2. Harmonic Confinement

We want to apply the approach that allowed us to treat scattering in periodic boundary
conditions to a harmonic confinement and show that it reproduces Olshanii’s result.
The particles can move freely along the z-axis, however, their motion in the x-y-plane

is influenced by an axial symmetric harmonic potential of frequency ω⊥. The background
Hamiltonian consists of the kinetic energy along the z-direction and also the Hamiltonian
of a two-dimensional harmonic oscillator,

H0 =
p2z
m

+
p2x + p2y
m

+
mω2

⊥(x
2 + y2)

4
with ω⊥ =

2~
ma2⊥

. (A.1)

The oscillator length a⊥ introduces a physical length scale. The eigenfunctions of H0

are characterized by the wave vector kz of the longitudinal direction and the quantum
numbers of the harmonic oscillator n ∈ N0 and l ∈ [−n,−n + 2, . . . , n − 2, n] in the
transverse directions,

H0 |kz, n, l〉 =
(
~2k2z
m

+ ~ω⊥(n+ 1)

)
|kz, n, l〉 = Ekz ,n,l |kz, n, l〉 . (A.2)
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In coordinate representation, the states |kz, n, l〉 are expressed by

〈r | kz, n, l〉 = eikzz + Φn,l(ρ, ϕ), (A.3)

where Φn,l(ρ, ϕ) are the eigenstates of the two-dimensional harmonic oscillator in polar
coordinates.
The Green’s function of the background Hamiltonian H0 can be written as

G+
0 (r, r

′, kz, n, l) =
〈
r
∣∣∣ (E+

kz ,n,l
−Ho

)−1
∣∣∣ r′
〉

=
m

~2

∫
R

dk′z
2π

∑
n′, l′

eik
′
z(z−z′)Φn′,l′(ρ, ϕ)Φ

∗
n′,l′(ρ

′, ϕ′)

k2z − k′2z + 2
a2⊥
(n− n′) + iη

,
(A.4)

and the Lippmann-Schwinger equation takes the form

Ψkz ,n,l(r) = eikzzΦn,l(ρ, ϕ) +

∫
R3

d3r′G+
0 (r, r

′, kz, n, l)V (r′)Ψkz ,n,l(r
′). (A.5)

Unless otherwise specified, the occurring sums run over all allowed values of n and l. We
are interested in a particular case of the Lippmann-Schwinger equation. Assume that
the particles are in the transverse ground state and kinetic energy of the particles along
the z-axis is much smaller than the energy to excite a transverse mode,

~2k2z
m

� ~ω⊥. (A.6)

Thus, it is sufficient to consider only Ψkz ,0,0(r). To treat the scattering processes in three
dimensions, the scattering length as has to be much smaller than the confinement,

as � a⊥. (A.7)

Under these assumptions, we must now find the quasi-one-dimensional scattering ampli-
tude that describes the scattering processes along the z-axis. Analog to the three- and
one-dimensional systems, we first consider the far-field behavior of the Green’s function,

G+
0 (r, r

′, kz, 0, 0) =
m

~2

∫
R

dk′z
2π

∑
n,l

eik
′
z(z−z′)Φn,l(ρ, ϕ)Φ

∗
n,l(ρ

′, ϕ′)

k2z − k′2z − 2
a2⊥
n+ iη

=− im

2~2
∑
n,l

e
i
√

k2z−2n/a2⊥+iη |z−z′|√
k2z − 2n/a2⊥ + iη

Φn,l(ρ, ϕ)Φ
∗
n,l(ρ

′, ϕ′)

=− im

2~2
eikz |z−z′|

kz
Φ0,0(ρ, ϕ)Φ

∗
0,0(ρ

′, ϕ′)

− m

2~2
∑
n=1, l

e
−
√

2n/a2⊥−k2z |z−z′|√
2n/a2⊥ − k2z

Φn,l(ρ, ϕ)Φ
∗
n,l(ρ

′, ϕ′)

z→∞−−−→− im

2~2
eikz(z−z′)

kz
Φ0,0(ρ, ϕ)Φ

∗
0,0(ρ

′, ϕ′).

(A.8)
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As a first step, we evaluated the integration over k′z with the residue theorem. Then,
the contributions of n = l = 0 were split off the sum. Finally, we took the far-field
limit z → ∞. The limit only holds if 2n/a2⊥ > k2z , which is guaranteed by the condition
(A.6). With the far-field behavior of the Green’s function we can now consider the
Lippmann-Schwinger equation,

Ψkz ,0,0(r, r
′)

z→∞−−−→
(
eikzz + fho(kz)e

ikzz
)
Φ0,0(ρ, ϕ) (A.9)

where we have introduced the quasi-one-dimensional scattering amplitude

fho(kz) =
m

2i~2kz

∫
R3

d3r e−ikzzΦ∗
0,0(ρ, ϕ)V (r)Ψkz ,0,0(r). (A.10)

The form of the scattering amplitude fho(kz) is very similar to the scattering amplitude
of a truly one-dimensional system (2.39). It describes the scattering processes in the
quasi-one-dimensional system correctly as long as the potential V (r) possesses the same
scattering length as as the actual interatomic potential. For the potential VΛ, we have
ensured this in the section 2.4.1. We evaluate the Born series analog to appendix A.1.
Using the potential (2.45), the entire Born series of the scattering amplitude reads

fho(kz) =
m

2i~2kz
gΛ|HΛ(kz)|2

∞∑
n=0

[
gΛ

∫
R3

∫
R3

d3r d3r′ hΛ(r)Gkz(r, r
′)h∗Λ(r

′)

]n
. (A.11)

The function

HΛ(kz) =

∫
R3

d3r hΛ(r)Φ0,0(ρ, ϕ)e
ikzz (A.12)

is the analog to the function h̃Λ(r) for the given geometry. In addition, we have intro-
duced the short notation

Gkz(r, r
′) = G+

0 (r, r
′, kz, 0, 0). (A.13)

As mentioned previously, the scattering amplitude fho describes the scattering pro-
cesses in one dimension of the system. In a one-dimensional description, the problems
of a delta-potential are absent, as we have seen in 2.3. Thus, we can now take the limit
Λ → 0. The function HΛ becomes

lim
Λ→0

HΛ(kz) =

∫
R3

d3r eikzzΦ0,0(ρ, ϕ)δ(r) = Φ0,0(0) =
1√
πa2⊥

. (A.14)

and the argument of the sum simplifies to

lim
Λ→0

∫
R3

∫
R3

d3r d3r′ hΛ(r)Gkz(r, r
′)h∗Λ(r

′)

= Gkz(0) =
m

~2

∫
R

dk′z
2π

∑
n,l

|Φn,l(0)|2

k2z − k′2z − 2n/a2⊥ + iη
.

(A.15)
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With the use of the geometric series, we obtain the final result for the scattering ampli-
tude

fho(kz) =

(
2i~2a2⊥πkz

mg0
− 2ia2⊥πkz

∫
R

dk′z
2π

∑
n,l

|Φn,l(0)|2

k2z − k′2z − 2n/a2⊥ + iη

)−1

= −

(
1− ikz

(
2~2a2⊥π
mg0

+ 2a2⊥π

∫
R

dk′z
2π

∑
n=1, l

|Φn,l(0)|2

k′2z + 2n/a2⊥ − iη

)
+O(k3z)

)−1

.

(A.16)

In the last step, we separated the terms involving n = l = 0 from the sum. For these
terms, we were then able to perform the integration over kz.
An one-dimensional treatment of this quasi-one-dimensional system by a potential

V (z) = ghoδ(z) has to reproduce the scattering amplitude (A.16). Otherwise the scat-
tering properties of the system are not taken into account properly. If we compare
the scattering amplitude of the one-dimensional delta-potential (2.43) to the quasi-one-
dimensional scattering amplitude (A.16), we obtain an equation for gho,

2~2

mgho
=

2~2a2⊥π
mg0

+ 2a2⊥π

∫
R

dk′z
2π

∑
n=1, l

|Φn,l(0)|2

k′2z + 2n/a2⊥ − iη
. (A.17)

After inserting gΛ=0 and short manipulations, we arrive at

gho =
4π~2as
m

1

πa2⊥

(
1− 4πas

(∫
R3

d3k

(2π)3
1

k2 − iη
−
∫
R

dk′z
2π

∑
n=1, l

|Φn,l(0)|2

k′2z + 2n/a2⊥ − iη

))−1

.

(A.18)

The remaining task is now to evaluate the occurring sums and integrals in equation
(A.18). Let us start with the expression involving the sum over the transverse modes∫

R

dk′z
2π

∑
n=1, l

|Φn,l(0)|2

k′2z + 2n/a2⊥ − iη
. (A.19)

Here, the eigenfunctions of the harmonic oscillator are evaluated at the center of coor-
dinates, where their absolute value can only take two distinct values

|Φn, l(0)|2 =

{
1

πa2⊥
for l = 0

0 for l 6= 0.
(A.20)

Hence, the summation over l vanishes and the n takes only even values

1

πa2⊥

∫
R

dk′z
2π

∑
n=2,4,...

1

k′2z + 2n/a2⊥ − iη
.
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Making use of the residue theorem, we evaluate the integral and introduce a new sum-
mation indexis s′ = n/2,∫

R

dk′z
2π

∑
n=1, l

|Φn,l(0)|2

k′2z + 2n/a2⊥ − iη
=

1

4πa⊥
lim
s→∞

s∑
s′=1

1√
s′
. (A.21)

The expression ∫
R3

d3k

(2π)3
1

k2 − iη
, (A.22)

must be treated with care. Both expressions (A.19) and (A.22) contained the functions
hΛ, which introduced the same high momentum cut off for both expressions simultane-
ously. Thus, to obtain the correct result after taking the limit Λ → 0, we have to make
sure to treat both terms equally. Introducing cylindrical coordinates and performing the
integration over kz yields ∫

R3

d3k

(2π)3
1

k2 − iη
=

1

4π

∫ ∞

0

dkρ.

By substituting

~2k2ρ
m

= ~ω⊥n =
4

a2⊥
s′, (A.23)

we ensure that we can take the same limit for both terms,∫
R3

d3k

(2π)3
1

k2 − iη
=

1

4πa⊥
lim
s→∞

∫ s

0

ds′
1√
s′
. (A.24)

Plugging both terms (A.21) and (A.24) back into the expression for the coupling constant
(A.18), we obtain our final result

gho =
4π~2as
m

1

πa2⊥

(
1− as

a⊥
Cho

)−1

with Cho = lim
s→∞

(∫ s

0

ds′
1√
s′

−
s∑
0

1√
s′

)
,

(A.25)

which is in exact agreement with Olshanii’s result [22].
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B. Ground State Energy

We want to derive the connection between the Green’s function

iG′(k, t2 − t1) = 〈Φint|T
[
ak(t1)a

†
k(t2)

]
|Φint〉

and the ground state energy E. The ground state energy consists of the kinetic energy
Ekin of the particles the interaction energy Eint. Let us start with the connection between
the kinetic energy and the Green’s function. In the following T̂ will denote the kinetic
energy operator. Following the same steps as for the number of particles N in equation
(4.15), we obtain

Ekin = 〈Φint|T̂ |Φint〉 = Ω

∫
R4

d4k

(2π)4
~2k2

2m
iG′(k) eiηk0 .

The evaluation of the interaction energy however is more involved. Consider the field
operators in the Heisenberg picture

ψ(x) = eiH
′t/~ψ(x)e−iH′t/~ = eiK

′t/~ψ(x)e−iK′t/~,

where

K ′ = T̂ − µN̂ ′ +
8∑

j=2

Hj.

The time evolution of the operators in the Heisenberg picture can then be written as

i~
∂ψ(x)

∂t
= [ψ(x), K ′] =

[
ψ(x) ,

8∑
j=2

Hj

]
+

[
ψ(x) ,

∫
R3

d3x′ψ†(x′)
(
T̂ − µ

)
ψ(x′)

]
Multiplying both sides by ψ(x) and integrating over x then gives∫

R3

d3xψ†(x)

(
i~
∂

∂t
− T̂ + µ

)
ψ(x) =

∫
R
d3xψ†(x)

[
ψ(x) ,

8∑
j=2

Hj

]

The evaluation of commutator on the right side is lengthy but straightforward and yields∫
R3

d3xψ†(x)

(
i~
∂

∂t
− T̂ + µ

)
ψ(x) = 2H3 +H4 +H5 + 2H6 +H7 + 2H8.
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The adjoint of the previous equation is∫
R3

d3x

[(
−i~

∂

∂t
− T̂ + µ

)
ψ†(x)

]
ψ(x) = 2H2 +H4 +H5 +H6 + 2H7 + 2H8.

Adding both equations and dividing by two yields the expression

1

2

∫
R3

d3x

(
i~
∂

∂t
− T̂ + µ

)
ψ(x) +

[(
−i~

∂

∂t
− T̂ + µ

)
ψ†(x)

]
ψ(x)

= H2 +H3 +H4 +H + 5 +
3

2
(H6 +H7) +H8

= Hint − n0
∂Hint

∂n0

.

Now, we can take the ground state expectation value and obtain after short manipulation

2 〈Φint|Hint|Φint〉 − n0 〈Φint|
∂Hint

∂n0

|Φint〉

=

∫
R3

d3x lim
x′→x

lim
t′→t+

1

2

[
i~
∂

∂t
− T̂ (x) + µ− i~

∂

∂t′
− T̂ (x′) + µ

]
iG′(x, x′).

Thus, we finally obtain the interaction energy

Eint = 〈Φint|Hint|Φint〉

=
1

2
µN +

1

4

∫
R3

d3x lim
x′→x

lim
t′→t+

[
i~
(
∂

∂t
− ∂

∂t′

)
− T̂ (x)− T̂ (x′)

]
iG′(x, x′),

where we have used

〈Φint|
∂Hint

∂n0

|Φint〉 = µΩ.

Combining the kinetic energy and the interaction energy, we obtain an expression for
the ground state energy

E = Ekin + Eint

=
1

2
µN +

1

4

∫
R3

d3x lim
x′→x

lim
t′→t+

[
i~
(
∂

∂t
− ∂

∂t′

)
− 4T̂ (x)− T̂ (x)− T̂ (x′)

]
iG′(x, x′)

=
1

2
µN +

1

4

∫
R3

d3x lim
t′→t+

[
i~
(
∂

∂t
− ∂

∂t′

)
+ 2T̂ (x)

]
iG′(x, x′)

=
1

2
µN + lim

η→0+

Ω

2

∫
R4

d4k

(2π)4

(
~k0 +

~2k2

2m

)
iG′(k)eik0η.
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