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Secondary Corrector

Apl. Prof. Dr. J. Main



2



Statutory Declaration

I herewith formally declare that I have written and submitted the thesis independently. I did
not use any outside support except for the quoted literature.

I clearly marked and separately listed all of the literature and all necessary sources which I
used for the thesis.

Stuttgart, October 20, 2018. Luka Jibuti

3



4



Contents

Acknowledgements 9

Introduction 11

1 Introduction to Hartree-Fock Approximation For Bosonic System 15

2 One-dimensional Chain of Identical Dipoles 17
2.1 Classical Limit: Polarized and Striped Configurations . . . . . . . . . . . . . . . . 19
2.2 The Mean-field Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Mathieu Equation, Mathieu Functions . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Weak Interaction Limit: q << 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Strong Interaction Limit: D →∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 A Short Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Honeycomb Structure: A Tight-binding Model . . . . . . . . . . . . . . . . . . . . 29
2.7 Perturbation Theory Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Two-dimensional systems of polar molecules 35
3.1 Quadratic Lattice of Dipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Polarized Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.2 Striped Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.3 Checkerboard Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.4 The Mean-field Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.5 A Short Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Triangular Lattice of Dipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 Polarized Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Striped Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 The Mean-field Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Defects in Triangular Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Three-Dimensional Lattice of Water Molecules 57

Conclusion 61

Outlook 63

Appendices 65

A Self-consistent equation for intermediate values of ”q” 67

B Riemann zeta function 71

C triangular lattice of dipoles with one dipole missing 73

D One-Dimensional Chain of Dipoles 77

5



CONTENTS

6



List of Figures

1 Water molecule and SiO4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 A layer of the beryl crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Two dipoles, distance between them being ~Ri,j , interacting with each other . . . . 12

2.1 One-dimensional chain of identical dipoles. . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 V 0

dd (per particle) for polarized ordering as a function of number of dipoles N. . . . 19
2.3 V 0

dd (per particle) for polarized ordering as a function of polarization angle θ. . . . 20
2.4 Polarized ordering of the dipoles in one-dimensional chain. . . . . . . . . . . . . . . 20
2.5 Striped ordering of the dipoles in one-dimensional chain. . . . . . . . . . . . . . . . 20
2.6 V 0

dd for striped ordering as a function of number of dipoles N. . . . . . . . . . . . . 21
2.7 Angular dependence of the even Mathieu function cem(η, q) for m = {0, 1, 2, 3, 4, 5}. 23
2.8 Energy eigenvalues of the Mathieu equation . . . . . . . . . . . . . . . . . . . . . . 24
2.9 Trivial and non-trivial solutions of the self-consistene equation. . . . . . . . . . . . 25
2.10 Energy of the 1D system as a function of ID/~2. . . . . . . . . . . . . . . . . . . . 26
2.11 the phase diagram for one-dimensional chain. . . . . . . . . . . . . . . . . . . . . . 28
2.12 Tight-binding model: delta potentials and wave-functions. . . . . . . . . . . . . . . 29

3.1 Beryl crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Quadratic lattice of identical dipoles . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Polarized configuration for square lattice. . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 The potential V Poldd for the polarized configuration as a function Nm. . . . . . . . . 40
3.5 Striped configuration for square lattice. . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 The potential V Strdd of the striped configuration as a function Nm and φ. . . . . . . 41
3.7 Checkerboard configuration for square lattice. . . . . . . . . . . . . . . . . . . . . . 41
3.8 The potential V Chdd of the checkerboard configuration as a function Nm. . . . . . . 42
3.9 Triangular lattice of identical dipoles. . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.10 Polarized and striped configuration for triangular lattice. . . . . . . . . . . . . . . . 48
3.11 The total interaction V Poldd as a function of Nm and φ. . . . . . . . . . . . . . . . . 49
3.12 The total interaction V Strdd as a function of Nm and φ. . . . . . . . . . . . . . . . . 50
3.13 Vacancies in the triangular lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.14 Clockwise and counterclockwise configurations . . . . . . . . . . . . . . . . . . . . 54
3.15 Topologycal picture of symmetry broken dipoles. . . . . . . . . . . . . . . . . . . . 54

4.1 Single layer of the beryl crystal and three dimensional schematics of the system. . 57
4.2 First honeycomb structure with a single dipole placed on top. . . . . . . . . . . . . 58
4.3 The ground state configuration of the three-dimensional system . . . . . . . . . . . 59

A.1 Coefficients A
(2m)
2k for m = {1, 2, 3} and q = {1, 10} as a function of k. . . . . . . . 68

B.1 Riemann zeta function ζ(n) as a function of n. . . . . . . . . . . . . . . . . . . . . 71

C.1 Vacancies in the triangular lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
C.2 Topological picture of symmetry broken dipoles in three-dimensional system. . . . 75

7



LIST OF FIGURES

D.1 V Totdd as a function of n for fixed value of N for one-dimensional chain. . . . . . . . 78

8



Acknowledgements

I would like the express my immeasurable gratitude towards my supervisor Prof. Hans Peter
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Introduction

Water molecule is the most abundant molecule on Earth [1]. H2O, most commonly appearing
in liquid form (but also in gas and solid state), consists of two hydrogen atoms and an oxygen
atom. Eight positive charges in oxygen nucleus attract all electrons from hydrogen atom, leading
to a deficiency of negative charge around hydrogen atoms. On the contrary, the excess negative
charge is situated close to oxygen atom making it partially negatively charged. Hence the surfaces
of negative and positive charges appear making the water molecule polar. Even though it is
studied extensively, water molecules shows interesting properties when put into nano-cages (or
nano-cavities) due to hydrogen bonding.

Figure 1: Water molecule (lower left) and SiO4(upper right). With red bubbles we represent
oxygen atoms, with blue ones - hydrogen atoms and with the green bubble we show silicon atom.
When one of the O-H bonds from the water molecules points directly at a near oxygen atom the
attraction becomes very strong.

Since the hydrogen atom in water molecule is positively charged, it will interact with atoms
of having valence electrons (thus, with more negatively charged atoms), forming hydrogen bonds.
(see figure (3))).

Even though water molecules has numerous properties, we will focuse on these two and use
them extensively throughout this thesis.

We will explore water molecules confined in the nano-cavities of beryl crystal. Beryl is a
mineral, its chemical formula being Be3Al2Si6O18, composed of beryllium aluminum silicate and
belongs to the family of the hexagonal crystals. In the Figure (2) we see a horizontal cut of
the general three-dimensional crystal. the layer shown here is perpendicular to crystallography
c-axis. The beryl crystal consists of SiO4 (represented in the figure as yellow triangles), forming
a six-membered rings (or as we refer to them as honeycomb structures ) creating nano-cavities.
These nano-cavities sit on top of each other forming channels along the c-axis. In this channels
there are bottlenecks of diameter 2.1 Å, where one can place Alkali ions (Na or K) [2], in between
two cavities of diameter 5.1 Å [2], where different molecules (H2O or CO2) cam be embedded [3].
Since the approximate diameter of water molecule is 2.75 Å it is possible to place single water
molecules inside the nano-cavity. Water molecules, rotating inside the cavities form a hydrogen
bonds between oxygen atoms of SiO4. Since there are six oxygen atoms in the ring forming the
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Figure 2: A layer of the beryl crystal [2]. Yellow triangles represent SiO4 molecules. The nano-
cavities created by this rings of SiO4 molecules can host single water molecules.

honeycomb structure, the interaction potential has to have the following symmetry property:

U

(
φ+

π

3

)
= U(φ) , (1)

where φ is the rotational angle of the dipole moment of the water molecule. The strength of the
potential is determined by the strength of the O-H bonds between water molecule and SiO4.

The goal of this research is to do a theoretical investigation of the phase diagram of water
molecules embedded in the nano-cavities of beryl crystal. For simplicity, we will treat water
molecules as point particles having the dipole moment ~d. Interaction between two dipoles i and
j (see Figure (3)), distance between each other being |~Rij | >> |~ri|, |~rj |, where ~r is the distance
between opposite charges in a dipole, can be written as follows:

V ijdd =
1

4πε0|~Rij |3

{
~di · ~di − 3

(
~Rij · ~di

)(
~Rij · ~dj

)
|Rij |2

}
. (2)

Here ε0 ≈ 8.85 × 10−12Fm−1 is the vacuum permittivity. ~d = −e~r is the dipole moment of a
particle.

We will investigate quantum phase transitions appearing in dipole systems in one, two and
three-dimensions and describe the phase diagram for all these situations. The most general form

Figure 3: Two dipoles, distance between them being ~Ri,j , interacting with each other. The green
dots represent positively charged protons, whereas red dots represents negatively charged electrons.
~ri(~rj) is the distance between the proton and the electron of dipole ”i”(”j”). It is assumed that

|~Rij | >> |~ri|, |~rj |.

of the Hamiltonian for such systems can be written as follows:

Ĥ =

N∑
i

Ĥm +
1

2

∑
i,j

V i,jdd + U(θ) . (3)

Here Ĥm is the kinetic energy of the system, V m,ndd and U(θ) are given in eq.(2) and eq.(1). Because
of the long range nature of the dipole-dipole interaction, calculations for higher-dimensional sys-
tems become complicated. Hence, in order to understand the physical aspects of multi-dimensional
systems, we have to start our investigation with the simplest model.

12
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The starting point, Chapter 2, of the thesis is the investigation of the phase diagram for
identical dipoles forming one-dimensional chain. Initially, we will assume that the six-fold potential
U(φ) is weak enough, that we can neglect its effects on the system. Obtaining the classical limit
(section 2.1) for such a system, we will write the mean-field potential (taking into account the
configuration in classical limit) and write the Schrödinger equation (section 2.2). Obtaining the
self-consistent equation we will find the critical point, where the quantum phase transition from
highly disordered to ordered state occurs, and also we will be able to describe the phase diagram.
Afterwards, we will increase the strength of the six-fold potential such, that we will be able use
the tight-binding approach. Assuming the mean-field potential as a perturbation, we will use the
perturbation theory to obtain a new value for the critical point Dcrit. We will also show that the
general phase diagram will remain the roughly the same.

As we move to higher dimensions, the situation becomes more complicated due to the long
range nature of the dipole-dipole interaction. during the research we were able to deduce that
the intuition that we had for the one-dimensional chain was completely impractical for higher
dimensions.

We start dealing with the two-dimensional system by discussing a ”toy model”: quadratic
lattice. Even though this is not the true lattice that water molecules create when they are nested
in the beryl crystal, we believe that the derivation of the Hamiltonian and investigation of the
phase diagram of such a system will be of great importance and will provide a valuable preliminary
background towards the investigation of the real system: triangular lattice.

In Chapter 3 we begin our investigation of the quadratic lattice by writing the classical form
of the dipole-dipole interaction. Observing three different configurations: polarized (3.1.1), striped
(3.1.2) and checkerboard (3.1.3), which have the potential to have the lowest energy, and calculating
the potential energy for each system we will be able obtain the ground state configuration. Using
this knowledge, we will write the potential (per particle) in the mean-field approximation (3.1.4)
and examine the behavior of the system when the fluctuations created by the introduction of
the kinetic energy are strong. Solving the Schrödinger equation and obtaining the self-consistent
equation we are able to obtain the critical point, where the phase transition occurs. Knowing the
overall properties of the phase diagram we will increase the strength of the six-fold potential and
observe the changes in the phase diagram introduced by it.

The work done on the square lattice gives us a necessary background to start our investigation
of the true lattice appearing in the beryl crystal. As depicted in the Figure (), water molecules
inserted in the nano-cavities of the beryl crystal form a triangular lattice. Initially we assume
that the lattice is ideal (every site is occupied with a single water molecule). Using the results
obtained for the quadratic lattice we will examine (see Section 3.2 of Chapter 3) two different
combinations appearing in triangular lattice. These are: polarized (3.2.1), striped (3.2.2). Writing
down the dipole-dipole interaction and comparing the potential energies (per particle) for these
two configurations, we will be able to find the ground state configuration. Knowing this, we will
write the mean-field potential and derive the Schröringer equation. Obtaining the self-consistent
equation we will find the critical point, where the quantum phase transitions occurs. We will also
find that the ground state of dipoles in triangular lattice has a global O(2) rotational symmetry.

In the coarse of the research we asked ourselves: what would happen to the system (either
globally or locally) if the lattice was not ideal, meaning there could exist defects or deficiencies in
the system. In order to observe the changes of the symmetry of the system in the ground state
we will remove a single dipole from the lattice (3.3). Letting the system relax to a ”new” ground
state we will observe that the local symmetry is disturbed.

Investigation, done in Chapter 4, of the ground state properties of dipoles in the three-
dimensional system is trivial knowing the ground state properties of dipoles in the two-dimensional
triangular lattice. One has to picture a three-dimensional system as layers of triangular lattices
put on top of each other. Hence, knowing the ground state orientation of one of the layers from
Chapter 3, we will able to obtain the ground state ordering of the neighboring layers. Moreover,
we find that the ground state configuration for the three-dimensional system is different from the
two-dimensional one.
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We will start our thesis with the short introduction to Hartree-Fock Approximation For Bosonic
System, which will lay a helpful background of the upcoming analysis.
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Chapter 1

Introduction to Hartree-Fock
Approximation For Bosonic
System

Let us assume that the Hamiltonian for the system of N particles is given as follows:

Ĥ =

N∑
m

T̂ (~xm) +
1

2

N∑
m,n

V (~xm, ~xn) . (1.1)

Here T̂ (~xm) is the kinetic energy operator for particle m, and V (~xm, ~xn) is the pair interaction
potential. In the second summation we assume that m 6= n. Let us introduce the following anzatz
for the wave-function of the system:

ψ(~x1, ~x2, ..., ~xN ) = φ(~x1)φ(~x2)...φ(~xN ) (1.2)

We assume that the individual wave-functions describing individual particles are normalized. Let
us calculate the mean value of the total Hamiltonian:

〈ψ|H |ψ〉 = 〈ψ|
N∑
m

T̂ (~xm) |ψ〉+
1

2
〈ψ|

N∑
m,n

V (~xm, ~xn) |ψ〉 . (1.3)

For the first term we will obtain:

〈ψ|
N∑
m

T̂ (~xm) |ψ〉 =

n∑
m

〈φ(~xm)| T̂ (~xm) |φ(~xm)〉

=

N∑
m

∫
d~xmφ

∗(~xm)T̂ (~xm)φ(~xm) . (1.4)

for the interaction term we can write:

〈ψ|
N∑
m,n

V (~xm, ~xn) |ψ〉 =

N∑
m,n

〈φ(~xm), φ(~xn)|V (~xm, ~xn) |φ(~xm), φ(~xn)〉

=
∑
m,n

∫ ∫
d~xmd~xnφ

∗(~xm)φ∗(~xn)V (~xm.~xn)φ(~xm)φ(~xn) . (1.5)

15



CHAPTER 1. INTRODUCTION TO HARTREE-FOCK APPROXIMATION FOR BOSONIC SYSTEM

Plugging eq.(1.4) and eq.(1.5) into the eq.(1.3) for mean value of Hamiltonian, we will obtain:

〈ψ|H |ψ〉 =

N∑
m

∫
d~xmφ

∗(~xm)T̂ (~xm)φ(~xm)

+
1

2

∑
m,n

∫ ∫
d~xmd~xnφ

∗(~xm)φ∗(~xn)V (~xm.~xn)φ(~xm)φ(~xn) . (1.6)

Applying the variational principle to the obtained value of 〈ψ|H |ψ〉, we will end up with the
following one particle equation:

N∑
m

{
T̂ (~xm) +

1

2

∑
n

〈φ(~xn)|V (~xm, ~xn) |φ(~xn)〉
}
φ(~xm) =

∑
m

Emφ(~xm) (1.7)

Hence, we obtained a series of N differential equations describing the system. The Schrödinger
equation for a single particle m will be:

T̂ (~xm)φ(~xm) +
1

2

∑
n

Ṽm,nφ(~xm) = Emφ(~xm) , (1.8)

where:
Ṽm,n = 〈φ(~xn)|V (~xm, ~xn) |φ(~xn)〉 (1.9)

Eq.(1.8) will be very useful in the upcoming chapters.
As said in the introduction, we start our investigation with the one-dimensional chain of iden-

tical dipoles.
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Chapter 2

One-dimensional Chain of
Identical Dipoles

Let us arrange N dipoles such, that they form a one-dimensional chain. This structure is depicted
in Figure (2.1). We will assume that once the dipole is placed in the lattice site it cannot move
anywhere. But we allow each dipole to rotate around the y-axis. Also, we assume that the distance
between neighboring dipoles is ri,i±1 = a.

Figure 2.1: One-dimensional chain of identical dipoles. The distance between two neighboring
dipoles is constant: ri,i]pm1 = a. ”Y ” axis is perpendicular to the paper. We assume that dipoles
can only rotate in ”X − Z” surface.

As seen in eq. (2), each pair of dipoles, for example dipoles i and j interact with each other via
dipole-dipole interaction. Here we write a simplified version of that interaction:

V i,jdd =
1

4πε0z3i,j

(
~di · ~dj − 3(~ei,j · ~di)(~ei,j · ~dj)

)
, (2.1)

where ε0 ≈ 8.85 × 10−12Fm−1 is the vacuum permittivity, and ~ei,j is a unit vector. Notice that
since we are in one-dimension we have omitted a vector sign for zi,j . We will attempt to write the
dipole-dipole interaction in terms of angles of dipoles with regards to z-axis. Using the spherical
coordinates and remembering the restriction that we applied for the dipoles, the first scalar product
in eq.(2.1) can be written as follows:

~di · ~dj = |d|2
(

cos(θi) cos(θj)− sin(θi) sin(θj)

)
= |d|2 cos(θi − θj) . (2.2)

For the second scalar product between the unit vector and the dipole moment, we will have:

(~ei,j · ~di)(~ei,j · ~dj) = |d|2 cos(θi) cos(θj) . (2.3)

Plugging eq.(2.2) and eq.(2.3) into eq.(2.1) we will obtain:

V i,jdd =
|d|2

4πε0z3i,j

(
cos(θi − θj)− 3 cos(θi) cos(θj)

)
=

Cdd
4π|j − i|3

(
sin(θi) sin(θj)− 2 cos(θi) cos(θj)

)
. (2.4)

17



CHAPTER 2. ONE-DIMENSIONAL CHAIN OF IDENTICAL DIPOLES

Here Cdd = |d|2/ε0a3 is the dipole-dipole interaction strength. The potential energy of dipole i
due to interactions between all remaining N-1 dipoles in the system is a sum over all values of j
except j = i. Thus we can write:

V idd =
Cdd
4π

∑
j 6=i

1

|j − i|3

(
sin(θi) sin(θj)− 2 cos(θi) cos(θj)

)
. (2.5)

Before we write the total Hamiltonian of the system let us look at the kinetic energy (T) of the
system. We have to remember that dipoles have only one degree of freedom: thy can rotate around
the y-axis. In general the kinetic energy in spherical coordinates can be written:

T̂ = − ~2

2µ
∇2 = − ~2

2µ

{
1

r

∂2

∂r2
+

1

r2 sin(φ)

∂

∂φ

(
sinφ

∂

∂φ

)
+

1

r2 sin2 φ

∂2

∂θ2

}
,

where µ is the reduced mass of the dipole (for our case µ is the reduced mass of the water molecule)
and r is the length of the dipole moment. Since r and φ are considered constant (φ = π/2), the
kinetic energy operator can be simplified. Thus the Hamiltonian for the Total system will be as
follows:

Ĥ = −~2

2I

∑
i

∂

∂θ2i
+
Cdd
8π

∑
i

∑
j 6=i

1

|j − i|3

(
sin(θi) sin(θj)− 2 cos(θi) cos(θj)

)
. (2.6)

Knowing this, in the beginning we will look at the system in the classical limit: we will assume
that the kinetic energy (T) is smaller than the potential energy (V) such, that the fluctuations
created by the kinetic energy can be neglected.

From here on, we will do all calculations assuming that the system is in thermodynamic limit,
meaning that the total number of dipoles N →∞.

18



2.1. CLASSICAL LIMIT: POLARIZED AND STRIPED CONFIGURATIONS

2.1 Classical Limit: Polarized and Striped Configurations

Let us first look at the classical picture (or the classical limit) and try to obtain the minimum
energy configuration using the potential energy in eq.(2.5). Let us assume that for some reason the
system chooses the polarized configuration, meaning that for all values j (including j = i): θj = θ.
Then V idd in eq.(2.5) will become:

V idd =
Cdd
4π

∑
j 6=i

1− 3 cos2(θ)

|j − i|3
. (2.7)

Notice here that summation over j takes both negative and positive values of j. Since we are
dealing with the thermodynamic limit (N → ∞), we can argue that it becomes irrelevant which
dipole i we are talking about. If our system was finite, calculations of the potential energy, and
thus the calculations of the ground state configuration, would strongly depend on the location of
the dipole in the system: on the edges of the system the behavior of the dipoles would be vastly
different from that of the dipoles placed in the center of the system. Since the system is infinite,
every dipole will share the same properties. Thus, for simplicity we can assume that i = 0 and
re-write the potential in the following way:

V 0
dd =

Cdd
2π

∑
j>0

1− 3 cos2(θ)

j3
=
(
1− 3 cos2(θ)

)Cdd
2π

ζ(3) , (2.8)

where ζ(n) is the Riemann zeta function (see Appendix B).
In eq.(2.8) we used the following property:∑

j<0

+
∑
j>0

= 2
∑
j>0

.

Let us minimize the potential in eq.(2.8). The first derivative with regards to θ will give:

d

dθ
V 0
dd =

3Cdd
2πζ(3)

sin(2θ) . (2.9)

Figure 2.2: V 0
dd (per particle) for polarized ordering as a function of number of dipoles N. Here we

let Cdd
2π = 1.

Thus we will have the following solutions:

θ = nπ; or θ = n
π

2
, (2.10)

where n = {0, 1, 2, ...}. Doing the second order derivative of V 0
dd, we will arrive at:

d2

dθ2
V 0
dd =

3Cdd
πζ(3)

cos(2θ) . (2.11)
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CHAPTER 2. ONE-DIMENSIONAL CHAIN OF IDENTICAL DIPOLES

Plugging the results in eq.(2.11) we will have:

d2

dθ2
V 0
dd

∣∣∣∣
θ=nπ

=
3Cdd
π

ζ(3) > 0 and
d2

dθ2
V 0
dd

∣∣∣∣
θ=nπ2

= −3Cdd
π

ζ(3) < 0 , (2.12)

Hence, we see that if all dipoles are polarized with polarization angle θ, the minimization of
the energy requires that θ = nπ. The potential for θ = 0 can be written as follows:

Figure 2.3: V 0
dd (per particle) for polarized ordering as a function of number of dipoles polarization

angle θ. Here we let Cdd
2π = 1.

V Poldd = −Cdd
π
ζ(3) ≈ −1.202

Cdd
π

. (2.13)

In the figure bellow we can see how the system is ordered in classical limit. The Figure (2.2) shows

Figure 2.4: Polarized ordering of the dipoles in one-dimensional chain.

the minimum value of potential V 0
dd (per particle) as a function of N . In the figure we assume that

Cdd/2π = 1. Notice the Figure (2.3). Here we have plotted the potential energy (per particle)
for the polarized configuration. We see two minimums appearing in the system. The left is for
θ = 0 (during plotting we have shifted θ with −π/2) and the right is for θ = π. Since these
two configurations have exactly the same energy, we argue that we have a spontaneous symmetry
breaking in the system: the system will choose either θ = 0 or θ = π/2 configuration.

One can also think about other ordering that might appear in the system. In particular, the
striped ordering (see Figure (2.5)). Mathematically it can be defined as follows:

θi+m = θi +mπ → cos(θi+m) = (−1)m cos(θi) . (2.14)

For this case the total interaction potential V 0
dd will become (see eq.(2.5)):

Figure 2.5: Striped ordering of the dipoles in one-dimensional chain.

V 0
dd =

Cdd
2π

∑
j>0

(−1)j
1− 3 cos2(θ)

j3
. (2.15)
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2.2. THE MEAN-FIELD APPROXIMATION

Figure 2.6: V 0
dd for striped ordering as a function of number of dipoles N. Here we let Cdd

2πa3 = 1

Doing the energy minimization (same steps that we did above) we find that minimum energy
requires that θ = nπ. The potential for θ = 0 is as follows:

V Strdd =
Cdd
2π

∑
j>0

(−1)j
1

j3
≈ −0.902

Cdd
2π

. (2.16)

Figure (2.6) shows the minimum value potential for the stripe orientation (per particle) as a
function of N . In the figure we assume that Cdd/2π = 1.

2.2 The Mean-field Approximation

In the previous section we have obtained that in the classical limit (T < V) all dipoles forming
a one-dimensional chain are polarized along (or anti-parallel) to z-axis. Let us now increase
the kinetic energy. By doing so all dipoles will start to oscillate around the minimum energy
configuration. As the kinetic energy of the each dipole further increases, the oscillations become
stronger and we have to observe that the ordering established in classical limit gets destroyed,
indicating the existence of the quantum phase transition. In order to observe this transition, we
will do the following. We will write the potential using the mean-field approximation (see Chapter
1) and assuming that the kinetic energy is larger than the potential energy we will write and solve
the Schr”odinger equation. First we will attempt to write the dipole-dipole interaction in the
mean-field approximation. Using eq.(1.7) we will have:

〈ψj |V i,jdd |ψj〉 =
Cdd

8π|j − i|3

(
sin(θi) 〈ψj | sin(θj) |ψj〉 − 2 cos(θi) 〈ψj | cos(θj) |ψj〉

)
. (2.17)

Here |ψj〉 is the wave-function of the dipole j in the ground state. Taking into the ground state
ordering for the classical limit, we assume that:

sin(θj)→ 〈sin(θj)〉 = 0 and cos(θj)→ 〈cos(θj)〉 = ∆ . (2.18)

Using this potential felt for the dipole i = 0 in eq.(2.6) can be re-written as follows:

Vdd = −Cdd
8π

∆ cos(θ)ζ(3) . (2.19)

Thus, the Hamiltonian for a single dipole can be written as follows:

Ĥ = −~2

2I

d2

dθ2
−D∆ cos(θ) , (2.20)
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CHAPTER 2. ONE-DIMENSIONAL CHAIN OF IDENTICAL DIPOLES

where:

D =
Cdd
8π

ζ(3) (2.21)

Writing the Schrödinger equation, we will have:

−~2

2I

d2

dθ2
ψ(θ)−D∆ cos(θ)ψ(θ) = Eψ(θ) . (2.22)

Introducing a new variable θ = 2η, we can re-write our equation as follows:

−~2

8I

d2

dη2
ψ(η)−D∆ cos(2η)ψ(η) = Eψ(η) . (2.23)

Multiplying both sides of the eq.(2.23) by −8I/~2 and introducing the following notations:

ε =
8IE

~2
and q =

4ID

~2
∆ , (2.24)

we will have:
d2

dη2
ψ(η) +

(
ε+ 2q cos(2η)

)
ψ(η) = 0 . (2.25)

Before we continue lets look at the properties of the wavefunction. Let us shift the angle η by
η → η + π. Since cos(2η + 2π) = cos(2η), we will have:

ψ(η + π) = ψ(η) (2.26)

Since we know how the equation for our system looks like (see eq.(2.25)), we can start a head-on
calculation of the equation. On the other hand one can notice that this equation is the same as
the Mathieu equation. Hence, before we continue solving eq.(2.25), let us see the properties of the
Mathieu equation.
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2.3 Mathieu Equation, Mathieu Functions

In [5] and [6], Mathieu equation is written as follows (20.1.1 in [5]):

d2

dη2
ψ(η) +

(
a− 2q cos(2η)

)
ψ(η) = 0 (2.27)

Here a, q > 0 are constants and η runs from zero to π. It is easy to notice that the Mathieu
equation itself has a periodicity of π: eq.(2.27) is invariant under the trivial shift of the variable η
by angle π: ψ(η + π) = ψ(η).

0 20 40 60 80
1.0

0.5

0.0

0.5

1.0

ce
r

ce0
ce1
ce2
ce3
ce4
ce5

Figure 2.7: Angular dependence of the even Mathieu function cem(η, q) for m = {0, 1, 2, 3, 4, 5}.
During plotting these functions we assumed that q = 1.

In general, Mathieu equation has four series of distinct periodic solutions, two of them being
even and two - odd. These solutions, generally called as Mathieu functions, are given as follows:

ce2m(η, q) =

∞∑
r=0

A
(2m)
2r cos(2rη); ce2m+1(η, q) =

∞∑
r=0

A
(2m+1)
2r cos

(
(2r + 1)η

)
, (2.28)

se2m+1(η, q) =

∞∑
r=0

B
(2m+1)
2r sin

(
(2r + 1)η

)
; se2m+2(η, q) =

∞∑
r=0

B
(2m+2)
2r sin

(
(2r + 2)η

)
.

(2.29)

Coefficients A
(2m)
2r , A

(2m+1)
2r and B

(2m+1)
2r , B

(2m+2)
2r , also called the Fourier coefficients of the

Mathieu functions, are functions of parameter q. In the Figure (2.7) we show the angular depen-
dence of the even Mathieu function cem(η, q) for m = {0, 1, 2, 3, 4, 5}. For each plots we assumed
that q = 1. In general, solutions of the Mathieu equation are normalized such that:∫ 2π

0

dη|ψ(η)|2 = π . (2.30)

The eigenvalues of the above equation are usually denoted as follows: a2m, a2m+1, b2m, b2m+1.
They are generally referred as the characteristic values. These characteristic values are the func-
tions of q, and they are given in the forms of infinite series (see 20.2.25 in [5]). As an example,
we give the formula for a0:

a0(q) = −q
2

2
+

7q4

128
− 29q6

2304
+ ... . (2.31)

In the Figure (2.8) we have plotted the lowest energy eigenvalues a0, a1 and b1, b2 of the
Mathieu equation. From the figure it is trivial to deduce that a0 is the lowest energy eigenvalue.

23



CHAPTER 2. ONE-DIMENSIONAL CHAIN OF IDENTICAL DIPOLES

This eigenvalue corresponds to the even periodic Mathieu function ce0, which is represented as a
continuous red line in Figure (2.7).

Before we continue with our equation, let us give one more property of the Mathieu functions.
This property will be very useful in the following sections. If we make a following shift of the
variable in eq.(2.27):

η → ±
(
π/2± η

)
, (2.32)

we can re-write the Mathieu equation as follows (see 8.651 in [6]):

d2

dη2
ψ(η) +

(
a+ 2q cos(2η)

)
ψ(η) = 0 . (2.33)

Then, Mathieu functions will transform accordingly:

ce2m(η, q) = (−1)mce2m

(
π

2
− η, q

)
; ce2m+1(η, q) = (−1)mce2m+1

(
π

2
− η, q

)
, (2.34)

and

se2m+1(η, q) = (−1)mse2m+1

(
π

2
− η, q

)
; se2m+2(η, q) = (−1)mse2m+2

(
π

2
− η, q

)
. (2.35)

Hence, we know that the lowest energy eigenvalue for the Mathieu equation (2.27) is a0 with
wave-function ce0(η, q). and from eq.(2.34) we know how the wave-functions are transformed (see
eq.(2.33)).

0 1 2 3 4 5
q
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2
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2
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a r
/b

r

a0
a1
a2
b1
b2

Figure 2.8: Four energy eigenvalues of the Mathieu equation (see eq.(2.27)). a0 and a1 are the
eigenvalues for the eigenvector ce0 and ceq, whereas b1

Thus, using the knowledge obtained for Mathieu equation and Mathieu functions we can con-
tinue solving the Schrödinger equation.
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2.4 Weak Interaction Limit: q << 1

Knowing all necessary properties of the Mathieu equation, we can start solving our Schrödinger
equation:

d2

dη2
ψ(η) +

(
ε+ 2q cos(2η)

)
ψ(η) = 0 . (2.36)

In order to observe the quantum phase transition, as we discussed earlier, we have to assume
that T > V, where T represents the kinetic energy of a dipole and V - the mean-field potential.
Mathematically this assumption is the same as assuming:

q << 1 .

As it turns out, for q<< 1 we can expand the ground state wave-function ψ0(η) of the system
as a power series in q. Including only terms up to the second order in q, we can write:

ψ0(η) =
1√
π
ce0

(
π

2
η, q

)
=

1√
2π

(
1 +

q

2
cos(2η) +

q2

32

(
cos(4η)− 2

))
(2.37)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

2.0

2.5
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∆ 6= 0

Dcrit =
~2

I

Figure 2.9: Trivial (red crosses) and non-trivial (blue balls) solutions for the self-consistent equation
(2.41). We see that at D = ~2/I there is a phase transition from disordered phase to ordered phase.

In order to obtain the self-consistent equation, we have to calculate ∆ = 〈ψ0| cos 2η |ψ0〉. We
will have:

〈cos(2η)〉 =
1

2π

∫ π

0

dη cos(2η)

(
1 +

q

2
cos(2η) +

q2

32

(
cos(4η)− 2

))2

=
1

2π

∫ π

0

dη cos(2η)

(
1 + q cos(2η) +

q2

4
cos2(2η) +

q2

16

(
cos(4η)− 2

))
,(2.38)

where we kept only the first and the second orders of q. Doing the integration, we will obtain:

〈cos(2η)〉 =
q

4

(
1− 3q2

64

)
. (2.39)

Now, remember that:

∆ = 〈cos(2η)〉 =
q~2

4ID
, (2.40)
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Thus, we will obtain:

q3 = q
64

3

(
1− ~2

ID

)
. (2.41)

Eq.(2.41) is the self-consistent equation for q. It is clear that this equation has both trivial and
non-trivial solutions. The trivial solution is q = 0 for any value of D, where the non-trivial is:

q2 =
64

3

(
1− ~2

ID

)
⇒ q = ±8

√
1

3

(
1− ~2

ID

)
(2.42)

From the second equality in eq.(2.42) it is clear that when:

D <
~2

I
, (2.43)

q in eq.(2.42) becomes a complex number. Since we have a requirement that parameter q is real
and positive, eq.(2.41) for D < ~2/I will only have the trivial solution:

q = 0 ⇒ 〈cos(2η)〉 = 0 . (2.44)

Before we continue let us stop here and discuss the obtained result. So far we have found that for
D < ~2/I there exists a solution where 〈cos(2η)〉 = 0. This means that all dipoles in the system
on average have random orientation. We will call this state a highly disordered state, pointing out
that the orientation of one dipole is not affected by the orientation of another. Thus, one can
argue that there exists a local (and also a global) O(2) rotational symmetry in the system.

Figure 2.10: energy of the system as a function of ID/~2, for both trivial and non-trivial solution.
We see that after the phase transition happens the non-trivial solution has the lowest energy,
leading that for D > Dcrit the ground state is characterized with 〈cos(2η)〉 6= 0.

Now, when D > ~2/I, both trivial and non-trivial solutions exist (see eq.(2.42)). In order to see
which of the solutions for D > ~2/I gives the correct behavior of the ground state of the system
we have to calculate the energy of the system. From eq.(2.24) we know that:

E =
~2ε
8I

=
~2a0
8I

, (2.45)

where a0 is given by eq.(2.31). Thus we will have:

E = − ~2

16I
q2 (2.46)
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For trivial solution it is clear that E = 0 for any value of D. For non-trivial solution we will
have:

E = −4~2

3I

(
1− ~2

ID

)
(2.47)

It is obvious from eq.(2.47) that the energy for the non-trivial solution has the lower value than
for the trivial solution for D > ~2/I. This can be seen in figure (2.10). With red crosses we have
represented the energy of the system for trivial solutions, with blue balls - energy for non-trivial
solution. We see that for D < Dcrit energies for both solutions coincide. Thus for D < Dcrit the
system will choose the highly disordered state. After crossing the phase transition point:

Dcrit =
~2

I
, (2.48)

which is two times the kinetic energy, we see that the system starts to order itself: ∆ 6= 0. We know
from the classical limit (one can argue that in classical limit D →∞) dipoles are polarized along
z-axis: ∆ = 1. For the sake of completeness and in order to see whether the MF approximation
is correct, we will solve the Schrödinger equation for the limit when the potential energy of the
system dominates over the kinetic energy. Mathematically this is the same as writing: D →∞.

2.5 Strong Interaction Limit: D →∞
Let us examine the strong interaction limit. As we mentioned earlier this is the limit when potential
energy of the system dominates over the kinetic energy. First of all, let us re-write the initial
Hamiltonian of the system:

Ĥ = −~2

2I

d2

dη2
−D∆ cos(2η) . (2.49)

It is clear from the equation that the minimum of the potential is reached when η = 0. Hence,
for large interaction limit, dipoles will oscillate around the potential minimum.

Taylor expanding the potential around its minimum and plugging into eq.(2.25), we will arrive
at the following equation:

d2

dη2
ψ(η) +

(
ε
′
− 4qη2

)
ψ(η) = 0 , (2.50)

where ε
′

= ε+ 2q is the rescaled energy. Eq.(2.50) has the same form as the equation for harmonic
oscillator. It is obvious that the ground state wave-function for our system will be the ground
state wave-function of the harmonic oscillator:

ψ0(η) =

(
2
√
q

π

)1/4

e−
√
qη2 . (2.51)

Knowing this, it is trivial to calculate the value of ∆. We will have:

〈1− 2η2〉 = 1− 2

(
2
√
q

π

)1/2 ∫ π

0

dηe−2
√
qη2η2 = 1−

(
2
√
q

π

)1/2 ∫ π

−π
dηe−2

√
qη2η2 . (2.52)

Since D → ∞ (or it is the same as assuming that q → ∞), the exponent in the integral in
eq.(2.52) will decay rapidly before reaching its boundaries. Hence, we can change the integration
limits to ±∞ and argue that the introduced error will be so infinitesimally small, that we can
safely neglect it. Thus, the integral will become a Gaussian integral:∫ +∞

−∞
dηe−2

√
qη2η2 =

√
π

32

1

q3/4
(2.53)

Plugging eq.(2.53) in eq.(2.52) we will obtain:

〈1− 2η2〉 = 1−
(

2
√
q

π

)1/2√
π

32

1

q3/4
= 1− 1

4
√
q

. (2.54)
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Since we are in the limit of D → ∞ (or we can also say q → ∞) the second term in eq.(2.54)
will become zero, leading to:

∆ = 〈1− 2η2〉 = 1 , (2.55)

meaning that for the strong interaction limit on average all dipoles will have η = 0 orientation.
Since this is the same result that we obtained from the classical limit, we can say that the mean
field approximation used in the previous chapter is correct.

Let us make a short summary of our findings before moving on.

2.5.1 A Short Summary

Investigating the one-dimensional chain of identical dipoles interacting with each other via a long-
range dipole-dipole interaction, we have obtained that in the classical limit the system prefers
polarized orientation: all dipoles are polarized either along the z-axis or anti-parallel to it. Our

Figure 2.11: The phase diagram for the one-dimensional chain of identical dipoles interaction with
each other via a long-range dipole-dipole interaction. For D < Dcrit we have highly disordered
phase. D = Dcrit marks the quantum phase transition point. For D > Dcrit the system starts to
order itself.

assumption, that the increase of the kinetic energy leads to the breaking of the ground state
ordering, was correct. In the weak interaction limit (T > V) the system is in highly disordered
phase. We also found the critical point Dcrit, where the quantum phase transition to ordered phase
occurs.

In what follows, we give the explanation of the physics governing this system. Let us remember
how the parameter D was introduced:

D =
Cdd
4π

ζ(3), where Cdd =
|d|2

ε0a3
.

Here |d| is the dipole moment (of water molecule) and ε0 ≈ 8.85×10−12Fm−1. Hence, a - being
the distance between nearest neighbors - is the parameter that can be changed. Knowing this,
the phase diagram represented in the Figure (2.11) can be explained in the following way: When
identical dipoles are placed in the one-dimensional lattice such that the distance between nearest
neighbors is: a > acrit (this corresponds to D < Dcrit), the strength of the dipole-dipole interaction
is weak, leading to the kinetic energy dominating over potential energy. This allows dipoles to
have random orientation, thus ∆ = 0. If we now shrink our system, or place the dipoles close to
each other such that a < acrit (this corresponds to D > Dcrit) the strength od the dipole-dipole
interaction becomes dominant over the kinetic energy and the dipoles begin to align themselves
along (or anti-parallel) to z-axis.

The only question that is kept unanswered is: what happens to the system of one-dimensional
dipoles when the strength of the six-fold potential U(θ) is increased. We will start dealing with this
problem now.
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2.6 Honeycomb Structure: A Tight-binding Model

In the previous sections we have always assumed that the potential created by the six membered
ring of SiO4 was so weak that its influence on the system could have been be neglected. This
is why dipoles were able to rotate freely on any angle around y-axis. Now we make an opposite
assumption. We assume that the potential created by this ring is strong. In the introduction, we
have specified that the potential has the π/3 rotational symmetry, Hence, we can assume that the
potential created by the honeycomb structure can ve written as a sum of six Dirac-delta functions:

V (θ) = −ε
6∑

m=1

δ

{
π

3
(m− 1)− θ

}
. (2.56)

We can thus argue, that the dipoles can arrange themselves at these following angles:

θm =

{
0;
π

3
;

2π

3
;π;

4π

3
;

5π

3

}
. (2.57)

In eq.(2.56) ε is the strength of the potential. The potential U(θ) is shown in the Figure (2.12).
It is obvious that, since the dipole is constantly rotating inside the honeycomb structure, we have
the periodic boundary condition.

Before we continue let us be sure that this potential has a π/3 rotational symmetry. Shifting
θ → θ + π/3, we will obtain:

V (θ + π/3) = −ε
6∑

m=1

δ

{
π

3
(m− 2)− θ

}
. (2.58)

Renaming the summation variable m− 1 = m̃, we will obtain:

V (θ) = −ε
6∑

m̃=1

δ

{
π

3
(m̃− 1)− θ

}
, (2.59)

which has the same form as the eq.(2.56), meaning that this potential truly has the π/3 rotational
symmetry.

Figure 2.12: Wave-function of the test particle (Blue) and the delta function potential U(θ) (Red).

In order to see how the addition of the six-fold potential effects the system, let us make the
following thought experiment. Let us place a test particle on the tip of the dipole moment vector.
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This test particle can tunnel from one delta potential to another. Remembering that we have the
periodic boundary condition, we can call each minimum of the potential a lattice site and picture
the six-fold potential U(θ) as a one-dimensional lattice: in the Figure (2.12) we show a unit cell
consisting of six lattice sites (six delta potentials). Hence, the rotation of the dipole moment can
be described with the test particle hopping from one lattice site to another. We can argue that
the wave-function of the test particle is strongly localized on any lattice site (see Figure (2.12)).
Knowing all this, we can use the tight-binding model and write the Hamiltonian of the test particle
in the second quantized form. For this we introduce the angular creation (annihilation) operators
ĉ+m (ĉm), which create (annihilate) the test particle on lattice cite m (m+1). It is clear that
knowing the position of a test particle, we will also know at what angle (relative to quantization
axis) is the dipole rotated.

The Hamiltonian for the test particle hopping from one site to another can be written as follows:

Ĥ = −t
m=6∑
m=1

(
c†mcm+1 + h.c

)
, (2.60)

where t is the hopping amplitude of the test particle. Since we have the periodic boundary
condition: c7 = c1, we can change the upper limit of the sum from m = 6 to m =∞ and write the
Hamiltonian in Fourier space to find the energy eigenvalues. The Fourier transform of the creation
and annihilation operators can be written as follows:

c†m =
1√
2π

∑
k

eikmc†k and cm =
1√
2π

∑
k

e−ikmck . (2.61)

Plugging eq.(2.61) in eq.(2.60) we will obtain:

Ĥ = − t

2π

∑
m

∑
k,k̃

eim(k−k̃)e−ik̃c†kck̃ + h.c.

=
∑
k

E(k)c†kck , (2.62)

where E(k) = −2t cos(k) is the energy of the system. Here we have to remember, that even though
we have treated the system as infinite, parameter k can takes only these six discrete values:

km =

{
0;
π

3
;

2π

3
;π;

4π

3
;

5π

3

}
. (2.63)

Thus we will have the following values energies:

E(0) = −2t; E(π/3) = −t; E(2π/3) = t ,

and
E(π) = 2t; E(4π/3) = t; E(5π/3) = −t .

From the results obtained above it is clear that E(π/3) = E(5π/3) and E(2π/3) = E(4π/3).
This is due to the π/3 symmetry that comes from the potential itself. Since we know how to
describe the dipole centered in the six membered ring of SiO0, it is time to introduce the mean-
field in the system. In eq.(2.20) θ was a continuous variable. Because of the restrictions of the
main potential, we also have to discretized the angle in mean-field potential. Thus we will have:

VMF
dd = −D∆ cos(θm) , (2.64)

which in the second quantized form can be written as:

VMF
dd = −

6∑
m=1

µmc
†
mcm . (2.65)

Here µm = −D∆ cos(θm). In the following chapter we will use the perturbation theory approach
to see how the phase diagram of the one-dimensional chain of dipoles is altered when the potential
created by the ring of SiO4 is increased such that the mean-field can be treated as a perturbation.
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2.7 Perturbation Theory Approach

In the previous chapter we were able to write down the hopping and the mean-field potential
term in the second quantized form. Combining eq.(2.60) and eq.(2.65) we can write the total
Hamiltonian for the system:

Ĥ = −t
6∑

m=1

(
ĉ†mĉm+1 + h.c

)
+

6∑
m=1

µmĉ
†
mĉm . (2.66)

Here we make the assumption: we assume that the strength of the mean-field is weak compared
to the hopping term in eq.(2.66). thus we can treat the mean-field potential as a perturbation in the
system. The wave-function of the unperturbed hopping Hamiltonian in eq.(2.66) can be written
in the matrix form:

|k0〉 = αk


eikθ1

eikθ2

eikθ3

eikθ4

eikθ5

eikθ6

 where αk =
1√
6

. (2.67)

One can easily obtain that the wavefunction |k0〉 is normalized:

〈k0|k0〉 = 1 . (2.68)

In general, when a perturbation is applied, the wave-functions and the energies of the total
system are changed in the following manner:

|n〉 = |n0〉+ q
∑
k 6=n

〈k0|V |n0〉
E0
n − E0

k

|k0〉+ q2
∑
k 6=n

∑
l 6=n

〈k0|V |l0〉 〈l0|V |n0〉
(E0

n − E0
k)(E0

n − E0
l )
|k0〉 , (2.69)

and

En = E0
n + q 〈n0|V |n0〉+ q2

∑
k 6=n

| 〈k0|V |n0〉 |2

E0
n − E0

k

+q3
∑
k 6=n

∑
l 6=n

〈n0|V |l0〉 〈l0|V |k0〉 〈k0|V |n0〉
(E0

n − E0
k)(E0

n − E0
l )

−q3 〈n0|V |n0〉
∑
l 6=n

| 〈n0|V |l0〉 |2

E0
n − E0

l

, (2.70)

where V = − cos(θm) and E0
k = −2t cos(k). Without any loss of generality we can write:

E = 〈ψ(θ)| Ĥ0 |ψ(θ)〉+ q 〈ψ(θ)|V (θ) |ψ(θ)〉
= 〈ψ(θ)| Ĥ0 |ψ(θ)〉 − q 〈ψ(θ)| cos(θm) |ψ(θ)〉 (2.71)

Since the unperturbed hopping Hamiltonian does not depend on q, we can write the following:

dE

dq
= −〈ψ(θ)| cos(θm) |ψ(θ)〉 = −〈cos(θm)〉 (2.72)

31



CHAPTER 2. ONE-DIMENSIONAL CHAIN OF IDENTICAL DIPOLES

Before continuing our calculations, let us calculate the following:

〈k0| cos(θm) |k̃0〉 =
1

6


eikθ1

eikθ2

eikθ3

eikθ4

eikθ5

eikθ6



†
cos θ1 0 0 0 0 0

0 cos θ2 0 0 0 0
0 0 cos θ3 0 0 0
0 0 0 cos θ4 0 0
0 0 0 0 cos θ5 0
0 0 0 0 0 cos θ6





eik̃θ1

eik̃θ2

eik̃θ3

eik̃θ4

eik̃θ5

eik̃θ6


=

1

6

m=6∑
m=1

eiθm
(
k̃−k
)

cos θm (2.73)

Using the eq.(2.73) we will obtain the following:

〈00| cos(θm) |00〉 =
1

6

m=6∑
m=1

cos

{
m− 1

3
π

}
= 0 (2.74)

With this, it is clear to see that the second and the last terms of the eq.(2.70) will give zero.
Hence, we can write:

En = E0
n + q2

∑
k 6=n

| 〈k0|V |n0〉 |2

E0
n − E0

k

+O(q3) (2.75)

The ground state of the Hamiltonian in eq.(2.66) will have the following shift:

E0 = E0
0 −

q2

2t

∑
k 6=n

| 〈k0|V |00〉 |2

1− cos(k)
+O(q3) (2.76)

Doing a derivative over q on the both sides of eq.(2.75), we will obtain:

dE0

dq
= −q

t

∑
k 6=n

| 〈k0|V |00〉 |2

1− cos(k)
+O(q2) (2.77)

Combining eq.(2.72) and eq.(2.77), we will obtain:

〈cos(θm)〉 =
q

t

∑
k 6=n

| 〈k0|V |00〉 |2

1− cos(k)
+O(q2) (2.78)

It is clear to see that one can obtain the same eq.(2.78) starting from the new wavefunctions
|n〉. It will go as follows:

|0〉 = |00〉+
q

2t

∑
k 6=0

〈k0| cos(θm) |00〉
1− cos(k)

|k0〉+O(q2) .

Using this we can write:

〈0| cos(θm) |0〉 =

{
〈00|+ q

2t

∑
k 6=0

〈00| cos(θm) |k0〉
1− cos(k)

〈k0|+O(q2)

}

× cos(θm)

{
|00〉+

q

2t

∑
k̃ 6=0

〈k̃0| cos(θm) |00〉
1− cos(k̃)

|k̃0〉+O(q2)

}

= 〈00| cos(θm) |00〉+
q

2t

∑
k̃ 6=0

〈k̃0| cos(θm) |00〉
1− cos(k̃)

〈00| cos(θm) |k̃0〉

+
q

2t

∑
k 6=0

〈00| cos(θm) |k0〉
1− cos(k)

〈k0| cos(θm) |00〉+O(q2) .

32



2.7. PERTURBATION THEORY APPROACH

Since 〈00| cos(θm) |00〉 = 0, we can write:

〈0| cos(θm) |0〉 =
q

2t

∑
k̃ 6=0

| 〈k̃0| cos(θm) |00〉 |2

1− cos(k̃)
+

q

2t

∑
k 6=0

| 〈00| cos(θm) |k0〉 |2

1− cos(k)
+O(q2)

=
q

t

∑
k 6=0

| 〈00| cos(θm) |k0〉 |2

1− cos(k)
+O(q2) ,

which is the same equation as eq.(2.78).

We now have to remember that:

q =
4ID

~2
∆ =

4ID

~2
〈cos(θm)〉 (2.79)

Thus we will have:
~2q
4ID

=
q

t

∑
k 6=n

| 〈k0|V |00〉 |2

1− cos(k)
(2.80)

Bringing the following notation:

δ =
∑
k 6=n

| 〈k0|V |00〉 |2

1− cos(k)
(2.81)

we will have:

q

(
~2

4ID
− δ

t

)
= 0 (2.82)

From the eq.(2.82) we can deduce that either q = 0 or:

Dcrit =
~2

I

t

4δ
(2.83)

Calculation of the numerical value for δ can be done using eq.(2.73) assuming that |k̃〉 = |00〉.
Hence, finally we will obtain:

Dnew
crit =

~2

I

t

4δ
. (2.84)

Hence, we can observe that the critical point for quantum phase transition is changed and is
depended on the value of hopping parameter t. Thus, the dipoles in the nano-cavities show a
slightly different behavior. First of all, we can say that they are bound by the six-fold potential
of the SiO4: the potential U(θ) restricts them to have only six rotational orientations. When
the mean-field is strong all dipoles are still polarized along or anti-parallel to z-axis. The most
noticeable is the shift of the critical point: the new critical value for D is larger than for the system
without the six-fold potential (assuming that t > 4δ). This is due to the strength of the six-fold
potential U(θ). Since it is a delta potential we have to give a test particle more energy (than it
was needed for the system without this potential), which translates to increasing the strength of
the dipole dipole interaction, in order to make it tunnel from, for example k = π/3 to k = 0.

In the next chapter we will start the investigation of two-dimensional systems.
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Chapter 3

Two-dimensional systems of polar
molecules

As the dimensionality of the system increases calculations become more and more complicated.
This complication is due to the long range nature of the dipole-dipole interaction:

V ∝ 1

r3
,

where r is the distance between two interacting dipoles: during the calculations we have to take
into account large number of dipoles. In the coarse of our research we were able to deduce that the
intuition that we had for the one-dimensional chain was completely impractical for two and three
dimension. Thus we have to do a more rigorous calculations in order to obtain the properties of
the system.

In this chapter we will deal with the two-dimensional systems of polar molecules and investigate
their phase diagrams.

Figure 3.1: The Crystal structure of beryl in the plane perpendicular of the crystallographic c-axis
[2]. the yellow triangles represent the SiO4 molecules. The blue dots are oxygen atoms. The water
molecules embedded in the system form a triangular lattice

First and foremost, we will discuss a toy model : the quadratic lattice of dipoles. In the begin-
ning, as we did for the one-dimensional system, we will investigate the classical (strong interaction)
limit. Choosing three different orderings: polarized (3.1.1), striped (3.1.2) and checkerboard (3.1.3),
we will calculate the energy per particle and comparing with each other we will find the lowest
energy solution. In order to find the quantum phase transition point we will write the Schrödinger
equation using the mean-field approximation. Knowing the phase diagram we will add a six-fold
potential to our system to calculate the shift of the critical point.

As depicted in the Figure (3.1), water molecules embedded in the beryl crystal form a triangular
lattice. Initially we will assume that that the lattice is ideal (every lattice site is occupied with a
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single water molecule). We will examine two different combinations appearing in triangular lattice.
These are: polarized (3.2.1), and striped (3.2.2). Writing down the dipole-dipole interaction and
comparing the potential energies (per particle) for these two configurations, we will be able to find
the ground state configuration. Knowing this, we will write the mean-field potential and derive
the Schröringer equation. Obtaining the self-consistent equation we will be able to find the critical
point, where the quantum phase transitions occurs. We will also find that the ground state of
dipoles in triangular lattice has a global O(2) rotational symmetry.

During the research we asked ourselves: what would happen to the system (either globally or
locally) if the lattice was not ideal, meaning there could exist defects or deficiencies in the system.
In order to observe the changes of the symmetry of the system in the ground state we will will
remove a single dipole from the lattice (3.3). Letting the system relax to a local ground state we
observe how the local symmetry is disturbed.
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3.1 Quadratic Lattice of Dipoles

Let us arrange N dipoles, interacting with each-other via a long-range dipole-dipole interaction,
to form a quadratic lattice. We remind the reader, that during the calculations we will assume
that our system is in thermodynamic limit, meaning that the results obtained will be the bulk
properties of the system. In the Figure (3.2) we show such a system. Two unit vectors â1 and
â2, being perpendicular to each other, span the whole two-dimensional surface. Moving along the
x-axis we change the value of i and moving along y axis we change the value of j. We assume that
the distance between two neighboring dipoles is ri,j/i±1,j±1 = a.

Figure 3.2: Quadratic lattice of identical dipoles. â1 and â2 are unit vectors connecting every
lattice site to each other. We denote dipoles by ”i, j”, where i changes when we move along x-axis
and j changes when we move along y-axis. The distance between two neighboring dipoles is equal
to ri,j/i±1,j±1 = a.

The distance between two dipoles i,j and i+m,j+n, in general, can be written as follows:

~ri,j/i+m,j+n = a
(
mâ1 + nâ2

)
, (3.1)

where

rxi,j/i+m,j+n = am and ryi,j/i+m,j+n = an . (3.2)

The general form of the dipole-dipole interaction between these two dipoles can be written as
follows:

V
i,j/i+m,j+n
dd =

1

4πε0|~ri,j/i+m,j+n|3

(
~di,j · ~di+m,j+m

−3

(
~ri,j/i+m,j+n · ~di,j

)(
~ri,j/i+m,j+n · ~di+m,j+n

)
|~ri,j/i+m,j+n|2

)
. (3.3)

As done in the one-dimensional case, we will write the potential using the spherical coordinates.
We make the following restriction: dipoles are able to rotate in the surface of the lattice. For the
first scalar product we will have:

~di,j · ~di+m,j+n = |d|2 cos

(
θi,j − θi+m,j+n

)
, (3.4)

where θi,j is the angle between x-axis and the dipole moment ~di,j (see Figure (3.2)). For the second
scalar product, appearing in the second part of the eq.(3.3), we will have:

~ri,j/i+m,j+n · ~di,j = a|d|
(
m cos(θi,j) + n sin(θi,j)

)
. (3.5)
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Plugging eq.(3.4) and eq.(3.4) in Vdd, we will obtain:

V
i,j/i+m,j+n
dd =

|d|2

4πε0a2
(
m2 + n2

)3/2{ cos(θi,j) cos(θi+m,j+n)

(
1− 3m2

m2 + n2

)

+ sin(θi,j) sin(θi+m,j+n)

(
1− 3n2

m2 + n2

)
− 3mn

m2 + n2

(
sin(θi,j) cos(θi+m,j+n) + cos(θi,j) sin(θi+,j+n)

)}
, (3.6)

or by simplifying the form of the potential:

V
i,j/i+m,j+n
dd =

−|d|2

4πε0a3
(
m2 + n2

)5/2{(2m2 − n2
)

cos(θi,j) cos(θi+m,j+n)

+
(
2n2 −m2

)
sin(θi,j) sin(θi+m,j+n)

+3mn

(
sin(θi,j) cos(θi+m,j+n) + cos(θi,j) sin(θi+,j+n)

)}
. (3.7)

It is clear from the eq.(3.7), that potential has a π/2 rotational symmetry. Making the following
shift of the angle θ → θ+π/2 (also considering, that for this transformation m→ n and n → -m),
our potential will be invariant:

V
i,j/i+m,j+n
dd

(
θ
)

= V
i,j/i+m,j+n
dd

(
θ +

π

2

)
.

This is also expected due to the geometry of the lattice.
The potential energy of the dipole i,j due to interactions with all other N-1 dipoles can be

obtained by summing eq.(3.7) with m and n:

V i,jdd = −Cdd
4π

∑
m,n

′ 1(
m2 + n2

)5/2{(2m2 − n2
)

cos(θi,j) cos(θi+m,j+n)

+
(
2n2 −m2

)
sin(θi,j) sin(θi+m,j+n)

+3mn

(
sin(θi,j) cos(θi+m,j+n) + cos(θi,j) sin(θi+,j+n)

)}
, (3.8)

In the summation we have excluded the self-interaction term m = n = 0 (we remind the reader
that the summation for both m and n foes from −∞ to∞). Having in our hands the classical form
of the dipole-dipole interaction potential, we can start calculating it for different configurations.
One can argue that there exists numerous configurations for such a system. Since we want to find
the lowest energy solution of the system, we will investigate three different configurations that
have the potential to have the lowest energy. These configurations are: polarized, striped and
checkerboard configuration. We will start with the ’textitpolarized configuration.
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3.1.1 Polarized Configuration

Let us assume that the dipoles arranged in the square lattice are polarized at some angle φ (see
Figure (3.3)). Thus, for our potential in eq.(3.8), for any value of m and n, including m = n = 0,

Figure 3.3: Unit cell of the quadratic lattice. The dipoles are in polarized configuration: θi+m,j+n =
φ for any value of m and n, including m = n = 0.

we have to write:
θi+m,j+n = φ . (3.9)

Hence, we will obtain, that:

V Poldd = −Cdd
4π

∑
m,n

′ 1(
m2 + n2

)5/2{(2m2 − n2
)

cos2(φ) +
(
2n2 −m2

)
sin2(φ)

+3mn sin(2φ)

}
. (3.10)

Now, remember that we are looking at the system which is in thermodynamic limit, meaning
that N →∞. Then it is clear that we can call the dipole i,j (for which we are writing the classical
potential V Poldd ) a central dipole. Of course in thermodynamic limit one can argue that every dipole
can be considered as a central central dipole, but we call dipole i,j central dipole for the sake
of simplicity of the calculations. This means that every other dipole in the system will have the
exactly same property as the dipole i,j. Hence, it is clear that:∑

m,n

′ mn(
m2 + n2

)5/2 = 0 , (3.11)

since here and in eq.(3.10) summation for m and n goes from −∞ to +∞. Using this, our potential
for the polarized state can be simplified into:

V Poldd = −Cdd
4π

∑
m,n

′ 1(
m2 + n2

)5/2{(2m2 − n2
)

cos2(φ) +
(
2n2 −m2

)
sin2(φ)

}

= −Cdd
4π

∑
m,n

′ m2(
m2 + n2

)5/2 . (3.12)

We see from eq.(3.12), that the angular dependence vanishes, meaning that for any infinitesimal
shift of the angle φ of the dipole orientation, the potential V Poldd felt by the dipole i,j will stay
invariant. Thus, for the polarized configuration our system of dipoles has a global O(2) rotational
symmetry.

The Figure (3.4) shows the polarized potential V Poldd as a function of number of dipoles along
x-axis in the system Nm. Here choose Cdd/4πa

3 = 1. We see that for large number of dipoles in
the system (For our calculation we assumed that N = 104) the value of the potential saturates at
around:

vPoldd =
4π

Cdd
V Poldd ≈ −2.241 . (3.13)

Let us now move to the striped configuration.
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Figure 3.4: Potential V Poldd (per particle) for the polarized configuration as a function of number
of dipoles along x-axis: Nm. We have assumed that Cdd/4π = 1.

3.1.2 Striped Configuration

If the dipoles in the square lattice have striped configuration (Figure (3.5)), we can write:

θi+m,j+n = θi,j + nπ . (3.14)

Thus:

cos(θi+m,j+n) = (−1)n cos(θi,j) and sin(θi+m,j+n) = (−1)n sin(θi,j) . (3.15)

Figure 3.5: Unit cell of the quadratic lattice. The dipoles form the striped configuration:
θi+m,j+n = θi,j + nπ, for any value of n, including m = n = 0.

Plugging eq.(3.15) in eq.(3.8) (and also making the following notation: θi,j = φ), we will obtain.
that the potential for dipole i,j for striped configuration is:

V Strdd = −Cdd
4π

∑
m,n

′ (−1)n(
m2 + n2

)5/2((2m2 − n2
)

cos2(φ) +
(
2n2 −m2

)
sin2(φ)

)
(3.16)

Plotting the potential V Strdd as a function of φ revealed that angular dependence also vanishes
(see Figure (3.6b)). Thus we again have a global O(s) symmetry. Plotting V Strdd as a function
of number of dipoles on x-axes Nm, we see, in the Figure (3.6a), that for large value of Nm
(Nm ≈ 100) the value starts to saturate.

We will obtain:

vStrdd =
4π

Cdd
V Strdd ≈ −2.55 . (3.17)
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Figure 3.6: The potential V Strdd (per particle) of the striped configuration as a function Nm (a),
and as a function of dipole orientation φ (b).

3.1.3 Checkerboard Configuration

For the checkerboard configuration (see Figure (3.7)), we assume that nearest neighbors have
opposite orientation:

θi+m,j+n = θi,j + (m+ n)π . (3.18)

Figure 3.7: Unit cell of the quadratic lattice. The dipoles form a striped configuration: θi+m,j+n =
θi,j + (m+ n)π, for any value of m and n, including m = n = 0.

Hence:

cos(θi+m,j+n) = (−1)m+n cos(θi,j) and sin(θi+m,j+n) = (−1)m+n sin(θi,j) . (3.19)

Plugging this in eq.(3.8), we will obtain:

V Chdd = − Cdd
4πa3

∑
m,n

′
(−1)m+n m2(

m2 + n2
)5/2 , (3.20)

where we see again that the angular dependence vanishes. Plotting V Chdd as a function of Nm we
obtain that for large number of dipoles along x-axis (for our calculations we assumed that the total
number of dipoles was N = 900) the value of the potential saturates around a certain value (see
Figure (3.8)):

vChdd =
2πa3

Cdd
V Chdd ≈ −1.645 . (3.21)

3.1.4 The Mean-field Approximation

Let us look at the results that we have obtained: since the potential energy (per particle) for the
striped orientation has the lowest value, we can say that in classical limit the system of dipoles
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Figure 3.8: The potential V Chdd (per particle) of the checkerboard configuration as a function Nm.

arranged in the quadratic lattice will choose the striped ordering in its ground state. Before
continuing our calculation, we want to mention that the analytical calculations done for classical
limit are in perfect agreement with the results obtained in [4] (see Figure (5) in [4])

Now, we let the kinetic energy of each dipole to increase. We can, of course, use the same
argument that we used for one-dimensional system: the oscillations introduced by the kinetic
energy will eventual become strong and will destroy the ground state ordering of the system. In
order to observe this phenomenon and find the phase transition point, we will write the dipole-
dipole interaction potential in the mean-field approximation. We will have:

〈ψm,n|V i,j/i+m,j+ndd |ψm,n〉 = −Cdd
4π

∑
m,n

′ 1(
m2 + n2

)5/2
×

{(
2m2 − n2

)
cos(θi,j) 〈ψm,n| cos(θi+m,j+n) |ψm,n〉

+
(
2n2 −m2

)
sin(θi,j) 〈ψm,n| sin(θi+m,j+n) |ψm,n〉

+ 3mn

(
sin(θi,j) 〈ψm,n| cos(θi+m,j+n) |ψm,n〉

+ cos(θi,j) 〈ψm,n| sin(θi+,j+n) |ψm,n〉
)}

. (3.22)

We remind the reader, that Cdd = |d|2/ε0a3 and in the classical limit the system has the O(2)
rotational symmetry. Hence, the mean-field approximation can be written in the following way:

sin(θi+m,j+n) → 〈sin(θi+m,j+n)〉 = 0 and

cos(θi+m,j+n)→ 〈cos(θi+m,j+n)〉 = (−1)n∆ . (3.23)

Plugging eq.(3.23) into eq.(3.22), we will obtain:

V i,jdd = −Cdd∆
4π

∑
m,n

′ (−1)n(
m2 + n2

)5/2{(2m2 − n2
)

cos(θij) + 3mn sin(θij)

}

= −Cdd∆
4π

∑
m,n

′
(−1)n

(
2m2 − n2

)(
m2 + n2

)5/2 cos(θij) . (3.24)

Here we’ve used the property that:∑
m,n

′
(−1)n

mn(
m2 + n2

)5/2 = 0

We make a following notation:

C =
∑
m,n

′
(−1)n

(
2m2 − n2

)(
m2 + n2

)5/2 ≈ 2.94 (3.25)
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Using this and eq.(3.24) the total Hamiltonian will become:

Ĥ = −~2

2I

∑
i,j

d2

dθ2ij
− Cdd∆

8π

∑
i,j

C cos(θij) . (3.26)

Hence, using the mean-field approximation we were able to write the full Hamiltonian of the
system as a sum of individual Hamiltonians describing single dipoles put in the mean field:

Ĥi,j = −~2

2I

d2

dθ2i,j
− |d|

2∆

8πε0a3
C cos(θi,j) . (3.27)

In what follows we will omit the index i,j. The Schrödinger equation for single dipole put into
a mean-field can be written:

−~2

2I

d2

dθ2
ψ(θ)− Cdd∆

8π
C cos(θ)ψ(θ) = Eψ(θ) , (3.28)

which can also be written as:

ψ′′(θ) +

(
ε+ 2q cos(θ)

)
ψ(θ) = 0 , (3.29)

where

ε = −8I

~2
E and q =

4I

~2
D∆, where D =

Cdd
8π

C . (3.30)

Eq.(3.29) for the quadratic lattice is the same as the eq.(2.25), which was derived for the one-
dimensional chain of dipoles (see Chapter 2). The only difference between these two equations is
the parameter - D - which is re-defined for the square lattice. Since the equation is the same, the
critical value for the parameter D, where the phase transition occurs will be the same:

Dcrit =
~2

I
, (3.31)

leading to:

Ccritdd =
8π

IC
~2 ≈ 8.5

~2

I
(3.32)

When the kinetic energy dominates over the potential energy we know (from the observa-
tions done with one-dimensional chain), that system will be in highly disordered state: ∆ =
〈cos(θi+m,j+n)〉 = 0, and in the classical limit, when the potential energy is the dominant term,
the system will have striped ordering.

3.1.5 A Short Summary

Within this toy model, we did the investigation of identical dipoles arranged into quadratic lattice.
Calculating the dipole-dipole interaction (per particle), represented in eq.(3.8), we obtained that
from three potential minimum energy configurations: polarized, striped and checkerboard the
striped orientation, given by the following property:

θi+m,j+n = θij + nπ ,

has the lowest energy.
Knowing the classical behavior of the system, we wrote the dipole-dipole potential in the mean-

field approximation (see eq.(3.24)), and using it wrote the single-particle Schrödinger equation. It
did turn out, that the equation for the square lattice is the same as for the one-dimensional chain,
the only difference being that the parameter D in eq.(3.29) has to be redefined:

D =
ICdd
8π~2

C .
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With this, we were able to find the critical value for D where the quantum phase transition
from highly disordered ∆ = 0 to ordered ∆ 6= 0 phase occurs. Moreover, since the mean-field
potential has the same form as for the one-dimensional chain, adding the six-fold potential will
lead to the same results:

D
′

crit > Dcrit

In the upcoming section we will start dealing with the lattice structure that is given in the
experiment: we will arrange dipoles in the triangular lattice and investigate it’s phase diagram.
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3.2 Triangular Lattice of Dipoles

Let us assume that the dipoles (water molecules), which are interacting with each other via long-
range dipole-dipole interaction form a triangular lattice. The figure (3.9) shows such kind of a
system. In the figure â1 and â2 are unit vectors, connecting every lattice site to each other, such
that:

â1 · â2 = cos(θr) =
1

2
.

Figure 3.9: Triangular lattice of identical dipoles. â1 and â2 are unit vectors connecting every
lattice site to each other. We denote dipoles by i,j, where i changes when we move along x-
axis and j changes when we move along y-axis. Here θr = π/3, and the distance between two
neighboring dipoles is equal to a .

As we did for the quadratic lattice, we call the dipole i,j central (remember that we again
consider, that the system is in thermodynamic limit). Moving along the x -axis we change the
value of the index i, and moving along y-axis the value of the index j is changed.

The distance between two dipoles i,j and i+m,j+n is given as follows:

~ri,j/i+m,j+n = a
(
mâ1 + nâ2

)
, (3.33)

with:

rxi,j/i+m,j+n = a

(
m+

n

2

)
and ryi,j/i+m,j+n = a

n
√

3

2
. (3.34)

Here a is the distance between two neighboring dipoles. In order to make derivations easier
for the reader, we write the general form of the dipole-dipole interaction (between two dipoles i,j
and i+m,j+n). We will have:

V
i,j/i+m,j+n
dd =

1

4πε0|~ri,j/i+m,j+n|3

(
~di,j · ~di+m,j+m

−3

(
~ri,j/i+m,j+n · ~di,j

)(
~ri,j/i+m,j+n · ~di+m,j+n

)
|~ri,j/i+m,j+n|2

)
. (3.35)

Writing the scalar product of two dipole moments in the first term of the eq.(3.35), we will
have:

~di,j · ~di+m,j+n = |d|2 cos

(
θi,j − θi+m,j+n

)
, (3.36)

where θi,j is the angle between x axis and the dipole moment ~di,j (see Figure (3.9)). We used the
polar coordinate system to derive the scalar product in eq.(3.36) . For the scalar product between

~ri,j/i+m,j+n and ~di,j , appearing in the second term of the eq.(3.35), we will have:

~ri,j/i+m,j+n · ~di,j = rxi,j/i+m,j+nd
x
i,j + ryi,j/i+m,j+nd

y
i,j

= a|d|
{(

m+
n

2

)
cos(θi,j) +

n
√

3

2
sin(θi,j)

}
(3.37)
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Hence, we will have:

(
~ri,j/i+m,j+n · ~di,j

)(
~ri,j/i+m,j+n · ~di+m,j+n

)
= a2|d|2

((
m+

n

2

)
cos(θi,j) +

n
√

3

2
sin(θi,j)

)
×
((

m+
n

2

)
cos(θi+m,j+n) +

n
√

3

2
sin(θi+m,j+n)

)
= a2|d|2

{
cos(θi,j) cos(θi+m,j+n)

(
m+

n

2

)2

+ sin(θi,j) sin(θi+m,j+n)
3n2

4

n
√

3

2

(
m+

n

2

)(
sin(θi,j) cos(θi+m,j+n) + cos(θi,j) sin(θi+m,j+n)

)}
(3.38)

The only thing left, is to calculate |~ri,j/i+m,j+n|. For this we can write:

|~ri,j/i+m,j+n|2 = a2
(
mâ1 + nâ2

)2
= a2

(
m2 + n2 +mn

)
(3.39)

Plugging eq.(3.36), eq.(3.38) and eq.(3.39) in eq.(3.35) for V
i,j/i+m,j+n
dd , we will find:

V
i,j/i+m,j+n
dd =

Cdd
4π|m2 + n2 +mn|3/2

{
cos(θi,j) cos(θi+m,j+n) + sin(θi,j) sin(θi+m,j+n)

− 3

|m2 + n2 +mn|

(
cos(θi,j) cos(θi+m,j+n)

(
m+

n

2

)2)
+ sin(θi,j) sin(θi+m,j+n)

3n2

4
+
n
√

3

2

(
m+

n

2

)(
cos(θi,j) cos(θi+m,j+n)

+ cos(θi,j) sin(θi+m,j+n)

)}
. (3.40)

Simplifying the potential in eq.(3.40), we will obtain:

V
i,j/i+m,j+n
dd =

Cdd
4π|m2 + n2 +mn|3/2

×
{

cos(θi,j) cos(θi+m,j+n)

(
1− 3

(
m+ n

2

)2
|m2 + n2 +mn|

)
+ sin(θi,j) sin(θi+m,j+n)

(
1− 9

4

n2

|m2 + n2 +mn|

)
−3
√

3

2

n
(
m+ n

2

)
|m2 + n2 +mn|

(
sin(θi,j) cos(θi+m,j+n)

+ cos(θi,j) sin(θi+m,j+n)

)}
. (3.41)

The potential of dipole i,j due to the interactions with all N−1 can be obtained by summing
over all values of m and n except m=n=0 (since we do not want to have self-interaction in our
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potential). Thus we can write:

V i,jdd =
∑
m,n

′
V
i,j/i+m,j+n
dd

=
Cdd
4π

∑
m,n

′ 1

|m2 + n2 +mn|3/2{
cos(θi,j) cos(θi+m,j+n)

(
1− 3

(
m+ n

2

)2
|m2 + n2 +mn|

)
+ sin(θi,j) sin(θi+m,j+n)

(
1− 9

4

n2

|m2 + n2 +mn|

)
−3
√

3

2

n
(
m+ n

2

)
|m2 + n2 +mn|

(
sin(θi,j) cos(θi+m,j+n) + cos(θi,j) sin(θi+m,j+n)

)}
,(3.42)

Using eq.(3.42) the total Hamiltonian of the system will be:

Ĥ = −~2

2I

∑
i,j

d2

dθ2i,j
+
Cdd
8π

∑
i,j

∑
m,n

′ 1

|m2 + n2 +mn|3/2{
cos(θi,j) cos(θi+m,j+n)

(
1− 3

(
m+ n

2

)2
|m2 + n2 +mn|

)
+ sin(θi,j) sin(θi+m,j+n)

(
1− 9

4

n2

|m2 + n2 +mn|

)
−3
√

3

2

n
(
m+ n

2

)
|m2 + n2 +mn|

(
sin(θi,j) cos(θi+m,j+n) + cos(θi,j) sin(θi+m,j+n)

)}
(3.43)

Let us first observe the classical limit for this system (T < V). There are numerous configurations
that might exist in this system, but the two configurations: polarized and striped orderings, have
a potential to be the lowest energy configurations. Thus, we have to do an in-depth calculation
for each configuration in order to see which of these two configurations gives the lowest energy.
For polarized configuration, as was introduced in quadratic lattice, we assume that all dipoles are
oriented such that for any i and j:

θi,j = φ (3.44)

For the striped orientation:

if θi,j = φ then θi,j+n = φ+ nπ . (3.45)

Such configurations are shown in Figure (3.10). Let us start our calculations with the polarized
configuration.

3.2.1 Polarized Configuration

Using eq.(3.44) in eq.(3.42), derived in previous section, we will obtain:

V Poldd =
Cdd
8π

∑
m,n

′ 1

|m2 + n2 +mn|3/2

{
cos2(φ)

(
1− 3

(
m+ n

2

)2
|m2 + n2 +mn|

)

+ sin2(φ)

(
1− 9

4

n2

|m2 + n2 +mn|

)
− 3
√

3

2

n
(
m+ n

2

)
|m2 + n2 +mn|

sin(2φ)

}
=
Cdd
8π

∑
m,n

′ 1

|m2 + n2 +mn|3/2

{
1− 3

|m2 + n2 +mn|

(
cos2(φ)

(
m+

n

2

)2

+
3n2

4
sin2(φ) + n

√
3

2

(
m+

n

2

)
sin(2φ)

)}
. (3.46)
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(a) Polarized (b) Striped

Figure 3.10: (a) Polarized configuration for the triangular lattice: θi,j = φ. (b) Striped orientation
where, if θi,j = φ, θi,j+n = φ+ nπ.

Finally, after some simplifications, we will obtain:

V Poldd =
Cdd
8π

∑
m,n

′ 1

|m2 + n2 +mn|3/2

{
1− 3

(
m cos(φ) + n cos

(
φ− θr

))2

|m2 + n2 +mn|

}
, (3.47)

where, as mentioned in Figure (3.9), θr = π/3. From eq.(3.47) it is clear that the potential has the
following property.

Rotating every dipole by π/3 we will arrive:

V Poldd

(
φ+

π

3

)
=

Cdd
8π

∑
m,n

′ 1

|m2 + n2 +mn|3/2

{
1

−3

(
m cos

(
φ+ π

3

)
+ n cos

(
φ− θr + π

3

))2

|m2 + n2 +mn|

}
=

Cdd
8π

∑
m,n

′ 1

|m2 + n2 +mn|3/2

{
1

−3

(
m cos

(
φ+ π

3

)
+ n cos

(
φ
))2

|m2 + n2 +mn|

}
.

Interchanging m with n (and vice versa) we will arrive at the same form of the potential
as in eq.(3.47). This result is evident from the geometrical structure of the lattice: the lattice
itself has a π/3 rotational symmetry.

We argue that there exists a stronger symmetry for system of the polarized dipoles in triangular
lattice. Mainly, we will show here that such as system has an O(2) rotational symmetry. In order
to make it clear for the readers, we will do a following thought experiment. Let us introduce
a cutoff radius rcut such that if a dipole lies outside a circle of radius rcut, it’s interaction with
the dipole in the center of the circle can be neglected. Suppose that we make the cutoff radius
such that the central dipole interacts only with its six nearest neighbors(see Figure (3.10a)). We
will calculate the interaction between the central dipole and its neighbors and afterwards we will
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increase the value of rcut, such that the thermodynamic limit will be preserved. If the central
dipole is denoted as {i = 0, j = 0}, then the neighboring dipoles will be:

{1, 0}; {−1, 0}; {0, 1}; {0,−1}; {1,−1}; {−1, 1} .

From the symmetry of the honeycomb structure, it is obvious that:

V 1,0
dd = V −1,0dd ; V 0,1

dd = V 0,−1
dd ; V 1,−1

dd = V −1,1dd . (3.48)

1 2 3 4 5 6

ϕ
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-4

-2

0

V

(a) V Pol
dd (φ) (b) V Pol

dd (N)

Figure 3.11: The total interaction V Poldd (per one particle) for polarized configuration as a function
of angle φ(a) and the total number of dipoles N(b) for the polarized configuration.

Using eq.(3.47), we can calculate the potential felt by the central dipole. We will obtain:

V 1,0
dd =

Cdd
8π

(
1− 3 cos2(φ)

)
; V 0,1

dd =
Cdd
8π

(
1− 3 sin2

(
φ+

π

6

))
, (3.49)

and

V 1,−1
dd =

Cdd
8π

{
1− 3

(
cos(φ)− sin

(
φ+

π

6

))2}
. (3.50)

The total potential for dipole i,j will be the sum of there three interactions (multiplied by two):

V totaldd = 3
Cdd
4π

{
sin2(φ)− sin2

(
φ+

π

6

)
−
(

cos(φ)− sin

(
φ+

π

6

))2}
= −3

Cdd
8π

(3.51)

From the eq.(3.51) we see that the angular dependence vanishes. We can now increase the
cutoff radius rcut such that more dipoles will appear inside the circle, meaning that the number of
interacting dipoles N will increase. We observe that the overall value of V Poldd in eq.(3.47) decreases
as the value of Nm, where Nm is the number of dipoles along x-axis, increases (see Figure (3.11b)).
But the potential is always independent of the angle of polarization φ (see Figure (3.11a)). Notice
that N = N2

m. Hence, we can say that the polarized dipoles have the global O(2) rotational
symmetry. Assuming that dipoles are polarized at angle φ = π/2, we can write the following final
form of the dipole-dipole interaction:

V Pold =
Cdd
8π

∑
m,n

′ 1

|m2 + n2 +mn|3/2

(
1− 3

4

n2

|m2 + n2 +mn|

)
≈ −2.72

Cdd
8π

. (3.52)

Now let us move onto the striped orientation.
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3.2.2 Striped Configuration

For the striped orientation, as shown in the eq.(3.45):

cos(θi,j+n) = (−1)n cos(φ) and sin(θi+m,j+n) = (−1)n sin(φ) , (3.53)

for any value of n. Plugging this in eq.(3.42), we will obtain:

V Strdd =
Cdd
8π

∑
m,n

′ (−1)n

|m2 + n2 +mn|3/2

{
cos2(φ)

(
1− 3

(
m+ n

2

)2
|m2 + n2 +mn|

)

+ sin2(φ)

(
1− 9

4

n2

|m2 + n2 +mn|

)
− 3
√

3

2

n
(
m+ n

2

)
|m2 + n2 +mn|

sin(2φ)

}

=
Cdd
8π

∑
m,n

′ (−1)n

|m2 + n2 +mn|3/2

{
1− 3

(
m cos(φ) + n cos

(
φ− θr

))2

|m2 + n2 +mn|

}
. (3.54)
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(a) V i,j
dd (φ)

(b) V i,j
dd (N)

Figure 3.12: The total interaction per one particle V Strdd as a function of angle φ (a), and the total
number of dipoles N (b) for the striped configuration.

Doing the same analysis that we did for the polarized configuration, we will obtain that V Strdd

in eq.(3.54) also does not depend on angle φ (see the first plot of the figure (3.12)), meaning that
again we have a global O(2) rotational symmetry in the system. In the Figure (3.12a) we see the
potential for striped configuration V Strdd as a function of total number of dipoles Nm.

The potential V Strdd for φ = π/2 will be as follows:

V Strdd =
Cdd
8π

∑
m,n

′ (−1)n

|m2 + n2 +mn|3/2

{
1− 9

4

n2

|m2 + n2 +mn|

}
≈ −2.05

Cdd
8π

(3.55)

From the second plots of figures (3.11) and (3.12) it is clear that the polarized orientation has
the lowest energy. Moreover, the analytical calculations done here are in perfect agreement with
the results obtained in [4] (see Figure (3) in [4]). Thus we obtain that in the classical limit the
ground state is given by the polarized orientation of dipoles. Moreover, we saw that in polarized
(and also in striped) state the system has the O(2) symmetry.

3.2.3 The Mean-field Approximation

Let us add the kinetic energy in this system. As mentioned numerous times in previous chapters
each dipole will start to oscillate around its minimum energy orientation. Increasing the kinetic
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energy, the oscillations will become stronger and at some point we will have to cross the quantum
phase transition point. In order to investigate the phase transition, as it was done for the one-
dimensional chain, let us first write the mean-field potential for the dipoles in triangular lattice.
We will have:

〈ψm,n|V i,j/i+m,j+ndd |ψm,n〉 =
Cdd
8π

∑
m,n

′ 1

|m2 + n2 +mn|3/2

×
{

cos(θi,j) 〈ψm,n| cos(θi+m,j+n) |ψm,n〉
(

1− 3

(
m+ n

2

)2
|m2 + n2 +mn|

)
+ sin(θi,j) 〈ψm,n| sin(θi+m,j+n) |ψm,n〉

(
1− 9

4

n2

|m2 + n2 +mn|

)
− 3

√
3

2

n
(
m+ n

2

)
|m2 + n2 +mn|

(
sin(θi,j) 〈ψm,n| cos(θi+m,j+n) |ψm,n〉

+ cos(θi,j) 〈ψm,n| sin(θi+m,j+n) |ψm,n〉
)}

. (3.56)

Knowing the minimum energy configuration for classical limit, and also knowing that the system
in classical limit has O(2) symmetry, we can assume that for any value of m and n:

sin(θi+m,j+n)→ 〈sin(θi+m,j+n)〉 = 0 and cos(θi+m,j+n)→ 〈cos(θi+m,j+n)〉 = ∆ . (3.57)

Plugging eq.(3.57) into eq.(3.42) we will obtain the full Hamiltonian of the system:

Ĥ = −~2

2I

∑
i,j

d2

dθ2i,j
+
Cdd
8π

∑
i,j

∑
m,n

′ ∆

|m2 + n2 +mn|3/2

{
cos(θi,j)

×
(

1− 3

(
m+ n

2

)2
|m2 + n2 +mn|

)
− sin(θi,j)

3
√

3

2

n
(
m+ n

2

)
|m2 + n2 +mn|

}
. (3.58)

It is obvious that, since the mean-field potential is written for a single dipole, we can decompose
the total Hamiltonian of the system as a sum of individual Hamiltonians. Thus the Schrödinger
equation for a single dipole i,j put into a mean-field will be as follows (from now on, we will remove
index i,j):

−~2

2I

d2

dθ2
ψ(θ) +

Cdd
8π

∑
m,n

′ ∆

|m2 + n2 +mn|3/2

{
cos(θ)

(
1− 3

(
m+ n

2

)2
|m2 + n2 +mn|

)

− sin(θ)
3
√

3

2

n
(
m+ n

2

)
|m2 + n2 +mn|

}
ψ(θ) = Eψ(θ) . (3.59)

Since we are again assuming that the system is in thermodynamic limit (N → ∞), we will
have: ∑

m,n

′ n
(
m+ n

2

)
|m2 + n2 +mn|5/2

= 0 . (3.60)

Thus the Schrödinger equation can be simplified into the following:

−~2

2I

d2

dθ2
ψ(θ)−D∆ cos(θ)ψ(θ) = Eψ(θ) , (3.61)

where

D =
Cdd
8π

∑
m,n

′ 3

(
m+n

2

)2
|m2+n2+mn| − 1

|m2 + n2 +mn|3/2
. (3.62)
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Schrödinger equation in eq.(3.61) can be re-written in the following way:

d2

dη2
ψ(η) +

(
ε+ 2q cos(2η)

)
ψ(η) = 0 . (3.63)

Here:

ε =
8IE

~2
and q =

4I

~2
D∆ .

Thus again the Schrödinger equation for the single dipole in the mean-field is exactly the same as
the equation for the one-dimensional system. Again the difference between these two equations is
the parameter D. Because of this we can use the results obtained for the one-dimensional system
and deduce: dipoles arranged in the triangular lattice in the weak interaction limit (T > V) will
have the random orientation: ∆ = 〈cos(2η)〉 = 0, meaning that dipoles can be considered as free.
In the strong interaction limit (T < V) dipoles are polarized: ∆ = 〈cos(2η)〉 = 1, also having
the global O(2) rotational symmetry. The quantum phase transition from highly disordered to
polarized state happens when:

Dcrit =
~2

I
, (3.64)

or when:

Ccritdd =
8π

β

~2

I
where β ≈ 5.5 . (3.65)

Since the potential in the mean-field approximation is the same as in the one-dimensional
system, the Hamiltonian for the system with six-fold potential U(θ) introduced in eq.(2.56) will
have the same form (see eq.(2.66)). Hence the result made for the one-dimensional system will be
the same for the triangular system:

Dnew
crit > Dcrit
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3.3 Defects in Triangular Lattice

In the introduction, we said that the crystal lattice is ground in the chamber where there is a water
vapor. This means that not every nano-cavity will house a water molecule. Having water vacancies
in the system might alter the ground state configuration of the system leading to breaking of the
ground state symmetry.

The question that needs to be answered is: what is the new order that will arise in the system
after introducing the vacancy, and if a new configuration is formed will it change the symmetry of
the system globally or locally.

In order to answer this questions let us do the following: let us assume that we have dipoles
arranged in the honeycomb structure as shown in the figure (3.13). We assume that the central
dipole is missing.

Figure 3.13: First honeycomb structure of dipolar lattice. The central dipole is missing. The
dipole at coordinates {1, 0} is called ”a”. The one below it is called ”b” and the dipole above it
is called ”f”. The dipole with the coordinates {−1, 0} is called ”d”. The dipole bellow it is called
”c” and the one above it is called ”e”.

In order to calculate the minimum energy configuration, we will write the interaction potential
for all pairs of dipoles, assuming that dipoles have random orientation. Using the general form of
the dipole-dipole interaction:

V
i,j/i+m,j+n
dd =

|d|2

4πε0a3|m2 + n2 +mn|3/2

×
{

cos(θi,j) cos(θi+m,j+n)

(
1− 3

(
m+ n

2

)2
|m2 + n2 +mn|

)
+ sin(θi,j) sin(θi+m,j+n)

(
1− 9

4

n2

|m2 + n2 +mn|

)
−3
√

3

2

n
(
m+ n

2

)
|m2 + n2 +mn|

(
sin(θi,j) cos(θi+m,j+n)

+ cos(θi,j) sin(θi+m,j+n)

)}
, (3.66)

we are able to write the total energy for the system. Minimizing the total energy with regards to
six angles {θa, θb, θc, θd, θe, θf}, we were able to find the minimum energy configuration (for the
full in-depth calculation see Appendix C). These configurations are depicted in theFigure (3.14).
We found that the dipoles around the vacancy are forming the vortex configuration. It is crucial to
notice that the dipoles have two ground state configurations: dipoles are aligned either clockwise
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(a) Clockwise vortex (b) Counterclockwise vortex

Figure 3.14: Two ground state configurations for a honeycomb structure with a central dipole
missing.

or counterclockwise. This means that we have a spontaneous symmetry breaking. Hence, around
the missing dipole the global O(2) symmetry is broken.

Let us try to generalize the obtained results for the whole system. In order to do this we again
introduce the notion of the cutoff radius. As explained in the previous sections, the cutoff radius
rcut such that if the distance between two dipoles is greater than rcut, the interaction between
them can be neglected. The mean-field approach, done in previous chapter, showed us that in
ground state dipoles are polarized and have an O(2) symmetry.

Figure 3.15: Triangular lattice of identical dipoles. Each dot represents a dipole (We do not
show the dipole moment vector here). In the center of the blurred red circle we see that the
dipole is missing. All dipoles around the vacancy inside the blurred red circle will have vortex
configurations, but outside it (we have marked this place with yellow circle) every dipole will have
a polarized configuration.

Hence, we can make the following assumption: the symmetry breaking introduced by the
vacancy in the lattice is local: if we place a vacancy at the center of the circle with radius rcut
(see Figure (3.15)), we will see that every dipole in honeycomb structure inside the circle will have
the vortex-like orientation, whereas all other dipoles living outside the circle will maintain their
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polarized orientation.
Of course this is a very rough estimate. It is clear that we will not have a intersection line. We

believe, that the line between the polarized and vortex configuration will be smeared out. In order
to observe this one must do a Monte-Carlo simulation.

Knowing the properties of the two-dimensional systems, let us start our investigation of the
three-dimensional crystal.
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Chapter 4

Three-Dimensional Lattice of
Water Molecules

Beryl, a mineral with the chemical formula: Be3Al2Si6O16, in general is a three-dimensional crystal.
In the Figure (4.1a), taken from the paper [2], we see a horizontal cut of the beryl crystal. Mainly
this cut is perpendicular to the crystallographic c-axis. We will remind the reader that the yellow
triangles in the beryl crystal represent the SiO4 molecules forming the honeycomb structure. These
honeycomb structures sit on top of each other forming channels along c-axis. Water molecules,
put inside these nano-cavities, form layers of the triangular lattice. Figure (4.1b) shows two such
layers of triangular lattices put on top of each other. The distance between two layers is rA,B = α,
where we have denoted the lower layer as A and the top layer as B.

(a) Layer of beryl crystal.

(b) Two layers of triangular lattices.

Figure 4.1: The single layer of the beryl crystal (the cut is done perpendicular of c-axis) (a), and
the schematic of three dimensional system: two layers of triangular lattice put one over another.

The distance between a dipole c situated in the layer B and any dipole i+m,j+n in the layer
A can be written as follows:

~rc/m,n = a
(
mâ1 + nâ2

)
− αâ3 , (4.1)

where unit vectors â1, â2, and â2 span the whole lattice (see Figure (4.1b)). The distance between
neighboring dipoles in layer A is assumed to be equal to a .

For the simplicity of upcoming derivations, let us write the general form of the dipole-dipole
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interaction between dipoles c and i+m,j+n. We will have:

V
c/m,n
dd =

Cdd
4π|α2 + a2(m2 + n2 +mn)|3/2

{
~dc · ~di+m,j+n

−3

(
~rc/m,n · ~dc

)(
~rc/m,n · ~di+m,j+n

)
|α2 + a2(m2 + n2 +mn)|

}
, (4.2)

where Cdd = |d|2/ε0 is a coupling constant. Writing down the scalar product for the second term

in V
c/m,n
dd we will obtain:

~rc/m,n · ~dc = a|d|
{(

m+
n

2

)
cos(θc) +

√
3

2
n sin(θc)

}
, (4.3)

where θc is the angle of the dipole ~dc with x-axis.
We showed in the previous chapter that an individual layer of triangular lattice has a polarized

configuration in the ground state. Moreover, such a system has a global O(2) rotational symmetry.
Hence, without loosing generality, we can assume that for any pairs of {m, n} in layer A (including
m = n = 0):

θm,n = 0 , (4.4)

where θm,n is the angle between the dipole moment of the dipole and the x-axis. In order to see
how the dipole c in layer B aligns itself, let us picture the following situation. Picture a honeycomb
structure in layer A and a single dipole in layer B. the schematic of such a system is shown in the
Figure (4.2). In the layer A we have the following six dipoles (six following pairs of {m, n}):

Figure 4.2: First honeycomb structure of dipolar lattice. We place one dipole C on top of the layer
A of triangular lattice.

{0, 0}; {1, 0}; {−1, 0}; {0, 1}; {−1, 1}; {0,−1} and {1,−1} . (4.5)

We will calculate the total potential energy for dipole c interacting with the layer A assuming
that layer is polarized along x-axis. Usingeq.(4.2), we will obtain:

V cdd =
Cdd
4π

∑
m,n

1

|α2 + a2(m2 + n2 +mn)|3/2

{
cos(θc)

−
3a2
(
m+ n

2

)
|α2 + a2(m2 + n2 +mn)|

((
m+

n

2

)
cos(θc) +

√
3

2
n sin(θc)

)}
, (4.6)

assuming that in the summation m and n take the values represented in eq.(4.5). Assuming that
α = a = 1, we will obtain:

V cdd =
Cdd
4π

β cos(θc), where β ≈ 1.53 . (4.7)
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Minimizing the potential for dipole c with regards to angle θc we see that the minimum is
reached for:

θc = π . (4.8)

It is obvious that adding more honeycomb structures in the layer A will not change the overall
outcome for the dipole c: the dipole c will orient itself opposite of the orientation of layer A.
Generalization of this finding for the total system is trivial. If two layers A and B are brought

Figure 4.3: Ground state configuration of the three-dimensional system of dipoles (water
molecules). We see that each layer has a polarized ordering. But the total three-dimensional
system has a staggered configuration.

close together, they will be polarized in the opposite direction. For our case if the polarization
angle φ of layer A is φ = 0, then for layer B we will have: φ = π (see Figure (4.3)). Hence, we
can declare that even though the individual layers have polarized configurations the total three
dimensional system of dipoles has the striped configuration in its ground state.
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Conclusion

In the coarse of the thesis, our main goal was to inspect the phase diagram of one, two and three-
dimensional systems of water molecules, interacting with each other via a long-range dipole-dipole
interaction, embedded in the nano-cavities of beryl crystal. Beryl, as mentioned numerously above,
has nano-cavities created by the SiO4 molecules, which can host single water molecules. In order to
investigate the phase diagram we treated water molecules as point particles having dipole moment.
Since the higher dimensional systems were complicated to inspect, we started our investigation
with the one-dimensional chain of identical dipoles.

In the classical limit (section 2.1), we’ve obtained that dipoles form the polarized configuration
along the z-axis (see Figure (2.3)): θ = 0 (where θ is the angle between the dipole moment vector
and z-axis). By increasing the kinetic energy of the system, we were able to find the critical value
of the parameter Dcrit (section 2.4), where the quantum phase transition occurs. We found: for
D < Dcrit system choses the highly disordered state such that (Figure (2.9)):

∆ = 〈cos(θ)〉 = 0 ,

meaning that every dipole orients itself randomly.
When D > Dcrit the system starts to arrange itself (section 2.5):

∆ = 〈cos(θ)〉 6= 0 and in classical limit ∆ = 1 .

We have also observed, a symmetry breaking. In the weak interaction limit, when each indi-
vidual water molecule can be considered as a free molecule, the system has both local and global
O(2) symmetry: rotation of the dipole moment vector of one molecule will not change the total
energy of the system, and the global rotation of every dipole moment of every water molecule will
also leave the system invariant.

In the experiment, as mentioned in previous, water molecules are put inside the honeycomb
structure created by the SiO4 molecules. In order to observe the changes of the phase diagram when
the interaction between the water molecules (dipoles) and the SiO4 molecules (six-fold potential)
is increased, we used the tight-binding approach (section 2.6). Assuming that the mean-field
potential (created by all dipoles in the system) is weaker than the six-fold potential, which we
wrote as a sum of six individual Dirak-delta functions, we treated the mean-field potential as a
perturbation (section 2.7). Using the perturbation theory, we were able to obtain the following: the
overall phase diagram of water molecules remains the same: for weak (T>V) and strong (T<V)
interaction limits the system behaves in the same manner as it did without the additional potential.
The crucial finding was that the addition of the honeycomb structure shifts the quantum phase
transition point. Mainly we found that:

Dnew
crit > Dcrit .

Next, we discussed two-dimensional systems (Chapter 3). In the beginning (section 3.1), we
started with a toy model : quadratic lattice (Figure (3.2)) of individual dipoles and studied it’s phase
diagram. The approach to this problem was the same as for the one-dimensional chain. Initially, we
assumed that the strength of the six-fold potential was weak enough that it’s interaction between
dipoles (water molecules) could have been neglected. In the classical limit (section 3.1), out of
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three potential ground state configurations: polarized (section 3.1.1), striped (section 3.1.2) and
checkerboard (section 3.1.3), we were able to obtain, that the striped configuration (Figure (3.6a))
had the lowest energy. In order to see the quantum phase transition we increased the kinetic energy.
The dipoles started to oscillate around their energy minimum which lead to breaking of the ground
state configuration. Here again, we used the mean-field approximation (eq. (3.22)) (taking into
account the configuration obtained in the classical limit) to observe this phase transition from
highly disordered to striped ordering. We obtained that the Schrödinger equation (section 3.1.4)
for the square lattice (eq. (3.29)) had the same form as the one for the one-dimensional chain. The
only difference was that the parameter D entering in both equations had to be redefined. Hence
including the six-fold potential did not change the overall phase diagram: the critical value of D
was shifted in the same manner as it was for the one-dimensional chain.

Beryl crystal suggests that water molecules form a triangular lattice. During the investigation of
the triangular lattice (Figure (3.9)), initially we neglected the interaction between water molecules
and the walls of the crystal (SiO4). We found that two different configurations: polarized (section
3.2.1) and striped (section 3.2.2) have the potential to have the lowest energy. Writing down
the general form of the dipole-dipole interaction (eq.(3.39)) (bearing in mind the geometry of the
lattice) we compared the potential energies (per particle) for both configurations and obtained
that the polarized configuration has the lowest energy. Moreover, we obtained that the system
as the global O(2) rotational symmetry in ground state. In order to see the phase transition,
we allowed the kinetic energy to become stronger than the potential energy. Writing down the
dipole-dipole interaction potential using the mean-field approximation (eq.(3.57)) (considering the
configuration obtained in the classical limit) we arrived at the Schrödinger equation (section 3.2.3)
which, surprisingly had the same form (eq.(3.63)) as the one for square lattice and one-dimensional
chain. Again the difference was the definition of the parameter D entering the equation. This
meant that overall phase diagram was the following: in the classical limit system was polarized
and had the global O(2) rotational symmetry. In the quantum mechanical limit (T > V) system
was in highly disordered phase with local (and global) O(2) symmetry.

We were also interested to observe the change of the global properties of the system (for
triangular lattice) when a deficiency of water molecules was introduced. In order to see how
the system of dipoles would react (either globally or locally) to a deficiency we did the following
(section 3.3): we removed a dipole randomly and probed the ordering created around the deficiency
point. We obtained that the nearest six dipoles, which formed the honeycomb structure, gave the
vortex like configuration in the ground state (Figure (3.14)). The vortexes had either clockwise
or counterclockwise direction, indicating the existence of the spontaneous symmetry breaking. We
argued that the breaking of the global O(2) symmetry is local: The overall system will maintain
the polarized configuration (with O(2) symmetry), but we will see islands of vortex configurations
forming around deficiency points (Figure (3.15)).

Finally, as an interest we explored the three dimensional system of water molecules (Chapter
4). We obtained that two nearest neighboring layers of dipoles, forming triangular lattices are
polarized in the opposite direction (Figure (4.2)): if one layer has a polarization φ = 0, the
neighbor layer will have polarization φ = π. Hence, we declared that even though the individual
layers have polarized configurations the total three dimensional system of dipoles has the striped
configuration in its ground state.
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Outlook

As it turned out, water molecules show an interesting behavior when placed in nano-cavities (in
our case in the beryl crystal). But, we argue that there is much to learn from this system.

In this thesis we have always assumed that the system is infinite (in the thermodynamic limit),
but the reality is, that the beryl crystal is finite. Knowing the bulk properties of such system the
next obvious question is: what will happen, how the water molecules will be have at the borders
of the crystal.

there is another topic that was not discussed in this thesis. Imagine that you that you have a
sample that is heated at some temperature T (assume that at this temperature water molecules
are free). If one cools down the system, one might see domains having different configurations. It
is interesting to research what is happening at the intersection of these domains.

These are the topics that we leave for the future research.
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Appendix A

Self-consistent equation for
intermediate values of ”q”

Let us rewrite again the Mathieu equation that we had in eq.(2.25):

d2

dη2
ψ(η) +

(
ε+ 2q cos(2η)

)
ψ(η) = 0 . (A.1)

Here, again, ε is the energy eigenvalue and q is a self-consistent parameter defined as:

q =
4ID

~2
∆ where ∆ = 〈cos(2η)〉 (A.2)

We saw in [5], that the wave-function for the ground state looks like:

ψ0(θ) =
1√
π

∞∑
k=0

A
(0)
2k cos

(
k(π − θ)

)
(A.3)

where θ = 2η. Here we give a full in-depth derivation of 〈cos(2η)〉.
So let us begin:

〈ψ0| cos(θ) |ψ0〉 =
1

π

∞∑
k=0

∞∑
l=0

A
(0)
2k A

(0)
2l

∫ 2π

0

dθ cos(θ) cos
(
k(π − θ)

)
cos
(
l(π − θ)

)
=

1

π

∞∑
k=0

∞∑
l=0

(−1)k+lA
(0)
2k A

(0)
2l

∫ 2π

0

dθ cos
(
θ
)

cos
(
kθ
)

cos
(
lθ
)

. (A.4)

Using the identity property of the trigonometric functions, we will obtain:∫ 2π

0

dθ cos
(
θ
)

cos
(
kθ
)

cos
(
lθ
)

=
1

2

{
(k − l) sin

(
2π(k − l)

)
(k − l)2 − 1

+
(k + l) sin

(
2π(k + l)

)
(k + l)2 − 1

}
(A.5)

Let us calculate the value of eq.(A.5) for k = 0 and l = 1. We will have:∫ 2π

0

dθ cos
(
θ
)

cos
(
kθ
)

cos
(
lθ
)∣∣∣∣l=1

k=0

=
l sin

(
2πl
)

l2 − 1

∣∣∣∣
l=1

. (A.6)

Notice that for l = 1 the nominator and the denominator in eq.(A.6) are zero. Thus we have
to use the L’Hôpital’s rule to calculate it. As a short reminder L’Hôpital’s rule can be written as:

lim
x→c

f(x)

g(x)
= lim
x→c

f ′(x)

g′(x)
if lim

x→c
f(x) = lim

x→c
g(x) = 0 or ±∞ . (A.7)

67



APPENDIX A. SELF-CONSISTENT EQUATION FOR INTERMEDIATE VALUES OF ”Q”

Thus, we will have:

l sin
(
2πl
)

l2 − 1

∣∣∣∣
l=1

= π →
∫ 2π

0

dθ cos
(
θ
)

cos
(
kθ
)

cos
(
lθ
)∣∣∣∣l=1

k=0

= π . (A.8)

It is clear that for k = 1, l = 0 we will have the same result. For k = l = 1 and k = l = 0 from
eq.(A.5) we will obtain that: ∫ 2π

0

dθ cos
(
θ
)

cos2
(
kθ
)

= 0 (A.9)

Using eq.(A.8) and eq.(A.9), we can write the result of the integral in a matrix form.∫ 2π

0

dθ cos
(
θ
)

cos
(
kθ
)

cos
(
lθ
)∣∣∣∣l=1

k=0

=

(
0 π
π 0

)
(A.10)

For k = 1, l = 2 (or vise versa), using the identity property of trigonometric functions, we will
have: ∫ 2π

0

dθ cos
(
θ
)

cos
(
kθ
)

cos
(
lθ
)∣∣∣∣l=2

k=1

=
π

2
(A.11)

Thus we can write a general result of the integral in the following matrix form:

∫ 2π

0

dθ cos
(
θ
)

cos
(
kθ
)

cos
(
lθ
)

=


0 π 0 0 0 ...
π 0 π/2 0 0 ...
0 π/2 0 π/2 0 ...
0 0 π/2 0 π/2 ...
0 0 0 π/2 0 ...
. . . . . .

 . (A.12)

It is clear from eq.(A.12) that only those values of k for which k = l − 1 (where l > 1) we will
have a nonzero value. Because of this one can make a simplification to eq.(A.12), and write it in
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m
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2k
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Figure A.1: Coefficients A
(2m)
2k calculated for m = {1, 2, 3} and q = {1, 10} as a function of

summation variable k. One can see that for k > 5 A
(2m)
2k ≈ 0.

the following way:∫ 2π

0

dθ cos
(
θ
)

cos
(
(l − 1)θ

)
cos
(
lθ
)

=
(
π; π/2; π/2; π/2; ...

)
. (A.13)

Plugging this into eq.(A.4), we will obtain the following result for the 〈cos(θ)〉:

〈ψ0| cos(θ) |ψ0〉 =
(
A

(0)
0

)2
+

1

2

∞∑
l=2

(−1)2l−1A
(0)
2(l−1)A

(0)
2l . (A.14)
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Now using the notations introduced in eq.(A.2) we will obtain:

~2

4ID
q =

(
A

(0)
0

)2
+

1

2

∞∑
l=2

(−1)2l−1A
(0)
2(l−1)A

(0)
2l . (A.15)

Notice that A is a function of q. Eq.(A.15) is a self-consistent equation for q. It is unfortunate
that this equation can not be solved analytically, since there is no definite form of the coefficients
A. But one can successfully solve this equation using numeric methods.

One might say that since the summation goes to infinity there is no possible way to solve
eq.(A.15). This is not true, since the coefficient A decays rapidly as the value of l is increased (see
Figure (A.1)).
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Appendix B

Riemann zeta function

The Riemann zeta function can be defined by the following integral:

ζ(x) =
1

Γ(x)

∫ ∞
0

ux−1

eu − 1
du , (B.1)

where Γ(x) is the Gamma function. The Gamma function can also be represented using the
following integral:

Γ(x) =

∫ ∞
0

e−zzx−1dy . (B.2)

Assuming that x in eq.(B.1) is an integer, we can re-write the integrand. We will have:

-4 -2 2 4

n

-3

-2

-1

1

2

3

4

ζ

Figure B.1: Riemann zeta function ζ(n) as a function of n (blue continues line). The red dashed
line represents ζ(3).

ux−1

eu − 1
= e−u

ux−1

1− e−u
= e−uux−1

∞∑
k=0

e−ku = ux−1
∞∑
k=1

e−ku . (B.3)

Plugging this into eq.(B.1) we will obtain:

ζ(x) =
1

Γ(x)

∞∑
k=1

∫ ∞
0

e−kuux−1du . (B.4)

Using the following notation:

u =
y

k
, (B.5)

71



APPENDIX B. RIEMANN ZETA FUNCTION

we will obtain:

ζ(x) =
1

Γ(x)

∞∑
k=1

1

kx

∫ ∞
0

e−yyx−1dy =

∞∑
k=1

1

kx
. (B.6)

Here we used eq.(B.2). Thus we obtained that for x being an integer the zeta function can be
written as:

ζ(n) =

∞∑
k=1

1

kn
(B.7)

In the figure (B.1) we show with the blue lines the ζ(n) as a function of n. The red dotted strait
line represents ζ(3).

Using eq.(B.7) we can re-write the potential for a dipole in classical limit. Using eq.(2.13) we
will have:

V 0
dd = −Cdd

πa3

∞∑
j=1

1

j3
= −Cdd

πa3
ζ(3) ≈ −1.2

Cdd
πa3

(B.8)
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triangular lattice of dipoles with
one dipole missing

In order to see how the system will react to introduction of a defect, let us do the following. In the
figure (C.1) we can see dipoles arranged on honeycomb structure. We can also observe that the
central dipole is missing. We will calculate the total energy of this system assuming that dipoles
are randomly oriented. After writing the total energy, we will minimize it with respect to angles
{θa, θb, θc, θd, θe, θf}.

Figure C.1: First honeycomb structure of dipolar lattice. The central dipole is missing. The dipole
at coordinates {1, 0} is called ”a”. The one below it is called ”b” and the dipole above it is called
”f”. The dipole with the coordinates {−1, 0} is called ”d”. The dipole bellow it is called ”c” and
the one above it is called ”e”.

In the figure (C.1) we have unit vectors â1 and â2, such that:

â1 · â2 =
1

2
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For the reader, we will write the general form of the dipole-dipole interaction:

V
i,j/i+m,j+n
dd =

|d|2

4πε0a3|m2 + n2 +mn|3/2

×
{

cos(θi,j) cos(θi+m,j+n)

(
1− 3

(
m+ n

2

)2
|m2 + n2 +mn|

)
+ sin(θi,j) sin(θi+m,j+n)

(
1− 9

4

n2

|m2 + n2 +mn|

)
− 3

√
3

2

n
(
m+ n

2

)
|m2 + n2 +mn|

(
sin(θi,j) cos(θi+m,j+n)

+ cos(θi,j) sin(θi+m,j+n)

)}
. (C.1)

Using this we can start writing interactions between pairs of dipoles. We will have:

V d−add =
|d|2

4πε0a3
1

8

(
sin θd sin θa − 2 cos θd cos θa

)
(C.2)

V d−bdd =
|d|2

4πε0a3
1

3
√

3

(
cos θd cos θb + sin θd sin θb −
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√
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V e−cdd =
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1

3
√

3

(
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)
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√
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√
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(C.11)

(a) Clockwise vortex (b) Counterclockwise vortex

Figure C.2: Two ground state configurations for a honeycomb structure with a central dipole
missing.
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V a−cdd =
|d|2

4πε0a3
1

3
√

3

(
cos θa cos θc + sin θa sin θc −
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(
sin θb sin θc − 2 cos θb cos θc

)
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APPENDIX C. TRIANGULAR LATTICE OF DIPOLES WITH ONE DIPOLE MISSING

The total energy of the system will be the sum of interactions through equations (C.2) - (C.16).
The minimization of the tota energy with regards to the six angles is done using ”Mathematica”.
The final results are shown in the figure (C.2). We can observe that around the vacancy point the
dipoles form either clockwise vortex-like orientation or counterclockwise vortex-like orientation. It
is worthwhile to notice that we have the spontaneous symmetry breaking.
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Appendix D

One-Dimensional Chain of Dipoles

Let us assume, that we have a chain of identical dipoles polarized along z-axis. We make a
following change in the system: we flip the dipole m such that: θm = π. From the Chapter, where
we discussed one-dimensional chain of dipoles, we know that if two dipoles - m and j - are parallel
to each other, the interaction between them can be written in the following way:

V m,jdd = − |d|2

2πε0a3
1

|j −m|3
. (D.1)

If these two dipoles are anti-parallel to each other - θj = θm + π - the interaction will be:

V m,jdd =
|d|2

2πε0a3
1

|j −m|3
. (D.2)

Potential felt by dipole m (which is flipped) can be written as follows:

V
′

dd =
|d|2

2πε0a3

N∑
j

′ 1

|j −m|3
, (D.3)

where the apostrophe in the summation means that we do not take into account the term j = m.
Since we are in the thermodynamic limit - N → ∞ - we can choose m = 0, and argue that the
result will be the same for any m. Thus eq.(D.3) can be rewritten as follows:

V
′

dd =
|d|2

2πε0a3

∑
j

′ 1

|j|3
=
|d|2

πε0a3

∑
j>0

1

|j|3
. (D.4)

The energy difference between this and the polarized configuration will be:

∆V = V
′

dd − V Poldd = 2
|d|2

πε0a3

∑
j>0

1

|j|3
= 2

|d|2

πε0a3
ζ(3) , (D.5)

where ζ(n) is the Riemann zeta function discussed in Appendix B. Let us flip a second dipole: the
one next to m = 0. Then the total interaction will be:

V
′

dd =
|d|2

2πε0a3

( −1∑
j=−N

1

|j|3
+

N∑
j=2

1

j3
− 1

)
, (D.6)

where first term is the total interaction between dipole m = 0 and any other dipole left to it, the
second term is the interaction between the same dipole and all dipoles on the right apart from
dipole m = 1, which is given in the third term. In general having n dipoles flipped in the system,
the total potential for dipole m = 0 will be:

V Totdd =
|d|2

2πε0a3

( N∑
j=1

1

j3
+

N∑
j=n

1

j3
−

n∑
j=1

1

j3

)
, (D.7)
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APPENDIX D. ONE-DIMENSIONAL CHAIN OF DIPOLES

where we used the following:
−1∑

j=−N

1

|j|3
=

N∑
j=1

1

j3

Rewriting the sums in eq.(D.7), we will obtain:
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V

Figure D.1: V Totdd as a function of n for fixed value of N : N = 100.

V Totdd = 2

(
−

N∑
j=1

1

j3
+

n∑
j=n+1

1

j3

)
(D.8)
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