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Chapter 1

Introduction

Following the breakthrough of the laser cooling over the atomic gas, by Steven Chu, Claude
Cohen Tannoudji and William D. Phillips in 1985 [12], who honored with the Nobel Prize
in 1997, the investigation upon the cold gases is snowballing rapidly. The observation of the
Bose-Einstein condensation (BEC) (see Fig.1.1) in 1995 [4, 15], by Eric A. Cornell, Wolfgang
Ketterle, Carl E. Wieman, have brought the second Nobel Prize in 2001 for the frontier settler
of the field [8]. Cooling atoms through the quantum mechanical realm, accompanied by the
tunable interaction of particles by means of external fields [5], has provided a new opportunity
to observe the long-aged predictions besides many prospective of applications.

Figure 1.1: The velocity distribution of rubidium atoms taken by JILA-NIST [4]. The atoms are
confined by magnetic field and cooled evaporatively. The condensate appears by cooling
down the gas near 170nK, where a macroscopic fraction of atoms occupied common
low-energy state. The velocity distribution has peaked abruptly as the temperature
of the sample was lowered. The leftmost image shows the distribution just before the
appearance of the condensation at 400nK. The middle one shows the moment of the
condensation at 200nK, and the rightmost depicts after further cooling, where the sample
is nearly pure condensate at 50nK. The field of the horizontal observation is 200µm by
270µm. (The image is adopted from image gallery of NIST: http://bec.nist.gov/
gallery.html)
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8 CHAPTER 1. INTRODUCTION

Inspired by the experience done over the atoms, the territory of the cold and ultracold
gases have been extended toward the molecules soil during the past decade. Currently, about
fifty research groups are involved in the field of the cold molecules research and more than
hundred paper is the annual outcome of the investigation over such crucially growing field
[27]. The additional internal degree of freedom in molecules (see Fig. 1.2) as like vibrational
and rotational levels, fine and hyperfine structure and symmetry-breaking doublet, offer a rich
and challenging playground for a vast area of new experimental measurements and diverse
applications. Molecules provides a significant advantage in compare with neutral atoms, as
they possess tunable electric dipole moment which can be induced by a static dc electric field,
in addition to their own intrinsic dipole moment. Molecules also have the capability to attain
the transition dipole moment induced by a resonant microwave field, coupled with the internal
rotational states. Therefore they have brought into the stage an inexperienced type of the
systems allowing tunable interparticle interaction handled by means of external fields.

Figure 1.2: Molecules internal degree of freedoms and their corresponding energy scales, which offer
a wide range of opportunities for quantum science in compare with the atoms. (The
image is taken from Ref. [25])

Ultracold polar molecules open the prospective to explore quantum gases with the interpar-
ticle interactions, which are strong, long-range and spatially anisotropic. The interaction of
molecules are in pronounced contrast to the gases of ultracold atoms, which are isotropic and
extremely short-range and is labeled as the so-called contact interaction. Indeed, ultracold
molecules offer a diverse scientific direction and promised application such as study of novel dy-
namics in the low-energy collisions, long-range collective quantum effects and quantum phase
transitions, precise control of chemical reactions, tests of fundamental symmetries like parity
and time reversal, and time variation of the fundamental constants; where has pushed further
the traditional molecular science and actually has introduced a broadened multidisciplinary
field that tied together the experimental and theoretical research on atomic, molecular, and
optical physics and quantum information science [27, 11].

The main effort in the cold molecules experiment filed was focused over the creation
of stable and dense ensembles of ultracold molecules during the past five years. Recently
this goal has been accomplished by preparation of the degenerate gases of molecules in elec-
tronic vibrational ground states [33, 17, 14, 34, 35, 16] and the ultracold chemistry, molecular
BEC, and coherent control of the ultracold molecular process would be feasible in close future.

On the theoretical point of view, a considerable number of research, looking for the exotic
quantum phases in the cold polar molecule gases in various geometrical configurations have
been attempted (for example see [9, 10, 36, 44, 7, 13, 28, 29]). As it is shown that a quasi-2D
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gas of polar molecules would suppress inelastic collisions (see Ref. [22]), and so increases the
lifetime of the trapped gas, most of the theoretical researches have been done over the low
dimensional systems (see the caption of Fig. 1.3).

Figure 1.3: In a gas of cold polar molecules, when fermionic molecules are prepared in the same
internal state, the relative wavefunction has to be antisymmetric. Hence, the molecules
interact in a p-wave channel, and The centrifugal barrier suppress the chemical reaction.
(a) The interaction of two molecules in mixture of internal state. (b) The centrifugal
barrier due to p-wave relative wavefunction. (c) Attractive head-to-tail interaction of
aligned dipolar molecules, due to applied electric field, decreases the centrifugal barrier,
hence increases the decay of the system. But, confined molecules perpendicular to the
quasi-2D layers shows repulsive side-by-side collision within a layer and suppresses the
rate of decay. (The images are taken from Ref. [25])

Throughout this thesis, we have studied a number of the quantum phases of a two di-
mensional system of bilayer cold polar molecules. The bilayer system would be introduced
in the following chapter. We have shown the instability of the system versus spin density
wave (SDW) phase as a function of the interlayer separation or strength of the interparti-
cle interaction. The order parameter and the condensation energy associated with the SDW
phase have been presented. The instability of the bilayer cold polar molecules system to the
interlayer superfluidity, in s-wave and p-wave channel also have been examined. Finally, the
phase diagram of the system is presented as a function of the external governing parameters.
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Chapter 2

Preliminaries

In the following chapter, we introduce a system of bilayer cold polar molecules which would be
under investigation throughout this thesis. Besides, spin density wave phase and superfluidity
phase are briefly reviewed.

2.1 Bilayer system of cold polar molecules

We consider two clouds of polar molecules [32, 29, 13] which are confined tightly in z direction
by confinement length l0. Two layers are separated by a distance l that is much larger than
the confinement length l0 � l, as it is depicted in Fig. 2.1. The translational motion of
the molecules is given in 2 dimensions, but molecules possess a 3D rotational motion. The
rotational states would be described by eigenstate |J, MJ〉 with J being total internal angular
momentum of a molecule andMJ is its projection along the quantization axis. Polar molecules
have permanent electric dipole moment d, coupled with the internal rotational degree of
freedom. The operator of the dipole moment d have non-zero matrix element just only between
states with different rotational quantum number. The transition dipole moment for J = 0→
J = 1 reads as dt = |〈0, 0|d|1,MJ〉| = d/

√
3, with MJ = 0, ±1. The dipole moments

establish a long-range and anisotropic interaction among molecules. The Hamiltonian for
polar molecules H has the form

H =
∑
i

(
p2
i

2m
+BJ2

i

)
+
∑
i, j

di.dj − 3(di.r̂ij)(dj .r̂ij)
2r3
ij

, (2.1)

where p = (px, py) is the center-of-mass momentum of a molecule with mass m, rij being the
distance between two molecules, r̂ij is the unit vector operator, B is the effective rotational
energy in the rigid rotor term, and J = (Jx, Jy, Jz) is the angular momentum operator.

The system is subject to a circularly polarized microwave electric field Eac(t), propagating
along z direction. The MW field couples the rotational ground state |0, 0〉 with the first
excited state |1, 1〉 by the Rabi frequency ΩR = dtEac/~. The frequency of the field ω can be
tuned close to the transition frequency ω0 = 2B of the states |0, 0〉 and |1, 1〉 with detuning
δ = ω − ω0 � ω0. Within rotating wave approximation (see Ref. [24]), the dressed-molecule
states can be written

11



12 CHAPTER 2. PRELIMINARIES

Figure 2.1: Bilayer system of cold polar molecules that composed of heteronuclear molecules which
are confined tightly along z direction. (a) Molecules have a permanent electric dipole
moment d. (b) The confinement length of the molecules is much smaller than the
interlayer separation l0 � l . Also, a MW field propagating along z direction would
dress the molecules. The MW field is shown schematically.

|+〉 = α+|0, 0〉+ α−e
−iωt|1, 1〉,

|−〉 = α−|0, 0〉 − α+e
−iωt|1, 1〉,

where α+ = −Γ/
√

Γ2 + Ω2
R, α− = ΩR/

√
Γ2 + Ω2

R, and 2Γ = δ +
√
δ2 + 4Ω2

R. It is possible
to prepare the polar molecules in the internal state |+〉i by an adiabatic switching of the MW
field. The effective interaction between polar molecules is given in the framework of Born-
Oppenheimer approximation, in which the molecules are assumed to be at fixed positions
and afterwards their states could be adiabatically connected to the states |+〉i ⊗ |+〉j . At
large distances, the dipolar interaction can be obtained perturbatively associated with dipole
moment 〈+|d|+〉 = deff (cosωt, sinωt, 0), where deff = −

√
2dtα+α−. The time-averaged

interaction between dipoles moments reads

V λλ′
eff (r) = d2

eff

l2 − r2/2

(l2 + r2)5/2
, (2.2)

where r = (rx, ry). The potential is defined for the interlayer interaction by λ 6= λ′, and for
intralayer interaction λ = λ′, the relation reads with l = 0. In the short distances, the dipolar
interaction between particles causes molecules depart from the state |+〉 and the perturbation
breaks down. Therefore, in the short distances r 6 rδ ≡ (dt/δ)

1/3, one has to take into account
the coupling of whole rotational states |J,MJ〉. The exact Born-Oppenheimer potential for
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Figure 2.2: Interlayer Born-Oppenheimer potential for ΩR/δ = 1/8. The solid (green), dash-dotted
(red), and dashed (blue) lines correspond to (l/rδ) = 1.5, (l/rδ) = 2, and (l/rδ) = 3,
respectively.

interlayer interactions and intralayer interaction at large distances are depicted in Fig. 2.2
and Fig. 2.3, respectively.

Fourier transform of the interaction potential

We Fourier transform the interaction potential in Eq. (2.2) by dividing the potential function
into two parts as V (r) ≡ d2

eff [ϕ1(r) + ϕ2(r)], where ϕ1(r) ≡ 1/(l2 + r2)3/2 and ϕ2(r) ≡
−3r2/2(l2 + r2)5/2. We have dropped the superscript λλ′ and subscript eff . We will present
the intralayer interaction by V++(r), Ṽ++(q), and the interlayer interaction as V (r), Ṽ (q).
By keeping the interlayer separation at fixed value z = l, the Fourier transform of the first
term reads

ϕ̃1(q) =

ˆ
rdrdθ

(l2 + r2)3/2
e−irq cos θ

=
2π

l
exp (−lq). (2.3)

Fourier transform of the second term can be derived from the first term by constructing a
relation as
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Figure 2.3: Intralayer interaction potential at the large distances l � r. The solid (green), dash-
dotted (red), and dashed (blue) lines correspond to the ΩR/δ = 1/2, ΩR/δ = 1/4, and
ΩR/δ = 1/8, respectively.

ϕ2(r) = −3

2

r2

(l2 + r2)5/2
= lim

λ→1

1

2

∂

∂λ
ϕ1(λ, r)

= lim
λ→1

1

2

∂

∂λ

1

(l2 + λ2r2)3/2
,

and readily the Fourier transform obtains

ϕ̃2(q) = lim
λ→1

1

2

∂

∂λ

[
1

λ2

2π

l
exp (− lq

λ
)

]

= lim
λ→1

1

2

2π

lλ3
e−lq/λ

[
−2 +

lq

λ

]
=

2π

l
e−lq + πqe−lq.

The Fourier transform of the interaction potential can be achieved by sum of the both terms,
which is

Ṽ (q) = πd2
effqe

−ql. (2.4)

The interaction potential in momentum space Ṽ (q) is shown in Fig. (2.4), and is positive for
all value of q with a maximum at lq = 1. The Fourier transform of the intralayer interaction
can be readily achieved by putting l = 0 in Eq. (2.4) which gives Ṽ++(q) = πd2

effq.
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Figure 2.4: Fourier transform of the interlayer interaction which has a maximum at lq = 1.

Second-quantized representation

The Hamiltonian in the second quantization is written formally as

H =
∑
λ

ˆ
dx ψ̂†λ(x)

(
− ~2

2m
∇2

)
ψ̂λ(x) +

1

2

∑
λ, λ′

ˆ
dxdyψ̂†λ(x)ψ̂†λ′(y)V (x− y)ψ̂λ′(y)ψ̂λ(x).

The field operators ψ̂†λ(x) and ψ̂λ(x) are creation and annihilation operators for a particle at
the state with quantum numbers x and λ. We write the field operators in the basis of the
plane-wave as

ψ̂λ(x) =
∑
k, λ

〈x|k〉âk, λ,

ψ̂†λ(x) =
∑
k, λ

〈k|x〉â†k, λ,

〈x|k〉 =
1√
L2

exp (ik.x).

where L2 is the volume of the system, â†k, λ and âk, λ are creation and annihilation operators.
By use of the following relation

ˆ
dxei(k−k′).x = L2δ(k− k′),

the kinetic term takes the form
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HKin =
∑
k, λ

~2k2

2m
â†k, λâk, λ.

The interaction term can be written in the momentum space by replacing the operators and
the interaction potential with their Fourier transforms as

Hint =
1

2

∑
k1,k2
k3,k4

ˆ
dxdy〈k1|x〉â†k1, λ

〈k2|y〉â†k2, λ

1

L2

ˆ
dqṼ (q)eiq.(x−y)〈y|k3〉âk3, λ〈x|k4〉âk4, λ

=
1

2L6

∑
k1,k2
k3,k4

ˆ
dxdydqe−ik1.xe−ik2.yṼ (q)eiq.(x−y)eik3.yeik4.xâ†k1, λ

â†k2, λ
âk3, λâk4, λ

=
1

2L6

∑
k1,k2
k3,k4

ˆ
dqṼ (q)â†k1, λ

â†k2, λ
âk3, λâk4, λ

ˆ
dxei(q−k1+k4).x︸ ︷︷ ︸
L2δ(q−k1+k4)

ˆ
dyei(k3−k2−q).y︸ ︷︷ ︸
L2δ(k3−k2−q)

=
1

2L2

∑
q,k,k′

Ṽ (q)â†k, λâ
†
k′, λâk′+q, λâk−q, λ,

where we have chose k4 = k1−q ≡ k−q and k3 = k2 +q ≡ k′+q, and the Fourier transform
of the interaction potential Ṽ (q) is given in Eq. (2.4). Therefore, the effective Hamiltonian
for the bilayer system, by adding the chemical potential reads

H =
∑
k, λ

[ε(k)− µλ] ĉ†kλĉkλ +
1

2L2

∑
q,k,k′
λ, λ′

Ṽ (q)ĉ†k+qλĉ
†
k′−qλ′ ĉk′λ′ ĉkλ, (2.5)

where ĉ†kλ and ĉkλ are creation and annihilation operators, respectively, for a molecule with
momentum k in layer λ.

2.2 Spin density wave

We review the spin density wave phase in 1D following Gröner in Ref. [23]. The broken sym-
metry has been treated in the framework of the mean-field theory. However, the mean-field
theory is not appropriate in 1D. Due to of the reduction of the phase space in 1D, the sys-
tems are unstable even in the absent of the interaction (see divergent behavior of 1D response
function in Fig. A.1), and actually it would not be considered as a Fermi-liquid. By the way,
mean-field theory can reveal the main features of the 1D model. The treatments beyond the
mean-field theory can be found in Ref. [41].

We start by examining the divergent behavior of the response function in 1D. As discussed
in App. A, the explicit integral form of the response function in one-dimension reads

χ(q) =

ˆ
dk

(2π)

fk − fk+q

εk − εk+q
, (2.6)



2.2. SPIN DENSITY WAVE 17

where fk is the Fermi distribution function. The integral can be performed readily for 1D at
zero-temperature by fk = θ(kF − k), which gives the result

χ(q) = − m

π~2kF
ln

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣, (2.7)

where m is the mass of the particle. This result can be compare with the response function
in 2D and 3D which are given in Eq. (A.20). The situation in 1D is particular, where the
response function diverges at q = 2kF , as can be seen in Fig. A.1. The divergent behavior of
the response function at q = 2kF comes from the particular topology of the Fermi surface in
1D, which is two points as is shown in Fig. 2.5. The response function in Eq. (2.6) shows that
the most contribution of the integral comes from the pair of states, one empty and one full,
which differ by q = 2kF and have the same energy. The whole states close to the Fermi-surface
in 1D contribute to the such diverging behavior. However, in higher dimensions the number
of such states reduced significantly in comparison with the states coupled by the same vector,
but with the different energy (see Fig. 2.6).

Figure 2.5: The linearized dispersion relation for a free fermionic gas, in the vicinity of the Fermi
surface is shown. The Fermi surface is just two points. The states of the particle and
hole close to the Fermi surface but in the opposite side, can be coupled by a single vector
q = 2kF in 1D. (The image is reproduced from Ref. [23])

We consider a so-called one dimensional Hubbard Hamiltonian, as a system with the
simplest possible interaction, to study the SDW in 1D. The Hamiltonian reads

H =
∑
k, σ

εkâ
†
k, σâk, σ +

U

N

∑
k, k′, q

â†k, σâk+q, σâ
†
k′,−σâk′−q,−σ, (2.8)

where â†k, σ and âk, σ being the creation and annihilation operator, respectively, and U is the on-
site Coulomb interaction. We split the density operators to its mean-value and the fluctuation
around it to obtain

ρ̂qσ =
∑
k

â†kσ âk+qσ

= 〈ρ̂qσ〉+ (ρ̂qσ − 〈ρ̂qσ〉)
= 〈ρ̂qσ〉+ δρ̂qσ. (2.9)



18 CHAPTER 2. PRELIMINARIES

Figure 2.6: Topology of the Fermi surface in 1D and 2D of a free fermionic gas. The coupling vector
of the particle-hole pairs are shown with arrows. (a) In 1D system, a single vector couples
the whole particle and hole states in the vicinity of Fermi surface. (b) The number of
the particle-hole pairs, with the same energy, coupled with a single vector |q| = 2kF , is
significantly reduced in 2D. (The image is reproduced from Ref. [23])

By inserting this decomposition into the Hamiltonian in Eq. (2.8), after neglecting the
quadratic term in the density operator fluctuation δρ̂qσδρ̂−q−σ. We keep the expectation
values at q = 2kF , as it is the most interesting point due to divergent behavior of the response
function. The mean-field Hamiltonian reads

HMF =
∑
k, σ

εkâ
†
k, σâk, σ +

∑
k

{
∆eiϕ

(
â†k+2kF , ↑âk, ↑ + â†k+2kF , ↓âk, ↓

)
+ h.c.

}
+

2N |∆|2

U
,

(2.10)

where we have introduced

∆ = |∆| exp (iϕ)

=
U

N

∑
k

〈ρ̂2kF ↑〉

= −U
N

∑
k

〈ρ̂2kF ↓〉, (2.11)

which later would be clear that it is actually the order parameter of the SDW phase. The
mean-field Hamiltonian can be diagonalized by means of the Bogolyubov transformation, by
introducing the operators as

γ̂1k = M̃k â1k − Ñ∗k â2k = Mke
−iϕ â1k −Nke

iϕ â2k,

(2.12)
γ̂2k = Ñk â1k + M̃∗k â2k = Nke

−iϕ â1k +Mke
iϕ â2k,
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where coefficients satisfy the relationM2
k+N2

k = 1 to guaranty the canonical transformation of
the operators. The subscript 1 and 2 refer to the states close to the kF and −kF , respectively.
Diagonalized Hamiltonian reads

HMF =
∑
k, σ

Ekγ̂
†
1k, σγ̂1k, σ +

∑
k, σ

Ekγ̂
†
2k, σγ̂2k, σ +

2N |∆|2

U
, (2.13)

with the dispersion relation for the quasi-particles as

Ek = εk + sign(k − kF )
√

(~2k2
F /m)2(k − kF )2 + ∆2. (2.14)

The dispersion relation shows a band gap in the single particle excitation. It has to be noted
that the dispersion relation of the free system is approximated around the Fermi wavevector
in Eq. (2.14) as εk ≈ ~2kF (k− kF )/m. We analyze the order parameter ∆ to understand the
nature of broken symmetry and its relation with the observable of the system.

At the first hand, we present the spin density, which in the second quantization takes the
form

S(x) =
1

2

[
Ψ̂†↑(x)Ψ̂↑(x)− Ψ̂†↓(x)Ψ̂↓(x)

]
=

1

2

∑
k, k′

{
â†k, ↑âk′, ↑ − â

†
k, ↓âk′, ↓

}
ei(k

′−k)x, (2.15)

where we have used the expansion of the field operator in the plane-wave space as Ψ̂σ(x) =∑
k âk, σexp(ikx). As we are interested in the paired states by q = 2kF , we single out the

couplings with k′ = k ± 2kF . The expectation value of Eq. (2.15) reads

〈S(x)〉 =
1

2

∑
k

{
〈â†k, ↑âk+2kF , ↑〉 − 〈â

†
k, ↓âk+2kF , ↓〉

}
ei2kF x + c.c.

=
1

2

{
2|S|ei(2kF x+ϕ) + 2|S|e−i(2kF x+ϕ)

}
= 2|S| cos (2kFx+ ϕ), (2.16)

that we have introduced the complex parameter as

S = |S|eiϕ =
∑
k

〈â†k, ↑âk+2kF , ↑〉 = 〈ρ̂2kF ↑〉

= −
∑
k

〈â†k, ↓âk+2kF , ↓〉 = −〈ρ̂2kF ↓〉. (2.17)

We construct a relation between the order parameter and the spin density as

∆ = |∆|eiϕ =
U

N
S. (2.18)
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Figure 2.7: The dispersion relation of the spin density wave phase in 1D. The discrete translational
symmetry of the SDW phase with a period λ0 = π/kF determined by the Fermi wavevec-
tor. The modulation of the spin density wave is shown for two subbands: spin up and
spin down density. (The image is reproduced from Ref. [23])

Hence, there is a direct relation between the spin density and order parameter whenever
the expectation values 〈â†k, σâk+2kF , σ〉 takes on non-zero value. As the spin density shows a
modulation, it is said that the system undergoes a phase transition into spin density wave
phase. In the ground state of the SDW phase, both the spin rotational and the translational
symmetry of the system are broken and the periodicity of the system being λ0 = π/kF . The
Fermi surface is entirely removed (in 1D) as is depicted in Fig. 2.7. The SDW ground state
can be taken as two charge density wave states, one for spin up and one for spin down that
can be written as

ρ↑ = ρ0 (1 + cos (2kFx+ ϕ)) ,

ρ↓ = ρ0 (1 + cos (2kFx+ ϕ+ π)) , (2.19)

which is shown in Fig. 2.7. Finally, the ground state can be written as

|Ψ0〉 =

 ∏
|k|<kF

γ̂†1k, ↑γ̂
†
2k, ↑

∏
|k|<kF

γ̂†1k, ↓γ̂
†
2k, ↓

 |0〉. (2.20)
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2.3 Superfluidity

We present a brief review of the superfluidity. Actually, we take the terms "superconductiv-
ity" and "superconductivity" interchangeable as the microscopic mechanism describing both
of these phenomenas is the same: conventional Bardeen-Cooper-Schrieffer (BCS) theory. The
following description is adopted from Ref. [3], and it can also be found in more detail in
references. [43, 19, 1].

The superfluidity stems from an attractive pairwise interaction which can form a bosonic-
like state by coupling states with k ↑ and −k ↓, known as the Cooper pair. The origin of
the attractive interaction between charged particles, in the framework of conventional BCS
theory, are due to the exchange of the lattice vibration, so-called phonons. Indeed, the inter-
action among charged particles, say electrons, can be mediated by means of phonons through
electron-phonon coupling. Such effective attractive interaction can be given for states in the
vicinity of the Fermi surface as |εk − εk+q| < δ ∼ ωD, where ωD is the Debye frequency, the
phonon characteristic frequency.

Given the existence of such attractive pairwise interaction, we continue by working over a
simplified Hamiltonian as

H =
∑
k, σ

εkĉ
†
k, σ ĉk, σ −

g

Ld

∑
k,k′,q

ĉ†k+q↑ĉ
†
−k↓ĉ−k′+q↓ĉk′↑, (2.21)

where g being a positive constant. This model, which is globally referred as the BCS Hamil-
tonian, has to be taken as an effective Hamiltonian, which is valid over the thin shell around
the Fermi surface as |εk − εkF | < δ/2 and |εk′ − εkF | < δ/2. To examine the instability of the
system described by the Hamiltonian in Eq. (2.21), we observe the fate of the Cooper pairs
by means of the four-point correlation function (two-body Green function) as

C(q, τ) =
1

L2d

∑
k,k′
〈ψ̂†k+q↑(τ)ψ̂†−k↓(τ)ψ̂k′+q↓(0)ψ̂−k′↑(0)〉. (2.22)

This two-body Green function describes the propagation of a Cooper pair under multiple
scattering in an imaginary time τ . The pair states is scattered under the interaction with
invariant center-of-mass-momentum like |k+q ↑, −k ↓〉 → |k′+q ↑, −k′ ↓〉. Switching to the
frequency representation, the correlation function takes the form

C(q) ≡ C(q, ωm) =
1

β

ˆ β

0
dτe−iωmτC(q, τ) =

T 2

L2d

∑
k,k′
〈ψ̂†k+q↑ψ̂

†
−k↓ψ̂k′+q↓ψ̂−k′↑〉, (2.23)

where β = 1/T is the inverse temperature and ωm = 2πn/β~ is the bosonic Matsubara
frequency (see finite-temperature Green function chapters in for example references [19, 1, 3]).
We treat perturbatively to solve the correlation function in Eq. (2.23). Ladder approximation
which accounts the Cooper pair propagator in the lowest order, is shown in Fig. 2.8. The
vertex part Γq (the effective interaction), is shown also in a so-called Dyson equation form.
By translating the diagrams into an algebraic form we have
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Figure 2.8: The propagation of a Cooper pair in an interacting system. (a) Two free Green functions,
carry momenta p + q and −p, interact by transferring fixed value of momentum q. (b)
The vertex part of the propagator acts as a effective interaction, and obeys Dyson’s
equation. (The image is reproduced from Ref. [3])

Γq = g +
gT

Ld

∑
p
Gp+qG−pΓq. (2.24)

We solve Eq. (2.24) for Γq to obtain

Γq =
g

1− gT
Ld

∑
pGp+qG−p

. (2.25)

We engage contour integral to calculate the denominator of the Eq. (2.25), by taking into ac-
count that the single-body Green function at non-zero temperature is G0(p, iωm) = 1/(iωm−
ζp) where ζp = ~2p2/2m−µ being the dispersion relation of a free particle subtracted by chem-
ical potential. The sum of momentum and frequency over multiplication of the propagators
is written explicitly as

T

Ld

∑
p
Gp+qG−p ≡ T

Ld

∑
p,n

G0(p + q, −iωn + iωm)G0(−p, iωn)

=
T

Ld

∑
p,n

1

iωn − ζ−p

1

−iωn + iωm − ζp+q
. (2.26)

For evaluating the sum over frequency indices, we introduce the following function

F (ω) =
1

ω − ζ−p

1

−ω + iωm − ζp+q
.

By employing Poisson’s formula, we convert the sum to a contour integral
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∑
n

F (iωn) =
−β
2πi

˛
R
dωF (ω)f(ω), (2.27)

where f(ω) = (exp (βω)+1)−1 is the Fermi function. The contour is shown in Fig. 2.9 included
two simple poles of F (ω) at z = iωm − ζp+q and z = ζ−p, and poles of f(ω) which are all
along the imaginary axis at iωn, where for fermionic propagator we have iω = (iπ/β)(2n+ 1)
with n = 0, ±1, ±2, ±3 · · · . There are two contour which we denote them by R and R′.
The integral around contour R′ is equal to the sum of the residues containing poles on the
imaginary axis plus two residues of F (ω). Since the contour integral around R′ vanishes when
R′ →∞, we have

Figure 2.9: The contours which is used in the finite temperature calculations of two-body propagator.
Two simple poles of F (ω) at ω = iωm− ζp+q and ω = ζ−p are shown. The poles of f(ω)
are along the imaginary axis.

˛
R′

= 0 =

˛
R
dωF (ω)f(ω) + 2πi

∑
ResF (ω)f(ω)|ω=ζ−p, ω=iωm−ζp+q ,

We have the result of the sum by using the relation in Eq. (2.27), which reads

1

β

∑
n

F (iωn) =
∑

ResF (ω)f(ω)|ω=ζ−p, ω=iωm−ζp+q .
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The residues can be readily evaluated as

ResF (ω)f(ω)|ω=ζ−p =
f(ζp)

iωm − ζp − ζp+q
,

ResF (ω)f(ω)|ω=iωm−ζp+q =
f(iωm − ζp+q)

iωm − ζp − ζp+q
. (2.28)

We write down the sum in Eq. (2.31) by engaging Eq. (2.28) and the relation of the Fermi
function as f(iωm − ζp+q) = f(ζp+q)− 1 as

T

Ld

∑
p,n

G0(p + q, −iωn + iωm)G0(−p, iωn) =
1

Ld

∑
p

1− f(ζp+q)− f(ζp)

iωm + ζp + ζp+q
. (2.29)

We calculate the sum for the special case of q = (0, 0) by taking the system as a spatially
homogeneous and also the static configuration of the pairs ωm = 0. Replacing the sum over
momentum by energy integral, and remembering the interval of validity of the attractive
interaction, we obtain

T

Ld

∑
GpG−p =

ˆ ωD

−ωD
dενd(ε)

1− 2f(ε)

2ε
≈ νd(εF )

ˆ ωD

T

dε

ε
= νd(εF ) ln

(ωD
T

)
, (2.30)

where for a narrow vicinity of the Fermi surface, we have replaced the density of state by its
value on the Fermi energy νd(εF ). Replacing the result into the vertex function, we obtain
the result

Γq =
g

1− gνd(εF ) ln
(
ωD
T

) . (2.31)

We see that even a weak attractive interaction g � 1 can contribute to the divergent of the
pair formation. Hence, the system is unstable versus to the superconductivity. The critical
temperature could be obtained by examining the condition where vertex function develops a
singularity that leads to

Tc = ωD exp

[
− 1

gν

]
, (2.32)

which marks the transition temperature to the superconducting state.

We saw that below the critical temperature Tc, a macroscopic number of Cooper pairs
would exist within the system. Thus, we decompose the pair of operators into the average
value of Cooper pairs and the fluctuations around it. we write

ĉ†k↑ĉ
†
−k↓ = 〈ĉ†k↑ĉ

†
−k↓〉+

(
ĉ†k↑ĉ

†
−k↓ − 〈ĉ

†
k↑ĉ
†
−k↓〉

)
,

ĉ−k↓ĉk↑ = 〈ĉ−k↓ĉk↑〉+ (ĉ−k↓ĉk↑ − 〈ĉ−k↓ĉk↑〉) .
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Such decomposition of the operators reveals the order nature of the superconductivity. In the
normal phase 〈ĉ†k↑ĉ

†
−k↓〉 = 〈ĉ−k↓ĉk↑〉 = 0. On the other hand, when this expectation value

takes on non-zero value, it implies the existence of the macroscopic number of Cooper pairs
within the system: superconducing state. Inserting those mean-field decompositions in the
interaction term of Hamiltonian and neglecting terms quadratic in the fluctuations, we write

ĉ†k↑ĉ
†
−k↓ĉ−k′↓ĉk′↑ ≈ 〈ĉ†k↑ĉ

†
−k↓〉〈ĉ−k′↓ĉk′↑〉

+ 〈ĉ†k↑ĉ
†
−k↓〉

(
ĉ−k′↓ĉk′↑ − 〈ĉ−k′↓ĉk′↑〉

)
+

(
ĉ†k↑ĉ

†
−k↓ − 〈ĉ

†
k↑ĉ
†
−k↓〉

)
〈ĉ−k′↓ĉk′↑〉

= ĉ†k↑ĉ
†
−k↓〈ĉ−k′↓ĉk′↑〉+ ĉ−k′↓ĉk′↑〈ĉ

†
k↑ĉ
†
−k↓〉 − 〈ĉ−k′↓ĉk′↑〉〈ĉ

†
k↑ĉ
†
−k↓〉.

Therefore the BCS Hamiltonian after adding the chemical potential becomes

H − µN̂ ≈
∑
k, σ

[
ζkĉ
†
k, σ ĉk, σ −

(
∆∗ĉ−k↓ĉk↑ + ∆ĉ†k↑ĉ

†
−k↓

)]
+
Ld|∆|2

g
.

We have defined the order parameter as

∆ =
g

Ld

∑
k

〈Ωs|ĉ−k↓ĉk↑|Ωs〉 =
g

Ld

(∑
k

〈Ωs|ĉ†k↑ĉ
†
−k↓|Ωs〉

)∗
, (2.33)

where the expectation values are taken at the ground state of superconducting phase. By
writing the operators in the Nambu spinor representation, we attempt to diagonalize the
mean-field Hamiltonian as

Ψ̂†k =
(
ĉ†k↑, ĉ−k↓

)
, Ψ̂k =

(
ĉk↑
ĉ†−k↓

)
,

and the Hamiltonian reads as

H − µN̂ =
∑
k

Ψ̂†k

(
ζk −∆
−∆ −ζk

)
Ψ̂k +

∑
k

ζk +
Ld|∆|2

g
. (2.34)

Now by canonical transformation of the Nambu operators, under which the anti-commutation
relation of the fermionic operators are left invariant, the mean-field Hamiltonian can be
brought to a diagonal form. We write the unitary transformation of the operators as

χ̂k ≡

(
α̂k↑
α̂†−k↓

)
=

(
cos θk sin θk
sin θk − cos θk

)(
ĉk↑
ĉ†−k↓

)
≡ UkΨ̂k.

We set tan (2θk) = −∆/ζk by putting cos (2θk) = ζk/λk and sin (2θk) = −∆k/λk, where the
dispersion relation of the quasi-particles can be obtained as
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λk = (∆2
k + ζ2

k)1/2. (2.35)

The diagonalized Hamiltonian reads

H − µN̂ =
∑
k, σ

λkα̂
†
kσα̂kσ +

∑
k

(ζk − λk) +
∆2Ld

g
. (2.36)

The dispersion relation for quasi-particles excitation shows a energy gap which removed the
Fermi surface entirely. The ground state of the superconducting state reads

|Ωs〉 ≡
∏
k

α̂†k↑α̂
†
−k↓|0〉 ∼

∏
k

(
cos θk − sin θkĉ

†
k↑ĉ
†
−k↓

)
|0〉. (2.37)

Finally, by solving Eq. (2.33) self-consistently we obtain the order parameter as

∆ =
g

Ld

∑
k

〈Ωs|ĉ−k↓ĉk↑|Ωs〉 = − g

Ld

∑
k

sin θk cos θk =
g

2Ld

∑
k

∆

(∆2 + ζ2
k)1/2

≈ g∆

2

ˆ ωD

−ωD

ν(ζ)dζ

(∆2 + ζ2)1/2
= g∆ sinh−1 (ωD/∆), (2.38)

We have assumed that in the low-energy pairing and also in the vicinity of critical point,
the order parameter can be taken momentum-independent. Solving the relation for ∆ in the
extreme limit gν � 1 we obtain

∆ =
ωD

sinh (1/gν)
≈ 2ωD exp

(
− 1

gν

)
. (2.39)

Comparing the explicit form of the order parameter with one we have achieved for the critical
temperature in Eq. (2.32), we observe a relation between the order parameter at T = 0 and
the critical temperature

∆ ≈ 2TC . (2.40)



Chapter 3

Spin density wave

In the preceding chapter, the dressed Born-Oppenheimer potential for the bilayer system has
been presented. Our starting point would be the investigation of the instability of the system
versus spin density wave (SDW) phase. In the following chapter, two methods for analyzing
the instability would be presented. In the first approach, we add an external field coupled
with the spin density and examine the response of the system in the mean-field theory regime.
In the second, we use random phase approximation (RPA) in the many body field theory
framework. Indeed, the both approaches stay in the limit of the weakly interacting system.

3.1 Hamiltonian for interlayer interaction

The Hamiltonian in the second quantization, including the intralayer and the interlayer in-
teraction, is presented in Eq. (2.5). In this chapter, we are interested in the instabilities
that is induced by the interlayer interaction. The effect of the intralayer interaction can be
found in [29, 13]. It is shown in Ref. [29] that by tuning the external parameters of the
system, it is possible to substantially suppress the intralayer instability. In the next chapter,
we take the intralayer interaction to renormalize the parameters of the system. By the way,
the Hamiltonian for the interlayer interaction i.e. the interaction of the particles in different
layers reads

H =
∑

k
λ=1,2

[ε(k)− µλ] c†kλ ckλ +
1

L2

∑
q,k,k′

Ṽ (q) c†k+kλ c
†
k′−qλ′ ck′λ′ ckλ, (3.1)

where c†kλ and ckλ are fermionic creation and annihilation operators for a molecule with
momentum k in layer λ. The first term sums the kinetic energy of the molecules ε(k) = ~2k2

2m
with mass m, in both layers including the chemical potential for each layer. We restrict the
calculations into zero-temperature T = 0. Therefore, the chemical potential is equal to the
Fermi energy ελF = µλ. The second sum counts the interaction of the particles in different
layer λ 6= λ′. The particles interact by means of the potential Ṽ (q) which is given as

Ṽ (q) =

ˆ
d2
eff

(l2 − r2/2)

(l2 + r2)5/2
e−iq.r dr

= π d2
eff q exp (−lq), (3.2)

27
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where deff being the effective dipole moments of the molecules introduced in previous chapter,
and l stands for layers separation.

The particles are confined in two layers. For such two states system, it is convenient to
introduce the pseudospin-1/2 operator 2 m̂i = ~ c†iλ σλλ′ ciλ′ , where σ denotes the Pauli spin
matrices belongs to particle i. The molecules in layer 1 and 2 will be represented by spinors
| ↑ 〉 and | ↓ 〉, respectively. Therefore the Hamiltonian in Eq. (3.1) takes the form

H =
∑
k

λ=↑ ↓

[ε(k)− µλ] c†kλ ckλ +
1

L2

∑
q,k,k′

Ṽ (q) c†k+q↑ c
†
k′−q↓ ck′↓ ck↑ . (3.3)

In the normal state, given the unitary density of particle in both layers n1 = n2 = n0,
there would be no magnetization i.e. M = 〈ψN |

∑
i m̂i|ψN 〉 = 0. It implies the paramagnetic

state i.e. absent of the interlayer correlations. The ground state of the normal phase is given
by filling the lowest energy state up to the Fermi energy for either spin

|ψN 〉 =
∏
|k|<kF

c†k↑

∏
|k′|<kF

c†k′↓|0〉. (3.4)

Before proceeding further, it is worthwhile to rearrange the Hamiltonian in Eq. (3.3)
to obtain a concise form. Noticing that there are two pair of operators which act over the
different space, spin-up and spin-down states, it is possible to exchange the operators in
the interaction term without producing any extra terms due to anticommutation relation of
fermionic operators

H =
∑

k
λ=↑ ↓

[ε(k)− µλ] c†kλ ckλ

︸ ︷︷ ︸
H0

+
1

L2

∑
q,k,k′

Ṽ (q) c†k+q↑ ck↑ c
†
k′−q↓ ck′↓. (3.5)

By calling the kinetic part H0 and introducing the density operator as

ρqλ =
∑
k

c†k+qλ ckλ. (3.6)

the Hamiltonians reads

H = H0 +
1

L2

∑
q
Ṽq ρq↑ ρ−q↓. (3.7)

3.2 Instability versus spin density wave phase

In the following section, we examine the instability of the system to the SDW phase by
means of two different method: Linear response theory and RPA method. Both approach are
restricted within the weakly interacting system.
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3.2.1 Mean-field instability

In the preceding section, the Hamiltonian in the pseudospin representation have been derived.
We are ready to examine the stability of the system against the SDW phase. We are interested
in the response of the system to an external field which is coupled to the spin density of the
system

H = H0 +
1

L2

∑
q
Ṽq ρq↑ ρ−q↓ +

∑
q
hq (ρq↑ − ρq↓). (3.8)

First of all, we decompose the density operator into its mean value (mean-field) and the
fluctuations around the mean-value

ρqλ = 〈ρqλ〉+ (ρqλ − 〈ρqλ〉)
= 〈ρqλ〉+ δρqλ, (3.9)

where the mean-value of the operator are taken at the ground state of the normal phase. We
continue by neglecting the terms in the second order in the fluctuation terms δρqλδρ−q−λ as

H = H0 +
1

L2

∑
q

Ṽq (〈ρq↑〉+ δρq↑) (〈ρ−q↓〉+ δρ−q↓) +
∑
q

hq (ρq↑ − ρq↓)

' H0 −
1

L2

∑
q

Ṽq 〈ρq↑〉 〈ρ−q↓〉︸ ︷︷ ︸
H′0

+
1

L2

∑
q

Ṽq (ρq↑ 〈ρ−q↓〉+ ρ−q↓ 〈ρq↓〉) +
∑
q

hq (ρq↑ − ρq↓)

= H ′0 +
∑
q

{ρq↑ (
Ṽq
L2
〈ρ−q↓〉+ hq) + ρq↓ (

Ṽq
L2
〈ρ−q↑〉 − hq)}

= H ′0 +
∑
q

(ρq↑ + ρq↓)
Ṽq〈ρ−q↑ + ρ−q↓〉

2L2︸ ︷︷ ︸
ϕextch

+
∑
q

(ρq↑ − ρq↓)(hq −
Ṽq〈ρ−q↑ − ρ−q↓〉

2L2
)︸ ︷︷ ︸

ϕexts

, (3.10)

where the symmetry of the interaction Ṽq = Ṽ−q has been used in the third line. It is now
apparent that the effect of the weak interaction term is reduced to a external fields. One of
these external fields is coupled with the charge density (ρq↑+ ρq↓) and the other is coupled to
the spin density (ρq↑− ρq↓). The H ′0 term contains unperturbed Hamiltonian plus a constant
term. Therefore, we look to the induced density in the free system as a consequence of the
external fields.

Upon the linear response theory (see App. A), it is possible to figure out the charge and
spin density induced by external field. First, we examine the induced charge density in the
system. The induced density is proportional to the external field times the response function
χ0 as

ρind = 〈ρq↑ + ρq↓〉 = χ0(q)ϕextch = χ0(q)
Ṽq〈ρq↑ + ρq↓〉

2L2
, (3.11)
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where we have used the hermiticity of the charge density operator 〈ρq↑+ρq↓〉 = 〈ρ−q↑+ρ−q↓〉.
There is no instability in the charge density and even there is not any induced charge density
in the system by means of the external field coupled with spin density of the system. It has
to be noted that charge density has to be zero, if Eq. (3.11) has to be valid. It is plausible
intuitively, as the filed coupled with spin density cannot induced charge density.

Now, we turn to the spin density induced in the system. The response function χ0(q) of a
system for an external field coupled either to the spin density or charge density has the same
form if the polarized particles have in common dispersion relation εk↑ = εk↓. So, the induced
spin density reads

Sind = 〈ρq↑ − ρq↓〉 = χ0(q)ϕexts = χ0(q) (hq −
Ṽq〈ρq↑ − ρq↓〉

2L2
),

⇒ Sind =
χ0(q)hq

1 +
χ0(q) Ṽq

2L2

. (3.12)

If the denominator of the expression in Eq. (3.12) vanishes, then even for extremely weak
external field hq → 0 there is a finite induced spin density within the system. Actually,
it means that just an small fluctuations caused by interaction of the particle is enough to
diverge the redistribution of the spin density of the system. The divergent of Sind defines the
instability condition as

χ0(q) Ṽq
L2

= −2. (3.13)

We examine the circumstances which satisfy Eq. (3.13). The response function introduced in
App. A. The response function of a 2D system reads

χ0(q) = −2ω(E)


1 |q| ≤ 2kF ,

1−
√

1− (2 kF
|q| )2 |q| > 2kF ,

(3.14)

in which ω(E) is the density of state per spin which is independent of the energy in two
dimension. The density of state in 2D is ω(E) = mL2

2π ~2 , where L2 is the surface of system and
kF is the Fermi wavevector. By negative sign of the response function (3.14) and permanent
positive sign of the potential in k-space (see Eq. (3.2)), the equality in Eq. (3.13) can be
satisfied. This instability of the spin-density-redistribution could be a sign of the phase tran-
sition of the system to spin density wave phase. Later, we compare the ground state energy
of the system in both phase to check the phase transition possibility.

We obtain the instability equation explicitly as

−2ω(E) f(x)
Ṽq
L2

= −2

⇒ −2
mL2

2π ~2
f(x)π d2

eff 2 kF x exp (−2 kF lx) = −2, (3.15)
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Figure 3.1: Instability of the Fermi liquid versus SDW as function of y = lkF and rs = md2effkF /~2.

where we have defined the dimensionless function

f(x) ≡ χ0(q)

−2ω(E)
=


1 x = |q|

2kF
≤ 1,

1−
√

1− x−2 x = |q|
2kF

> 1,

(3.16)

and the dimensionless parameters are


rs =

d2
eff mkF

~2 ,

y = kF l,

(3.17)

which rs characterizes the strength of the dipole-dipole interaction and y measures the inter-
layer separation in the scale of the interparticle distance ∝ kF . The instability condition in
Eq. (3.15), by means of the dimensionless parameters, takes the form

rs x exp (−2x y) f(x) = 1. (3.18)

The phase diagram corresponds to the instability condition in Eq. (3.18) is shown in Fig. 3.1
as a function of y and rs. One step further, we can show the critical points as a function of x
and y. We minimize the rs as a function of x to see the threshold of the instability (critical
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points) with respect to x versus y. The function f(x) in Eq. (3.18) has two parts, which are
defined in Eq. (3.16). It can be readily obtained that rs has a extremum point at x = 1 for
all value of y as it increases monotonically for for x > 1. But for x < 1, there is a permanent
minimum at x = 1

2y . Owing to the regime of this part for 2y ≤ 1, the minimum lays out of
the range of the regime as xmin ≥ 1. Thus, for 2y ≤ 1 the minimum of this part emerged also
at x = 1; and for 2y > 1 it is placed at x = 1

2y . We can show the threshold of the instability
as a function of y and x as

x =
q

2kF
=


1 y ≤ 1

2 ,

1/2y y > 1
2 ,

(3.19)

which is depicted in Fig. 3.2. It is worthwhile to note that instability as a function of x and
y appears just for x ≤ 1 as all value of y.

Figure 3.2: The critical points of the phase transition toward SDW. The threshold of the instability
appears at the translational vector |q| = x2kF associated with the unique external
parameter as y = lkF and rs = md2effkF /~2.

In next section we examine the stability of the system through RPA method. Afterwards, we
calculate the order parameter and the condensation energy of the SDW phase, self-consistently.
But, before leaving this section it would not be time wasting to analyze the behavior of the
bilayer system by a charge density perturbation. So similar to what is done up to now, we
introduce an external field, coupled with the charge density, into the mean-field Hamiltonian
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H = H0 +
1

L2

∑
q

Ṽq (〈ρ〉+ ∆ρ) (〈ρ〉+ ∆ρ) +
∑
q

hq (ρq↑ + ρq↓)

' H0 −
1

L2

∑
q

Ṽq 〈ρq↑〉 〈ρ−q↓〉︸ ︷︷ ︸
H′0

+
1

L2

∑
q

Ṽq (ρq↑ 〈ρ−q↓〉+ ρ−q↓ 〈ρq↓〉) +
∑
q

hq (ρq↑ + ρq↓)

= H ′0 +
∑
q

{ρq↑ (
Ṽq
L2
〈ρ−q↓〉+ hq) + ρq↓ (

Ṽq
L2
〈ρ−q↑〉+ hq)}

= H ′0 +
∑
q

(ρq↑ + ρq↓) (hq +
Ṽq〈ρ−q↑ − ρ−q↓〉

2L2
) +

∑
q

(ρq↑ − ρq↓)
Ṽq〈ρ−q↑ + ρ−q↓〉

2L2
.(3.20)

Once again, there are two external fields which are coupled with the charge density and the
spin density. We examine the effect of both of them. First, the induced charge density as a
response to the external field

ρind = 〈ρq↑ + ρq↓〉 = χ0(q)ϕextch = χ0(q) (hq +
Ṽq ρ

ind

2L2
),

and readily solve for induced charge density we obtain

ρind =
χ0(q)hq

1− χ0(q) Ṽq
2L2

. (3.21)

As we saw in (3.16), the response function is negative versus positive sign of the potential Vq,
which guarantee the stability of the system. In other words, by vanishing the external field,
the induced field mutually disappears. For spin density, the system shows

Sind = 〈ρq↑ + ρq↓〉 = χ0(q)ϕextch = χ0(q)
Ṽq〈ρq↑ + ρq↓〉

2L2
, (3.22)

where obviously is unable to throw the system into trouble and, indeed, the induced density
has to be zero in Eq. (3.22).

3.2.2 RPA approach to instability of the system

In the previous part, we have explored the instability of the system versus to the SDW phase,
by analyzing the mean-field Hamiltonian in the presence of an external field. In the following
part, we employ another approach to scrutinize the stability of the system. We have seen in
the sprite of the mean-field approximation, spin density wave phase emerges by construction
of the particle-hole pairs 〈c†k+qck〉. Hence, by means of the two-body propagator, we analyze
the fate of a particle-hole pair under multiple scattering in the Fermi liquid. The amplitude
of the particle-hole propagator in the momentum k and energy ω space is written as
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Σ(q, ω) = Σ↑↑(q, ω) + Σ↓↓(q, ω)

=
∑
k, k′
λ=↑↓

〈ψN |T
[
c†k−qλckλc

†
k′+qλck′λ

]
|ψN 〉, (3.23)

where the operators are time ordered and the expectation value is taken in the ground state
of the normal state. We have split the propagator into spin-up and spin-down pair propaga-
tors. This is actually the spin-polarized density fluctuation propagator, where we have put a
fluctuation in the system and take another fluctuation at the end of propagation through the
system. This is particle-hole channel and usually called Peierls channel, versus the particle-
particle channel which called Cooper channel that is the case for exploring the instability to
superconductivity. We engage the Feynman graphical perturbation theory for many body
system to analyze this four-point correlation function (see for example Ref. [31], [19], [42] and
[1]). The lowest order of the approximation for two-body (particle-hole) propagator is visual-
ized in Fig. 3.3 as an infinite series of the diagrams, containing the interaction of consecutive
polarized bubbles.

Figure 3.3: The approximation for propagation of a spin-polarized λ =↑, ↓ particle-hole pair in inter-
acting system. The pairs can interact with other pairs with opposite spin-polarization.
Diagrams show a geometric series which the result of the sum is given diagrammatically.

The selective sum over bubbles diagrams in Fig. 3.3 is well-known as the Random
Phase Approximation. Upon the bilayer Hamiltonian in Eq. (3.3), the interactions occur
just between particles with opposite spin. Consequently, we have to consider the interactions
between bubbles of opposite spin. In the graphical term, alternatively the spin of bubbles
have to be changed. We sum up the series in Fig. 3.3, by representing a single bubble with
Σ0λ. As the sum is a geometrical series, we obtain

Σ(q, ω) =
Σ0 ↑(q, ω)

1− Ṽ 2
q Σ0 ↑(q, ω) Σ0 ↓(q, ω)

+
Σ0 ↓(q, ω)

1− Ṽ 2
q Σ0 ↓(q, ω) Σ0 ↑(q, ω)

, (3.24)
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where Ṽq is the interaction of the bubbles by exchanging momentum q. Since the second
term in the denominator is permanently positive, the amplitude of the pair propagator can
diverge. This divergent implies that the system would be insatiable against formation of the
particle-hole pairs. Hence, there could be a spontaneous broken symmetry: phase transition
toward SDW phase where the ground state is composed of such particle-hole pairs. Owing to
the equivalence between the particles with spin-up and spin-down polarization ε↑(k) = ε↓(k),
we define Σ0 ↑(q, ω) = Σ0 ↓(q, ω) = Σ0(q, ω). The four-point correlation function takes the
form

Σ(q, ω) =
2Σ0(q, ω)

1−
[
Ṽq Σ0(q, ω)

]2 ,

and the instability condition reads

Ṽ 2
q Σ2

0(q, ω) = 1. (3.25)

The job is now to translate the single bubble into the algebraic form: finding the Σ0(q, ω).
A single bubble is composed of two free one-body propagator or free Green function G0. We
translate it to the analytical form by integrating over free indices of the momentum k and the
frequency η. It turns out to be

iΣ0(q, ω) = (−1)×
(
L

2π

)2 ˆ
dk

ˆ
dη

2π
G0(k , η)×G0(k + q , η + ω). (3.26)

The minus is due to the fermion loop in the bubble. The free single-body Green function is

G0(k, ω) =
θ(k − kF )

~ω − εk + iδ
+

θ(kF − k)

~ω − εk − iδ
. (3.27)

So the integral in Eq. (3.26) has four terms. First we do the integral over frequency. Two
terms out of four terms have pole in the same imaginary half-plane of η. We close the contour
in the opposite half-plane, thus their integral give no contribution. The other two terms have
pole on the opposite sides of the half-plane and by use of contour integral we obtain the
residues

ˆ
dη

2π
G0(k , η)G0(k + q , η + ω)

=

ˆ
dη

2π

θ(k − kF )

~η − εk + iδ
× θ(kF − |k + q |)

~ω + ~η − εk+q − iδ

+

ˆ
dη

2π

θ(kF − k)

~η − εk − iδ
× θ(|k + q | − kF )

~ω + ~η − εk+q + iδ

=
2πi

2π

{
θ(k − kF )θ(kF − |k + q |)

~ω − εk+q + εk − iδ
− θ(kF − k)θ(|k + q | − kF )

~ω − εk+q + εk + iδ

}
, (3.28)
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where in the last line the negative sign behind the second term in the bracket, is due to the
counter-clockwise direction of the contour integral. By replacing this result in Eq. (3.26), the
pair-bubble looks as

Σ0(q, ω) =

(
L

2π

)2 ˆ
dk

{
θ(kF − k)θ(|k + q | − kF )

~ω − εk+q + εk + iδ
− θ(k − kF )θ(kF − |k + q |)

~ω − εk+q + εk − iδ

}
, (3.29)

which regardless of a factor of two for spin degeneracy, it has exactly the same form as the
response function in Eq .(A.18). Put ω = 0 corresponds to the time-independent case and
neglecting the η, and using the relation that θ(x) = 1− θ(−x), it takes the form

Σ0(q) =

(
L

2π

)2 ˆ θ(kF − k)− θ(kF − |k + q |)
εk − εk+q

dk . (3.30)

So we have

2 Σ0(q) = χ0(q). (3.31)

and by replacing the final result in Eq. (3.25), we have exactly the same instability condition
for the system as in Eq. (3.13). It can be written

|χ0(q)| Ṽq
L2

= 2. (3.32)

Hence as it was expected, both method released the same phase diagram for the bilayer system,
which is depicted in Fig. 3.1.

3.3 Diagonalizing mean-field Hamiltonian

In the previous sections, the instability of the system versus SDW phase has been derived and
the phase diagram is shown in Fig. 3.1. The calculations have been done in the frame work
of linear response theory corresponds to the weakly interacting system. Hence, we continue
with the mean-field Hamiltonian

HMF =
∑
k

[ε(k)− µ] c†k↑ ck↑ +
1

L2

∑
q,k

Ṽq c
†
k+q↑ ck↑ α̃q

+
∑
k

[ε(k)− µ] c†k↓ ck↓ +
1

L2

∑
q,k

Ṽq c
†
k+q↓ ck↓ β̃q

− 1

L2

∑
q

Ṽq α̃q β̃q, (3.33)

where we followed the same procedure as section 3.2.1, to neglect the quadratic terms for small
fluctuations of number operators. We have introduced the complex parameters as
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α̃q =
∑
k

〈c†k−q↓ ck↓〉,

β̃q =
∑
k

〈c†k+q↑ ck↑〉. (3.34)

As can be seen in Eq. (3.33) the terms for either spins are uncoupled and well-separated.
Therefore, we present the procedure of diagonalization just for one of the spin-polarization
and then the same would be true for the other. In the following section, we analyze the degree
of freedom of the Hamiltonian (3.33) to see how we can handle them and how many degree of
freedom in coupling vector is permissible through the mean-field method.

3.3.1 Diagonalizing Hamiltonian for a one-dimensional lattice in a 2D space

Before start to diagonalize the Hamiltonian, we reduce the degree of freedom of the Hamil-
tonian (3.33) to the simplest case and just take a single coupling vector and its opposite
direction ±q. The permissible value for q is shown in Fig. 3.2 for critical point where we
are interested. Later, we try to increase the number of coupling vectors as much as possible.
However, Hamiltonian for spin-up part is written in the form

H↑ =
∑
k

[ε(k)− µ] c†k↑ ck↑ +
1

L2

∑
k
±q

Ṽq c
†
k+q↑ ck↑ α̃q

=
∑
k

{
[ε(k)− µ] c†k↑ ck↑ +

1

L2
Ṽq

[
c†k+q↑ ck↑ α̃q + c†k↑ ck+q↑ α̃

∗
q

] }
, (3.35)

where the hermiticity of potential Ṽq = Ṽ−q is used besides the complex conjugation relation
for α̃q as

α̃q =
∑
k

〈c†k−q↓ ck↓〉 =

(∑
k

〈c†k+q↓ ck↓〉

)∗
=
∑
k

〈c†k↓ ck+q↓〉. (3.36)

By singling out the coupling vector as ±q, we have encountered with the same situation
as nearly free electron approximation [6] has accompanied with a periodic perturbation. The
consequence of such approximation would be the appearance of band gap at the boundary
of the Brillouin zones. So we have a one dimensional lattice with periodicity q within a two
dimensional space.

As the first step, we take coupling vector q ≈ 2kF corresponds to the critical points in
Fig. 3.2. In this region, it would be shown in next section that the coupling of states is single
i.e. each state at most is coupled with one state. Thereby, it is permissible to pick up a single
coupling vector.

We restrict the Hamiltonian (3.35) by keeping sum over k just around the boundary of the
first Brillouin zone (BZ), as is shown in Fig. 3.4. We rewrite the Eq. (3.35) by labeling the
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Figure 3.4: The appearance of the band gap at the boundary of the BZ for 1D lattice in a 2D space.
The Fermi surface of the normal state is shown in dotted line.

operators acting over the states near boundary of lefthand side of the BZ by subscript one,
and two for states near in righthand side of the BZ, to obtain

H↑ =
∑
k

{
ε1k c

†
1k↑ c1k↑ + ε2k c

†
2k↑ c2k↑ +

1

L2
Ṽq

[
c†1k↑ c2k↑ α̃q + c†2k↑ c1k↑ α̃

∗
q

]}
,(3.37)

that we absorbed the chemical potential into the dispersion relation terms to avoid lengthy
equations.

Following the Bogolyubov diagonalization method [43], by means of the canonical trans-
formation of the operators, which leaves invariant the commutation relation of the Fermionic
operators, the transformed operators look

γ1k = M̃k c1k − Ñ∗k c2k,

(3.38)
γ2k = Ñk c1k + M̃∗k c2k,

where we have dropped the spin polarization symbol. The coefficients M̃k and Ñk construct
the complex elements of the unitary matrix with the constrains

|M̃k|2 + |Ñk|2 = 1, (3.39)

in order to guarantee the canonical anticommutation relation for new fermionic operators.
Replacing the old operator by their transformed one, by using the matrix representation of
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the inverse form of Eq. (3.39), we have c1k

c2k

 =

 M̃∗k Ñ∗k

−Ñk M̃k

  γ1k

γ2k

 . (3.40)

The Hamiltonian reads

H↑ =
∑
k

(
γ†1k γ†2k

)  M̃k −Ñ∗k

Ñk M̃∗k


 ε1k

Ṽqα̃q
L2

Ṽqα̃∗q
L2 ε1k


 M̃∗k Ñ∗k

−Ñk M̃k

 γ1k

γ2k

 .

(3.41)

The complex parameters in Eq. (3.41) can be written explicitly as


α̃k = αk e

−iϕ,

M̃k = Mk e
iϕ
2 ,

Ñk = Nk e
iϕ
2 ,

(3.42)

After multiplying the middle matrices in H↑, it takes the form

H↑ =
∑
k

(
γ†1k γ†2k

) M2 ε1k−2M N α
Vq

L2 +N2 ε2k −N M ε1k+α (M2−N2)
Vq

L2 +M N ε2k

−N M ε1k+α (M2−N2)
Vq

L2 +M N ε2k M2 ε1k+2M N α
Vq

L2 +N2 ε2k

 γ1k

γ2k

 ,

(3.43)

where we dropped the momentum subscript of α, M andN . By vanishing the off-diagonal
terms of the Hamiltonian in Eq. (3.43), actually the elements of the unitary matrix would be
found. So we obtain

−N M ε1k + α (M2 −N2)
Ṽq
L2

+M N ε2k = 0, (3.44)

and employing Eq. (3.39), the solution for the elements of the transformation matrix are
found by setting

M = cos θ,

N = sin θ, (3.45)

and using the relations

2MN = sin 2θ,

M2 −N2 = cos 2θ,

tan 2θ =
2α Ṽq/L

2

ε1k − ε2k
. (3.46)
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We achieved readily

M2 = cos2 θ =
1 + cos 2θ

2
,

N2 = sin2 θ =
1− cos 2θ

2
, (3.47)

and finally, it is solved for trigonometric functions

cos 2θ =
1√

1 + tan2 2θ
=

(ε1k − ε2k)/2√
[(ε1k − ε2k)/2]2 + (α Ṽq/L2)2

,

sin 2θ =
tan 2θ√

1 + tan2 2θ
=

α Ṽq/L
2√

[(ε1k − ε2k)/2]2 + (α Ṽq/L2)2
. (3.48)

We use the results of Eq. (3.48) and the diagonal terms would be obtained

M2 ε1k + N2 ε2k ± 2M N α Ṽq =
1 + cos 2θ

2
ε1k +

1− cos 2θ

2
ε2k ± αVq sin 2θ

=
ε1k + ε2k

2
±

√√√√(ε1k − ε2k
2

)2

+

(
α Ṽq
L2

)2

, (3.49)

where the subscript i referring to the side of the Brillouin zone boundary. The diagonalized
spin-up Hamiltonian takes the form

H↑ =
∑
k, i

E±k γ
†
ikγik, (3.50)

where it has two part respect two side of boundary zone with eigenvalue

E±k =
ε1k + ε2k

2
±

√√√√(ε1k − ε2k
2

)2

+

(
α Ṽq
L2

)2

. (3.51)

The eigenenergy E− refers to the states in the first BZ and the other E+ belongs to the
second BZ. The Hamiltonian for spin-down H↓ can be written down in the analogy with H↑.
Therefore, the full Hamiltonian in Eq. (3.33) reads

HMF = H↑ +H↓ −
1

L2

∑
±q

Ṽq α̃q β̃q

=
∑
k, i
λ=↑↓

E±ikγ
†
ikλγikλ −

Ṽq
L2

(
α̃β̃ + α̃∗β̃∗

)
. (3.52)
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We define the complex order parameter as

∆̃ =
Ṽq
L2
β̃∗ = − Ṽq

L2
α̃. (3.53)

We have supposed that the order parameter is momentum independent. This hypothesis is
valid in the weak coupling limit and in the vicinity of the critical point, where we are concerned.
The mean-field Hamiltonian takes the diagonal form

HMF =
∑
k, i
λ=↑↓

E±ikγ
†
ikλγikλ +

2∆2L2

Ṽq
. (3.54)

Resolving the dispersion relations by εik → (εik − µ) as it had been said before, the eigenvalue
of the diagonalized Hamiltonian looks

E±k =
ε1k + ε2k

2
±

√(
ε1k − ε2k

2

)2

+ ∆2 − µ. (3.55)

The diagonalization of the mean-field Hamiltonian, containing just single coupling vector
q, is done and as it is expected there is a band gap in the single particle excitation spectrum
at the boundary of the BZ. In the next par,t we look to the circumstances that increases the
number of the coupling as much as it remains finite, which is needed throughout the presented
procedure of the diagonalization.

We compare the energy of the ground state in SDW phase (3.54) and normal state i.e.
Fermi liquid in the coming sections. It is apparent that order parameter is zero in normal
state as α̃ and β̃ which construct the order parameter (3.53) vanish in normal state as the
expectation value of those pairs are mutually zero i.e. 〈ψN |a†k−qak|ψN 〉 = 0. Hence the Hamil-
tonian (3.54) coincide with the normal state Hamiltonian within the framework of mean-field.

The ground state in the SDW phase, considering the quasiparticle operators in Eq. (3.39),
would be achieved by filling the lowest energy state up to Fermi energy. We fix the chemical
potential, which is equal to the Fermi energy of normal state at zero temperature. Within our
weakly interacting system, we believe that SDW phase modifies states close to the boundary
zones and elsewhere it would be the same as the normal Fermi liquid. We write the ground
state in the SDW phase as

|ψSDW 〉 =
∏
Ek<0

γ†1k↑γ
†
2k↑

∏
Ek<0

γ†1k↓γ
†
2k↓|0〉, (3.56)

where obviously the Fermi energy in SDW phase is different from the one in Normal state and
Ek is given in Eq. (3.55).
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3.3.2 Diagonalizing Hamiltonian for a triangular lattice in a 2D space

In the preceding section, we have diagonalized the mean-field Hamiltonian concerning a single
coupling vector (see Eq. (3.54)). In the following part, we look to the Hamiltonian with more
allowed coupling vector and analyze the effect of the increasing the number of the coupling
within the framework of the mean-field approximation.

In the two dimensional reciprocal space, two linearly independent vectors are sufficient
and necessary to span the whole space. Hence, there would be two independent translational
vectors. Introducing another translational vector could have two distinct consequences. On
the one hand, it can scale the translational vectors of the lattice by rational factor if it could
be written as a linear sum of the basis vectors, with the coefficient being rational numbers.
On the other hand, it can totally destroy the lattice if the new introduced vector cannot be
expressed as the linear combination of the basis vectors. In the latter case, actually each state
couples to the infinite number of the states and upon the current mean-field method, it is
impossible to diagonalize the Hamiltonian. Hereby, the two dimensional lattice would be the
favorable model which can be dealt within the restriction of the mean-field theory. So we
choose two vectors as the basis vectors with the amplitude q1 = q2. The amplitude of the
translational vectors are restricted over the permissible values at the critical points which are
depicted in Fig. 3.2.

The orientation of the basis vectors can be determined by taking into account that the
ground state energy of SDW phase has to have the lowest energy. Considering that construc-
tion of particle-hole pairs lead to the reduction of the ground state energy, equilateral trian-
gular lattice (hexagonal lattice) provides the higher number of coupling, upon the isotropic
symmetry of the space. Besides, the triangular lattice provides highest number of discrete
rotational symmetry.

Concerning the triangular lattice in Fig. 3.5 for the states far from the vertexes of the
lattice, we have three independent terms in the Hamiltonian. The diagonalized form, inspired
by Eq. (3.54), reads

HMF =
∑
k∈q1
i, λ=↑↓

E±ikγ
†
ikλγikλ +

2∆2L2

Ṽq1

+
∑
k∈q2
i, λ=↑↓

E±ikγ
†
ikλγikλ +

2∆2L2

Ṽq2

+
∑
k∈q3
i, λ=↑↓

E±ikγ
†
ikλγikλ +

2∆2L2

Ṽq3

, (3.57)

where each line corresponds to the one sides of the triangle in reciprocal lattice. The sum over
i is restricted over the two side of each coupling vector (area in the vicinity of the boundaries
of the BZs). The eigenvalues are the same as one in Eq. (3.55) whenever the Fermi surface
does not include the vertex of the lattice (except the origin). As there are three equivalent
independent term in Hamiltonian so the total ground state energy would be
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Figure 3.5: (a) The schematic representation of the triangular lattice and the relative configuration
of the Fermi surface. Two independent translational vectors are also shown with the blue
and red arrows indicated by q1 and q2, respectively. The third side of the triangles are
shown by the green arrow as the q2−q1. (b) The Brillouin zones of the triangular lattice
and the relative placement of the Fermi surface have been shown. The typical couplings
of the state by vector q1 is depicted for illustrations of the pairing.

E0
SDW = 〈ψSDW |HMF |ψSDW 〉 = 3× 2

∑
1stBZ

ε1k + ε2k
2

−

√(
ε1k − ε2k

2

)2

+ ∆2 − µ


+ 3× 2

∑
2ndBZ

ε1k + ε2k
2

+

√(
ε1k − ε2k

2

)2

+ ∆2 − µ


+ 3× 2∆2L2

Ṽq
. (3.58)
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3.4 Condensation energy and order parameter

Following the diagonalized mean-field Hamiltonian in Eq. (3.54) corresponds to the one-
dimensional lattice, we start to find out the ground state energy of the system in the SDW
phase. We derive the condensation energy in order to admit the phase transition of the sys-
tem as a consequence of the instability versus SDW phase. All calculation is restricted to the
zero temperature T = 0. The ground state energy and order parameter has to be calculated
self-consistently. So we present them alternatively together, as their consistency has to be
check throughout the calculations.

We calculate the parameter of the system corresponds to the critical points, which is
depicted in Fig. 3.2. It has to be said that the validity of the calculation is just in the vicin-
ity of the critical point. Hereby, we try to calculate the condensation energy and the order
parameter self-consistently for the phase diagram.

We look to the relation of the order parameter and the ground state energy before leaving
this section. The ground state energy is written

E0
SDW = 〈ψSDW |HMF |ψSDW 〉 = 2

∑
k<k′F

ε1k + ε2k
2

−

√(
ε1k − ε2k

2

)2

+ ∆2 − µ


+ 2

∑
k>k′F

ε1k + ε2k
2

+

√(
ε1k − ε2k

2

)2

+ ∆2 − µ


+

2∆2L2

Ṽq
, (3.59)

where the first sum is over the first Brillouin zone and the second sum for the second Brillouin
zone. The Fermi wavevector in SDW phase is shown with prime sign. The prefactor 2 is for
spin degeneracy. Now, upon the definition of the order parameter (3.53), it is written by use
of (3.34)

∆̃ = ∆eiϕ =
Ṽq
L2
β̃∗ =

Ṽq
L2

∑
k

〈a†k+q↑ ak↑〉, (3.60)

We employ the transformed operator to rewrite the pair expectations value as

〈c†k+q↑ ck↑〉 = 〈c†1k↑ c2k↑〉

= ÑM̃eiϕ

=
sin 2θ

2
eiϕ

=
β̃ Ṽq/2L

2√
((ε1k − ε2k)/2)2 + (β Ṽq/L2)2

. (3.61)

The order parameter so can be written as
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∆
Ṽq
2L2

=
∑
k

∆√
((ε1k − ε2k)/2)2 + ∆2

. (3.62)

The order parameter generally is momentum-dependent. But as we mentioned, for weakly
interacting system, we take the order parameter momentum-independent. Equation (3.62) is
valid up to first Brillouin zone filled state. For the states of the higher bands, we have to
diagonalize the mean-field Hamiltonian once again. The order parameter can also be derived
by minimizing the ground state energy with respect to the order parameter consistent with
the Landau theory approach. Hence we minimize E0

SDW (3.59) as a function of the order
parameter. So we have

∂E0
SDW

∂∆
= −2

∑
1stBZ

∆√(
ε1k−ε2k

2

)2
+ ∆2

+ 2
∑

2ndBZ

∆√(
ε1k−ε2k

2

)2
+ ∆2

+
4∆L2

Ṽq

= 0, (3.63)

and can be readily solved for a self-consistent equation

∆ =
Ṽq
2L2

∑
1stBZ

∆√
((ε1k − ε2k)/2)2 + ∆2

− Ṽk
2L2

∑
2ndBZ

∆√
((ε1k − ε2k)/2)2 + ∆2

. (3.64)

So we are ready to calculate explicitly the ground state energy and order parameter self-
consistently in the coming sections.

3.4.1 In the case of q = 2kF

Concerning the critical points of the system in Fig. 3.2, a large area of the diagram associated
with y ≤ 1/2, corresponds to the instability at q = 2kF . Obviously, the interaction strength at
the critical points rs varies continuously upon this part of the critical points diagram (see Fig.
3.1). We start to calculate the order parameter, since we would need the order parameters
through the calculation of the condensation energy.

Order parameter for q = 2kF

In this regime, we suppose particle-hole coupling take place within a narrow area close to the
Fermi surface. Hence, we introduce a cutoff λ, as shown in Fig. 3.6, in which the states are
coupled by means of the vector |q| = 2kF to the states at other side of the Fermi surface.
Such coupling |q| = 2kF implies that the band gap appears on the Fermi surface. Hence, we
are dealing with the first Brillouin zone and the second band is empty. In the weak coupling
regime, we treat the states out of the cutoff, states far from the Fermi surface, as the states
in the normal phase i.e. ∆ = 0. As we discuss later, the final results of the calculation have
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to be independent of the cutoff λ, which could be done in the regime of the extremely weak
coupling ∆� εF .

Figure 3.6: The Fermi surface of the SDW phase. The cutoff splits the states to the two distinct
areas: the states in the vicinity of the Fermi surface and the states far from it.

The particular form of the self-consistent order parameter equation has a significant
practical importance in the following calculation. Actually, by vanishing the order parameter
in Eq. (3.62), it reduces to the instability equation (3.13). In the present regime it is written

− 2 =
χ0(q) Ṽq
L2

,

⇒ 1 =
Ṽq
L2

ω(E), (3.65)

where the form of the response function χ0(q) in q ≤ 2kF is used. We perform the vanishing
limit of the order parameter in Eq. (3.62) to see this correspondence as



3.4. CONDENSATION ENERGY AND ORDER PARAMETER 47

lim
∆→0

{
∆ =

Ṽq
2L2

∑
k

∆√
((ε1k − ε2k)/2)2 + ∆2

}
,

⇒ 1 =
Ṽq
2L2

∑
k

1√
((ε1k − ε2k)/2)2

,

⇒ 1 =
Ṽq
L2

∑
k

1

ε1k − ε2k
,

⇒ 1 =
Ṽq
L2

ω(E). (3.66)

In the fourth line we have just written the result of the sum in the third line. Later, we show
it clearly.

As it is suggested that the order parameter in the form which is presented in Eq. (3.62)
is valid just within the cutoff, which is introduced in Fig. 3.6, and elsewhere we deal with
the vanishing limit of the order parameter ∆ → 0 which is equal the instability equation.
Hence, first we have achieved the representation of the response function in the current regime
q = 2kF , in order to employ it in the self-consistent order parameter equation. As the direction
of q is arbitrary, we fixed it along x̂-direction. So the response function reads

χ0(|q| = 2kF ) = 2
∑
k

θ(kF − k)− θ(kF − |
k′︷ ︸︸ ︷

k + q |)
ε|k| − ε|k+q|

= 2

(
L

2π

)2 2m

~2

ˆ {
θ(kF − k)

k2 − (k + q)2
dk − θ(kF − k′)

(k′ − q)2 − k′2
dk′
}

= 2

(
L

2π

)2 2m

~2
4

ˆ kF

0

ˆ √k2
F−k2

x

0

{
1

−q2 + 2kxq
− 1

q2 + 2kxq

}
dkxdky

= 2

(
L

2π

)2 2m

~2

ˆ 1

0

ˆ √1−x2

0

{
1

1 + x
− 1

x− 1

}
dxdy

= − 2

π
ω(E)

ˆ 1

0

{√
1 + x

1− x
+

√
1− x
1 + x

}
dx

= −2ω(E), (3.67)

where we have used the definition of the response function is given in Eq. (A.18). In the
third line, the prefactor 4 corresponds to the four quadrants of the integral domain in the
k-space. The coupling vector is supposed to be lying along x-direction with the length twice
the Fermi wavenumber q = 2kF . It has to be noted that for state near the boundary zone in
the righthand side of the BZ, coupling vector q directed in along the negative direction and in
other side is taken vice versa. Therefore, their inner product is k.q = −kxq, which is employed
in the third line. In the last lines the integral’s variable is normalized by Fermi wavelength
x = kx/kF and y = ky/kF that k is considered as k2 = k2

x + k2
y. The density of state in 2D is
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engaged as ω(E) = mL2/2π~2, which is independent of the energy. In the normal state, the
Fermi surface is a circle with the radius of kF and the integral is performed with respect to
this circle of the Fermi surface.

Now upon the idea of the cutoff in Fig. 3.6, we rewrite the self-consistent equation of the
order parameter. We had mentioned that in the weak coupling regime, the order parameter is
taken momentum independent. Beginning from (3.62) and taking into account that the sum
is over the first BZ we have

∆ = ∆
Ṽq
2L2

∑
k

1√(
ε1k−ε2k

2

)2
+ ∆2

= ∆
Ṽq
2L2

m

~2

∑
k

1√[
1
4 (q2 + 2k.q)

]2
+ ∆2

= ∆ ω(E)
Ṽq
L2

1

4π

ˆ 1stBZ dxdy√
(1− |x|)2 + ∆′ 2

, (3.68)

where the same reasoning as in the calculation of the response function in Eq. (3.67) is
employed in the mid-steps. The order parameter is renormalized by twice Fermi energy ∆′ =
∆/2εF . The last integral in Eq. (3.68) is over the whole first BZ, and now the area in and
out of the cutoff have to be separated. We perform the integral within the cutoff by finding
the limits of the integral. We attempt to derive the Fermi surface by solving the dispersion
relation for y-component. By use of the dispersion relation for the first BZ (3.55), we write

µ =
ε1k + ε2k

2
−

√(
ε1k − ε2k

2

)2

+ ∆2

=
~2

2m

1

2

[
k2 + (k + q)2

]
−

√{
~2

2m

1

2
[k2 − (k + q)2]

}2

+ ∆2

= εF

[
x2 + y2 + 2(1− |x|)− 2

√
(1− |x|)2 + ∆′ 2

]
,

and concerning the relation µ = εF at zero-temperature, we solve this equation for y to obtain

y =

√
2
√

(1− |x|)2 + ∆′ 2 − (1− |x|)2. (3.69)

It is possible to do the integral over the Fermi surface of the SDW phase. So by separating
Eq. (3.68) with respect to the cutoff, we continue with its integral part as
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ˆ 1stBZ dxdy√
(1− |x|)2 + ∆′ 2

= 4

ˆ λ

0

ˆ √1−x2

0

{
1

1 + x
− 1

x− 1

}
dxdy

+ 4

ˆ 1

λ

ˆ √
2
√

(1−x)2+∆′ 2−(1−x)2

0

dxdy√
(1− x)2 + ∆′ 2

,

(3.70)

where sign of absolute value function is dropped as the integral is just over the positive value,
and the prefactor 4 counts the other regions. By adding and subtracting a term in order to
make the first integral same as the response function integral in Eq. (3.67). Before go further,
we do some approximation to simplify the upper limit of the second integral in (3.70).

In the weak coupling regime ∆′ � 1, for area near to the boundary zone (1 − |x|) � 1,
the second term in the square root of upper limit of second integral y, can be neglected in
comparison with the first term

(1− |x|)2 �
√

(1− |x|)2 + ∆′ 2. (3.71)

then the upper limit is written like

y =

√
2
√

(1− |x|)2 + ∆′ 2. (3.72)

Hereby, the integrals appears as

(3.70) = 4

ˆ 1

0

ˆ √1−x2

0

{
1

1 + x
− 1

x− 1

}
dxdy

+ 4

ˆ 1

λ

ˆ √
2
√

(1−x)2+∆′ 2

0

dxdy√
(1− x)2 + ∆′ 2

− 4

ˆ 1

λ

ˆ √1−x2

0

{
1

1 + x
− 1

x− 1

}
dxdy

= 4π + 4

ˆ 1

λ


√

2[
(1− x)2 + ∆′ 2

] 1
4

− 2√
1− x2

 dx, (3.73)

that the first integral is exactly the same as one in the response function integral in Eq. (3.67).
For states close to the boundary (1−|x|)� 1, we approximate further 1−x2 = (1−x)(1+x) ≈
2(1− x). So we have

(3.73) ≈ 4π + 4
√

2

ˆ 1

λ

 1[
(1− x)2 + ∆′ 2

] 1
4

− 1√
1− x

 dx, (3.74)
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and by renaming the integral variable as 1−|x|
∆′ = z, we continue

(3.74) = 4π + 4
√

2∆′
ˆ 1−λ

∆′

0

[
1

(1 + z2)
1
4

− 1√
z

]
dz. (3.75)

By taking the vanishing limit of the order parameter ∆′ → 0, as the weak coupling regime,
there would be a well-define integral. We see that by taking such limit the upper limit goes
to the infinity and we have got ride of the cutoff

lim
∆′→0

1− λ
∆′

→∞.

We perform the integral

(3.70) = (3.75) = 4π + 4
√

2∆′ lim
∆′→0

ˆ 1−λ
∆′

0

[
1

(1 + z2)
1
4

− 1√
z

]
dz

= 4π + 4
√

2∆′
ˆ ∞

0

[
1

(1 + z2)
1
4

− 1√
z

]
dz

= 4π − 8
√

2π∆′
Γ(3

4)

Γ(1
4)
, (3.76)

where Γ(z) is the gamma function. By replacing the integral (3.70) in the order parameter
equation (3.68) we obtain

∆′ = ∆′ ω(E)
Ṽq
L2

(
1− 2

√
2

π

Γ(3
4)

Γ(1
4)

√
∆′

)

= ∆′ ω(E)
Ṽq
L2

(
1− 0.54

√
∆′
)
. (3.77)

Now we solved Eq. (3.77) for ∆′ to get

∆′ =

[√
π

8

Γ(1
4)

Γ(3
4)

]2(
1− L2

ω(E) Ṽq

)2

=
1

(0.54)2

(
1− L2

ω(E) Ṽq

)2

. (3.78)

It is convenient to introduce the critical parameters, in which the order parameter vanishes
and that is the very moment of phase transition. Obviously the order parameter vanishes at
the critical points that we have derived before in Eq. (3.13) and is apparent in Eq. (3.78).
By the way, we use Eq. (3.78) to find critical parameter by

1 =
L2

ω(E) Ṽ c
q

, (3.79)
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in which the order parameter vanishes. By use of x = q/2kF , y = lkF and rs = d2
eff mkF /~2,

which are introduced in the Sec. 3.2.1, we rewrite the potential in Eq. (3.2) at the critical
points as

Ṽ c
q = rcs

2~2

m
x exp (−2yx)|x=1

= rcs
2~2

m
exp (−2y). (3.80)

Replace it in Eq. (3.79), the critical strength obtain

Ṽ c
q =

L2

ω(E)

= L2 2π~2

mL2
,

⇒ rcs = πe2y. (3.81)

Finally, we write down explicitly the order parameter by engaging this critical strength in Eq.
(3.78) as

∆′ =
π

8

(
Γ(1

4)

Γ(3
4)

)2(
1− rcs

rs

)2

= 3.44

(
1− rcs

rs

)2

, (3.82)

which is valid throughout the critical points in the interval (y ≤ 1
2 , x = 1) corresponds to the

critical strength as defined in Eq. (3.81).

Condensation energy for q = 2kF

The order parameter in the regime q = 2kF is found in preceding part. We turn to the con-
densation energy in the same regime. As it has been said, these two quantities have to be
calculated self-consistently. Thereby, the order parameter has to minimize the ground state
energy in each step of the calculation.

The starting point would be Eq. (3.59). In the current regime q = 2kF , the first band is just
filled. So we have



52 CHAPTER 3. SPIN DENSITY WAVE

ESDW = 2
∑

1stBZ

ε1k + ε2k
2

−

√(
ε1k − ε2k

2

)2

+ ∆2 − µ

+
2∆2L2

Ṽq

= 2
∑

1stBZ

 ~2

2m

1

2

[
k2 + (k + q)2

]
−

√{
~2

2m

1

2
[k2 − (k + q)2]

}2

+ ∆2 − εF

+
2∆2L2

Ṽq

= 2
~2

2m

(
L2

2π

)
k4
F

ˆ 1stBZ {
x2 + y2 + 2(1− |x|)− 2

√
(1− |x|)2 + ∆′2 − 1

}
dxdy +

8∆′ 2 ε2F L
2

Ṽq

= EN
2

π

ˆ 1stBZ {
y2 + (1− |x|)2 − 2

√
(1− |x|)2 + ∆′2

}
dxdy +

8∆′ 2 ε2F L
2

Ṽq
, (3.83)

where we have used k.q = −kxq and introduced x = kx/kF , y = ky/kF by k2 = k2
x + k2

y, and
also normalized the order parameter ∆′ = ∆/2εF . In the last line we used the total energy
per spin in the normal state that is

EN =

(
L

2π

)2 ˆ kF

0

~2k2

2m
d2k

=

(
L

2π

)2 ~2k4
F

2m

ˆ λ

0

ˆ √1−x2

0
(x2 + y2)dxdy

=
~2L2k4

F

8πm
. (3.84)

Similar to the case of the order parameter, we introduce the idea of the cutoff which is shown
in Fig. 3.6. It is mentioned that we use the dispersion relation of the SDW in the vicinity of
the boundary zone, and elsewhere the dispersion relation of the normal state. Therefore, we
split the integral in (3.83) to two parts: one for states close to the boundary zones, and other
far from it as

ˆ 1stBZ {
y2 + (1− |x|)2 − 2

√
(1− |x|)2 + ∆′2

}
dxdy

= 4

ˆ λ

0

ˆ √1−x2

0

(
x2 + y2 − 1

)
dxdy

+ 4

ˆ 1

λ

ˆ √
2
√

(1−|x|)2+∆′ 2−(1−|x|)2

0

{
y2 + (1− x)2 − 2

√
(1− x)2 + ∆′2

}
dxdy.

(3.85)

The prefactor 4 counts the number of quadrants as the integrals are over positive one. At each
step of the calculation of the ground state energy, we check the consistency of the calculation
with the order parameter, at the same level of calculations. So we take the derivative of Eq.
(3.85) with respect to ∆′, by use of the Leibniz integral rule, which is the derivative of a
function with the definite integral form as
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F (x) =

ˆ a(x)

b(x)
f(x, y)dy.

The derivative takes the form

dF (x)

dx
= f(x,b(x))

db(x)

dx
− f(x, a(x))

da(x)

dx
+

ˆ a(x)

b(x)

∂f(x, y)

∂x
dy.

By employing this relation for the ground state energy in Eq. (3.83), we obtain

0 = ∂∆′E
SDW = ∂∆′

{
EN

2

π
(3.85) +

8∆′ 2 ε2F L
2

Ṽq

}
= EN

2

π

{[{√
2
√

(1− |x|)2 + ∆′ 2 − (1− |x|)2
}2

+ (1− x)2 − 2

√
(1− x)2 + ∆′2

]
d(...)

d∆′

− (...)× 0

+ 4

ˆ 1

λ

ˆ √
2
√

(1−|x|)2+∆′ 2−(1−|x|)2

0
∂∆′

{
y2 + (1− x)2 − 2

√
(1− x)2 + ∆′2

}
dxdy

}

+
16∆′ ε2F L

2

Ṽq
,

where the second line is merely zero. By using the relation

ω(E) =
EN

ε2F
=

~2L2k4
F

8πm(
~2k2

F
2m

)2 =
mL2

2π~2
, (3.86)

we obtain for the order parameter

∆′ ∝ ∆′ ω(E)
Ṽq
L2

1

π

ˆ 1

λ

ˆ √
2
√

(1−x)2+∆′ 2−(1−x)2

0

dxdy√
(1− x)2 + ∆′ 2

, (3.87)

which the rhs is equal to the order parameter by use of Eq. (3.70), regardless of the ∆-
independent term.

We continue from Eq. (3.85). By engaging the same trick as in the order parameter
calculation, we introduce the complete form of the normal ground state energy as

(3.85) = 4π + 4

ˆ 1

λ

ˆ √
2
√

(1−|x|)2+∆′ 2−(1−|x|)2

0

{
y2 + (1− x)2 − 2

√
(1− x)2 + ∆′2

}
dxdy

− 4

ˆ 1

λ

ˆ √1−x2

0

(
x2 + y2 − 1

)
dxdy, (3.88)
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and by engaging Eq. (3.88) in Eq. (3.84), after a manipulation and neglecting the square term

versus the square root term (1 − x)2 �
√

(1− x)2 + ∆′2 for the area close to the boundary
(1− |x|)� 1, we continue for condensation energy as

Econ = EN − ESDW

= EN
8

π

{ˆ 1

λ

ˆ √1−x2

0

(
x2 + y2 − 1

)
dxdy

−
ˆ 1

λ

ˆ √
2
√

(1−x)2+∆′ 2

0

{
y2 − 2

√
(1− x)2 + ∆′2

}
dxdy

}

−
8∆′ 2 ε2F L

2

Ṽq
.

(3.89)

We perform the integrals to obtain

ˆ 1

λ

ˆ √1−x2

0

(
x2 + y2 − 1

)
dxdy −

ˆ 1

λ

ˆ √
2
√

(1−x)2+∆′ 2

0

{
y2 − 2

√
(1− x)2 + ∆′2

}
dxdy

=

ˆ 1

λ

2

3

{
− (1− x2)

3
2 + 2

3
2
[
(1− x)2 + ∆′ 2

] 3
4

}
dx. (3.90)

We approximate the first integrand by (1 − x2)
3
2 = (1 + x)

3
2 (1 − x)

3
2 ≈ 2

3
2 (1 − x)

3
2 , which is

valid for the area close to the boundary of BZ. We continue to obtain

(3.90) =
2

5
2

3

ˆ 1

λ

{[
(1− x)2 + ∆′ 2

] 3
4 − (1− x)

3
2

}
dx. (3.91)

Before going further, we check the consistency of Eq. (3.91), to be minimized by the order
parameter over the same level of approximation in Eq. (3.74). As the prefactors are out of the
interest, we just check the delta-dependent integrals. By taking the derivative of Eq. (3.91)

∂∆′(3.91) ∝
√

2

ˆ 1

λ

1[
(1− x)2 + ∆′ 2

] 1
4

dx,

which corresponds to the ∆′-dependent part of Eq. (3.74).

Renaming the variable of the integral in Eq. (3.91), with z = (1− x)/∆′, and taking the
vanishing limit of the integral in the framework of the weak coupling ∆′ � εF , the integral
emerges like
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(3.91) =
2

5
2

3
∆′

5
2 lim

∆′→0

ˆ 1−λ
∆′

0

{[
1 + z2

] 3
4 − z

3
2

}
dx

=
2

5
2

3
∆′

5
2

ˆ ∞
0

{[
1 + z2

] 3
4 − z

3
2

}
dx. (3.92)

This integral is divergent. Obviously, this tangle is not a physical consequence of the ground
state energy, which is finite in its discrete form in Eq. (3.83). It is the result of the approach
in the continuum limit which is chosen for calculation i.e. introducing cutoff in the vanishing
coupling energy ∆′ � εF . We can get rid of this disaster, by adding and subtracting a term
correspond to the derivative of the integrand in Eq. (3.91), the integral in Eq. (3.92) would
become convergent. Therefore, we show the following relation for the integrand

∆′ 2 × lim
∆′ 2→0

[
(1− x)2 + ∆′ 2

] 3
4 − (1− x)

3
2

∆′ 2
=

∂

∂ζ

{ [
(1− x)2 + ζ

] 3
4

}
|ζ=0

=
3

4

1√
1− x

∆′ 2, (3.93)

We rewrite the integral in Eq. (3.91) once agin as

(3.91) =
2

5
2

3

ˆ 1

λ

{[
(1− x)2 + ∆′ 2

] 3
4 − (1− x)

3
2 − 3

4

1√
1− x

∆′ 2

}
dx+

2
5
2

3

ˆ 1

λ

3

4

1√
1− x

∆′ 2 dx

=
2

5
2

3
∆′

5
2

ˆ ∞
0

{[
1 + z2

] 3
4 − z

3
2 − 3

4
√
z

}
dx+

√
2

ˆ 1

λ

1√
1− x

∆′ 2 dx. (3.94)

The first integral in Eq. (3.94) is convergent, contrary to integral in Eq. (3.92). If we scrutinize
the SDW ground state energy in its discrete form in (3.83), we see that in the weak coupling
regime ∆� εF the sum in the ground state energy has a term proportional to the square of
the order parameter times the response function as

2
∑

1stBZ

ε1k + ε2k
2

−

√(
ε1k − ε2k

2

)2

+ ∆2 − µ


= 2

∑
1stBZ

ε1k + ε2k
2

−
(
ε1k − ε2k

2

)√
1 +

(
ε1k − ε2k

2

)−2

∆2 − µ


≈ 2

∑
1stBZ

[
ε1k + ε2k

2
−
(
ε1k − ε2k

2

){
1 +

1

2

(
ε1k − ε2k

2

)−2

∆2

}
− µ

]

∝ 2 ∆2
∑

1stBZ

1

ε1k − ε2k
. (3.95)

The last term is in the close similarity with the response function in Eq. (3.67). Therefore,
the extra term in Eq. (3.94) is just the response function, at the same level of approximation
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in Eq. (3.74). So we return to the extra term in Eq. (3.94), and give up the cutoff idea to
obtain the original form of the response function with the correct coefficient

√
2∆′ 2

ˆ 1

λ

1√
1− x

dx → ∆′ 2
ˆ 1

0

{√
1 + x

1− x
+

√
1− x
1 + x

}
dx

= π∆′ 2. (3.96)

By performing the first integral in Eq. (3.94) and insert it in the condensation energy, we
obtain

Econ = EN − ESDW

= EN
8

π

{
2

5
2

3
∆′

5
2

ˆ ∞
0

{ [
1 + z2

] 3
4 − z

3
2 − 3

4
√
z

}
dx+ π∆′ 2

}
−

8∆′ 2 ε2F L
2

Ṽq

= EN

{
16

5

√
2

π

Γ(−1
4)

Γ(1
4)

∆′
5
2 + 8∆′ 2

}
−

8∆′ 2 ε2F L
2

Ṽq
.

. (3.97)

Once again, we check the consistency of the condensation energy and the order parameter.
Minimizing Eq. (3.97) with respect to ∆′ and using Eq. (3.86), we write

0 = ∂∆′E
con = EN

{
16

5

√
2

π

Γ(−1
4)

Γ(1
4)

5

2
∆′

3
2 + 16∆′

}
−

16∆′ ε2F L
2

Ṽq
,

⇒ ∆′ = ∆′ ω(E)
Ṽq
L2

(
1 +

1√
2π

Γ(−1
4 )

Γ(1
4)

√
∆′

)

= ∆′ ω(E)
Ṽq
L2

(
1− 0.54

√
∆′
)
, (3.98)

which is exactly the same as the final equation for the order parameter in Eq. (3.77). We
solve Eq. (3.98) to obtain

ω(E)
L2

Vq
=

EN

ε2F

L2

Ṽq
=

(
1 +

1√
2π

Γ(−1
4 )

Γ(1
4)

√
∆′

)
,

and place it in Eq. (3.97) we have

Econ = EN

{
16

5

√
2

π

Γ(−1
4)

Γ(1
4)

∆′
5
2 + 8∆′ 2

}
−

8∆′ 2 ε2F L
2

Ṽq

= EN

{
16

5

√
2

π

Γ(−1
4)

Γ(1
4)

∆′
5
2 + 8∆′ 2 − 8∆′ 2 − 8√

2π

Γ(−1
4 )

Γ(1
4)

√
∆′

}

= EN

(
8√
2π
− 16

5

√
2

π

)
Γ(−1

4)

Γ(1
4)

∆′
5
2

= 0.87EN ∆′
5
2 . (3.99)
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We engage the final form of the order parameter in Eq. (3.82) to obtain the ultimate form of
the condensation energy as

Econ = 19.06EN
(

1− rcs
rs

)5

. (3.100)

The positive sign of the condensation energy provides that the system in SDW phase has a
lower energy rather than the normal state. As we showed in Sec. 3.3.2, the lowest energy in
the SDW phase, in the framework of mean-field theory, achieved by a triangular lattice. Then
the lowest condensation energy is three times of the Eq. (3.99).

3.4.2 In the case of partially-filled second Brillouin zone q ≤ 2kF

The critical points in Fig. 3.2, correspond to the area within interval (y ≤ 1
2 , x = 1) is studied

in the preceding section. In this section, we analyze the parts of the critical points correspond
to the interval (y > 1

2 , x < 1).This regime q < 2kF , shows a rich phases and increased number
coupling in compare to the other regime q = 2kF .

As it is represented in the section 3.3.2, the lowest energy in the SDW phase is provided by
the triangular lattice (the Fermi surface in such reciprocal space is depicted in Fig. 3.5). We
start to study the phase diagram in the current regime by decreasing the coupling vector q
for fixed Fermi energy or equivalently, we increase the Fermi energy versus the fixed coupling
vector. By changing the ratio of Fermi wavevector and the coupling vector, we are interested
in the behavior of the system by changing the configuration of the system y throughout the
critical points (see Fig. 3.2).

It is apparent that by increasing the Fermi surface over the fixed lattice basis, gradually
more and more Brillouin zones would be included inside the Fermi surface. While blowing
the Fermi surface, the system encounters with the moment where the Fermi surface placed
precisely at the vertexes and so-called nesting happens. As the system enters to a new BZ,
consequently a new term would appear in the ground state energy. Hence, the ground state
of the system shows a sudden change whenever it passes such nesting points. Actually, the
system undergoes a phase transition from SDW phase to SDW phase, due to non-analytical
behavior of the ground state at the nesting moments. The behavior of the condensation energy
is shown schematically in Fig. 3.7 versus an external parameter. This transition from SDW
to SDW would be a first order phase transition as the first derivation of the energy shows a
singularity.

In the following, the order parameter and condensation energy, corresponding to the case
that the Fermi surface lied over the first and second BZ, would be presented presented. The
procedure is the same as done in previous section. We first present the calculations for order
parameter.
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Figure 3.7: The schematic representation of the condensation energy versus an external parameter,
say strength of the interaction rs or interlayer separation y. The non-analytical points,
where marked by sudden drop of the diagram, are associated with the nesting points
where the translational vector |q| and Fermi energy kF are commensurate: q = (m/n)kF
by integral m and n.

Order parameter for q < 2kF : case of β2 � 2∆′

Since the Fermi surface is expanded into the second BZ, the corresponding term has to be
included into condensation energy. Because the couplings of each particle is yet single, one
particle coupled to at most one hole, then it suffices to consider a one dimensional lattice and
at the end of calculations, we count the 3 independent coupling area of the triangular lattice
by a factor of three.

We start to calculate the order parameter by use of Eq. (3.64) and also rename the
coupling vector as q = 2p. So the interaction potential looks like

Ṽ (q = 2p) = π d2
eff 2p exp (−2lp), (3.101)

The self-consistent equation order parameter in Eq. (3.64), can be written

∆ =
Ṽ2p

2L2
∆
∑

1stBZ

1√
((ε1k − ε2k)/2)2 + ∆2

− Ṽ2p

2L2
∆

∑
2ndBZ

1√
((ε1k − ε2k)/2)2 + ∆2

, (3.102)

where once again we took the order parameter as k-independent for the region in the vicinity
of the critical point. We introduce the idea of cutoff, the same as we did in previous sections,
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but this time two different cutoff: one for the first BZ λ1 and the other for the second BZ λ2,
which is depicted in Fig. 3.8. Hereby, the continuum limit of the order parameter is written

Figure 3.8: The Fermi surface in the SDW phase (solid line) and normal phase (dashed line) are
shown. Two cutoffs are introduced: one in the first BZ and the second in the second BZ.

∆′ =
∆′Ṽ2p

2L2

(
L

2π

)2 m

~2

{ˆ 1stBZ dxdy√
(1− |x|)2 + ∆′ 2

−
ˆ 2stBZ dxdy√

(1− |x|)2 + ∆′ 2

}
, (3.103)

where the the order parameter is normalized as ∆′ = ∆/2εp and the variables as x = kx/p
and y = ky/p, where k2 = k2

x + k2
y, and also we used k.q = 2k.p = 2kxp. Before proceeding

further, we derive the Fermi surface (Fig. 3.8) as a function of x for y by use of Eq. (3.55),
for both BZ as

µ =
ε1k + ε2k

2
±

√(
ε1k − ε2k

2

)2

+ ∆2

=
~2

2m

1

2

[
k2 + (k + q)2

]
±

√{
~2

2m

1

2
[k2 − (k + q)2]

}2

+ ∆2

=
~2p2

2m

[
x2 + y2 + 2(1− |x|)± 2

√
(1− |x|)2 + ∆′ 2

]
, (3.104)

and by introducing the dimensionless parameters
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α = kF

p ,

β2 = 1 + α2.

(3.105)

Then Eq. (3.104) can be written as

1 + β2 = α2 =
εF
εp

= x2 + y2 + 2(1− |x|)± 2
√

(1− |x|)2 + ∆′ 2.

Thus can be readily solved for y to obtain

y =

√
β2 ∓ 2

√
(1− |x|)2 + ∆′2 − (1− |x|)2, (3.106)

where positive result corresponds to the first BZ and negative one for the second BZ. We put
the order parameter zero, for the area far from the boundary zone in Eq. (3.103), and the
integral of the order parameter reduces to the response function, as is showed in Sec. 3.4.1.
Hence, there would be

∆′ =
∆′Ṽ2p

2L2

(
L

2π

)2 m

~2
4

{
π +

ˆ 1

1−λ1

ˆ √
β2+2
√

(1−x)2+∆′2−(1−x)2

0

dxdy√
(1− x)2 + ∆′2

−
ˆ 1

1−λ1

ˆ √1+β2−x2

0
(

1

1− x
+

1

1 + x
)dxdy

−
ˆ 1+λ2

1

ˆ √
β2−2
√

(1−x)2+∆′2−(1−x)2

0

dxdy√
(1− x)2 + ∆′2

−
ˆ 1+λ2

1

ˆ √1+β2−x2

0
(

1

1− x
+

1

1 + x
)dxdy

}
, (3.107)

where π is the integral of the response function in the regime q = 2p ≤ 2kF , and is shown in Eq.
(3.67). The integrals in the second and fourth lines are subtracted from the complete integral
of the response function to give the correct limit of the integral. In the upper limits of integrals,
we neglect the square term in compare with square root one, for (1− x)2 �

√
(1− x)2 + ∆′2

which is valid for the area extremely close to the boundary zone (1 − x) � 1. Also, for the
integrals of the response function, second and fourth integral after writing them in common
denominator, we approximate within the same regime as 1−x2 ≈ 2(1−x). It has to be noted
that the integral in the second BZ just has value for β2 ≥ 2

√
(1− x)2 + ∆′2. We take the

cutoff in the second BZ to has a definite value equal to its maximum value as

β2 = 2
√
λ2

2 + ∆′2,

⇒ λ2 =

√
β4

4
−∆′ 2. (3.108)
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By performing the y-component integral and renaming the variables by z = (1− x)/∆′ for
the first band and z = (x− 1)/∆′ for the second band, by make use of ω(E) = mL2/2π~2,
there would be

∆′ =
Ṽ2p

L2
ω(E)

∆′

π

{
π + β

ˆ λ1
∆′

0

[√
1 + σ

√
1 + z2

√
1 + z2

−
√

1 + σz

z

]
dz

− β

ˆ λ2
∆′

0

[√
1− σ

√
1 + z2

√
1 + z2

−
√

1− σz
z

]
dz

}
, (3.109)

that we have introduced a new parameter σ = 2∆′/β2. These integrals cannot be done
analytically. So we expand them for small σ in the regime β2 � 2∆′, which implies the region
far from the band gap but yet within the cutoff β2 < 2λ. Keep the approximation up to the
first order in σ leaves the integral convergent as

∆′ =
Ṽ2p

L2
ω(E)

∆′

π

{
π + β

ˆ λ1
∆′

0

[
1 + 1

2σ
√

1 + z2

√
1 + z2

−
1 + 1

2σz

z

]
dz

− β

ˆ λ2
∆′

0

[
1− 1

2σ
√

1 + z2

√
1 + z2

−
1− 1

2σz

z

]
dz

}

=
Ṽ2p

L2
ω(E)

∆′

π

{
π + β

ˆ λ1
∆′

0

[
1√

1 + z2
− 1

z

]
dz − β

ˆ λ2
∆′

0

[
1√

1 + z2
− 1

z

]
dz

}

=
Ṽ2p

L2
ω(E)

∆′

π

{
π + β

ˆ λ1
∆′

λ2
∆′

[
1√

1 + z2
− 1

z

]
dz

}
. (3.110)

Now by taking the infinite limit of the first band cutoff λ1 →∞, simultaneously keeping the
order parameter finite and small, and also using the definite value of the second band cutoff in
Eq. (3.108), we perform the integral in Eq. (3.110) by renaming the lower limit of the second
integral with a = λ2/∆

′ =
√
σ−2 − 1, we obtain

∆′ =
Ṽ2p

L2
ω(E)

∆′

π

{
π + β

ˆ ∞
a

[
1√

1 + z2
− 1

z

]
dz

}

=
Ṽ2p

L2
ω(E)

∆′

π

{
π + β

[
ln(2a)− sinh−1(a)

] }
. (3.111)

We expand the sinh−1(a) in the infinite limit a =
√
σ−2 − 1 � 1, which is valid for σ =

2∆′β2 � 1, to obtain

lim
x→∞

sinh−1(x) ≈ ln(2x) +
1

4x2
+ · · · , (3.112)

and engaging this expansion in Eq. (3.111), leads to
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∆′ =
V2p

L2
ω(E)

∆′

π

{
π + β

[
ln(2a)− ln(2a)− a−2

4

]}
=

Ṽ2p

L2
ω(E)

∆′

π

{
π − β

4

1
1
σ−2 − 1

}
≈ Ṽ2p

L2
ω(E)

∆′

π

{
π − β

4
σ2
}

=
Ṽ2p

L2
ω(E) ∆′

{
1− ∆′2

πβ3

}
, (3.113)

which reveals the explicit form of the order parameter. We solve it for ∆′ to obtain

∆′ =
√
πβ3

(
1− L2

Ṽ2pω(E)

)1/2

. (3.114)

As we did in previous section, we rewrite the order parameter associated with the critical
strength which vanishes the order parameter. Regarding the critical points in Fig. 3.2, we
rewrite the dimensionless parameter α, introduced in Eq. (3.105) to obtain

α =


1 y ≤ 1

2 ,

2y y > 1
2 ,

(3.115)

and for Eq. (3.114) at the critical moment, we have

L2

ω(E)
= Ṽ c

2p

= rcs
2~2

mα
exp (−2y

α
)|α=2y

= rcs
2~2

2mey
. (3.116)

At the end, the ultimate form of the order parameter looks

∆′ =
√
πβ3

(
1− rcs

rs

)1/2

, (3.117)

where rcs = 2πey by use of Eq. (3.116).

Condensation energy for q < 2kF : case of β2 � 2∆′

We start from Eq. (3.59), the exact ground state energy of SDW phase including sum over
first and second BZ. Similar to the calculation for the order parameter we rename the coupling
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vector q = 2p, and we introduce the cutoffs for both band as is shown in Fig. 3.8. We divide
the integral of the energy for area within the cutoff and outside the cutoff. The same as
the order parameter, we perform the calculation for one dimensional lattice and at the end
compensate it by a factor of three. The ground state energy reads

E0
SDW = 2

∑
1stBZ

ε1k + ε2k
2

−

√(
ε1k − ε2k

2

)2

+ ∆2 − µ


+ 2

∑
2ndBZ

ε1k + ε2k
2

+

√(
ε1k − ε2k

2

)2

+ ∆2 − µ

+
2∆2L2

Ṽ2p

= 2
∑

1stBZ

 ~2

2m

1

2

[
k2 + (k + q)2

]
−

√{
~2

2m

1

2
[k2 − (k + q)2]

}2

+ ∆2 − εF


+ 2

∑
2ndBZ

 ~2

2m

1

2

[
k2 + (k + q)2

]
+

√{
~2

2m

1

2
[k2 − (k + q)2]

}2

+ ∆2 − εF


+

2∆2L2

Ṽ2p

= 2
~2

2m

(
L2

2π

)
p4

ˆ 1stBZ {
x2 + y2 + 2(1− |x|)− 2

√
(1− |x|)2 + ∆′ 2 − α2

}
dxdy

+ 2
~2

2m

(
L2

2π

)
p4

ˆ 2ndBZ {
x2 + y2 + 2(1− |x|) + 2

√
(1− |x|)2 + ∆′ 2 − α2

}
dxdy

+
8∆′ 2 ε2p L

2

Ṽ2p

,

(3.118)

where we normalized variables as x = kx/p, y = ky/p, ∆′ = ∆/2εp and α is introduced in
Eq. (3.105). The orientation of the coupling vector is such that k.q = 2k.p = −2kxp. We
solved y-component as the function of x-component in Eq. (3.106) for the upper limits of the
integral. The ground state energy looks

ESDW =
16EN

3πα4

{ˆ 1−λ1

0

ˆ √1+β2−x2

0

{
y2 + x2 − β2 − 1

}
dxdy

+

ˆ 1

1−λ1

ˆ √
β2+2
√

(1−x2)+∆′ 2−(1−x)2

0

{
y2 + (1− x)2 − 2

√
(1− x)2 + ∆′ 2 − β2

}
dxdy

+

ˆ 1+λ2

1

ˆ √
β2+2
√

(1−x2)+∆′ 2−(1−x)2

0

{
y2 + (1− x)2 + 2

√
(1− x)2 + ∆′ 2 − β2

}
dxdy

+

ˆ α2

1+λ2

ˆ √1+β2−x2

0

{
y2 + x2 − β2 − 1

}
dxdy

}
+

8∆′ 2L2ε2p

Ṽ2p

. (3.119)
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Before proceeding further, it is good to mention that by doing the same as we did in previous
section, we can check the consistency of Eq. (3.119) with the order parameter, at the same
level of calculation in Eq. (3.107). Actually, it is the same as the Eq. (3.86) just an extra
integral for the second BZ which has the same form.

We add and subtracts terms a term to Eq. (3.119), to make the integral outside the cutoff
in the form of the ground state energy of the normal phase. By neglecting the square term
in compare with the square root term, for (1− x)2 �

√
1− x for area close to the boundary

(1− x)� 1. Also, we approximate further as (1− x2) ≈ 2(1− x) in the integral outside the
cutoff. The y-component of the integral takes the form

Econ =
16EN

3πα4

{ˆ 1

1−λ1

{[
β2 + 2

√
(1− x)2 + ∆′ 2

]3/2
−

[
β2 + 2(1− x)

]3/2 }
dx

+

ˆ 1+λ2

1

{[
β2 − 2

√
(1− x)2 + ∆′ 2

]3/2
−

[
β2 + 2(1− x)

]3/2 }
dx

}
+

8∆′ 2L2ε2p

Ṽ2p

,

(3.120)

which Econ = EN − ESDW . Now by renaming the integrals variables as z = (1− x)/∆′ for
the first BZ integral and z = (1− x)/∆′ for the second one and introducing σ = 2∆′/β2 we
write the integral as

Econ =
16EN

3πα4
∆′β3

{ˆ λ1
∆′

0

{
(1 + σ

√
1 + z2)3/2 − (1 + σz)3/2

}
dz

+

ˆ λ2
∆′

0

{
(1− σ

√
1 + z2)3/2 − (1− σz)3/2

}
dz

}
+

8∆′ 2L2ε2p

Ṽ2p

.

(3.121)

In Eq. (3.121), the cutoff in the second BZ has a definite value which is presented in Eq.
(3.108). By the way, the integral in this form cannot be done analytically and similar to the
calculations for the order parameter we expand the integrands for small σ. So we have for the
integrals in Eq. (3.121) up to first order

ˆ λ1
∆′

0

{
(1 + σ

√
1 + z2)3/2 − (1 + σz)3/2

}
dz +

ˆ λ2
∆′

0

{
(1− σ

√
1 + z2)3/2 − (1− σz)3/2

}
dz

=

ˆ λ1
∆′

0

{
(1 +

3

2
σ
√

1 + z2)− (1 +
3

2
σz)

}
dz +

ˆ λ2
∆′

0

{
(1− 3

2
σ
√

1 + z2)− (1− 3

2
σz)

}
dz

=
3

2
σ

{ˆ λ1
∆′

0
(
√

1 + z2 − z)dz −
ˆ λ2

∆′

0
(
√

1 + z2 − z)dz

}

=
3

2
σ

ˆ λ1
∆′

λ2
∆′

(
√

1 + z2 − z)dz. (3.122)
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The lower limit of the last integral is λ2/∆
′ =
√
σ−2 − 1 = a and the upper limit has to go

to infinity λ1/∆
′ → ∞. But in this regime this integral is divergent and has to be behaved

through the same way that we did in previous section: as it was shown the leading term in the
discrete form of the ground state energy is proportional to the response function times square
of the order parameter. we add and subtract a term which is equal to the response function
at the same level of approximation. So we have

(3.122) =
3

2
σ

{ˆ ∞
a

(
√

1 + z2 − z − 1

2z
)dz +

ˆ ∞
a

1

2z
dz

}
. (3.123)

First we calculate the extra term. It is the same as the integral of the response function in
Eq. (3.110). So this integral form of the response function in Eq. (3.110) has to give the value
of the response function which is π (look Eq. (3.67)). Then, the following relation is valid

β

ˆ ∞
a

1

z
dz ≡ π.

The extra term in Eq. (3.123) achieves the value as

ˆ ∞
a

1

2z
dz ≡ π

2β
. (3.124)

Now the first integral in Eq. (3.123) would be

ˆ ∞
a

(
√

1 + z2 − z − 1

2z
)dz =

1

4

[
1 + 2a(a−

√
1 + a2)− 2 sinh−1(a) + 2 ln(2a)

]
. (3.125)

By expanding the result, term by term for large a, which is valid for small σ, and keep the
terms up to the second order we have

1 + 2a(a−
√

1 + a2) = 1 + 2
√
σ−2 − 1(

√
σ−2 − 1− σ−1)

= 1 + 2(σ−2 − 1)− 2

√
σ−2 − 1

σ

≈ 1 + 2(
1

σ2
− 1)− 2

σ2
(1− σ2

2
− σ4

8
)

=
σ2

4
. (3.126)

We expand sinh−1 x around for large value by means of Eq. (3.112). Thus, the sum of the
hyperbolic and logarithm terms in Eq. (3.125) leads to

2[− sinh−1(a) + ln(2a)] ≈ −2

4

1

a2
= −2

4

1

σ−2 − 1
≈ −2

4
σ2. (3.127)

Finally, gathering all the terms and inserting back the integrals at the original place in Eq.
(3.121), we write down the condensation energy as
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Econ =
16EN

3πα4
∆′β3 3σ

2

{
1

4
(
1

4
σ2 − 2

4
σ2) +

π

2β

}
−

8∆′ 2L2ε2p

Ṽ2p

=
8EN

α4

{
∆′ 2 − ∆′ 4

2πβ3

}
−

8∆′ 2L2ε2p

Ṽ2p

. (3.128)

That is the moment we can check, once agin, that the order parameter minimize the conden-
sation energy

∂∆′E
con =

8EN

α4

{
2∆′ − 4

∆′ 3

2πβ3

}
−

16∆′L2ε2p

Ṽ2p

= 0,

⇒ ∆′ =
Ṽ2p

L2
ω(E) ∆′

{
1− ∆′2

πβ3

}
, (3.129)

which is the same as the order parameter in Eq. (3.113), where we have used Eq. (3.86) and
the relation

EN

α4 ε2p
=
EN

ε2F
= ω(E). (3.130)

to derive Eq. (3.129). Now by engaging Eq. (3.129) in the form

L2ε2p

Ṽ2p

=
8EN

α4
(1− ∆′ 2

πβ3
). (3.131)

We rewrite the condensation energy inEq. (3.128) as

Econ =
EN

α4

{
8∆′ 2 − 4∆′ 4

πβ3
− 8∆′ 2 +

8∆′ 4

πβ3

}
=

EN

α4

4∆′ 4

πβ3
. (3.132)

By replacing the final form of the order parameter in Eq. (3.117), the ultimate form of the
condensation energy would be

Econ = EN
4πβ3

(1 + β2)2

(
1− rcs

rs

)2

. (3.133)

So the order parameter and the condensation energy are obtained self-consistency for
the region of the phase diagram associated with q < 2kF and β2 � 2∆′. The results of this
regime do not merge into the results of the regime corresponds to q = 2kF when β → 0.
Therefore, we once again solve the order parameter and the condensation energy with the
same configuration of the Fermi surface but this time for β2 � 2∆′.
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Order parameter for q < 2kF : case of β2 � 2∆′.

In this part, once again we repeat the procedure of the self-consistent calculations to obtain
the order parameter and the condensation energy corresponded to the interval (y > 1

2 , x < 1)
of the critical points in Fig. 3.2. We perform the calculations in the asymptotic regime for
β2 � 2∆′ where

√
1 + β2 q = 2kF . Similar to the previous part, we obtain the parameters for

a one-dimensional lattice and by a factor of three, we count the effect of the triangular lattice.
We start by the integral form of the order parameter in Eq. (3.109). We write the equation
into the favorable parameters associated with the current regime as

∆′ =
Ṽ2p

L2
ω(E)

∆′

π

{
π + β

ˆ λ1
∆′

0

[√
1 + σ

√
1 + z2

√
1 + z2

−
√

1 + σz

z

]
dz

− β

ˆ λ2
∆′

0

[√
1− σ

√
1 + z2

√
1 + z2

−
√

1− σz
z

]
dz

}

=
Ṽ2p

L2
ω(E)

∆′

π

{
π +

√
2∆′

ˆ λ1
∆′

0


√

β2

2∆′ +
√

1 + z2

√
1 + z2

−

√
β2

2∆′ + z

z

 dz
−
√

2∆′
ˆ λ2

∆′

0


√

β2

2∆′ −
√

1 + z2

√
1 + z2

−

√
β2

2∆′ − z
z

 dz},
(3.134)

where σ = 2∆′/β2. In the limit β2 � 2∆′, the first term in the second integral dose not
contribute as it is imaginary. The reason is actually absence of the states in the vicinity of
the band gap. We attempt to explain the physical reason by employing the one dimensional
system. The density of state vanishes close to the boundary of the BZ within the interval of
εp −∆ < εk < εk + ∆, where 2p = q and q is the translational vector in 1D lattice. In the
current regime β2 � 2∆′, the second BZ states fall into the interval εp < εp < εF = α2εp =
(1 +β2)εp, and it can be shown that it is within the forbidden interval. The lhs limit is larger
than the lhs of the forbidden area as obviously εp − ∆ < εp. The rhs can be shown that is
smaller than the rhs of the forbidden one as (1 + β2)εp < εp + ∆ ⇒ β2εp < ∆ ⇒ β2 < 2∆′,
which is indeed true as we are dealing with the regime β2 � 2∆′. This reasoning is also true in
2D. We continue with Eq. (3.134), By neglecting the term in the second integral corresponds
to the second BZ of the SDW phase, it reads

∆′ =
Ṽ2p

L2
ω(E)

∆′

π

{
π +
√

2∆′
ˆ λ1

∆′

0


√

β2

2∆′ +
√

1 + z2

√
1 + z2

−

√
β2

2∆′ + z

z

 dz
+
√

2∆′
ˆ λ2

∆′

0

√
β2

2∆′ − z
z

dz

}
.

(3.135)

Once again, considering the square root in the second integral, the upper limit has to be
restricted with its maximum value as
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β2

2∆′
≥ λ2

∆′
,

⇒ λ2 =
β2

2
. (3.136)

Rearranging Eq. (3.135), we have

∆′ =
Ṽ2p

L2
ω(E)

∆′

π

{
π +

√
2∆′

ˆ λ1
∆′

λ2
∆′

{√ β2

2∆′ +
√

1 + z2

√
1 + z2

−

√
β2

2∆′ + z

z

}
dz

+
√

2∆′
ˆ λ2

∆′

0

√
β2

2∆′ +
√

1 + z2

√
1 + z2

dz

+
√

2∆′
ˆ λ2

∆′

0

{√ β2

2∆′ − z
z

−

√
β2

2∆′ + z

z

}
dz

}
.

(3.137)

We expand the integrands as a perturbation of β2/2∆′, except the last integral that we keep
it without expansion (in the last integral the term β2/2∆′ is comparable with z). After
rearranging, there would be

∆′ ' Ṽ2p

L2
ω(E)

∆′

π

{
π +

√
2∆′

ˆ λ1
∆′

0

{
1

(1 + z2)
1
4

− 1√
z

}
dz

+
√

2∆′
ˆ λ2

∆′

0

1√
z
dz

+
√

2∆′
ˆ λ1

∆′

λ2
∆′

1

2

β2

2∆′

{
1

(1 + z2)
3
4

− 1

z
3
2

}
dz

−
√

2∆′
ˆ λ1

∆′

λ2
∆′

1

8

β4

4∆′ 2

{
1

(1 + z2)
5
4

− 1

z
5
2

}
dz

+
√

2∆′
ˆ λ1

∆′

λ2
∆′

1

2

β2

2∆′
1

(1 + z2)
3
4

dz

−
√

2∆′
ˆ λ1

∆′

λ2
∆′

1

8

β4

4∆′ 2
1

(1 + z2)
5
4

dz

+
√

2∆′
ˆ λ2

∆′

0

{√ β2

2∆′ − z
z

−

√
β2

2∆′ + z

z

}
dz

}
,

(3.138)

where we have separated the first integral, which is obtained by adding and subtracting a
term is become equal to the order parameter in the regime q = 2kF . The other terms are
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corrections respect to the extension of the Fermi surface into the second BZ. Performing the
integrals it looks

∆′ = ∆′ ω(E)
Ṽ2p

L2

{
1− 2

√
2

π

Γ(3
4)

Γ(1
4)

√
∆′
}

+ ω(E)
Ṽ2p

L2

1√
2π

Γ(5
4)

Γ(3
4)
β2
√

∆′

= ω(E)
Ṽ2p

L2
∆′
{

1− 0.54
√

∆′
}

+ 0.29 ω(E)
Ṽ2p

L2
β2
√

∆′, (3.139)

where the first line of the result is exactly the same as the order parameter in the regime
corresponds to q = 2kF in Eq. (3.77). The next term is the correction. We solve the
quadratic equation to obtain the order parameter

√
∆′ =

(ω(E)
Ṽ2p

L2 − 1) +

√
(ω(E)

Ṽ2p

L2 − 1)2 + 0.65 (ω(E)
Ṽ2p

L2 )2β2

1.08ω(E)
Ṽ2p

L2

,

⇒ ∆′ =

{
(ω(E)

Ṽ2p

L2 − 1) +

√
(ω(E)

Ṽ2p

L2 − 1)2 + 0.65 (ω(E)
Ṽ2p

L2 )2β2

1.08ω(E)
Ṽ2p

L2

}2

. (3.140)

The disaster which is happened, is that the order parameter dose not vanish at the criti-
cal point ω(E)V2p/L

2 = 1. The reason is that we have neglected one of the term in Eq.
(3.134).This non-vanishing order parameter is not a physical effect, because the order param-
eter in its discrete form in Eq. (3.102) merges to the instability equation at critical point.
The problem has been created as the problematic approximations: in spite of vanishing limit
of the order parameter ∆′ → 0, we have introduced β2 � 2∆′.

Any way, the aim was that to show that the order parameter for the regime q < 2kF ,
coincides with its expression in regime q = 2kF , which it does indeed:

lim
β→0

(3.139) = (3.77). (3.141)

Condensation energy for q < 2kF : case of β2 � 2∆′

After that we have checked the correct asymptotic behavior of the order parameter in different
regime, we do the same for the condensation energy. We start with Eq. (3.121) and reform it
as is proper for current regime
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Econ =
16EN

3πα4
2

3
2 ∆′

5
2

{ˆ λ1
∆′

0

{
(1 + σ

√
1 + z2)3/2 − (1 + σz)3/2

}
dz

+

ˆ λ2
∆′

0

{
(1− σ

√
1 + z2)3/2 − (1− σz)3/2

}
dz

}
+

8∆′ 2L2ε2p

Ṽ2p

=
16EN

3πα4
2

3
2 ∆′

5
2

{ˆ λ1
∆′

0

{
(
β2

2∆′
+
√

1 + z2)3/2 − (
β2

2∆′
+ z)3/2

}
dz

+

ˆ λ2
∆′

0

{
(
β2

2∆′
−
√

1 + z2)3/2 − (
β2

2∆′
− z)3/2

}
dz

}
+

8∆′ 2L2ε2p
V2p

.

(3.142)

Once again, the integral of the second BZ has no contribution, as it lays over the forbidden
region. The upper limit of the integral, owing to the square root of the integrand, has to have
restricted value up to λ2 = β2/2. We expand the integrands and keep the terms up to the
second order in β2/2∆′ � 1. We continue with integrals as

ˆ λ1
∆′

0

{
(
β2

2∆′
+
√

1 + z2)3/2 − (
β2

2∆′
+ z)3/2

}
dz −

ˆ λ2
∆′

0
(
β2

2∆′
− z)3/2dz

≈
ˆ λ1

∆′

0

{
(1 + z2)

3
4 +

3

2

β2

2∆′
(1 + z2)

1
4 +

3

8

β4

4∆′ 2
1

(1 + z2)
1
4

}
dz

−
ˆ λ1

∆′

λ2
∆′

{
z

3
2 +

3

2

β2

2∆′
√
z +

3

8

β4

4∆′ 2
1√
z

}
dz

−
ˆ λ2

∆′

0

{
(
β2

2∆′
+ z)

3
2 + (

β2

2∆′
− z)

3
2

}
dz. (3.143)

After adding and subtracting some terms to obtain the integral of the condensation energy in
q = 2kF , we continue

(3.143) =

ˆ λ1
∆′

0

{
(1 + z2)

3
4 − z

3
2

}
dz

+

ˆ λ2
∆′

0
z

3
2dz

+

ˆ λ1
∆′

λ2
∆′

{
3

2

β2

2∆′

[
(1 + z2)

1
4 − z

1
4

]
+

3

8

β4

4∆′ 2

[
1

(1 + z2)
1
4

− 1

z
1
4

]}
dz

+

ˆ λ2
∆′

0

{3

2

β2

2∆′
(1 + z2)

1
4 +

3

8

β4

4∆′ 2
1

(1 + z2)
1
4

}
dz

−
ˆ λ2

∆′

0

{
(
β2

2∆′
+ z)

3
2 + (

β2

2∆′
− z)

3
2

}
dz. (3.144)
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The first line is exactly the integral of the condensation energy in q = 2kF regime (see Eq.
(3.92)). The other lines constitute the correction correspond to the current regime. The
integrals can be evaluated. The condensation energy would be

Econ ≈ EN

α4

{
16

5

√
2

π

Γ(−1
4)

Γ(1
4)

∆′
5
2 + 8∆′ 2

}
−

8∆′ 2 ε2F L
2

α4Ṽ2p

+
16
√

2

3
√
π

Γ(−1
4)

Γ(1
4)

ENβ2

α4
∆′

3
2 . (3.145)

By use of the order parameter in Eq. (3.139), we obtain the relation

L2

Ṽ2p

=
EN

α4εp

{
1− 2

√
2

π

Γ(3
4)

Γ(1
4)

√
∆′ + ω(E)

Ṽ2p

L2

1√
2π

Γ(5
4)

Γ(3
4)
β2
√

∆′
}
.

(3.146)

We insert this relation into Eq. (3.145), and by expanding α4 = (1 + β2)2 for small β2, the
ultimate form of the condensation energy would be

Econ =
EN

α4

{[
16
√

2

5
√
π

Γ(−1
4)

Γ(1
4)

+
16
√

2√
π

Γ(3
4)

Γ(1
4)

]
∆′

5
2

+

[
322

π
3
2

Γ(1
4)

Γ(−1
4)
− 8√

2π

Γ(5
4)

Γ(3
4)

]
β2 ∆′

3
2

}

≈ EN

{
0.86 ∆′

5
2 − β2

[
6.9 ∆′

5
2 − 1.1× 103 ∆′

3
2

]}
. (3.147)

The condensation energy in Eq. (3.145) has the correction term proportional to the β2, in
comparison with the equation in the regime q = 2kF . So in the vanishing limit of β, the order
parameters and the condensation energies in both regimes evolve continuously to each other.

3.4.3 In the case of partially-filled second BZ: nesting case

We have studied up to now the situations of the partially-filled first BZ, accompanied with
nesting as q = 2kF , and also the case of the partially-filled second BZ upon the lattice idea,
which is introduced in Sec. 3.3.2. Fortunately in those cases, there was at most a single
coupling for each particle, and it was possible to treat the case as a-one dimensional lattice
and compensate the triangular lattice by a factor of three. But in the case that Fermi surface
is settled at the vertex, as is shown in Fig. 3.9, there is a higher number of couplings for the
states close to the vertex of the lattice. So once again we have to normalize the mean-field
Hamiltonian concerning the present coupling at the vertex. The part of the Hamiltonian for
the region close to the vertexes is involved with three different BZs. Obviously, the particle-
hole pairs where are accommodated at the boundary of the first band and second band have
to be included in the condensation energy and the order parameter calculations.
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Figure 3.9: The Fermi surface is shown relaxed at the vertex of the translational vectors. The
hexagon in the middle (black thick line), represents the first Brillouin zone which is
totally filled. The Fermi surface is lied partially over second BZ and at the border of
third BZ. Two triangles show the type of the coupling for states in the vicinity of the
vertexes.

Another particular feature of the current regime is the nesting, that is the coupling vector
fits the Fermi surface as q =

√
3kF . As it was mentioned before, when nesting happens, the

system undergoes a first-order phase transition from SDW phase to SDW phase. The reason
is that by reaching to the such vertex, a new term would appear in the condensation energy
associated with the energy of the states in the new BZ.

Below we start to diagonalize the mean-field Hamiltonian associated with the vertex area of
the lattice. We go back to the mean-field Hamiltonian in Eq. (3.33) and we try to diagonalize
it. Upon the type of the couplings, which are depicted in Fig. 3.9, there are two independent
coupling region i.e. two equilateral triangles. Thus, the calculations would be presented for
just one of those triangle and also just for one of the spin polarization. Labeling the angles of
the triangle as is shown in Fig. 3.9, we write down the Hamiltonian as

Hvertex
↓ =

∑
k

{
ε1c
†
1c1 + ε2c

†
2c2 + ε2c

†
2c2 +

[
∆̃c†1c2 + ∆̃∗c†2c1 + ∆̃c†1c3 + ∆̃∗c†3c1 + ∆̃c†2c3 + ∆̃∗c†3c2

]}
,

(3.148)

where we have dropped the momentum subscript of the operators and the parameters. The
terms in the square bracket represent the coupling between different area which are labeled
by the subscript from one to three. To diagonalize the Hamiltonian, we write it in the matrix
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form and diagonalize the matrix by means of unitary transformation to keep the fermionic
commutation relation invariant. the Hamiltonian reads

Hvertex
↓ =

∑
k

(
c†1 c†2 c†3

) ε1 ∆̃ ∆̃

∆̃∗ ε2 ∆̃

∆̃∗ ∆̃∗ ε3

 c1

c2

c3

 . (3.149)

We are interested in the eigenvalue of the following equation

det

∣∣∣∣∣∣
ε1 − λ ∆̃ ∆̃

∆̃∗ ε2 − λ ∆̃

∆̃∗ ∆̃∗ ε3 − λ

∣∣∣∣∣∣ = 0. (3.150)

The characteristic polynomial of the matrix is a linear equation of the third order, that can
be written as

−λ3 + λ2 (ε1 + ε2 + ε3)︸ ︷︷ ︸
α

+λ (3∆2 − ε1ε2 − ε1ε3 − ε2ε3)︸ ︷︷ ︸
β

+ ε1ε2ε3 + ∆2(Re∆̃− ε1 − ε2 − ε3)︸ ︷︷ ︸
γ

= 0.

(3.151)

We solve this cubic equation by means of trigonometric method (see Ref. [45]) after writing
Eq. (3.151) as

t3 − pt3 + q = 0, (3.152)

where we have renamed the variable as

λ = t+
α

3
,

and the coefficients are

p = 3β+α2

3 ,

q = 2α3+9αβ+27γ
27 ,

(3.153)

that α, β and γ are introduced in Eq. (3.151), and the real roots are

tj = 2

√
p

3
cos

(
1

3
arccos

(
3q

2p

√
3

p

)
− j 2π

3

)
, for j = 0, 1, 2. (3.154)

The three different real roots correspond to the eigenvalue of three different zone. The eigenen-
ergies are written as
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Ei, j = ti, j +
α

3
,

where index i associated with the one of the vertex of the triangle in Fig. 3.9, and index j
counts the BZs in the vicinity of the vertexes. The diagonalized Hamiltonian in Eq. (3.148)
takes the form

Hvertex
↓ =

∑
1stBZ
i

E1st

i (k)γ†i, kγi, k +
∑

2ndBZ
i

E2nd

i (k)γ†i, kγi, k +
∑

3rdBZ
i

E3rd

i (k)γ†i, kγi, k.

(3.155)

The explicit form of the eigenenergies are so lengthy. The calculation of the ground state
energy and the order parameter cannot be accomplished. But the point is that contrary to
the former calculation the gap equation is phase-dependent, as is apparent in Eq. (3.151),
where in the γ coefficient there is a term of Re∆. As we said the system undergoes a phase
transitions from SDW phase to SDW phase, whenever nesting happens.

3.5 Summary

The instability of the bilayer system versus the spin density wave phase, under interlayer in-
teraction, has been studied. The phase diagram as a function of the external parameters of
the system is depicted in Fig. 3.1. It is expected that the translational symmetry and the
isotropy of the spin would be broken in the SDW phase. Upon the idea of the pseudospin,
SDW means that density of molecules in each layer starts to modulate.

The system is brought onto the critical point by varying the strength of the interaction
rs or the interlayer separation y. The threshold of the instability is shown in Fig. 3.2, versus
y and the module of the coupling vector x = q/2kF . In the means-field framework, it is
shown that the triangular lattice with equal sides of q (see Fig. 3.5), has the lowest energy
in the SDW phase. We have studied the phase diagram, associated with the different relative
configuration of the Fermi surface and the triangular lattice. It is shown that for y ≤ 1

2 the
instability appears for q = 2kF , as the Fermi surface is relaxed on the boundary of the first
and the second Brillouin zone, but associated with different critical strength of the interaction.
For y ≥ 1

2 , the instability starts for x = q/2kF = 1/2y. Thus for any fixed y configuration,
there is a unique critical interaction strength in which the system undergoes a phase transition
from Fermi liquid to spin density phase.

We have derived the condensation energy and the order parameter, self-consistently, for
some parts of the phase diagram in Sec. 3.4, where was possible to obtain analytically. We
have performed the calculations for the parts of the phase diagram associated with the pa-
rameters as (q = 2kF and y ≤ 1

2), in the Sec. 3.4.1. Case of the partially-filled-second BZ,
with the constraint of (x = q

2kF
= 1

2y and y > 1
2), is calculated in Sec. 3.4.2. Furthermore, we

discussed the situation for the region y ≥ 1
2 , where the Fermi surface is placed at the vertex of

the lattice. In the latter case, nesting happens, where the ratio of the Fermi wavenumber and
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coupling vector is a rational number. It is mentioned that upon such commensurate situation,
it is not possible to obtain the order parameter and the condensation energy analytically.
But, it is discussed that due to the involvement of the third BZ, there is an extra term in the
condensation energy and the order parameter equation. As much further extending the Fermi
surface into higher value of y = lkF , more and more Brillouin zones would be involved into
the calculations (see Fig. 3.2).

At each vertex of the lattice, Fermi surface would enter a new BZ and thus a new term
comes into the condensation energy. Owing to this new term, the ground state energy shows
a singularity. Therefore, the system undergoes a phase transition from SDW to SDW phase,
whenever such commensurability happens. Intuitively the ground state energy as a function
of an external parameter, say X, is depicted in Fig. 3.7, which shows sudden changes in the
condensation energy at the commensurate points. Since the first derivative of the energy with
respect to the external parameter X is singular, it is expected that there would be a first
order phase transition. The phase diagram is shown in Fig. 3.10, which includes the new
SDW phases at the commensurate points.

Figure 3.10: Phase diagram of the bilayer cold polar molecules under interlayer interaction. The
instability is shown as a function of the interlayer separation y = lkF and the strength
of the interaction rs = md2effkF /~2. The first order phase transition from SDW to SDW
phase, at the commensurate points are shown schematically by the narrow angles.

It is worthwhile to compare the phase diagram that have been derived for SDW insta-
bility with another one which is derived by a group in university of Maryland [29], over the
same bilayer system. They have studied the instability of the system versus the interlayer
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Figure 3.11: The phase diagram of the bilayer system of cold polar molecules which is reported in Ref.
[29]. It is predicted that the system show a phase transition to interlayer superfluidity
as a function of the interlayer separation y = kF lz (lz ≡ l in our convention) and the
strength of the interlayer interaction r′s(The image is adopted from Ref. [30])

Figure 3.12: The phase diagram of the bilayer system for the SDW instability. The strength of the
interaction is rescaled as r′s = d2effmkF /4π

3/2~2, following the convention of Ref. [29].
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superfluidity. The ground state of the superfluid is obtained as

|ψFM 〉 =
∏

|k|≤
√

2kF

(
c†k1 + eiϕc†k2√

2

)
|0〉, (3.156)

where subscript FM stands for the ferromagnetic state upon the pseudospin idea. The field
operator c†ik creates a molecule with the momentum k in the layer i. The phase difference
between different layers is ϕ. Thus, in spin analogy, the ground state has the nonzero mag-
netization M = 〈ψFM |

∑
imi|ψFM 〉 6= 0, quite on the contrary with the ground state of the

normal phase. The ground state in Eq. (3.156) can be compared with one which we have
derived in Eq. (3.56) for the SDW phase. The Fermi wavevector in Eq. (3.156) is entirely
scaled by a factor of

√
2 versus the Fermi liquid one. But in the calculation over the SDW

phase, the modification of the Fermi surface is characterized by its relative configuration with
respect to the boundary zone of the lattice.

The order parameter for the interlayer superfluidity, as is suggested in Ref. [29] reads as

∆12(k) =
1

2

∑
q

V12(q)e−iϕ〈c†1(k + q)c2(k + q)〉, (3.157)

which takes into account interlayer correlations. The dependence of the order parameter, at
zero-momentum ∆12(0), is shown in Fig. 3.11 versus r′s = d2

effmkF /4π
3/2~2 and y = lkF .

In order to compare the instabilities, we reprint our phase diagram in Fig. 3.12, versus the
same dimensionless parameter r′s as in Fig. 3.11. It shows that the instability for the SDW
phase starts much more sooner than the interlayer superfluidity as a function of the strength
of interaction.
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Chapter 4

Interlayer superfluidity

In the preceding chapter, the instability of the bilayer system versus the spin density wave
phase has been studied. In this chapter, we examine the circumstances in which the bilayer
system undergoes a phase transition toward superfluidity as a function of interlayer distance
y = lkF or the strength of interaction rs = md2

effkF /~2. Due to the attractive long-tail of
the interlayer interaction, which decays as ∝ 1/r3, molecules from different layers can form
bound state [40]. In the weekly interacting regime, the Bardeen-Cooper-Schrieffer (BCS) the-
ory would suffice to explain the superfluidity within the bilayer system of polar molecules [43].

Examination of the two dimensional Fermi liquid against superconductivity, dates back to
decades ago [37, 38]. Superfluidity in two dimensional cold polar molecules have been recently
studied in diverse topological configuration, accompanied by different interaction design (see
for example [9, 10, 36, 44, 7, 13, 28, 29]). In the references [7, 28] the designed interaction
is analytically similar to the interaction of the system which is considered up to now in this
thesis. Therefore we use their results, after examining their consistency with the characteristic
features of our system.

In the Ref. [7], the s-wave superfluid has been studied over a bilayer system of cold
polar molecules. On the other side, in Ref. [28] the instability of the 2D system of cold polar
molecules versus p-wave pairing is examined. In the both reports, the many-body effects have
been contributed to the calculations, upon the Gor’kov-Melik-Barkhudarov corrections [21].
Hence, they go beyond the standard BCS approach.

In the following, first we review two references and the common general tools. Afterwards,
we present the examination of the instability of our system versus the superfluidity, in the
s-wave and p-wave channels.

4.1 Review of the models

In reference [7] a bilayer system of cold polar molecules has been considered, with the
electric dipole moments polarized perpendicular to the layers by means of an external dc field,
which is shown schematically in Fig. 4.1. The critical temperature of the interlayer super-
fluidity under s-wave pairing is calculated by means of the analysis of the interlayer scattering.

79
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Figure 4.1: The setup of bilayer dipolar molecules, considered in Ref. [7]. Molecule are confined in
the layers, with the thickness l0, by means of two counterpropagating laser waves kL and
−kL. The dipoles are oriented perpendicular to the layers. The interlayer Cooper pairs
are shown schematically by the dashed oval. (The image is taken from Ref. [7])

The system is characterized with two dimensionless parameters as

g =
md2

eff

l~2
, y = kF l,

where deff is the effective electric dipole moment of the molecules and l is the interlayer sep-
aration. Actually, g is the measure of the interlayer interaction strength and y measures the
interlayer separation in units of the mean interparticle distance in each layer, which is pro-
portional to k−1

F . One can draw the relation between those parameters and our dimensionless
parameter as

g = rs/y,

kF l = y
(4.1)

where rs = md2
eff kF /~2. We will use these relations to transform the results of this report

to our system.

The relations between two parameters g and kF l determine three different regimes
of scattering and thus the BCS pairing: regime (A) for g < kF l . 1, regime (B) when
exp(−1/g2) � kF l < g < 1, and regime (C) as the exp(−1/g2) . kF l � g < 1. We will
examine the consistency of the critical temperature and order parameter in these regimes with
the characteristic features of our system.
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The interlayer interaction of the system in Ref.[7] is

V+−(r) = V−+(r) ≡ V S(r) ≈ d2
eff

r2 − 2l2

(r2 + l2)5/2
. (4.2)

We have introduced the superscript S to prevent the confusion of the interaction potentials
with our system one. The intralayer interaction of their system reads as

V S
++(r) ≈


d2
eff/r

3 r � l0,√
2/π(d2

eff/l
2
0) ln(l0/r) r � l0,

(4.3)

by l0 as the confinement length. Our interlayer interaction can be obtain from Eq. (4.2) by
multiplying a prefactor as

V (r) = d2
eff

l2 − r2/2

(r2 + l2)5/2
= −1

2
V S(r). (4.4)

The Fourier transform of interlayer interaction has the form as

Ṽ S(q) =

ˆ
dr V S(r) e−iqr = −2π~2

m
gql e−ql, (4.5)

and the Fourier transform of the intralayer interaction reads

Ṽ S
++(k) =

√
2π

4

3

d2
eff

l0
+ Ṽ ′S++(k), (4.6)

where in the regime kl0 � 1, the second part is approximated as

Ṽ ′S++(k) ≈ −2π~2

m
gkl. (4.7)

The interlayer interaction and its Fourier transform is shown in Fig. 4.2, which can be compare
with our ones in Fig. 2.2 and Fig. 2.4. The interlayer interaction in Eq. (4.2) is attractive
at the short distances r <

√
2l and repulsive for r >

√
2l. On the contrary to the our

interaction which is repulsive at the short distances and attractive at large distances and
indeed causes different physical phenomena at short ranges. The intralayer interaction in
Eq. (4.3) is repulsive at large long range limit, opposite to the our one. As will be shown
later, the momentum-independent part of the intralayer interaction in Eq. (4.6) will have no
contribution in the calculations. The Fourier transform of the interlayer interaction in Eq.
(4.5) is negative for all values of q. We use the following relation

− (1/2)g → g, (4.8)

to translate their results correspond to our system.
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Figure 4.2: The interlayer interaction potential V S(r) of the setup in Ref. [7], and its Fourier trans-
form Ṽ S(q). (The image is adopted from Ref. [7])

In reference [28] a two dimensional system of single-component fermionic has been studied.
The polar molecules dressed by a circularly polarized microwave field and oriented perpen-
dicular to the confinement plane by a dc field (see Fig. 4.3). The interaction potential has
an attractive 1/r3 tail, similar to the our potential which causes the emergence of the p-wave
superfluid. For two molecules far from each other r →∞ is given as

Figure 4.3: Dressed polar molecules in Ref. [28]. The molecules have been dressed by means of
and a dc field, and a ac MW field, rotates with the frequency ω perpendicular to the
confinement plane. (The image is taken from Ref. [28]

V P (r →∞) = −~2

m

r∗
r3
. (4.9)

Once again, we have labeled the interaction potential by superscript P to prevent confusion.
The length scale r∗ has been introduced as

r∗ =
md2

eff

3~2

(ΩR/δ)
2

1 + 4(ΩR/δ)2

{
1− 3β2

 49

2160
+

(
7 + 13

√
1 + 4(ΩR/δ)2

600ΩR/δ

)2
},
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where ΩR is the Rabi frequency, δ is the frequency detuning of the MW field and the frequency
of the transition between ground state and first excited state of internal states of a molecules,
and β = deffEdc/B is a perturbation parameter, in which Edc is the strength of dc field and
B is the rotational constant of molecules. The length scale r∗ in Eq .(4.9) is directly related
to the parameters of our system at the same limit as

kF r∗ =
md2

eff kF

2~2
=
rs
2
, (4.10)

where rs is the measure of interaction in our system.

4.2 Superfluid gap equation

We now discuss superfluid pairing of the bilayer system following Ref. [28] and Ref. [28] within
our system. The Hamiltonian of the bilayer system has been represented in the previous chap-
ter in Eq. (3.1). In order to derive the gap equation it is convenient to work with Hamiltonian
in the coordinate representation. By engaging the pseudospin proposal the Hamiltonian reads
as

H =
∑
λ=↑↓

ˆ
d2r ψ̂†λ(r)

(
− ~2

2m
∇2 − µ

)
ψ̂λ(r) +

ˆ
d2r d2r′ ψ̂†↑(r) ψ̂

†
↓(r
′)V (r− r′) ψ̂↓(r′) ψ̂↑(r),

where µ is the chemical potential,mmass of molecules and ψ̂λ is the field operator of molecules
in layer λ which interact by means of the interlayer potential V (r) = d2

eff (l2 − r2/2)/(r2 +

l2)5/2, introduced in the preceding chapter. The pairing stems from the attractive interaction
between the fermions at long distance r � l. Following the BCS approach (see Sec. 2.3 or
Ref. [43], the mean-field Hamiltonian looks like

HBCS =
∑
λ=↑↓

ˆ
d2r ψ̂†λ(r)

(
− ~2

2m
∇2 − µ

)
ψ̂λ(r) +

ˆ
d2r d2r′

[
∆∗(r, r′) ψ̂↓(r′) ψ̂↑(r) + h.c.

]
.

The order parameter obeys the gap equation as

∆(r, r′) = V (r− r′)〈ψ̂↓(r′) ψ̂↑(r)〉.

Similar to the approach of preceding chapter for SDW phase, we diagonalized the mean-
field Hamiltonian by using Bogolyubov canonical transformation, which reduced Hamiltonian
to the bilinear one as

HBCS =
∑
k

λ=↑↓

εk b̂
†
kλb̂kλ + const.

The transformation is done by means of
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ψ̂(r) =
1

L

∑
k

[
uk exp(ikr) b̂k + v∗k exp(−ikr) b̂†k

]
,

where L2 is the volume of the system, b̂†k and b̂k are creation and annihilation operator for

single-particles with dispersion relation of εk =
√
ξ2
k + ∆2

k while ξk = Ek − µ, and Ek =

~2k2/2m. The coefficients uk and vk obey the relations required for canonical transformation
of the fermionic operators, given by

uk =
ξk + εk√

2εk(ξk + εk)
, vk =

∆k√
2εk(ξk + εk)

,

where ∆k is the Fourier transform of the order parameter. In the momentum space, the gap
equation takes the form

∆k = −
ˆ

dq
(2π)2

Ṽ (q− k) ∆q
tanh(εq/2T )

2εq
, (4.11)

where Ṽ (q) = π d2
eff q exp(−lq) is the Fourier transform of the interaction potential and T is

the temperature. Actually the calculations would be for non-zero temperature and at the end
we derived the band gap at zero temperature by means of a relation which will be presented
later.

In the dense regime (kF l > 1), Eq. (4.11) can be solved directly. But for a dilute gas
(kF l < 1) this equation mixed many-body physics (BCS) pairing with two-body scattering [7].
It is convenient to renormalize the gap equation by means of off-shell scattering amplitude.
Actually, the renormalization procedure in Ref.[7] is done by means of the vertex function (see
for example Ref. [19]) as

Γ(E,k,k′) = Ṽ (k− k′) +

ˆ
dq

(2π)2
Ṽ (k− q)

1

E − ~2q2/m+ i0
Γ(E,q,k′), (4.12)

by E being arbitrary chosen relative energy. The off-shell scattering amplitude (see for example
Ref. [19]) reads as

f(k′,k) = Ṽ (k′ − k) +

ˆ
dq

(2π)2

Ṽ (k′ − q)

2(Ek − Eq − i0)
f(q,k), (4.13)

which can be obtained from the vertex function by putting E = ~2k2/m in Eq. (4.12). We
continue formally with the off-shell scattering amplitude and return to the vertex function in
the sections associated with the s-wave scattering.

Multiplying Eq. (4.13) by ∆k′ tanh(εk′/2T )/2εk′ and integrating over dk′, by employing
Eq. (4.11), there would be



4.2. SUPERFLUID GAP EQUATION 85

∆k = −
ˆ

dk′

(2π)2
f(k′,k) ∆k′

[
tanh(εk′/2T )

2εk′
− 1

2(Ek′ − Ek − i0)

]
. (4.14)

Taking into account the conservation of angular momentum it is possible to decompose the
scattering amplitude in Eq. (4.14) into the different channels. In this chapter, we just analyze
s-wave (l = 0) and p-wave (l = 1) scattering. Now we review the contribution of the many-
body effects in Eq. (4.14), as the correction to the interparticle interaction δṼ (q,k), and the
mass renormalization m∗.

4.2.1 Many-body contributions to the interparticle interaction

The leading terms of the correction δṼ (q,k), are in second order in Ṽ (q) (see Ref .[21]), which
is shown diagrammatically in Fig. 4.4. In panel (d) of Fig. 4.4 just the interlayer interaction
is taken into account, while panels (a), (b) , and (c) both inter- and intralayer interactions
contribute. The corresponding analytical expressions of Fig. 4.4 are

δṼa(k,k′) = 2

ˆ
dq

(2π)2

N(q + k−/2)−N(q− k−/2)

ξq+k−/2 − ξq−k−/2
Ṽ (k−)Ṽ++(k−),

δṼb(k,k′) = −
ˆ

dq
(2π)2

N(q + k−/2)−N(q− k−/2)

ξq+k−/2 − ξq−k−/2
Ṽ (k−)Ṽ++(q− k+/2),

δṼc(k,k′) = −
ˆ

dq
(2π)2

N(q + k−/2)−N(q− k−/2)

ξq+k−/2 − ξq−k−/2
Ṽ (k−)Ṽ++(q + k+/2),

δṼd(k,k′) = −
ˆ

dq
(2π)2

N(q + k+/2)−N(q− k+/2)

ξq+k+/2 − ξq−k+/2
Ṽ (q− k−/2)Ṽ (q + k−/2),

(4.15)

where k± = k±k′ and Ṽ (q) = π q exp (−lq) being the interlayer interaction, while Ṽ++(q) =
π q is the intralayer interaction potential. In δṼa the spin degeneracy of the loop has been
counted by a 2 prefactor. The Eq. (4.14), by including the many-body corrections as
δṼ (k,k′) =

∑
j δṼj(k,k

′), takes the form

∆(k) = −
ˆ

dk′

(2π)2
f(k′,k) ∆(k′)

[
tanh(εk′/2T )

2εk′
− 1

2(Ek′ − Ek − i0)

]
−

ˆ
dk′

(2π)2
δṼ (k′,k)

tanh(εk′/2T )

2εk′
∆(k′). (4.16)

To get rid of the azimuthal integral part in the gap equation, we average over the directions of
k and k′ i.e. integrating over ϕ and ϕ′ corresponds to the s-wave scattering; and multiplying
Eq. (4.16) by exp (−iϕk) and integrate over ϕk and ϕk′ for the p-wave symmetry is ∆k =
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Figure 4.4: The second-order contribution to the interlayer interaction. The solid lines presents
propagators of the particles from different layers, which labeled by + and −. The dashed
lines show the dipole-dipole interaction. Panel (d) contains only the interlayer interac-
tion. Since, panels (a), (b), and (c) include both inter- and intralayer interactions. (The
image is reproduced from Ref. [7] and Ref. [28])

∆(k) exp (iϕk). Thus we present the gap equation generally for both of the partial waves,
by replacing ∆(k) with ∆(k), scattering amplitude f(k′,k) with f(k′, k), and δṼ (k′,k) with
δṼ (k′, k). Hence it reads

∆(k) = −
ˆ

d2k′

(2π)2
f(k′, k) ∆(k′)

[
tanh(εk′/2T )

2εk′
− 1

2(Ek′ − Ek − i0)

]
−

ˆ
d2k′

(2π)2
δṼ (k′, k)

tanh(εk′/2T )

2εk′
∆(k′). (4.17)

Later we decompose the gap equation into the partial-waves, associated with the desired s-
wave or p-wave scattering amplitude.

4.2.2 Effective mass

It is straightforward to renormaize particles’ mass by means of the self-energy as m/m∗ =
(1 + 2m∂Σ(ω, p)/∂p2)(1 − ∂Σ(ω, p)/∂p)|p=pF , ω=0 (see for example [19, 31]). It is important
to note that the most contribution in gap equation (4.17) comes from the momenta close to
the Fermi surface and it suffices to restrict the many-body effect at the Fermi surface in mass
renormalization. The self-energy up to first order is shown in Fig. 4.5 where the first two di-
agrams contain just intralayer interaction, while the third one engages the interlayer potential.

The corresponding terms in Fig. 4.5 are the so-called Hartree-Fock diagrams which are
frequency-independent, Σ

(1)
α (ω, p) = Σ

(1)
α (p). The analytical for Σ

(1)
α (p) takes the form
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Figure 4.5: The fermionic self-energy up to the first order in the interaction. Dashed lines correspond
to dipole-dipole interaction. The label α specifies the layer. The first two diagrams con-
tain the intralayer interaction, and the third diagram corresponds interlayer interaction.
(The image is reproduced from Ref. [7])

Σ(1)
α (k) = −

ˆ
dq

(2π)2

[
Ṽ++(k− q)− Ṽ++(0)

]
N(q) + V (0)

= −
ˆ

dq
(2π)2

[
Ṽ++(k− q)− Ṽ++(0)

]
N(q), (4.18)

where N(q) = θ(kF − q) is Fermi-Dirac distribution function at zero-temperature. Due to
exponential smallness of the critical temperature Tc, it makes no contribution by engaging
the zero-temperature one. Remembering that Ṽ (q) = π q exp (−lq) being the interlayer in-
teraction and Ṽ++(q) = π q, the intralayer interaction potential Eq. (4.18) can be readily
calculated which gives

m∗
m

= 1 +
2

3π

md2
eff kF

~2

= 1 +
2

3π

gkF l

2

= 1 +
2

3π
kF r∗

= 1 +
2

3π

rs
2
. (4.19)

It has to be noted that in Eq. (4.18) for self-energy, the momentum-independent part of
intralayer interaction of Ref. [7], presented in Eq. (4.6), would be canceled and does not
contribute to the results. Hence, by following the replacement of the parameter of our system
as noted in Eq. (4.8) we can use the results in Ref. [7] without any further manipulation (as
we have represented their approach to renormalize the mass).

The effective mass has to be replaced instead of the bare mass in the gap equation in Eq.
(4.17). Following Ref.[7], we rewrite the gap equation as

∆(k) = − m∗
m

ˆ
d2k′

(2π)2
f(k′, k) ∆(k′)

[
tanh(εk′/2T )

2εk′
− 1

2(Ek′ − Ek − i0)

]
−

ˆ
d2k′

(2π)2
δṼ (k′, k)

tanh(εk′/2T )

2εk′
∆(k′), (4.20)



88 CHAPTER 4. INTERLAYER SUPERFLUIDITY

in order to cancel the bare mass in the off-shell scattering amplitude and replaced it by effec-
tive mass. In Ref. [28], the effective mass calculated according to the Landau Fermi-liquid
theory which obviously gives the same results for our system by changing the parameters as
given in Eq. (4.10). In Ref. [28], they have contributed the effective mass at the end of
calculations, as will be discussed in the p-wave pairing section.

4.3 Relation of ∆(kF ) and Tc at zero-temperature

Upon the reasoning of the Ref. [28], the most contribution in the integral of the gap equation in
Eq. (4.14) comes from a narrow vicinity of Fermi surface. Singling out this main contribution
it is possible to make a relation between the order parameter ∆(k) and the order parameter
on the Fermi surface ∆(kF ) as

∆(k) = ∆(kF )
f(kF , k)

f(kF )
, (4.21)

where f(k, k′) is the off-shell scattering amplitude and f(k) = f(k, k) is the on-shell one.
Once again, considering the rotational invariance, this relation is valid for the partial waves
components too. The same relation as in Eq. (4.21) is derived in Ref.[7] in a more details
which we present it later.

Employing Eq. (4.21) makes it possible to construct a relation between the zero-temperature
order parameter on the Fermi surface ∆0(kF ) and critical temperature Tc. The weak coupling
regime implies that ∆(k), Tc � EF . Therefore, we divide the region of the integrals in Eq.
(4.20) into two regions: the first region would be states which are in a narrow annulus around
the Fermi energy as Ω ≡ {k′|k′ ∈ |Ek′ − EF | < ω} and the second, states out of this
region by the constraint that ∆(k), Tc � ω � EF . Putting k = kF in Eq. (4.20), in the
integral over the first region, we put f(k′, kF ) ≈ f(kF , kF ) = f(kF ), ∆(k′) ≈ ∆(kF ), and
δṼ (k′, k) = δṼ (kF , kF ) = δṼ (kF ), which is legitimate through the similar reasoning as is
mentioned before in Eq. (4.21). In the integral over the second region, we may put εk′ = |ξk′ |,
tanh (εk′/2T ) = 1 and also replacing ∆(k′) by Eq. (4.21) we have

∆(kF ) = −
ˆ
k′∈Ω

d2kF
(2π)2

f(kF ) ∆(kF )

tanh


√
ξ2
k′ + ∆2

kF

2T

 1

2
√
ξ2
k′ + ∆2

kF

− 1

2(Ek′ − EkF − i0)



−
ˆ
k′∈Ω

d2k′

(2π)2
δṼ (kF ) tanh


√
ξ2
k′ + ∆2

kF

2T

 1

2
√
ξ2
k′ + ∆2

kF

∆(kF )

−
ˆ
k′ /∈Ω

d2k′

(2π)2
f(k′, kF ) ∆(kF )

f(kF , k
′)

f(kF )

[
1

2|ξk′ |
− 1

2(Ek′ − EF − i0)

]

−
ˆ
k′ /∈Ω

d2k′

(2π)2
δṼ (k′, kF )

1

2|ξk′ |
∆(kF )

f(kF , k
′)

f(kF )
.
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By canceling ∆(kF ) from both side and rearranging the terms to the temperature-dependent
and -independent parts, and by switching to the integral over energy it takes the form

1 = − m

2π~2

ˆ ω

0

[
f(kF ) + δṼ (kF )

]
tanh


√
ξ2
k′ + ∆2

kF

2T

 dξk′

2
√
ξ2
k′ + ∆2

kF

+ Λ, (4.22)

where Λ contains all the temperature-independent terms. On one hand, at the critical point as
T → Tc the order parameter vanishes and we put ∆(kF ) = 0 in Eq. (4.22). On the other hand,
at zero-temperature the hyperbolic tangent tend to one. By subtracting these two extreme
cases, we have

ˆ ω

0

{
tanh (ξk′/2Tc)

ξk′
− 1√

ξ2
k′ + ∆0(kF )2

}
dξk′ = 0. (4.23)

The integral is convergent by extending the upper cutoff to infinity. By running the integral
and solving for critical temperature there would be

Tc =
eγ

π
∆0(kF ), (4.24)

where γ is the Euler’s constant γ = 0.5772. We use Eq. (4.24) as a relation to transfer the
critical temperatures, which have been derived in the references [7, 28], to the order parameter
at zero-temperature that fits the framework of this thesis. Actually, by help of Eq. (4.21) and
Eq. (4.22) it is possible to find the relation between the critical temperature Tc and the order
parameter on Fermi surface ∆(kF ) at any temperature.

4.4 S-wave superfluidity

It is shown in Ref.[37] that "a two-body [s-wave] bound state in vacuum is a necessary and
sufficient condition for the many-body instability." Although it is not the case for the p-wave
bound state in vacuum. Following the approach of Ref.[7], first we show the existence of
such s-wave bound state in vacuum. Afterwards, we present the scattering amplitude in the
different regimes and discuss the circumstances for the s-wave superfluidity.

4.4.1 Interlayer s-wave bound state

We start by solving the two dimensional Schrödinger equation for a two-body bound state by
the wavefunction of relative motion as ψ(r) = χmz(r) exp (imzφ) with shallow binding energy
of Eb which reads like

[
d2

d2r
+

1

r

d

dr
− mz

r2
− Eb + V (r)

~2/m

]
χmz(r) = 0. (4.25)
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where V (r) = d2
eff (l2 − r2/2)/(l2 + r2)5/2. By concentrating over the states by axial sym-

metry as mz = 0 we attempt to drive the binding energy as a perturbative series of g−1 =
~2l/md2

eff = y/rs. We solve the axial symmetric Schrödinger in two extreme limit of large
and small distances in compare with r? = (d2

eff/Eb)
1/3 and by matching the logarithmic

derivative of the two asymptotic results we find the binding energy Eb.

On the one hand, at large distances, r � r? we can neglect the potential and so take the
particles as they are free. In this limit the wavefunction reads

χ0(r) ≈ CK0(
√
mEbr/~),

where C being the normalization constant. For r � rκ =
√
mEb/~, we expand the wavefunc-

tion to have

χ0(r) ≈ C ln
2~e−γ√
mEbr

,

with γ = 0.5772 the Euler constant. The logarithmic derivation take the form

r
d

dr
lnχ0(r) ≈ −

[
ln

(
2~√
mEbr

)
− γ
]−1

. (4.26)

On the other hand, for sufficiently small distances as r � r? upon the constraint that
Eb � U0 = d2

eff/l
3, we neglect the binding energy versus interlayer potential which can be

written as V (x = r/l) = U0(1 − x2/2)/(1 + r2). Expanding the wavefunction in powers of g
as

χ0(r) ≈ N

[
χ

(0)
0 (r) +

∞∑
n=1

gnχ
(n)
0 (r)

]
,

where N would be the overall normalization factor. Inserting this wavefunction in Schrödinger
equation, there would be a set of differential equations concerning the powers of the pertur-
bative term g as

1

r

d

dr
r
d

dr
χ

(n)
0 (r) =

mV (r)

~2g
χ

(n−1)
0 (r), (4.27)

with the constraint χ(−1)
0 (r) ≡ 0 and the boundary condition χ(n)

0 (0) = δn,0. Therefore from
differential equation in Eq. (4.27), we obtain an integral form for each power series term
iteratively as

χ
(n)
0 (r) =

ˆ r

0
dr1

ˆ r1

0
dr2

l2 − r2
2/2

(l2 + r2
2)5/2

r2

r1
χ

(n−1)
0 (r2). (4.28)
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Concerning the boundary condition, the terms up to fourth order, which suffices in the current
approximation, take the forms

χ
(0)
0 (r) = 1,

χ
(1)
0 (r) = −1

2

(
1

z
− 1

)
,

χ
(2)
0 (r) =

1

4

(
3

8z2
− 1

z
+

5

8
− 1

4
ln z

)
,

χ
(3)
0 (r) = −1

8

(
3

40z3
− 3

8z2
+

47

120z
− 11

120
− z − 1

4
ln z − 4

15
ln

1 + z

2

)
,

χ
(4)
0 (r) =

1

16

[
3

320z4
− 3

40z3
+

11

128z2
− 17

120z
− 311

1920
+

ln2 z

32
+

(
− 3

32z2
+

1

4z
+

257

960

)
ln z

+
4

15

(
1

z
+ 1

)
ln

2

z + 1
+
Li2(1− z2)

64

]
,

where z =
√
r2 + l2, and Lin(x) =

∑∞
i xi/in is the polylogarithm function. Moreover, upon

the boundary condition and the constraint of χ(−1)
0 (r) = 0, the zero-order term is chosen equal

unity as it has to be constant. The logarithmic derivative is

r
d

dr
lnχ0(r) ≈ r

d

dr
ln

(
j∑

n=0

gnχ
(n)
0 (r)

)
≡ Λj0,

and as we kept up to the forth order, for r � l it would be

Λ4
0 ≈

{
ln
r

l
− (1− g

30
− g2

960
)−1

×
[

16

g2
+

8

g
+

5

2
− 1

60
g (−11 + 32 ln 2) + g2

(
−311 + 5π2

1920
+

4

15
ln 2

)]}−1

,

(4.29)

Matching the latter with the solution of the long distances limit in Eq. (4.26), we have

ln

(√
mEble

γ

2~

)
= (1− g

30
− g2

960
)−1

×
[

16

g2
+

8

g
+

5

2
− 1

60
g (−11 + 32 ln 2) + g2

(
−311 + 5π2

1920
+

4

15
ln 2

)]
≈ −16

g2
− 128

15g
− 2521

900
,

thus readily we solve it to obtain the binding energy
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Eb =
4~2

ml2
exp

[
−32

g2
− 256

15g
− 2521

450
− 2γ +O(g)

]
. (4.30)

Upon the particular behavior of the interaction potential, with the vanishing zero-momentum
Born approximation as

´
V (r)rdr = 0, the same type of the shallow binding energy is derived

in Ref.[26] which would be accurate up to the leading order of the binding energy in Eq. (4.30),
as the higher orders are determined by contributions of higher order terms in the scattering
amplitude in Ref.[26].

4.4.2 Low-energy s-wave scattering

In the following part, we derive the scattering amplitude for the low energy in 2D. The quantum
mechanical character of the scattering in 2D is considered in details in Ref.[2]. In preceding
part, we have shown the shallow binding energy and its relation with the wavefunction of the
two-body system. In the framework of the scattering theory, it is convenient to write down
the asymptotic form of the wavefunction in the large distances r � r?, as a combination of
incoming plane wave and an scattered wave with the scattering amplitude fk as the weight

Ψs
k(r) ≈ exp (ikr)− ifk

4
H

(1)
0 (kr),

where H(1)
0 being the Hankel function. In low energy regime kr? � 1, we can further expand

the wavefunction for r � 1/k to have

Ψs
k(r) ≈ 1 +

fk
2π

[
ln

(
kr

2
+ γ − iπ

2

)]
,

and its logarithmic derivative reads

r
d

dr
ln Ψs

k(r) ≈
[
ln

(
kr

2

)
+ γ +

2π

fk
− iπ

2

]−1

.

We have derived the wavefunction for the small distances regime r � r?, and its logarithmic
derivative too, which reads as

r
d

dr
ln Ψs

k(r) ≈
[
ln

(
kr

2

)
+

Λ(g)

2

]−1

,

where Λ(g) is obtained in Eq. (4.29) as

Λ(g) = − 1

(1− g
30 −

g2

960)

[
16

g2
+

8

g
+

5

2
− 1

60
g (−11 + 32 ln 2) + g2

(
−311 + 5π2

1920
+

4

15
ln 2

)]

≈ −32

g2
− 256

15g
− 2521

450

≈ ln

(
ml2Eb

4~2e−2γ

)
,
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with Eb being the binding energy as is shown in Eq. (4.30). Matching the wavefunctions in
the two regimes, we obtain the scattering amplitude as

fk ≈
2π

ln (2/kl)− γ + Λ(g)/2 + iπ/2
=

4π

ln (Eb/E) + iπ
, (4.31)

with E = ~2k2/m being the relative energy. Eq. (4.31) recovers the universal low-energy
behavior of 2D scattering amplitude. For later convenience, we expand Eq. (4.31) up to the
fourth order in g to have

fk
2π
≈ −g

2

16
+
g3

30
− g4

256

[
ln(

2i

kl
)− γ +

7

4

]
. (4.32)

4.4.3 Born series for the s-wave scattering

As we had mentioned before, we return to the the vertex function, which is introduced in
Eq. (4.12), as it is considered in Ref .[7] to analysis the scattering in the s-wave channel. By
iteration of Eq. (4.12), we obtain Born series and keeping up to the forth-order term in the
interlayer interaction potential Ṽ (q) = πd2

effq exp(−lq) = (π~2g/m)lq exp(−lq) it reads

Γ(E,k,k′) = Ṽ (k− k′) +

ˆ
dq

(2π)2

Ṽ (k− q)Ṽ (q− k′)
E − ~2q2/m+ i0

+

ˆ
dq1dq2

(2π)4

Ṽ (k− q1)Ṽ (q1 − q2)Ṽ (q2 − k′)
(E − ~2q2

1/m+ i0)(E − ~2q2
2/m+ i0)

+

ˆ
dq1dq2dq3

(2π)6

Ṽ (k− q1)Ṽ (q1 − q2)Ṽ (q2 − q3)Ṽ (q3 − k′)
(E − ~2q2

1/m+ i0)(E − ~2q2
2/m+ i0)(E − ~2q2

3/m+ i0)
+ · · ·

≡ Γ(1)(E,k,k′) + Γ(2)(E,k,k′) + Γ(3)(E,k,k′) + Γ(4)(E,k,k′) + · · · . (4.33)

In the small energy limit k ∼ k′ ∼
√
mE/~2 � 1/l, the leading contribution of these terms

as the perturbation in g = md2
eff/~2 < 1 can be estimated as

Γ(1)(E,k,k′) = Ṽ (k− k′) ≈ π~2

m
gl|k− k′|,

Γ(2)(E,k,k′) ≈ −π~
2

m

g2

8
,

Γ(3)(E,k,k′) ≈ π~2

m

g3

60
,

Γ(4)(E,k,k′) ≈ −π~
2

m

g4

256

[
ln

(
~2

mEl2

)
+ iπ

]
.

The leading order for Γ(1)(E,k,k′) is repulsive which has significant consequence in the exam-
ination of our system in s-wave superfluidity, that in contrast with the model in Ref.[7] there
would not be any instability in this regime respect to the superfluidity in our system. The
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estimate for the leading order in Γ(2)(E,k,k′) and Γ(3)(E,k,k′) comes from large q (q � k)
and large q1, q2 (q1, q2 � k) regions; and the leading contributions to Γ(4)(E,k,k′) stem from
large q1 (q1 � k) and q3 (q3 � k) and small q2 (q2 ∼

√
mE/~2), respectively, correspond to

the integrals in Eq. (4.33).

As it was mentioned in Sec. 4.1, through Ref.[7], concerning the above considera-
tions, three different regimes of scattering for dilute weekly interacting regime i.e. g < 1,
kl < 1 and k ∼ kF have been introduced: regime (A) for g < kF l . 1, regime (B) when
exp(−1/g2)� kF l < g < 1, and regime (C) as the exp(−1/g2) . kF l� g < 1.

In regime (A) for g < kF l . 1. The leading contribution to the scattering comes from
the first-order Born series

ΓA(E,k,k′) ≈ Γ(1)(E,k,k′) = Ṽ (k− k′) ≈ π~2

m
gl|k− k′|. (4.34)

In regime (B) for exp(−1/g2)� kF l < g < 1. In this case the dominant scattering term
is given by the second-order Born series as

ΓB(E,k,k′) ≈ Γ(2)(E,k,k′) ≈ −π~
2

m

g2

8
, (4.35)

which is momentum-independent.

In regime (C) for exp(−1/g2) . kF l � g < 1. In this regime the second- and the forth-
order contribute in the same order and the entire leading order of Born series have to be
summed, which results

ΓC(E,k,k′) ≈ 2π~2

m

2

ln (Eb/E) + iπ
, (4.36)

where Eb is the binding energy and is derived in Sec. 4.4.1. Indeed, the scattering amplitude
in regime (C) has the same form as the standard low-energy scattering amplitude in 2D which
is derived in Sec.4.4.2. Note that within the lowest-order terms, the three terms in different
regions can be expressed in the form

Γ(E,k,k′) ≈ −2π~2

m

[
gl|k− k′| − 2

ln (Eb)/E + iπ

]
.

It has to be noted that the scattering amplitude is a complex parameter. The relation of
imaginary and real part can be establish by means of Eq. (4.12) as

Im Γ(E,k,k′) = − m

4~2

ˆ
dϕq

2π
Γ∗(E,k,qE)Γ(E,qE ,k

′), (4.37)
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where |qE | = ~−1
√
mE and the integration would be performed over direction of this vector.

The same relation as Eq. (4.37) is valid for the partial wave decomposition Γm(E,k,k′) with
azimuthal quantum number m. The s-wave scattering channel can be obtained by

Γs(E, k, k
′) = 〈Γ(E,k,k′)〉ϕ,ϕ′ .

The relation in Eq. (4.37) for s-wave channel m = 0 takes the form

Im Γs(E, k, k
′) = − m

4~2
Γ∗s(E, k, qE)Γs(E, qE , k

′).

The on-shell scattering amplitude, k = k′ = qE = ~−1
√
mE has the form

Im Γs(k) = − m

4~2
|Γs(k)|2. (4.38)

This implies that up to the second-order we have

Im Γs(k) = − m

4~2
[Re Γs(k)] . (4.39)

In the following part, we review the s-wave scattering amplitude within a Born series. The
on-shell s-wave vertex function can be written as a sum of power series in g < 1 as

〈Γs(E,k,k′)〉ϕ,ϕ′ |k=k′=
√
mE/~2 =

∞∑
n=1

Γns (k),

where the average is performed over azimuthal angles ϕ and ϕ′ and The Born series are
presented in Eq. (4.33). For later calculations we mention the s-wave potential as

Ṽs(q1, q2) = 〈Ṽs(q1 − q2)〉ϕ1, ϕ2 = 〈Ṽs(q1 − q2)〉ϕ

=

ˆ
dϕ

2π
Ṽ (
√
q2

1 + q2
2 − 2q1q2 cosϕ)

= −glπ~
2

m

∂

∂l

ˆ
dϕ

2π
e−l
√
q2
1+q2

2−2q1q2 cosϕ,

where has the form for q1 = 0 (or q2 = 0) as

Ṽs(q, 0) = Ṽs(0, q) = Ṽ (q) = gl
π~2

m
qe−lq,

and for q1 = q2 = q it reads

Ṽ (q, q) = gl
π~2

m
q [L−1(2ql)− I1(2ql)] ,
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where Ln(z) being the modified Struve function and In(z) is the modified Bessel function of
the first kind. We represent the Born series up to fourth-order.

The first-order contribution of the Born series in s-wave channel happens as

Γ(1)
s (k) = 〈Ṽ (k− k′)〉ϕ1, ϕ2 = Ṽs(k, k)

= gl
π~2

m
k [L−1(2kl)− I1(2kl)] ,

that for low momenta kl� 1 takes the form

Γ(1)
s (k) = g

π~2

m

[
4kl

π
− 2(kl)2 +O(k3)

]
. (4.40)

The second-order contribution to the s-wave scattering reads

Γ(2)
s (k) =

ˆ
dq

(2π)2

〈Ṽ (k− q)Ṽ (q− k′)〉ϕ,ϕ′
E − ~2q2/m+ i0+

=

 
qdq

2π

Ṽs(k, q)Ṽs(q, k)

E − ~2q2/m
− i m

4~2
Ṽs(k, k)2,

where
ffl

being the principle value integral. The integral of the real part has to be evaluated
numerically; but the leading contribution for small momenta kl� 1 is

Re[Γ(2)
s (k)] ≈ −π~

2

2m
g2l2

ˆ ∞
0

qdqe−2ql +O(k)

= −π~
2

2m

g2

4
+O(k). (4.41)

The imaginary part is

Im[Γ(2)
s (k)] = − m

4~2
Ṽs(k, k)2

= −π~
2

2m
g2(kl)22π [L−1(2kl)− I1(2kl)]

≈ −4~2

m
g2(kl)2 +O(k3), (4.42)

where once again it is approximated for small momenta kl� 1.

The third-order contribution to the s-wave scattering takes the integral form as
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Γ(3)
s (k) =

ˆ
dq1dq2

(2π)4

〈Ṽ (k− q1)Ṽ (q1 − q2)Ṽ (q2 − k)〉ϕ,ϕ′
(E − ~2q2

1/m+ i0+)(E − ~2q2
2/m+ i0+)

=

ˆ
q1dq1

2π

ˆ
q2dq2

2π

Ṽs(k, q1)Ṽs(q1, q2)Ṽs(q2, k)

(E − ~2q2
1/m+ i0+)(E − ~2q2

2/m+ i0+)

=

 
q1dq1

2π

 
q2dq2

2π

Ṽs(k, q1)Ṽs(q1, q2)Ṽs(q2, k)

(E − ~2q2
1/m)(E − ~2q2

2/m)

− i
Ṽs(k, k)

2~2/m

 
qdq

2π

Ṽs(k, q)Ṽs(q, k)

E − ~2q2/m
− m2

16~4
Ṽs(k, k)3.

The real part has its minimum at k = 0, where it reads

Re[Γ(3)
s (k)] =

ˆ ∞
0

dq1

ˆ ∞
0

dq2
Ṽs(0, q1)Ṽs(q1, q2)Ṽs(q2, 0)

4π2~4q1q2/m2

=
g2l2

4

ˆ ∞
0

dq1

ˆ ∞
0

dq2e
−q1l−q2lṼs(q1, q2)

=
π

2
g2l2

ˆ ∞
0

rdr
V (r)

r2 + l2
=
π~2g3

15m
, (4.43)

where for the s-wave potential the following representation is used

Ṽs(q1, q2) = 2π

ˆ ∞
0

rdrV (r)J0(q1r)J0(q2r),

and for the convolution of the Bessel function

ˆ ∞
0

dqe−qlJ0(qr) =
1√

r2 + l2
.

The imaginary part of Γ
(3)
s (k) has the form

Im[Γ(3)
s (k)] = − m

2~2
Vs(k, k)Re[Γ(2)

s (k)]

≈ π~2

4m
g3kl +O(k2). (4.44)

The fourth-order contribution to the s-wave scattering by splitting it into its real and
imaginary part reads as
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Γ(4)
s (k) =

ˆ
dq1dq2dq3

(2π)6

〈Ṽ (k− q1)Ṽ (q1 − q2)Ṽ (q2 − q3)Ṽ (q3 − k)〉ϕ,ϕ′
(E − ~2q2

1/m+ i0+)(E − ~2q2
2/m+ i0+)(E − ~2q2

3/m+ i0+)

=

ˆ
q1dq1

2π

ˆ
q2dq2

2π

ˆ
q3dq3

2π

Ṽs(k, q1)Ṽs(q1, q2)Ṽs(q2, q3)Ṽs(q3, k)

(E − ~2q2
1/m+ i0+)(E − ~2q2

2/m+ i0+)(E − ~2q2
3/m+ i0+)

=

 
q1dq1

2π

 
q2dq2

2π

 
q3dq3

2π

Ṽs(k, q1)Ṽs(q1, q2)Ṽs(q2, q3)Ṽs(q3, k)

(E − ~2q2
1/m)(E − ~2q2

2/m)(E − ~2q2
3/m)

− 3

[
Ṽs(k, k)

4~2/m

]2  
qdq

2π

Ṽs(k, q)Ṽs(q, k)

E − ~2q2/m

− 2i
Ṽs(k, k)

4~2/m

 
q1dq1

2π

 
q2dq2

2π

Ṽs(k, q1)Ṽs(q1, q2)Ṽs(q2, k)

(E − ~2q2
1/m)(E − ~2q2

2/m)

− i
m

4~2

[ 
qdq

2π

Ṽs(k, q)Ṽs(q, k)

E − ~2q2/m

]2

+ i
( m

4~4

)3
Ṽs(k, k)4.

The imaginary part of Γ
(4)
s (k) in the limit k → 0 approaches

Im[Γ(4)
s (k)] = − m

4~2

[ 
qdq

2π

Ṽs(k, q)Ṽs(q, k)

E − ~2q2/m

]2

= −π~
2

m

g4π

256
. (4.45)

The real part of Γ
(4)
s (k) diverges for k → 0 as (for kl� 1)

Re[Γ(4)
s (k)] ≈

( m

2π~2

)3
 

q1dq1

k2 − q2
1

 
q2dq2

k2 − q2
2

 
q3dq3

k2 − q2
3

Ṽs(k, q1)Ṽs(q1, q2)Ṽs(q2, q3)Ṽs(q3, k) +O(k2)

≈
( m

2π~2

)3
 

q2dq2

k2 − q2
2

[ 
qdq

q
Ṽs(0, q)Ṽs(q, q2)

]2

+O(k)

=
π~2g4

8m

 
qdq

k2 − q2

[ 
lrldr

(r2 − 2l2)

(r2 + l2)3
J0(rq)

]2

+O(k)

=
π~2g4

8m

 
qdq

k2 − q2

[
ql

2
K1(ql)− 3(ql)2

8
K2(ql)

]2

+O(k)

≈ −π~
2g4

8m

1

16

[
ln(

2

kl
) +

7

4
− γ
]

+O(k), (4.46)

where it is expanded for small momenta kl� 1 in the last line. By summing up the terms up
to fourth order in low-energy regime as kl� 1 we have
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Γs(k) ≈
4∑
1

Γ(n)
s (k) ≈ −2π~2

m

{
− g2

16
+
g3

30
− g4

256

[
ln(

2i

kl
)− γ +

7

4

]}
, (4.47)

which coincides with the low energy scattering amplitude that is represented in Eq. (4.32).

4.4.4 Many-body corrections to the s-wave scattering amplitude

In Sec. 4.2.1, we have shown the general contribution of the many-body correction into the
gap equation, upon the Gor’kov-Melik-Barkhudarov method [21]. In the following part, we
discuss this many-body modification through s-wave channel. The analytical expression for
such many-body contribution is given in Eq. (4.15), and correspond to the each triple regions,
their participation would be presented. It is sufficient to consider the lowest many-body con-
tributions to the effective interaction.

In the regime (A) g < kF l < 1 the contribution of δṼa(k,k′) for k = k′ = kF reads

δṼa(k,k′) = −2νF Ṽ (k−)Ṽ++(k−)

≈ − m

π~2

(
π~2

m
g|k− k′|

)2

= −π~
2

m
(gl)2(k− k′)2,

where k± = k ± k′, and νF = m/2π~2 density of state in 2D, Ṽ++(q) = (π~2/m)gql being
intralayer interaction, and Ṽ (q) = (π~2/m)gqlexp(−ql) is the interlayer interaction. The
other three terms of many-body contribution have to be calculated numerically by averaging
over the directions of k and k′ corresponding to the s-wave channel as

δV̄i ≡ 〈δṼi(k,k′)〉ϕ,ϕ′ ≡
ˆ 2π

0

dϕdϕ′

(2π)2
Ṽi(k,k′), i = a, b, c, d

where can be written as

δV̄i =
π~2

2m
(gkF l)

2ηi,

and the coefficients being ηa = −4, ηb = ηc = 1.148, ηd = 0.963. Summing the effect of the
terms gives

δV̄ =
π~2

2m
(gkF l)

2
∑
i

ηi = −0.741
π~2

2m
(gkF l)

2. (4.48)

In the regime (B) exp(−1/g2) � kF l < g < 1 the leading contribution to the interlayer
two-body scattering is in the second-order Born term as g2, while the leading order of the
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intralayer scattering is in the first-order Born term proportional to gkF l and the dominant
contribution is the p-wave one. Therefore, the many-body correction is given by the same
diagram as in Fig. 4.4, in which all interlayer interactions are replaced with the second-order
Born scattering amplitude Γ(2) and the whole many-body correction is written as

δṼ (k,k′) ≈ 2π~2

m

(
g2

16

)2

. (4.49)

In the regime (C) exp(−1/g2) . kF l � g < 1 the leading contribution of interlayer
scattering is Γ(E,k,k′) ≈ (4π~2/m)[ln(Eb/E) + iπ]−1, which similar to the region (B) the
leading order-term is proportional g2 (see Eq. (4.47)). Thus, similar to the reasoning in regime
(B), the many-body contribution comes from the same diagram as in Fig. 4.4, by replacing
the interaction lines with the scattering amplitude. The many-body contribution reads as

δṼ (k,k′) ≈ 2π~2

m

(
2

ln(Eb/E)

)2

. (4.50)

The leading many-body contribution to the effective interlayer interaction in the regimes (B)
and (C), by taking into account the expansion of the scattering amplitude in Eq. (4.47), can
be written as

δṼ (k,k′) =
2π~2

m

(
g2

16

)2

, (4.51)

that is independent of k and k′.

4.4.5 Critical temperature and order parameter in the dilute regime

In the dilute regime kl < 1, we work out the critical temperature and the order parameter by
means of Eq. (4.20) projected into the s-wave channel. As it was noted before, the many-body
corrections contribute to the second-order in the small parameter g < 1, and they would be
taken at Fermi surface. Hence, all second-order terms would be treated perturbatively. In the
first-order, we solve the gap equation in the BCS approach similar to the calculation method
which is presented in Sec. 4.3 and then add the many-body contribution.

BCS approach

We use the gap equation of the Eq. (4.14), linearized in term of the vertex function in Eq.
(4.12) and are projected to the s-wave channel Γ(2µ, k, k′). The energy of the pair is chosen
at the Fermi energy E = 2µ. The gap equation reads

∆(ξ) = −
ˆ ∞
−µ

dξ′R(ξ, ξ′) ∆(ξ′)

[
tanh(ξk′/2Tc)

2ξk′
− 1

2ξk′ − i0

]
, (4.52)
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where R(ξ, ξ′) = νFΓ(2µ, kξ, k
′
ξ′) with ξ = ~2k2/2m− µ, and νF = m/2π~2 being the density

of state in 2D. introducing energy ω with characteristic relation as ∆(k), Tc � ω . EF , we
divide the integral in Eq.(4.52) into three parts: (a) the integration of R(ξ, 0)∆(0) in the
interval of (−ω, ω); (b) integral of R(ξ, ξ′)∆(ξ′) − R(ξ, 0)∆(0) throughout the same interval
of (−ω, ω); and the last one, integral of R(ξ, ξ′)∆(ξ′) from (−µ,−ω) and from (−ω,∞). By
engaging the asymptotic formula in the integral of part (a), there is

ˆ ω

−ω
dξ′

tanh(ξk′/2Tc)

2ξk′
≈ ln

2eγω

πTc
.

In part (b) and (c) we replace tanh(ξk′/2Tc) by the step function and integrate by parts, Eq.
(4.52) reads as

∆(ξ) = −
[
ln

2eγω

πTc
− iπ

2

]
R(ξ, 0)∆(0)

− R(ξ,−µ)∆(−µ) ln
µ

ω

−
ˆ 0

−µ
dξ′ ln

∣∣∣∣ξ′ω
∣∣∣∣ ddξ′ [R(ξ, ξ′)∆(ξ′)

]
. (4.53)

In order to solve Eq. (4.53), we choose ω to satisfies the following equation at the Fermi
surface

R(0,−µ)∆(−µ) ln
µ

ω
+

ˆ 0

−µ
dξ′ ln

∣∣∣∣ξ′ω
∣∣∣∣ ddξ′ [R(0, ξ′)∆(ξ′)

]
= 0. (4.54)

We solve the latter for ω to have

lnω = lnµ
R(0,−µ)∆(−µ)

R(0, 0)∆(0)
+

1

R(0, 0)∆(0)

ˆ 0

−µ
dξ′ ln

∣∣ξ′∣∣ d
dξ′
[
R(0, ξ′)∆(ξ′)

]
= lnµ+

1

R(0, 0)∆(0)

ˆ 0

−µ
dξ′ ln

|ξ′|
µ

d

dξ′
[
R(0, ξ′)∆(ξ′)

]
. (4.55)

Now putting ξ = 0 in Eq. (4.53) and using Eq. (4.54), we obtain

∆(0) = −
[
ln

2eγω

πTc
− iπ

2

]
R(0, 0)∆(0). (4.56)

Readily solve it for the critical temperature, we have

TBCSc =
2eγ

π
ω exp

[
1

R′(0, 0)

]
, (4.57)

where R′ is the real part of R such that R = R′+ iR′′ according to the Eq. (4.39). Replacing
Eq. (4.55) multiplied by R(ξ, 0)∆(0) and also Eq. (4.56) in the Eq. (4.53) to omit the
ω-dependent terms in it, we obtain
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∆(ξ) =
R(ξ, 0)

R(0, 0)
∆(0) +

ˆ 0

−µ
dξ′ ln

∣∣∣∣ξ′µ
∣∣∣∣ ddξ′

{[
R(ξ, 0)

R(0, 0)
R(0, ξ′)−R(ξ, ξ′)

]
∆(ξ′)

}
, (4.58)

where the second term is smaller in compare with the first term, in the regime of the week
interaction. Hence, it can be treated perturbatively and to the first order we have

∆(ξ) ≈ R(ξ, 0)

R(0, 0)
∆(0), (4.59)

which is the same as Eq. (4.21) that had been derived by just reasoning intuitively. Using
this relation in Eq. (4.55) to obtain

lnω = lnµ+
1

R(0, 0)2

ˆ 0

−µ
dξ′ ln

|ξ′|
µ

d

dξ′
[
R(0, ξ′)R(ξ′, 0)

]
. (4.60)

This expression and one in Eq. (4.57) determine the critical temperature in BCS regime.

Many-body correction

Now, after by use of BCS critical temperature, we account the many-body effects, which
contribute at the Fermi surface to the Eq. (4.56) as

∆(0) = −m∗
m

[
ln

2eγω

πTc
− iπ

2

]
R(0, 0)∆(0)− ln

2eγω

πTc
νF δV̄∆(0).

By use of Eq. (4.57), we solve it for critical temperature to obtain

Tc =
2eγωe1/R′(0,0)

π
exp

[
−m∗/m− 1

R′(0, 0)
− νF δV̄

R′(0, 0)2

]
= TBCSc exp

[
−m∗/m− 1

R′(0, 0)
− νF δV̄

R′(0, 0)2

]
, (4.61)

and by use of Eq. (4.24) we can translate it to the order parameter at the Fermi energy, at
zero-temperature

∆0(kF ) = 2ωe1/R′(0,0)exp

[
−m∗/m− 1

R′(0, 0)
− νF δV̄

R′(0, 0)2

]
, (4.62)

where ω and m∗ are given by Eq. (4.60) and Eq. (4.19), respectively. The scattering ampli-
tude and many-body contribution depend on the regime of scattering.

In the regime (A), g < kF l < 1, the leading contribution to the scattering amplitude is
given by the first-order Born series where in s-wave channel. It is derived in Eq. (4.40) and
the many-body correction is obtained in Eq. (4.48); therefore we have
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R′(0, 0) ≈ νFΓ(1)
s −

g2

16

{
1− 2(kF l)

2 [5.4 + 3 ln(kF l)]

}
+
g3

30

≈ gkF l
2

π

(
1− π

2
kF l
)
− g2

16

{
1− 2(kF l)

2 [5.4 + 3 ln(kF l)]

}
+
g3

30
,

m∗
m
− 1 =

2

3π
gkF l,

νF δV̄ = −0.741(
gkF l

2
)2. (4.63)

Without consideration of the prefactor of the critical temperature, it is apparent that T ac is
proportional with a exponentially diverging function of the interaction strength

T ac ∝ exp (
1

gkF l
),

which means that the highest critical temperature results by vanishing the interaction g → 0.
So there is not any superfluidity in regime (A) in our system. The reason obviously is the
repulsive potential at small distances. The potential in this regime has a linear dependence
to the momentum i.e. so-called anomalous term. The leading contribution to the scattering is
given by the first Born term which is repulsive in our case as Γa(E,k,k′) ≈ (π~2/m)gl|k−k′|,
on the contrary to the term in Ref. [7] which is attractive ΓSa (E,k,k′) ≈ −(2π~2/m)gl|k−k′|
and contributes to the pairing.

In the regime (B), kF l < g < 1, the second-order Born term is dominated as is derived in
Eq. (4.41). The many-body correction is also has been shown in Eq. (4.48); thus we write

R′(0.0) ≈ −g
2

16
+ gkF l

2

π

(
1− π

2
kF l
)

+
g3

30
− g4

512

[
ln (4~2/mµl2) +

7

2
− 2γ

]
≈ 2

ln (Eb/µ)
+ gkF l

2

π

(
1− π

2
kF l
)
,

with many-body correction as

νF δV̄ ≈
[
g2

16

]2

,

and the renormalized mass

m∗
m
− 1 ≈ 2

3π
kF l.

The leading-order contribution of the scattering amplitude inR′(0, 0) is momentum-independent.
Thus ω = µ is chosen and we have
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1

R′(0, 0)
≈ −

[
g2

16
− gkF l

2

π

(
1− π

2
kF l
)]−1

+
1

2

[
ln

(
4~2

mµl2

)
+

7

2
− 2γ

]
,

and

m∗/m− 1

R′(0, 0)
≈ 28

3π

kF l

g
� 1,

νF δV̄

[R′(0, 0)]2
≈ 1.

Thereby, we write the critical temperature as

T bc =
2eγ

π
µ exp

{
−
[
g2

16
− gkF l

2

π

(
1− π

2
kF l
)]−1

+
1

2

[
ln

(
4~2

mµl2

)
+

7

2
− 2γ

]
− 1

}
, (4.64)

and by use of Eq. (4.24) we write down the order parameter at zero temperature on the Fermi
energy

∆b
0(kF )

2µ
= exp

{
−
[
g2

16
− gkF l

2

π

(
1− π

2
kF l
)]−1

+
1

2

[
ln

(
4~2

mµl2

)
+

7

2
− 2γ

]
− 1

}
. (4.65)

Finally, by means of the relation in Eq. (4.1), we translate the constraint of the regime (A)
to the our dimensionless parameter as

y < rs/y < 1 ≡


rs < y,

y <
√
rs,

(4.66)

which specifies an area in the phase diagram that is depicted in Fig. 4.6.

In the regime (C), exp (−1/g2) . kF l� g < 1, the leading contributions to the scattering
amplitude come from the entire Born series, as derived in Eq. (4.47) and the many-body
corrections also presented in Eq. (4.51). Therefore, we write

R′(0, 0) ≈ 2

ln (Eb/µ)
,

and the renormalized mass as

∣∣∣m∗
m
− 1
∣∣∣ ≈ 2

3π
gkF l� 1,

and the many-body correction in this regime being
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Figure 4.6: The area of the the validity of the order parameter (red area) for the s-wave superfluidity
(SW SF), in the regime (B), is shown schematically. The spin density wave (SDW)
phase is also presented for the comparison.

νF δV̄ ≈
[

2

ln (Eb/µ)

]
,

where Eb is the shallow binding energy and has been derived in Eq. (4.30). Similar to the
regime (B) by ω = µ, we have for critical temperature

T cc =
2eγ

π
µ exp

[
1

2
ln (Eb/µ)− 1

]
=

2e(γ−1)

π

√
µEb, (4.67)

and thus the order parameter as

∆c
0(kF ) =

2

e

√
µEb, (4.68)

where coincides with the order parameter of the superfluidity in the short range potentials in
2D (see Ref. [38]).

By engaging the relation in Eq. (4.1), we translate the constraint of the regime (C) into
our dimensionless parameters as
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Figure 4.7: The area of the validity for the s-wave superfluidity in the regime (C) is shown in yellow
color, schematically.

y � rs/y < 1 ≡


rs < y,

y � √rs,
(4.69)

which defines a tiny area in the phase diagram that is shown in Fig. 4.7, in addition to the
superfluidity corresponds to the regime (B), Fermi liquid, and spin density wave phases.

In the leading-order of the terms, we can rewrite the expressions for regime (B) and (C)
as

∆b,c
0 (kF )

2µ
= exp

{[
2

ln (Eb/µ)
+ gkF l

2

π

(
1− π

2
kF l
)]−1}

. (4.70)

In the regimes (B) and (C) the order parameter in the leading-order is momentum-independent.

In the Ref. [7] the instability respect superfluidity in the dense regime corresponds to
kF l > 1 is also considered. Obviously, in the dense regime the behavior of the potential in
smaller distances would be much more important and due to the repulsive character of our
potential in these distances, it fails to contribute to the superfluidity; hence we would not
discuss the dense regime further.
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4.5 P-wave superfluidity

Instability with respect to p-wave pairing superfluidity can occur, in our system, due to the
attractive long-tail interaction, which decays by 1/r3. The present case is entirely similar to
the situation in Ref. [28]. We follow their approach to map the gap equation in Eq. (4.17)
into p-wave channel.

4.5.1 P-wave scattering amplitude

The off-shell scattering amplitude is defined as

f(k′,k) =

ˆ
exp (−ik′r)V0(r)ψ̃k(r)d2r, (4.71)

where ψ̃k(r) is the the two-body wavefunction with relative momentum of k. The potential
is the large distances limit as

V0(r) ≡ lim
r→∞

V (r) = lim
r→∞

d2
eff

l2 − r2/2

(l2 + r2)5/2

= −
d2
eff

2

1

r3

= −~2

m

r∗
r
. (4.72)

Ww decompose the scattering amplitude into its p-wave partial wave amplitude, that would
be f(k′, k) exp iφ, where φ is the angle between k and k′. The p-wave scattering amplitude is
given by

f(k′, k) =

ˆ ∞
0

J1(k′r)V0(r)ψ̃(k, r)2πrdr, (4.73)

with J1 being the Bessel function. The wavefunction is obtained by solving the Schrödinger
equation for mz = 1

− ~2

m

[
d2

d2r
+

1

r

d

dr
− 1

r2
− V0(r)

]
ψ̃ =

~2k2

m
ψ̃. (4.74)

The on-shell scattering in term of the p-wave scattering phase shift δ(k) ( see Re. [2]), reads

f(k, k) = f(k) = −2~2

im
[exp (2iδ(k))− 1] = −4~2

m

tan δ(k)

1− i tan δ(k)
. (4.75)

In the regime r →∞, we write the wavefunction as

ψ̃(k, r) = J1(kr)− if(k)

4
H1(kr),
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where H1 = J1 + iN1 is the Hankel function, and N1 being the Neumann function. The
wavefunction is supposed to be normalized in such way that for r →∞, it would be real as

ψ(k, r) = [J1(kr)− tan δ(k)N1(kr)] ∝ cos (kr − 3π/4 + δ), (4.76)

where we have ψ̃(k, r) = ψ(k, r)/(1 − i tan δ(k)). By inserting this relation into Eq. (4.73),
we rewrite the off-shell scattering amplitude as

f(k′, k) =
f̄(k′, k)

1− i tan δ(k)
, (4.77)

where f̄(k′, k) is achieved by replacing ψ̃ with ψ in Eq. (4.73) as

f̄(k′, k) =

ˆ ∞
0

J1(k′r)V0(r)ψ(k, r)2πrdr. (4.78)

For k = k′, by comparing with Eq. (4.75), we have

f̄(k, k) ≡ f̄(k) = −(4~2/m) tan δ(k). (4.79)

We obtain the scattering amplitude by solving the Schrödinger equation in the large and
short distances limit, and matching the asymptotic wavefunctions. To do so, a length scale
r0 is introduced and the wavefunctions will be solved in two regions correspond to r < r0 and
r > r0, where r0 lies in the interval r∗ � r0 � k−1 and r∗ is introduced in Eq. (4.72) (two
regions are shown in Fig. 4.8).

In region I for r < r0, we can neglect the kinetic energy versus the interaction potential,
and solve the Schrödinger equation in the p-wave channel

− ~2

m

(
d2

d2r
+

1

r

d

dr
− 1

r2
− V0(r)

)
ψI = 0. (4.80)

The solution can be written as

ψI(r) ∝
[
AJ2

(
2

√
r∗
r

)
+N2

(
2

√
r∗
r

)]
, (4.81)

where A depends to the behavior of the potential V (r) at short distances, and some estimation
would be shown later. In the region II, for r > r∗ the relative motion could be given free and
the potential V0(r) would be contributed perturbatively. In the zeroth order the wavefunction
reads

ψ
(0)
II (r) = J1(kr)− tan δI(k)N1(kr), (4.82)
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Figure 4.8: The ranges of the interaction is split into two regions: region Ifor r < r0 and region II
for r > r0. The length scale r∗ is shown schematically and the length scale r0 with the
constrain r∗ � r0. (The image is reproduced from Ref. [28])

that the phase shift δI(k) stems from scattering in region I. Matching the logarithmic derivative
of the wavefunctions of two regions at r = r0, we find the phase shift

tan δI(k) =
πk2r0r∗

8

[
1− r∗

r0

(
2γ − 1

2
+ πA− ln

r0

r∗

)]
, (4.83)

where γ = 0.5772 is the Euler’s constant. It is taken into account, in Eq. (4.83), that r � r∗
and kr0 � 1. In the first order, we contribute the interaction V0(r) and by means of the Green
function method (see Ref. [18]) we have

ψ
(1)
II (r) = ψ

(0)
II (r)−

ˆ ∞
r0

G(r, r′)V0(r′)ψ
(0)
II (r′)2πr′dr′, (4.84)

where the Green function for p-wave channel follows the radial equation as

− ~2

m

(
d2

d2r
+

1

r

d

dr
− 1

r2
+ k2

)
G(r, r′) =

δ(r − r′)
2πr

.

Using the asymptotic wavefunction introduced in Eq. (4.76) for Green function we have

G(r, r′) = − m

4~2


ψ

(0)
II (r′)N1(kr) r > r′,

ψ
(0)
II (r)N1(kr′) r < r′.

Substituting the Green function in Eq. (4.84) in r →∞ limit, and once again, matching the
wavefunctions at r = r0, we have for the phase shift
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tan δ1(k) = tan δI(k)− m

4~2

ˆ ∞
r0

[
ψ

(0)
II (r)

]2
V0(r)2πrdr

≈ 2

3
kr∗ −

π(kr∗)
2

8

[
ln
r∗
r0

+ 2γ − 3

2
+ πA

]
+O(k3).

For the second order contribution, by iteration we have

ψ
(2)
II (r) = ψ

(1)
II (r) +

ˆ ∞
r0

G(r, r′)V0(r′)2πr′dr′
ˆ ∞
r0

G(r′, r′′)V0(r′′)ψ
(0)
II (r′′)2πr′′dr′′,

and matching the logarithmic derivative, we obtain

tan δ(k) = tan δ(1)(k)− (πkr∗)
2

2

ˆ ∞
kr0

J2
1 (x)

x2

[
2

3
x (N0(x)J2(x)−N1(x)J1(x))

− 1

2
N0(x)J1(x) +

1

6
N1(x)J2(x)− 1

πx

]
dx

≈ tan δ(1)(k)− (πkr∗)
2

8

{
7

12
+ γ +− ln 2 + ln kr0

}
+O(k3)

≈ 2

3
kr∗ −

(πkr∗)
2

8
ln ρkr∗, (4.85)

where

ρ = exp
{

3γ − ln 2− 11/12 + πA
}
≈ 1.13 exp (πA). (4.86)

By engaging Eq. (4.79) and Eq. (4.75), we find the on-shell scattering amplitude, represented
by two terms f̄(k) = f̄1(k) + f̄2(k) as

f̄1(k) = −8

3

~2

m
kr∗,

f̄2(k) =
π

2

~2

m
(kr∗)

2 ln ρkr∗, (4.87)

in which the term f̄1(k) is dominant in the low-momentum limit. The leading low-momentum
contribution of the off-shell scattering amplitude f̄(k′, k) can be obtained by replacement
J1(kr)→ ψ(k, r) in Eq. (4.78), which gives

f̄(k′, k) =

ˆ ∞
r0

J1(k′r)J1(kr)V0(r)2πrdr

= −π~
2

m
kr∗F (−1

2
,
1

2
, 2,

k2

k′2
), (4.88)

where it is taken into account that for r > r0 the interaction potential has the form V0 =
−~2r∗/mr

3. The parameter F in Eq. (4.88) is the hypergeometric function, where it is written
for k < k′. For k > k′, the k and k′ have to be interchanged.
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4.5.2 Many-body corrections to the p-wave scattering amplitude

In this part, we project the many-body contributions, which are given in Eq. (4.15), into the
p-wave channel. The correponding partial-wave of the diagrams in Fig. 4.4 would be achieved
by integrating out the azimuthal symmetry corresponds to the p-wave symmetry as

δV (k′, k) =
∑

j∈
{
a,b,c,d

} δVj(k′, k) =

ˆ 2π

0

dφ

2π
e−iφ

∑
j∈
{
a,b,c,d

} δVj(k′,k), (4.89)

where φ is the angle between k and k′. The interaction potential, which contributes into
many-body corrections as in Eq. (4.15), is taken like

V0(r) ≈


0 r < r0,

−(~2/m)r∗/r
3 r > r0,

Its Fourier transform takes the form

V0(q) ≈ −2π~2

m

r∗
r0

+
2π~2

m
qr∗.

The momentum-independent term of the interaction potential would not contribute to the
diagrams as it will be cancelled. For analytical calculation of critical temperature Tc, it is
only needed to calculate the contribution of many-body correction on the Fermi surface for
k = k′ = kF , where each term in Eq. (4.15) takes the form δVj(kF , kF ) = αj(~2/m)(kF r∗)

2.
The coefficients reads

αa = 4π, αb = αc = −1.5, αd = −1.0.

Therefore the total correction reads as

δV (kF , kF ) ≡ α~
2

m
(kF r∗)

2, (4.90)

with α =
∑

j αj = 8.6.

It should be noted that in Ref. [28], as the system is constructed upon a single layer of
particles, the layer (spin) degeneracy correspond to the δṼa(k′, k) in Fig. 4.4 has not been
included. Hence, αa associated with our system is doubled in comparison with the coefficient
in Ref. [28].
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4.5.3 Critical temperature and order parameter

We return to the gap equation in (4.20). we attempt to obtain the critical temperature Tc, and
afterwards, we will obtain the order parameter at zero-temperature on Fermi energy ∆0(EF )
by engaging Eq. (4.24). Once again, we perform the integrals in Eq. (4.20) by dividing their
region into two parts: |Ek′ − EF | < ω and |Ek′ − EF | > ω. We start by calculating ∆(kF )
and calculate the contribution of each region separately.

In the first region, the parameters would be replaced as ∆(kF )→ ∆(k′) and f̄(k′, kF ) =
f̄(kF )→ f(k′, kF ), where f̄(kF ) = f̄1(kF ) + f̄2(kF ) which is derived in Eq. (4.87). Therefore
the second term in the square brackets would contribute negligibly. We put in the first term
εk′ = |ξk′ |.Thus the result of the integral in this region is

∆1(kF ) = ∆(kF )
4kF r∗

3π

(
1− 3π

16
kF r∗ ln (ρkF r∗)

)
ln

(
2eγω

πTc

)
, (4.91)

where ρ is introduced in Eq. (4.86).

In the second region, we put tanh (εk′/2Tc)/2εk′ = 1/2ξk′ . The contribution of this region,
in compare with the with latter result, is so small∼ kF r∗ and it suffices to keep just the leading
low-momentum term of the off-shell scattering amplitude in Eq. (4.88). By use of Eq. (4.24),
we write the gap equation in this region

∆2(kF ) = ∆(kF )
3πr∗
8kF

ˆ kω

0

k′3dk′

(k2
F − k′2)

F 2

(
−1

2
,
1

2
, 2,

k′2

k2
F

)
,

where kω =
√

2m(EF − ω)/~2. By remembering the limit ω � EF , we obtain

∆2(kF ) = ∆(kF )
4kF r∗

3π

[
ln

(
EF
ω

)
− η
]
, (4.92)

where

η = 1− 9π2

64

ˆ 1

0

[
F 2

(
−1

2
,
1

2
, 2, x

)
− F 2

(
−1

2
,
1

2
, 2, 1

)]
xdx

1− x
≈ 0.78. (4.93)

The main contribution of the many-body correction comes from the vicinity of the Fermi
surface in second integral of Eq. (4.20). Therefore, we used the δV (kF , kF ) which is presented
in Eq. (4.90) and the integral reads

∆3(kF ) = −∆(kF )
δV (kF , kF )

2π
ln

(
2eγω

πTc

)
. (4.94)

Sum the whole separate terms, by canceling ∆F we obtain a equation for the critical temper-
ature as
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1 =
4kF r∗

3π

[
ln

(
2eγEF
πTc

)
− η
]
− (kF r∗)

2 ln

(
EF
Tc

){
1

4
ln (ρkF r∗) +

α

2π

}
, (4.95)

where it is chosen that ω = EF , as the terms which contain ω are small as kF r∗ � 1 in
comparison with the leading term.

Figure 4.9: The coefficient A is depicted versus rδ/λδ for ΩR/δ = 0.25 and β = 0 (black, solid line),
β = 0.1 (blue, dashed line), and β = 0.2 (red, dash-dotted line), where ΩR being the
Rabbi frequency, δ the frequency detuning, and β = dEdc/B (see the Sec. 2.1). In our
system, there is no dc field, hence, the solid line corresponds to β = 0 would be favorable.
(The image is taken from Ref. [28])

For contributing the renormalized mass (see Eq. (4.19)) into the calculation, we see that the
relative difference between m∗ and m is proportional to kF r∗ � 1. By replacing m∗ instead of
the bare mass m in Eq. (4.95), a new term (16/9π2) ln (EF /Tc) would be introduced. Thus by
replacing α̃ = α−32/9π and considering the limit of kF r∗ � 1 we have for critical temperature

Tc
2EF

=
eγ

π

κ

(kF r∗)9π2/64
exp

(
− 3π

4kF r∗

)
, (4.96)

where

κ = exp

{
− 9π2

64
ln ρ− 9π

32
α̃− η

}
≈ 0.00053 exp

(
−9π3A

64

)
, (4.97)

in which ρ and η are introduced in Eq. (4.86) and Eq. (4.93), respectively. By use of Eq.
(4.24) we translate the critical temperature into the order parameter at zero-temperature on
the Fermi energy as

∆0(kF )

2EF
=

κ

(kF r∗)9π2/64
exp

(
− 3π

4kF r∗

)
. (4.98)
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Figure 4.10: The area of the validity for the order parameter of the p-wave superfluidity is presented
roughly in blue color. Other phases are also added, including s-wave superfluidity
associated with two overlapping regions, and the SDW phase.

The dependence of the order parameter on the short distances is included in κ through the co-
efficient A. In Fig. 4.9 parameter A is depicted versus parameter of the system (rδ/λδ), where
rδ = (d2

c/~δ) and λδ =
√
~/mδ, where δ = ω − ω0 is the frequency detuning, the difference

between microwave external field ω and the transition frequency between internal states of
molecules |φ00〉 and |φ11〉; and dc = (d/

√
3)(1−49β2/1440) is the transition dipole moment be-

tween the mentioned states by static external field β ∝ Edc (see the Sec. 2.1). Actually, in our
system there is not any dc field, so β = 0, which corresponds to the black solid line in Fig. 4.9.

At the end, the area in the phase diagram corresponds to the p-wave super fluidity
(weak interaction kF r∗ ∼ rs � 1 and dilute system lkF < 1), has been presented in Fig. 4.10
schematically, besides other phases of the system..

4.6 Summary

Throughout this chapter, the instability of the system respect to the interlayer superfluidity
through s-wave and p-wave pairing has been analyzed. We have adopted the approach of two
references [7, 28] to analyze the superfluidity of the system. The interaction potentials in the
corresponding references have close similarity with the interaction our system. It should be
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noted that the both references go beyond the standard BCS approach by involving many-body
corrections, based upon the Gor’kov-Melik-Barkhudarov method [21].

We have used Ref. [7] to examine the s-wave superfluidity in Sec. 4.4. Upon the criterions
presented in this reference, three regimes have been introduced correspond to the relation of
the natural length scale of the system. Our system shows instability in two of those regions:
(B) exp(−1/g2)� kF l < g < 1 and (C) exp(−1/g2) . kF l � g < 1. Within accepted accu-
racy, it is possible to unified the expressions of the order parameters for these two regime as is
presented in Eq. (4.70). The area in phase diagram associated with the s-wave superfluidity
is depicted roughly in Fig. 4.10.

To study the p-wave bilayer superfluidity we have followed Ref. [28]. Their interaction
potential, indeed, coincides with our one at large distances. Although the system in Ref.
[28] is composed of a single layer, their analysis would be applicable for our system by some
modifications. The order parameter of the p-wave superfluidity is presented in Eq. (4.98),
which is valid for the dilute system kF l � 1 with weak interaction kF r∗ ∼ rs � 1. Thus, it
enhances the phase diagram of the system, as is shown in Fig. 4.10, schematically.

It can be seen in Fig. 4.10 that there is a competition between the interlayer superfluidity
in s-wave and p-wave pairing channels around the origin of the diagram. The winner ground
state would be determined by the constraint of the lowest ground state energy. We have not
calculated the ground state energies of those state. By the way, we adopt the claim mentioned
in Ref. [28], that the p-wave superfluidity phase is the most stable phase, since it fully gaps
the Fermi surface, in contrast to the competing phases. Hence, the p-wave superfluidity would
be the dominant ground state, wherever there is a competition between p-wave and s-wave
superfluidity in the diagram. It must be noted that the examination of the p-wave pairing at
short distances would be a prospective to extend the calculation of the considered system.
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Chapter 5

Summary and outlook

In the preceding chapters, we have analyzed the instability of the system versus a number
of phases at zero-temperature. Generally speaking, The phase transition is associated with
the broken symmetries of the system. In the classical phase transition, thermal fluctuation is
responsible for such broken symmetry phenomenas. But at zero-temperature, it is merely the
quantum fluctuation who is responsible for the broken symmetry and labeled by the quantum
phase transition (see Ref. [39]).

In this thesis, we have analyzed a bilayer system of cold polar molecules, which have
been introduced in Sec. 2.1. The striking feature of the cold polar molecules is the tunable
interparticle interaction. In the considered system, the interaction of the polar molecules are
dressed by means of a circularly polarized MW field. The designed bilayer interaction of the
system shows a repulsive behavior and an attractive long-tail at large distances (see Fig. 2.2).
These characters of the interaction potential put the system on the verge of the instability
toward various quantum phases.

In chapter 3, the instability of the bilayer system versus spin density wave phase has
been examined. Due to the repulsive interlayer interaction, and particularly, the repulsive
interaction potential in the momentum space, the system undergoes a phase transition toward
SDW as a function of the external parameter of the system, say interlayer separation y = lkF
and the strength of the interaction rs = md2

effkF /~2. It has been discussed that whenever
the system is in the SDW phase, by variation of the external parameter y = lkF , there would
be further phase transitions from SDW to SDW, whenever the commensurability happens as
q = (m/n)kF ( m and n are integer and q is the coupling vector of the particle-hole pair).
In the mean-field framework, it is shown that within the SDW phase the symmetry of the
system would be broken from invariant translational symmetry to the discrete translational
symmetry associated with the triangular lattice, as is depicted in Fig.3.5. The ground state
energy and the order parameter are calculated, correspond to the different area of the phase
diagram, as far as was analytically possible. The phase diagram is shown in Fig. 3.10.

In chapter 4, bilayer superfluidity of the system has been examined following the reports
of the references [7, 28]. Both references contribute the many-body effects, upon the Gor’kov-
Melik-Barkhudarov idea [21], and go beyond the standard BCS theory. We analyzed the
bilayer superfluidity through s-wave and p-wave channels separately, and it has been shown

117



118 CHAPTER 5. SUMMARY AND OUTLOOK

Figure 5.1: The phase diagram of the bilayer cold polar molecules versus y = lkF and rs =
md2effkF /~2. The areas associated with the s-wave (SW) superfluidity, p-wave (PW)
superfluity, and spin density (SDW) phases, which are competing with the Fermi liq-
uid (FL) phase, are shown in red, blue, purple, and white area, respectively. The two
regions of the s-wave superfluidity, presented in Fig. 4.10, are coincided into one area of
the phase diagram (red color area).

that due to the attractive long-tail of the interlayer interaction, molecules from different layers
could form s-wave or p-wave bound state. The order parameter and critical temperature have
been extracted correspond to the particular regime of the external parameter of the system.
The phase diagram, included all of the phases which the system shows instability, is presented
in Fig. 5.1.

It can be seen in the phase diagram that there is a competition between s-wave and p-wave
superfluidity at extremely week interaction. It is discussed that the p-wave superfluidity would
be the dominant phase as it fully gaps the Fermi surface, in contrast to the other competing
phases. As it has been mentioned, the p-wave pairing is examined in the large distances regime
and its behavior in the small distances, in which the repulsive interaction potential comes into
stage, is left as a prospective.



Appendix A

Linear response theory

In this appendix, we review the effect of an weak external potential Hext(t) on the Hamil-
tonian of the system H. In the other words, we examine the response of the system with
respect to a weak external field. The external potential is given to be weak, so can be treated
perturbatively (see for example Ref. [42, 20]).

We start by writing full Hamiltonian as HT (t) = H+Hext(t), where H is the unperturbed
Hamiltonian. The Schrödinger equation for total Hamiltonian reads

i~
∂

∂t
|ΨS(t)〉 = HT (t)|ΨS(t)〉, (A.1)

where subscript S indicates we are working in the Schrödinger picture (see [19, 20]). We define
the evolution operator UT (t, t0) as

|ΨS(t)〉 = UT (t, t0)|ΨS(t0)〉. (A.2)

Inserting this in the Schrödinger we have

i~
∂

∂t
UT (t, t0) = HT (t)UT (t, t0). (A.3)

By use of the boundary condition for the unitary evolution operator as UT (t0, t0) = 1, we
readily solve Eq. (A.3) to have

UT (t, t0) = 1− i

~

ˆ t

t0

dt′HT (t′)UT (t′, t0). (A.4)

It is possible to construct the same equation for the evolution operator of the unperturbed
Hamiltonian as

i~
∂

∂t
U(t, t0) = H(t)U(t, t0). (A.5)

119



120 APPENDIX A. LINEAR RESPONSE THEORY

We suggest a relation between evolution operator of full Hamiltonian UT (t, t0) and the one
for unperturbed Hamiltonian U(t, t0) as

UT (t, t0) = U(t, t0)Ũ(t, t0), (A.6)

where Ũ(t, t0) would be determined by means of the external perturbation. Inserting Eq.
(A.6) in Eq. (A.3), there would be

i~
∂

∂t

[
U(t, t0)Ũ(t, t0)

]
=
(
H(t) +Hext(t)

)
U(t, t0)Ũ(t, t0). (A.7)

By use of Eq. (A.5), we obtain a familiar form like

i~
∂

∂t
Ũ(t, t0) = U †(t, t0)Hext(t)U(t, t0)Ũ(t, t0)

≡ H̃ext(t)Ũ(t, t0), (A.8)

where H̃ext(t) = U †(t, t0)Hext(t)U(t, t0)Ũ(t, t0) being the external potential in Heisenberg
picture. In the same approach as the Eq. (A.4) obtained we solve Eq. (A.8) and keep the
terms up to first order in H̃ext(t) by iteration to obtain

Ũ(t, t0) = 1− i

~

ˆ t

t0

dt′H̃ext(t′). (A.9)

Inserting this result in Eq. (A.6), we obtain

UT (t, t0) = U(t, t0)− i

~

ˆ t

t0

dt′ U(t, t0)︸ ︷︷ ︸
U(t,t′)U(t′,t0)

U †(t′, t0)Hext(t′)U(t′, t0)

= U(t, t0)− i

~

ˆ t

t0

dt′U(t′, t0)Hext(t′)U(t′, t0), (A.10)

where the unitarity relation U †U = 1 is used in the first line. Now by use of this evolution
operator, we derive the eigenstate of the system at any arbitrary time

|ΨS(t)〉 = exp

[
− i
~
H(t− t0)

]
|ΨS(t0)〉

− i

~

ˆ t

t0

dt′ exp

[
− i
~
H(t− t′)

]
Hext(t′) exp

[
− i
~
H(t− t0)

]
|ΨS(t0)〉.

(A.11)

It is possible now to construct the expectation value of any observable and thus obtain the
effect of the external potential. Write down the expectation value generally for a operator Ô,
by choosing t0 = 0 we have
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〈Ô(t)〉HT = 〈ΨS |Ô|ΨS〉

= 〈ΨH |Ô|ΨH〉+
i

~

ˆ t

t̃0

dt′〈ΨH |
[
Hext
H (t′), ÔH

]
|ΨH〉, (A.12)

where subscript H indicates the representation in Heisenberg picture in which |ΨH〉 = |ΨS(t =
0)〉. The lower limit of the integral is taken at 0 < t̃0 < t when the external field is switched
on. We then arrive at the general form for the response of the system corresponds to the
external field, which leads to the modification of the systems’ observable as

δ〈Ô(t)〉 = δ〈Ô(t)〉HT − δ〈Ô(t)〉H

=
i

~

ˆ t

t̃0

dt′〈Ψ0|
[
Hext
H (t′), ÔH

]
|Ψ0〉, (A.13)

where the expectation value is taken at the ground state of the system.

A.0.1 Density-density response function

A particular important case is the response of the system to an external potential coupled to
the charge-density of the system. As far as the system is not polarized ε↑(k) = ε↓(k), the
result would be applicable for the response of the system respect to an external field that is
coupled with the spin-density of the system. By the way, suppose the external potential is
given as

Hext(t) =

ˆ
dr n̂H(r, t)ϕext(r, t),

which change in the charge density of the system is

δ〈n̂(r, t)〉 =
i

~

ˆ t

t̃0

dt′
ˆ
dr′〈Ψ0|

[
n̂H(r′, t′), n̂H(r, t)

]
|Ψ0〉ϕext(r′, t′)

=

ˆ ∞
−∞

dt′
ˆ
dr′χ(r, r′)ϕext(r′, t′), (A.14)

where we have introduced the generalized susceptibility as

χ(r, r′) = − i
~
θ(t− t′)〈Ψ0| [n̂H(r′, t′), n̂H(r, t)] |Ψ0〉

〈Ψ0|Ψ0〉
. (A.15)

The relation in Eq. (A.14) takes a simple form in the momentum-frequency space as

δ〈n̂(q, ω)〉 = χ(q, ω)ϕext(q, ω). (A.16)
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A.0.2 Lehmann’s representation

In the following section we attempt to obtain the density-density response function for a Fermi
gas i.e. a non-interacting system, by engaging generalized susceptibility in Eq. (A.15). We
work over the normalized ground state 〈Ψ0|Ψ0〉 = 1. Therefore, the generalized susceptibility
take the form

χ(r, r′) = − i
~
θ(t− t′)〈Ψ0|

[
n̂H(r, t), n̂H(r′, t′)

]
|Ψ0〉.

As it contains a commutator, we calculate one of the products and then apply the result for
the other one by r↔ r′. By inserting a complete set of eigenstates

∑
n |Ψn〉〈Ψn| = 1, it takes

the form

〈Ψ0|n̂H(r, t), n̂H(r′, t′)|Ψ0〉

=
∑
n

〈Ψ0|eiHt/~
∑
α

ψ̂†α(r)ψ̂α(r)e−iHt/~|Ψn〉〈Ψn|eiHt
′/~
∑
β

ψ̂†β(r′)ψ̂β(r′)e−iHt
′/~|Ψ0〉

=
∑
n

e−i(En−E0−iη)(t−t′)/~
∑
α, β

〈Ψ0|ψ̂†α(r)ψ̂α(r)|Ψn〉〈Ψn|ψ̂†β(r′)ψ̂β(r′)|Ψ0〉,

where we have introduced the small factor iη to prevent the oscillation of the exponential term
at infinity. By performing the Fourier transform to frequency space and adding the other term
we have

χ(r, r′;ω) =
∑
n
α, β

[
〈Ψ0|ψ̂†α(r)ψ̂α(r)|Ψn〉〈Ψn|ψ̂†β(r′)ψ̂β(r′)|Ψ0〉

~ω − (En − E0) + iη

−
〈Ψ0|ψ̂†α(r′)ψ̂α(r′)|Ψn〉〈Ψn|ψ̂†β(r)ψ̂β(r)|Ψ0〉

~ω + (En − E0)− iη

]
.

The field operators in the momentum space have the form

ψ̂α(r) =
1√
V

∑
k

f̂kα exp (ik.r),

ψ̂†β(r) =
1√
V

∑
k

f̂ †kβ exp (−ik.r).

Therefore, we write for the expectation value of the field operators as

〈Ψ0|ψ̂†α(r)ψ̂α(r)|Ψn〉〈Ψn|ψ̂†β(r′)ψ̂β(r′)|Ψ0〉 =

1

V 2

∑
k1,···k4

exp [−(k1 − k2).r] exp
[
−(k3 − k4).r′

]
〈Ψ0|f̂ †k1α

f̂k2α|Ψn〉〈Ψn|f̂ †k3β
f̂k4β|Ψ0〉.
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As |Ψ0〉 is the ground state, we have these relations among the wavevectors

k4 ≡ k, |k| < kF ,

k3 ≡ k′, |k′| > kF ,

k2 ≡ k′,
k1 ≡ k.

(A.17)

By writing the excitation energy like as En = E0 + εk+q − εk, we have for the susceptibility
in momentum space

χ0(q, ω) =
1

V 2

∑
k
α, β

〈Ψ0|f̂ †kαf̂k′α|Ψn〉〈Ψn|f̂ †k′β f̂kβ|Ψ0〉
~ω − (εk+q − εk) + iη

−
〈Ψ0|f̂ †k′αf̂kα|Ψn〉〈Ψn|f̂ †kβ f̂k′β|Ψ0〉

~ω + (εk−q − εk)− iη

]

=
2

V 2

∑
k

[
θ(|k + q| − kF )θ(k − kF )

~ω − (εk+q − εk) + iη

− θ(|k− q| − kF )θ(k − kF )

~ω + (εk−q − εk)− iη

]

=
2

V 2

∑
k

θ(kF − k)− θ(kF − |k + q|)
~ω − (εk+q − εk) + iη

, (A.18)

where after renaming the variable in the second term, we have used the relation θ(x) =
1 − θ(−x). The spin-degeneracy is compensated by the prefactor 2 in the third line. The
integral form for the static response function ω = 0 can be written as

χ(q) =

ˆ
dk

(2π)d
fk − fk+q

εk − εk+q
. (A.19)

where fk is the Fermi distribution function. We report the explicit forms of the response
function at zero-temperature T = 0 correspond to 1D, 2D, and 3D space as

χ0
1D(q) = −2ω1D(E)

1

2x
ln

∣∣∣∣1 + x

1− x

∣∣∣∣,
χ0

2D(q) = −2ω2D(E)


1 x < 1,

1−
√

1− x−2 x > 1,

χ0
3D(q) = −2ω3D(E)

[
1

2
− 1

4x
(1− x2) ln

∣∣∣∣1− x1 + x

∣∣∣∣] , (A.20)
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where x = q/2kF and ωiD(E) is the density of state per spin, corresponds to the i-th di-
mension(s). The response functions are depicted in Fig. A.1. The particular behavior of the
response functions at q = 2kF would have significant physical effect. It can be seen that re-
sponse function in 1D is divergent at q = 2kf , which implies the instability of the free system
with respect to the even extremely small perturbation. In 2D, at the same value q = 2kF the
response function shows a non-analytical behavior, and in 3D the derivative has a logarithmic
singularity.

Figure A.1: Wavevectore dependent Lindhard response function for one- (dark blue dashed line),
two- (solid red line), and three-dimensional (dash-dotted green line) system of free
fermionic gas at zero-temperature.
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