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Abstract
Photons inherently interact weakly with other photons and their environment [1]. This

fact makes photons excellent qubit candidates, since the weak coupling implies longevity

and protection against decoherence [2]. However, the practically missing interaction

between the photons themselves tempers our possibilities to control them like any other

state of matter. This thesis aims to study mechanisms enabling effective photon-photon

interactions and thus providing methods to directly control single photons.

More precisely, we study one-dimensional waveguide systems with broken chirality, i.e.,

the direction of the traversing photon influences their interaction with the environment.

We will show that placing atoms sufficiently close together breaks chirality naturally.

In this so-called superradiant phase, all atoms in the ensemble act as one; they are

collectively excited and emit any absorbed photon only in its original direction.

Building upon this, we study the scattering processes at such superatoms. We first

discuss some already solved integrable quantum models and provide some necessary

simplifications to make following calculations possible. One such model is the Dicke

model, consisting of one bosonicmode resembling the waveguide photons, and one single

superatom. We will give a derivation of the N-particle Green’s function by Yudson [3].

Yet, in this original representation, the Green’s function contains so many terms that it

is not suitable for further use. We give a transformation to a more applicable form and

use it to derive a generating functional for outgoing states.

Having said that, not all chiral waveguide systems are integrable and, for many of them,

approximations have to be applied. We primarily focus here on a Markovian method,

which neglects retardation effects in the time evolution. While this approximation

itself seems to be quite justified at the beginning, we will show that these retardation

effects are the primary source of entanglement between the photons and the atoms, and

dropping them turns out to be a too harsh assumption for most of the cases.

Lastly, for integrable models, we will study multi-photon effects, such as the creation

of spatial correlations between the photons. We will see that even the simplest model is

able to correlate incoming photons, at least for suitably chosen initial photonic wave

packets. We will find that to make these correlations strong, the initial wave packet must

be so wide it cannot traverse the atoms faster than the reciprocal effective decay rate of

the superatoms.

i



Zusammenfassung
Photonen wechselwirken mit der sie umgebenden Materie, aber vor allem auch mit

anderen Photonen, nur extrem schwach [1]. Daher wären Photonen perfekte Kandidaten

um Qubits zu realisieren [2], denn die Abwesenheit von Wechselwirkungen geht Hand

in Hand mit langlebigen, kohärenten Zuständen. Allerdings bedeutet das ebenso, dass

wir Photonen und ihre gegenseitige Wechselwirkung kaum kontrollieren können, anders

als bei vielen anderen Formen von Materie. Diese Arbeit untersucht Systeme in denen

die Photonen eine effektive Wechselwirkung erfahren und somit Zugang zu neuartigen

Zuständen gewähren.

Wir betrachten eindimensionale Wellenleitersysteme mit gebrochener Chiralität. Dies

bedeutet, dass die Bewegungsrichtung der Photonen innerhalb des Wellenleiters Einfluss

auf ihre Wechselwirkung mit demWellenleiter selbst hat. Zuerst werden wir zeigen, dass

Chiralität für Systeme aus Atomen in hinreichend geringem Abstand zueinander automa-

tisch gebrochen ist. Diese Atome befinden sich dann in einer superradianten Phase, in

welcher sie sich zusammen wie ein einzelnes Superatom verhalten, dass heißt, Photonen

werden kollektiv von allen Atomen absorbiert und können dann nur in die selbe Richtung

emittiert werden, aus der sie auch gekommen sind.

Darauf aufbauend untersuchen wir Streuprozesse an solchen Superatomen. Dafür

werden wir zuerst einige bereits gelöste, integrable Quantensysteme besprechen. Eines

dieser Modelle ist das Dicke-Modell, in dem eine bosonische Mode, welche die Wellen-

leiterphotonen darstellt, an ein Superatom gekoppelt ist. Für dieses Modell verwenden

wir die N -Teilchen Green’sche Funktion von Yudson [3] und werden diese in eine prak-

tischere Form umschreiben, die es uns ermöglicht einige Streuprozesse vollkommen

analytisch zu beschreiben.

Jedoch weist nicht jedes chirale Wellenleitersystem analytische Eigenzustände auf,

weshalb wir auch die entsprechende Green’sche Funktion nicht exakt bestimmen kön-

nen. Deshalb müssen Approximationen verwendet werden, um zu einer vereinfachten

Beschreibung zu gelangen. Wir konzentrieren uns hier auf Methoden, die auf der Markov-

Näherung aufbauen. Dies ist eine Näherung, die Retardierungseffekte in der Zeitent-

wicklung vernachlässigt. Auf dem ersten Blick scheint dies gerechtfertigt, allerdings wird

sich herausstellen, dass sich Ergebnisse, die mit Hilfe der Markov-Näherung hergeleitet

wurden, von den exakten Ergebnissen qualitativ unterscheiden. Ursache hierfür ist, dass

die Retardierungseffekte die primäre Quelle der Verschränkung zwischen den Wellen-

leiterphotonen und den Atomen sind. Entsprechend wichtig sind diese Effekte bei

Prozessen, die auf solch einer Verschränkung aufbauen.

Zuletzt werden wir die Streuung mehrerer Photonen untersuchen. Insbesondere unter-

suchen wir hierbei die Entstehung räumlicher Korrelationen zwischen Photonen durch

die Wechselwirkung mit Superatomen im Wellenleiter. Wir werden sehen, dass, zumind-

est für entsprechend ausgewählte Wellenpakete, selbst das einfachste Modell ausreicht,
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um einfallende Photonen zu korrelieren. Wir zeigen, dass die Korrelationen zwischen

den einzelnen einfallenden Photonen besonders dann groß sind, wenn das einfallende

Wellenpaket so breit ist, dass es das System, auf Zeitskalen proportional zur inversen

Zerfallsrate, nicht verlassen kann.
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1 Waveguide Quantum

Electrodynamics

From all of the four fundamental forces, we possess the most control over electro-

dynamics. The ability to control the interaction of photons with atoms enabled us to

develop unprecedented technologies. We employ strong fields to capture ions in our

most precise clocks [4, 5], use cavity modes to build qubits [6] and send out single pairs

of entangled photons to measure violations of Bell’s inequality [7–9]. However, in all of

these examples, the primary interest lies in the interaction of the photons with their

surrounding matter. Even in the latter example, where the photons themselves are of

interest, they are created in an entangled state and then never feel each other again.

The “magic” behind the infamous result lies within the measurement procedure and not

within special manipulations of the photon states [10].

It is quite paradoxical that, even though photons are so elementary for many of our

experiments, we are barely able to manipulate them in the same way as we can shift

around electrons, for example. The reason for this seems obvious. While electrons and

protons strongly interact with each other, therefore making it easy to create correlated

systems, photons are effectively blind towards other photons. From quantum electrody-

namics, we know that there exists a natural appearing photon-photon interaction, which,

however, is in lowest order a forth order process O(α4) in the fine structure constant α.
Consequently, only recently has it been possible to find evidence for the scattering of

one photon from another [1].

The lack of control turns out to be a huge problem for modern applications. For

instance, universal quantum computation heavily relies upon the perfect control of

“flying qubits” and the ability to convert photons into condensed matter excitations

and vice versa [11]. Furthermore, due to the weak interaction with their environment,

photons themselves are perfect candidates for qubits [2]; coherence times of a couple

of seconds are readily achievable [12]. Additionally, by the inability to make photons
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1. Waveguide Quantum Electrodynamics

interact we are missing out on new physics and novel states of matter, such as photon

crystallisation [13] or bound states [14].

Hence, this work aims to deepen our understanding of one way to make photons more

controllable: since photons by themselves barely interact, we need to convert them into

new, interacting particles and keep them together long enough [2, 13, 15, 16]. After

they are converted back to regular photons, the outgoing photons hopefully exist in

some non-trivial correlated state [17–19]. For this purpose we will investigate slow-light

polaritons; excitations of atomic dipole systems. To be more precisely, in this thesis

we consider chiral waveguide dynamics; systems which restrict the photons to one

dimension and scattering events are biased towards one direction [3, 20–22].

Chiral Waveguide Systems

1.1

For a didactical approach to this thesis, we start by explaining what wemean when we say

that we consider “chiral waveguide systems”. Firstly, let us agree upon the convention

that we call every setup, in which the dynamics are effectively one-dimensional, a

waveguide. This means a photon source, sending off photons into free space with a

well-defined wave vector, is as much a waveguide as an optical fibre. Dropping the

distinction between these two inherently different systems will be useful for us, since

the same set of equations governs their effective dynamics in a specific frequency range.

Now we need something more than just photons, as the absence of direct photon-

photon interactions renders their dynamics dull. Hence, we introduce emitters, subsys-

tems which can absorb and re-emit photons from and into the waveguide. For example, a

large ensemble ofN atoms will show an effect called superradiance [3, 23]; the ensemble

will collectively absorb and re-emit photons with an N2 fold increased rate compared to

the single atoms. Furthermore, in this process scattering into any other direction than

the incident one is exponentially suppressed.

This brings us to the second concept: chirality. For a one dimensional system, we

should consider both forward and backward scattering, or in other words, reflexion

and transmission of the photons at the emitters. Even so, it turns out that in some

systems, like the superradiant cloud, backward scattering is actively suppressed and

can be neglected. There are other ways to achieve chirality, like coating an optical fibre

with gold nanoparticles, which breaks the mirror symmetry of the photons by spin-orbit

interaction [22]. In order to create a non-linear medium for the photons in the photonic

fibre approaches, one either uses a hollow-core fibre and places the emitters inside

the fibre [24]. Alternatively, emitters close to the waveguide’s surface couple to the

photon modes as well [25]. Yet another way to build these chiral waveguides is to use

superconducting transmission lines [26, 27].
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1.1. Chiral Waveguide Systems

All of these discussed systems are inherently different, and so are the realisations of the

emitters in them. We already discussed that we could employ simple atomic clouds [24],

while other implementations rely on driven Rydberg atoms [28]. However, we are not

limited to just cold atomic clouds. For the transmission line waveguides, one usually

utilises superconducting qubits as artificial atoms [26, 27]. Thus, we want to generalise

our definition of emitters, which, from now on, are any subsystems, that effectively

interact with the waveguide photons as if they were a single particle. Therefore, we

will also use the term “atoms” or, in the two-level case, “spins” for the emitters. For

further examples and references of possible implementations see the review of Roy et

al. [16], which gives an exhaustive list of examples and explains their corresponding

Hamiltonians.

After all of these preliminaries, we now have every definition we need to start building

up a generic chiral waveguide Hamiltonian. Apparently, this Hamiltonian consists of

three parts

H = Hph +Hat +Hint. (1.1)

Here,Hph denotes the photonic part and covers the dispersion of the photons inside the

waveguide. Next, the atomic HamiltonianHat covers the level structure of the emitter and

accounts for additional external driving. Lastly, Hint describes the interaction between

photons and atoms inside the waveguide.

Now, let us start by discussing the photonic Hamiltonian. For free photons inside a

one dimension waveguide it reads

Hph =

∫
dk ~ω(k)b†(k)b(k), (1.2)

where k labels the photons wave vector and ω(k) is the dispersion relation inside the

waveguide. The photonic creation and annihilation operators b† and b obey the usual

commutation relations for bosonic fields. The most intriguing fact about the photonic

Hamiltonian is the dispersion relation. While for free photons we have ω(k) = c|k|,
it can take multiple forms in different waveguides. Iakoupov [15] computed many of

these relations for different realisations. In conclusion, photons can have something

resembling the usual linear dispersion or even a quadratic, like free and massive particles.

The dependence of the dispersion relation onto the concrete system presents a hurdle

for us, since we are interested in a generic framework which applies to a multitude of

systems, without the need of regarding many different dispersion relations. One way to

avoid this problem, is to introduce new bosonic field operators as

b̃(ω) ≡ b(k−1(ω))√
∂ω/∂k

,

where k−1(ω) denotes the inverse dispersion relation. Consequently, the new photonic
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1. Waveguide Quantum Electrodynamics

Hamiltonian becomes

H̃ph =

∫
dω ~ωb̃†(ω)b̃(ω). (1.3)

This Hamiltonian equals the one from Equation (1.2) if ω(k) is invertible.
Going this way is practically as long as we are not interested in interactions between the

photons and the emitters. However, the description of the interaction Hamiltonian by

the wave vector k is more accessible than by the associated frequencies ω(k). Wewill later

see, for an fully chiral setup, that we can pull this k dependence into atomic operators,

for which we can still use the approach discussed here. But, photon-emitter interactions

are central to this work and we will also discuss non-chiral systems. Therefore, we now

present an approximative, yet generic way to simplify the dynamics.

Luckily, the waveguide dynamics are usually centred around a central frequency

ω0 = ω(k0). More precisely, we assume the emitters interact only with photons within

the range k0 + [−∆k/2,∆k/2] ≡ k0 + B. We call B the bandwidth of the system. Since

photons outside of this range traverse the waveguide without interaction, their dynamics

is trivial and we want to restrict our discussion to photons within the non-trivial region.

Finally, we assume the dispersion relation to be symmetrical under k 7→ −k, such that

there are two interacting wave vector regions. Consequently, we may write for the

photonic Hamiltonian, under this restriction,

Hph =

∫
k0+B

dk ~ω(k)b†(k)b(k) +
∫
−k0+B

dk ~ω(k)b†(k)b(k). (1.4)

Next, we assume a sufficiently narrow bandwidth, i.e., ∆k � k0 and ω(k) ≈ ω0 ±
vG(k ∓ k0) approximates ω(k) well within ±k0 + B. Here, vG = ∂ω/∂k|k0 denotes the
group velocity inside the waveguide at k0. Now, we replace the dispersion relation in

Equation (1.4) by this approximation. While this approximation is only valid for photons

within the range ±k0 + B, performing the integration over all wave vectors turns out to

be convenient for further computations. Increasing the integration domain, however,

would break the distinction between photons with positive and negative wave vectors.

To remedy this, we introduce the two bosonic fields b±(k) = b(k ± k0), representing
right and left moving photons respectively. We replace the old bosonic operators in

Equation (1.4) with these operators and then lift their definition upon all real values of

k, bringing us to

Hph =

∫
dk
{
~
[
ω0 + vGk

]
b†+(k)b+(k) + ~

[
ω0 − vGk

]
b†−(k)b−(k)

}
. (1.5)

For now, this is everything we need to know about the photonic Hamiltonian, and

we focus our attention to the atomic part. For simplicity, we will work with a single

type of emitters at a time, i.e., every atom in our system is described by the same basis

states {|n〉}. Additionally, we label the atomic ground state |0〉 and associate the energy
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1.1. Chiral Waveguide Systems

E0 = 0. Every other state |n〉 is an excitation with the energy En. To further abbreviate

notation, we introduce the “creation” operator a†n = |n〉〈0| , which lifts the atom from

the ground state to the n-th excited state.

We now have enough to build the atomic Hamiltonian for many systems. However,

there are some physical phenomena we are not able to capture yet. For example, imagine

a system where Rydberg atoms build our emitters. These have at least a 3-level structure

and need external driving between two of these levels. So, to describe driving of the

atoms by an external, classical light source, we introduce the Rabi frequencies Ωnm.

Altogether, this creates the atomic Hamiltonian

Hat =
N∑
i=1

{∑
n

Ena
†
i,nai,n +

∑
n<m

Ωnma†i,nai,m +Ωmna
†
i,mai,n

}
. (1.6)

Here, the index i runs over all the N emitters inside the waveguide and a†i,nai,m is short-

hand notation for

a†i,nai,m ≡

(
i−1⊗
j=1

1

)
⊗ a†nam ⊗

(
N⊗

j=i+1

1

)
.

Lastly, we still need to describe the interaction Hamiltonian. Due to the lack of precise

microscopical insight, we will just assume that every emitter has a dipole-like interaction

with the photons. Most textbooks on Quantum Mechanics give a derivation for the

interaction of the light field with an atom in the dipole approximation, together with

the Rotating frame approximation (e.g. [29]). For this reason, we do not want to repeat it

here, but directly give the interaction Hamiltonian, which reads

Hint =

N∑
i=1

∫
dk
∑
n<m

[√
gn,m(k)a†i,nai,mb†(k)e−ikxi +

√
gm,n(k)a

†
i,mai,nb(k)e

ikxi

]
, (1.7)

where xi is the position of the i-th atom and gn,m(k) is the coupling strength between

the light mode with wave vector k and the atomic transition n → m. Notice, that we

assumed that this coupling strength is the same for every emitter and thus it does not

depend on the index i.

We now need to recast Equation (1.7) into a more usable form. Firstly, let us again

restrict the k integration to ±k0 + B. Next, we assume that gn,m(k) is constant over this
range of integration. Now we introduce the bosonic fields b±(k) and then expand the

integration region back to all k. At last, we demand that the photons can introduce only

transitions from the ground state |0〉 to one excited state |1〉 , and that the coupling for

the absorption and emission event is symmetrical, i.e., g0,1(±k0) = g1,0(±k0) ≡ g±. Thus,
after all of these steps, we arrive at the interaction Hamiltonian

Hint =
∑
ν=±

N∑
i=1

∫
dk

√
gν

[
aib

†
ν(k)e

−i(k+νk0)xi + a†i bνe
i(k+νk0)xi

]
. (1.8)
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1. Waveguide Quantum Electrodynamics

Since, by definition, the transitions happen only between the levels |0〉 and |1〉 , we
dropped the corresponding index in the atomic operators.

Now we need to investigate the Hamiltonian (1.1) in total, as the sum of its three parts.

The first fact we notice is that the operator

N =

∫
dk
[
b†+(k)b+(k) + b†−(k)b−(k)

]
+

N∑
i=1

∑
n

a†i,nai,n (1.9)

is a symmetry of the Hamiltonian. Clearly, it is “counting” the number of excitations in

the system and, consequently, the Hamiltonian dynamics cannot change the number

of the excitations in the system. If we restrict our discussion to one of these particle

number subsectors, we can simplify the Hamiltonian even further. Notice that H and

H − κN (κ ∈ R) have the same dynamics within one of these subsectors. Let us choose

κ = ~ω0. By doing this, the central frequency drops out of the photonic Hamiltonian,

and the k0 term will make it possible for us to switch to real space coordinates. This shift

changes the energy term in the atomic Hamiltonian and it becomes
∑

n(En − ~ω0)a
†
nan,

advising us to define the detuning δn ≡ En − ~ω0.

Furthermore, we want to study problems in real space. In order to do so, we use the

Fourier transformed operators

bν(x) =

∫
dk√
2π

bν(k)e
ikx.

Combining this definition with the discussion from the previous paragraph, we can write

the total Hamiltonian as

H =
∑
ν=±

∫
dxb†ν(x)(−iνvG~∂x)bν(x)

+
N∑
i=1

(∑
n

δna
†
i,nai,n +

∑
n<m

Ωnma†i,nai,m +Ωmna
†
i,mai,n

)

+

N∑
i=1

∑
ν=±

√
2πgν

[
a†i bν(xi)e

iνk0xi + aib
†
ν(xi)e

−iνk0xi
]
. (1.10)

In the next section, we want to give some concrete examples of physical systems,

obeying (1.10). However, before before doing so, we want to discuss the available degrees

of freedom. First, let H 7→ vG~H . This transformation changes the dimension of the

Hamiltonian to 1/[Length]. Now, keep in mind that we will later tackle the problem of

time-evolving a given initial state. Under the aforementioned transformation, the time

evolution operator reads

U(t) = e−ivGHt.
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1.2. Examples

We rescale vGt 7→ t, making the time t a variable of dimension [Length].

If we read the previous procedure as a redefinition of the units of time and mass, then

we are free to pick a new length scale as well. Apparently, absorbing k0 into the def-

inition of x achieves precisely this. However, we will primarily work with chiral systems,

for which we can absorb the central frequency k0 in unobservable quantities anyway.

Thus, using it to redefine the length will just jeopardise our attempt to simplify the

Hamiltonian. From (1.10) we immediately see that g/~2v2G has dimension 1/[Length].
Since we will always consider cases in which we have photons in the + mode, it is

convenient to choose units, in which g+ is no longer free. Thus, we rescale the bosonic

fields bν(x) 7→
√
2πg+bν(x) and use a change of variables x 7→ x/2πg+, k0 7→ 2πg+k0. To

quickly summarise the steps in the last two paragraphs the “physicist’s way”: From here

on we set ~ = vG = 2πg+ = 1.

After this rescaling, the Hamiltonian in rescaled quantities reads

H =
∑
ν=±

∫
dxb†ν(x)(−iν∂x)bν(x)

+

N∑
i=1

(∑
n

δna
†
i,nai,n +

∑
n<m

Ωnma†i,nai,m +Ωmna
†
i,mai,n

)

+
N∑
i=1

∑
ν=±

cν

[
a†i bν(xi)e

iνk0xi + aib
†
ν(xi)e

−iνk0xi
]
. (1.11)

Here we have additionally absorbed every constant factor into the definition of δn and

Ωnm. The new quantity cν ≡ (gν/g+)
1/2 accounts for the chirality of the system. While

c+ = 1 by definition c− is a positive real number and c− = 0 indicates a fully chiral

system (no left moving photons), whereas we have c− = 1 for non-chiral systems.

Examples

1.2

1.2.1 Resonant two-level Atoms

Firstly, we imagine the setup where the emitters are two level atoms, which we will

call spins. This is the case for superconducting qubit emitters in transmission line

systems [26, 27], for example. Also, these systems model the interaction of light with

usual atoms under confinement, as due to an optical fibre [24]. For this system, we

explicitly consider resonant photons, i.e., δ = 0. Furthermore, we will neglect external

7



1. Waveguide Quantum Electrodynamics

driving setting Ω01 = Ω10 = 0. Therefore, the Hamiltonian

H =
∑
ν=±

∫
dx b†ν(x)(−iν∂x)bν(x)

+
N∑
i=1

∑
ν=±

cν

[
a†i bν(xi)e

iνk0xi + aib
†
ν(xi)e

−ik0xi
]

(1.12)

describes the system at hand.

In particular, this thesis focuses on waveguides described by Equation (1.12). In

Chapter 3 we will discuss the eigenmodes of this Hamiltonian’s various forms and show

examples for which we can treat scattering processes analytically. An intriguing physical

effect, observable in the non-chiral version of (1.12) is superradiance [23], the effect

where a conglomeration of N atoms collectively absorbs and emits photons with an N2

increased coupling strength. We will derive this effect for an arbitrary number of spins

for the single photon subspace in the following chapter.

Atoms in the superradiant phase do not only act like one superatom but also break

chirality. The Hamiltonian (1.12) describes such a system in its entirety. In order to

study the photon scattering of such a superatom, we set c− = 0 and N = 1, bringing us
to the Dicke Hamiltonian

H =

∫
dx b†(x)(−i∂x)b(x) +

[
a†bν(xi)e

iνk0xi + ab†ν(xi)e
−ik0xi

]
. (1.13)

We will study this Hamiltonian in great detail in section 3.1.

1.2.2 Rydberg Emitters

As a minimal model which utilises every part of the general Hamiltonian (1.11), we show

the example of a chiral waveguide where each emitter consists of a cloud of Rydberg

atoms. An external laser field pumps the excited state |1〉 into the Rydberg state |2〉 with
the Rabi frequency Ω. The Rydberg blockade prohibits the creation of a second atomic

excitation inside the atomic cloud by detuning the excited level |1〉 if one Rydberg atom
is in the Rydberg state. Thus, every cloud effectively acts like one super atom. The

Hamiltonian for this type of setups is given by

H =
∑
ν=±

∫
dxb†ν(x)(−iν∂x)bν(x) +

N∑
i=1

Ω
(
s†i ei + e†i si

)
+

N∑
i=1

∑
ν=±

cν

[
e†i bν(xi)e

iνk0xi + eib
†
ν(xi)e

−iνk0xi
]
, (1.14)

where s = |0〉〈2| “destroys” the Rydberg level, and e = |0〉〈1| .
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2 Dicke Superradiance

We want to enter the realm of scattering problems in waveguide quantum electrody-

namics with a didactical example. In the first chapter we made quite a few references to

the phenomenon of Dicke superradiance; the effect when N atoms collectively absorb

and re-emit light with an N2 increased coupling strength. Intriguingly, we find such a

superradiant phase transition in one of our models; more precisely, we will work with a

variant of the Hamiltonian (1.12). Additionally, this chapter describes the construction

of the single excitation sector eigenstates, with which we then compute scattering events

of incoming photons.

While, due to backscattering, it is not possible to analytically solve the scattering

problem for any number of incoming photons, our work here will give us an insight into

how to do calculations in these waveguide systems. For example, we will explicitly derive

the single excitation eigenmodes of the Hamiltonian, a task we will skip in Chapter 3,

where we cover other models with analytical solutions. For Bethe Ansatz solvable models,

we can then construct the excitation spectrum from these single excitation modes.

Decomposition into IndependentModes

2.1

As it shows a superradiant phase transition, we now want to study the non-chiral version

of Equation (1.12), i.e., we have c− = 1. While we are only able to solve this model in the

single excitation sector, it is of particular interest since it shows a superradiant phase

transition for any number of atoms. Figuratively speaking, this phase transition happens

when the different atoms are so close, such that single photons cannot distinguish

between the individual atoms as the wavelength is much larger than the total atomic

separation. Thus, we work in the limit where k0(xN−x1) � 1, allowing us to approximate

e±ik0xi ≈ 1 for atoms centred around x = 0.

The most prominent problem when trying to solve (1.12) for its eigenmodes, lies

11



2. Dicke Superradiance

in the fact that the interaction Hamiltonian couples the two bosonic modes b±(x).
Just from looking at the interaction Hamiltonian, we could try to define new modes

b̃± = b+(x)± b−(x), which decouple the interaction Hamiltonian. However, this would

couple the new modes in the photonic Hamiltonian, rendering our attempt futile. Yet,

slightly altering the Ansatz to

bR(x) =
b+(x) + b−(−x)√

2
, bL(x) =

b+(x)− b−(−x)√
2

, (2.1)

prohibits the coupling of the modes in the photonic part.

These new modes cannot decouple the interaction Hamiltonian for any arbitrary atom

configuration. So, when are we able to split the entire Hamiltonian into a L and R mode

part? It turns out, we need reflection symmetry about the origin to further simplify the

Hamiltonian, i.e., if an atom exists at location xi then there is another atom at −xi. This
is always true for a periodic lattice with the origin at the centre, however more complex

distributions are possible as well. Also, a system of two atoms is necessarily symmetric

and, in fact, it will be the starting point for our discussion. First, the symmetry condition

allows us to relabel the atomic position variables. From now on, xi will denote the i-th
atom with a positive coordinate and x−i = −xi will label the atoms on the negative side.

For an odd number of atoms in the system, we additionally find an atom at x0 = 0. This
is a particular case since it naturally only couples to photons in the R mode, and for this

atom alone we would end up in the non-chiral Dicke model, which we will discuss in the

following chapter.

With this symmetry condition in mind, we can rewrite the interaction-Hamiltonian as

N/2∑
i=1

(
b+(xi) + b−(xi)

)
a†i +

(
b+(−xi) + b−(−xi)

)
a†−i +H.c.

=
1√
2

N/2∑
i=1

[bR(xi) + bR(−xi) + bL(xi)− bL(−xi)] a
†
i

+ [bR(xi) + bR(−xi)− bL(xi) + bL(−xi)] a
†
−i +H.c.

=
1√
2

N/2∑
i=1

[
bR(xi) + bR(−xi)

][
a†i + a†−i

]
+
[
bL(xi)− bL(−xi)

][
a†i − a†−i

]
+H.c.

≡
N/2∑
i=1

[
bR(xi) + bR(−xi)

]
a†R,i +

[
bL(xi)− bL(−xi)

]
a†L,i +H.c.

for an even number of atoms. Here we have defined new bosonic operators

aR,i =
ai + a−i√

2
, aL,i =

ai − a−i√
2

.

12



2.1. Decomposition into Independent Modes

They act like lowering operators in the spin-1 algebra, for which we can consider them

as ladder operators of three level systems. Additionally, these operators couple at two

different locations to the light field. As previously mentioned, for an odd number of

atoms there is one exceptional atom at x0 = 0, which solely interacts with the R-
mode photons, therefore yielding a term

√
2bR(0)a

†
R,0 +H.c. to the Hamiltonian. Notice,

aR,0 ≡ a0, since the above definition is ill-suited for this case.

While we do not consider an atomic Hamiltonian for this system, we will give its

concrete form under this transformation for the sake of completeness. The calculation

is straightforward and results in

Hat =

N/2∑
i=1

δ
(
a†i ai + a†−ia−i

)
+Ω

(
a†i + a†−i + ai + a−i

)

=

N/2∑
i=1

δ
(
a†R,iaR,i + a†L,iaL,i

)
+
√
2Ω
(
a†R,i + aR,i

)
.

Interestingly, the detuning stays constant, but only the R-circular atoms experience a

Rabi-oscillation, whose frequency is bigger by a factor of
√
2 compared to the old atoms.

For an odd number of atoms, the part of the atomic Hamiltonian for the atom at x0 = 0
remains unchanged.

All in all, we have shown that the Hamiltonian (1.12) under our symmetry restrictions

splits into two smaller subsystems, namely

H = HR +HL (2.2)

with

HR =

∫
dx b†R(x)(−i∂x)bR(x)+

N/2∑
i=1

[
bR(xi)+bR(−xi)

]
a†R,i+

[
b†R(xi)+b†R(−xi)

]
aR,i (2.3)

and

HL =

∫
dx b†L(x)(−i∂x)bL(x)+

N/2∑
i=1

[
bL(xi)−bL(−xi)

]
a†L,i+

[
b†L(xi)−b†L(−xi)

]
aL,i (2.4)

for an even number of atoms. The Hamiltonians HR and HL differ from the mono-

directional one by the fact that each “atom” interacts with the light-field at two separate

locations. Additionally, each atom now describes a three level-system, which becomes

important considers the multi-excitation subspaces. To clarify, this impedes us from

solving the system with the Bethe Ansatz, since now intrinsic three particle interactions

emerge. Thus, we have to limit further discussion to the single excitation sector, where no

photon-photon interactions are present. However, even under these strong restrictions,

interesting phenomena still emerge.

13



2. Dicke Superradiance

Solutions to the Circular Subspaces

2.2

Unfortunately, the solution of the L- and R-subspaces becomes increasingly involved

with a raising number of atoms in the system. This is due to the ambivalent behaviour

of the atoms in the L-and R-subspaces: in the picture of the Hamiltonians (2.3) and (2.4)

an absorbed photon at xi can immediately hop back to −xi. Thus, a single photon can

interact with each atom infinitely often. Due to this complication, we will start with the

few atom case. In the next chapter, we will solve the problem for a single photon and,

owing to the awkward behaviour of the atom at x0 = 0, we want to limit our discussion

to an even number of atoms. For now, we are primarily interested in the N = 2 case.
Nonetheless, we will later discuss N ∈ 2N.
We start by solving the system for N = 2, i.e., each of the L- and R-subspace of the

Hamiltonian contain one atom. For both subspaces, we now find the single excitation

eigenmodes. Let us commence with HR, where we make the Ansatz

|λ〉R = C(λ)

(∫
dx eiλxf(x, λ)b†R(x) + g(x1, λ)a

†
R,1

)
|0〉 . (2.5)

We demand H |λ〉 = λ |λ〉 , and from this, we derive the following differential equation

eiλx∂xf(x, λ) = −ig(x1, λ)
(
δ(x− x1) + δ(x+ x1)

)
, (2.6)

λg(x1, λ) = eiλx1f(x1, λ) + e−iλx1f(−x1, λ). (2.7)

We readily integrate equation (2.6) for f . However, we need to define the behaviour of f
at the jump locations ±x1. The choice

f(±x1, λ) = lim
δ→0+

f(±x1 + δ, λ) + f(±x1 − δ, λ)

2

is suitable. At each of the regions x < −x1, −x1 < x < x1 and x1 < x the function

f(x, λ) is constant with respect to x and can only depend on λ. This allows us to set

f(x, λ) = 1 for x < −x1 since every λ dependence of this region can be pulled into

the normalisation factor C(λ). Besides, to keep the notation compact, we will use

f(x±, λ) ≡ limδ→0+ f(x± δ, λ) from here on out.

For the region −x1 < x < x1 integration yields

f(−x1+, λ)− f(−x1−, λ) = −ieix1λg(x1, λ),

while for x1 < x we find

f(x1+, λ)− f(x1−, λ) = −ie−ix1λg(x1, λ).

14



2.2. Solutions to the Circular Subspaces

Multiplying with the corresponding exponential factor and adding and subtracting both

equations yields

e−ix1λ (f(−x1+, λ)− f(−x1−, λ))− eix1λ (f(x1+, λ)− f(x1−, λ)) = 0 (2.8)

e−ix1λ (f(−x1+, λ)− f(−x1−, λ)) + eix1λ (f(x1+, λ)− f(x1−, λ)) = −2ig(x1, λ). (2.9)

We use the first of the two equations to eliminate f(x1+, λ). By using the relation (2.7)

for g(x1, λ), we find

f(−x1+, λ)− f(−x1−, λ) = −iλ−1
(
e2ix1λf(x1−, λ) + f(−x1+, λ)

)
.

Remembering that f(x1−, λ) = f(−x1+, λ) and f(−x1−, λ) = 1 brings us to the equation

f(x, λ) =
λ

λ+ i(1 + e2ix1λ)

in the region −x1 < x < x1. With this relation, we can solve f(x, λ) for x1 < x, which
yields

f(x, λ) =
λ− i(1 + e−2ix1λ)

λ+ i(1 + e2ix1λ)
.

Finally, the term g(x1, λ) results in

g(x1, λ) =
2 cos(x1λ)

λ+ i(1 + e2ix1λ)
.

To prove that we have all and the correct solutions we will now show that

1R =

∫
dλ |λ〉 〈λ| .

Each |λ〉 contains one spatial integration, which splits into three different regions.

Consequently, we have to integrate nine separate regions as explained in Figure 2.1. We do

not need to care about the regions x, y < −x1 and x, y > x1, since here f
∗(x, λ)f(y, λ) = 1.

Additionally, it turns out, that the six regions where x and y definitely differ, group up into
three pairs of complex conjugated results. To evaluate these, we need to find the roots

of λ+ i(1+ e2ix1λ). For now, it is sufficient to know that they lie on the lower half plane;

a more rigorous treatment will be performed later when we calculate the time evolution

of incident photons. With this, it turns out that these regions, where x 6= y, have a

vanishing contribution. We are left to compute the region −x1 < x, y < x1. However, it
appears that in this region it is not possible to produce the identity. Nevertheless, this is

not problematic because we are only interested in the time evolution of wave packets

which start well in front of the atoms and are measured behind it.
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2. Dicke Superradiance

x < −x1

x < x1

x1 < x

y < −x1 y < x1 x1 < y

S2 S4 T

S1 S3 S4

T S1 S2

Figure 2.1.

Visual description of the separate regions of integrations. The grey marked areas are trivial to

solve, while the three regions on the lower left are just the complex cunjugate of the 3 regions on

the upper right corner.

Next, we will repeat the procedure for the L-mode Hamiltonian. Since it is quite similar

to the R-mode Hamiltonian the steps are essentially the same, and we find

fL(x, λ) =
λ

λ+ i(1− e2ix1λ)
for −x1 < x < x1,

fL(x, λ) =
λ− i(1− e−2ix1λ)

λ+ i(1− e2ix1λ)
for x1 < x,

gL(x1, λ) =
2i sin(x1λ)

λ+ i(1− e2ix1λ)
,

where we made the same Ansatz (2.5) as for the R-mode Hamiltonian. Notice, in all three

equations the singularity λ = 0 is removable. Now, after we have the eigenstates to both

Hamiltonians we can efficiently compute the time evolution of arbitrary input states.

Single Photon Scattering

2.3

2.3.1 Scattering atN = 2 Atoms

We now ask the question: what is the wave function of a photon after scattering at

two atoms at locations ±x1? For an answer, we determine the single photon Green’s

function G. Since the Hamiltonian splits into two commuting parts, we know that the

time evolution U operator acts independently on the two corresponding subspaces,
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2.3. Single Photon Scattering

U = UR ⊕ UL, respectively. Consequently, the Green’s functions splits into a L- and
R-part, which we get from

|x〉+ ≡ b†+(x) |0〉 =
1√
2
(b†R(x) + b†L(x)) |0〉 ≡ 1√

2
( |x〉R + |x〉L) .

Let us start with the R-mode contribution. Here we have

GR(z) = R

〈
y
∣∣e−iHRt

∣∣x〉R
=

∫
dλ e−iλt

R〈y|λ〉〈λ|x〉R

≡
∫

dλ

2π
e−iλz λ− i(1 + e−2ix1λ)

λ+ i(1 + e2ix1λ)

= δ(z)− 4i

∫
dλ

2π
e−iλz cos2(x1λ)

λ+ i(1 + e2ix1λ)
, (2.10)

where z = t+x−y and we have assumed x < −x1 and y > x1. We now want to show that

the integrand has its singularities on the lower half plane. However, the corresponding

transcendental equation does not yield a solution in terms of elementary functions, yet

we may express it as

λi = −i

(
1−

Wi

(
−2x1e

2x1
)

2x1

)
,

whereWi(x) is the LambertW function and i ∈ Z labels the countable infinite solutions

of the problem.

The LambertW function gives a somewhat abstract way to label the solutions; there-

fore we will first determine which kind of solutions are even allowed. Assume λ0 to be a

solution of

λ+ i
(
1 + e2ix1λ

)
= 0. (2.11)

Then, −λ is a solution as well since

−λ0 + i
(
1 + e−2ix1λ0

)
= −λ0 + i(1 + e2ix1λ0)

= −λ0 + i (1 + e2ix1λ0)

= 0.

Hence, all possible solutions lie either on the imaginary axis or come in pairs which are

reflections about the imaginary axis. A suitable way to label the solution is therefore

• λ
(0)
i for all solutions on the imaginary axis, where i sorts them in ascending order

of their absolute value.
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2. Dicke Superradiance
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Figure 2.2.

Bifurcation of the singularities for x1 ∈ [10−2, 10]. One of the imaginary solutions converges to

−2i, while the other diverges to −i∞. Arrows indicate the direction of decreasing x1.

• λp
i for all solutions on the right half, where i sorts them in ascending order of the

real part. The negative complex conjugate gives the paired solution.

Anyhow, there aren’t infinitely many singularities of the first kind but, depending on x1,
there are either no or two singularities with zero real part. We realise that for decreasing

x1 two mirrored singularities walk towards the imaginary axis and at

2x1e
2x1 = e−1 (i.e., x1 ≈ 0.139)

a bifurcation happens and both singularities start to shift along this axis; one towards

−2i and one towards −i∞. This exceptional behaviour is captured in Figure 2.2 and

shows the trajectories of those two special singularities for different values of x1.
Every other singularity increases its distance to the origin for decreasing x1. In fact,

the singularity converging to −2i is the only singularity with finite absolute value for

sufficiently small x1. To prove this, choose an arbitrary R > 2 and consider x1 so small

that 1 + e2x1R < R. Then, |1 + e2ix1λ| < |λ| on ∂B(0, R) and by the theorem of Rouché

the holomorphic functions λ and λ + i(1 + e2ix1λ) have the same number of zeros in

B(0, R), i.e., precisely one. Hence, the singularity converging to −2i has to be the only
finite singularity remaining for x1 → 0.
Now, we want to prove that all singularities have a negative real part. For this, we

will disprove the contradiction. Assume λ = a + ib is a root of the denominator of

Equation (2.10) and b > 0. Consequently,

Im
(
a+ ib+ i

(
1 + e2ix1(a+ib)

))
= b+ 1 + Im

(
ie2ix1ae−2x1b

)
= b+ 1 + cos(2x1a)e

−2x1b

> 0
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2.3. Single Photon Scattering

since e−2x1b < 1. Therefore, there are no singularities with a positive imaginary part,

which restricts the photons to the causal region y < x+ t.

We go back to our initial task, the computation of the transition amplitude (2.10). In

the last paragraphs we discussed that only the λ ≈ −2i singularity remains significant in

the x1 → 0 limit. A good approximation in this limit is given by

GR(z) =
〈
y
∣∣e−iHRt

∣∣x〉 = δ(z) + 4Θ(z)
cosh2(2x1)

1− 2x1
e−2z, (2.12)

where z = t + x − y, as above. This Green’s function consists of a delta-distribution,

corresponding to free propagation of the incoming photons, as well as an exponentially

decaying tail. A Heaviside function Θ(z) is superimposed, ensuring causality. As we will

see in the next chapter, this is exactly the Green’s function for a system of one chiral

atom with an effective interaction constant N2g with N = 2. Intuitively, one would
expect to see oscillations in this system, when the incident photon gets backscattered,

or, in the picture of the R-mode Hamiltonian, the at x1 absorbed photon reappears later

at −x1. However, it is not only that decay and oscillation processes have different time

scales, but even stronger, oscillations are bifurcationally suppressed, and their absence

is symmetry protected.

Now we need to solve the L-part of the scattering process and add it to our result.

Again, all calculations are quite the same and skipping over them should suffice. A similar

analysis shows the same pairing behaviour as in theR-mode case. Contrariwise, for theL-
mode photons no two singularities ever meet at the imaginary axis to build a bifurcation

pair. We again use Rouché’s theorem once again to show that the denominator of the

L-mode decomposition, λ+ i(1− e2ix1λ), has exactly one finite zero at λ = 0 for x1 → 0.
However, the λ = 0 singularity is removed by its numerator. Consequently, the L mode

equivalent of equation (2.10) possess only the δ(z)-part in the x1 → 0 limit, i.e., the

L-photons propagate freely.

2.3.2 Scattering at Multiple Atoms

We focused on theN = 2 case for various reasons. Herewe gave an integral representation
for the transition amplitude for the scattering of a single photon, managed to derive

an analytic expression for the singularities of its integrand and precisely describe the

superradiant limit, which yielded a symmetry protected suppression of oscillations and

an effective spontaneous emission rate of 2 = N . Albeit exhaustive, the treatment of

the last section lacked generality. Additionally, the purpose of this chapter is to study

the scattering of a photon at an atomic cloud. Consequently, considering merely two

atoms does not do this idea justice. In this section, we want to discuss the system with

multiple atoms. We will keep the number of emitters even for the same reasons as before,

and show that the bifurcation is still existent.
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2. Dicke Superradiance

For this system, the Ansatz (2.5) yields the coupled set of equations

eiλx∂xf(x, λ) = −i

N/2∑
i=1

g(xi, λ)
(
δ(x− xi) + δ(x+ xi)

)
, (2.13)

λ

N/2∑
i=1

g(xi, λ) =

N/2∑
i=1

eiλxif(xi, λ) + e−iλxif(−xi, λ). (2.14)

Firstly, we assume

λg(xi, λ) = eiλxif(xi, λ) + e−iλxif(−xi, λ),

which will be justified by the solution. The major hurdles come from the delta functions

in (2.13), more precisely from the definition f(x, λ) = (f(x+, λ) + f(x−, λ))/2 at the
points of discontinuity and the fact that g depends both on the value of f at xi and −xi.
These two facts imply that wave function at x > xi depends on itself at three different

locations, namely xi−,−xi+ and−xi−. This means one has to solveN equations “inward

to outward” since f(xN/2, λ) can only be solved if f is known for every other position.

However, our Ansatz for g(xi, λ) allows us to make two very useful rearrangements

f(xi−, λ) = e−2ixiλ [(iλ− 1)f(−xi+, λ)− iλf(−xi−, λ)] ,

f(xi+, λ) = e−2ixiλ [iλf(−xi+, λ)− (1 + iλ)f(−xi−, λ)] ,

where we expressed the amplitude f for positive arguments by itself for negative values.

Next, we begin by solving the equations which contain terms with x1. This is where our
Ansatz starts to shine since we find

f(x1+, λ) =
λ− i(1 + e−2ix1λ)

λ+ i(1 + e2ix1λ)
f(−x1−, λ) ≡ P1(λ)

P1(λ)
f(−x1−, λ).

If our system included only two atoms, i.e., just one emitter in the R and L subspaces,

we could set f(−x1−, λ) = 1 and would recover our previous solution. But this result

reveals that the wave function at xi+ can only depend on its value at −xi− times some

complex function in λ on the unit circle. Solving now for f(x2+, λ) yields

f(x2+, λ) =
λP1(λ)− i(P1(λ) + P1(λ)e

−2ix2λ)

λP1(λ) + i(P1(λ) + P1(λ)e2ix2λ)
f(−x2−, λ) ≡ P2(λ)

P2(λ)
f(−x2−, λ).

Through this, we receive the wave function in the case of 4 atoms. By simple induction,

we can show that

f(xN+, λ) =
PN (λ)

PN (λ)
f(−xN−, λ)

≡ λPN−1(λ)− i(PN−1(λ) + PN−1(λ)e
−2ixNλ)

λPN−1(λ) + i(PN−1(λ) + PN−1(λ)e2ixNλ)
f(−xN−, λ). (2.15)
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Figure 2.3.

Bifurcating singularities and the first two trivial ones for a ∈ [10−3, 10−2]. Again, one of the
imaginary solutions converges, while the other diverges to −i∞. The trivial singularities lose

their importance with decreasing x1, since their imaginary part is always below that of the

bifurcating singularities. Arrows indicate the direction of decreasing a.

This recursion formula allows us to give the value of wave function for any number of

atoms in the spatial region x > xN , where we want to measure our transition amplitude

anyway. It also shows why we have bad luck with every attempt to get a closed form

solution of the Green’s function G, for which we have to compute the singularities

of (2.15).

PN (λ) will consist of products of powers of λ up toN as well as exponential functions

e2ixiλ. The singularities are already no longer expressible by analytic functions forN = 2,
and we have to rely on numerics to compute the S Matrix elements for arbitrary xi.
Nevertheless, the solutions of PN (λ) = 0 behave quite similar to the ones of P1(λ) = 0.
For example, we can generalise our previous propositions by induction, i.e., if λ is a

solution of PN (λ) = 0 then so is −λ, and for every solution λ we have Im(λ) < 0.

Before we go on and explain our numerical results we will make a practical restriction.

We emphasise once more that our results hold for any atom distribution as long as it

is symmetric about the origin. Each of the N/2 non-trivial coordinates is an additional

degree of freedom which we have to consider. However, having the ability to freely place

every atom pair wherever we want overcomplicates the underlying problem. We now

reduce our discussion on atoms on a lattice with the lattice parameter a. As a result,
the coordinates are given by xi+1 − xi = a and x1 = a/2. This decreases the number of

degrees of freedom down to one, simplifying the upcoming example.

Next, we can show numerically that a bifurcation is still happening. For that, we deter-
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2. Dicke Superradiance

mined the first four singularities in a system of 22 atoms and followed their “trajectories”

along decreasing values of a. Figure 2.3 pictures these curves. We find two important

features. Firstly, the two innermost singularities approach the imaginary axis similar

to the N = 2 case and branch off at roughly λ = −50i, one singularity diverging, the

other converging to some finite imaginary value ((N + 1)i for N atoms). The other two

singularities maintain a non-zero real part and increase their distance to the real axis

throughout this process. Their imaginary part always stays below that of the bifurcating

singularities, rendering them unimportant in the x1 → 0 limit, as they correspond to

infinitely fast decaying solutions.

We made another important numerical observation, concerning the critical value of

a for which the bifurcation happens. While for two atoms we found a bifurcation at

a ≈ 0.28 (we had x1 ≈ 0.14 and thus a = 2x1), in the upper example of N = 22 the

bifurcation occurs at much smaller values, namely at a ≈ 0.0018. We tested every

system from two atoms up to 30 and found that the point of bifurcation monotonically

decreases. At N = 30 we reach a critical value of a < 10−3 for the first time. Beyond

N = 30 computation becomes increasingly expensive. Therefore we have to limit our

knowledge to these values. A simple fit of the critical separations against the number of

atoms N revealed neither an algebraic nor an exponential dependence.

22







3 Integrable

WaveguideModels

Generic one-dimensional waveguide systems are usually not analytically solvable. This

stems from the fact that the effective interaction between the waveguide photons takes

a non-trivial form, which can involve up to all waveguide photons at the same time.

However, in the fully chiral case, the N-particle scattering matrix decomposes into a

product of 2-particle scattering matrices, or, in an equivalent picture, the time evolution

operator obeys the Yang-Baxter equation. Both facts imply that the underlying model

is integrable; the algebraic Bethe Ansatz yields the scattering states of the waveguide

Hamiltonian [30, 31].

These scattering states will serve as the foundation for this thesis. For example,

in Chapter 4, where we will investigate approximative ways of solving the scattering

problem, we need some entirely analytical results to derive statements about the failures

and successes of those schemes. Beyond this, we will find that the exact treatment gives

raise to universal many body bound states, as we will see in Chapter 5.

For now, we will start with the simplest waveguide model, the Dicke Model, consisting

of a single superatom. The Dicke Model will help us understand more complex systems,

for which it has both didactic importance and is a relevant physical system by its own.

For the Dicke model, we will derive the Green’s function by the method of Yudson and

then cast on into a more practical form, especially applicable for multi-particle problems.

Then we will discuss a related model, a system consisting of multiple superatoms with

irregular spacing. While, for the chiral case, it again is fully integrable (i.e., we can find

its complete eigenbasis), we cannot derive a closed form N-particle Green’s function.

However, we will show a simplified form, suitable for the few photon and few atom limit.
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The DickeModel

3.1

The Dicke Model consists of only a single emitter, without loss of generality, at the centre

of the setup at x = 0. For now, consider an arbitrary degree of chirality c−, such that the

Dicke Hamiltonian reads

H =
∑
ν=±

∫
dx b†ν(x)(−iν∂x)bν(x) +

√
2πgν

(
bν(0)a

† + b†ν(0)a
)
. (3.1)

Since the emitter sits at x = 0, the phase influence due to the central frequency vanishes.
Notice, here we did not set 2πg+ = 1, because this will help us in the following discussion.

Obviously, the left and right moving photons are coupled by the emitter; a right

moving photon can be absorbed by the emitter and re-emitted into the left moving mode

and vice versa. However, for the fully non-chiral case g+ = g− = g, we can find new

bosonic modes, which are not coupled to another and are therefore an excellent choice

for describing the system. To be precise, the substitutions

bR(x) = (b+(x) + b−(−x))/
√
2,

bL(x) = (b+(x)− b−(−x))/
√
2

(3.2)

do the trick. The Hamiltonian then splits into an L and R part, which are

HR =

∫
dx b†R(x)(−∂x)bR(x) + 2

√
2πg

(
bR(0)a

† + b†R(0)a
)
, (3.3)

HL =

∫
dx b†L(x)(−∂x)bL(x). (3.4)

Apparently, the Lmode photons obey a free propagation, while the Rmode bosons have

a chiral Dicke model Hamiltonian with an interaction constant 4g, four times the original

one. Thus, from here on, we will only investigate the chiral part of the system.

3.1.1 Scattering States and String Solutions

Given an initial many-body state |Ψ〉 at t = 0, how does it evolve in time under the

influence of the Hamiltonian H defined in (3.1)? Usually, this question is best answered

in the eigenbasis of the corresponding Hamiltonian: Let B = {|λ〉} be a complete set,

such that H |λ〉 = Eλ |λ〉 for all |λ〉 ∈ B, where λ is a parameter from some measurable

set ΛB . Then

e−iHt |Ψ〉 =

∫
ΛB

dλ e−iHt |λ〉〈λ|Ψ〉 =

∫
ΛB

dλ e−iEλt 〈λ|Ψ〉|λ〉 . (3.5)
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3.1. The Dicke Model

While it is easy to write down this identity, the basis B and its parameter space ΛB

obviously depend on the Hamiltonian of consideration. Luckily for us, the Dicke Model

is readily solved by the Bethe Ansatz; its n-particle eigenmodes are [3]

|λ〉 = C(λ)

∫
dny

∏
i<j

(
1− i sgn(yi − yj)

λi − λj

) n∏
i=1

f(yi, λi)e
iλiyir†(yi, λi) |0〉 , (3.6)

where

f(y, λ) =
λ− i/2 sgn y

λ+ i/2
,

r†(y, λ) = b†(y) +
1

λ
δ(x)a†,

λ = (λ1, . . . , λn) and C(λ) is a “string dependant” normalisation; more on strings in the

following paragraphs. These eigenmodes are best derived by constructing the single

excitation and then finding the solutions in the other particle number sectors by the

Bethe Ansatz. However, to just prove that Equation (3.6) describes the eigenmodes of

the Hamiltonian (3.1) one only needs to compute H |λ〉 , which leads to

H |λ〉 = Eλ |λ〉 =

n∑
i=1

λi |λ〉 , (3.7)

a linear dispersion relation.

We still need to discuss the parameter space ΛB of the parameters λi of the eigenmode

|λ1, . . . , λn〉 . The similarity of these modes to plane waves as well as the dispersion

relation (3.7) suggests that ΛB = Rn, yet one then finds∫
Rn

dnλ |λ〉〈λ| 6= 1

for all choices of C(λ). Are we missing out on some eigenmodes of the Hamiltonian?

As it turns out, no, we were just too restrictive. Since H is a Hermitian operator, its

eigenvalues Eλ have to be real numbers; yet this can also be accomplished by complex

λi, as long as the sum over all parameters is still real.

Thus, we now relax the condition of real parameters λ and introduce the weaker

condition that the amplitude of the eigenmodes (3.6) is bounded for all y. This turns out
to be possible, when we group individual parameters λi such that they have the same

real part and their imaginary part differs by exactly 1, or, in the old units, by the coupling

constant g. We will call such a configuration a “string”. Figure 3.1 illustrates the possible

strings for the 3-excitation subspace. It is evident that we increased the parameter space
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λ1 λ2 λ3 Reλ

Imλ

λ1
λ2

λ3
i

Reλ

Imλ

λ1

λ2

λ3

i

i Reλ

Imλ

Figure 3.1.

Illustration of all possible string configurations in the three excitation subspace. In the first case

we have three real rapidities, corresponding to free particles. Next, there is the configuration

with two rapidities lying symmetrically about the real axis with a distance of 1. This corresponds

to two bonded excitations. Lastly, all three rapidities share the same real value, while their

imaginary parts still differ by 1 and are arranged symmetrically around the real axis.

ΛB over just Rn. Now, summing over all the possible string configuration allows us to

prove ∫
ΛB

dnλ |λ〉〈λ| =
∑
strings

∫
dnλ |λ〉〈λ| = 1.

Thus we found the full eigenbasis.

As a final remark, the similarity of λ to the momentum k of the plane waves temps us

to give λ the same interpretation, for which we will call the λi ’s rapidities henceforth.
Since in a string solution multiple excitations share the same real part of a rapidity (i.e.,

its physical momenta) we will identify string solutions with bound states. A string with

two coupled rapidities corresponds to two bounded particles and so forth.

3.1.2 Yudson’s Approach for the Eigenmode Decomposition

The discussion in the last section brought us a step closer to our intermediate goal — to

analytically describe scattering processes in the Dicke model. We have seen that the

basis states of given excitation number decompose into strings of rapidities, which are, in

principle, known. These strings, however, impede the decomposition of an arbitrary wave

function into the eigenmodes. The number of string configurations in the N excitation

subspace equals part(N), the number of partitions of N into positive integers. For this,

the decompositions should become unfeasible for just four or more photons. As another

lucky fact, there is a way to avoid the pesky summation over string configurations.

As first shown by Yudson in 1985 [3], for spatial basis states |Ψ〉 =
∏N

i=1 b
†(xi) |0〉 ,

one can introduce an auxiliary state |λ〉A and a complex contour Γ : Rn → Cn such that

the eigenmode decomposition (3.5) no longer needs the cumbersome string summation,

but only a single contour integration along Γ. Furthermore, this fixes the normalisation
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3.1. The Dicke Model

in (3.6) to

C(λ) =
1√

N !(2π)N/2

∏
i<j

λi − λj
λi − λj + i

.

Yet, Img(Γ) 6⊂ Λ and thus one needs to analytically continue |λ〉 onto λ ∈ CN , up to a

set of simple singularities. This statement is so important that we will formally prove it

and phrase it as:

1 Theorem

Let |Ψ〉 = |x1, . . . , xN 〉 =
∏N

i=1 b
†(xi) |0〉 and, without loss of generality, let x1 ≥

· · · ≥ xk > 0 > xk+1 ≥ · · · ≥ xN . Define

|λ〉A =

√
N !

(2π)N/2

∫
dnyΘ(y1 ≥ · · · ≥ yN )

N∏
i=1

f(yi, λi)e
iλiyir†(yi, λi) |0〉 ,

Then for any complex contour Γ : γ1⊗· · ·⊗γN , γi : R → C, with Im γi+1− Im γi > 1
and Im γi < 1/2 for i ≤ k or Im γi > −1/2 for i > k,

|Ψ(t)〉 =

∫
Λ
dλe−iHt |λ〉〈λ|Ψ〉 =

∫
Γ
dλe−iEλt

A〈λ|Ψ〉|λ〉 . (3.8)

Proof First, consider t = 0 before treating the time dependent case.

1. Step For |x1, . . . , xn〉 as defined as in the theorem we have

A〈λ|x1, . . . , xN 〉 =

√
N !

(2π)N/2

N∏
i=1

f(xi.λi)e
−iλixi .,

Thus we find∫
Γ
dλ A〈λ|x1, . . . , xN 〉|λ〉 =

1

(2π)N

∫
Γ
dλ

∫
dny

∏
i<j

λi − λj + i sgn(yi − yj)

λi − λj + i

×
N∏
i=1

λi − i/2 sgn yi
λi + i/2

λi + i/2 sgnxi
λi − i/2

eiλi(yi−xi)r†(yi, λi) |0〉 .

(3.P1)

2. Step We now show that the wave function defined by (3.P1) has its support on

yi ≥ xi. For this assume y1 < x1. Since Im γi+1 − Im γi > 1 the only singularity of λ1 in

the lower half plane is the λ1+ i/2 denominator. However, since y1 < x1, this singularity
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is cancelled by the numerators, either because if x1 > 0 then λ1 + i/2 sgnx1 = λ1 + i/2
or if x1 < 0 then λ1 − i/2 sgn y1 = λ1 + i/2. Thus, we can close the γ1 contour below
such that it does not wind around any singularity and therefore, by the Residue theorem,

the integral vanishes. Consequently, the wave function has its support in the y1 ≥ x1
section.

Now consider y2 < x2. λ2 again has the singularity −i/2 in the lower half plane, but

also the singularity λ1−λ2+ i. From the previous paragraph and the current assumption

we know that y1 ≥ x1 > x2 > y2. Ergo λ1 − λ2 + i sgn(y1 − y2) = λ1 − λ2 + i and thus

cancels the singularity of the same form. Therefore, the only relevant singularity, which

remains in the lower half plane, is λ2+ i/2 and, by the same arguments as in the previous

paragraph, it is cancelled by one of the numerators. Hence, we can close the γ2 contour
below without encircling any singularity, which again leads to a support of y2 ≥ x2.
These arguments are now inductively repeated up to xk.

For xk+1 both the singularities λk+1 − i/2 and λk+1 + i/2 could be relevant, while the

singularities from the first product are cancelled yet again in the same fashion as before.

From 0 > xk+1 we find 0 > yk+1 and thus both numerators in the second product take

the right form to cancel their respective denominators. Hence, we are able to close γk+1

below and the integral vanishes by the Residue theorem. This argumentation is now

continued up to xN .

3. Step Now, complementary to step 2, we show that the support of (3.P1) lies within

the yi ≤ xi sector. Here, we start from the other end, i.e., consider yN < xN . Due to
Im γN > −1/2 and Im γi+1 − Im γi > 1 the λN part has a single singularity at λN = i/2 in
the upper half plane. But, from xN < yN we realise that one of the numerators removes

this singularity again. Thus we close γN above, find no encircled singularity, and therefore

the γN integration vanishes. Consequently, yN ≤ xN must be the non-trivial region

of the wave function. In the same manner as in the second step, the argumentation

continues for all other γi’s down to i = k + 1.

For i ≤ k we are in the same situation as in step 2, where there were two possible

singularities. However, with the assumption xi < yi these singularities again vanish due

to their corresponding numerators. Thus we can show that the λk integration yields zero

for yk > xk and this argument can be extended for all i < k, which brings us to yi ≤ xi,
as stated.

4. Step In the second step we found yi ≥ xi for the support of the wave function and

in the latest step we found yi ≤ xi. Both conditions are only met for yi = xi. Since both
variables are equal we can exchange them at will, and we will do so everywhere, but in

the exponential function. Using the ordering convention xi ≥ · · · ≥ xN and xi 6= 0 for
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all i brings us to∫
Γ
dλ A〈λ|x1, . . . , xN 〉|λ〉 =

1

(2π)N

∫
Γ
dλ

∫
dny

N∏
i=1

eiλi(yi−xi)b†(xi) |0〉 .

This is an entire function in λi and hence we are allowed to shift the contours such that

γi(t) = t. The remaining λi integration is the well known identity for the delta function

δ(xi − yi) and thus we end up in∫
Γ
dλ A〈λ|x1, . . . , xN 〉|λ〉 =

∫
dny

N∏
i=1

δ(xi−yi)b
†(xi) |0〉 =

N∏
i=1

b†(xi) |0〉 = |x1, . . . , xN 〉 .

This completes the proof for the special case t = 0 and |Ψ〉 = |x1, . . . , xN 〉 .

Final Step Now consider the general case of t ∈ R. Here

|Ψ(t)〉 = e−iHt |x1, . . . , xN 〉

=

∫
Γ
dλ e−iHt

A〈λ|x1, . . . , xN 〉|λ〉

=

∫
Γ
dλ e−iEλt

A〈λ|x1, . . . , xN 〉|λ〉 ,

which was to be proven. �

For completeness, one should have considered an atomic excitation as well. However,

there the argumentation is precisely the same, but one only needs to takes care of

the particular case of y = 0, which was not of importance here and thus shortened

our argumentation. We now continue, knowing that the more general version with an

initially excited atom still holds.

3.1.3 Green’s Function

Why did we go through so much trouble performing a two-page long proof? As it turns

out, the quantity

e−iHt |x1, . . . , xN 〉 =

∫
Γ
dλ e−iEλt

A〈λ|x1, . . . , xN 〉|λ〉

has an analytical solution, or, more precisely, can be cast into the form∫
Γ
dλ e−iEλt

A〈λ|x1, . . . , xN 〉|λ〉 ≡
∫
RN

dNy G(x− y)

N∏
i=1

b†(yi) |0〉

+

∫
RN−1

dN−1y G1(x− y)a†
N−1∏
i=1

b†(yi) |0〉 (3.9)
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of aN particle wave function, such that the Green’s functionsG andG1 is exactly known.

It is evident that (3.9) has indeed these two parts, characterised by the atomic excitation.

We only focus on the photon contribution, defined by G(x − y), since, for t → ∞,

spontaneous emission will have removed all atomic excitations, i.e., G1(x− y) → 0 for
t → ∞. A quick calculation readily verifies this. However, let us now compute G(x− y).
Inserting the exact expressions for |λ〉 and |λ〉A into (3.9) yields

G(x− y) =

∫
Γ

dNλ

(2π)N

∏
i<j

λi − λj + i sgn(yi − yj)

λi − λj + i

N∏
i=1

λi − i/2

λi + i/2
eiλi(yi−t−xi). (3.10)

This integral by itself probably refuses any analytical treatment. However, we may not

forget that G(x− y) displays a wave function. Hence, we are only interested in its fully

symmetric part. First and foremost, due to the contours from above, G(x− y) builds its
support only in the causal region yi ≤ xi + t. Next, it turns out that the wave function is

totally antisymmetric everywhere but in the region yN ≤ xN + t ≤ · · · ≤ y1 ≤ x1 + t. A
full proof of this statement appears to be too cumbersome, for which we will only show

the general idea in the special case of N = 2 and then give a physical explanation, why

this must be.

For N = 2 the symmetrised Green’s function reads

Gsym(z − y) =

∫
Γ

d2λ

(2π)2

(
λ1 − λ2 + i sgn(y1 − y2)

λ1 − λ2 + i
eiλ1(y1−z1)+iλ2(y2−z2)

+
λ1 − λ2 − i sgn(y1 − y2)

λ1 − λ2 + i
eiλ1(y2−z1)+iλ2(y1−z2)

) 2∏
i=1

λi − i/2

λi + i/2
,

where we introduced the retarded coordinate zi = xi + t. We already know that yi ≤ zi,
so that yi ≤ z1 for all i. This allows closing the γ1 contour below. Additionally, since this
is the symmetric form of G, we may assume y1 ≥ y2 without loss of generality. The last
two statements together bring us to

Gsym(z − y) =

∫
γ2

dλ2

2π

(
λ2 − i/2

λ2 + i/2
e(y1−z1)/2+iλ2(y2−z2)

+

(
1 +

i

λ2 + i/2

)
e(y2−z1)/2+iλ2(y1−z2)

)
= e(y1−z1)/2+(y2−z2)/2 + δ(y1 − z2)e

(y2−z1)/2 − e(y2−z1)/2+(y1−z2)/2

= 0.

The delta distribution vanishes due to the assumption y1, y2 < z2. We conclude that

G(z − y) is totally antisymmetric in the region y1, y2 < z2. Hence, when we limit the

discussion to the sector y1 ≥ y2, we find the support z1 ≥ y1 ≥ z2 ≥ y2.
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Figure 3.2.

Classical explanation of the support of the wave function. If the first photon is absorbed by the

emitter and stays an excitation long enough, then the second photon has to pass the emitter

without retardation. Then the first photon is measured at z2. If the first photon gets absorbed

and re-emitted before the second arrives, we again find a photon in the region z2 ≤ y1 ≤ z1.

As already said, we do not want to generalise this for multiple photons. However,

we can give a physical interpretation for why this symmetry restriction holds for any

number of incoming photons. Imagine two photons, initially at x1, x2 with x1 > x2. At
time t1 the first photon arrives at the emitter. Now the wave function consists of two

parts: firstly, both photons are still free, i.e., the first has passed the atom, and secondly,

the first photon got absorbed and the atom is excited. Apparently, for the first part of

the wave function, y1 = z1. Therefore, only the second part is non-trivial. Now, at time

t2, the second photon arrives at the emitter. If the atomic excitation has not decayed

yet, the second photon can pass the atom without interaction or induce a stimulated

emission. Either way, we definitely measure the first photon at z2 or earlier. If the second
photon arrives at an unexcited atom, then a spontaneous emission event must have

occurred, for which we trivially have z2 ≤ y1 ≤ z1. Figure 3.2 pictures these different

processes. The argument over the photon trajectories is readily generalised for multiple

photons.

We now turn back our attention towards the computation of the Green’s function. We

figured out that yN ≤ zN ≤ · · · ≤ y1 ≤ z1. What is the implication? At first, this means

that for the symmetrisation we do not need to care about all N ! permutations, but only

permutations of the reduced set S′
N ≡ {σ ∈ SN |σj ≥ j− 1}. Secondly, assume we have a

permutation for which σN = N − 1. Then

N−1∏
i=1

λi − λN + i sgn(yσi − yN−1)

λi − λN + i

differs from 1 only on a set of measure zero. On the other hand, this expression is trivially

equal to 1 for any permutation with σN = N . Continuing the argumentation for all i

allows us to exchange the first product in (3.10) with the identity. The remaining integral
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is now trivially evaluated with the Residue theorem:

G(z − y) =

∫
Γ

dNλ

(2π)N

N∏
i=1

λi − i/2

λi + i/2
eiλi(yi−zi)

=

N∏
i=1

(
δ(zi − yi) + Θ(zi − yi)

)
e−(zi−yi)/2.

Remember, this is not the fully symmetrical Green’s function and secondly, this repre-

sentation is only valid in the region yN ≤ zN ≤ · · · ≤ y1 ≤ z1. Thus, we identify

G(z, y) = Θ(yN ≤ zN ≤ · · · ≤ y1 ≤ z1)
∑
σ∈S′

N

N∏
i=1

(
δ(zi − yσi) + Θ(zi − yσi)

)
e−(zi−yσi )/2

(3.11)

as the correct Green’s function, where S′
N was the reduced set of permutations with

σj ≥ j− 1 for σ ∈ S′
N .

Let us summarise what we have achieved so far. For a general number N of initial

excitations in the system, we managed to avoid the string problem, where we needed to

sum over part(N) different configurations, by replacing the summation with an aptly

chosen contour. Then, we managed to write down the integral equation (3.10) for the

Green’s function and showed that it is totally antisymmetric for most choices of argu-

ments. This, in turn, allowed us to avoid many of the N ! possible permutations, which

enabled us to perform the last integrals and finally arrive at the exact expression (3.11).

Yet, even this representation of the Green’s function is not suitable for practical

applications. While the convolution with the Green’s function is simpler than the integral

over all strings, the — albeit reduced — set of permutations creates more terms than

feasible for most practical applications. There is a neat trick to avoid the permutations

altogether, namely, by replacing them with simple derivatives. We will show how in the

next section.

3.1.4 Generating Functional for Outgoing States

The following theorem will help us to get rid of the pesky summation over the reduced

set of permutations. We will first state it, before we demonstrate its usage in a concrete

example.
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2 Theorem

Define limz→−∞Θ(x− z) ≡ 1 and limz→−∞ δ(x− z) ≡ 0 and let S′
N = {σ ∈ SN |

σj ≥ j− 1}, then

Θ(yN ≤ zN ≤ · · · ≤ y1 ≤ z1)
∑
σ∈S′

N∏
i=1

{δ(zi − yσi)− χΘ(zi − yσi)}

= lim
zN+1→−∞

N∏
i=1

∂αi
e−χαiΘ(zi + αi − yi)Θ(yi + αi − zi+1)

∣∣∣∣
αi=0

(3.12)

almost everywhere (i.e., everywhere except on a set of measure zero).

While this theorem carries vital importance for the following parts, its proof carries

no didactical purpose whatsoever for which we shift it into Appendix A. For the proof,

one uses induction in N and utilises that S′ allows only two kinds of permutations for

the N-th index. Instead of performing these calculations here, we now rather put our

attention to some examples.

Our representation of the Dicke model’s Green’s function mainly reduces the effort

when computing output states. Yudson’s result had a summation over permutations,

which bloats every attempt of an exact treatment and, for example, makes it hard to

compute expectation values, due to the appearing double summation. We, instead,

replaced these summation with derivatives. The final result is obviously the same,

however the derivatives can always be computed last, making every intermediate step

easier than before. Furthermore, some of the zi variables in Yudson’s solution appeared

in up to three Heaviside functions, for which expressing integration boundaries becomes

tedious. In our representation, every zi variable for i ≥ 2 has two corresponding Heaviside
functions, and thus integration boundaries are trivially determined.

To further motivate our result and to give a practical intermediate result for our

forthcoming computations let us consider a Fock state in which N photons are initially

in the same wave function Ein(x). We utilise our Green’s function representation to

determine the outgoing photonic wave function Ψout(y1, . . . , yN ), which is

Ψout(y1, . . . , yn) =

∫
RN

dNz G(z − y)

N∏
i=1

Ein(zi), (3.13)

where y denotes the retarded coordinate, i.e., it is the actual spatial coordinate shifted
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by the time t. Equation (3.13) mostly consists of terms like∫ yi−1+αi−1

yi−αi

dzi e
−(zi−yi)/2Ein(zi)

=

∫ ∞

yi−αi

dzi e
−(zi−yi)/2Ein(zi)−

∫ ∞

yi−1+αi−1

dzi e
−(zi−yi)/2Ein(zi)

= eαi/2

∫ ∞

0
dzi e

−zi/2Ein(zi + yi − αi)

− e(yi−yi−1−αi−1)/2

∫ ∞

0
dzi e

−zi/2Ein(zi + yi−1 + αi−1)

≡ eαi/2
{
Eout(yi − αi)− e(yi−yi−1)/2e−(αi+αi−1)/2Eout(yi−1 + αi−1)

}
(3.14)

Here we defined Eout(y) =
∫∞
0 dz exp(−z/2)Ein(z + y), which is the key building block

of the outgoing wave function, hence the name.

Now we have enough to solve our particular problem. We insert the Green’s function

(3.12) into (3.13), plug in (3.14) for every integral and get the outgoing wave function

Ψ(y1, . . . , yN ) =∂α1 . . . ∂αN e
−(α1+···+αN )/2Eout(y1 − α1)

∣∣∣
α1=0

×
N∏
i=2

{
Eout(yi − αi)− e(yi−yi−1)/2e−(αi+αi−1)/2Eout(yi−1 + αi−1)

}∣∣∣
αi=0

.

(3.15)

Remember, due to the structure of the Green’s function, this is the outgoing wave

function in the y1 ≥ · · · ≥ yN sector. Nevertheless, it is readily extended onto RN by

symmetrisation, and we will do so later for many examples.

Multiple Scatterer

3.2

After the exhaustive discussion of the Dicke model, it is time to consider the first

generalisations to it. For this, we will add additional atoms to our Hamiltonian. Hence, it

now reads

H =
∑
ν=±

∫
dx b†ν(x)(−iν∂x)bν(x) +

M∑
i=1

cν
(
e−iνk0xibν(xi)a

†
i + eiνk0xib†ν(xi)ai

)
. (3.16)

For c− = 1 and k0xi � 1 this represents the Hamiltonian discussed in chapter 2. There,

we already discussed why we are only able to treat the single excitation subspace analyt-

ically. Here, on the other hand, we want to consider the fully chiral system, for which

we can derive the full eigenbasis of the Hamiltonian.
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3.2. Multiple Scatterer

Thus, as in the Dicke model before, we will set c− = 0, i.e., we neglect back scattering.

Therefore, we will only consider right moving photons. The absence of left moving

modes allows us to perform the unitary transformation ai 7→ e−iνk0xiai, under which the

central frequency drops out. However, the minuscule role of the central frequency does

not come as a surprise, since, without backscattering, every incoming photon passes

each atom exactly once. Therefore, relative phase shifts have to stay constant under the

evolution. All in all, the Hamiltonian becomes

H =

∫
dx b†(x)(−i∂x)b(x) +

M∑
i=1

(
b(xi)a

†
i + b†(xi)ai

)
. (3.17)

The following steps are the same as for the Dicke model. First, note that both the

eigenmodes, as well as the dispersion relation, have the same forms (3.6) and (3.7) as in

the single atom case, except for

f(y, λ) =

M∏
i=1

λ− i/2 sgn(y − xi)

λ+ i/2
.

Consequently, the eigenmodes do not span the Hilbert space for real λ and we have to

consider string solutions again. Next, we can avoid the string summation problem again

by introducing a suitable complex contour Γ and performing the λ integration alongside

it. In our current case, we are even able to pinpoint Γ such that it does not depend on

the initial state |Ψ〉 , making (3.8) exact for every arbitrary initial state [3].

It turns out that this is the most practical way of computing general scattering events.

We could, analogously to the previous section, try to derive the Green’s function of

the system. To this end, take the initial state |x1, . . . , xN 〉 with x1 ≥ · · · ≥ xN and

compute its time evolution. Similarly to before, we would end up with a (photonic)

Green’s function of the form

G(x− y) =

∫
Γ

dNλ

(2π)N

∏
i<j

λi − λj + i sgn(yi − yj)

λi − λj + i

N∏
i=1

(
λi − i/2

λi + i/2

)Mi

eiλi(yi−t−xi). (3.18)

HereMi denotes the number of atoms to the right of the position xi. From this, problems

are emerging. When we simplified the Green’s function the last time, we took advantage

of the fact that there is exactly one photon in each interval [zi+1, zi], where zi = xi + t.
This no longer holds — just imagine two incident photons arriving at a system of at

least two emitters. These photons could, in principle, be stored as atomic excitations

indefinitely. We can still solve the integrals in (3.18) for givenN . However, this procedure

becomes increasingly tedious for growing N and, for arbitrary N , it were not possible to

find a close form solution. Consequently, we will limit the oncoming discussions to the

single excitation sector.
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3. IntegrableWaveguide Models

We now derive the single photon Green’s function for M emitters. In fact, this is

the only scattering process, which we can fully understand analytically for an arbitrary

number of atoms. The discussion here would be the foundation for two and N photon

scattering, which we will, however, not cover in the coming discussions. Lastly, the

results derived here will be significant on their own, since, in the next chapter, we will

analyse approximative schemes to describe scattering processes, where we will use the

results from this section to benchmark the numerical results.

So, let us compute the Green’s function (3.18) for N = 1. For this, we need

Res

([
λ− i/2

λ+ i/2

]M
e−iλz,−i/2

)
=

1

(M − 1)!
lim

λ→−i/2

dM−1

dλM−1
(λ− i/2)Me−iλz

=
1

(M − 1)!
lim

λ→−i/2

M−1∑
m=0

(
M − 1

m

)[
dM−m−1

dλM−m−1
(λ− i/2)M

]
(−iz)me−iλz

=
1

(M − 1)!

M−1∑
m=0

(
M − 1

m

)
M !

(m+ 1)!
(−i)m+1(−iz)me−z/2

= −iL
(1)
M−1(z)e

−z/2, (3.19)

where L
(α)
M (x) is the M-th order generalised Laguerre polynomial. Now, since (λ −

i/2)/(λ+ i/2) → 1 as |λ| → ∞, we cannot close the Γ contour in (3.18) due to lacking

convergence of the integrand on the added sector. Naturally, we first need to extract

the singular part, and doing so yields

G(z) =

∫ ∞

−∞

dλ

2π

(
λ− i/2

λ+ i/2

)M

e−iλz

=

∫ ∞

−∞

dλ

2π
e−iλz +

[(
λ− i/2

λ+ i/2

)M

− 1

]
e−iλz

= δ(z) + iΘ(z)Res

{[(
λ− i/2

λ+ i/2

)M

− 1

]
e−iλz,−i/2

}
= δ(z) + Θ(z)L

(1)
M−1(z)e

−z/2. (3.20)

Here we introduced the retarded coordinate z = xi + t− yi.
The single photon greens function for multiple atoms (3.20) is quite similar to the one

for just a single atom (3.11), since it consists of a free propagation part and a non-trivial,

exponentially decaying tail. However, on this tail, an oscillation due to the Laguerre

polynomials is superimposed. Furthermore, for M = 1 we have L
(α)
0 (x) = 1, yielding

the exact result from the previous section. Figure 3.3 pictures the non-trivial parts for

different numbers of atoms M . With increasing M three effects emerge; namely, the
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3.2. Multiple Scatterer
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Figure 3.3.

Exponential tail of the single photon Green’s function. The different lines correspond to the

number n of atoms in the system. Each distribution starts with a generic delta peak at

y − x− ct = 0. From these graphs it is evident that the atoms delay the transition of the

photons, as well as broaden their distribution.

oscillations frequency close to z = 0 increases, as well as the number of oscillations,

given by the roots of the Laguerre polynomial. Lastly, the amplitude decays much slower.

39





4 Approximative

Methods

The previous two chapter showed us that we work right at the edge of what is analytically

computable. While quantum simulators posses the ability to probe the waveguide

dynamics accurately [32], we are still far from a universal quantum computer. Therefore,

for the most systems, one must employ approximative or numerical schemes to describe

the dynamics inside waveguide systems. For example, Pichler et al. [33, 34] applied

matrix product state techniques to study the influence of retardation effects in photonic

waveguides. Yet another group utilised a real-time path integral method to determine

the non-Markovian contributions of spin-boson models [35].

Even so, the aforementioned methods lack in generality. In the quest for an adaptive

framework, the realm of Quantum Optics provides good answers. As a frequently used

technique, one considers the photonic degrees of freedom as an effective thermodynamic

bath which is coupled with the waveguide emitters. One then integrates out the bath

modes and ends up with an effective description for the atoms [16, 19, 36–38]. These

methods rely on the Born-Markov approximation; basically, they neglect retardation

effects, which is assumed to be valid if the spacing of the atoms is sufficiently small

compared to the wavelength.

Which quantities can we compute under this effective approach? The quantum re-

gression theorem provides the answer. We are always able to determine equal time

correlation functions; however, unequal time correlation functions only obey the effec-

tive dynamics iff the photons and atoms do not become correlated. While the theorem

itself is rigorous, its applicability for most systems is up to debate. In principle, one

would need to analytically solve for all correlation functions of a given system to validate

the conditions of the regression theorem, in which case one would no longer need it.

Therefore, many authors just apply it without special care about the regimes in which it

does not work.
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4. Approximative Methods

Both in the Markovian and Non-Markovian regime, results based on the regression the-

orem may strongly differ from their exact form [39]. Problems emerge when considering

unequal time correlation functions of order two and higher. The purpose of this chapter

is to give an overview of regression theorem based approaches to waveguide QED. Then,

we will compare some analytical calculations with their corresponding results stemming

from these effective theories. Lastly, we will provide a short proof, which shows that the

regression theorem is not applicable for most of the chiral waveguide systems, if not all,

and conclude that these effective theories are therefore limited in their scope.

Quantum Regression Theorem and effective Hamiltonian

4.1

For the beginning, imagine a bipartite quantum system, consisting of an environment E
and system S . Suppose, at time t = 0 the density matrix %SE(0) of system and environ-

ment splits into a direct product

%SE(0) = %S(0)⊗ %E(0), (4.1)

i.e., there are no initial correlations between system and environment. Under this as-

sumption, one can prove [40] the existence of a completely positive and trace-preserving

map Λ(t) such that

%S(t) = TrE

{
e−i

∫ t
0 dt′ H%SE(0)e

i
∫ t
0 dt′ H

}
= Λ(t)[%S(0)]. (4.2)

Basically, this implies that we are able to study the dynamics of the system S without

the need to consider the entire environment E . As a consequence, we can compute

operator expectation values of system observables by the same fashion. To verify this

statement, we consider an operator of the form A = AS ⊗ 1E . It’s expectation value at

time t reads

〈A(t)〉 = TrS

[
AS TrE

{
e−i

∫ t
0 dt′ H%SE(0)e

i
∫ t
0 dt′ H

}]
= TrS

[
ASΛ(t)[%S(0)]

]
.

The quantum regression theorem now makes a statement about unequal time correla-

tion functions of order two or higher. Again, start with an initially uncorrelated system

of the form (4.1) and consider two operators A = AS ⊗ 1E and B = BS ⊗ 1E , only acting
on the system. Then

〈B(t2)A(t1)〉 = TrS

[
BS TrE

{
e−i

∫ t2
t1

dtH(AS ⊗ 1E)%SE(t1)e
i
∫ t2
t1

dtH
}]

(4.3)

Now, assume that the central part of (4.3), the operator (AS ⊗ 1E)%SE(t1), again is a

density matrix, which obeys the same positive and trace-preserving map Λ(t) as the
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4.1. Quantum RegressionTheorem and effective Hamiltonian

initial state (4.1). This is exactly the case iff %SE(t1) = %S(t1)⊗ %E(t1). Consequently, we
here assumed that under the time evolution of %SE(0) no correlations between system

and environment are built up. This is the central assumption of the quantum regression

theorem.

With this additional restriction, we find

3 Theorem (Quantum Regression Theorem [39, 41])

If %SE(t1) = %S(t1)⊗ %E(t1) for all t1 ≥ 0, Ai = AS,i ⊗ 1E and %S(t1) = Λ(t1)[%S(0)]
then

〈A2(t2)A1(t1)〉qrt = TrS
[
AS,2Λ(t2, t1)[AS,1%S(t1)]

]
.

Here the index qrt denotes, that this is the second order correlation function based on

the quantum regression theorem.

We can formulate the quantum regression theorem in terms of differential equations.

For us, this will be more convenient than the form of Theorem 3 when we later show

that the chiral waveguide systems do not meet the conditions of the regression theorem.

For this, let {Ei} be a set of operators onto the system S and assume their expectation

values obey

∂t〈Ei(t)〉 =
∑
j

Gij(t)〈Ej〉, (4.4)

then

∂τ 〈Ei(t+ τ)Ek(t)〉 =
∑
j

Gij(τ)〈Ej(t)Ek(t)〉, (4.5)

i.e., the second order correlation functions are described by the same set of equations as

the first order correlation functions.

Now that we have stated the regression theorem, let us put it to use. As explained above,

we want to derive an effective method to describe the emitter dynamic for Hamiltonian

systems in the form of (1.11). A detailed description is given in Ref. [36] and [37]; we

will just state the necessary steps. First, one solves the Heisenberg equations for the

photonic operators, i.e., formally integrate

∂tbν(x, t) = i[H, bν(x, t)].

Next, one does the same for the atomic operators ai. There, retarded atomic operators

ai(t− |xi − xj|) emerge, for which we employ the Markov approximation

ai(t− |xi − xj|) ≈ ai(t)e
ik0|xi−xj|. (4.6)

This in turn, allows one to define the effective Hamiltonian

Heff = Hat −
i

2

∑
i,j

a†i aje
ik0|xi−xj| (4.7)
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4. Approximative Methods

for the emitters. Notice, the fully chiral case restricts the latter sum to i ≥ j.

At this point, the quantum regression theorem comes into play for the first time.

Quantities like 〈ai(t)aj(t)〉 can be computed exactly (in the Markov sense) by the effective

Hamiltonian (4.7). However, unequal time correlators like 〈ai(t2)aj(t1)〉 are only exact

under evolution with Heff, if the quantum regression theorem applies. However, these

unequal time correlators are of great importance, since they enable us to compute the

Green’s function

G(t1, . . . , tN , t′1, . . . , t
′
N ) ≡ 〈0| b+(xM , t1) . . . b+(xM , tN )b†+(x1, t

′
1) . . . b

†
+(x1, t

′
N ) |0〉 ,

(4.8)

where x1 and xM are the coordinates of the left- and rightmost atoms, respectively.

Notice, for τ > 0 we have b(xM , t) = b(xM + τ, t+ τ) and b(x1, t) = b(x1 − τ, t− τ), due
to the free propagation of the photons in the regions x > xM and x < x1. By this, we

can rewrite (4.8) in the conventional form

G(y1, . . . , yN , y′1, . . . , y
′
N ) ≡ 〈0| b+(y1, t2) . . . b+(yN , t2)b

†
+(y

′
1, t1) . . . b

†
+(y

′
N , t1) |0〉

=
〈
y1 . . . yN

∣∣U(t2, t1)
∣∣y′1 . . . y′N〉 , (4.9)

with yi ≥ xM and y′i ≤ x1.

In the effective dynamic, mediated by the effective Hamiltonian (4.7), we only have

access to the atomic operators ai. However, the photonic creation and annihilation

operators are related to the atomic ones by the relation

bν(x, t) = bν(x− νt)− i

M∑
i=1

Θ(ν(x− xi))ai(t− ν(x− xi))

≈ bν(x− νt)− i

M∑
i=1

Θ(ν(x− xi))ai(t)e
iνk0(x−xi) (4.10)

for x > xM as shown by Caneva et al. [37]. Through this replacement formula and

the quantum regression theorem, we can eliminate the photonic operators from Equa-

tion (4.8) and get the important result

G+
qrt(t1, . . . , tN , t′1, . . . , t

′
N ) =T 〈0| a(t1) . . . a(tN )a†(t′1) . . . a

†(t′N ) |0〉

+O
( [

b+(xM − ti), b
†
+(x1 − t′j)

] )
. (4.11)

where we introduced the time ordering operator T and defined the collective operator

a(t) =

M∑
i=1

ai(t)e
iνk0(x−xi).
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4.2. Comparison with Exact Results

The index qrt again stems from the fact that we perform each time propagation in

Equation (4.11) with the effective time evolution operator exp(−iHefft). We emphasise,

this is exact only if no correlations between the photons and atoms are created under the

full time evolution. Obviously, there are terms, which stem from the [bν(xM , ti), b
†
ν(x1, t

′
j)]

commutator. However, for compactness, we did not explicitly write them down here,

but we will keep them in later examples.

Comparison with Exact Results

4.2

The result (4.11) provides a method for exact computations, while it also enables to

perform efficient and exact numerics — within the realm of the Markov approximation

and the applicability of the regression theorem. For example, if we consider an initial

state of N excitations, the total dimension of all relevant sectors in the atomic Hilbert

space is
N∑
n=1

(
M

n

)
,

whereM is the number of atoms. This grows as O(MN ), allowing us to deal with a few

hundred atoms in the single excitation sector.

No matter how nice this may seem, we first need to benchmark results based on (4.11)

against exact computations, since it is already known, that results based on the regression

theorem can wildly vary from their exact counterparts [39]. Nevertheless, for the Dicke

model, Cirac et al. [36] proved that the results obtained by Equation (4.11) equal the

exact results we obtained in Section 3.1. Therefore, we turn our attention to the next

more complicated model, the one with multiple scatterers, discussed in Section 3.2.

We start in the single photon case but consider an arbitrary number of atoms M .

Assume that at time t = 0 the photon arrives at x = x1, the first atom. We compute

the transition amplitude to find the photon after a time t at x = xM , right after the last

atom. This equals the Green’s function (3.20) for z = x1 + t− xM . Now, let us perform

the computation under the approximations mentioned above. We start with the Green’s

function (4.8) and use the identity (4.10)

Gqrt(t) =
〈
0
∣∣∣b+(xM , t)b†+(x1)

∣∣∣0〉
=
〈
0
∣∣∣ (b+(xM − t)− ia(t)) b†+(x1)

∣∣∣0〉
= δ(z)− i

〈
0
∣∣∣a(t)(b†+(xM , xM − x1) + ia†(xM − x1︸ ︷︷ ︸

≡t′

)
)∣∣∣0〉

= δ(z) + T
〈
0
∣∣∣a(t)a†(t′)∣∣∣0〉 . (4.12)
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4. Approximative Methods

Here, we used relation (4.10) twice, first to express the outgoing photon operator by the

atomic operators and then to map the incoming photon onto the outgoing operators.

For t < xM − x1 it is clear that the photon cannot have left the atomic system for

which a(t) trivially commutes with the operator to the right, while for t > xM − x1
the introduced creation operator b†+(xM , xM − x1) commutes with a(t) [37]. Lastly, we
defined t′ = xM − x1 to shorten the notation.

4.2.1 Superradiance in the Non-Chiral System

Our first example will be the scattering of a single photon at M non-chiral atoms. Since

we mainly take an interest in how this compares to the results we found in Chapter 2,

we initially consider k0xi ≈ 0 for all i. With this, we compute the single photon Green’s

function (4.12)∑
ij

〈0| ai(t)a†j (t
′) |0〉 =

∑
ij

〈0| aie−iHeff(t−t′)a†j |0〉

=

∞∑
n=0

(−(t− t′))n

n!

∑
ij

〈0| ai

(∑
kl

a†kal

)n

a†j |0〉

=
∞∑
n=0

(−(t− t′))n

n!

∑
ij

 n∏
m=1

∑
kmlm

 〈0| (aia†k1)(al1a
†
k2
) . . . (alna

†
j ) |0〉

=

∞∑
n=0

(−(t− t′))n

n!

∑
ij

 n∏
m=1

∑
kmlm

 〈0| (a†k1ai + δi,k1) . . . (a
†
j aln + δln,j) |0〉

= M

∞∑
n=0

(−M(t− t′))n

n

= M exp
(
−M(t− t′)

)
. (4.13)

Remembering that z = xM + t − x1 = t − t′ we find exactly the superradiance effect

discussed in Chapter 2, giving hope that the approximative schemes from the Markov

approach fit the theory quite well. However, as we have seen with the earlier result (2.12),

the exact Green’s function in the k0xi ≈ 0 limit still depends on the atomic position due

to the photon field, while the upper result under the same approximation is independent

of xi.
For this fact, let us have a closer look at the underlying non-chiral dynamics mediated

by the effective Hamiltonian (4.7). Other than in the exact calculations we can even

compute the Green’s function for k0xi 6= 0. This task will still be a little cumbersome,

so we again restrict us to just two emitters, which, also allows us to better compare the

result with the previous one (2.12). For the non-trivial part of the Green’s function, we

find
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4.2. Comparison with Exact Results

Gqrt(z)− δ(z) = 〈0|
∑
ij

ai(t)a
†
j (t

′)eik0x0(i−j) |0〉

= 〈0|
∑
ij

aie
−iHeffza†j e

ik0x0(i−j) |0〉

=
∞∑
n=0

(−z/2)n

n!

∑
ij

eik0x0(i−j) 〈0| ai
(
a†−1a−1 + eik0x0(a†−1a1 + a†1a−1) + a†1a1

)n
a†j |0〉

≡
∞∑
n=0

(−z/2)n

n!

∑
ij

eik0x0(i−j)P
(n)
ij . (4.14)

We used xi ≡ x0 · i, i ∈ {±1}. Thus, to determine the Green’s function for this two atom

model, we need to find an exact representation for the series of matrices Pn
ij . The next

two Lemmas will help us with this.

1 Lemma

P
(n)
i,j has the recurrence relation

P
(n)
i,j = P

(n−1)
i,−j eik0x0 + P

(n−1)
i,j

with the initial value P 0
i,j = δi,j.

Proof

P
(n)
i,j = 〈0| ai

(
a†−1a−1 + a†−1a1e

ik0x0 + a†1a−1e
ik0x0 + a†1a1

)n
a†j |0〉

= 〈0| ai
(
a†−1a−1 + a†−1a1e

ik0x0 + a†1a−1e
ik0x0 + a†1a1

)n−1
(a†−je

ik0x0 + a†j ) |0〉

= P
(n−1)
i,−j eik0x0 + P

(n−1)
i,j .

For n = 0 we have 〈0| aia†j |0〉 = 〈0| (a†j ai + δi,j) |0〉 = δi,j, by invoking the spin-1/2
algebra of the atomic operators. �

2 Lemma

The closed-form representation of P
(n)
i,j reads

P
(n)
i,j =

n∑
m=0

(
n

m

)
eik0x0mδi,(−j)m ,

where (−j)k = j for k even and (−j)k = −j for an odd k.
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Proof We will prove by induction. Notice that the induction start was already done in

Lemma 1. Now, assuming Lemma 2 holds for one n we have

P
(n+1)
i,j

Lem.1
= P

(n)
i,−je

ik0x0 + P
(n)
i,j

=

n∑
m=0

(
n

m

)
eik0x0(m+1)δi,(−j)m+1 +

n∑
m=0

(
n

m

)
eik0x0mδi,(−j)m

=
n+1∑
m=1

(
n

m− 1

)
eik0x0mδi,(−j)m +

n∑
m=0

(
n

m

)
eik0x0mδi,(−j)m

= eik0x0(n+1)δi,(−j)n+1 + δi,j +
n∑

m=1

[(
n

m− 1

)
+

(
n

m

)]
eik0x0mδi,(−j)m

= eik0x0(n+1)δi,(−j)n+1 + δi,j +

n∑
m=1

(
n+ 1

m

)
eik0x0mδi,(−j)m

=
n+1∑
m=0

(
n+ 1

m

)
eik0x0mδi,(−j)m .

This concludes the proof. �

Now we are left to evaluate the Green’s function Gqrt(z) by the expression (4.14).

We perform the i, j summation and first treat the two cases of i = j. Here we have

δi,(−j)m = (1 + (−1)m)/2, which brings us to

1

2

∞∑
n=1

(−z)n

n!

n∑
m=0

(
n

m

)
eik0x0m(1 + (−1)m) =

1

2

∞∑
n=0

(−z)n

n!

[
(1 + eik0x0)n + (1− eik0x0)n

]
=

1

2

[
e−z(1+eik0x0 ) + e−z(1−eik0x0 )

]
. (4.15)

Equivalently, we find for the i 6= j part

1

2

∞∑
n=1

(−z)n

n!

n∑
m=0

(
n

m

)
eik0x0m(1− (−1)m) =

1

2

[
e−z(1+eik0x0 ) − e−z(1−eik0x0 )

]
. (4.16)

Together, this yields the Green’s function

Gqrt(z) = δ(z) + (1 + cos k0x0)e
−z(1+eik0x0 ) + (1− cos k0x0)e

−z(1−eik0x0 ). (4.17)

The result (4.17) allows us to compare the approximative method with the analytical

results (2.12) from Chapter 2. Firstly, we notice that in the regression theorem based

scheme the Green’s function Gqrt(z) splits into two parts, namely the one with the
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4.2. Comparison with Exact Results

1+ cos k0x0 coefficient and the one with 1− cos k0x0 in front. The latter vanishes in the

limit x0 → 0, in which we discussed all results. Therefore we link it to the Lmode part of

the Hamiltonian and drop it in the further discussion. Thus, at x0 → 0, we end up with

Gqrt(z) = δ(z) + 2e−2z,

which makes it identical in behaviour to our previous result (2.12), as we have already

discussed at the beginning of this section.

Therefore, we now want to discuss x0 � 1, but with x0 6= 0. This is the part where the
two results start to drift apart. Most noticeably, splitting the eik0x0 term in the exponent

into its real and complex part yields a decay rate of 1 + cos k0x0 and an oscillation

frequency of sin k0x0 . k0x0. Hence, the decay rate in the numerical approximation

is at most 2, but always bounded from above, while, in the exact results, the decay

rate decreases from much larger values to its exact limit of 2. Next, we always have

a finite oscillation frequency in the approximative approach, no matter how small x0
becomes, which distinguishes itself the most from our exact result, where oscillations

are suppressed by symmetry.

4.2.2 The fully Chiral Case

Now, after we have discussed the non-chiral case, let us investigate a system ofM non-

chiral emitter. Surprisingly, even though this system is obviously more restrictive, its

discussion is far more complicated. Furthermore, here we will see the regression theorem

based approach fails at large scales. As previously discussed, if the regression theorem

applies to these systems, we may evolve (4.12) with the effective Hamiltonian (4.7). Now,

remember, we had

a(t) =

M∑
i=1

ai(t)

in the chiral case. Thus, we determine the expectation value in (4.12) to∑
ij

〈0| ai(t)a†j (t
′) |0〉 =

∑
ij

〈0| aie−iHeffza†j |0〉

=
∞∑
n=0

(−z/2)n

n!

∑
ij

〈0| ai

∑
k≥m

a†
k
am

n

a†j |0〉

≡
∞∑
n=0

(−z/2)n

n!

∑
ij

P
(n)
i,j , (4.18)

where we used the earlier defined z = xM + t− x1 = t− t′. Similarly to Equation (4.14),

we introduced the matrix P
(n)
ij . However, it differs from this previous definition since

the (k,m)-summation here is restricted to k ≥ m.
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4. Approximative Methods

Apparently, the first hurdle will be the computation of the expectation value

P
(n)
i,j = 〈0| ai

∑
k≥m

a†
k
am

n

a†j |0〉 . (4.19)

First and foremost, P
(n)
i,j = 0 for i < j, since the action of the Hamiltonian transports

atomic excitations only towards xM , i.e., in increasing directions in the indices. Addition-

ally, P
(n)
i,j does not depend on i and j independently, but only on ∆ ≡ i− j. This again

is due to the chirality; since the Hamiltonian does not contain terms which can bring

an excitation from the positive to the negative side in position space, it is completely

irrelevant if there is any atom in front of the i-th or behind the j-th one. The only atoms,

which contribute to the dynamics, are therefore the ones in between the j-th and i-th.

We thus rewrite ∑
ij

P
(n)
i,j =

M∑
∆=0

(M −∆)Pn,∆, (4.20)

where (M −∆) is the number of different (i, j) configurations with ∆ = i− j.

Now, we need to think up ways to evaluate Pn,∆. For this, we recast the problem

onto a path counting problem, which will turn out to be both an elegant and practical

abstraction of the initial problem. Imagine a state like∑
m

a†
k
ama†j |0〉 =

∑
m

δmja
†
k
|0〉 = a†

k
|0〉 .

We can say that, under the action of the operator
∑

m a†
k
am, the excitation jumped from

a†j |0〉 to a†
k
|0〉 . In (4.19) there are n such jump operators. Since we sum over all possible

outcomes of these jumps we are actually counting the number of paths from a†j |0〉 to
a†i |0〉 within n steps and without dropping in “height”.

We illustrated the path counting problem in Figure 4.1. Here, every orange line pictures

a possible segment of one of the overall paths. From this graphical representation, the

useful recurrence relation

Pn,∆ =

∆∑
∆′=0

Pn−1,∆′ (4.21)

immediately follows, which is readily proven by the exact expression (4.19). In a second

we will argue how Pn,∆ has to look like and then prove this claim by showing that it

obeys (4.21).

Notice, within each jump, j may change by any number between 0 and ∆, which

presents the major hurdle for this problem. If j may only increase by 1 per layer, then
the problem is trivial: We need to distribute∆ climbing events in n total events, yielding

P̃n,∆ =

(
n

∆

)
.
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Pn,∆ =

j

i

. . .

n layers

=

i

. . .

n− 1 layers

i

. . .

n− 1 layers

j

i

+ · · ·+

Figure 4.1.

Illustration of the path counting problem. For Pn,∆ we need to count every path connecting j

to i, which never drops in height, here marked in violet. Furthermore, the idea behind the

recurrence relation (4.21) immediately follows just from visual inspection: all paths from j to i

through n layers can be put together by cutting off the first layer and considering every

contribution by its own.

Here, the tilde indicates that we are only allowing paths which climb at most one lattice

site at a time.

Yet, our graphs may climb multiple lattice sites per step. However, we can imagine the

processes in which an excitation jumps over m atomic positions as m single jumps after

introducingm− 1 additional, virtual layers. For a general network with n intermediate

layers and a height of ∆ we consequently need to introduce ∆ − 1 hidden layers to

flatten out the paths. This is illustrated for the example n = 1 and ∆ = 2 in Figure 4.2.

If this claim is valid, we have

Pn,∆ = P̃n+∆,∆ =

(
n+∆

∆

)
. (4.22)

Notice, at P̃ we wrote n+∆ instead of n+∆− 1, since, per definition, P̃ also counts

the final layer, whereas Pn,∆ only considered the n inner layers.

The hypothesis (4.22) still has to be proven. For this, just verify that it solves the

recurrence relation (4.21). Since this is a linear equation, we are free to rescale any

solution with an arbitrary multiplier. However, we can readily verify that (4.22) already

yields the correct boundary values P0,∆ = 1. Thus, we have found the proper solution to

Equation (4.21).

Next, we need to compute the expectation value
∑

ij P
(n)
i,j from (4.20). A quick evalua-

51



4. Approximative Methods

=

Figure 4.2.

The introduction of hidden layers allows us to fix the jump height to 1. Here we pictured the

example n = 1 and ∆ = 2 and marked all allowed paths in the original problem and after the

introduction of one hidden layer, marked by empty circles. Both path problems have a matching

number of solutions, however, just from this graphical representation, it is not obviously true

that this holds for all pairs (n,∆).

tion with Mathematica reveals∑
ij

P
(n)
i,j =

(
M + n+ 1

M − 1

)
. (4.23)

Finally, we are able to calculate the non-trivial part (4.13) of the Green’s function (4.12).

The solution takes the form of the hypergeometric function of the first kind, which again,

can be expressed as a generalized Laguerre polynomial times an exponential function

Gqrt(z) = δ(z) + Θ(z)L
(2)
M−1(z/2)e

−z/2. (4.24)

This result, obtained through the Markov approximation and the application of the

quantum regression theorem looks tolerably close to the exact result (3.20). However, it

fails at two points. Firstly, the parameter α of the generalized polynomial happens to be 2
instead of the correct α = 1. Next and more importantly, the argument of the Laguerre

polynomial scales with a factor of 1/2, making the Green’s function decaying too fast

compared to the exact results. Only forM = 1, where L
(α)
0 (z) = 1 is both independent

of α and z the regression theorem yields the correct result, as already proven in full

generality by Shi et al. [36]. Otherwise, both solutions differ qualitatively quite a lot, as

Figure 4.3 reveals.

Invalidity of the Regression Hypothesis

4.3

Lastly, we show in full generality that the regression theorem does not apply to generic

chiral waveguide systems. For this purpose, we use the differential form (4.5) and show

that such a decomposition is generally not possible. We want to restrict the proof to
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Figure 4.3.

Exact Green’s function (3.20) versus the approximative Green’s function (4.24) for different

number of atoms. The approximative results have much larger amplitudes for small values z,
while they decay faster for increasing z.

quantities of physical interests to us, i.e., we will only study photonic Green’s functions

G(τ) = 〈0| b+(xM )eiHτ b†+(x1) |0〉 . (4.25)

In fact, we computed this quantity both for the chiral and non-chiral case in the last

section and thus, in principle, disproved the applicability of the regression theorem for

all cases. Yet, the upcoming general treatment will directly reveal the underlying problem

that prohibits the use of the regression theorem.

The Green’s function (4.25) obviously vanishes for τ < xM − x1, and thus we con-

sider only τ > xM − x1. We demand a strict inequality to avoid pesky, but otherwise

unimportant boundary terms. Now, start to evaluate Equation (4.5) for the choice of

operators (4.25)

∂τ 〈0| b+(xM , τ)b†+(x1) |0〉 = ∂τ 〈0|

(
b+(xM − τ)− i

M∑
i=1

ai(τ − xM + xi)

)
b†+(x1) |0〉

= −i

M∑
i=1

∂τ 〈0| ai(τ − xM + xi)b
†
+(x1) |0〉 . (4.26)

Here, we used the relation (4.10) to express the time evolved photonic annihilation

operator by a time-independent one and atomic operators. Since τ > xM − x1 we can
just commute the remaining photonic operators. Next, we need the identity

ȧi(t) = −i
∑
ν=±

bν(t− νxi)−
M∑
j=1

aj(t− |xi − xj|), (4.27)

derived in [37].
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4. Approximative Methods

This relation allows us to perform the time derivative in (4.26). Notice, the emerging

photonic terms trivially vanish, due to the restriction τ > xM − x1 and since the b†+ and

b− operators commute anyway. We end up with

∂τ 〈0| b+(xM , τ)b†+(x1) |0〉 = i
∑
ij

〈0| aj(τ − xM + xi − |xi − xj|)b†+(x1) |0〉 . (4.28)

Next, we again use Equation (4.10) to get

b†+(x1) = b†+(xM , xM − x1)− i

M∑
m=1

a†m(xm − x1). (4.29)

Combining the last two equations finally yields

∂τ 〈0| b+(xM , τ)b†+(x1) |0〉 =
∑
ijm

〈0| aj(τ − xM + xi − |xi − xj|)a†m(xm − x1) |0〉 . (4.30)

In contrary to Equation (4.5), we did not find a relation of the form 〈0| aj(τ)a†m |0〉 .
However, we now see the reasons why the regression theorem does not apply.

By employing the Markov approximation (4.6) we find

∂τ 〈0| b+(xM , τ)b†+(x1) |0〉 =
∑
jm

Gjm 〈0| aj(τ)a†m |0〉 , (4.31)

where we defined

Gjm =
M∑
i=1

exp
(
− ik0

[
xM − x1 − xi + xm + |xi − xj|

])
. (4.32)

Surprisingly, after using the Markov approximation, the quantum regression theorem

starts to apply. Therefore, the only reason why we failed in the first place, was due to the

missing the retardation effects. These are the sole cause of the correlations between the

spins and the photon bath. Neglecting retardations thus removes a large part of possible

physical effects.
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5 Multiple Photon

Interactions

So far, we primarily studied single photon processes. However, themost intriguing effects

emerge when investigating the effective interaction between photons, mediated by the

emitters in a chiral waveguide system. We need to understand these multiphoton effects,

for they give rise to novel phenomena, like pure quantum information by light [42]. This

chapter will solely deal with those correlated photons in the few particle limit. To be

precise, we will consider the scattering of two and three photons at a single atom.

We need to quantify the interaction between the photons. For this, we will rely on

the N -th order correlation functions, which indicate whether the photons tend to “stick

together”. Furthermore, as discussed in Chapter 3, we can classify the eigenmodes of

the Hamiltonian into free states and n-particle bound states. Thus, we can project the

incoming and outgoing wave packets onto these subspaces, which gives a direct measure

of how tightly the photons are bonded. Most intriguingly, we will find that for the Dicke

model, those bound states have a universal form, where only the centre of mass degree

of freedom is influenced by the initial conditions.

Before we now start with the derivations of all of these quantities, let us agree upon

a physical picture. Imagine a photon source which spawns coherent photon pulses in

the few photon regime. Then, at some later time, the pulse arrives at the superatom and

the photons within the pulse interact. In the end, the photons are measured behind

the emitter setup. Incidents, in which we measure N photons are then linked to the

N -particle wave function. For a complete lossless dynamic this assumption is justified.
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Figure 5.1.

Outgoing wave function for an initial Gaussian pulse of width σ in centre-of-mass and relative

coordinates. For small widths σ the pulse shape gets quite distorted and the wave function

amplitude peaks for ξ 6= 0, since the initial wave packet is so small that absorption with

subsequent stimulated emission is unlikely. The bigger the wave packet, the likelier stimulated

emission becomes, bringing the photons closely together. This is captured by the fact that the

width of the outgoing wave packet in ξ direction is roughly independent from the width of the

initial wave packet.

58



5.1. Two-Photon Scattering

Two-Photon Scattering

5.1

Our work towards understanding multiphoton effects will start with the scattering of

two photons by a single emitter. On the one hand, we need to understand the two

excitation sector before we start discussing more complex systems. The methods and

conclusions derived here will follow us throughout the rest of this chapter. On the other

hand, the following discussions are meaningful by themselves since even the two-photon

interaction is not a trivial phenomenon.

In Chapter 3, we have derived a general solution for the scattering problem of suchwave

functions. While we are able to perform every computation analytically, the outgoing

wave function, derived with the generating functional (3.15), contains too many terms

to reasonably discuss them. Thus, we shift the solution for the exact outgoing wave

function into the Appendix B. Keep in mind that every result in this chapter stems from

the analytical results (B.1).

For the beginning let us discuss the wave function itself. Figure 5.1 displays the

outgoing wave functions of the scattered Gaussian wave packet for different widths in

centre-of-mass and relative coordinates, i.e.,

R =
x+ y

2
,

ξ =
x− y

2
,

respectively. Most noticeably, for small widths, the wave packet gets ripped apart.

Classically this is explained by the short interaction time: only instances after the first

photon is converted into an atomic excitation the second photon already has passed

the atom, making stimulated emission impossible and the excitation must decay by

spontaneous emission. This explains the exponential tail of the first graph in Figure 5.1.

For larger wave packets there is enough time for stimulated emission. Thus the two-

particle wave function mostly keeps its form and stays bonded in the direction of ξ.

By going to even wider wave packets, we find that the form of the outgoing wave

function in the direction of the relative coordinate stops to depend on σ. We will

later derive in full generality that for N incoming photons the N-particle bound state

possesses a universal form in all coordinates, but the centre-of-mass coordinate. The

centre-of-mass contribution on the other hand, depends on the initial wave function. We

will prove this statement in the last section, after first discussing three-photon scattering.

Here, we just want to motivate this result with some examples. Consider the test wave
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Figure 5.2.

The ξ-dependant part of different wave function at R = 0. Around the central peak, the relative

part follows a e−|ξ|-like distribution. Curves are for σ = 20 and, for ΨFlat, we set the parameter

s = 1.

functions

ΨG(x) = e−x2/(2σ2),

ΨL(x) =
1

(x/σ)2 + 1
,

ΨRect(x) = rect(x/σ),

ΨFlat(x) = erf(s(x+ σ/2))− erf(s(x− σ/2)).

We dropped the normalisation for every test function, since we will rescale the results

for better comparison anyway. Here, rect(x) = Θ(x + σ/2) − Θ(x − σ/2) denotes the
rectangular function.

From all of these test functions, we construct a two-particle product wave function

and then compute the outgoing wave function according to Equation (3.15). In Figure 5.2

we compare the different outgoing wave functions along the line R = 0. For better
comparison, we rescaled all maxima to 1. Apparently, all functions have a generic

behaviour around ξ = 0. For larger values of ξ, the functions seem to drift apart;

especiallyΨRect andΨFlat dropmuch faster to 0 than the initially Lorentzian and Gaussian
shaped wave functions. This behaviour, however, is due to the sharp cut off both

functions have at x = ±σ/2. This cut off goes to∞ for increasing values of σ. Thus we
recover the universal dynamic in ξ even for these wave functions.
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Figure 5.3.

Second order correlation function for a scattered Gaussian wave packet of two photons. For

small widths σ of the initial wave function, we find that both photons leave the system

uncorrelated. We find the largest correlations when one photon leaves the emitter system with

some minor retardation effect,s while the other one remains in an atomic excitation state

indefinitely. For growing widths, the spatial correlations between the photon increase and at

σ ≈ 5 one finds both photons close together most of the times.

Finally, let us discuss the g(2) correlation function for the stated scattering problem,

which we define as

g(2)(t, τ) ≡ 〈Ψ0| b†(x, t)b†(x, t+ τ)b(x, t+ τ)b(x, t) |Ψ0〉
〈Ψ0|b†(x, t)b(x, t)|Ψ0〉〈Ψ0|b†(x, t+ τ)b(x, t+ τ)|Ψ0〉

, (5.1)

where Ψ0 labels the incoming wave function. Now, imagine a physical setup where the

Photon detector is so far from the emitter system, that we may assume that every atomic

excitation has decayed before the first photon arrives at the detector. Thenwe can replace

e−iHt |Ψ0〉 by |Ψout〉 , the outgoing photonic wave function, which we showed before.
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5. Multiple Photon Interactions

Since we are now dealing with free moving photons, we may use b(x, τ) = b(x−τ) ≡ b(y).
Altogether we redefine the correlation function as

g(2)(x, y) =
〈Ψout| b†(x)b†(y)b(y)b(x) |Ψout〉

〈Ψout|b†(x)b(x)|Ψout〉〈Ψout|b†(y)b(y)|Ψout〉
. (5.2)

We picture the correlation function in Figure 5.3. Here we find that for small widths σ
both photons leave the emitter system uncorrelated, but with some delay. By increasing

the wave function’s width, the photons have enough time to interact and leave the

emitter together via stimulated emission, thus increasing the amplitude of g(2) along
the x = y line. Alongside this line, the amplitude starts to dominate at around σ = 1,
i.e., when the width of the wave packet becomes comparable to the mean storage time.

Everything we discussed here goes hand in hand with the previous discussion about

outgoing photonic wave function. Thus the g(2) function just gave us a new way to look

at the correlation effects.

Three-Photon Scattering

5.2

Now, we turn our attention towards three-photon scattering. Genuine three photon

bound states are intrinsically hard to construct and our calculations will show, that a

Dicke-like system can in principle build correlations between three photons. Following

the example of the last section, we compute the outgoing wave function for a Gaussian

wavepacket of three photons. For the explicit solution see Appendix (B.2). The following

paragraphs will analyse this scattered three-photon state under variation of the initial

width.

Let us start by investigating the wave function itself. We are dealing with three photons

now, for which we cannot simply display the wave function as above. However, since we

are mainly interested in correlation effects between the photon positions, we transform

into Jacobi coordinates

ξ =
x− y

2
,

η =
x+ y

2
− z,

R =
x+ y + z

3
.

Here ξ and η resemble generalised relative coordinates, while R is the centre-of-mass

coordinate. For the forthcoming discussions, we usually set R = 0 and display the wave

functions dependence on ξ and η along this slice through space. For example, we plotted

the outgoing wave function for different initial widths σ in Figure 5.4.

62



5.2. Three-Photon Scattering

−0.4

0
0.4

−0.4

0

0.4

0

50

σ = 0.1

ξ

η

−1.5

0
1.5

−1.5

0

1.5

0

0.5

σ = 0.5

ξ

η

−1.5

0
1.5

−1.5

0

1.5

0
0.2
0.4

σ = 1

ξ

η

−8

0

8

−8

0

8

0

2

4
·10−3

σ = 10

ξ

η

Ψ2
out(R = 0, ξ, η)

Figure 5.4.

Relative part of the three photon wave function at R = 0. For small widths, the relative part

obeys a Gaussian form, and it is only weekly distorted by the interaction with the atoms. For

wider wave packets, three symmetry lines emerge. These are along x = y, x = z and y = z,
corresponding to two bound photons. For even wider initial photon distributions the symmetry

becomes sixfold. Lastly, the central peak emerging here converges to some fixed form. We will

later identify it with a three photon bound state.

Roughly speaking, the relative part of the outgoing wave function takes three different

forms depending upon the initial width σ. For σ � 1 it approximatively equals a Gaussian

and is comparatively similar to the relative part of the incoming wave function. When

the width becomes comparable to the decay rate (i.e., σ ≈ 1), a three-fold rotational

symmetry emerges along the lines x = y, x = z and y = z, indicating that two photons
enter a bound state. However, in this regime, the wave function strongly depends upon

the position of the third photon. It decays much faster in the direction, where the third

photon is in front of the two-photon bound state. This dependence on the third photon’s

position is the reason for the three-fold symmetry.
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Figure 5.5.

The connected g̃(3) function in relative coordinates at R = 0 for different initial widths σ. For
small widths the g(2) contributions cancel most of the pure g(3) parts and only some non-trivial

features remain. With increasing width this cancellation first becomes more omnipresent, before

at large values the two body correlations g(2) starts to dominate, such that g̃(3) becomes negative,

revealing some non-trivial three photon correlations. The sharp drops in the σ = 1 figure stem
from finite numerical floating point precision. Fixing this issue is possible by increasing the

numerical precision. Yet, this makes the computations unnecessarily time expensive.

Lastly, for much larger widths σ the outgoing wave function converges to a six-fold

rotational symmetric one; indicating that the position of the third photon becomes

independent of the position of the two photon-bound state. Just compare this with the

flanks of the last wave function in Figure 5.4. Furthermore, for increasing σ the outgoing

wave function develops a central peak of constant width, which converges to some fixed

function. We will later see that this peak again has a universal form and stems from the

three-photon bound state contribution.

Similarly to the last section, we now want to perform the discussions via correlation
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5.3. Universal Bound State Dynamics in the Dicke Model

functions. To begin with, we define the three body correlation function similarly to g(2)

as

g(3)(x, y, z) ≡ 〈Ψout| b†(x)b†(y)b†(z)b(z)b(y)b(x) |Ψout〉
〈Ψout|b†(x)b(x)|Ψout〉〈Ψout|b†(y)b(y)|Ψout〉〈Ψout|b†(z)b(z)|Ψout〉

. (5.3)

As we have previously noted, the wave functions appears to show features we can explain

by two-particle bound states. These, however, will also yield a contribution to g3. Thus,
we introduce the connected correlation function

g̃(3)(x, y, z) ≡ 2 + g(3)(x, y, z)−
(
g(2)(x, y) + g(2)(x, z) + g(2)(y, z)

)
, (5.4)

as in reference [43]. This quantity truly resembles genuine three-body correlations, by

subtracting the possible two-body correlations from the total three-body correlation

function.

We have no other option than to numerically evaluate this modified three-body corre-

lation function, which, however, is no major hurdle due to the exact wave function (B.2).

The numerical computation yields the results as presented in Figure 5.5. The exact form

of g̃(3) appears to be highly involved, yet we can read off some general features. For the

beginning, for small σ, notice that the two body contributions seem to cancel the three

body effects, except on some small regions. Especially the central peak starts to vanish,

indicating that the two-body and three-body effects roughly equal at x = y = z. For
σ = 1 the cancellation becomes nearly exact everywhere. The dips in the σ = 1 figure
have numerical nature and stem from the finite numerical precision. They should just

be ignored. Increasing σ even further results in the two-body effects overtaking, for

which g(3) becomes negative at the centre and along the symmetry lines. Especially the

behaviour at the centre indicates that the central peak does not only stem from two

body effects, otherwise we would not see any dip here.

In conclusion, we have found that the behaviour at the centre x = y = z for wide

initial wave functions stems from two and three photon effects. Especially the three-

photon contribution seems not to vanish for large σ, again indicating the emergence

of three-photon correlations. One crucial player for these correlations is three-photon

bound state. Especially in the wave function picture, we asserted that the central peak

partially stems from this bound state. The following and last section will validate these

claims.

Universal Bound State Dynamics in the DickeModel

5.3

For both the two and three photon scattering processes, we stated that the outgoing wave

function in the σ → ∞ limit decomposes into a relative and a centre-of-mass contribution.
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Furthermore, this relative contribution is universal, i.e., it does not depend upon the

form of the initial wave packet. In this final section, we want to prove this statement and

give an explicit expression for the relative part of the outgoing wave function. Here, we

will perform the calculation in the three-photon sector. This simplifies the discussion

compared to the general case, without dropping any relevant step needed for an arbitrary

number of photons. The results we derive here are readily generalised.

To do all of this, we will compute the projector onto the three-photon bound state

subspace. Per definition, we consider a state to be a three-photon bound state if it’s

built from three-photon strings, i.e., any state of the form

|Ψ〉 =

∫
dΛ c(Λ) |Λ− i/2,Λ,Λ + i/2〉 . (5.5)

Consequently, the projector onto this subspace takes the form

PB =

∫
dΛ |Λ− i/2,Λ,Λ + i/2〉〈Λ− i/2,Λ,Λ + i/2| . (5.6)

Now we want to explicitly compute projection for an arbitrary state |Ψ〉 .
First and foremost, due to our primary interest in scattered states, we restrict the proof

to purely photonic wave functions |Ψ〉 with support on x ≥ 0, i.e., b(y) |Ψ〉 = a |Ψ〉 = 0
for y < 0. This assumption yields

〈Λ− i/2,Λ,Λ + i/2|Ψ〉 =

∫
d3y
[
1− sgn(y1 − y2)

][
1− sgn(y1 − y3)

2

][
1− sgn(y2 − y3)

]
× Λ + i+ i/2 sgn y1

Λ + i/2

Λ + i/2 sgn y2
Λ− i/2

Λ− i+ i/2 sgn y3
Λ− 3i/2

× ey1−y3e−iΛ(y1+y2+y3)Ψ(y1, y2, y3)

=3!

∫
d3yΘ(y3 ≥ y2 ≥ y1)

Λ + 3i/2

Λ− 3i/2

× ey1−y3e−iΛ(y1+y2+y3)Ψ(y1, y2, y3),

where we used 2Θ(−x) = 1 − sgn(x), and that Ψ(y1, y2, y3) = 〈y1, y2, y3|Ψ〉 has its

support on yi ≥ 0. Additionally, we dropped the normalisation of |Λ− i/2,Λ,Λ + i/2〉 ,
which is just constant in Λ. Now we turn our attention to the full projection of |Ψ〉 onto
the three-body bound states

PB |Ψ〉 =3!2
∫

dΛ

∫
d3x

∫
d3yΘ(x3 ≥ x2 ≥ x1)Θ(y3 ≥ y2 ≥ y1)

× Λ− i− i/2 sgnx1
Λ− i/2

Λ− i/2 sgnx2
Λ + i/2

Λ + i− i/2 sgnx3
Λ− 3i/2

× ex1−x3ey1−y3e3iΛ(Rx−Ry)Ψ(y1, y2, y3)

3∏
i=1

r†(xi,Λ + (i− 2)i) |0〉 . (5.7)
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5.3. Universal Bound State Dynamics in the Dicke Model

For brevity, we defined Rx = (x1 + x2 + y3)/3 and analogously Ry .

So far, it’s hard to read off anything from this projection, thus we will remove un-

physical sectors xi < 0 first. We assume x1 < 0, which cancels the Λ = i/2 singularity.
If x3 < 0 then x2 < 0 as well, for which the Λ = −i/2 singularity gets removed by

the second numerator in (5.7). Otherwise, for x3 > 0, the third numerator removes it.

Therefore, in the x1 < 0 sector only the Λ = 3i/2 singularity remains. If we can close the

Λ contour below, which is the case for Rx < Ry , the integral vanishes trivially. Thus, we

find

PB |Ψ〉 ∝ Θ(Rx ≥ Ry)e
x1−x3e−9/2(Rx−Ry)Ψ(y1, y2, y3)

≤ Θ(Rx ≥ Ry)e
x1−x3Ψ(y1, y2, y3)

≤ Θ(Rx ≥ Ry)e
x1−3Ry/2Ψ(y1, y2, y3). (5.8)

The last inequality stems from Rx ≥ Ry and x3 ≥ x2, directly resulting in x3 ≥ 3Ry/2 for
x1 < 0. Since Ψ(y1, y2, y3) resembles a wave packet of photons, which have passed the

emitter system long ago, we may assumeRy to be large in the region where the amplitude

of |Ψ〉 is not minuscule. Thus, the x1 < 0 region is exponentially suppressed, and we

conclude that only the x1 > 0 region yields a relevant contribution. Since x3 ≥ x2 ≥ x1
this implies xi > 0 for all i.

Bringing the results from the previous paragraph together this simplifies the projec-

tion (5.7) to

PB |Ψ〉 =3!2
∫

dΛ

∫
d3x

∫
d3yΘ(x3 ≥ x2 ≥ x1)Θ(y3 ≥ y2 ≥ y1)

× ex1−x3ey1−y3e3iΛ(Rx−Ry)Ψ(y1, y2, y3) |x1, x2, x3〉

=4π · 3!
∫

d3x

∫
d3yΘ(x3 ≥ x2 ≥ x1)Θ(y3 ≥ y2 ≥ y1)

× ex1−x3ey1−y3δ(Rx −Ry)Ψ(y1, y2, y3) |x1, x2, x3〉

≡
∫

d3xΘ(x3 ≥ x2 ≥ x1)e
x1−x3Ψ̃(Rx) |x1, x2, x3〉 (5.9)

We already see that the projection onto the bound states splits into a part only depending

upon the centre-of-mass coordinateRx and a part which solely depends upon the relative

coordinates x1 − x2 and x2 − x3. However, the representation (5.9) gives a wave function

which is antisymmetric in (x1, x2, x3). Its symmetrised generalisation reads

|ΨB〉 ≡ PB |Ψ〉 =

∫
d3x e−∆(x1,x2,x3)/2Ψ̃(Rx) |x1, x2, x3〉 , (5.10)

where
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Figure 5.6.

Side by side comparison of the relative part of the generic three body bound state with the

central peak of a scattered Gaussian wave packet with initial width σ = 10. Both figures look

similar, however the scattered state does not have the same sharp contours as the universal

bound state. This difference is due to contributions from two photon bound states and free

photon states.

∆(x1, x2, x3) ≡ 2
(
Min(x1, x2, x3)−Max(x1, x2, x3)

)
= |x1 − x2|+ |x2 − x3|+ |x3 − x1|. (5.11)

Obviously, while the last line of (5.11) is specific for three photons, the definition

via the Min and Max functions holds for any number of photons. The proof that

exp(−∆(x1, . . . , xN )/2) yields the bound state for any number of photons requires ex-

actly the same arguments as before, thus we will accept this as our general result.

We emphasise, the relative part of the bound state wave function is wholly universal

and does not depend on any initial parameters. Figure 5.6 compares this bound state

with the outgoing wave function of a scattered Gaussian wave packet. Both relative parts

look comparable; however, the scattered state has smoother contours along the lines

x = y, x = z and y = z. This fact stems from the remaining two photon bound state

contributions and goes hand in hand with the observations from the previous section.

Lastly, so far the argumentation was partly on an empirical level. We claimed that the

central peak in the scattered states primarily emerges due to a three-photon bound state

contribution. To make this statement more rigorous, we should compute the amplitude

of the three-photon bound state part of the outgoing wave function. To do so, we need to

compute Ψ̃(Rx), which depends on the initial state. Notice, since |Λ− i/2,Λ,Λ + i/2〉
is an eigenstate of H , the projector PB commutes with H . Thus, for any arbitrary initial

68



5.3. Universal Bound State Dynamics in the Dicke Model
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Figure 5.7.

Three body bound state fraction of the total outgoing wave function for different widths σ of the

initial wave function. As stated before, the three body bound state part increases with the width

and finally converges as σ → ∞.

state |Ψ〉 ,

〈ΨB(t)|ΨB(t)〉 =
〈
Ψe−iHtPB

∣∣PBe
−iHtΨ

〉
=
〈
ΨPBe

−iHt
∣∣e−iHtPBΨ

〉
= 〈ΨPB|PBΨ〉
= 〈ΨB|ΨB〉 . (5.12)

Hence, we do not need to compute Ψ̃(Rx) from the outgoing state, but we can use the

initial state as well. If the initial wave function has its support on the left side of the

emitter then we can show that Ψ̃(Rx) obeys the representation (5.9) as well.

We now discuss the example of an initially Gaussian wave packet. The emergent

integrals are readily solved, and we find∫ ∞

−∞

∣∣∣Ψ̃(Rx)
∣∣∣2 dRx =

e2σ
2

3
√
3

(∫ ∞

0
erfc

(
ξ + 3σ2

2
√
3σ

)
e−

(ξ−σ2)2

4σ2 dξ

)2

. (5.13)

The other contribution to (5.12) stems from the integral over exp(−∆(x1, x2, x3)), which
we separately evaluated in Jacobi coordinates; it yields 3/2. We cannot solve the last

integral in (5.13), for which we proceed with a numerical analysis. The overlap of the

outgoing wave function with the three-body bound state for different initial widths σ is

plotted in Figure 5.7. We now see that our previous statements were indeed correct; for

increasing width of the initial wave function, the overlap with the three-photon bound

state sectors starts to increase and finally converges to some value below 0.2. We did

not bother to determine this value exactly, but this indicates that other contributions,

like from two bonded photons, are important as well.
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A Green’s function

without

permutations

Here, we want to prove the theorem 2, which enabled us to derive the generating func-

tional (3.15) for outgoing wave functions in the Dicke model.

Proof For the proof, we use induction in N .

N = 2 We calculate the right hand side of (3.12), but ignore the z3 limit for themoment

2∏
i=1

∂αi
e−χαiΘ(zi + αi − yi)Θ(yi + αi − zi+1)

∣∣∣∣
αi=0

=

2∏
i=1

[−χΘ(zi − yi)Θ(yi − zi+1) + δ(zi − yi)Θ(yi − zi+1) + Θ(zi − yi)δ(yi − zi+1)]

=

2∏
i=1

Θ(zi − yi)Θ(yi − zi+1) [−χ+ δ(zi − yi) + δ(yi − zi+1)]

= Θ(z3 ≤ y2 ≤ z2 ≤ y1 ≤ z1)
2∏

i=1

[−χ+ δ(zi − yi) + δ(yi − zi+1)]

= Θ(z3 ≤ y2 ≤ z2 ≤ y1 ≤ z1)

[−χ+ δ(z1 − y1) + δ(y1 − z2)] [−χ+ δ(z2 − y2) + δ(y2 − z3)] .

Let us now consider each term separately. First of all, we will ignore every termwith δ(y2−
z3), since the limit z3 → ∞ removes these effectively. We start with the constructive
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example of the terms in O(χ2). Here we have

Θ(z3 ≤ y2 ≤ z2 ≤ y1 ≤ z1)χ
2 = Θ(z3 ≤ y2 ≤ z2 ≤ y1 ≤ z1)χ

2

× [Θ(z1 − y2)Θ(z2 − y2) + Θ(z1 − y2)Θ(z2 − y1)] ,

since Θ(z1 − y1)Θ(z2 − y2) equals one if Θ(z3 ≤ y2 ≤ z2 ≤ y1 ≤ z1) = 1, while
Θ(z1 − y2)Θ(z2 − y1) vanishes under the same condition, but on the zero measure set

{y1 = z2}. We repeat this strategy for every other power of χ, i.e., we add Heaviside- and

Delta-functions, which are either trivial — due to the Θ(z3 ≤ y2 ≤ z2 ≤ y1 ≤ z1) term —

or vanish everywhere, except on a set with measure zero.

The terms in power O(χ) are

Θ(z3 ≤ y2 ≤ z2 ≤ y1 ≤ z1) [δ(z1 − y1) + δ(z2 − y1) + δ(z2 − y2)]

= Θ(z3 ≤ y2 ≤ z2 ≤ y1 ≤ z1) [δ(z1 − y1)Θ(z2 − y2) + δ(z2 − y1)Θ(z1 − y2)

+Θ(z1 − y1)δ(z2 − y2) + Θ(z2 − y1)δ(z1 − y2)] .

The first three inserted Heaviside-functions are again trivial, while the last term vanishes

except on the set {(y1, y2)|y1 = z2}. The remaining terms in O(1) are

Θ(z3 ≤ y2 ≤ z2 ≤ y1 ≤ z1) [δ(z1 − y1)δ(z2 − y2) + δ(z2 − y1)δ(z2 − y2)]

= Θ(z3 ≤ y2 ≤ z2 ≤ y1 ≤ z1) [δ(z1 − y1)δ(z2 − y2) + δ(z2 − y1)δ(z1 − y2)] .

We used that the set with y1 = y2, i.e., where both photons at the same position, has

again vanishing measure. The other term δ(z2 − y1)δ(z1 − y2) is zero, since y2 will never
take the value z1.

In total, we now have

lim
z3→−∞

N∏
i=1

[−χ+ δ(z1 − y1) + δ(y1 − z2)] [−χ+ δ(z2 − y2) + δ(y2 − z3)]

= Θ(y2 ≤ z2 ≤ y1 ≤ z1)
{
χ2
[
Θ(z1 − y2)Θ(z2 − y2) + Θ(z1 − y2)Θ(z2 − y1)

]
−χ
[
δ(z1 − y1)Θ(z2 − y2) + δ(z2 − y1)Θ(z1 − y2)

+ Θ(z1 − y1)δ(z2 − y2) + Θ(z2 − y1)δ(z1 − y2)
]

+
[
δ(z1 − y1)δ(z2 − y2) + δ(z2 − y1)δ(z1 − y2)

]}
= Θ(y2 ≤ z2 ≤ y1 ≤ z1)

∑
σ∈S′

2

2∏
i=1

{δ(zi − yσi)− χΘ(zi − yσi)},

Bringing us directly to the left hand side of (3.12), which ends the induction basis.
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N → N + 1 For the induction step, we start with the left-hand side of the equa-

tion (3.12). Hold in mind that we sum over a reduced set of permutations σ ∈ S′
N+1,

with the useful property σi ≥ i− 1. So, for the (N + 1)-th photon, there are two possible

permutations, the identity (N + 1, N + 1) and the non-trivial permutation (N + 1, N),
where (a, b) denotes the permutation between elements a and b. Therefore, we rewrite
the set of reduced permutations as

S′
N+1 = (N + 1, N + 1)S′

N ∪ (N + 1, N)S′
N .

With this we can split the summation in (3.12) into two parts and get

Θ(yN+1 ≤ zN+1 ≤ · · · ≤ y1 ≤ z1)
∑

σ∈S′
N+1

N∏
i=1

{δ(zi − yσi)− χΘ(zi − yσi)}

= Θ(zN+1 − yN+1)Θ(yN − zN+1)Θ(yN ≤ zN ≤ · · · ≤ y1 ≤ z1)

× [δ(zN+1 − yN+1)− χΘ(zN+1 − yN+1)]
∑
σ∈S′

N

N∏
i=1

{δ(zi − yσi)− χΘ(zi − yσi)}

+Θ(zN − yN )Θ(yN − zN+1)Θ(yN−1 − zN )Θ(yN+1 ≤ zN+1 ≤ yN−1 ≤ · · · ≤ y1 ≤ z1)

× [δ(zN+1 − yN )− χΘ(zN+1 − yN )]
∑

σ∈(N+1,N)S′
N

N∏
i=1

{δ(zi − yσi)− χΘ(zi − yσi)}

= Θ(zN+1 − yN+1)Θ(yN − zN+1) [δ(zN+1 − yN+1)− χΘ(zN+1 − yN+1)]

× lim
z′N+1→∞

N∏
i=1

∂αi
e−χαiΘ(z′i + αi − yi)Θ(yi + αi − z′i+1)

∣∣∣
αi=0

+Θ(zN − yN )Θ(yN − zN+1) [δ(zN+1 − yN )− χΘ(zN+1 − yN )]

× lim
zN+2→∞

N−1,N+1∏
i=1

∂αi
e−χαiΘ(zi + αi − yi)Θ(yi + αi − zi+1)

∣∣∣
αi=0

.

In the second step, we used that no more yN term appears in the
∑

σ∈(N+1,N)S′
N
sum.

Thus, we regrouped this part as a S′
N -like summation, where the N-th particle has the

index N + 1 instead of N . For the notation, we defined products with two upper indices

as
a,b∏
i=1

fi = fb ·
a∏
i=1

fi.

In the last step, we additionally introduced an auxiliary variable in each summand, z′N+1

and zN+2, respectively. Furthermore, in the first sum, we added a prime to every variable
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A. Green’s function without permutations

zi, such that the auxiliary variable z′N+1 is not mistaken with the actual variable zN+1,

appearing in the second sum. In every other case we of course have z′i = zi.
Now we treat the two summands separately. First consider the term

Θ(zN+1 − yN+1) [δ(zN+1 − yN+1)− χΘ(zN+1 − yN+1)]

= δ(zN+1 − yN+1)− χΘ(zN+1 − yN+1)

= lim
zN+2→∞

[δ(yN+1 − zN+2) + δ(zN+1 − yN+1)− χΘ(zN+1 − yN+1)]

= lim
zN+2→∞

∂αN+1e
−χαN+1Θ(zN+1 + αN+1 − yN+1)Θ(yN+1 + αN+1 − zN+2)

∣∣∣
αN+1=0

.

For the second summand, it is sufficient to realize that Θ(yN − zN+1)Θ(zN+1 − yN ) = 0,
except on a set with measure zero. Taking this together brings us to

lim
z′N+2→∞

N−1,N+1∏
i=1

∂αi
e−χαiΘ(z′i + αi − yi)Θ(yi + αi − z′i+1)

∣∣∣
αi=0[

Θ(yN − zN+1) lim
z′N+1→∞

∂αN e
−χαNΘ(zN + αN − yN )Θ(yN + αN − z′N+1)

+ Θ(zN − yN )Θ(yN − zN+1)δ(yN − zN+1)

]∣∣∣
αN=0

.

First perform the z′N+1 → ∞ limit. Then, it is quite easy to see, that the term inside the

brackets is equal to

∂αN e
−χαNΘ(zN + αN − yN )Θ(yN + αN − zN+1)

∣∣∣
αN=0

.

Consequently, we are allowed to bring it in the prior product. At large, we end up with

lim
z′N+2→∞

N+1∏
i=1

∂αi
e−χαiΘ(z′i + αi − yi)Θ(yi + αi − z′i+1)

∣∣∣
αi=0

,

exactly what we expected. Hence we conclude the proof by induction. �
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B Outgoing

Wave functions for

the Dickemodel

Wewill list here the analytical results for the two and three photon scattering of Gaussian

wave packets in the Dicke model, which we used in chapter 5. For this, let us introduce

two definitions to shorten the notation, namely

ΨG(x) ≡
e−x2/2σ2

(πσ2)1/4
,

ΨE(x) ≡
(
πσ2

4

)1/4

ex/2+σ2/8erfc

(
2x+ σ2

2
√
2σ

)
.

With this we are prepared to give the outgoing wave functions. For two photons this is

Ψ(x, y) =ΨG(x)ΨG(y)

−ΨE(x)ΨG(y)−ΨG(x)ΨE(y)

+ ΨE(x)
[
ΨE(y)− e(y−x)/2ΨE(x)

]
. (B.1)

The scattered three-photon wave function takes a similar form, more precisely

Ψ(x, y, z) =ΨG(x)ΨG(y)ΨG(z)

−ΨE(x)ΨG(y)ΨG(z)−ΨG(x)ΨE(y)ΨG(z)−ΨG(x)ΨG(y)ΨE(z)

−ΨG(x)ΨE(y)
[
ΨE(z)− e(z−y)/2ΨE(y)

]
−ΨG(y)ΨE(x)

[
ΨE(z)− e(z−x)/2ΨE(x)

]
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−ΨG(z)ΨE(x)
[
ΨE(y)− e(y−x)/2ΨE(x)

]
−ΨE(x)

[
ΨE(y)− e(y−x)/2ΨE(x)

] [
ΨE(z)− e(z−y)/2ΨE(y)

]
. (B.2)

Notice, both the two- and tree-photon wave functions are not symmetric in their argu-

ments. More specifically, since these results are based on our Green’s function (3.12)

they are only applicable in the sectors x > y and x > y > z, respectively.
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