
Photon correlations and collective

phenomena with Rydberg

superatoms

Von der Fakultät Mathematik und Physik der Universität Stuttgart

zur Erlangung derWürde eines Doktors der Naturwissenschaften

(Dr. rer. nat.) genehmigte Abhandlung.

Vorgelegt von

Kevin Kleinbeck
aus Stuttgart.

Hauptberichter Prof. Dr. Hans Peter Büchler

Mitberichter Prof. Dr. Jörg Main

Prüfungsvorsitz Prof. Dr. Tilman Pfau

Tag der mündlichen Prüfung 10.10.2022

Institut für Theoretische Physik III

Universität Stuttgart

2022





Abstract

This thesis studies the interaction of light with atom-like emitters. A common

problem lies within the weak interaction of single atoms with the light field,

resulting in barely measurable effects. A well-established method to circum-

vent this is by confining light and emitters in an optical cavity or a waveguide.

However, the confinement leads to additional effects that are not present in the

free space setting. Here we follow a different route and study the interaction of

light with Rydberg superatoms, which possess a strong coupling to the photons

without the need for confinement.

A Rydberg superatom is a dense ensemble of ultra-cold atoms, excited to high

principal quantum numbers. The atoms collectively interact with the light field,

resulting in a strong coupling of the superatom to photons. These enhanced

interactions further lead to a highly directed emission of the photons. At the

same time, the Rydberg blockade prevents the ensemble from absorbing more

than one photon, such that the mesoscopic superatom possesses an atom-like

absorption behaviour.

The enhanced coupling of the superatom to the light field results in strong

correlations between the emitted photons, and the formation of non-classical

states of light. More specifically, we show in chapter 3 that the interaction of

light with a single superatom creates well-located many-photon states, which

we denote as bound states of light. These, in turn, result in a bunched photon

i



Abstract

signal, with measurable effects in the two- and three-photon correlation functions.

Furthermore, the non-trivial photon correlations reveal that the interaction with

the superatom scatters the light into multiple orthogonal modes. Therefore, in

chapter 4, we study the occupation of different modes of light. Our analysis

shows that scattering coherent, i.e., classical light on a superatom, subsequently

yields light with non-classical number statistics for some of the temporal modes.

Turning this effect into a practical application, we discuss that a single superatom

can prepare non-classical states of light as resources for quantum metrological

experiments.

In realistic systems, dephasing processes occur in the superatom and coun-

teract the creation of correlated and non-classical states, as mentioned above.

More precisely, superatoms are never just perfect two-level emitters. The in-

trinsic dipole-dipole interactions of the individual atoms and their respective

thermal motion lead to additional coherent and incoherent processes that drive

the superatom into non-radiating states. These dynamics have the potential to

dephase the superatom into non-radiating states irreversibly. The superatoms

remain excited under the dephasing but can no longer interact with the light due

to the Rydberg Blockade. Therefore the superatom absorbed exactly one photon

from the incoming light field before becoming irrelevant for the dynamics of

the remaining photons. These intrinsic and collective dissipative effects of the

superatom directly lead to an application as a photon subtractor, as we show

in chapter 5. There we analyse the optimal parameters for photon subtraction

and show that near perfect and deterministic subtraction is possible in specific

regimes.

The coupling of the light field to the superatoms not only influences the

photons but also results in interesting effects on the superatoms. The directed

emission of the photons leads to an emergent infinite-range exchange interaction

between the superatoms. This coupling modifies the collective response of a

superatom chain to the light field. In particular, we show in chapter 6 that
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the exchange interactions quickly compensate for any superradiant decay of

the superatom chain and lead to an algebraic decay of the superatom chain for

intermediate times, which eventually terminates in the uncorrelated decay of

single superatoms.

While the focus of chapter 6 lies on the interactions between multiple super-

atoms, the dipole-dipole interactions of individual atoms within one superatom

similarly influence the superatom-light coupling, as we discuss in chapter 7.

Specifically, we investigate an experimental setting in which a coherent light

pulse drives a single superatom into an excited state. The superatom’s subse-

quent decay depends on the duration and strength of the coherent pulse, which

indicates additional coherent processes within the superatom. We find that

for an accurate description, it is sufficient to model the superatom with just

four states: The first two states represent the superatom’s ground state and the

optically excited state, respectively, while the other two states capture coherent

and incoherent processes, respectively. Additionally, we find similarities between

the experimental results and the superatom chain (discussed in chapter 6), which

we use to motivate the four-level model further.
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Zusammenfassung

Diese Dissertation handelt von der Wechselwirkung zwischen Licht mit atomar-

tigen Systemen. Einzelne Atome wechselwirken lediglich schwach mit Licht und

haben entsprechend einen kaum messbaren Einfluss auf die Photonen. Dieses

Problem kann mit räumlich begrenzten Systemen, wie optische Kavitäten oder

Wellenleitern, umgangen werden. Allerdings führt die räumliche Begrenzung zu

neuen Effekten, die bei freien Systemen nicht auftreten. Deshalb untersuchen

wir hier die Wechselwirkung von Licht mit Rydberg-Superatomen, die eine

starke Kopplung an das Lichtfeld haben, ohne dass eine räumliche Begrenzung

nötig ist.

Rydberg-Superatome sind dichte Gase ultrakalter Atome, die zu Zuständen

mit hoher Hauptquantenzahl angeregt werden. Die kollektive Wechselwirkung

aller Atome mit den Photonen resultiert in einer starken Kopplung an das

Lichtfeld. Als Konsequenz dieser verstärkten Wechselwirkung tritt auch eine

gerichtete Emission der Photonen auf. Desweiteren kann jedes Superatom,

aufgrund der Rydberg-Blockade, immer nur eine einzelne Anregung tragen,

weswegen das Superatom in seinem Absorptionsverhalten einem einzelnen Atom

ähnelt.

Aufgrund der verstärkten Wechselwirkung zeigen die an einem Superatom

gestreuten Photonen starke Korrelationen und bilden Zustände mit einer nicht

klassischen Teilchenzahl-Besetzung. Wir untersuchen die Korrelationen in
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Zusammenfassung

Kapitel 3, in welchem wir zeigen, dass die Wechselwirkung von Licht mit dem

Superatom stark lokalisierte Licht-Zustände erzeugt. Diese resultieren in mess-

bare zwei- und drei-Photonen-Korrelationen, die die Anhäufung der Photonen

zeigen. Solche Korrelationen sind nur möglich, wenn das Licht nach der Streu-

ung mehrere unterschiedliche Photonenzustände besetzt. Deshalb untersuchen

wir in Kapitel 4 die Teilchenzahl-Besetzung unterschiedlicher Lichtmoden nach

der Streuung eines Lasers an einem Superatom. Wir zeigen dort, dass manche

Zustände eine nicht klassische Besetzung aufweisen. Diese nicht klassischen

Zustände eignen sich unter anderem als Ressource für weitere Experimente.

Wir zeigen als Beispiel eine mögliche Anwendung in der Quanten-Metrologie.

Superatome unterliegen jedoch Prozessen, die der Licht-Superatom-Wech-

selwirkung entgegenstehen und die oben genannten Korrelationen oder die

nicht klassischen Eigenschaften des Lichtes dämpfen. Genau genommen, kön-

nen wir Superatome nicht nur als ein Zwei-Niveau-System beschreiben, da die

intrinsische Dipol-Dipol-Wechselwirkung der Atome und deren thermischen

Bewegung das Superatom in Zustände bringen, die nur noch schwach an das

Lichtfeld koppeln. Gerade die inkohärenten Prozesse können das Superatom

irreversibel in solche schwach gekoppelten Zustände bringen. Da das Super-

atom dabei angeregt bleibt, werden weiterhin neue Anregungen durch die

Rydberg-Blockade unterdrückt. Das Superatom speichert somit genau eine

Anregung, beziehungsweise entfernt ein Photon aus dem einlaufenden Lichtfeld.

Superatome verhalten sich also wie Photonen-Subtrahierer, wie wir in Kapi-

tel 5 zeigen. In diesem Kapitel bestimmen wir die optimalen Parameter für

Photonen-Subtraktion und zeigen, dass nahezu deterministische Subtraktion

mit Superatomen möglich ist.

Die gerichtete Wechselwirkung der Photonen mit Superatomen führt dazu,

dass in einer eindimensionalen Superatom-Kette unendlich weit reichende Aus-

tauschwechselwirkungen zwischen den Superatomen auftreten. Die Austausch-

wechselwirkung modifiziert die kollektive Kopplung der Superatome an das
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Lichtfeld und wir zeigen in Kapitel 6, dass die Superatom-Kette dadurch keinen

reinen superradianten Zerfall aufweist. Stattdessen wird nur der initiale Zerfall

von Superradianz dominiert, danach geht die Superatom-Kette in einen algebrais-

chen Zerfall über, der schließlich mit dem unkorrelierten Zerfall der einzelnen Su-

peratome endet. In diesemKapitel zeigen wir, wie die Austauschwechselwirkung

super- und subradiante Zustände koppelt, was genau zu dem beobachteten alge-

braischen Zerfallsverhalten führt.

Das Augenmerk von Kapitel 6 liegt auf der Austausch- beziehungsweise Dipol-

Dipol-Wechselwirkung zwischen den Superatomen. Solche Wechselwirkungen

treten in schwächerer Form auch im Inneren eines einzelnen Superatoms zwi-

schen seinen jeweiligen Atomen auf. Diese Wechselwirkungen haben Einfluss

auf die Kopplung des Superatoms an das Lichtfeld, welche wir in Kapitel 7

genauer untersuchen. Dazu betrachten wir ein einzelnes Superatom, welches

durch Stimulation mit einem Laser in einem angeregten Zustand präpariert

wurde. Der anschließende Zerfall des Superatoms hängt von der Dauer und

der Intensität des Laserlichts ab, was wir auf kohärente Prozesse im Super-

atom zurückführen können. Wir zeigen, dass für eine genaue Beschreibung des

Superatoms vier Zustände nötig sind: einen Grundzustand und einen Anre-

gungszustand, der durch Wechselwirkung mit dem Licht erreicht werden kann,

sowie zwei, nicht direkt an das Lichtfeld gekoppelte, Zustände, die respektive

kohärent und inkohärent an den ersten Anregungszustand koppeln. Dieses

einfache Modell können wir direkt mit der Dynamik der Superatom-Kette aus

Kapitel 6 erklären, da diese viele strukturelle Ähnlichkeiten mit der intrinsischen

Dynamik eines einzelnen Superatoms aufweist.
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1 Rydberg superatoms

This thesis examines the interactions between light and collections of Rydberg

atoms. Rydberg atoms are hydrogen-like emitters, excited to states of large

principle quantum numbers n [1–3]. These large excitations result in strong

dipole-dipole interactions [4–7] between Rydberg atoms, giving rise to effects

like the Rydberg blockade [8–14], where a single excited Rydberg atom pro-

hibits secondary excitations in its vicinity. These dipole-dipole interactions make

Rydberg atoms promising candidates for numerous applications [15, 16], for

example, quantum information processing with neutral atoms [17]. After it was

demonstrated that Rydberg atoms are suitable to build individual quantum

gates [8, 18–21], they are now actively used as quantum simulators based on Ryd-

berg atoms in optical lattices [22–32], while more generic “quantum computers”

based on Rydberg atoms are current lines of research [33–39].

Beyond quantum information technologies, Rydberg atoms possess further

applications in quantum optics. For example, ensembles of Rydberg atoms in

an electromagnetically induced transparency setup [40] show substantial optical

non-linearities [41–43] due to the Rydberg blockade mentioned above, resulting

in Rydberg atom-mediated photon-photon interactions [13, 44–46]. Further-

more, the large dipole-dipole interaction can be used to activate mesoscopic

structures [47], like atomic monolayer mirrors [48, 49], or to mediate interactions
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1 Rydberg superatoms

between trapped ions [50, 51].

One extreme case of the non-linear response occurs when the Rydberg atom

ensemble is concentrated in a dense cloud with an extent smaller than the

blockade radius, i.e., the virtual sphere in which a single Rydberg excitation

leads to the blockade of all other atoms. We call these ensembles Rydberg

superatoms [14, 52] due to their inability to absorb more than a single-photon.

The multiple emitters in the superatom collectively contribute to the light-matter

interaction, which results in a superradiant response to the light field [53–56],

leading to an enhanced light-superatom coupling [57–60].

In this thesis, we study the interaction of light with Rydberg superatoms and

analyse the distribution of the emitted light field as well as the dynamics of

the superatoms. This chapter focuses on the Rydberg superatoms in isolation.

We will first describe the central mechanisms in forming a Rydberg superatom,

which are the Rydberg blockade, the excitation of the high-lying Rydberg states,

and the superradiant atom-light interactions, and then explain one experimental

realisation in detail.

Rydberg Blockade

1.1

Before going into a full quantum mechanical calculation, let us first explain the

Rydberg blockade in a semi-classical analogy. First, we imagine an ensemble

of atoms in their respective ground states. If the atom separation is sufficiently

large, each atom looks like a chargeless particle from the perspective of all other

atoms. Next, we excite the system and drive one of the atoms into a Rydberg

state. Since the radial distance 〈r〉 of an electron in a hydrogen-like atom scales
as n2, we may consider the excited electron and the positively charged remainder

of the excited atom as two well-separated objects in a classical picture. The
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1.1 Rydberg Blockade

other, still un-excited, atoms feel the presence of the newly created dipole in the

system and their level structure will be subsequently shifted. For atoms in the

vicinity of the excited one, this level shift will bring these atoms out of resonance

with the wavelength used to excite the first atom. Thus we created a virtual

sphere around the excited atom, in which no second excitation is possible.

This simple, heuristic description of the Rydberg blockade qualitatively cap-

tures the relevant mechanisms at play. We will now turn to a more technical

discussion, which formalises the above argument and allows us, for example, to

calculate the blockade radius for a given Rydberg state. Our argument follows

the discussion in the review of Sibalic and Adams [3].

Figure 1.1

Level diagram of the

virtual energy

exchange.

To begin, consider two atoms in a specific Rydberg state

|nS〉 with energy En. One atom may decay to a lower lying

state |n′P 〉 at energy En′ , while the other absorbs the avail-

able energy to reach |n′′P 〉 at energy En′′ , as indicated by

the level diagram to the right. Typically, there are no states

such that the energy condition En′ + En′′ = 2En is met

while not violating any other selection rules. Hence this

process is not a dominant decay channel. Nevertheless, it

may still give rise to an energy correction of Er in a second-

order Van derWaals process. In second-order perturba-

tion theory, the energy scales as V (R)2/∆E, where V is

the dipole-dipole interaction between the atoms, scaling as

n4/R3 for Hydrogen like atoms, and∆E = En′+En′′−2En.

Overall, the energy correction for the Rydberg-Atoms becomes ∝ n8/∆ER
6.

For neighbouring states, we have ∆E ∝ 1/n3, such that the Van der Waals

interaction potential scales like VVdW(R) ∝ n11/R6.

If the atoms are excited into the Rydberg state |nS〉 by a laser with linewidth
ν, then a distance RB exists for which VVdW(RB) = ~ν. This brings us to our
previous explanation: After exciting a single atom, all atoms within a sphere of
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radius RB will have too large of a detuning for any second excitations. If every

atom lies within this sphere, we call the atom cloud blockaded. If, on the other

hand, the extent of the atom ensemble surpasses the Rydberg blockade radius,

then the ensemble can host multiple excitations. These excitations, quasiparticles

denoted as Rydberg-polaritons [61–64], are subject to the aforementioned strong

Van der Waals interactions [65, 66] that can be used to mediate effective photon-

photon interactions [67].

Two-photon transitions

1.2

Let us specify a common method for exciting atoms into the Rydberg manifold.

Typically, single-photon transitions are impractical, as we can see from a simple

energy argument. For this, we discuss Rubidium, which we will consider our

primary Rydberg atom for the rest of this thesis. It has an ionisation energy of

about 4.2 eV [68], corresponding to wavelengths of < 300nm. Since the Ryd-

berg states lie close to the ionisation threshold, single-photon-photon transitions

to the Rydberg manifold require ultraviolet light.

Figure 1.2

Level diagram of

the two-photon

process.

We can, however, stay in the optical wavelengths if we in-

stead use a two-photon process. Here, we first populate a

short-lived intermediate state |e〉 from which we then drive a
second excitation into the Rydberg state |r〉, as sketched in
the figure to the right. For the derivation here, let us con-

sider a classical picture for the light, i.e., the light is described

by its coherent amplitudes, resulting in Rabi oscillations of

Rabi frequency Ωe between the ground state |g〉 and |e〉 and
of frequency Ωr for the |e〉 to |r〉 transition. Assuming a pos-
sible detuning ∆ and decay Γ on the |e〉 level, together with a
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1.2 Two-photon transitions

δ-detuning on two-photon resonance, this brings us to the Hamiltonian in the

rotating frame

H =
1

2

 0 Ωe 0

Ωe 2∆ + iΓ Ωr

0 Ωr 2δ

 (1.1)

for the evolution of a single atom.

The Hamiltonian (1.1) gives rise to an interesting effect. On the one hand,

it is clear that if the detuning ∆ or Γ is large, then |e〉 will have a negligible
population. Since we can reach |r〉 only through |e〉, this should imply that
we will also not be able to populate the Rydberg state. On the other hand, at

two-photon resonance δ = 0, the state Ωr|g〉 − Ωe|r〉 is an eigenstate of H, and
thus the time evolution of |g〉 will always populate |r〉, independent of the value
of ∆. This shows us that in the ∆ → ∞ limit, the intermediate state |e〉 becomes
irrelevant and |g〉 couples directly to |r〉.

We will now remove the intermediate state |e〉 by adiabatic elimination. Let us
denote the solution of the Schrödinger equation as |ψ〉 = cg|g〉+ce|e〉+cr|r〉. The
|e〉-population will quickly settle into a steady state, where the decay Γ out of |e〉 is
balanced against the incoming probability from the |g〉 and |r〉 states. This means
that we are justified to approximate ċe = 0, which is the adiabatic elimination.

In practice, this means we solve ċe = (Ωecg + (2∆ + iΓ)ce + Ωrcr)/2 = 0 for ce

and use the result to eliminate ce from the equations of motion of cg and cr.

The assumption of the adiabatic elimination, ċe ≈ 0, is well-met for ∆ � Ωe.

With this, the reduced Hamiltonian for the {|g〉, |r〉} system becomes

H̃ ≈ 1

2

(
0 ΩeΩr

2∆
ΩeΩr

2∆
2δ + Ω2

r

2∆
+ iΓ Ω2

r

(2∆)2

)
≡ 1

2

(
0 Ω̃

Ω̃ 2δ̃ + iΓ̃

)
, (1.2)

where we additionally assumed ∆ � Γ. Thus the ground state and Rydberg

state are coupled via an effective Rabi frequency Ω̃ = ΩeΩr/2∆ and the Rydberg
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1 Rydberg superatoms

state now obtains an effective decay rate of Γ̃ = ΓΩ2
r/(2∆)2.

From a practical perspective, this result tells us that a two-photon transition

barely differs from a single-photon transition, as long as we have strong detuning

∆ on the intermediate state. Our approach for the adiabatic elimination remains

valid when we replace the classical light fields with their quantised counterparts,

as long as the photon intensity in the light field of the |g〉 ↔ |e〉 transition is
weak compared to ∆. In the following, we will always consider classical light

for the |e〉 ↔ |r〉 transition, while we sometimes treat the frequencies for the
|g〉 ↔ |e〉 transition in a fully quantised way.

Interaction of light with a Rydberg gas

1.3

The last section showed that a spatially localised ensemble of atoms exhibits

Rydberg blockade, by which the ensemble can absorb only one quanta of light

at any given time. This should, however, not be taken as an indication that the

dynamics of the atoms are trivial — at least not without further investigation —

as each of the atoms may store the excitation, and the single-excitation sector of

the atomic Hilbert space is thus as large as the numbers of atoms. Furthermore,

excited-unexcited atom pairs interact via photon exchange [69, 70]. Hence an

arbitrary excited state will not be stationary, and instead, we should expect

that most excited states quickly dephase under the eigenstate dynamics of the

exchange interaction.

We dedicate this section to the study of the photon-mediated exchange inter-

action and the interaction of the atoms with the external light field. In particular,

we will put most of our attention on the scattering of a plane-wave photon on the

atomic cloud, as this approximates exciting the atoms by an external laser. For

this setup, we will find that a single state dominates the evolution of the atoms,
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1.3 Interaction of light with a Rydberg gas

which we call the bright state, reminiscent of the single-photon superradiant

state of general N emitter systems [55, 71, 72]. We define the bright state as the

state of the atoms immediately after absorbing the single-photon plane wave.

First, we will build up the theoretical framework for the scattering problem.

We then solve the equations of motions of the atoms for the evolution of the most

relevant excited states of the atom ensemble. Next, we determine the emission

from the cloud with the solution for the time evolution of the atoms. Finally,

we will summarise our results in a simple yet powerful model for the light-atom

interaction. This superatom model will be our description of the light-superatom

system for the rest of this thesis, except for the last chapter 7, where we study

the limitations of this model.

1.3.1 Theoretical description

Similar to the discussion of the Rydberg blockade, we describe the Rydberg

atoms as quantum-mechanical dipoles. This is, we treat the atoms as two-level

systems, with the ground state |gj〉 and the Rydberg state |rj〉 of the j-th atom.
This means that the free Hamiltonian of the atoms reads as

Hatoms = ~
N∑
j=1

ω0σ
+
j σ

−
j , (1.3)

with σ±
j the spin-lowering / -raising operator for the j-th atom and ω0 denotes

the energy of the adiabatically eliminated intermediate state.

For the photons, we ignore the polarisation and describe photons by a scalar

field, for simplicity. Thus the free Hamiltonian of the light field becomes

Hphotons = ~
∫
d3kωkb

†(k)b(k). (1.4)

Here, b(†)(k) are the bosonic annihilation (creation) operators for photons in the

7



1 Rydberg superatoms

mode k.

The atoms and light modes are coupled within the dipole approximation.

Furthermore, we will work within the rotating wave approximation (RWA). At

the end of this section we will briefly discuss beyond-RWA-corrections. However,

we should already emphasise that the full scattering theory, which we will derive

in the next chapter 2, is based on the RWA and agrees excellently with the

experimental observations. The interaction Hamiltonian in the rotating frame

(i.e., the interaction picture) thus reads as

Hint(t) =
N∑
j=1

∑
k

√
J(ωk)

Ṽ
σ+
j b(k)e

ikrj−i(ωk−ω0)t + h.c., (1.5)

where J(ω) denotes the spectral density of the atoms for the given transition and

Ṽ is the quantisation volume of the photons.

In the following sections we will study the dynamics of the atoms and the light

field under the influence of Hint. Additionally, we will assume that each atom is

within one blockade radius of each other and we are therefore justified to limit the

discussion to the single-excitation sector. As a particularly important example we

consider that the cloud is excited by a resonant plane-wave |k0, G〉 = b†(k0)|0, G〉,
with ck0 = ω0. Here, |0〉 denotes the photonic vacuum and |G〉 = |g1, . . . , gN〉
the collective ground state of all N atoms. In a first order process |k0, G〉 excites
the atoms into the equal superposition state

|0,W 〉 ≡ 1√
N

N∑
j=1

eik0rjσ+
j |0, G〉 ≡ σ+

W |0, G〉 ∝ Hint(0)|k0, G〉, (1.6)

which defines the bright state |W 〉 of the mode k0.

The bright state will turn out to be the most important state in the evolution of

the superatom for three reasons. Firstly, as we just discussed, it describes the state

of a superatom directly after absorbing a plane-wave photon. Additionally, |W 〉

8



1.3 Interaction of light with a Rydberg gas

dominates the evolution of the superatom after this initial condition, especially

in the absence of additional incoherent processes. Lastly, we will also see, that

the decay of the bright state predominantly creates photons with the wave vector

k0, i.e., the scattering approximatively conserves the photons momentum and

direction. This is due to the phase information, that is stored within (1.6), which

will result in destructive interference in every direction but k0.

Due to the singular importance of |W 〉 we should formulate our theory in
a basis, that emphasises its central role. For this we will perform a Krylov

expansion about |W 〉, which identifies the atomic states with the most dominant
coupling to |W 〉. For this, we start with the bright state and generate the next
basis state by a Gram-Schmidt ortho-normalisation1 ofH2

int(0)|W 〉. This results in
the state |C〉 with the strongest coupling to |W 〉 at time t = 0. We can iteratively

continue to generate new basis states from H2n
int (0) until we arrive at a full basis,

or halt when the truncated basis yields a sufficiently accurate description. We

will see that under suitable conditions on the spatial distribution of the atoms it

is generally justified to only take one additional state into account. This implies

that the superatom is generally well-described as a 3-level system which will be

the general assumption in most parts of this thesis.

The following pages contain the technical derivation of the effective equations

of motion for the Krylov states. Readers, who are mainly interested in the

physical discussion may skip to the end of this section, where we list the relevant

equations of motions, or directly to one of the following sections, where we

discuss the internal dynamics of the superatom, calculate the emission statistics

and compare our theory to alternative derivations.

Before we involve ourself in the technical details let us further motivate our

strategy. On the first glance the obvious choice is to work in the natural basis

|0, j〉 = σ+
j |0, G〉. However, vacuum fluctuation of the light field leads to a Lamb

shift of the atoms [71, 73]. The Lamb shift depends on the exact form of the

1We need to square Hint here, to obtain a state in the excited atom manifold.
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spectral density J(ω), which is typically not known exactly. However, an accurate

description of the atom system by a Lindblad master equation only requires that

J is flat at the relevant frequencies and drops of sufficiently fast at ω → ∞ [74].

Within our Krylov expansion, we will only make use of these two conditions

without ever requiring precise knowledge of J(ω). Beyond this, we already

established that |W 〉 will always be the starting point of the atom’s evolution, as
long as we consider incoming plane-waves. Hence, unless we are not interested

in more general initial conditions, this approach is the most practical approach

for an accurate descriptions with just a handful of states.

To start the derivation of the effective equation of motions for the atomic

states, we first remember that the bright state (1.6) stores the phase information

of the previously absorbed photon. These phases naturally occur due to our

choice of the initial plane-wave |k0〉 and we should include them directly in the
atomic operators σ+

j e
ik0rj 7→ σ+

j , in order to simplify the notation. The bright

state now simply reads as |W 〉 = 1/
√
N
∑

j σ
+
j |G〉 and we obtain a phase factor

e−ik0rj in the interaction Hamiltonian 1.5.

Let us now perform the Krylov expansion around |W 〉. The next relevant
atomic state occurs by a second-order process after the exchange of a virtual

photon between the atoms

H2
int(0)|0,W 〉 = 1√

N

∑
j,l

∫
R3

d3kJ(ω)ei(k−k0)rj,l|0, j〉, (1.7)

where rj,l = rj − rl.

In the large N limit we realise that

1

N

N∑
i=1

e−ikrj → 〈e−ikr〉 = ϕ∗(k) (N → ∞), (1.8)

where 〈. . . 〉 denotes the expectation value with respect to the atoms’ spatial

10



1.3 Interaction of light with a Rydberg gas

distribution p(r) and ϕ its respective characteristic function. By the central limit

theorem we realise that we may approximate
∑

j e
−i(k−k0)rj/N ≈ ϕ∗(k − k0)

for finite but large N at k ≈ k0. This is a fairly good approximation for about

N = 104 atoms, which is typically achieved in experiments. However, for any

finiteN we expect that the sum in (1.8) will have periodic revivals as the condition

krj ≈ 2πmj, mj ∈ Z can be met arbitrarily well for all j simultaneously. Yet,
the frequency ω = ck at which this occurs grows fast with N and these revivals

are thus suppressed by J(ω), since we expect the spectral density to decay

exponentially fast at large ω. Hence, we may use (1.8) as an approximation for

experimentally relevant systems.

Therefore, expression (1.7) simplifies to

H2
int(0)|0,W 〉 ≈

√
N

N∑
j=1

∫
R3

d3kJ(ω)ϕ∗(k − k0)e
i(k−k0)rj |0, j〉

≈ (2π)3
√
NJ(ω0)

N∑
j=1

p(rj)|0, j〉. (1.9)

In the second step we used that J(ω) is approximatively flat around ω0 = ck0.

More precisely, if σ is a characteristic length scale of p(r) then J does not change

significantly on scales c/σ. As p(r) ≥ 0 it is clear that this state still possess

an overlap |W 〉, which we need to remove. After applying the Gram-Schmidt
ortho-normalisation we find

|C〉 = N√
N

N∑
j=1

[
p(rj)−

1

V

]
|j〉 ≡ σ+

C |G〉 (1.10)

as the state that is most strongly coupled to |W 〉. Here N is a normalisation

factor depending on the distribution of the atoms, and V denotes the Süssmann

volume
1

V
≡
∫
R3

d3r p(r)2, (1.11)

11
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which should not be confused with the quantisation volume Ṽ .

In principle we can now iterate this procedure, i.e., apply H2
int(0) on |0, C〉, to

find the next most relevant atomic state. In the next sections we will find however,

that |W 〉 and |C〉 are weakly coupled and since we are primarily interested in
|W 〉’s evolution we may neglect other states that only influence |C〉 directly and
work in the truncated {|W 〉, |C〉} basis. In this basis we have

σ±
j ≈ 1√

N
σ±
W +

N√
N

[
p(rj)−

1

V

]
σ±
C , (1.12)

which we obtain by projecting on |W 〉 and |C〉 respectively. This yields the
interaction Hamiltonian

Hint(t) ≈
√
N
∑
k

√
J(ωk)√
Ṽ

ϕ(k − k0)σ
+
W b(k)e

−i(ωk−ω0)t

+
√
NN

∑
k

√
J(ωk)√
Ṽ

[
ϕ(2)(k − k0)−

ϕ(k − k0)

V

]
σ+
Cb(k)e

−i(ωk−ω0)t

+h.c., (1.13)

in this truncated basis, with ϕ(2) = F [p2] the Fourier transformation of p2(r).

We now consider the single-excitation state

|ψ(t)〉 =
∑
k

ψk(t)|k, G〉+ αW (t)|0,W 〉+ αC(t)|0, C〉 (1.14)
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1.3 Interaction of light with a Rydberg gas

and we find the equations of motions for the coefficients

ψ̇k(t) =
1

i~
√
N

√
J(ωk)√
Ṽ

ϕ∗
W (k − k0)e

i(ωk−ω0)tαW (t)

+
1

i~
√
N

√
J(ωk)√
Ṽ

ϕ∗
C(k − k0)e

i(ωk−ω0)tαC(t), (1.15a)

α̇W (t) =
1

i~
√
N
∑
k

√
J(ωk)√
Ṽ

ϕW (k − k0)e
−i(ωk−ω0)tψk(t), (1.15b)

α̇C(t) =
1

i~
√
N
∑
k

√
J(ωk)√
Ṽ

ϕC(k − k0)e
−i(ωk−ω0)tψk(t). (1.15c)

with ϕW (k) = ϕ(k) and ϕC(k) = N [ϕ(2)(k)− ϕ(k)/V ].

1.3.2 Internal dynamics of the superatom

We now determine the evolution of a superatom starting from the bright state

|W 〉. For this we will first eliminate the photon amplitudes ψk from the equations

of motions of αW and αC . We will arrive at a simple coupled system of equations

for these two superatom states, which we explicitly solve for a Gaussian atom

distribution. For this distribution in particular we find that the extend of the

trapped atoms (here the variances of the Gaussians) only alter the overall time

scale, but not the quantitative evolution of αW and αC and we find that the |C〉
state never carries more than ≈ 5% of the total probability, thus justifying our

truncated basis-approach.

To eliminate ψk from (1.15b) and (1.15c) we formally integrate the equation

for ψ̇k and insert the solutions into the equations of motion of αW and αC . This

13
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results in

α̇a(t) = −N
~2

∑
b∈{C,W}

∫ t

0

dsαb(s)

∫
R3

d3k J(ωk)

× ϕa(k − k0)ϕ
∗
b(k − k0)e

−i(ωk−ω0)(t−s), a ∈ {W,C} (1.16)

For a broad atom distribution2 the characteristic functions ϕa are sharply peaked

around k ≈ k0. Since we assumed J to be quite flat we simply replace it by

J(ω0). Similarly, we perform a first order Taylor expansion of the exponential

ωk ≈ ω0 + c(k − k0) · k̂0. Notice, that we find a characteristic frequency of

ω0 = ck0 ∼ 300THz, which is much faster than the intrinsic dynamic of the
superatom which is in the MHz regime. Nevertheless, the Taylor-approximation

is well-justified, which we show in the appendix 1.A of this chapter, where we

perform the derivation without the approximation and obtain quantitatively the

same result. Thus, we focus here on the much simpler approach.

We now turn our attention to the time dependence in the equations of mo-

tion (1.16). For this, we may realise that the k-integral effectively gives the L2

inner product between the two functions ϕa(k)e
−ick·k̂0(t−s) and ϕb(k). We use

that the Fourier transformation is unitary so we may equivalently perform this

inner product in real space. Then we change the order of the integrations and

find for the time integral in equation (1.16)∫ t

0

dsαb(s)F−1
[
ϕa(k)e

−ick·k̂0(t−s)
]
(r)

=

∫ t

0

dsαb(s)

p(r − ck̂0(t− s)) a = W

N
[
p2(r − ck̂0(t− s))− p(r−ck̂0(t−s))

V

]
a = C

(1.17)

For the experiment we outline in section 1.4 we have a trap size of 10 µm. Thus,

2For the previously discussed experimental parameters we have a characteristic size of σ ∼
10 µm, so that σk0 ∼ 10.
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1.3 Interaction of light with a Rydberg gas

the significant timescale in pz(z − ct) is limited to a few femtoseconds, much

faster than any other timescale in our system. We may thus replace αb(s) with

αb(t) in (1.17) and therefore also in the equations of motion (1.16). Since the

atomic distribution quickly decays, there should be no relevant difference whether

we integrate s on (0, t) or extend the domain to (−∞, t). With the extended

domain we may substitute u = c(t − s) and find that the remaining integrals

are independent of t and the equations of motion are Markovian to a good

approximation.

In summary we end up with the equations of motion

α̇a(t) = −(2π)3

c~2
NJ(ω0)

∑
b∈{C,W}

γabαb(t), (1.18)

where the coupling matrix elements

γab =

∫ ∞

0

du

∫
R3

d3k ϕa(k)ϕ
∗
b(k)e

−ick·k̂0u

depend on the specific atom-trap geometry. As an instructive example we

consider now a Gaussian atom distribution and assume that k0 is aligned with

the z-axis of the trap, i.e., k0 = k0ez. Then we find the coupling matrix elements

γWW =
1

2A
, γWC =

N
V

1

6A
= γCW , γCC =

N 2

V 2

1

6A
, (1.19)

with the Süssmann volume and area V =
∏

j∈{x,y,z}

√
4πσ2

j and

A =

(∫
R2

dxdy p2x(x)p
2
y(y)

)−1

=
∏

j∈{x,y}

√
4πσ2

j , (1.20)

respectively. The normalisation factor of |C〉 becomes N = V /(
√

64/27 − 1),

and σj denote the standard deviation of the Gaussian distribution in the three
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Figure 1.3

Amplitudes of the bright state and second most relevant state for a Gaussian atom

distribution and the respective probabilities. Overall the bright state evolution mostly

resembles an exponential decay, however, modified compared to the decay without any

coupling to |C〉 (dashed line). The |C〉-probability initially increases, but accounts for
about 5% of the total population before decaying again.

directions. Interestingly, for the Gaussian distribution, all physical quantities

can be collected in the single coupling rate

κ =
(2π)3

c~2
NJ(ω0)

2A
, (1.21)

which defines the time scale of the bright state decay, while the numerical

quantity N /V = (
√

64/27 − 1)−1 ≈ 1.85 completely controls the qualitative

behaviour of αW and αC . We want to emphasise at this point that the coupling

strength κ scales with the number of atoms, which is one of the key reasons that

the interaction of light with superatoms is observable in experiments with only a

few photons and represents the superradiant nature of |W 〉.
Figure 1.3 shows the amplitudes and populations in the |W 〉 and |C〉 states.

Most importantly we find that the auxiliary state |C〉 accounts for ≈ 5% of the

total population at most. Below, we will compare our results to values from the

literature and find that under different assumptions the chance for secondary
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1.3 Interaction of light with a Rydberg gas

excitations can be higher. Yet our approach shows one key feature: even when

accounting for the dipole-dipole interaction of the atoms, the decay of the bright

state is predominantly exponential, although with a slightly modified rate, as

can be seen in figure 1.3.

It should be also noted that we focused on the coherent exchange of virtual

photons for the atom-atom interactions. Yet, there are additional coherent and

incoherent mechanism which influence the time evolution of the atoms and

excite states orthogonal to |W 〉. For example, as the states depend on the explicit
position of the atoms positions, thermal motion and fluctuations in the atom-trap

will impact the superatom evolution. At the end of this chapter we will discuss

how we include these effects in an effective superatom model.

1.3.3 Emission from an excited superatom

We are now familiar with the intrinsic dynamics of a superatom and have seen

that its decay from the bright state |W 〉 is well-captured by an exponential
decay of |W 〉 with a weak coupling to an additional state |C〉. Now we want
to determine the state of the photon, after its interaction with the superatom

under this process. The photon state is captured by the coefficient ψk, which we

directly obtain from integrating (1.15a).

Hence the asymptotic photon state is given by

ψk(∞) =
1

i~
√
N

√
J(ωk)√
Ṽ

ϕ∗
W (k − k0)

∫ ∞

0

dt ei(ωk−ω0)tαW (t)

+
1

i~
√
N

√
J(ωk)√
Ṽ

ϕ∗
C(k − k0)

∫ ∞

0

dt ei(ωk−ω0)tαC(t). (1.22)

As the equations of motions (1.18) for the coefficients αW , αC resulted in a

coupled system of first order differential equations we know that αW (t) and
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αC(t) are generally described by a superposition of two exponential decays

αa = c(1)a e−κ1t + c(2)a e−κ2t, a ∈ {W,C},

where κj is one of the eigenvalues of the coefficient matrix κγab (1.19). Conse-

quently, the integrals in (1.22) results in 1/(κj−i(ωk−ω0)). Given a coupling rate

κ in the MHz regime, this denominator already vanishs for deviations of k from

k0 on the order of fm
−1. Thus emission from the |C〉 state can be completely

neglected, as ϕC(0) = 0 and since relevant changes of ϕC(k) only occur on

the scale 1/σ, with the atom-trap size σ ∼ 10µm. Therefore, we find that the

asymptotic photon state is well-described by

ψk(∞) ≈ 1

i~
√
N

√
J(ωk)√
Ṽ

ϕ∗
W (k − k0)

[
c
(1)
W

κ1 − i(ωk − ω0)
+

c
(2)
W

κ2 − i(ωk − ω0)

]
.

(1.23)

This is to say that the photon is dominantly emitted into the k0 direction, which

was the original direction of the photon before the scattering.

The interaction of a resonant photon with a superatom therefore approxima-

tively preserves the wave vector of the photon and the scattering is thus mostly

one-dimensional. Even more, we also see that backscattering is almost com-

pletely suppressed. We will refer to this one-dimensional and uni-directional

scattering as chiral emission in the following. It is one of the most crucial com-

ponents in the effective superatom model, which we postulate at the end of this

chapter.

1.3.4 Comparison to the literature

In the last sections we employed specific assumptions about our system in the

derivations of the two central results: The bright state captures most of the

superatom dynamics and the emission is chiral, i.e., almost perfectly conserves
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the wave vector. Before we now continue and summarise these results in an

effective model for the superatom, we should first gauge whether our approach

was justified. Luckily for us, in the late 2000s and early 2010s the decay of a

weakly excited cloud and the subsequent photon emission was studied in great

detail and with multiple complementary approaches [56, 75–82], to which we will

compare our results in this section. In particular, we will go over the early works

of Scully and coworkers [75–77], and the article by Manassah [56]. These articles

and our approach follow slightly different assumptions and employ different

approximations, while aiming to answer similar questions. Consequently, this

comparison of notes allows us to justify our previous discussions.

Firstly, let us summarise the articles of Scully et al. [75–77]. These articles

study the decay of an atom cloud from the bright state in the dipole and rotating

wave approximation. However, the coupling between atomic states, denoted as

Agarwal-Fano coupling [83] in these articles, is ignored. In this regard, these

articles resemble our theory, with the Krylov expansion halted only after the first

state, i.e., the bright state. Scully and coworkers find the exponential decay of

the bright state and perfect chiral emission for an atomic sample of size σ � 1/k0,

which nicely coincides with our results. Additionally, the most recent article [77]

studies large atomic clouds (σ � c/κ), where light-propagation through the

entire cloud requires more time than the internal dynamics of the superatom

and retardation effects cannot be neglected. Here, the bright state undergoes

periodic decays and revivals with rate κ (which used to be the decay rate), while

the overall bright state decay occurs on the timescale σ/c.

These early articles thus verify our results from the last sections. However,

they lack the inclusion of atom-atom interaction, which we already determined

to be potentially relevant. Thus, we now turn to the article by Manassah [56],

who numerically determined the full excitation probability without truncating

atomic states as we did.

Manassah treated the atoms as quantum-mechanical dipoles in a spherically
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homogeneous geometry. With the assumption that the atomic density is large

enough to treat the atoms as a continuous field β, he arrives at an integro-

differential equation

∂tβ(r, t) =

∫
dr′G(r − r′)β(r′, t), (1.24)

which he solves numerically via an eigenvalue expansion. He then finds the

probability that the cloud is excited, without being in the bright state, to reach a

maximal value of about 17%.

Our lower estimation of 5% is exclusively due to our truncation of the Krylov

basis. While Manassah considers corrections beyond the rotating wave approx-

imation in his article, these altogether drop out in his integral Kernel G(r) 3.

We could also expect the spherical homogeneous geometry to be the culprit of

the large chance for secondary excitations, yet follow-up research on Gaussian

traps [80] showed similar large probabilities for secondary excitations.

We see that our truncated Krylov basis approach results in the correct be-

haviour for the photon emission, but we should ask ourselves whether it is suitable

to describe the superatom state, especially since we saw that we are underes-

timating secondary excitations. Manassah’s article, however, showed that the

bright state has an initial exponential decay. The decay then slows down due to

the repopulation of the bright state from the secondary excitations. However,

this only occurs after the bright state population is already down to PW < 10−3.

In a full treatment, the secondary excitations thus increase the decay rate but

barely lead to revivals of the bright state population, contrary to what we found.

In this regard, our truncated basis even over-estimates the impact of secondary

3The kernel is derived in [78]. Here the one-photon-two-atom excitation sector is included as
a correction beyond the rotating wave approximation, which yields an e−iω0t term in the
atomic equations of motions, as can be seen in the articles equation (2.15). However, this
term vanishes later since in the integral (2.25) the complex integral may be closed without
encircling any residue for this term.
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excitations in the long-time evolution of the bright state.

We will later, in chapter 6, study the bright state evolution in more detail,

where we solve it exactly in a chiral one-dimensional model and qualitatively

reproduce Manassah’s three-dimensional results. For now, we will summarise

our results in an effective model for the interaction of light with superatoms in

the next section.

1.3.5 Effective superatommodel

We found two important simplifications in our theoretical analysis of the inter-

action of a single superatom with a single resonant photon. Firstly, by absorbing

a photon, the superatom ends up in the superradiant bright state |W 〉, which by
itself almost perfectly describes the evolution of the superatom, as the bright state

is only weakly coupled to other non-radiating superatom states, the so-called

dark states. Secondly, we found that the decay of the bright state produces

photons predominantly with the same wave vector k0 as the original photon

before the absorption.

These results enable us to formulate a simplified description of the coupled

light-superatom system. From here on, we will ignore that the superatom consists

of potentially thousand interacting atoms and coarse-grain its description to its

collective ground state |G〉 and the bright state |W 〉. As we discussed above,
there is a residual coupling of |W 〉 to the dark state manifold, stemming from
both coherent and incoherent processes. For most of this thesis, we will take

a simplified approach to this coupling, by which the bright state |W 〉 decays
incoherently with rate γD into an effective dark state |D〉. This description will
be verified by its overall great agreement with experimental results. We will,

however, also encounter situations where this simple picture fails to encompass

all physical effects. In this case, we will reformulate our model by taking the

coherent interaction of the atoms into account by adding a state |C〉 and a
coherent coupling κ between |C〉 and |W 〉 to our model.
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Figure 1.4

Superatoms may simply be considered as three-level atoms, with the indicated level and

decay scheme, for most parts of this thesis. Since the interaction of a superatom with

the light field is highly directed, as visualised by the blue arrow, we may naturally create

a chiral quantum network or multiple chained superatoms.

On the level of the photons the conservation of the wave vector gave rise

to the concept of chirality. Since the propagation direction of the photons is

preserved under the scattering, we can describe the photon propagation in a

one-dimensional theory. In a full one-dimensional description we should account

for photons traveling to the “left” and “right”. However, since backscattering

is strongly suppressed we may also only consider one of these modes. The

superatom decay has a slight chance of scattering in any other direction, away

from the well-defined photon propagation direction. This process is dominated

by the Raman decay of the adiabatically eliminated intermediate states, see

equation (1.1). This effect is well-captured by a heuristic Raman decay rate Γ

for the superatom, which removes one excitation from our system, as emission in

any other direction should do.

Due to the directed emission of single superatom it is easy, at least in concept,

to chain up superatoms to build a quantum network of interacting superatoms.

Such systems are also implemented by coupling quantum emitters to waveguides

or nanofibers [84–89], and, due to this structural similarity, we will also call
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1.4 Experimental Realisation

our free space setup a chiral waveguide. All effects mentioned in the last few

paragraphs are summarised in figure 1.4. This sketch summarises our discussion

and it conveys the correct image for many of the setups we will study in this

thesis.

Experimental Realisation

1.4

We finish this chapter with a discuss on the experimental implementation of

Rydberg superatoms. This section will not provide an extensive overview of

multiple different platforms or follow the chronological developments in this

field. Instead we will put narrow focus on the realisation of Rydberg superatoms

by the group of Prof. Sebastian Hofferberth, with whom the author closely

collaborated during his doctoral research. All experimental results presented in

the later chapters are based on this platform. Here we explain the setup used in

the articles [90, 91] for the creation of a single superatom, and the procedure

from [92] for the creation of multiple superatoms.

In these experiments S. Hofferberth’s group used ensembles of Rubidium

(Rb87) atoms. The Rubidium atoms are first loaded from a magneto-optical trap

into an optical dipole trap and cooled down to< 10µK, via evaporative methods

and Raman sideband cooling. The trap profile is a pancake-like shape with an

extension (1/e-width of the Gaussian distribution) of about σz = 6.5 µm in the

short direction and about σx,y = 10.2 µm in the transverse directions. After the

cooling step the trap typically contains about 104 Rubidium atoms.

TheRubidium atoms are pumped the Rydberg state with a two-photon process

in an EIT setup. First a red laser at 780nm couples the ground state |g〉 =

|5S1/2, F = 2,mF = 2〉 to an intermediate state |e〉 = |5P3/2, F = 3,mF = 3〉
with a detuning of ∆ = 2π · 100MHz. Then a blue laser at 479 nm drives the
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Figure 1.5

Sketch of the experimental setup in the counter-propagating scheme.

transition from |e〉 to the Rydberg state |r〉 = |111S1/2, J = 1/2,mJ = 1/2〉, with
overall two-photon resonance for the |g〉 ↔ |r〉 process.
Only the signal of red laser, called probe beam, is detected after interacting

with the superatom. For this the blue signal is either filtered out when using

a co-propagating beam setup [92] or is directly used in a counter-propagating

setup [90, 91]. The counter-propagating setup results in a smaller dephasing γD

of the Rydberg state into the dark states. This is not always an advantage, as, for

example, we will use this platform in chapter 5 to create a single-photon absorber

from the superatoms, for which the higher dephasing in the co-propagating setup

is explicitly wanted. Since the blue laser effectively turns the Rydberg interaction

on, we will denote it as the control beam. The beams are aligned with the short

direction of the magneto-optical trap.

For the creation of multiple superatoms the trap geometry is augmented

and additional optical traps are needed. First, the atoms are loaded into a

cigar-shaped crossed optical dipole trap of radial extend of 6.5 µm and 55 µm

length in the transversal direction. The optical dipole trap is then intersected

perpendicular by up to three additional tightly focused optical traps. In order

to remove atoms between the individual optical traps, the crossed dipole trap

is turned off for a short time, but has to be turned on again to provide radial

confinement. The number of superatoms generated in this way is limited by the

size of the crossed optical dipole trap. This particular setup is summarised in
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1.A Exact treatment of the energy phase

figure 1.5.

In our model the superatoms are characterised by three parameters: the

coupling strength to the probe beam κ, the Raman decay rate Γ and the dephasing

rate γD into the dark state manifold. Those parameters are experimentally

determined by fitting the Rabi profile of a driven superatom to the theoretical

model. We will give the precise numerical values later whenever they become

relevant. At this moment it is completely sufficient to just discuss their relative

magnitude. In the mentioned articles we had Γ ≈ 0.02 − 0.2 µs−1, κ ≈ 0.3 −
0.5 µs−1 and γD ≈ 1.0 − 2.5 µs−1 [90–92], i.e., Raman decay typically plays a
secondary role and may be neglected occasionally, while the strong dephasing

γD always has to be considered in any practical discussions.

Appendix: Exact treatment of the energy phase

1.A

In order to solve the k-integration in equation (1.16) we incorporated the fre-

quency by a first order Taylor approximation ωk ≈ ω0 + c(k− k0) · k̂0. However,

by comparing the relevant scales we see that this approximation may not be

well-justified. Firstly, ϕa(k) changes significantly on scales of 1/σ, which approxi-

matively translates into a 0.1 µm−1 sensitivity in k for the discussed experimental

parameters. On the other hand, the experimental timescale is defined by κ, which

results in a much greater k sensitivity of κ/σc ≈ 3 ·108, i.e., even small changes in
k that leave ϕa(k) unaltered drastically change the phase in exp(−iωkt). We now

show that the Taylor approximation nevertheless produced the correct result, as

long as the atom cloud is much larger as k0.

For this we assume a Gaussian trap profile with spherical symmetry and

standard deviation σ, and explicitly calculate the k integral in (1.16). For this, we

assume that k0 = k0ez and perform the integration in spherical coordinates. For
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Results of the k integral in (1.16) for a Gaussian trap profile. Solid lines indicate the

exact results for the real and imaginary part, while the dashed lines represent the result

from the Taylor approximation.

simplicity, we just focus on the contributions of ϕW (k) = exp(−σ2k2/2), which

results in the kernel

K(t) =

∫
R3

d3k e−σ2(k−k0)2e−ic(k−k0)t

=

∫ ∞

0

dk

∫ π

0

dθ

∫ 2π

0

dϕ k2 sin(θ)e−σ2(k2−2kk0 cos(θ)+k20)e−ic(k−k0)t

=

∫ ∞

0

dk
πk

k0σ2

(
e−σ2(k−k0)2 − e−σ2(k+k0)2

)
e−ic(k−k0)t (1.25)

This integral can be expressed in terms of error functions, however the exact

result does not convey any useful information. Instead, we focus here on the

k0σ � 1 limit and present the exact results below. This coincides with the

discussed experiment where k0σ ≈ 10.

For large k0 we directly see that the second term in the brackets of (1.25) does

not matter. Then we may shift the k integral by k0 and extend the integration
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1.A Exact treatment of the energy phase

domain to (−∞,∞). This then results in∫ ∞

0

dk

(
π

σ2
+

πk

k0σ2

)
e−σ2k2−ickt =

π3/2

σ3
e−c2t2/4σ2

(
1− i

ct

2k0σ2

)
. (1.26)

The real part exactly produces the result from the ωk ≈ ωk0 + c(k − k0)k̂0

approximation, which follows from a simple Fourier transformation

KTaylor(t) =

∫
R3

d3k e−σ2(k2x+k2y+k2z)e−ickzt =
π3/2

σ3
e−c2t2/4σ2

. (1.27)

Figure 1.6 shows the exact results (1.25) of the k integration for different values

of k0σ. We see that already at k0σ ≈ 2 there is little difference between the real

part of the exact solution and the result obtained from the Taylor approximation

of ωk. The imaginary part only approximatively vanishes at k0σ ≈ 10, which is

the experimental relevant parameter regime, so we find the Taylor approximation

well-justified.
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2 Theoretical description

of superatom scattering

Now that we have learned about superatoms in the last chapter and derived a

simple description of the internal dynamics of an individual superatom, we turn

our attention to the interaction of superatoms with the external light field.

Since the light-superatom interaction conserves the wavevector of the photons,

we will naturally only consider photons propagating along one direction. We

then start with the quantum optical Hamiltonian in one dimension with a dipole-

like description of the superatoms and the superatom-photon interaction in the

rotating wave approximation. Interestingly, even for multiple atoms, this system

has analytic solutions in terms of Bethe states, which we will study first [93–96].

The Bethe states provide every eigenstate of the system and, thus, a complete

description of the light-superatom interaction. Yet, these states turn out to be

quite cumbersome in any practical calculation, as the number of different Bethe

states (equivalent to photonic bound states) grows exponentially with the number

of photons. For most applications, we do not need the full information of the

emitted light field, but we are content to either be able to determine the field

amplitude at some particular point in space or to have all information about one
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2 Theoretical description of superatom scattering

specific spatial mode of emitted light. More clearly, we want to trace out all

non-relevant constituents of the entire system and study the reduced dynamics

of the remaining degrees of freedom.

This goal is achievable, in particular, due to chirality [97]. Chirality gives rise

to simple input-output relations, which relate the incoming light to the emitted

light field and the response of the superatoms to the incoming photons [98–100].

The input-output relations allow us to calculate arbitrary n-point correlation

functions of the outgoing light field simply by knowing the field by which we

drive the atoms and the full quantum statistics of the superatoms. Hence, the

correct tool in this situation is the quantum-optical master equation [101–103],

where the light field is treated as the bath and traced out, resulting in a master

equation for the superatoms. Contrasting full 3d quantum optics, we will find

that, up to negligible retardation effects, the quantum optical master equation is

exact in chiral systems.

While the quantum optical master equation provides a convenient tool to

study correlations in the outgoing light field, we lose all information about the

mode profile of the emitted light. We may, however, adapt the superatom’s

master equation to encompass individual light modes. This theory is based on a

powerful framework for quantum input-output networks, like a chiral superatom

chain, denoted as the SLH-formalism [104–107]. Within this theory, we place

one virtual cavity behind the superatoms for each light mode we want to study.

We then have to use specific, time-dependent coupling strengths for the cavities,

under which they become transparent only to one specific mode. The asymptotic

occupation in the cavity then gives the number statistics of the selected light

mode.

In this chapter, we will formulate and review these different formalisms. These

formalisms will be the foundation for the analysis in the upcoming chapter.
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2.1 Bethe Ansatz solutions

Bethe Ansatz solutions

2.1

2.1.1 Chiral quantum optical Hamiltonian

We start with the derivation of the full Hamiltonian for the light-superatom

system. For this, we will assume, for the moment, that the superatoms are

not subject to the Raman decay Γ or the dephasing γD. We could already

incorporate the dephasing as an imaginary detuning at this point, but we will

take care of it when we switch over to the description via the master equation.

The Hamiltonian consists of two parts, one describing the chiral propagation of

the photons while the second part gives the chiral photon-superatom interaction.

Let us begin with the Hamiltonian for the photon propagation. In a perfect

waveguide without dispersion, this Hamiltonian would read as

HPh =

∫ ∞

−∞
dk ~c|k|b†(k)b(k), (2.1)

where b(†)(k) destroys (creates) a photon with momentum k with [b(k), b†(k′)] =

δ(k − k′) and all other commutators vanishing.

We, however, need to account for the chiral interaction with the superatoms.

For this we first assume, that the superatoms have a resonance frequency ω0 and

only significantly interact with photons within a bandwidth of 2∆k. We may
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2 Theoretical description of superatom scattering

thus ignore all other frequencies for the moment

HPh ≈ −
∫ −ω0/c+∆k

−ω0/c−∆k

dk ~ckb†(k)b(k) +
∫ ω0/c+∆k

ω0/c−∆k

dk ~ckb†(k)b(k)

= −
∫ ∆k

−∆k

dk ~(ck − ω0)b
†(k − ω0/c)b(k − ω0/c)

+

∫ ∆k

−∆k

dk ~(ck + ω0)b
†(k + ω0/c)b(k + ω0/c). (2.2)

By limiting k to the bandwidth we see that [b(k − ω0/c), b
†(k + ω0/c)] = 0.

Hence we may treat the fields in the two terms of (2.2) as independent bosonic

modes, which we denote as bL(k) ≡ b(k− ω0/c) and bR(k) ≡ b(k + ω0/c) for the

moment. These two fields indicate photons propagating to the left and to the

right respectively. As the chiral interaction with the superatom does not mix

the propagation directions and we will always start with photons moving to the

right, we may simply drop the bL field completely.

We are left with bR(k) with k limited to (−∆k,∆k). However, as we already

stated, photons beyond this bandwidth will anyway be not relevant for the

interaction with the superatom. Thus, we may again extend the k domain to

(−∞,∞) for convenience and obtain

HPh =

∫ ∞

−∞
dk ~c(k + ω0/c)b

†
R(k)bR(k). (2.3)

Finally, as ω0 is the resonance frequency of the atoms we may go into the rotating

frame to drop it from the Hamiltonian. Thus, we end up with the Hamiltonian

for chiral photon propagation

HPh =

∫ ∞

−∞
dk ~ckb†(k)b(k), (2.4)

where we now dropped the R-index for simplicity.
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2.1 Bethe Ansatz solutions

Next, we have to specify the photon-superatom interaction. As we already

stated, we work within the dipole and rotating wave approximations, so that

Hint =
√
κ~

N∑
j=1

(
b†(xj)σ

−
j + b(xj)σ

+
j

)
, (2.5)

where we consider N superatoms at locations xj, with σ
+
j = |Wj〉〈Gj| = (σ−

j )
†,

|Gj〉 and |Wj〉 denoting the collective ground state and bright state of the j-th
superatom respectively. Here, κ denotes the superradiant coupling of the bright

state to the light field, as discussed in the previous chapter. As we are in the

rotating frame we have already taken care of the energy ~ω0 of the bright state

and we do not have to include it here.

2.1.2 Bethe state solutions

The eigenstates of the full Hamiltonian H = HPh +Hint follow from the Bethe

Ansatz [93, 94]. In this section we will not give a full derivation of the Bethe

states, but we will sketch out the necessary steps for the case of a single superatom

and then discuss the eigenstates in more detail. We will also limit ourself to just

a single superatom for simplicity, as theN atom derivation follows the same steps.

The N atom results can be found in [95, 96]. At the end of this section, we will

use the Bethe states to derive the Green’s function for scattering n photons on a

single superatom, with which we can solve the respective scattering problems.

We will use ~ = 1 = c from here on.

For the Bethe Ansatz solutions one starts by constructing the single-excitation

eigenstates. For our Hamiltonian this is straightforward and we obtain a plane-

wave like solution

|λ〉 = C(λ)

∫
dy f(y, λ)eiλyr†(y, λ)|0〉, (2.6)
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2 Theoretical description of superatom scattering

where |0〉 is the collective photon-superatom ground state, C(λ) is a normalisation
factor, and

f(y, λ) =
λ− iκ/2 sgn(y)

λ+ iκ/2
,

r(y, λ) = b(y) +

√
κ

λ
δ(y)σ−.

The quantum number λ in the Bethe Ansatz is commonly called rapitity. It

gives the eigenenergy Eλ = λ (in SI units ~cλ) and may be therefore interpreted
as the momentum.

Next, we need to construct the eigenstates of the higher excitation sectors.

For systems that are solved by the Bethe Ansatz the multi-excitations are simply

products of the single-excitation states, with additional prefactors, that account

for the exchange of two excitations. For the system at hand this results in the

n-particle Bethe states

|λ〉 = Cn(λ)

∫
dny

∏
j<l

(
1 +

iκ sgn(yj − yl)

λj − λl

) n∏
j=1

f(yj, λj)e
iλjyjr†(yj, λj) |0〉 ,

(2.7)

with λ = (λ1, . . . , λn).

On a first glimpse, however, it appears that we have not found every eigenstate

of H as, for example, the kernel∫
R2

d2λ|λ1, λ2〉〈λ1, λ2|

does not resolve to the identity. This does not happen because the Bethe Ansatz

lacks certain states, but since we were too restrictive in our treatment of λ.

As we look for scattering states of a hermitian Hamiltonian we generally have

two conditions on the solutions |λ〉: the energies Eλ =
∑
λj have to be real and

the eigenstates in position space 〈x1, . . . , xn|λ〉 have to be bounded. We can
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2.1 Bethe Ansatz solutions

fulfil these conditions with complex λ as well, as long as we form so called strings,

i.e., two or more λj possess the same real part Λ and differ in the imaginary part

by iκ, with the sum of the imaginary parts vanishing. For example,

|Λ3〉 ≡ |Λ− iκ,Λ,Λ + iκ〉 (2.8)

gives a three-particle string Bethe state, with central rapitity Λ. We will later

see, that these states are related photonic bound states.

In principle, we are now equipped to study scattering problems at a single

superatom. In practice, however, the Bethe solutions do not lend themselves to

studying more than a few photons as the number of relevant bound states, or

Bethe string states, grows as exp(
√
n) for n excitations. More precisely, there

are as many string states for a given number n of excitations as there are ways to

partition n into a sum of positive integers. For example, for four photons, we

have to consider four independent rapitities, one or two 2-particle string states,

a 3-particle string state and a 4-particle string state, with all remaining rapitities

being independent. Therefore, we now need to find a way to circumvent the

tedious string summation.

2.1.3 Eigenmode decomposition and Green’s function

Yudson [94] developed a strategy by which the string summation in the eigen-

mode decomposition can be completely circumvented. Instead of working with

very specific, complex string arrangements, his idea was to modify the eigenstates

|λ) and allow for arbitrary complex rapitities, such that in a well-tailored contour
integral we obtain a simpler representation of the identity

|ψ〉 =
∑
strings

∫
dλ|λ〉〈λ|ψ〉 =

∫
Γ

dλ|λ〉(λ|ψ〉. (2.9)
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2 Theoretical description of superatom scattering

Here, we follow the notation of the original publication where the auxiliary state

|λ) is distinguished from the eigenstate |λ〉 by a round bracket. Let us now
outline the key ideas behind this simplified representation; for a full proof we

refer to the original publication.

The auxiliary state reads as

|λ) =
√
n!

(2π)N/2

∫
dnyΘ(y1 ≥ · · · ≥ yn)

n∏
j=1

f(yj, λj)e
iλjyjr†(yj, λj) |0〉 , (2.10)

where the Heaviside function Θ is understood to be 1, whenever the condition

in the argument is fulfilled. The contour Γ = γ1 ⊗ · · · ⊗ γn has to be tailored to

the wavefunction |ψ〉. However, it is enough to understand how to pick Γ for

the position space basis state

|x1, . . . , xn〉 = b†(x1) . . . b
†(xn)|0〉,

where we sorted the positions as x1 ≥ · · · ≥ xk > 0 > xk+1 ≥ · · · ≥ xn. Then,

any curves γj that fulfil Re γj(±∞) = ±∞ and the inequalities

Im(γj+1)− Im(γj) > κ Im(γj≤k) < κ/2 Im(γj>k) > κ/2,

yield Yudson’s eigenmode decomposition (2.9).

We now obtained a sufficiently simple way to calculate the time evolution

of photonic states in our chiral system. Therefore we should now try to solve

scattering problems with the presented method. Luckily for us Yudson’s original

article [94] also provides one central quantity for these kind of problems: the

Green’s function. As we have strict chirality it makes sense to start with photons

all in front of the superatom and ask for their respective distribution after the
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2.2 Quantum optical master equation

scattering process, that is, we want to find

G(y, x) = lim
t→∞

〈y1, . . . , yn|e−iHt|x1, . . . , xn〉,

with xj < 0, yj > 0. With the contour integral from above, Yudson then showed

that the Green’s function in the yn < · · · < y1 sector reads as

G(y, x) =
∑
σ∈S′

n

∫
Γ

dnλ

(2π)n

n∏
j=1

λj − iκ/2

λj + iκ/2
eiλj(yσ(j)−xj)

=
∑
σ∈S′

n

n∏
j=1

(
δ(xj − yσ((j))− κΘ(xj − yσ(j))

)
e−κ(xj−yσ(j))/2, (2.11)

where the permutations are restricted to σ(j) ≥ j − 1. In the author’s master

thesis [108] we proofed that we can circumvent the summation over different

permutations and the Green’s function may be further simplified to

G(y, x) = lim
xn+1→−∞

n∏
j=1

∂αj
e−καjΘ(xj +αj − yj)Θ(yj +αj − xj+1)e

−κ(xj−yj)/2

∣∣∣∣
αj=0

(2.12)

in the y1 > · · · > yn sector.

Quantum optical master equation

2.2

2.2.1 Derivation

The solutions based on the Bethe Ansatz are well suited to describe the scattering

of few photon Fock states. For all other initial conditions, however, we quickly

run into problems. Take for example coherent states. They describe the light

emitted from a laser and, consequently, are important for us. As they are an
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2 Theoretical description of superatom scattering

infinite sum of Fock states, our previous technique is ill-suited for these states.

Conveniently, coherent states possess properties, with which the light field

may be completely removed from the description. We will do so in this section

and, through this, derive the quantum optical master equation for our chiral

superatom system.

We start with the full Hamiltonian H = HPh + Hint, consisting of the free

photon propagation (2.4) and the photon-superatom interaction (2.5). It yields

the Heisenberg equation of the photonic annihilation operator

ḃ(k) = −ikb(k)− i

√
κ

2π

N∑
j=1

σ−
j e

−ikxj . (2.13)

The formal solution to this differential equation is

b(k, t) = b(k)e−ikt − i

√
κ

2π

N∑
j=1

∫ t

0

ds σ−
j (s)e

−ik(xj+t−s), (2.14)

or equivalently, in real space,

b(x, t) = b(x− t)− i

√
κ

2π

N∑
j=1

∫
dk

∫ t

0

ds σ−
j (s)e

−ik(xj−x+t−s). (2.15)

Now, let A be some arbitrary superatom operator, i.e., [A, b(k)] = 0 =

[A, b†(k)]. Its Heisenberg equation of motion is

Ȧ =
i

~
[Hint, A] = i

√
κ

N∑
j=1

[σ+
j (t), A(t)]b(xj, t) + b†(xj, t)[σ

−
j (t), A(t)]
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= i
√
κ

N∑
j=1

[σ+
j (t), A(t)]b(xj − t) + b†(xj − t)[σ−

j (t), A(t)]

+ κ
∑
j>l

(
[σ+

j (t), A(t)]σ
−
l (t− xjl)− σ+

j (t− xjl)[σ
−
j (t), A(t)]

)
+
κ

2

N∑
j=1

(
[σ+

j (t), A(t)]σ
−
j (t)− σ+

j (t)[σ
−
j (t), A(t)]

)
. (2.16)

The j > l summation emerges, as the k-integral from (2.15) yields δ(t− xj + xl −
s) ≡ δ(t− xjl − s), which vanishes in the s integration for j < l, when we sort

the atoms such that x1 < · · · < xN . The factor 1/2 for j = l was included since

the delta distribution δ(t− s) acts at boundary of the integration.

We can bring the atom operators in (2.16) into a Markovian Lindblad master

equation, if we neglect the retardation effects σ±
k (t − xjl) ≈ σ±

k (t) due to the

finite separation of the atoms. This is justified in the experimental settings we are

interested in, since we already saw that the superatoms are spaced with microm-

eter distance, corresponding to retardation effects on the order of femtoseconds,

which is too fast to be resolved by the microsecond dynamics of the light-atom

interaction. With that we find

κ
∑
j>l

(
[σ+

j , A]σ
−
l − σ+

l [σ
−
j , A]

)
+
κ

2

N∑
j=1

[σ+
j , A]σ

−
j − σ+

j [σ
−
j , A]

= κ
∑
j>l

(
σ+
j Aσ

−
l + σ+

l Aσ
−
j − Aσ+

j σ
−
l − σ+

l σ
−
j A
)

+ κ

N∑
j=1

(
σ+
j Aσ

−
j − 1

2

(
σ+
j σ

−
j A+ Aσ+

j σ
−
j

))
= κ

∑
j,l

(
σ+
j Aσ

−
l − 1

2

(
σ+
j σ

−
l A+ Aσ+

j σ
−
l

))
+
κ

2

∑
j>l

[σ+
j σ

−
l − σ+

l σ
−
j , A]

≡ κD†
σ− [A] + i[Hexc, A], (2.17)
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2 Theoretical description of superatom scattering

where D† is the adjoint Lindblad dissipator D†
σ− [A] = σ+Aσ− − {σ+σ−, A}/2

with the collective decay operator σ− =
∑

j σ
−
j and we found the atom-atom-

interaction Hamiltonian Hexc = iκ/2
∑

j>l σ
+
l σ

−
j − σ+

j σ
−
l , which describes the

exchange of a virtual photon between two superatoms.

It should be noted that our result in the Lindbladian form does not convey

the chiral propagation of excitations in the system. However, chirality emerges as

an interplay of the superatom decay and the atom-atom interaction. This may be

seen if we go over to a quantum jump trajectory description [109, 110], where the

effective Hamiltonian is given by the combination of the original Hamiltonian

and the anti-commutator term of the dissipator, i.e.,

Heff = −iHexc −
κ

2
σ+σ− = κ

∑
j>l

σ+
j σ

−
l +

κ

2

∑
j

σ+
j σ

−
j . (2.18)

The effectiveHamiltonian clearly acts on the superatoms by destroying excitations

at some early point in the atom chain and re-creating it at some later superatom,

thus showing the chirality.

Next, we have to trace out the photons, which is straightforward as we consider

a coherent input state ρ = ρAt ⊗ |α〉〈α|. We take the photon operator terms
in (2.16) and trace out the photonic degrees of freedom

i
√
κ

N∑
j=1

TrPh
((

[σ+
j (t), A(t)]b(xj − t) + b†(xj − t)[σ−

j (t), A(t)]
)
ρ
)

≈ i
√
κ

N∑
j=1

TrPh
(
[σ+

j (t), A(t)]b(x1 − t)ρ+ [σ−
j (t), A(t)]ρb

†(x1 − t)
)

= i
√
κ

N∑
j=1

TrPh
(
[α(t− x1)σ

+
j (t) + α∗(t− x1)σ

−
m(t), A(t)]ρ

)
≡ TrPh

(
i[H ′

drive(t), A(t)]ρ
)
. (2.19)
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2.2 Quantum optical master equation

where we again neglected retardation by approximating xj ≈ x1 and defined

α(t) as the classical field amplitude at the first atom at time t. The external light

field thus provides a coherent drive of the superatoms.

We not have yet obtained equations of motion for A that only depend on

superatom operators and ρAt = TrPh(ρ), since we cannot pull the partial trace

in (2.19) to ρ, due to the time evolution in the commutator. This problem can

be circumvented however, if we consider the expectation value 〈A〉 = Tr(Aρ),
where we can switch between the Heisenberg and Schrödinger picture. The

time evolution of 〈A〉 thus becomes

∂t〈A〉 = TrAt
[
− iA[Hexc +Hdrive(t), ρAt(t)] + κADσ− [ρAt(t)]

]
. (2.20)

Here, the driving Hamiltonian Hdrive(t) =
√
κα(t− x)σ+ + h.c. still depends on

time since the c-number α(t) remains a function of time both in the Heisenberg

and Schrödinger picture

Overall we find that the expectation value of an arbitrary superatom-operator

follows from the master equation [101, 102] solution of the density matrix

ρ̇At = −i[Hdrive +Hexc, A] + κDσ− [ρAt], (2.21)

with Dσ− [ρAt] = σ−ρAtσ
+ − {σ+σ−, ρAt}/2. To this master equation we can

manually add the Raman decay Γ and the dephasing γD, as we have discussed

in section 1.3.5, to obtain the full master equation of our superatom model

ρ̇At = −i[Hdrive +Hexc, A] + κDσ− [ρAt]

+
∑
j

ΓD|Gj〉〈Wj |[ρAt] +
∑
j

ΓD|Gj〉〈Dj |[ρAt] +
∑
j

γDD|Dj〉〈Wj |[ρAt], (2.22)

where we extended each emitter j by a dark state |Dj〉. Finally, we want to
emphasis once again, that in the derivation we neglected only retardation effects,
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2 Theoretical description of superatom scattering

stemming from the finite spacing of the atoms. The absence of further non-

Markovian effects is a consequence of the chirality of our system.

2.2.2 Input-Output relations and photonic correlation functions

Since the superatoms occupy a region of an extent ∼ 100µm we are justified to
place all atoms at the origin xj ≈ 0 as an approximation. This naturally divides

our system into two regions: The half-space x < 0, which we call the input

region, as every photon from here will eventually interact with the superatoms,

and the half-space x > 0, which we subsequently denote as output region as

every photon here will leave the system without interacting with the atoms ever

again.

As the photons are only subject to free propagation in both these half-spaces,

all the information about the input and output fields is encoded in the field

amplitudes directly in front and behind the atoms, respectively. For this we

define the input field bin(t) = limε→0− b(ε, t) and the output field bout(t) =

limε→0+ b(ε, t).

The input and output field are directly related by the solution of the photonic

Heisenberg equation (2.15)

bout(t) = bin(t)− i
√
κ

N∑
j=1

σ−
j (t), (2.23)

which is known as the input-output relation [98, 111]. It simply states, that the

output of the superatom system is its input, together with the response of the

atoms. With the input-output relations we can, for example, evaluate photonic

correlation functions for a coherent input, if we know the time evolution of the

atoms. This is readily achieved, thanks to the quantum optical master equation

from the last section.

As an example consider G(2)(y, z), the non-normalised correlation function
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2.3 Mode population in the SLH formalism

to measure one photon at location y and one at z at some specific time t. It

becomes, in terms of the initial coherent field amplitude α(t) at the position

x = 0 of the atoms and the atom operators,

G(2)(y, z) = 〈b†(y, t)b†(z, t)b(z, t)b(y, t)〉

= 〈b†out(t− y)b†out(t− z)bout(t− z)bout(t− y)〉

=
〈(
α∗(t− y)− i

√
κ
∑

σ+
j (t− y)

)(
α∗(t− z)− i

√
κ
∑

σ+
j (t− z)

)
×
(
α(t− z)− i

√
κ
∑

σ−
j (t− z)

)(
α(t− y)− i

√
κ
∑

σ−
j (t− y)

)〉
,

(2.24)

where we assumed y > z. The unequal-time atom operator correlation function

can be determined with the quantum regression theorem [99, 100, 110–112].

The quantum regression theorem states, for example, that two-point correlation

functions 〈A(t2)B(t1)〉, t2 > t1 can be calculated by first evolving ρ up to t1

and then evolving Bρ(t1) for the remaining time t2 − t1 under the same master

equation.

Mode population in the SLH formalism

2.3

The Bethe Ansatz solutions provide all the information about the outgoing light

field when dealing with Fock states, but at the cost of cumbersome calculations.

The chiral master equation, on the other hand, is straightforward to solve nu-

merically, but we are limited to the study of n-point correlation functions of the

output light field. In this section, we find a third description for our superatom

system, which is almost as powerful as the Bethe Ansatz description but is still

given by a finite-dimensional master equation. The new formulation is based on

the SLH-formalism [104, 105], which we introduce below, and the restriction of
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2 Theoretical description of superatom scattering

the input and output light field to a few specific temporal modes, instead of the

full Fock space.

To begin, we need a change of perspective. So far, we have pictured the

atoms as chiral emitters, passing photons from left to right. To be more general,

we can think of our system as an instance of a chiral quantum input-output

network. Such a network consists of individual quantum nodes that absorb and

emit bosonic modes with directed and non-dispersive propagation between the

nodes.

To describe the evolution of the network, we need three pieces of information

about each node: the “scattering matrix” S of the node, the coupling operator

L between the node and the bosonic background, and the Hamiltonian H,

describing the free evolution of the node. Here S simply describes the node’s

action on the bosonic background; for example, a phase shifter has S = eiφ. This

description of the quantum network provides the name SLH-formalism, as this

triple G = (S, L,H) fully determines the evolution.

Given the triple G = (S, L,H) for each node of the network we can construct

the full master equation for the quantum network from some simple rules. Here

we only need the concatenation rule C : G2 × G1 → G3 for chaining up two

nodes, which is

(S2, L2, H2)C (S1, L1, H1) =(
S2S1, L2 + S2L1, H1 +H2 +

1

2i

(
L†
2S2L1 − L†

1S
†
2L2

))
. (2.25)

Provided the triple (S, L,H) of the full network, it then evolves according to the

Hamiltonian H and Lindblad dissipator DL.

For example, a single superatom has the triple (S = 1, L =
√
κσ−

i , H = 0),

i.e., it decays with rate κ by emitting a photon but does not convey any other
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2.3 Mode population in the SLH formalism

dynamics. Two superatoms in a row then give

(1,
√
κσ−

2 , 0)C (1,
√
κσ−

1 , 0) =

(
1,
√
κ(σ−

1 + σ−
2 ),

iκ

2
(σ+

1 σ
−
2 − σ+

2 σ
−
1 )

)
, (2.26)

which perfectly reproduces our previous result (2.17) for the collective decay and

exchange Hamiltonian in the two-atom case.

Now we discuss, how incoming and outgoing photons are included as SLH-

nodes. This was solved by A. H. Kiilerich and K. Mølmer in their articles [106,

107]. They showed that for each considered temporal mode in the input (output)

field, one has to place a virtual cavity in front (after) the superatom chain, each

with a specific cavity coupling rate L = g(t)b that makes the cavity transparent

only to a single mode. In the following we will be content with discussing the

simplified situation of a single input and a single output cavity.

First, let us consider an initial photon state |ψin〉 =
∑∞

n=0 cn(b
†
u)

n|0〉. Here,
b†u creates a photon in the temporal mode u(t), with u(t) describing the field

amplitude at the superatoms x = 0 at time t. We then have to give the input

cavity the coupling rate

gu(t) =
u∗(t)√

1−
∫ t

−∞ ds |u(s)|2
, (2.27)

and put the cavity in the initial state |ψin〉, where bu are now operators on the
cavity Fock space. Similarly, if we want to study photons in the specific output

mode v(t), measuring the field amplitude directly behind the superatom chain at

time t, we have to place a virtual cavity behind the superatoms with the coupling

rate

gv(t) = − v∗(t)√∫ t

−∞ ds |v(s)|2
. (2.28)

The asymptotic state of the output cavity then gives precisely the photon number
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2 Theoretical description of superatom scattering

distribution of the photons emitted in the mode v(t).

In total, given the superatom chain SLH-triple (1,
√
κσ−, Hexc), we can study

arbitrary photon input states in mode u(t) and observe output photons in mode

v(t) by simulating the quantum network

(1, g∗v(t)bv, 0)C (1,
√
κσ−, Hexc)C (1, g∗u(t)bu, 0), (2.29)

with bu (bv) the input (output) cavity annihilation operator. This results in a

master equation for the cavity-superatom system which consists of the collective

decay

L =
√
κσ− + g∗u(t)bu + g∗v(t)bv (2.30)

and the cavity-superatom exchange Hamiltonian

Hexc +
i

2

(√
κgu(t)b

†
uσ

− +
√
κg∗v(t)σ

+bv + gu(t)g
∗
v(t)b

†
ubv − h.c.

)
. (2.31)

Alternatively, if we just consider a coherent input field, i.e., |ψin〉 = |α〉, we may
trace out the initial photon field again. This removes the input cavity from our

system, but introduces the driving Hamiltonian

Hdrive = i
(
α∗(t)L− α(t)L†), (2.32)

for the superatom chain and output cavity with α(t) = αu(t). Notice, that

without the output cavity this reproduces our previous result (2.19) after a phase

rotation α(t) 7→ iα(t).
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3 Photon correlations by

superatom interaction

The ability to facilitate and control the interaction between two photons is

essential for many modern applications [113, 114]. Examples include quantum

communication [115], quantum metrology [116, 117], and quantum computation

with photons [21, 118, 119], which always requires optical non-linearity [120, 121].

Effective photon-photon interactions emerge in many platforms, like atoms in

optical cavities [122–125] or quantum emitters coupled to waveguides [126–131].

In this chapter, we study how a single superatom mediates effective photon-

photon interactions, which are strong enough to provide measurable three-photon

correlations [90, 132].

The discussion in this chapter follows the article [90], where the author of

this thesis contributed the Bethe state analysis. This analysis reveals the string

solutions, which may be interpreted as photonic bound states, to be the origin

of the observed correlations. Moreover, as the bound states show a universal

dependency on the photon-photon separation for sufficiently broad initial wave

functions, they predict a generic form for the emerging correlation functions.

In addition to the author’s contribution, we will discuss the experimental
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3 Photon correlations by superatom interaction

results and show the predictive power of the quantum optical master equa-

tion (2.21). Other than the Bethe Ansatz, the master equation can account for

Raman decay Γ of the superatom and its dephasing γD into a dark state. With

these two additional parameters, the master equation is able to almost perfectly

reproduce the experimental results.

Predictions from the Bethe states

3.1

3.1.1 Few Photon scattering solutions

We first want to describe the scattering within the Bethe Ansatz. For this,

we consider the scattering of a few-photon Fock state on the superatom and

determine the two- and three-photon correlation functions from the scattering

solutions.

We are mainly interested in the two- and three-body correlations and conse-

quently analyse the scattering of a two- and three-photon product stateψ0(x1, . . . , xn) =

ψin(x1) . . . ψin(xn). Let us start with the two-photons state, for which the outgoing

wave function in the y1 > y2 sector reads as

ψout(y1, y2) = ψout(y1)ψout(y2)− κ2e−κ(y1−y2)/2ψ2
T (y1), (3.1)

according to our Green’s function (2.12). Here, ψout denotes the single-photon

scattered state

ψout(y) = ∂α

∣∣∣
α=0

e−κα

∫ ∞

−α

dx e−κx/2ψin(x+ y)

≡ ∂α

∣∣∣
α=0

e−καψT (y, α)

= ψin(y)− κψT (y, 0), (3.2)
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3.1 Predictions from the Bethe states

and ψT is the convolution of the single-photon input state with the exponential

kernel.

The two-photon scattering result has a straightforward interpretation: When

two photons interact with a single superatom, they are either independently

scattered, resulting in a product wave function ψout(y1)ψout(y2), or stimulated

emission occurs, leading to strong spatial correlation between both photons. This

is indicated by the exponential suppression exp(−κ(y1 − y2)/2) in the relative

distance between both photons. To underline the spatial proximity of both

photons, we will call the second term a two-photon bound state

ψB(y1, y2) = e−κ(y1−y2)ψ2
T (y1) (3.3)

for y1 > y2.

The two-photon result (3.1) is only valid in the y1 > y2 sector. Hence we

symmetrise the result by replacing y1 7→ max(y1, y2) = R + |r|/2 and y2 7→
min(y1, y2) = R− |r|/2, where R = (y1 + y2)/2 is the centre of mass coordinate

and r = y1 − y2 the relative distance. Therefore, the symmetrised bound state

becomes ψB(y1, y2) = e−κ|r|/2ψ2
T (R + |r|/2).

If the initial wave function is broad compared to κ, we may drop the r depen-

dency in ψT . The photon separation thus comes mostly from the exponential

prefactor, while the original wave function only impacts the centre of mass shape.

We therefore expect and will see that the correlation functions have a quite

universal form, which comes from the e−κ|r|/2 dependency.

Let us now discuss the three-photon result. Here the scattered wave function

becomes

ψout(y1, y2, y3) = ψout(y1)ψout(y2)ψout(y3)

− κ2
(
ψout(y1)ψB(y2, y3) + ψout(y2)ψB(y1, y3) + ψout(y3)ψB(y1, y2)

)
− 2κ3e−κ(y1−y3)/2ψT (y2)ψ

2
T (y1). (3.4)
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3 Photon correlations by superatom interaction

The three-photon result again consists of the scattering of three independent

photons and the three possibilities for pairing two photons into bound states

with one free photon remaining. Additionally, we find a term with exponential

prefactor exp(−κ(y1 − y3)/2). This term also enforces that the second photon

cannot be separated from the other two photons, as the result (3.4) is only valid

in the sector y1 > y2 > y3. Therefore we should interpret the last line of (3.4) as

a three-photon bound state. This becomes more evident with the exponent in

its symmetrised form, which reads as

max(y1, y2, y3)−min(y1, y2, y3) = (|y1 − y2|+ |y2 − y3|+ |y3 − y1|)/2. (3.5)

3.1.2 Two- and three-photon correlations
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Figure 3.1

Photon intensity after

scattering probe beams of

different intensity (grey

lines). Dashed lines show

fits from the master

equation.

Before we analyse the correlation functions for the scat-

tering solutions, we should first discuss the relevant

parameter regime. In the article [90] we studied coher-

ent light scattered on a single superatom. We excited

the superatom by a Tukey shaped pulse1 of about 6 µs

with negligible ramp up and down times. By compar-

ing the observed Rabi oscillations of the superatom

to the predictions from the master equation (2.21),

as indicated by the figure to the right, we find that

the superatoms is well-described by the parameters

κ = 0.55 µs−1, Γ = 0.14 µs−1 and γD = 1.49 µs−1.

The superatom, at sufficiently strong driving

strength, shows damped Rabi oscillations [103] and

typically reaches its steady state after a few Rabi cycles,

which is accelerated by the dissipative impact of Γ and

γD. This was the case even for the largest experimen-

1A Tukey shaped pulse consists of a cosine-ramp up and down, with flat plateau between
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3.1 Predictions from the Bethe states

tal photon rate of |α|2 = 15.6 photons/µs, as shown in figure 3.1. Therefore, as
we may neglect ramp up effects, we will be justified to study the scattering of

resonant plane waves, which we approximate as

ψin(x) =

 1√
w

x ∈ {−w/2, w/2}

0 otherwise
(3.6)

with w → ∞. We then find −ψout(y) = ψin(y) = κψT (y)/2. Thus, at the centre

yi ≈ 0 of the wave function we find

wψout(y1, y2) ≈ 1− 4e−κ|y1−y2|/2, (3.7)

w3/2ψout(y1, y2, y3) ≈ 1− 4
(
e−κ|y1−y2|/2 + e−κ|y2−y3|/2 + e−κ|y1−y3|/2

)
+ 16e−κ(|y1−y2|+|y2−y3|+|y3−y1|)/4. (3.8)

These results allow us to determine the two- and three-body correlation func-

tions, for the scattering of a weak probe beam on a single superatom. For this

assume the initial state of light is a coherent plane wave |α〉 with the coherent
amplitude α � 1, so that we are justified to only consider the lowest, most

relevant contributions in α. Then, the n-point expectation values becomes

〈b†(y1) . . . b†(yn)b(yn) . . . b(y1)〉 ≈
|α|2n

wn
|ψout(y1, . . . , yn)|2. (3.9)

For the plane wave we subsequently find the two-photon correlation function

g(2)(y1, y2) =
〈b†(y1)b†(y2)b(y2)b(y1)〉
〈b†(y1)b(y1)〉〈b†(y2)b(y2)〉

= |ψout(y1, y2)|2 (3.10)
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Figure 3.2

Two-point (left) and three-point (middle) correlation functions for a flat input mode

from the Bethe Ansatz. The rightmost panel shows connected three-point correlation

function, i.e., the three-body correlations after removing the two-photon contributions.

and the three-point correlation function

g(3)(y1, y2, y3) =
〈b†(y1)b†(y2)b†(y3)b(y3)b(y2)b(y1)〉

〈b†(y1)b(y1)〉〈b†(y2)b(y2)〉〈b†(y3)b(y3)〉
= |ψout(y1, y2, y3)|2, (3.11)

i.e., they are simply given by the respective outgoing wave functions.

For the visualisation of the three-body correlation function we use Jacobi

coordinates

R =
y1 + y2 + y3

3
, (3.12a)

ξ = y1 − y2, (3.12b)

η =
y1 + y2

2
− y3, (3.12c)

which generalise centre of mass and relative coordinates to higher dimension.
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3.2 Master equation solutions and experimental results

The two- and three-photon correlation functions in these coordinates are depicted

in figure 3.2. First, the two-photon correlation functions shows strong bunching

coming from the formation of the sharply located two-photon bound state.

Similarly the three-photon correlation function possesses a substantial bunching

peak right at its centre, together with three lines of noticeable correlations, which

correspond to the positions where two photons are close to each other, while the

third photon is at some different location.

Especially this last contribution is purely due to the two-photon bound states.

In order get proper information about the three-photon correlations we should

subtract the two-photon bound state contribution from g(3). This then gives

raise to the connected three-body correlation function

g(3)c (y1, y2, y3) = g(3)(y1, y2, y3)−
∑
j<l

g(2)(yj, yl) + 2, (3.13)

where the +2 normalises g
(3)
c to zero at ξ, η → ∞. The connected g(3) function

reveals a ring like structure of positive correlations around the centre ξ ≈ 0 ≈ η,

originating from the three-photon bound state.

The Bethe Ansatz revealed how the superatom mediates effective photon-

photon interactions that lead to the formation of photonic bound states. These

bound states then result in strong correlations in the n-photon correlation func-

tions. The bound state interpretation should not be taken too seriously, as these

states are neither orthogonal to the states which we interpreted as independent

photon scattering, nor lead to a lowering of the energy. They simply describe

the bunched spatial photon distribution. Furthermore, the approach from above

is clearly only valid for very weak coherent input states and without any noise on

the superatom. Therefore, we should now approach the problem of the photon

correlations from the master equation (2.21), with which we can study a broader

set of parameters. This analysis was originally performed by J. Kumlin, co-author

of [90].
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3 Photon correlations by superatom interaction

Master equation solutions and experimental results

3.2

In the absence of dephasing, the predicted correlations (figure 3.2) are substantial.

However, the experimental results reveal that we need to take noise into account,

as discussed in section 1.4, especially since the dephasing γD turns out to be the

dominant decay mechanism of the superatom.

For this, consider the measurement of the emitted intensity, which directly

reveals the Rabi oscillations of the superatom through the input-output rela-

tions (2.23): bout(t) = bin(t) − i
√
κσ−(t). The fit of the master equation to

the experimental results, displayed in figure 3.1, results in a coupling rate of

κ ≈ 0.55 µs−1, and dephasing rates of Γ ≈ 0.14 µs−1, γD ≈ 1.49 µs−1.
With these parameters, the master equation (2.21) provides a more realistic

estimation of the n-photon correlations. We then obtain the connected three-

body correlation functions depicted in the top row of figure 3.3. For weak α,

we find a qualitative agreement with the previous Bethe results from figure 3.2

as we see a similar hexagonal bunching ring around the anti-bunched centre

at ξ ≈ 0 ≈ η, however, modified due to the dissipation Γ and dephasing γD.

With increasing α, the relevant time scales become faster, but we also introduce

additional bunching and anti-bunching rings. These additional bunching regions

must come from higher photon contributions since we already showed that the

noiseless Bethe solutions in the three-photon problem could only yield one

anti-bunching to bunching transition.

Compared to the Bethe solutions, the magnitude of the correlations is reduced

by a factor of 10−2 to 10−3 due to the noise. Yet, g
(3)
c can still be resolved

experimentally, as shown in the bottom row of figure 3.3. Remarkably, the

qualitative agreement between the master equation solution and the experimental

data is relatively high, especially at high photon numbers. It should be no surprise
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Connected three-point correlation functions at different driving strenght α. The top

row depicts the numerical results obtained from the master equation, the bottom row

shows the respective experimental results.

that our master equation, which essentially describes damped Rabi oscillations,

could capture the experimentally measured intensity, see figure 3.1. A more

convincing verification of our superatom model lies in the fact that we can use

the same set of parameters to predict the correct behaviour of the n-photon

correlation functions.
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4 Photon number

statistics in binnedmodes

The previous chapter showed that the superatom-mediated photon-photon in-

teraction leads to strong temporal correlations, even on a multi-photon level.

Temporal correlations are necessarily a multi-mode effect, as any product wave

function possesses constant n-body correlation functions. Through the lens of

the Bethe Ansatz, we saw that the temporal correlations follow from a super-

position of the independent scattering states and the photonic bound states.

However, while we know the constituents of the multi-mode wave function, we

have no information about the occupation of these particular states. Therefore

we will now, in some regard, ask the complementary question to what we did

in the last chapter and investigate the photon number occupation of a single

output mode in this chapter.

In particular, we will see that a single superatom, under coherent drive, popu-

lates specific modes with a non-classical photon number distribution as indicated

by a negative Wigner function. Non-classical states of light are essential re-

sources in many experimental settings, such as quantummetrology [133–135], the

violation of Bell inequalities using entangled photon pairs [136–138], or in quan-
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4 Photon number statistics in binned modes

tum cryptography [139–142] and information processing [143, 144]. Meanwhile,

the generation of highly non-classical states of light is not straightforward. For

example, squeezed states [145] are limited to a few decibels [146, 147], state-of-

the-art NOON states [148] are still limited to the few-photon regime [149], and

generating non-classical light often requires heralding or post-selection [150, 151].

From an exact limit for short temporal modes, we find that the emerging non-

classical states in our system highly resemble photon-added coherent states. We

explain this by the emission of a previously absorbed photon from the superatoms.

Increasing the number of superatoms, however, does not lead to a linear scaling

of this effect, and, in certain limits, the non-classicality vanishes entirely, and we

will obtain the input photon state again. This surprising result follows from the

behaviour of the photon bound states for a plane wave input. In these particular

cases, the scattering phase on each Bethe state vanishes after scattering on a

second superatom. Therefore a superatom chain of an even number of atoms

will approximatively emit the original input state.

Based on these results, we will then discuss experimental applications of the

obtainable non-classical states. We will see that the non-classicality is directly

observable under homodyne detection. Nevertheless, even without such a detec-

tion scheme, the non-classicality is useful, as, in linear-optics experiments, there

is no mode mixing, and we can work directly with the multi-mode output. With

this, we discuss an application in quantum metrology. This chapter is based on

yet unpublished work of the author of this manuscript.

Photon number statistics and phase space distributions

4.1

A classical emitter emitting at a constant rate will produce light with a Pois-

sonian number distribution in a fixed time frame. In a quantum mechanical
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4.1 Photon number statistics and phase space distributions

language, these are precisely the coherent states. For this reason, one might

classify coherent states as classical states [152, 153]. At this point, “classical

state” should simply be considered a figure of speech, and we give a proper

definition below. Furthermore, any statistical mixture of classical states should

be considered classical as well, as these states can emerge from a collection

of the aforementioned classical emitters. For example, thermal states can be

considered a Gaussian mixture of coherent states.

This discussion naturally leads to the definition of classical states: these are

the states within the convex hull of the set of coherent states [154–156]

Mcl = conv{|α〉〈α|} ≡
{∫

d2αP (α)|α〉〈α|
∣∣∣∣P ≥ 0,

∫
d2αP (α) = 1

}
. (4.1)

Due to the simple geometry of classical states, we can directly quantify how much

a particular state ρ differs from a classical state by measuring its non-classical

distance δ toMcl

δ[ρ] = inf
ρcl∈Mcl

||ρ− ρcl||1, (4.2)

where ||A||1 = Tr(|A|) denotes the trace norm with |A| =
√
A†A. Now, while

the definitions from this paragraph are quite natural, they are impractical at best,

as the non-classical distance can rarely be calculated and we have to be content

with weak inequalities as, for example,

δ[ρ] ≥ 1√
Tr(ρ2)

(
Tr(ρ2)− sup

α

〈α|ρ|α〉
)
. (4.3)

Therefore, we should quantify the non-classicality of a state ρ either by some

heuristic or by a weaker yet more practical condition. One particular useful

heuristic is the entanglement potential [157]

EP[ρ] ≡ log2 ||(ρBS)
TA||1, (4.4)
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4 Photon number statistics in binned modes

where ρBS = UBS
(
ρ⊗ |0〉〈0|

)
U †
BS with UBS the unitary transformation of a 50:50

beam splitter and ρTA denotes the partial transpose with respect to the first

subsystem. The entanglement potential effectively measures the amount of

entanglement we can generate from ρ by using linear optical devices. For

example, it would vanish for a coherent state and EP[|1〉〈1|] = 1.

An alternative approach is to study the phase space distribution of ρ. Consider

the integral representation of the classical states in (4.1). If we forgo the P ≥ 0

condition for classical states, we can express any state as a combination of

coherent states, which is the Glauber-Sudarshan P -representation [158, 159]

ρ =

∫
d2αP (α)|α〉〈α|. (4.5)

Thus, through the sign of the P -representation, we can directly distinguish

classical from non-classical states.

However, the P -representation of many important pure states, like coher-

ent states and Fock states, typically involve distributions [160], which makes

the P -representation itself impractical for numerical analysis. Closely related

to the P -representation is the Wigner-representation, which follows from the

P -representation by a Weierstrass transformation

W (α) =
2

π

∫
d2β P (β)e−2|α−β|2 . (4.6)

A simple corollary follows: the P -representation is negative whenever W is

negative1, i.e., the Wigner negativity indicates non-classicality. The Wigner

function directly follows from the density matrix ρ [111, 160]

W (α) =
1

π2

∫
d2λTr

(
ρeλ(a

†−α∗)−λ∗(a−α)
)
, (4.7)

1The converse is not true. The Wigner negativity therefore provides a stronger measure of
non-classicality. As an example, and an analogy to the Gottesman-Knill theorem [161, 162],
Wigner positive states possess an efficient description via classical resources [163].
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4.2 Single superatom

which should be considered the critical advantage of the Wigner function over

P . Additionally, W is a regular function and can be efficiently computed nu-

merically [164]. Therefore, we will utilise the integrated Wigner negativity

Wneg[ρ] ≡
∫
d2α min(W (α), 0) (4.8)

as another measure of non-classicality.

Single superatom

4.2

4.2.1 Setup andWigner functions

We now study the photon-number occupation of a single mode in the output

field after scattering on a single superatom, with the SLH-formalism discussed

in chapter 2. We start with a noise-free superatom (Γ = 0 = γD) in the ground

state. Then, at time t = 0, a coherent driving field of constant amplitude α

switches on and starts to excite the superatom. To make the input and output

modes comparable, we study the occupation of a piecewise constant output

mode

v(t) =

 1√
w

t ∈ (t0, t0 + w)

0 otherwise
. (4.9)

Wewill analyse the number statistics of the photons inmode v, i.e., ρv = Tratom[ρ],

with the measures discussed in the last section.

Let us first discuss the dynamics of the superatom, as depicted in figure 4.1 (a).

At t = 0, the superatom starts to undergo damped Rabi oscillations and shows

two peaks in the bright state population before settling into a steady state, where

the coherent drive and spontaneous decay cancel. This implies that we can

identify three parameter regions for the binning interval (t0, t0 + w). Firstly, we
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Figure 4.1

(a) Bright state population of the superatom for α = 0.9
√
κ and Γ = 0 = γD. The

vertical lines indicate the binning interval (t0, t0 +w) for the different Wigner functions

studied in (b). (b)Wigner functions of the mode population for v(t) with different

binning choices. For short time bins (left) ρv mostly resembles the coherent state |
√
wα〉

and for large bins κw � 1 (right) ρv becomes non-trivial but remains positive. Only for

intermediate widths w (middle) do we find a negative Wigner function.

have the short binning limit κw � 1, for which we expect that the light in mode

v is close to the vacuum, independent of t0, as the chance to find a single photon

should scale as w|α|2 in this limit. Secondly, we have the opposite limit κw � 1,

for which we approximatively expect a translation invariance in t0, since we

mainly resolve the steady state emission of the superatom for large bins w. Lastly,

we have intermediate sized bins κw ≈ 1. Here we expect the precise choice of t0

to matter significantly, as long as we are not in the steady state.

In the short bin limit w → 0 we find ρv by the input-output relations

D†(
√
wα)ρvD(

√
wα) =[

|0〉〈0|+
√
κw
[
〈σ−(t0)〉|1〉〈0|+ 〈σ+(t0)〉|0〉〈1|

]
+ κw〈σ+(t0)σ

−(t0)〉
(
|1〉〈1| − |0〉〈0|

)]
. (4.10)

We perform the derivation of this result in the appendix 4.A of this chapter.

Here D denotes the displacement operator. Thus, ρv becomes a mixture of
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4.2 Single superatom

photon-added coherent states (c0 + c1a
†)|

√
wα〉 in the limit w → 0.

With the exact result (4.10), we can identify the underlying processes that

create ρv and develop a strategy to optimise ρv for non-classicality. We already

saw, by the input-output relations, that the outgoing light field is a superposition

of the input field and the superatom response. This explains that ρv mainly

resembles the coherent state |
√
wα〉, which is the binned input field. Additionally,

for w → 0, there is a small chance that the superatom emits a previously absorbed

photon within the time bin, which results in the photon-added contribution.

This is verified by the fact that this term scales with the bright state population

〈σ+(t0)σ
−(t0)〉 and we will find further numerical evidence for this later.

A single-photon Fock state is an important example of a non-classical state.

This remains true for photon-added coherent states, like (4.10), since the dis-

placement only results in a translation in the P -representation and the Wigner

function. Ergo, we should increase the chance for a photon-emission event in

order to optimise the non-classicality.

We achieve this for intermediate-sized bins κw ≈ 1 by choosing (t0, t0+w) such

that the bin lies around the first Rabi peak of the superatom as this is the time

when the superatom has the highest chance to emit a photon. This is verified

numerically by optimising the binning parameters (t0, w) for the integrated

Wigner negativity, which results in the green binning window indicated in

figure 4.1 (a) and the Wigner function in the middle of figure 4.1 (b). It shows a

well-defined non-classical region.

We may try to increase the binning size κw � 1 to increase the chance for

the emission of additional photons by the superatom and thus create larger

Wigner negativities. Yet, for large w, the bin no longer just includes times of

high emission and the relative rate of photons emitted per unit time decreases. In

total, this results in a negative trade-off for us and the overall Wigner-negativity

decreases and vanishes for κw � 1. This is indicated by the violet binning

window in figure 4.1, which results in the rightmost Wigner function. While it
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Figure 4.2

Wigner functions for different α and at Γ = 0 = γD. The binning interval (t0, t0 + w)

of each Wigner function was optimised for the integrated Wigner-negativity.

does not resemble a coherent state, and it will likely be non-classical in some of

the measures of non-classicality from above, this state lost all Wigner-negativity,

and we, therefore, consider it as more classical as its intermediate bin width

κw ≈ 1 counterpart.

In the examples in figure 4.1, we chose α = 0.9
√
κ simply for aesthetic rea-

sons. Our arguments from the last paragraphs hold for all values of α, but

the dependency of the dominant timescale (the Rabi oscillations) on α results

in a non-trivial behaviour of the Wigner function on α. In fact, we can only

create Wigner-negative states up to some threshold value around α ≈ 1.5
√
κ, as

indicated by figure 4.2.

For the explanation, consider increasing α and thus also the Rabi-frequency
√
κα. As we already argued, we should bin around the first Rabi peak to obtain

the most non-classical output states. For large α, however, this means that

w ∝ 1/
√
κα and we approach the short bin limit, where we already saw in the

exact result (4.10) that then ρv mainly resembles a coherent, i.e., classical state.

Numerically we find that the Wigner negativity vanishes at about α = 1.6
√
κ,

slightly above the last example in figure 4.2. On the other hand, if we choose α

too small, we do not drive the superatom strong enough, and the chance for the
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4.2 Single superatom

emission of a photon becomes small. Thus, there is an optimal driving strength,

which we numerically find to be α ≈ 0.5
√
κ.

Lastly, we want to give further numerical evidence that our picture of the

superatom emitting an additional photon onto the coherent background is

accurate. For this we numerically optimise ρv for its integratedWigner-negativity

at different α and fit a mixture of two-photon added coherent states to ρv, i.e.,

we use the Ansatz

ρv =
3∑

j=1

λjD(
√
wα)|ψj〉〈ψj|D†(

√
wα), (4.11a)

|ψj〉 = c
(j)
0 |0〉+ c

(j)
1 |1〉+ c

(j)
2 |2〉. (4.11b)

Here we set the probability amplitudes λj directly to the numerically determined

three most dominant eigenvalues of ρv and we constrain the coefficients c
(j)
l of

|ψj〉 by requiring orthonormalisation of {|ψj〉}. In total this results in only 3 free
fit parameters of the Ansatz for the description of ρv. We used a two-photon

added coherent state as an Ansatz since for κw ≈ 1 we need to account for the

small chance that the superatom emits one photon and then absorbs and re-emits

a second within the time bin (t0, t0 + w0).

For α ∈ {0.1, 0.2, . . . 1.5}
√
κ we overall find that the three most dominant

eigenvalues of ρv make up > 99.99% of the total probability. Additionally the

fidelity of the fits lie above 98.8%. This is a strong numerical indicator that ρv

is indeed created by photon-emission from the superatom on top of a coherent

background.

4.2.2 Comparingmetrics of non-classicality

In the last section we used the integrated Wigner-negativity (4.8) to measure

the non-classicality of a given state ρv. Yet, many non-classical states possess

a purely positive Wigner functions, for example squeezed states [145]. Thus

65



4 Photon number statistics in binned modes

α/√
κ

0.5 1.0 1.5

EP
[ρ]

0.0

0.2

0.4

α/√
κ

0.5 1.0 1.5

δ[ρ
]

0

5

10

15

α/√
κ

0.5 1.0 1.5

W
Ne

g[ρ
]

-15

-10

-5

0

α/√
κ

0.5 1.0 1.5

t 0

0

2

4

α/√
κ

0.5 1.0 1.5
w

2

4

6

× 102
× 103

Optimisation
target

WNeg[δ]
EP[ρ]
δ[ρ]

Figure 4.3

Entanglement potential EP [ρ], lower bound of the non-classical distance δ[ρ], the

integrated Wigner-negativityWNeg[ρ], and the binning interval (t0, t0 + w) for different

α when optimising t0 and w for the different metrics of non-classicality. Γ = 0 = γD.

we should ask ourself whether any of the other measures of non-classicality we

introduced, namely the lower bound of the non-classical distance (4.3) and the

entanglement potential (4.4), provide different results.

This question is answered in figure 4.3. Here we optimise t0 and w for the

three measures of non-classicality, EP[ρ], δ[ρ], and WNeg[ρ], and then compare

these metrics and the resulting binning parameters. We find that there is only

insignificant differences whether we optimise for EP[ρ] or WNeg[ρ] and these

two quantities seem to be well-correlated overall. Optimising for the lower

bound (4.3) on δ[ρ], however, results in slightly different values forWNeg[ρ] and
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Figure 4.4

Wigner function for different γD and Γ at α = 0.5
√
κ. Here we use the same binning

interval (t0, t0 + w) for all examples, which was chosen to maximiseWNeg[ρ] at

Γ = 0 = γD.

EP[ρ], especially in regions in which δ[ρ] is small. Yet, independent of which met-

ric we choose for the optimisation, we overall find quite similar binning intervals

(t0, t0 + w). Therefore, our previous analysis based on WNeg was well-justified

and we may continue by only considering the integrated Wigner-negativity.

4.2.3 Sensitivity on dephasing and dissipation

So far, we have considered a perfect noiseless superatom. However, we already

saw that the dephasing γD into the dark states and the Raman decay Γ are crucial

for an accurate description of the superatom. In this section we want to briefly

discuss how the outgoing light state ρv is affected by both of these effects.

Figure 4.4 shows the dependency of theWigner function on the dephasing γD
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4 Photon number statistics in binned modes

and dissipation Γ. Overall we find there is little qualitative difference between

both noise sources, only the effects of the dephasing seem to be a little stronger

than the effects of the dissipation for similar γD and Γ. We explain this with our

previous findings for the dynamics of ρv. We saw that the non-classicality in ρv

comes from the emission of a photon from the excited Rydberg atom. Both decay

mechanisms remove this energy quantum from the system and thus act similarly

on ρv. However, the impact of γD is slightly larger since, after the decay into

the dark state, the superatom remains blockaded, while after the Raman decay

there is still a small chance that the superatom absorbs and re-emits a second

photon within the time-bin (t0, t0 + w). Even though this photon is absorbed

and emitted within (t0, t0 + w) and thus does not change the mean intensity, it

still changes the photon field on the level of the individual temporal modes.

Multiple Superatoms

4.3

For a single superatom we saw that the can generate non-classical states of light

by shelving an excitation into the superatom’s bright state, which then re-emits

the photon and thus adds a non-classical single-photon Fock state onto the

coherent background. This then naturally raises the question: can we chain up

multiple superatom and have them emit into the same mode?

Like for the single superatom we first consider the short binning limit κw → 0,

for which we can exactly determine the photon state

D†(
√
wα)ρvD(

√
wα) =

N∑
n=0

N∑
m=0

〈(√
κwσ+(t0)

)n(√
κwσ−(t0)

)m〉
×
min(n,m)∑

k=0

(−1)k
|m− k〉〈n− k|

k!
√

(n− k)!
√

(m− k)!
, (4.12)
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Figure 4.5

All figures at α = 0.5
√
κ and Γ = 0 = γD. (a) Bright state population of each

superatom in a 6 superatom chain. (b)Wigner function of ρv for different number of

superatoms N , as indicated by the title. The binning interval lies in the steady state for

the first 5 superatoms and is indicated by vertical dashed lines in (a). (c)Wigner

function of ρv for different numbers of superatoms. Here we optimised the binning

interval forWNeg[ρ] for each N . The respective binning intervals lie in the shaded area

of (a).

with σ± =
∑N

j=1 σ
±
j the collective ladder operators of the N superatoms. On the

first glance we see our question answered in the affirmative. In the κw → 0 limit

we can generate a N -photon state, i.e., one photon coming from each superatom.

However, each photon state |n〉〈m| is, at least, suppressed as (κw)(n+m)/2 and ρv

therefore mainly resembles a coherent state |
√
wα〉〈

√
wα| close to the vacuum.

Hence, we again need to consider broader bins in order to generate truly non-

classical states.

With κw ≈ 1 we again find that the qualitative form of the Wigner functions

depends on t0. The two distinct regions for the bin (t0, t0+w) are the superatoms’

steady states and the times when some superatoms still undergo Rabi oscillations.

Let us first consider a bin in the steady state, as indicated by the vertical dashed

lines in figure 4.5 (a). The Wigner functions show an almost perfect alternating

pattern depending on whether we consider an even or odd number of superatoms,
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4 Photon number statistics in binned modes

as shown in figure 4.5 (b). More precisely, an odd number of superatoms produce

the same Wigner functions as just a single superatom, while an even number

configuration results in a trivial coherent state |
√
wα〉〈

√
wα|.

While this result seems surprising at first, we directly find its explanation in

a Bethe Ansatz analysis. Firstly, we may disregard any ramp up effects in the

steady state and consider the scattering of resonant plane waves. We then split

the input state into Bethe states, which decompose into different bound state

configurations, as discussed in section 2.1.2. As an eigenstate of the scattering

problem the bound states acquire only a phase under the scattering on a single

superatom. For a bound state of n photons with eigenenergy E this phase factor

becomes [165]

tE,n =
E − iκn2/2

E + iκn2/2
. (4.13)

Hence, for resonant plane waves, the scattering phase simplifies to t0,n = −1 for

each bound state.

Scattering on a single superatom therefore separates the incoming state into

configurations of even and odd numbers of resonant bound states by phase. A

second scattering event, however, completely reverts all phases back to 1 and we

end of with the original input state again. Notice, that in figure 4.5 only the six

superatom configuration shows slight deviations from the alternating pattern,

which perfectly fits to the explanation, since, for the chosen time bin, the sixth

atom is not yet in its steady state and the light can thus not be considered similar

to a resonant plane wave.

We now turn our attention to bins (t0, t0 + w) around the superatoms’ Rabi

oscillations, which are again the optimal choice for minimising WNeg. The

Wigner functions for a growing number of superatoms is depicted in figure 4.5 (c)

and shows again an alternating pattern. While our previous resonant bound

state argument cannot hold in this parameter regime, we can nevertheless modify

it to explain why the alternating pattern remains consistent.
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4.3 Multiple Superatoms

Firstly, we notice for multiple superatoms the superatom-superatom interac-

tions make it impossible to define clear Rabi oscillations for all atoms. Addition-

ally, we see that the bright state dynamics for atoms in the rear of the chain have

a delayed onset. Already the fourth atom only obtains a significant bright state

population after the first superatom reached its steady state. Hence, we cannot

choose a binning interval (t0, t0 + w) which has optimal emission characteristics

for all superatoms. It numerically follows that we should choose the bin to favour

the emission of the latter atoms.

Now, in order to see that the first superatoms in the chain are mostly irrelevant

for ρv, which then leads to the alternating pattern of figure 4.5 (c), let us consider

the Bethe state analysis again. For this, let us write the photonic input state

schematically as

|input〉 = |resonant〉+ |correction〉, (4.14)

where |resonant〉 is the input state for resonant plane waves, which we discussed
in the paragraphs about steady state bins, and |correction〉 are the corrections
due to the α-quench at t = 0, which we now have to take into account.

The resonant part leads to the aforementioned alternating pattern, while the

correction only result in an approximatively superatom number-independent

correction. To see this, let us consider the transfer matrix tE,n (4.13) in position

space, where it becomes a convolution with the kernel δ(x)− κn2e−κn2x/2ϕ(x).

The exponential part of the kernel broadens the corrections on a scale of κn2 per

superatom scattering, which subsequently narrows the overlap with the localised

mode v(t). The δ(x) part of the transfer kernel leaves |correction〉 invariant,
which gives the (approximatively constant) qualitative difference to the steady

state bins in figure 4.5 (b).

In summary we find that with the presented setup there is a difference between

the output from one and two superatoms. However, due to the observed alter-
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4 Photon number statistics in binned modes

nating pattern in the output, there is little sense in considering any additional

superatoms from the point of the Wigner negativity. We may and should, how-

ever, wonder which knobs we can turn in order to make additional superatoms

useful.

On the one hand, the choice for the mode projection v(t) was quite specific

and a more generic Ansatz will adept better to the most non-classical mode in

the output. On the other hand, we study (after the quench of α at t = 0) the

scattering of a constant input, for which we saw that the one-particle scattering

does not alter the wave function ψout(x) = −ψin(x). Therefore the flat mode
v(t) is the best choice on the level of single-photon scattering and we will see

in the next section that this choice of v(t) generally captures quite a lot of the

respective photons in the time bin (t0, t0+w). Additionally, numerical tests with

the Fourier Ansatz

v(t) = a0 +
m∑

n=1

[
an cos

(
2π(t− t0)

w

)
+ bn sin

(
2π(t− t0)

w

)]
, (4.15)

with some cut-off m, shows no qualitative difference in the previous discussed

results compared to the flat mode, but it can increase WNeg[ρ] by about a factor

of 2.

We assume, however, that a more generic time-dependent input pulse α(t)

may lead to significant improvements in the multiple-superatom case. This is

already motivated by realising that an exponentially increasing input pulse

ψin(t) ∝ eκt/2Θ(−t), (4.16)

with the time evolution starting at t = −∞, results in a perfect transition of the
superatom into its bright state on the single-photon level [166–168]. This, on the

other hand, will lead to a strongly enhanced emission of a single photon from the

superatom. For a generic setup of N superatoms, we can find the optimal input
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state by considering the state in which all superatoms are perfectly excited and

then use the Bethe Ansatz to reverse the time evolution and find the respective

photonic input state. This approach however results in multi-mode input states,

as preliminary calculations for two atoms revealed. Yet, this only points to

the fact, that, with a time-dependent drive α(t), we expect better chances to

synchronise the emission of all superatoms and thus create higher non-classical

states.

Observation and application of the non-classical state

4.4

4.4.1 Homodyne Detection

We have seen that we can create non-classical states ρv from the interaction

of classical light with a single superatom. However, ρv just describes a single

mode in the output field and we should wonder whether the light in this mode

is directly accessible. For this we may compare the mean number of photons in

ρv to the overall number of photons in the time bin (t0, t0 + w) by integrating

the mean photon intensity

I =

∫ t0+w

t0

dt 〈b†out(t)bout(t)〉

=

∫ t0+w

t0

dt
〈(
b†in(t) + i

√
κσ+(t)

)(
bin(t)− i

√
κσ−(t)

)〉
. (4.17)

We find that ρv accounts for at least 70% of all the photons in (t0, t0 +w), when

optimised for theWigner negativity, as indicated by figure 4.6. While this shows

that v(t) has a good overlap with the outgoing light field, it also reveals that

in any applications we also need to consider the remaining photons in the bin

and it raises the question whether we can observe ρv in practice. Luckily for us,
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Figure 4.6

Comparison of the number of photons in mode v to the total number of photons I in

the time bin (t0, t0 + w) for different α. The bin is determined by optimising ρv at each

α for the integrated Wigner negativity.

homodyne detection provides a way to measure ρv and it can aid in “removing”

the unwanted orthogonal states in certain applications.

Homodyne detection provides a method to directly measure the Wigner func-

tion of a specific mode v(t). This is achieved by measuring the field quadrature

Xϕ =
b†eiϕ + be−iϕ

2
. (4.18)

From the quadrature results we then determine the characteristic function of Xϕ

χ(λ, ϕ) =
〈
eiλXϕ

〉
=

〈
exp

(
i
b†λeiϕ + bλe−iϕ

2

)〉
= 〈D(iλeiϕ)〉, (4.19)

with D the displacement operator. We can directly determine the Wigner
function from χ, which follows immediately from our original definition of the
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50:50

Figure 4.7

Homodyne detection scheme. First, an coherent input beam is split at a beam splitter

of reflectance r and transmittance t with r � t. The transmitted light interacts with the

superatom system. The reflected beam is rerouted and recombined with the

transmitted beam at a balanced beam splitter, while picking up a controlled phase of ϕ

relative to the transmitted beam. Finally, two detectors measure the intensity of both

output beams.

Wigner function (4.7)

W (α) =
1

π2

∫
d2β Tr

(
ρeβ(a

†−α∗)−β∗(a−α)
)

=
1

π2

∫
d2βe−βα∗+β∗α〈D(β)〉. (4.20)

Hence, we only need an efficient way to measure the quadrature Xϕ. For

this consider now the setup depicted in figure 4.7. First we start with a strong

coherent state |β〉 and split it at the first beam splitter into the probe beam
|α = tβ〉 and a reference beam |γ = rβ〉, with the reference beam stronger than
the probe, i.e., |r| � |t|. The probe beam interacts with the superatoms, while
the reference beam’s phase relative to |α〉 is shifted to ϕ. Now, both beams are
combined at a 50 : 50 beam splitter and we measure the intensity in both output

ports, labelled c and d.
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4 Photon number statistics in binned modes

The crucial step now is to consider the difference in the measured intensity

I =
d†d− c†c

2|γ|
=
a†b+ b†a

2|γ|
, (4.21)

normalised to the reference beam’s amplitude |γ|. Here we used the input-
output relations of a balanced beam splitter c = (a− b)/

√
2, d = (a+ b)/

√
2. It

then follows that, in the |γ| → ∞ limit, the characteristic function of I and Xϕ

coincide [169]

lim
|γ|→∞

〈
eiλI
〉
= χ(λ, ϕ). (4.22)

In order to measure ρv in the specific flat mode v, we can simply cut out

the specific part in |γ〉, for example, by placing a fast shutter in the reference
beam path or by only taking detection results within this time window. All other

modes in the a channel, orthogonal to v(t) are then suppressed in the |γ| → ∞
limit. Thus, we have direct access to ρv by augmenting our setup just by linear

optical devices and two detectors.

4.4.2 Application in quantummetrology

The last section revealed that we can directly measure ρv. Yet, this does not

imply that we may use ρv in arbitrary experiments, since, depending on the

application, quantum interactions mixes the light in mode v with arbitrary other

modes. On the other hand, this problem does not emerge in applications that

only rely on linear quantum optics, where there is no mode-mixing. Here we can

directly route the superatom output into the experiment and select the correct

mode v at the end via homodyne detection, as discussed before.

As such an application, we discuss is phase estimation in quantum metrology.

Before we explain our setup, however, we should first introduce more general

concepts of quantum metrology and establish the needed notation.

Assume we possess a quantum state ρ with which we want to determine some
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4.4 Observation and application of the non-classical state

unknown quantity ϕ. For this we need two things: a ϕ-dependent interaction G

of ρ with the environment, and a estimator Φest that we can measure and which

is correlated to ϕ, i.e., 〈Φest〉 ≈ ϕ. Let us from here on assume the interaction is

Hermitian and linear in ϕ

ρϕ = e−iϕGρeiϕG. (4.23)

In order to gauge the precisions for the ϕ-estimation we should now investigate

the mean squared distance

〈(Φest − ϕ)2〉 = ∆Φ2
est + b2(ϕ), (4.24)

where ∆Φest is the standard deviation of the estimator and b(ϕ) = 〈Φeff − ϕ〉 its
bias. The standard deviation may now be bounded from below by theHeisenberg

uncertainty principle

∆Φ2
est∆G

2 ≥ 1

4

∣∣Tr([[Φest, G]ρϕ])∣∣2
=

1

4

∣∣Tr(Φest∂ϕρϕ)∣∣2
=

1

4

∣∣∣∣∂〈Φest〉∂ϕ

∣∣∣∣2 = 1

4
|1 + b′(ϕ)|2. (4.25)

This then leads to the Helstrom-Holevo lower bound [170, 171]

〈(Φest − ϕ)2〉 ≥ |1 + b′(ϕ)|2

4∆G2
+ b2(ϕ), (4.26)

or, for an unbiased estimator b = 0,

∆Φ2
est ≥

1

4∆G2
. (4.27)

The Helstrom-Holevo bound is one of the most generic bounds on the sensi-
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50:50

Figure 4.8

Interferometer setup for estimation of the unknown phase ϕ.

tivity of many metrology experiments. It directly reveals that the best obtainable

precision is always bounded by the standard deviation of G. This implies that

optimal parameter estimation is an interplay between choosing both the correct

experimental protocol G and a suitable input state ρ as only these two quantities

enter in ∆G.

The Helstrom-Holevo lower bound has one blemish, which is that the bound

is generally not sharp, especially for mixed states. Generally, the Cramér-Rao

bound for an unbiased estimator [172, 173] improves on the Helstrom-Holevo

bound

〈∆Φ2
eff〉 ≥

1

F (ϕ)
≥ 1

4∆G2
. (4.28)

Here, the Quantum-Fisher information is defined as F (ϕ) = Tr(ρϕL
2(ρϕ, G)),

whereL is the symmetric logarithmic derivative defined by the equation i[ρϕ, G] =

{ρϕ, L(ρϕ, G)}/2. Considering only pure states ρ, we can always find a state ρ
and a measurement G such that F (ϕ) = 4∆G2. For mixed states this is no longer

true [116], and the Cramér-Rao bound provides a sharper bound for the optimal

parameter estimation.

We now turn our attention to the quantum metrology problem we want to

study, which is the estimation of an unknown phase ϕ by interferometry, as

depicted in figure 4.8. Here we want to send in light at the input ports a and b,

which then enter a balanced interferometer, whose two beam paths acquire an

unknown relative phase difference of ϕ. The light then interferes at the output

beam splitter and we want to subsequently estimate ϕ by intensity measurements

78



4.4 Observation and application of the non-classical state

at the output ports c and d.

The simplest input for this setup is probably a single coherent state on one of

the input ports, which leads to a precision of the estimation

∆Φ2
est ∝

1

N
, (4.29)

where N is the mean photon number of the input beam. This 1/N scaling

is known as shot noise or the standard quantum limit of interferometry. The

natural question is whether a non-classical state can improve this limit and the

first surprising result is that even a N -photon Fock state shows the same 1/N

scaling in precision. However, the trick lies in using both input ports and let

the light from both ports interfere in such a way to increase the precision of

the estimation. With this, a scaling of up to 1/N2 is possible, denoted as the

Heisenberg limit. For details on these results we refer to the textbook [116] and

the review article [174].

Yet reaching the Heisenberg limit requires highly entangled or non-classical

input states and perfect experimental control [175–177]. Therefore let us consider

a more practical setup, where we want to input coherent light in one of the input

ports and augment it by a non-classical state in the second input port. The most

prominent example for this is the use of squeezed light, for which C. M. Caves

and co-workers first determined the improvement over the standard quantum

limit [178, 179] and later proofed that squeezed light is the asymptotically optimal

auxiliary input to augment coherent light [180]. Famously, modern gravitational

wave detectors utilise this coherent state and squeezed state input combination in

order to achieve the necessary precisions in their interferometers [134, 135, 181].

Creating strongly squeezed light is a formidable task and typically requires

complex setups [182]. Therefore, we now want to study whether the non-classical

state ρv, which we can easily generate from the interaction of classical light with

superatoms, is a suitable auxiliary state for the quantum phase estimation problem.
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We use the setup depicted in figure 4.8 and use the relative intensity on both

output ports

Jz =
d†d− c†c

2
(4.30)

as the estimator for ϕ. By the error propagation formula ∆Jz ≈ ∆ϕ∂〈Jz〉/∂ϕ
we define the optimal sensitivity as

∆ϕ = min
ϕ

∆Jz∣∣∣∂〈Jz〉∂ϕ

∣∣∣ . (4.31)

For the actual calculations we use the input-output relations of a phase shifter

aout = e−iϕain and of a balanced beam splitter (see below equation (4.21)) in

order to express Jz by the input fields [174]

Jz = cos(ϕ)J
(in)
z − sin(ϕ)J ((in)

x (4.32)

with

J (in)
z =

a†a− b†b

2
, J (in)

x =
a†b+ b†a

2
, (4.33)

up to a global phase2.

In figure 4.9 we compare the achievable ϕ-sensitivity for our combination of a

coherent state |
√
Nb〉 and ρv against shot-noise ∆ϕSN = 1/

√
Na +Nb. For a fair

comparison we take Na = w|α|2, i.e., we assume that in the shot-noise case all
photons in the input port a contribute to detection. As previously discussed, in

section 4.3, we generally assume at γD = 0 an alternating behaviour depending

on the parity of the number of superatoms, therefore we limit the discussion to

only one and two superatoms.

We find that, at already moderate coherent probe strengths Nb ≥ 10, there is

a consistent improvement of the sensitivity compared to shot-noise. For a single

2The Ja notation follows from the Jordan-Schwinger representation of angular momentum
operators by two coupled harmonic oscillators [183, 184].
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Figure 4.9

Sensitivity improvements over shot noise for ρv generated from one and two

superatoms. Blue curves represent the Cramér-Rao bound, i.e., the theoretically

highest obtainable sensitivity, and orange curves show the obtainable sensitivity from

the Jz estimator (4.30). The different dashed lines represent different values of γD.

The binning intervals (t0, t0 + w) were determined by numerically optimising the

Cramér-Rao bound and the Jz estimation at γD and Nb = 100.

superatom the sensitivity improvement can be as large as 30% from the Cramér-

Rao bound, and even with the simple Jz estimator we reach a 17% improvement.

On the one hand, the sensitivity gain is sensitive to dephasing γD and already

weak noise reduces the sensitivity significantly for a single superatom. On the

other hand, even at high dephasing γD = κ we find a consistent improvement

over the standard quantum limit, which is on the order of 3.5%.

Compared to ρv from a single superatom, the two superatom results show

a much tighter grouping, with barely any γD dependence for the Jz estimator.

While the overall sensitivity at small γD is smaller than for a single superatom,

the sensitivity at large dephasing γD = κ lies a little over the single superatom

result with an improvement of 4%.

This behaviour appears to be a consistent when increasing the number of

superatoms, as illustrated in figure 4.10. At very large detuning γD = 2κ using
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Figure 4.10

Sensitivity improvement at high dephasing γD = 2κ for N superatoms. The binning

interval is obtained by optimising ρv for ∆ϕ at Nb = 100.

multiple superatoms for the creation of ρv has positive effects on the obtainable

sensitivity. We explain this by noting that at high dephasing our previous

Bethe state analysis breaks down and each superatom only weakly adds to

the non-classicality of ρv, however the effect from multiple superatoms is now

accumulative.

It should be noted, that a squeezed state with the same mean number of

photons as in our dephasing free single superatom example shows a 30% sen-

sitivity improvement with Jz, clearly outperforming our non-classical state ρv.

However, the optimal non-classical resource is also determined by practical

considerations and we should remember that our analysis holds for any chiral

two-level system and is not just bound to Rydberg superatoms. Therefore, ρv

might be a promising candidate for metrology experiments in some platforms.
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Appendix: Exact densitymatrix for short bins

4.A

In principle, we can find the density matrix ρv of the photons in mode v by

determining each matrix element separately

(ρv)m,n =
〈
|n〉〈m|

〉
=

1√
n!m!

〈
: (b†v)

ne−b†vbvbmv :
〉
. (4.34)

Here, : f(b†v, bv) : denotes the normal ordering of f(b
†
v, bv). Since

bv =
1√
w

∫ t0+w

t0

dt
(
α +

√
κσ−(t)

)
, (4.35)

the relation (4.34) for ρv generally yields out-of-time-ordered correlation func-

tions. Therefore, the direct determination of ρv is impractical in most situations.

However, in the w → 0 limit we approximatively have bv ≈
√
w
(
α +

√
κσ−(t0)

)
,

which allows us to calculate ρv from the superatom density matrix at time t0.

Assuming N superatoms, we can expand the expectation value in (4.34) as

: (b†v)
ne−b†vbvbmv : =

√
w

n+m
∞∑
k=0

(−w)k

k!

(
α∗ +

√
κσ+

)n+k(
α +

√
κσ−)m+k

=
√
w

n+m
N∑

ñ=0

(α∗)n−ñ(
√
κσ+)ñ

N∑
m̃=0

αm−m̃(
√
κσ−)m̃

×
∞∑
k=0

(−w|α|2)k

k!

(
n+ k

ñ

)(
m+ k

m̃

)
(4.36)

As the output cavity is constantly pumped by the coherent background α, we

expect that ρv largely resembles a coherent state |
√
wα〉. Therefore, we want to

rearrange (4.36) such that we can directly identify the coherent state contribution.

83



4 Photon number statistics in binned modes

For this we first introduce the coherent state normalisation factor e−w|α|2 by

inserting 1 = e−w|α|2ew|α|2 . Then we expand the positive exponential and thereon

collect all terms of equal power in (w|α|2)k, resulting in

: (b†v)
ne−b†vbvbmv :

= (
√
wα∗)n(

√
wα)me−w|α|2

N∑
ñ=0

1

ñ!

(√
κσ+

α∗

)ñ N∑
m̃=0

1

m̃!

(√
κσ−

α

)m̃

(4.37)

×
∞∑
k=0

(w|α|2)k

k!

k∑
i=0

(−1)i
(
k

i

)
(n+ i)ñ(m+ i)m̃

=
√
n!m!〈m|

√
wα〉〈

√
wα|n〉

N∑
ñ=0

1

ñ!

(√
κσ+

α∗

)ñ N∑
m̃=0

1

m̃!

(√
κσ−

α

)m̃

×
∞∑
k=0

(−w|α|2)k

k!
4k
∣∣∣
x=0

(n+ x)ñ(m+ x)m̃. (4.38)

In the last line we used 〈n,m|
√
wα〉 to get rid of the (

√
wα)n,m terms and to

make the identification of the density matrix element (ρv)m,n = 〈m|ρv|n〉 easier.

In (4.38) we introduced the falling factorial xn = x(x− 1) . . . (x− n+1), and

the forward difference operator4f(x) ≡ f(x+1)− f(x). For the simplification

in the second step we used

(−1)k 4kf(x) =
k∑

i=0

(−1)i
(
k

i

)
f(x+ i) (4.39)

which essentially is Newton’s interpolation formula [185]. Next, we eliminate n
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and m from (4.38) with the number operator n|n〉 = b†b|n〉, resulting in

ρv =
N∑

ñ=0

N∑
m̃=0

1

ñ!

1

m̃!

〈(√
κσ+

α∗

)ñ(√
κσ−

α

)m̃
〉

×
∞∑
k=0

(−w|α|2)k

k!
4k
∣∣∣
x=0

(b†b+ x)m̃|
√
wα〉〈

√
wα|(b†b+ x)ñ. (4.40)

It is now evident that the coherent state |
√
wα〉〈

√
wα| enters ρv. Yet, the repeated

application of the operator b†b in the sums can potentially result in a ρv, which

has little resemblance to a coherent state. This is not the case, however, and in

the next part we show that the sums terminate and the b†b-operator products

only add up to N photons to ρv.

The algebra of finite differences with falling factorials are in many ways

similar to the algebra of derivatives and monomials. For example, we have

4xn = nxn−1, and there is the generalised product rule4fg = (4f)g+f(4g)+
(4f)(4g). Therefore, equation (4.40) will only contain falling factorials of the
number operator, which are exactly its normal ordered powers (b†b)n =: (b†b)n :.

Therefore, ρv in (4.40) is invariant under the set of replacements

4
∣∣∣
x=0

7→ (∂x + ∂y + ∂x∂y)
∣∣∣
x=0=y

(4.41)

(b†b+ x)m̃|
√
wα〉 7→ : (b†b+ x)m̃ : |

√
wα〉 = (

√
wαb† + x)m̃|

√
wα〉

= D(
√
wα)(

√
wαb† + w|α|2 + x)m̃|0〉 (4.42)

〈
√
wα|(b†b+ x)ñ 7→ 〈

√
wα| : (b†b+ y)ñ := 〈

√
wα|(

√
wα∗b+ y)ñ

= 〈0|(
√
wα∗b+ w|α|2 + y)ñD†(

√
wα). (4.43)

The k-summation now yields two translation operators Tx,y(−w|α|2) for x, y,
and the operator exp(−w|α|2∂x∂y). The translation operators exactly cancel the
w|α|2 terms in (4.42) and (4.43), and, after rescaling x 7→

√
wαx, y 7→

√
wα∗y,
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we end up with the density matrix

D†(
√
wα)ρvD(

√
wα)

=
N∑

ñ=0

N∑
m̃=0

1

ñ!

1

m̃!

〈(√
κwσ+

)ñ(√
κwσ−)m̃〉 e−∂x∂y

∣∣∣
x,y=0

(b† + x)m̃|0〉〈0|(b+ y)ñ

=
N∑

ñ=0

N∑
m̃=0

〈(√
κwσ+

)ñ(√
κwσ−)m̃〉 min(ñ,m̃)∑

k=0

(−1)k
|m̃− k〉〈ñ− k|

k!
√

(ñ− k)!
√

(m̃− k)!
.

Here, the right hand side is spanned by the truncated Fock space {|0〉, . . . , |N〉}.
Thus, we see that, in the w → 0 limit, ρv becomes a (N + 1)-state mixture of

N -photon added coherent states.
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with cascaded superatoms

In the previous two chapters, we analysed how the superatom-mediated photon-

photon interactions lead to strong temporal and number correlations in the

transmitted light field. In both cases, we identified the dephasing γD of the

Rydberg superatom into one of its non-radiating dark states as themost significant

inhibitor to the observed and predicted effects. Once a superatom dephases into

the dark state manifold, it effectively vanishes from the system on the time scales

of the experiment. While this effect is detrimental to the photon correlations, it

opens the door for another application. More precisely, the superatoms act as

controlled photon absorbers, as each dephased superatom removes exactly one

photon from the transmitted light field.

One of the major applications of photon subtraction is in state preparation.

More concretely, photon-subtracted states are crucial resources in quantum

computing [186–188], metrology [189], and the study of fundamental aspects of

quantum optics [190]. Photon subtraction is readily achieved via post-selection

or in heralded systems [191, 192], such as imbalanced beam splitters [193]. This,

however, introduces a probabilistic component. On the other hand, the Rydberg
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blockade guarantees the absorption of nomore than one photon by the superatom,

making it an ideal system for deterministic photon subtraction.

In this chapter, we will analyse the optimal parameter regimes for photon

subtraction with dephased Rydberg superatoms. We will see that Raman decay

becomes one of the greatest obstacles for controlled photon subtraction, and we

will demonstrate that the proposed setup scales well to systems with multiple

superatoms, therefore showing the potential for the subtraction of an arbitrary

number of photons from an input pulse. Finally, we will show experimental

results for a system of up to 3 superatoms and discuss the potential scaling to up

to 8 atoms.

This chapter is based on the article [92]. Here, the author of this thesis

contributed the theoretical analysis and all theoretical results in this chapter are

from the author, if not explicitly stated otherwise.

Optimal parameters for a single-photon subtractor

5.1

5.1.1 Perfect absorption of a single-photon Fock state

At first glance, we might expect that increasing γD will also increase the chance

of subtracting a photon from the input field. Contrary to the intuition, this

approach fails, which we readily see by considering the dynamics of a single

superatom in the presence of dephasing. Effectively, the dephasing acts like an

imaginary detuning

Hdet = −iγDσ+σ− (5.1)

of the bright state. This follows from the quantum Monte Carlo wave func-

tion [109] or quantum trajectory [110] approach, where the anti-commutator part

of the Lindblad dissipator γDD|D〉〈W |[ρ] is added to the Hamiltonian. Hence,
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Figure 5.1

Bright state population PW , dark state population PD and total population of a single

superatom for an incoming single photon with the wave function (5.2) at different γD.

strong dephasing brings the atom out of resonance, and we expect an overall

weakened coupling of the incoming light field to the superatom.

This brings us to the question of how we should pick γD to have the best

chance for subtracting a photon. Let us first answer this question for a single

input photon, which will provide us with first insights for our subsequent analysis

of a coherent input field. As a secondary result, we will see that we can achieve

perfect photon subtraction in the case of a single input photon.

We already discussed in section 4.3 that for a superatom without dephasing

an exponentially increasing mode ψin(t) =
√
κΘ(−t) exp(κt/2) yields perfect

absorption of the incoming photon into the bright state. This should be the

starting point for our analysis, as we first have to populate the bright state |W 〉
before we can dephase into the dark state manifold |D〉. We now modify this
Ansatz, for γD < κ, to

ψin(t) =
√
κ− γDΘ(−t)e−(κ−γD)t/2. (5.2)

We show this in appendix 5.A of this chapter that this state yields perfect

absorption into the {|W 〉, |D〉} manifold at t = 0, as illustrated in figure 5.1.
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5 Photon subtraction with cascaded superatoms

From this, we also find the asymptotic dark state population

lim
t→∞

PD(t) =
2γD

κ+ γD
, when γD < κ. (5.3)

Perfect transition into the dark state thus occurs for γD = κ. This directly

shows that perfect absorption is indeed possible at finite dephasing and not

necessarily in the γD → ∞ limit. Yet, this result comes with one caveat: the

input state (5.2) is not well-defined for γD → κ. As ψin becomes increasingly flat

as γD approaches κ, we should interpret ψin in the γD → κ limit as a resonant

plane wave.

Additionally, our Ansatz (5.2) cannot predict the absorption behaviour for

γD > κ. While we know that photon absorption eventually has to become

unlikely for sufficiently large γD, we yet have no way to quantify this with the

presented Ansatz. In the next section, we discuss coherent light, for which we

perform a full numerical parameter scan, and we find that photon subtraction is

quite efficient for an extensive range of γD but eventually diminishes as γD → ∞,
as predicted in the beginning.

5.1.2 Optimal absorption with resonant, coherent light

Our single-photon discussion revealed that a resonant plane wave is optimal

for absorption. While this certainly can change in a multi-photon setup, the

plane wave is an excellent starting point for the discussion of the interaction of a

superatom with coherent light since this lends itself to a quite simple theoretical

model and describes a superatom in a continuous wave setup. Therefore, similar

to the last chapter, we now consider a single superatom with dephasing γD in the

vacuum. Then at time t = 0, we turn on a coherent light field of amplitude α

and drive damped Rabi oscillations. We now want to maximise the probability

for the superatom to be in the dark state at some later time τ .

We show in figure 5.2 multiple parameter scans of the dark state population
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Figure 5.2

Dark state population for a single superatom for different coherent pumping durations

τ . The white lines show the 90% population level and the dashed vertical and diagonal

lines indicate exp(−γDτ) = 0.1 and exp(−4κRinτ/γD) = 0.1, respectively. We use

κ = 0.35 µs, Γ = 0, and SI-units for better comparison with the experimental results.

PD for different driving durations τ . It is evident that for a fixed input photon

rate Rin, there is an optimal region for γD for which photon subtraction becomes

very likely. Obviously, when we increase the pulse duration τ , then the optimal

parameter range for Rin and γD increases as well, as the superatom has more

time to decay into the dark state manifold, even with suboptimal parameters.

However, in the next section, we will discuss the impact of the Raman decay Γ,

and we will see strong non-deterministic photon losses at large τ . We should

therefore limit ourselves to short pulses and discuss the two relevant mechanisms

that bound the photon subtraction in this regime.

First of all, we need a large enough dephasing γDτ � 1 so that the dark state

can be populated during the pulse. On the other hand, we showed in the last

section that for large γD, the bright state becomes effectively detuned, which

inhibits photon absorption. In this regime, the bright state can never reach a

significant population, and we may adiabatically eliminate it from our master

equation. We then end up with a classical rate equation for the ground state
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and dark state population

∂tρGG = −γeffρGG, (5.4)

∂tρDD = γeffρGG, (5.5)

where we have the effective decay rate

γeff =
4κRinγD

(κ+ γD)2 + 4κRin
. (5.6)

As expected, the effective decay rate vanishes for large γD, i.e., it becomes

increasingly unlikely to populate the dark state for γD → ∞. For large γD, we
may approximate the effective decay rate as γeff ≈ 4κRin/γD and therefore see

that we can counteract the detrimental effects of large γD by increasing the

input photon rate accordingly. This accumulates to the second condition for

ideal photon subtraction, which is γeffτ � 1. This condition, in the large γD

approximation, is indicated by the diagonal line in figure 5.2 and almost perfectly

reproduces numerical PD = const. levels for large γD.

5.1.3 Influence of Raman decay

So far, our setup yields deterministic photon subtraction in the sense that we can

bring the dark state population PD arbitrarily close to 100%, which translates

directly into the removal of a single photon from the transmitted photon field.

However, this is no longer true when we have Raman decay Γ, as this can scatter

a photon outside of the waveguide and thus leads to additional photon losses.

More importantly, these losses are non-deterministic since the number of photons

lost due to Raman decay fluctuates with each experimental realisation.

Our current superatom model allows us to estimate the mean number of lost
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Total Rydberg population and Raman losses for a single superatom at an input

intensity of Rin = 5 photons/µs, a dephasing of γD = 2.4µs−1, and κ = 0.35 µs−1. The

shaded regions show one standard deviation ∆n of the number of photons lost due to

Raman emission. The blue curve represents the experimental parameters {κ,Γ, γD} for
three superatom.

photons due to Raman decay, which is

〈NRaman〉 = Γ

∫ t

0

dsPRyd(s), (5.7)

with PRyd = PW +PD. This directly follows from the superatom master equation

in which both the bright and the dark states are subject to Raman decay with

rate Γ. However, with our current superatom model, we cannot access the

photon fluctuations due to the Raman decay.

For this, we now augment our description of the superatom by an auxiliary

cavity, which stores the Raman emitted photons. More precisely, we modify the

Raman decay operators in the master equation (2.21) to

ΓD|G〉〈W |⊗V † [ρ] + ΓD|G〉〈D|⊗V † [ρ], (5.8)

where the auxiliary cavity is described by a harmonic oscillator for which we
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introduced the Susskind-Glogower ladder operator [194]

V † =
∞∑
n=0

|n+ 1〉〈n| = a†
1√
aa†

. (5.9)

We need the Susskind-Glogower ladder operator instead of the ordinary ladder

operator a†, as the action of a† leads to stimulated emission, while V † results

in a constant Raman decay rate Γ, independent of the number of photons in

the auxiliary cavity1. We then have access to the mean number of photons and

the photon fluctuations in the cavity through the cavity number operator, i.e.,

〈n〉 = 〈a†a〉 and 〈∆n2〉, respectively.

Figure 5.3 shows the total number of subtracted photons, i.e., the Rydberg

population, together with the Raman losses and the respective uncertainty

due to the probabilistic decay. Even for Γ = 0.04µs−1, which is two orders of

magnitude smaller than γD, we find that the chance of losing an additional photon

is substantial. Already at short times τ = 1 µs, the uncertainty in the lost photons

∆n is on the order of 0.1 photons, increasing approximatively linearly in the

pulse duration τ . The discussed Raman decay rate Γ = 0.04µs−1 coincides with

the experimentally determined value [92]. So, while a reduction of Γ obviously

helps against these effects, this cannot be achieved without modifications to

the experiment, and we should therefore limit the photon subtraction to short

pulses.

1We numerically verified that this modification leaves the superatom dynamics invariant.
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5.2 Experimental results and scaling to multiple superatoms

Experimental results and scaling tomultiple superatoms

5.2

5.2.1 Discussion of the experiment

In the actual experiment, we studied up to three superatoms. For their creation,

we first loaded the crossed optical dipole trap with a cigar-shaped ensemble of

Rubidium atoms. After a cooling step, we activated up to three tightly focused

optical traps, orthogonally intersecting the original ensemble. The positions

of these optical traps could be tuned, and we used separations of ≈ 75 µm for
two superatoms and ≈ 50µm for three superatoms between each individual
sub-ensemble. The extent of the reservoir trap limited the overall separation and

the potential number of superatoms. Next, we turned off the crossed dipole trap

so that additional atoms outside the sub-traps could escape the inter-trap region

before turning the dipole trap back on. This trapping scheme shows a qualitative

difference in the number of Rubidium atoms per superatom, depending on the

number of subtractors nsub. This leads to different parameters {κ,Γ, γD} for
each choice of nsub, as listed below.

We aligned the control and probe beam with the (up to) three superatoms.

Contrary to the setup in chapter 3, we here used co-propagating beams, as this

leads to higher γD. Before we discuss the experimental results, it should be noted

that all numerical calculations in this section were performed by N. Stiesdal and

H. Busche, co-authors of the article [92] on which this chapter is based.

Figure 5.4 shows the intensity for the transmitted light field for nsub ∈ {1, 2, 3}
and forRin ≈ 1 µs−1 (top row), Rin ≈ 5 µs−1 (middle), andRin ≈ 10 µs−1 (bottom).
This provides the first experimental verification of our previous discussion, as

we find that the transmission signal only reaches the intensity of the input field

for sufficiently large input rates and pulse durations, which then indicates that

all superatoms are dephased into the dark state and no longer interact with

95



5 Photon subtraction with cascaded superatoms

0.0

0.5

1.0

nsub = 1

R
in
[¹
s
¡
1
]

0.0

2.5

5.0

0 1 2 3
0.0

5.0

10.0

nsub = 2

t [¹s]

0 1 2 3

nsub = 3

0 1 2 3

Figure 5.4

Transmitted light intensity for 1 (left), 2 (middle), and 3 (right) superatoms and for

different input intensities, indicated by the grey lines.

the input field. As one would expect, the required pulse duration and Rin for

saturating all superatoms increases with the number of superatoms. Assuming

that every superatom for fixed nsub is described by the same set of parameters,

we may fit the superatom master equation (2.21) to the transmitted intensity and

obtain {κ,Γ, γD} = {0.49, 0.045, 2.3}µs−1 for nsub = 1, {0.33, 0.020, 3.2}µs−1 for
nsub = 2, and {0.35, 0.040, 2.4}µs−1 for nsub = 3.

Figure 5.5 shows the measured number of transmitted photons versus the

number of input photons 〈nin〉 =
∫
Rindt. As previously predicted, we find that

each superatom approximatively removes one photon from the input beam for

sufficiently strong input rates. The critical input strength seems to be 〈nin〉 ≈ 10.

At larger 〈nin〉 we see an increased chance for additional photon losses, which
we contribute to the Raman decay. Overall, we find an excellent agreement

between the experiment and the theoretical predictions.

In addition, we verified that the subtracted photons were shelved into Rydberg
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Figure 5.5

Measured number of transmitted photons (left) and the number of subtracted photons

(right). Theory curves are predictions from the master equation. The error bars on the

experimental data (statistical variance) are smaller than the data points.

dark states by performing field ionisation measurements. For this, we ionised the

atoms in the Rydberg state |r〉 and detected the number of ionisation events on a
multi-channel plate. We could resolve which superatom produced the respective

ion through the time-of-flight measurements. The detection efficiency η of the

multi-channel plate ranged between 0.18 and 0.25, depending on the position of

the superatoms.

Figure 5.6 (a) shows the mean number of detected ions for nsub = 3, which

approximatively saturates at 〈nions〉 ≈ η for 〈nin〉 > 10 per superatom, thus

indicating that each superatom shelved one photon into its dark state manifold.

A second metric for the dark state population is the Mandel-Q parameter

Q =
∆2nions
〈nions〉

− 1. (5.10)

The Mandel-Q parameter gives insight into the underlying absorption statistic

with Q = 0 for a Poissonian process, and Q < 0 for a sub-Poissonian process.
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Figure 5.6

(a)Mean detected number of ions following the field ionisation for nsub = 3 for

different number of input photons. The red points show the combined signal. Curves

are the dark state populations from the master equation, reduced by the respective

detection efficiency η. (b)Mandel-Q parameter against the number of incoming

photons for each superatom and for the combined signal. The dashed curves were

produced from the Monte-Carlo model. (c) Ratio of the Mandel-Q parameter and

〈nion〉. The theory curves stem again from the Monto-Carlo model. The error bars
represent the statistical variance.

For perfect absorption, we expect Q = −η, which we find to good precision
in our setup, as verified by figure 5.6 (b). Lastly, due to the behaviour of the

Mandel-Q parameter, we may expect Q/〈nion〉 = −1. In figure 5.6 (c), we find

slight deviations from this, which increase with the number of input photons. We

explain this by secondary Rydberg excitation, which can occur when sufficiently

many photons are present. This is verified by a Monte-Carlo model, in which

each input photon has a chance p1 to be absorbed by a superatom and bring it

into the Rydberg state or create a secondary excitation with probability p2 · 〈nin〉.
Fitting this simple model to the experimental results yields the dashed lines in

figure 5.6 (b) and (c), which agree well with the experimental values. We further

motivate and discuss the Monte-Carlo model in appendix 5.B of this chapter.
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Total dark state population for superatom chains of up to nsub = 8 subtractors versus

γD after a constant drive at Rin = 5 photons/µs and τ = 4µs. Solid and dashed lines

show results for no Raman decay and Γ = 0.04µs−1, respectively.

5.2.2 Scaling to multi-photon subtractors

So far, we have fully analysed the dynamics of a single-photon subtractor and

discussed the experimental realisation of a chain of up to 3 subtractors. We now

want to end this chapter by showing that our subtractor setup scales well to even

larger systems with more superatoms.

This can be seen in figure 5.7 where we show the total dark state population

PD =
∑

j P
(j)
D for systems of up to nsub = 8 subtractors, with the dark state

population P
(j)
D of the j-th superatom. In the presented example, with 〈nin〉 = 20,

we find that near-optimal photon subtraction is always possible. However, we

also see that the γD-range for which almost all superatoms are excited narrows

with increasing nsub. This is expected, as, with nsub = 8, almost half of all

incoming photons are absorbed. Therefore, we should assume that the chain’s

last superatom is in the weak Rin regime, where the choice of γD matters more

than for large Rin, as we saw in figure 5.2.

Additionally, we find that increasing Γ to the experimental value barely affects

the dark state population. However, the Raman losses are additive in the number
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of superatoms, and, as we already saw, the uncertainty in the number of lost

photons can become substantial. We cannot exactly quantify the impact of the

Raman decay as before since our simulations were limited by the size of the

superatom Hilbert space. However, we saw in figure 5.3 that the uncertainty for

a single superatom at t = 4 is about ∆NRaman ≈ 0.33, and we can extrapolate an

uncertainty of about 2.6 photons for nsub = 8 superatoms. Hence, deterministic

multi-photon subtraction necessitates improvements in the Raman decay rate.

Appendix: Bright and dark state population for a single
input photon

5.A

In this section we derive exact expressions for the bright and dark state population

of a single superatom for an initial single-photon state. For this we consider the

full dynamics of the photon field, i.e., we work with the Hamiltonian

H = HPh +Hint (5.11)

where HPh is the Hamiltonian of the free photon propagation (2.4) and Hint

describes the photon-superatom interaction (2.5). We also consider the dephasing

of the superatom into the dark state, given by the dissipator

γDD|D〉〈W |[ρ] = γD

(
|D〉〈W |ρ|W 〉〈D| −

{
|W 〉〈W |, ρ

}
/2
)
. (5.12)

From the dissipator we directly find for the superatom’s dark state population

ρ̇DD = γDρWW , (5.13)

with ρab = 〈a|TrPh[ρ]|b〉. Thus, we obtain the dark state population by integrat-
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ing the bright state population. Next, we go into a quantum jump trajectory

formulation [109]. Here we add the anti-commutator part of the dissipator (5.12)

to the Hamiltonian (5.11) and obtain the effective Hamiltonian

Heff = H − i

2
γD|W 〉〈W |. (5.14)

In the quantum jump description of open quantum systems we evolve the initial

wave function |ψin〉, instead of the density matrix ρ, under the action of Heff. As
Heff is non-hermitian it does not conserve the norm and when the norm falls

below the threshold |〈ψ(t)|ψ(t)〉| ≤ p, with 0 < p < 1, we say that a quantum

jump occured and set |ψ(t)〉 = |D〉. We then obtain the full density matrix ρ by
averaging each |ψ(t)〉〈ψ(t)|, the quantum trajectory, over a uniform distribution
of p.

The advantage of this formulation is that Heff only acts on the {|G〉, |W 〉}
manifold of the superatom. More precisely, Heff equals the full Hamiltonian of

our Bethe approach, with an additional imaginary dephasing of −iγD/2. The
dephased problem was also solved by the Bethe Ansatz [95] and the solutions

are qualitatively similar to what we have seen before. For example, in the

single-excitation sector, we find the eigenstate

|λ〉 = 1√
2π

∫
dy
λ+ iγD/2− (iκ/2) sgn(y)

λ+ iγD/2 + iκ/2
eiλyr†(y, λ)|0〉. (5.15)

with r(y, λ) = b†(y)−
√
κσ+δ(y)/(λ+ iγD/2).

We can determine the full time evolution of our input state (5.2) by projecting

on the eigenstates of Heff. This gives

〈λ|ψin〉 =
1√
2π

√
κ− γD

iλ− γD/2 + κ/2
(5.16)
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and we thus find the amplitude to be in the bright state

cW (t) = 〈W |ψ(t)〉 =
∫ ∞

−∞
dλ e−iλt〈W |λ〉〈λ|ψ〉

= i

∫ ∞

−∞

dλ

2π
e−iλt

√
κ
√
κ− γD

(λ− iκ/2 + iγD/2)(λ+ iγD/2 + iκ/2)

=

i
√

κ−γd
κ
e(κ−γD)t/2 t ≤ 0

i
√

κ−γd
κ
e−(κ+γD)t/2 t ≥ 0

. (5.17)

This then directly leads to the bright state population PW (t) = |cW (t)|2 and, by
integration of (5.13), the dark state population.

Appendix: Monte-Carlo Model

5.B

In the main part of this chapter we used a classical Monte-Carlo model of the

photon-superatom interaction, in order to describe the statistical nature of the

ion detection in the presence of secondary Rydberg excitations. In this section

we will motivate this model from a microscopic analysis and describe it in more

detail.

First, we assume that the photons are in a quenched plane wave, which arrives

at time t = 0 at the position of the superatom, i.e., ψin(x) = 1 for x < 0 and

ψin(x) = 0 for x > 0. The projection onto the single-excitation Bethe state then

is

〈λ|ψin〉 =
√
2πδ(λ) (5.18)

and we find, for x > 0.

ψout(x) = lim
t→∞

ψin(x, t) =
γD − κ

γD + κ
. (5.19)
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Therefore, according to the quantum jump trajectory description, we find the

probability p1 = (γD − κ)2/(γD + κ)2 that the incoming photon gets transmitted.

For themulti-photon scattering the BetheAnsatz again shows that the outgoing

state is a combination of individually scattered photons and multi-photon bound

states. Now, if we assume well-separated photons, we may neglect the photonic

bound states and find that each photon scatters independent of the others, with a

probability of 1−p1 to be absorbed into the dark state, if the superatom is not yet
dephased. Importantly, we saw in (5.19), that the scattering of a resonant plane

wave does not alter the wave function, so this analysis carries over to multiple

superatoms and each superatom has the same probability 1− p1 to absorb an

incoming photon.

In order to arrive at our full Monte-Carlo model, we additionally allow for

secondary Rydberg excitations. For this we heuristically introduce the photon-

number dependent probability p2·〈nin〉 to excite the superatoms into an additional
dark state. Interestingly, this simple model already captures the superatom

dynamics quite well and, even though we assumed well-separated photons above,

it reproduces the experiment results even for large 〈nin〉.
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6 Nonexponential decay

inmultiple-emitter chains

At this point, we have a clear understanding of the interaction of light with a

single superatom. Regarding the transmitted photons, we analysed the temporal

and number statistics in chapters 3 and 4, respectively. Furthermore, the dis-

cussion of the parameter dependence of the single-photon subtractor in the last

chapter 5 equates to a full analysis of the single-superatom dynamics.

Systems of a few superatoms show a modified behaviour due to the chiral

exchange interaction between superatoms. As an example, we saw the breakdown

of well-defined Rabi oscillations for a superatom chain or that a two-superatom

system may become completely trivial with regard to the photon transmission,

as discussed in section 4.3. The exchange interactions thus have a substantial

impact on the superatoms and photon dynamics.

In this chapter, we will study a waveguide of N emitters, where the influence

of the coherent exchange interaction becomes increasingly dominant. For this,

we will study the decay of a single excitation: the collective bright state of the

emitter chain, i.e., the state of the chain immediately after the absorption of

a single resonant photon. This discussion follows the same underlying idea as
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6 Nonexponential decay in multiple-emitter chains

our derivation of the internal dynamics of the superatom in section 1.3. More

precisely, the external light field couples to the emitter chain via the collective

jump operator σ+ =
∑

j σ
+
j e

ik0xj , resulting in the collective bright state

|W 〉 = 1√
N

N∑
j=1

eik0xjσ+
j |G〉, (6.1)

where |G〉 = |G1, . . . , GN〉 denotes the collective ground state, |Gj〉 is the ground
state of the j-th emitter, and k0 = ω0/c is the wave vector at the resonance

frequency ω0 of the emitters.

Our discussion here possesses strong ties to the similar setup of the collective

decay of three-dimensional systems [70, 72, 76, 77, 79–81, 195]. In these systems,

superradiant emission of the excitation was predicted [72, 76] and subsequently

measured in multiple different platforms, like cavity-trapped atoms [196], cold

atoms [197–200], and quantum dots [201, 202]. Furthermore, the light-emitter

interaction results in a cooperative Lamb-Shift of the emitters [71, 203, 204],

again observed in multiple different systems [196, 205–207]. Lastly, as we

already discussed in section 1.3.3, directed emission is another emerging effect

in these systems [55, 75, 78, 208], as observed in cold atoms [209] or Rydberg

superatoms [90].

The one-dimensional system discussed here will be similar to these three-

dimensional systems in many ways. We will see that |W 〉 is the superradiant
state of the chiral waveguide, with the correspondingly enhanced decay. However,

only the initial decay occurs at the superradiant decay rate Nκ, after which the

coherent exchange interactions slow down the decay to subradiant levels. More

specifically, we find that, for multiple emitters, the asymptotic decay of |W 〉
transitions from an exponential into an algebraic decay.

Furthermore, we will contrast the chiral interaction against the interactions in a

bidirectional waveguide, which wewill introduce in this chapter. Interestingly, we
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6.1 The bidirectional waveguide

will find little qualitative differences between a chiral waveguide and an extended

bidirectional waveguide. On the other hand, we will find pure superradiant

decay for bidirectional waveguides smaller than the wavelength of a resonant

photon.

This chapter is based on the publication [210], for which the manuscript’s

author performed the first derivation of the algebraic decay of the N emitters

chain, using the Bethe Ansatz. Calculations based on the master equation were

performed by the co-author of the publication J. Kumlin unless stated otherwise.

The bidirectional waveguide

6.1

An extension of our theory to bidirectional emitters is straightforward and only

requires two modifications to our previous derivation of the master equation.

When we derived the master equation (2.22), we split the free-photon propaga-

tion Hamiltonian (2.2) into two modes bL and bR, for the left and right moving

photons, respectively. We then dropped one mode as it was generally unimpor-

tant for chiral interactions. For a bidirectional waveguide, we have to take both

modes into account. This requires that the second mode enters the interaction

Hamiltonian (2.5) in the same way as the first mode. We also need to account

for the phase factor e±ik0xj , which we previously included in the definition of the

ladder operators σ−
j e

−ik0xj 7→ σ−
j . This is no longer possible, as the sign in the

phase differs for the left- and right-moving photons.

There are no additional steps required in the derivation of the bidirectional

master equation compared to the chiral one. The articles [101, 102], for example,
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6 Nonexponential decay in multiple-emitter chains

contain detailed derivations and the bidirectional master equation becomes

∂tρ = −i
[∑

j,l

κ sin(k0|xj − xl|)σ+
l σ

−
j , ρ
]

+ 2κ
∑
j,l

cos(k0|xj − xl|)
(
σ−
j ρσ

+
l − 1

2

{
σ+
l σ

−
j , ρ
})
. (6.2)

Notice that for the chiral waveguide, only the collective mode σ+ =
∑

j σ
+
j e

ik0xj

occurred in the dephasing, while the dephasing here generally acts on many

orthogonal emitter modes.

In order to better compare between both the chiral and the bidirectional

waveguide, let us introduce the more general notation for the master equation

∂tρ = −i
[∑

j,l

Jjlσ
+
l σ

−
j , ρ
]
+
∑
j,l

Γjl

(
σ−
j ρσ

+
l − 1

2

{
σ+
l σ

−
j , ρ
})
, (6.3)

where Jjl describes the coherent interaction between the superatoms and Γjl the

correlated decay. For a chiral waveguide, including the phase factors, this yields

Jjl =
κ

2i
sgn(xj − xl)e

ik0(xj−xl), (6.4a)

Γjl = κeik0(xj−xl). (6.4b)

We call the eigenstates of the dephasing Γjl superradiant if they decay faster

than κ or subradiant for a slower decay.

Decay of two emitters

6.2

As an instructive example we first discuss the minimal model of two emitters, for

which we will see the first relevant effects of to the coherent exchange interaction.
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6.2 Decay of two emitters

For the generic master equation (6.3) we find the superradiant and subradiant

states

|±〉 = 1√
2

(
σ+
1 ± e−iϕσ+

2

)
|G〉 ≡ S†

±|G〉, (6.5)

where ϕ = arg(Γ12/Γ11) and we used that Γ is a symmetric matrix with Γ11 = Γ22

for both types of waveguides. The super- and subradiant states decay with the

respective rates Γ± = Γ11 ± |Γ12|. Thus, for the bidirectional waveguide, we find
the position-dependent decay rates Γ± = 2κ[1 ± | cos(k0|x1 − x2|)|] while, for
the chiral waveguide, only the superradiant state decays with rate 2κ and the

subradiant state is free of dissipation. In the extreme cases, at atom separations

of k0|x1 − x2| = πn, n ∈ Z, the bidirectional waveguide’s decay rates are twice
as large as for the chiral waveguide since there are two possible directions for

the photon emission.

The super- and subradiant states diagonalise the decay of the emitters. How-

ever, these states are not necessarily eigenstates of the exchange interaction, thus

the time evolution will mix these different states, and the overall decay will be a

combination of all available decay rates. Additionally, for the chiral waveguide,

the superradiant state always equals the collective bright state |W 〉, while in the
bidirectional waveguide |W 〉 generally becomes a superposition of the super-
and subradiant states, except for very fine-tuned emitter positions xj. Hence,

the decay of the collective bright state requires a thorough analysis.

6.2.1 Bidirectional waveguide

First, we analyse the bidirectional waveguide, where, only in the special case

of two atoms, the exchange interaction becomes diagonal in the super- and

subradiant basis, and the master equation reads as

∂tρ = −i
[
J12(S

†
+S+ − S†

−S−, ρ
]
+ Γ+DS+ [ρ] + Γ−DS− [ρ], (6.6)
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6 Nonexponential decay in multiple-emitter chains

where J12 = κ sin(k0|x1 − x2|), Γ± = 2κ(1± cos(k0|x1 − x2|) and S†
± creates the

super- and subradiant states, respectively. From the diagonal form of the master

equation (6.6) we directly see that the super- and subradiant state decay with a

rate of ±J12 − Γ±/2 = κ[1± exp(ik0|x1 − x2|)] and we find the time evolution
of of the bright state population

PW (t) = e−2κt
∣∣cosh (κteik0|x1−x2|

)
− cos(k0(x1 − x2)) sinh

(
κteik0|x1−x2|

)∣∣2 ,
(6.7)

by expressing |W 〉 in the |±〉 basis. In the same way we obtain the population
of the state orthogonal to |W 〉, denoted as |D〉 to make the similarity to our
Rydberg superatoms discussed in section 1.3.5 more stringent,

PD(t) = e−2κt
∣∣sin(k0(x1 − x2)) sinh

(
κteik0|x1−x2|

)∣∣2 . (6.8)

The dark and bright state populations are clearly position-dependent. If we

control the atom position perfectly, we can alter the dynamics in many ways.

For example, for atom separations commensurable to the photon wavelength

k0(x1 − x2) = πn, n ∈ Z, the dark state will never be populated, and we
obtain perfect super- and subradiance, Γ+ = 2Nκ, Γ− = 0. In contrast, for the

rest of this chapter, we want to focus on a random atom distribution, and we

subsequently want to study the average decay of |W 〉.

First, let us assume that the atoms are positioned within one wavelength of each

other, k0σ � 1, where σ is a characteristic width of the atom distribution. We

may then approximate k0|x1−x2| ≈ 0. In this limit, the bright state coincides with

the superradiant state |W 〉 = |+〉 and, consequently, we find superradiant decay
PW (t) = exp(−4κt) = exp(−2Nκt), i.e., both emitters contribute constructively

to the decay, and the factor 2 comes from the two available decay directions.

In contrast, for broad distribution k0σ � 1 the phase factors exp(ik0(x1−x2))

become almost uniformly distributed on the unit circle and the collective decay
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Figure 6.1

Bright state, dark state, and total population of two atoms with bidirectional emission.

The bright state decays slower as the single-photon superradiant decay rate 2Nκ (grey,

dotted line), which we found for closely packed atoms. The dipole-dipole interaction

increases the dark state population on short times, which becomes the dominant

contribution to the total population. From then on, the decay is dominated by the

slower subradiant decay. The inset shows the time evolution on a logarithmic scale. We

assumed a Gaussian atom distribution of mean 0 and variance σ2 with kσ = 1000 and

averaged over 1000 realisations. The statistical error is smaller than the line width.

effects are damped, as can be seen from the position-averaged initial decay

PW (t) = 1− 3κt+O((κt)2) ≈ e−3κt/2, (6.9)

PD(t) =
1

2
(κt)2 +O((κt)3). (6.10)

The reasons for the slowed decay are twofold. On the one hand, for arbitrary

atom positions, the superradiant decay rate will not obtain its largest value 2Nκ,

and the decay is limited by Γ+. On the other hand, while we had |W 〉 ≈ |+〉 in
the k0σ → 0 limit, the bright state now also overlaps with the subradiant state

|−〉 and the long-term evolution is dominated by the slow, subradiant decay Γ−.

We find this discussion verified by the numerical results displayed in figure 6.1,

where we show the time evolution of bright, dark, and total population. Here
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6 Nonexponential decay in multiple-emitter chains

we assumed a Gaussian atom distribution at k0σ = 1000, but it should be noted

that the exact distribution is irrelevant as long as it is almost constant on length

scales 1/k0 and the variance is sufficiently large k0σ � 1.

6.2.2 Chiral waveguide

Now we turn to the chiral waveguide where the atoms only emit in one direction.

Before going into a full analysis of the bright state dynamics, we can already

name a few important differences to the bidirectional waveguide by comparing

the respective coupling and decay coefficients (6.2) and (6.4). Firstly, as we have

done in the previous chapters, the emitter positions may be absorbed into the

ladder operators σ+
j e

ik0xj 7→ σ+
j m and the dynamic only depends on the relative

ordering of the atoms, which we fix to x1 < x2. Secondly, we find that the bright

state is the superradiant state with decay rate Γ+ = 2κ = Nκ, while the dark

state is subradiant and without decay. Consequently, every deviation from a

pure exp(−Nκt) decay has to be attributed to the impact of the dipole-dipole
interactions.

Now, the density matrix for the chiral waveguide in the dark and bright state

basis becomes

∂tρ = −i
[
i
κ

2
(S†

WSD − S†
DSW ), ρ

]
+ Γ+DSW

[ρ], (6.11)

where S†
W,D = (σ+

1 ± σ+
2 )/

√
2 create the bright and dark state, respectively. As

opposed to the bidirectional waveguide, where we had no coupling between

the super- and subradiant states, the dipole-dipole interaction is now purely

off-diagonal in this basis. Therefore, the initial bright state population will

transition into the dark state, which is non-radiating and therefore slow down

the decay process.

More precisely, the bright and dark state populations for the decay of the
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Figure 6.2

Bright state, dark state, and total population for two chiral emitters. Initially, the bright

state follows a superradiant decay exp(−Nκt), indicated by the grey dotted line. At

time κt = 2 the entire remaining emitter population is shelved into the dark state,

PW = 0, after which the emitters undergo a damped decay of exp(−κt).

bright state become

PW (t) =
1

4
e−κt(κt− 2)2, (6.12)

PD(t) =
1

4
e−κt(κt)2. (6.13)

For short times we find that the bright state decay is dominated by the super-

radiant decay, as PW (t) = 1 − 2κt + O((κt)2) ≈ exp(−2κt). Additionally, we

find a complete transition into the dark state at κt = 2. After the transition,

the effective decay rate decreases to exp(−κt) as the bright state first has to be
repopulated from the dark state through the dipole-dipole interaction. These

results are clearly visible in figure 6.2, which shows the bright state, dark state,

and total population of the two-emitter chiral waveguide.
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6 Nonexponential decay in multiple-emitter chains

Decay ofmultiple atoms

6.3

The discussion on the two-emitter waveguides revealed how the coherent ex-

change interaction generally slows down the decay of the collective bright state.

Especially for the chiral waveguide, we observed that the initial superradiant

decay exp(−Nκt) was reduced to an asymptotic single-emitter decay exp(−κt).
We will now discuss the generic situation for an arbitrary number N of emitters.

Here we will see that, after an initial superradiant decay, the complex interplay

between the bright state and the multiple dark states leads to oscillations in the

bright state population with an overall algebraic decay. We will now first discuss

the chiral waveguide, for which we can find analytic results for the decay of the

collective bright state. Then we turn to the bidirectional waveguide, where we

find the same qualitative results for broad distributions k0σ → ∞.

6.3.1 Chiral waveguide

For the general N -emitter chiral waveguide, our previous two observations are

still valid: As only the relative ordering of the emitters enter the master equation,

the decay of the collective bright state |W 〉 is independent of the emitter position
and |W 〉 is the superradiant state with decay rate Γ = Nκ, while all orthogonal

states are non-radiating dark states. Different to the two-emitter waveguide,

however, the bright state now has N − 1 potential dark states to shelve its

excitation into, which will reduce the bright state decay to an algebraic (κt)−3/2

decay, and the total population decays as (κt)−1/2 for intermediated times, as we

will now show.

In the appendix 6.A of this chapter, we analytically derive the full time

evolution of each atom in the chiral waveguide. From this we then directly find
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6.3 Decay of multiple atoms

the exact expressions for the bright state population

PW (t) =
1

N2
e−κt[L

(1)
N−1(κt)]

2 (6.14)

and the total population of the emitter chain

Ptotal = e−κt[L
(0)
N−1(κt)L

(0)
N (κt)− L

(1)
N−1(κt)L

(−1)
N (κt)]. (6.15)

Here L
(α)
N (x) denotes the generalised Laguerre polynomials of degree N .

Let us first discuss the decay of the bright state population. For short times

we again find superradiant decay, since

PW (t) = 1−Nκt+O((κt)2) ≈ e−Nκt. (6.16)

Additionally, as L
(1)
N (x) → (−x)N/N ! for x→ ∞, the bright state decay is again

dominated by uncorrelated single-emitter decay in the asymptotic limit t→ ∞.
However, for intermediate times 1 � κt� N , the coherent exchange interaction

leads to a complex interplay of the bright state and the multiple dark states, that

drastically alters the decay of the collective bright state. This becomes evident,

as we find the asymptotic bright state population for many atoms N → ∞ and

fixed Nκ

PW (t) =
[J1(2

√
Nκt)]2

Nκt
, (6.17)

where Jn(x) is the Bessel function of the first kind. We now find, for κt � 1,

the algebraic behaviour

PW (κt� 1) ≈ 1

π(Nκt)3/2
cos2

(
2
√
Nκt− 3π

4

)
. (6.18)

Interestingly, the multiple dark states do not lead to some self-averaging be-

haviour but instead the bright state population has perfect absorption into the
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Figure 6.3

Bright state and total population for a chiral waveguide of N = 1000 emitters. The

inset shows the populations on a logarithmic scale, together with the asymptotic results

for N → ∞ and fixed Nκ. The grey dashed and dash-dotted lines show the

superradiant short term and algebraic intermediate term behaviour of the bright state.

dark statemanifold with infinitely many revivals, evident by the cosine-oscillations

in PW .

Similarly, the total population has superradiant decay for short times, while

for κt� N its decay is dominated by the uncorrelated single-emitter decay. For

intermediate times 1 � κt� N in the large system limit N → ∞ we obtain

Ptotal(κt� 1) ≈ 1

π
√
Nκt

. (6.19)

Most noticeably, the total population decays with an even weaker power-law

scaling than the bright state. Our results for the bright state and total population

are summarised in figure 6.3 for 1000 emitters, and we find excellent agreement

between the exact results and their N → ∞ approximations.

In conclusion, we find that for short times both the bright state population

and the total population show superradiant decay. This then transitions into

algebraic decay with a scaling law of (κt)−3/2 for the bright state and (κt)−1/2 for
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6.3 Decay of multiple atoms

the total population. Finally, at κt� N the decay is dominated by incoherent

single-atom decay. Appendix 6.A contains the derivations of the results from this

section. These results were originally derived by the author of this manuscript

and were his main contribution to the theoretical analysis in the article [210].

6.3.2 Bidirectional waveguide

For the final section in this chapter, we now turn to the bidirectional waveguide

with multiple emitters N � 1 with a Gaussian position distribution. While

an exact solution of this problem is out of reach, we find that the two limiting

cases of k0σ → ∞ and k0σ → 0, are well-described by previously observed

effects. Namely, for k0σ → ∞ we find a self-averaging effect due to the random

positions of the atoms, which almost perfectly cancels the back-scattering terms

and therefore leads a similar decay as in the chiral waveguide. On the other

hand, for k0σ → 0, we again find the superradiant limit, where the collective

bright state decays with the superradiant decay rate Γ+ = 2Nκ.

Let us first discuss the k0σ → ∞ limit. Figure 6.4 shows the numerical

results for N = 100 at k0σ = 1000 with the bright state and total population

averaged over 1000 realisations1. Interestingly, we find that the bright state

and total population deviate little from the exact results for chiral waveguide,

equations (6.14) and (6.15), respectively. Furthermore, this does not appear, at

least entirely, to be an averaging effect from the multiple realisations, as even

individual realisations show almost the same population evolution as atoms in a

chiral waveguide for relatively short times Nκt < 50.

In order to explain this interesting behaviour, we analyse the time evolution in

quantum jump trajectory formulation [109, 110]. Here, the effective Hamiltonian

1Figure 6.4 uses new numerical results, explaining why the individual, random trajectories
differ from the original publication. At the same time we increased the number of realisations
from 100 to 1000, to make the averaging more consistent with the two-emitter discussion.
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Figure 6.4

Bright state and total population in a bidirectional waveguide for N = 100 emitters.

The emitter positions follow a Gaussian distribution with standard deviation

k0σ = 1000. The curves are averaged over 1000 realisations. The dashed lines are the

respective results (6.14) and (6.15) for a chiral waveguide and closely follow the

averaged curves for long times. Grey lines show individual realisations, which deviate

little from the averaged curve up to Nκt ≈ 50.

reads as

Heff = −iκ
∑
j,l

eik0|xj−xl|σ+
l σ

−
j

→ −iNκ
∫
dxdy eik0|x−y|ψ†(x)ψ(y), (6.20)

where we employed the continuum-limit for large N in the second line, for

which we kept Nκ fixed. Here ψ(†)(x) destroys (creates) an emitter excitation at

position x with bosonic exchange statistics, i.e. [ψ(x), ψ†(y)] = δ(x − y). The

time evolution of the collective bright state, for a uniform atom distribution in

the interval [0, σ], now reads as

∂tψ(x, t) = −Nκ
σ

∫ σ

0

dy ψ(y, t)eik0|x−y|, (6.21)
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with the initial condition ψ(x, 0) = eik0x. We obtain the solution to (6.21) by

two Laplace-transformations in x and t, as shown in the appendix 6.B of this

chapter. Doing so, the atom state becomes

ψ(x, t) = eik0xJ0(2
√
Nκtx/σ). (6.22)

From this, we directly obtain the bright state population

PW (t) =

∣∣∣∣∫ σ

0

dx J0(2
√
Nκtx/σ)

∣∣∣∣2 = J1(2
√
Nκt)2

Nκt
, (6.23)

which equals the bright state population of the chiral waveguide (6.14). On the

other hand we find the total population

Ptotal(t) =

∫ σ

0

dx
∣∣∣J0(2√Nκtx/σ)

∣∣∣2 = J0(2
√
Nκt)2 + J1(2

√
Nκt)2, (6.24)

which coincides with the total population (6.15) of the chiral waveguide, see (6.33).

While we specifically considered a uniform emitter distribution, it should be

noted that the actual distribution does not influence the results in the k0σ → ∞
limit.

In the k0σ → 0 limit, the coherent exchange interaction again becomes

irrelevant Jij ≈ 0. Here, the collective bright state becomes the superradiant

state of the bidirectional waveguide, and we find the superradiant decay rate 2Nκ,

with the factor 2 again originating from the two respective decay directions. The

k0σ → 0 limit coincides with the original work of Dicke [53], where superradiant

emission form a gas of extent smaller than the wavelength of a resonant photon

was first predicted.
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Appendix: Exact results for the chiral waveguide

6.A

We now give the derivation of bright state population (6.14) and the total popula-

tion (6.15) for the chiral waveguide. For this we calculate the transition amplitude

for the exchange of an excitation from the j-th superatom to the l-th atom with

l ≥ j. We do this with the Bethe Ansatz solution as this formalism is applied

straightforwardly to the problem at hand.

Let |ψj〉 = σ+
j |G〉. The projection of |ψj(t)〉 on the excited state |ψl〉 reads as

〈ψl|ψj(t)〉 =
∫ ∞

−∞
dλe−iλt〈ψl|λ〉〈λ|ψj〉

= −iκ2L(−1)
l−j (κt)e−κt/2 (6.25)

Now we can determine the time evolution of |W 〉 by summing the individual
evolution of each emitter contributing to |W 〉. Then, the amplitude to have the
l-th atom excited becomes

cl = 〈ψl|W (t)〉

= − iκ2√
N

(
l∑

j=1

L
(−1)
l−j (κt)

)
e−κt/2

= − iκ2√
N
L
(0)
l−1(κt)e

−κt/2. (6.26)

From this the bright state population (6.14) in the main text readily follows

PW (t) =

[
1

N

N∑
j=1

L
(0)
j−1(κt)

]2
e−κt =

[
1

N
L
(1)
N−1(κt)

]2
e−κt. (6.27)
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The probability to have any emitter excited is the squared norm of |W (t)〉, i.e.,

Ptotal(t) =
1

N

N∑
j=1

[L
(0)
j−1(κt)]

2e−κt

=
[
L
(0)
N−1(κt)L

(0)
N (κt)− L

(1)
N−1(κt)L

(−1)
N (κt)

]
e−κt (6.28)

=
[
L
(0)
N−1(κt)L

(0)
N (κt)− κtL

(1)
N−1(κt)L

(1)
N (κt)/N

]
e−κt. (6.29)

For largeN the Laguerre polynomials L
(α)
N (x) are well-approximated by Bessel

functions [211]

L
(α)
N (x) ≈

√
Nα

Jα(2
√
Nx)√
xα

ex/2. (6.30)

Bessel functions are, for large arguments, well-approximated by an algebraic

decay, superimposed with a harmonic oscillation [212]

Jα(x) ≈
√

2

πx
cos
(
x− απ

2
− π

4

)
. (6.31)

Hence, for many atoms N � 1 and for times κt � 1 we find the asymptotic

expressions for the bright state population

PW (t) ≈ 1

π
√

(κNt)3
cos2

(
2
√
κNt− 3π

4

)
, (6.32)

and for the total population

Ptotal(t) = J0(2
√
Nκt)2 + J1(2

√
Nκt)2 ≈ 1

π
√
κNt

. (6.33)
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6 Nonexponential decay in multiple-emitter chains

Appendix: Exact results for the bidirectional waveguide

6.B

In this section we show the detailed derivation of the time evolution of the

bidirectional waveguide in the continuum-limit. For N → ∞ with fixed Nκ the

continuum limit is given by the effective Hamiltonian (6.20), with field creation

and annihilation operators Ψ†(x) and Ψ(x), respectively. In this description the

collective bright state becomes

|W 〉 =
1√
N

∫
dx eik0xΨ†(x) |G〉 . (6.34)

Now we determine the time evolution, which follows the Schrödinger equation

i∂tψ(x, t) = −iNκ
σ

∫ σ

0

dy eik0|x−y|ψ(y, t), (6.35)

with the initial condition ψ(x, 0) = eik0x. In order to solve this differential

equation, we first apply a Laplace transformation from the variable t to the

variable s

sψ̂(x, s)− ψ(x, 0) = −Nκ
σ

∫ σ

0

dy eik0|x−y|ψ̂(x, s)

= −Nκ
σ

∫ x

0

dy eik0(x−y)ψ̂(x, s)− Nκ

σ

∫ σ

x

dy e−ik0(x−y)ψ̂(x, s)

= −Nκ
σ

∫ x

0

dy eik0(x−y)ψ̂(y, s) +
Nκ

σ

∫ x

0

dy e−ik0(x−y)ψ̂(y, s)

− Nκ

σ

∫ σ

0

dy e−ik0(x−y)ψ̂(y, s). (6.36)

To better suite the initial conditions and to identify fast oscillating terms, we

make the Ansatz ψ̂(x, s) = eik0xφ̂(x, s). Under this replacement, equation (6.36)
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6.B Exact results for the bidirectional waveguide

simplifies to

s φ̂(x, s)− 1 = −Nκ
σ

∫ x

0

dy φ̂(y, s) +
Nκ

σ

∫ x

0

dy e−2ik0(x−y)φ̂(y, s)

− e−2ik0x
Nκ

σ

∫ σ

0

dy e2ik0yφ̂(y, s) . (6.37)

Next, we perform a Laplace transformation from the variable x to u and we

obtain

s
ˆ̂
φ(u, s)− 1

u
= −Nκ

uσ
ˆ̂
φ(u, s) +

Nκ

uσ + 2ik0σ
ˆ̂
φ(u, s) (6.38)

− Nκ

uσ − 2ik0σ

∫ σ

0

dy e2ik0yφ̂(y, s). (6.39)

We now take the k0σ → ∞ limit, for which the last two terms vanish and end

up with an algebraic equation for
ˆ̂
φ, for which we directly find the solution

ˆ̂
φ(u, s) =

σ

suσ +Nκ
. (6.40)

The inverse Laplace transformation of this expression back to the variables x

and t is given by

φ(x, t) = J0(2
√
Nκxt/σ), (6.41)

and we find the solution of the time evolution for the collective bright state

ψ(x, t) = eik0xJ0(2
√
Nκxt/σ). (6.42)

From this, we determine the total bright state population

PW (t) =

∣∣∣∣∫ σ

0

dx J0(2
√
Nκxt/σ)

∣∣∣∣2 =
∣∣∣∣∣J1(2

√
Nκt)√

Nκt

∣∣∣∣∣
2

, (6.43)

which agrees with the exact result for the chiral waveguide (6.17). Similarly, we
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6 Nonexponential decay in multiple-emitter chains

obtain the total population in the bidirectional waveguide

Ptotal(t) =

∫ σ

0

dx |J0(2
√
Nκxt/σ)|2

= J0(2
√
Nκt)2 + J1(2

√
Nκt)2. (6.44)

Thus, we again have perfect agreement with the exact result (6.33) for the chiral

waveguide.
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7 Collective decay of a

single superatom

The previous chapters revealed Rydberg superatoms as powerful and versatile

systems with applications in creating highly correlated states of light, non-classical

states of light, and in deterministic photon subtraction. Our combined theoretical

and experimental analysis further demonstrated that our three-level model is a

highly accurate and efficient description, which well-captures all the scenarios

above. For the final chapter of this thesis, we now want to bring our three-level

model to its limits and discuss a setup for which the so far neglected internal

dynamics of the superatom become relevant.

Such a situation occurs when we subject a single superatom to a coherent

drive for a finite time and then measure the emission rate of the partially excited

superatom right after the driving pulse ends. While the three-level model predicts

a constant photon emission rate, given by the sum of the spontaneous emission

rate κ, the Raman decay Γ and the dephasing rate γD, the experimental results

demonstrate an explicit dependency of the emission rate on the strength and

duration of the previous driving pulse. We argue that this effect originates from

the internal exchange interactions of the superatom, similar to the discussion in
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7 Collective decay of a single superatom

the previous chapter. There we saw that the dipole-dipole interaction between

atoms significantly alters their superradiant decay in specific regimes. Under

this hypothesis, we extend our previous three-level model by introducing an

additional fourth level, with a coherent coupling to the superatom’s bright state.

This four-level model captures the experimental results on a quantitative level.

We further motivate the four-level model by a microscopic analysis of the full

N -emitter dynamics in a one-dimensional chain.

This chapter’s relevance to the broader scientific community lies in the ob-

servation that subradiant states cause the alteration in the decay rate. While

superradiance has been measured in multiple different systems, like trapped

ions [213], molecules [214], artificial atoms [126], or quantum dots [201, 202],

the observation of subradiant effects is typically more difficult due to the weak

coupling of the subradiant states to the external modes [215]. In fact, the obser-

vation of subradiant states in systems containing multiple emitters is a relatively

recent achievement [198, 215]. The superatom system, therefore, becomes a

promising candidate for this line of research.

This chapter is based on the article [91]. Here, the author of this thesis

performed the theoretical analysis of the N -emitter system. The author and

co-author N. Stiesdal performed the subsequent comparison to the four-level

model in unison. The co-authors N.Stiesdal, H. Busche and J. Kumlin carried

out the comparison between the four-level model and the experimental results.

Superatom decay dynamics

7.1

7.1.1 Experimental Setup

The experiments were performed with the setup outlined in section 1.4. We

excited a single superatom under varying pulse durations and measured the
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7.1 Superatom decay dynamics
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Figure 7.1

(a) Light intensity (in photons/µs) of a single superatom for different pulse durations.

Lines indicate show fits by the four-level model, big dots show measured results and

small dots indicate the reference beams, i.e., the intensity in the absence of the

superatom. The grey shaded areas indicates the time-regions after the end of the pulses.

(b,c)Measured intensity minus the reference intensity after the end of the pulse, as

indicated by the grey rectangles in (a). Grey dashed lines shows the I0e
−γt fit to the

data. Error-bars are the standard error of the mean and the grey area at the bottom

indicates the data cut-off for the fit.

forward emitted light after the pulse ended (with the control beam remaining

on). We then fitted an exponential decay I0e
−γt to the intensity, to extract

the intensity I0 (in photons/µs) and the decay rate γ of the superatom. This

procedure is outlined in figure 7.1. Figure 7.1 (a) shows the measured intensities

for a single superatom and the reference pulses of different durations. Here the

grey shaded regions indicate the time intervals after the pulse, which we use

for the I0 and γ extraction. In figure 7.1 we show an enhanced view of these

regions, together with the exponential fits to the data. We further verified both

by field-ionisation of the Rydberg atom and measuring the ion-statistics, and by

determining the two-photon correlation g(2)(τ = 0) < 0.1 that the superatom

carried only a single excitation for the presented experimental results.

Particular to our discussion in this chapter, we used different intermediate state
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7 Collective decay of a single superatom

detunings ∆ in the experiments. This allows us to tune the spontaneous decay

rate κ since the coupling rate κ scales as 1/∆2, as we showed in section (1.2).

By comparing the experimental results to the four-level model, explained below

in detail, we then find that the fitted internal coupling rate κ is independent
of the external parameters ∆ and the Rabi frequency 2

√
κRin. We use this

in support of our claim, that the observed pulse-duration dependency of the

superatom decay rate γ is due to the internal dynamics of the superatom, which

are independent of the external parameters. In the following figures we will

directly give the resulting κ instead of the detuning ∆ for an easier comparison

with previous results.

7.1.2 Superatom decay

Figure 7.2 shows the experimentally determined photon flux (intensity) I0 and

decay rate γ of the superatom immediately after the end of the probe pulse.

While we can explain the behaviour of I0 from the Rabi oscillations of the

superatom, the three-level model predicts a constant decay rate γ = κ+ Γ + γD.

Instead, we find damped oscillations for γ, out of phase with the I0 oscillations.

Furthermore, while γ reaches a steady state for long pulses, the steady state

emission rate typically lies below the predicted value from the three-level model

for some of the examples.

The frequency of the oscillations in I0 and γ are linked to the Rabi frequency.

To verify this we increased ∆ from 2π × 100MHz to 2π × 125MHz and 2π ×
150MHz, which leads to a subsequent reduction of κ and Γ and thus to a

decreased Rabi frequency, as discussed in the last section. This is display in

figure 7.2 (a) to (c) for γ and (e) to (g) for I0, where we see a slow-down of the

oscillations. In order to definitely link the oscillation frequency of γ and I0 to the

Rabi frequency, we further show γ and I0 at κ = 0.47 µs−1 and Rin = 6.7 µs
−1

in figures 7.2 (d) and (h), respectively. This set of parameters yields the same

Rabi frequency as κ = 0.21 µs−1, Rin = 15 µs
−1, displayed in the panels (c) and
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Figure 7.2

Decay rate γ (top row) and photon flux I0 (bottom row) obtained from fitting I0e
−γt to

intensity signal after the end of the probe pulse. Panels (a, c) are for

∆ = 2π × 100MHz, (b, f) for ∆ = 2π × 125MHz, and (c, g) ∆ = 2π × 150MHz at
Rin = 15 µs

−1, while the two panels (d, h) are at ∆ = 2π × 100MHz and
Rin = 6.7 µs

−1. The dots show the experimental results with error-bars indicating one

standard deviation confidence intervals of the fits, while the curves show the theoretical

results from the four-level model. Grey dashed lines are the constant decay rate

estimated from the three-level superatom model.

(g). I0 and γ oscillate at the same frequency for these two parameter sets, which

underlines the connection between the Rabi frequency 2
√
κRin and the γ, I0

oscillations.

In conclusion, our previous three-level model will likely be good enough

to capture the behaviour of the photon flux I0, as it dominated by the Rabi

dynamics of the superatom. However, the three-level model fails to provide

a time-dependent decay rate. Since the decay rate oscillates, there must be a

mechanism that can both decrease and increase the bright state population.

Thus, we are led to the assumption that the bright state has to interact with

subradiant states, from which periodic revivals of the bright state population
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7 Collective decay of a single superatom

occur. The simplest model of such an interaction adds an fourth state |C〉 to our
previously used superatom model, with a coherent coupling κ between |C〉 and
|W 〉. We explain this enlarged model in the next section in detail.

7.1.3 Four-level model

Figure 7.3

Four level model. Double-arrow

lines indicate coherent coupling,

single-arrow curves stand for

incoherent processes.

We now introduce a fourth level |C〉 to our
superatom model, as depicted in figure 7.3 to

the right. |C〉 possesses a coherent coupling
with rate κ to the bright state |W 〉, i.e., we
introduce Hexc = κ(|W 〉〈C| + |C〉〈W |) to the
Hamiltonian. Like every other excited state,

we assume that |C〉 is subject to Raman decay.
We further assume that the same incoherent

processes that bring |W 〉 into |D〉 also drive
|C〉 into |D〉. For simplicity, we model |C〉’s
Raman decay and dephasing with the same

Table 7.1

Fitted parameters for the three- and four-level model. In the fits we assumed that Γ

scales as Γ ∝ 1/∆2. For the three-level model κ and γD were free fit parameters. For

the four-level model we take κ and Γ from the three-level model, and manually fix

γD = 0.85 µs−1 for all datasets, as the fit tended to overestimate this. Thus κ is the only
free parameter, showing that the near constant κ was not manually enforced.

Rin ∆/2π κ Γ γD (3L) γD (4L) κ
(µs−1) (µs−1) (µs−1) (µs−1) (µs−1) (µs−1) (µs−1)

15.0 100 0.46 0.15 1.34 0.85 0.31
15.0 125 0.32 0.10 1.26 0.85 0.32
15.0 150 0.21 0.064 1.18 0.85 0.31
6.7 100 0.47 0.15 1.33 0.85 0.34
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Figure 7.4

Emission signal after the driving pulse ended from the superatom model. (b) shows the

same time-range as figure 7.1 (c) and both figures compare well, while (c) shows the

same results for longer times. The grey dashed lines indicate fits of I0e
−γt to the initial

time behaviour of the decay. Grey areas indicate the experimental cut-off region, where

the mean standard error of I0 becomes comparable to I0. Strong deviations from an

exponential behaviour only occur in these regions. The four-level model parameters are

the Rin = 15 µs
−1, ∆ = 2π × 100MHz fits, given in table 7.1.

rates Γ and γD as for the bright state. Together with the coherent drive

Hdrive = 2
√
κRin(|W 〉〈G|+ |G〉〈W |), this results in the master equation

∂tρ =− i[Hexc +Hdrive, ρ] + κD|G〉〈W |[ρ]

+ Γ
∑

S∈{W,D,C}

D|G〉〈S|[ρ] + γD
∑

S∈{W,C}

D|D〉〈S|[ρ]. (7.1)

This model is able to accurately capture the non-constant decay of the super-

atom, as can be seen in figure 7.2, where we also show the fits of the four-level

model to the experimental results. From these fits we obtain a roughly constant

coherent coupling rate κ, as we show in table 7.1. This further indicates that the
observed effects in the superatom decay are due to internal interactions in the

superatom, which are independent of the external parameters κ and Rin.
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7 Collective decay of a single superatom

Figure 7.4 shows the intensity after the end of the driving pulse, obtained

from the four-level model. Here we find a pulse-duration dependent exponential

decay, similar as in the experiment. Panel (a) uses the same time-range as for the

experimental results in figure 7.1 (c). However, the four-level model allows us to

analyse the emission signal well beyond the experimentally accessible regime,

as is shown in in figure 7.4 (b). Instead of a purely exponential decay, we see

that that the emission shows a significant dip, at about 4 µs, with a subsequent

revival of the emission signal. For short pulse durations the dip becomes so

strong that it results in almost perfect extinction of the photon emission signal.

During the dip the superatom is mostly in the subradiant state and |W 〉 has to
be re-populated first, before we can observe further emission.

Lastly, it should be pointed out the results from the four-level model strongly

resemble the results for a chiral waveguide of two atoms, as discussed in sec-

tion 6.2.2. This becomes especially obvious when we compare figure 7.4 (b),

showing the decay of the superatom after a coherent pump, to figure 6.2, which

displays the decay of the collective bright state of the two chiral atoms. This is

no surprise however, as the master equation of the two chiral atoms equals the

master equation of the four-level model with Γ = 0 = γD and κ = iκ.

Microscopicmotivation for the four-level model

7.2

The four-level model followed from the observation that an oscillating decay rate

is only possible due to additional coherent processes and it was further motivated

by its ability to reproduce the experimental results with high accuracy. Yet, up

to this point the four-level model is a heuristic description of the superatom,

without any microscopic origin. In this section we will motivate the four-level

model by a thorough comparison with a more complete superatom-model, where
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7.2 Microscopic motivation for the four-level model

we account for the interactions of all N emitters in the superatom.

More precisely we model the superatom by a chain of N chiral emitters, for

which we discussed the decay of the collective bright state in the last chapter.

We take this simplified model for the inter-atom interactions, instead of a full

three-dimensional treatment of the dipole-dipole interactions, for the following

reasons.

Firstly, in our study of the collective bright state decay, we already observed a

decay behaviour that critically depends on the interactions of the bright state

with the additional subradiant states. Secondly, as the superatom effectively

interacts with the light field like a one-dimensional object, we presume that

treating its internal structure as one-dimensional as well should be justified for

an initial study. Furthermore, a full three-dimensional treatment requires a purely

numerical approach, while for the one-dimensional model we are able to derive

additional analytic results in support of the heuristic four-level model. Lastly, we

treat the atom-atom interactions as being chiral instead of bidirectional. This is

motivated by the discussion in the last chapter, which showed that there should

be little quantitative difference in both approaches in the considered setup. Yet,

the chiral interaction is considerably easier for exact calculations.

7.2.1 Chiral exchange-interaction in the subradiant basis

Given the arguments above, we describe the superatom as a N -emitter chiral

waveguide, i.e., it evolves according to the master equation

∂tρ = −i[Hdrive +Hexc, ρ] + κD|G〉〈W |[ρ], (7.2)
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7 Collective decay of a single superatom

where Hdrive = 2
√
κRin(|W 〉〈G| + |G〉〈W |) denotes the coherent drive of the

collective bright state |W 〉 =
∑

j |j〉/
√
N and

Hexc =
iκ

2N

∑
l>j

(
|l〉〈j| − |j〉〈l|

)
(7.3)

is the chiral exchange interaction. Here, the states |G〉 and |j〉 denote the ground
state and the state with the j-th atom excited, respectively. The factor 1/N in

the exchange interaction emerges since the atoms interact via the single-atom

coupling rate κ0, while the coupling of the bright state to the light field is

enhanced by a factor of N , κ = Nκ0, due to the collective interaction of all

atoms with the photons. Additionally, D|G〉〈W | captures the spontaneous decay

of the superradiant bright state. Notice that our formulation in this section

differs slightly from the spin operator formulation used in the last chapter. This

is because we now impose the Rydberg blockade on our superatom model and

thus restrict the basis states to the ground state and the single-excitation states.

We notice that |W 〉 is of singular importance in this model, as both the driving
Hamiltonian and the dissipation only act on this single state. Yet, it is easy to see

that |W 〉 is not an eigenstate of the exchange Hamiltonian. However, due to the
singular role of |W 〉, we should express Hexc in a basis that more clearly shows
the interaction between |W 〉 with the subradiant states. For this, we define the
subradiant states as the normalised states orthogonal to |W 〉, which diagonalise
the subradiant sector of Hexc.

More formally, we define P = |W 〉〈W |+ |G〉〈G| the projection onto the bright
and ground state manifold, and Q = 1− P the projection onto the orthogonal

complement. We then diagonaliseQHexcQ and define the resulting eigenstates as

the subradiant states |Cj〉. Next, we express the full exchange Hamiltonian in the
{|W 〉, |Cj〉 | j = 1 . . . N −1} basis, which reveals the coupling rates between |W 〉
and the individual subradiant states. While this approach sounds impractical at

first, we show in the appendix 7.A that all these goals are readily achieved by a
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7.2 Microscopic motivation for the four-level model

simple Fourier-transform of the natural basis {|j〉}.
We obtain, by this basis change, the partially-diagonalised exchange Hamilto-

nian

Hexc =
N−1∑
j=1

(
κj|W 〉〈Cj|+ κ∗j |W 〉〈Cj|

)
+

N−1∑
j=1

εj|Cj〉〈Cj|, (7.4)

with the “eigenenergies” εj = κ cot(πj/N)/2N of the subradiant states and the

coupling rates κj = −κ
[
i+cot(πj/N)

]
/2N between the bright state and the sub-

radiant states. For j/N ≈ 0 or (N−j)/N ≈ 0we have | cot(πj/N)/2N | ≈ 1/2πj,

while for j ≈ N/2 we find cot(πj/N) ≈ 0. We can therefore approximatively

group the subradiant states into two families. Firstly, the subradiant states with

j/N ≈ 0 or (N − j)/N ≈ 0 have a finite coupling on the order of κ with |W 〉.
Secondly, we have the remaining subradiant states whose coupling to the bright

state decays as 1/N (assuming fixed κ).

These two groups nicely capture the idea behind the four-level model. The

j ≈ N/2 states act like the effective dark state, as they may be populated by

additional dephasing mechanisms, like thermal motion, yet their weak coupling

κj generally prohibits any re-population of the bright state on the experimental

time scales. On the other hand, the j/N ≈ 0, (N − j)/N ≈ 0 states are strongly

coupled to |W 〉 and therefore are the source of the internal coherent dynamics.
It is surprising, that the four-level model only requires one additional subradiant

state |C〉 to describe the observed superatom decay, while the N atom model
revealed multiple subradiant states with a significant coupling to |W 〉. We
partially assume that this happens, since on the experimental time-scales only a

few states can become relevant, which allows us to truncate the Hilbert space to

the simple four-level model [74, 216, 217].

7.2.2 Comparison with the four-level model

While our analysis of the chiral waveguide model for the superatom motivates the

four-level model, the chiral waveguide model could still result in quite different
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(a,b) Rate of emitted photons from the chiral waveguide model at N = 1000 atoms

(solid lines) and from the four-level model (dashed lines). Dotted lines show the

respective driving pulse with peak photon rate Rin = 16 µs
−1. The left panel display

κ = 0.5 µs−1, close to the experimental values, the right shows κ = 2 µs−1, which results

in κ similar to the experimental fit. The four-level results are obtained by fitting κ, with
κ fixed to coupling rate of the chiral waveguide and γD = 0 = Γ. (c) Fitted values of κ
of a pulse of duration 4 µs and rate Rin = 16 µs

−1.

dynamics, due to the multitude of states. Therefore, we will now directly compare

numerical solutions from both models and show that the four-level model is

general enough to capture the dynamics of the chiral waveguide model.

Figure 7.5 shows the rate of emitted photons from both models for different

κ and pulse duration, with a focus on times after the end of the driving pulse.

Curves for the four-level model are obtained by fitting them to the results of the

chiral waveguide model, for which we used N = 1000 atoms in the simulation.

For the fit, we fix κ in the four-level model to the coupling rate of the chiral

waveguide and set Γ = 0 = γD, as we do not consider any Raman decay in the

chiral waveguide model, nor any incoherent processes, that drive the waveguide

into the weakly coupled subradiant states. Thus κ is the only free parameter
for the fit. Nevertheless, we find excellent agreement between both models

with slight deviations only occurring for large times, where the intensity is
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already far below the experimentally accessible threshold. Crucially both models

show the same drop and revival of the intensity signal after the driving pulse

ended, indicating that this not an artefact of the four-level model but an actual,

observable effect.

These results further indicate that the four-level model is sufficient to predicting

even highly involved internal interaction mechanisms of multiple subradiant

states. Yet, we should point out that the actual coherent interactions occurring

in an actual superatom are different to the presented chiral waveguide model,

so for a full microscopic derivation of the four-level model more work would be

necessary. One discrepancy between the chiral waveguide model and the actual

experiment is display in figure 7.5, where we see that κ grows linearly with κ,
when fitting the four-level model to the chiral waveguide. Opposed to this, we

found nearly constant κ for the experimental superatoms. Nevertheless, our
main intent in this section was to demonstrate the predictive capabilities of the

four-level model. These are clearly verified by our numerical analysis.

Appendix: Exchange Hamiltonian in the subradiant basis

7.A

In this appendix we perform a Fourier transformation of the natural basis states

{|j〉}, by which the exchange Hamiltonian becomes diagonal in the subradiant
basis. The original intend was to express Hexc in a basis, that contains |W 〉 and
further does not favour any particular atom state |j〉. The Fourier transform was
a natural choice for this goal as it assigns the same absolute weight 1/

√
N to

each state |j〉. The partial diagonalisation of Hexc in this basis was a welcome
by-product and was not anticipated at first.
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7 Collective decay of a single superatom

We define the new orthonormal basis states

|Ck〉 =
1√
N

N∑
j=1

e2πijk/N |j〉, k ∈ {0, . . . , N − 1}, (7.5)

with |C0〉 = |W 〉. In this basis the exchange Hamiltonian becomes

Hexc =
iκ

2N

∑
l>j

(
|l〉〈j| − |j〉〈l|

)
=

iκ

2N2

∑
p,k

|Ck〉〈Cp|
∑
l>j

(
e−2πi(kl−pj)/N − e−2πi(kj−pl)/N

)
=

iκ

2N2

∑
p,k

|Ck〉〈Cp|
∑
l>j

(
e−2πi(kl−pj)/N − p↔ k

)
, (7.6)

where p↔ k denote the complex conjugate of the left summand with p and k

exchanged. The l-summation of the first term results in

N∑
l=j+1

e−2πikl/N =

N − j k = 0

1−e2πikj/N

1−e2πik/N k > 0
, (7.7)

by the geometric summation formula.

Let us assume k 6= 0, for the moment. Due to the self-adjointness of the

exchange Hamiltonian it is sufficient to consider p ≥ k, so we can neglect the

special case p = 0 for the moment. For p > k it is easy to see that the result

vanishes as the individual terms from the geometric sums cancel

N−1∑
j=1

1− e2πikj/N

1− e2πik/N
e2πipj/N = 0. (7.8)
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On the other hand, we obtain for p = k

N−1∑
j=1

1− e2πikj/N

1− e2πik/N
e2πikj/N = − N

1− e2πik/N
. (7.9)

Recall, that in the exchange Hamiltonian (7.6) there is also the p↔ k term to

consider, which here simplifies to just the complex conjugation. Thus the full

|Ck〉〈Ck| matrix element becomes

iκ

2N2

∑
l>j

(
e−2πi(kl−pj)/N − c.c.

)
=

κ

2N
cot(kπ/N) ≡ εk. (7.10)

Now let us consider the k = 0 case. Here, we should again consider p = 0 = k

and p > k = 0 separately. For p = 0 we obtain the |W 〉〈W | matrix element,
which is

N−1∑
j=1

(
N − j − p↔ k

)
= 0. (7.11)

This matrix element trivially vanishes, asN−j is obviously real and independent
of p and k. For p > 0 we have to determine each summand in (7.6) individually

and obtain

iκ

2N2

∑
l>j

(
e2πipj/N − e2πipl/N

)
=

iκ

2N2

N−1∑
j=1

(
(N − j)e2πipj/N − 1− e2πipj/N

1− e−2πip/N

)
= − κ

2N

(
i+ cot(pπ/N)

)
≡ κp. (7.12)

This is the |W 〉〈Cp| matrix element.
We have now determined all matrix elements of Hexc in the {|Cj〉} basis. In

total, we find that there are only |W 〉〈Cj| matrix elements, coupling the bright
state to the subradiant states with rate κj, and the “eigenenergies” εj of the |Cj〉
states. Therefore, Hexc has exactly the form of equation (7.4) from the main text.
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Ausführliche

Zusammenfassung in

deutscher Sprache

Kommentar des Autors: Diese Dissertation richtet sich, in erster Linie, an

Physiker:innen aus der Quanten-Optik. Diese Zielgruppe ist natürlich wenig

überraschend, da diese Dissertation wissenschaftliche Arbeit aus diesem Gebiet

zusammenfasst. Im Rahmen dieser Dissertation verlangt die Prüfungsordnung

der Universität Stuttgart aber auch eine ausführliche Zusammenfassung in deut-

scher Sprache, eben jene die Sie im Moment lesen. Das legt die Frage nahe:

Welchen Zweck soll diese Zusammenfassung erfüllen?

Auf jeden Fall richtet sie sich nicht an meine erwähnten Kolleg:innen. Das

liegt unter anderem daran, dass Englisch die lingua franca der Physik und jeder

anderen Naturwissenschaft ist. Eine deutschsprachige Zusammenfassung ist nur

für eine sehr kleine Teilgruppe meines Forschungsfeldes überhaupt verständlich

und für diese finden sich alle hier genannten Ergebnisse bereits in der englischen

Zusammenfassung, dem Abstract.

Deswegen richtet sich diese Zusammenfassung in erster Linie an alle, die
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Ausführliche Zusammenfassung in deutscher Sprache

(noch) nicht wissenschaftlich arbeiten. Das sind Bachelor- und Master-Studie-

rende, aber auch alle Physik-interessierten Personen, die einen Einblick in diese

Arbeit erhalten möchten und sich fragen, wofür mein Herz die letzten fünf Jahre

geschlagen hat.

Die hier aufgeführten Ergebnisse haben deswegen nicht weniger wissenschaftli-

che Rigorosität als die Diskussionen in den vorangegangenen Kapiteln, allerdings

fällt die Argumentation bildlicher aus, um den Inhalt so zugänglich wie möglich

zu gestalten. Des Weiteren sollen an dieser Stelle auch grundlegende physi-

kalische Konzepte erklärt werden, zum Beispiel was Licht aus dem Blick der

Quantenphysik ist, die in der eigentlichen Arbeit als bekannt vorausgesetzt

wurden.

Diese Dissertation ist in der Quantenoptik angesiedelt. Diese untersucht die

Wechselwirkung von quantenmechanischem Licht mit quantenmechanischen

Teilchen. Bevor wir an dieser Stelle weiter ins Detail gehen, fangen wir erst

einmal damit an, diese beiden Begriffe genauer zu erklären.

Für Quantenphysiker:innen besteht Licht aus Teilchen, sogenannten Photon-

en. Diese tragen Energie und Impuls mit sich und bewegen sich mit Lichtge-

schwindigkeit durch den luftleeren Raum. Das Besondere an der Quantenmecha-

nik ist, dass der Impuls und die Energie nur in festen Portionen aufgenommen

oder abgegeben wird. Zum Beispiel erhält ein Atom bei einer Wechselwirkung

mit einem Photon die Energie und den Impuls des Photons und das Photon

verschwindet, was wir Absorption nennen; das Atom kann nicht „etwas Energie

aufnehmen“ während „etwas Photon zurück bleibt“.

Quantenmechanische Teilchen sind, vereinfacht gesagt, alle Teilchen für die

diverse quantenmechanische Effekte relevant sind. Zu diesen Effekten gehören

beispielsweise die Heisenbergsche Unschärferelation, die die genaue Bestim-

mung mehrerer Messgrößen unmöglich macht, oder Verschränkung, bei dem
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eine Messung an einem Teilchen den Zustand eines zweiten Teilchens direkt

beeinflusst. Diese Effekte sind fast immer relevant für die kleinsten Bausteine

unseres Universums: einzelne Atome oder kleine Moleküle. Aber auch große

und komplexe Systeme wie Halbleiter und andere Metalle benötigen häufig eine

quantenmechanische Beschreibung.

Widmen wir uns aber nun den Teilchen, um die es in dieser Arbeit vermehrt

geht. Das sind die:

Rydberg-Superatome. Wie bereits angesprochen, wird ein Atom durch die

Absorption eines Photons angeregt und die Photonen können nur in festen

Pakten mit gegebener Energie absorbiert werden. Diese Energie muss genau

zu einem der möglichen Übergänge des Atoms passen, anderenfalls kann das

Photon nicht mit dem Atom wechselwirken. Johannes Rydberg [218] gelang

es 1888 eine empirische Formel für die Wellenlänge von Photonen zu finden,

welche mit Wasserstoffatomen wechselwirken können. Zwar gilt seine Formel

nur fürWasserstoff, allerdings gibt es zahlreiche Atome mit ähnlichem Verhalten.

Dazu gehören zum Beispiel Rubidium oder Caesium, sobald deren „äußerstes“

(das Valenz-) Elektron stark angeregt ist, also viel Energie besitzt. Aufgrund des

wasserstoffähnlichen Verhaltens heißen solche Atome auch Rydberg-Atome.

Führen wir mehrere Rydberg-Atome auf engem Raum zusammen, dann er-

halten wir ein Rydberg-Superatom. Für diese ist „das Ganze mehr als nur die

Summe seiner Teile“ und sie besitzen Eigenschaften, die sie von den einzelnen

Rydberg-Atomen, aus denen sie bestehen, abheben. Gehen wir diese der Reihe

nach durch.

Insbesondere treten in Superatomen zwei Effekte auf, die ihnen praktische

Eigenschaften verleihen. Der erste Effekt ist dieRydberg-Blockade [8], der zweite

nennt sich Superradianz [53, 54].

Bei der Rydberg-Blockade unterbindet ein angeregtes Rydberg-Atom weitere

Anregung in seiner Nähe. Dieser Effekt tritt aufgrund der starken Anregung
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der Rydberg-Atome auf.

Klassisch lässt sich dieser Effekt erklären, wenn wir uns das Elektron des

angeregten Atoms auf einer Kreisbahn um den Kern des Atoms vorstellen.

Je stärker wir das Atom anregen, desto größer wird auch der Umfang dieser

Bahn und entsprechend weiter entfernt sich das negative geladene Elektron vom

positiven Rest. Befinden sich zwei entgegengesetzte elektrische Ladungen, hier

das negativ geladene Elektron und der positive Atomkern, in etwas Abstand

zueinander, dann kompensieren sich ihre elektrischen Felder nicht vollständig

und ein Dipol-Feld entsteht. Das Rydberg-Atom bildet also durch die Anregung

ein Dipol, der stärker wird, je weiter das Elektron vom Kern entfernt ist.

In einer quantenmechanischen Betrachtung können wir dem Elektron keinen

genauen Ort und damit auch keinen festen Abstand zum Atomkern zuschreiben.

Stattdessen besitzt das Elektron eine zufällige Verteilung um den Kern, die von

der Anregungsenergie abhängt. Wir brauchen uns deswegen aber keine Sorgen

zu machen, der quantenmechanische Beweis folgt der gleichen Logik wie unser

klassisches Argument. Die angeregten Rydberg-Atome erzeugen ein Dipol-Feld

und dieses Dipol-Feld beeinflusst nun alle weiteren Atome in seiner Nähe.

Dazu erinnern wir uns, dass jedes Atom Energie-Level besitzt, die festlegen

mit welchen Photonen die Atome wechselwirken können. Durch das, vom

angeregten Rydberg-Atom erzeugte, Dipol-Feld werden aber die Energie-Level

der Übergänge verändert und die restlichen, nicht angeregten Atome sind nicht

weiter in der Lage, Photonen mit der ursprünglichen Energie zu absorbieren.

Die Rydberg-Blockade garantiert also, dass das Superatom immer nur eine

Anregung gleichzeitig besitzen kann.

Der zweite Effekt, Superradianz, beschreibt die kollektive Wechselwirkung

aller Atome mit den Photonen. Zwar haben wir eben gesehen, dass in einem

Superatom immer nur ein einzelnes Atom angeregt sein kann, doch zu dieser

ersten Anregung tragen alle Atome gleichermaßen bei.

Typischerweise ist die Chance, dass ein einzelnes Photon mit einem einzelnen
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Atom wechselwirkt fast vernachlässigbar. Je mehr Atome sich in dem Superatom

befinden, umso größer wird auch die Wahrscheinlichkeit, dass es überhaupt

zu einer Wechselwirkung kommt. So können wir uns die Superradianz für die

Absorption eines Photons vorstellen. Sobald ein Atom angeregt ist, steigt aber

auch die Chance für den Zerfall in gleichem Maße wie die verbesserte Absorp-

tionswahrscheinlichkeit. Denn, quantenmechanisch gesehen, befindet sich das

Superatom in einem Zustand, in dem jedes Atom mit gleicher Wahrscheinlich-

keit das Photon absorbiert hat, was wir in der Quantenmechanik Überlagerungs-

oder Superpositionszustand nennen. Da jedes Atom die Anregung tragen kann,

kann jedes Atom zum Zerfall beitragen und deswegen wird der Zerfall umso

schneller, je mehr Atome das Superatom besitzt.

Für Superatome im Speziellen ergibt sich zudem, dass das zerfallende Super-

atom nahezu immer das zuvor absorbierte Photon wieder in seine ursprüngliche

Richtung emittiert. Von außen gesehen, sieht die Licht-Superatom-Wechsel-

wirkung also so aus, als fände sie nur auf einer geraden Linie statt. Dieses

Phänomen wird auch Chiralität genannt; griechisch für “Händigkeit”. Denn,

das Superatom hat auch für die beiden Optionen der Zerfallsrichtungen auf

dieser gedachten Linie eine klare Präferenz: Die Photonen bewegen sich nur

nach vorne, Rückstreuung tritt quasi nicht auf.

Da die Licht-Superatom Wechselwirkung die Richtung der Photonen nicht

verändert, ergibt sich eine praktische Konsequenz. Erzeugen wir mehrere Su-

peratome in einer Reihe, dann kann ein einzelnes Photon mit mehreren Super-

atomen hintereinander wechselwirken. Somit kann der Einfluss der Superatome

auf das Lichtfeld, zumindest konzeptionell, sehr einfach verstärkt werden.

Zusammengefasst verhalten sich Superatome wie Atome, da sie auch nur

ein einziges Photon absorbieren können. Die Wechselwirkung zwischen dem

Superatom und den Photonen ist allerdings deutlich stärker, als nur für ein

einzelnes Atom. Damit sind Superatome ein interessantes System, um die Wech-

selwirkung von Licht mit Atomen zu untersuchen. Zudem bewegen sich die
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Photonen unter dieser Wechselwirkung immer nur in einer Richtung weiter.

Dies erlaubt mehrere Superatome aneinander zu reihen, was zu interessanten

kollektiven Effektiven zwischen den Superatomen führt.

Die einzelnen Kapitel dieser Dissertation beinhaltet die theoretische Arbeit

des Autors zu der Licht-Superatom-Wechselwirkung. Gehen wir die Kapitel an

dieser Stelle der Reihe nach durch.

 Das erste Kapitel widmet sich den Rydberg-Superatomen und ihrer Wech-

selwirkung mit Licht. Hier werden Rydberg-Blockade und Superradianz im

Detail eingeführt. Darüber hinaus wird erklärt, wie Superatome über einen

Zwei-Photonen-Prozess in ihre hohen Anregungszustände gebracht werden, da

sichtbares Licht nicht genug Energie trägt, um diese Zustände mit nur einem

Photon zu erreichen.

In der Diskussion der Superradianz werden die bereits besprochenen Effekte

hergeleitet: Superatome haben eine verstärkte Wechselwirkung mit dem Licht

und die Photonen werden fast perfekt in eine Richtung gestreut. Darüber hinaus

zeigen wir, dass eine genaue Beschreibung des Superatoms bereits mit einer

handvoll Zuständen möglich ist.

Alle beschriebenen Effekte werden dann in einem effektiven Superatom-

Modell zusammengefasst, welches die Ausgangsbasis für fast alle Rechnungen

in dieser Dissertation ist. Zuletzt diskutieren wir die experimentelle Realisierung

von Superatomen in der Gruppe von Professor S. Hofferberth [90–92]. Wäh-

rend dieser Dissertation gab es eine enge Kollaboration mit der Gruppe von

S. Hofferberth und alle hier präsentierten experimentellen Ergebnisse stammen

von dieser.

 In Kapitel 2 geht es um die mathematische Beschreibung der Wechselwirkung

zwischen Licht und Superatomen. Für diese Dissertation waren die drei folgen-

den Formalismen besonderes relevant.
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Die erste Methode ist der Bethe-Ansatz [93]. Dieser historisch bedeutsame

Ansatz erlaubt in vielen eindimensionalen Systemen alle Eigenzustände zu finden;

das sind die Zustände, die sich nicht mit der Zeit ändern und durch die jeder

andere Zustand vollständig beschrieben werden kann. Mit dem Bethe-Ansatz

wurde, zum Beispiel, zum ersten Mal eindimensionaler Anti-Ferromagnetismus

exakt beschrieben1.

Während der Bethe-Ansatz zwar alle Informationen über dieWechselwirkung

von Licht mit Superatomen liefert, scheitert die Anwendung allerdings an der

Komplexität dieser Methode. In diesem Formalismus können nur eine Handvoll

von Photonen berücksichtigt werden und der Bethe-Ansatz kann somit wichtige

Lichtzustände, wie etwa das kohärente Licht eines Lasers, nicht beschreiben.

Einige dieser Probleme können wir in dem zweiten Formalsimus umgehen.

Denn die Photonen können komplett aus der Beschreibung der Dynamik der

Superatome eliminiert werden, was zur quantenoptischen Lindblad-Gleichung

führt [101, 102]. Diese Eliminierung gelingt nur für kohärentes Laserlicht, aber

damit ist dieser Formalismus eine hervorragende komplementäre Beschreibung

gegenüber dem Bethe-Ansatz. Zwar tauchen die Photonen in der Lindblad-

Gleichung nicht mehr auf, wir besitzen aber weiterhin Informationen über

ihre zeitliche Verteilung aus den sogenannten Input-Output-Relationen [98].

Diese erlauben uns die Berechnung der Wahrscheinlichkeit, mit der wir meh-

rere Photonen zu unterschiedlichen Zeiten messen, sobald wir die Lösung der

Lindblad-Gleichung kennen.

Dennoch verlieren wir in der Beschreibung mit der Lindblad-Gleichung wich-

tige Informationen über die Photonen, beispielsweise wie viele Photonen sich in

bestimmten Zuständen befinden. In der Gruppe von Professor K. Mølmer wur-

de dazu eine praktische Lösung entwickelt [106, 107], die der letzte verwendete

Formalismus ist. Dazu wird die Lindblad-Gleichung um eine (gedachte) Kavität

1Etwas genauer: Mit dem Bethe-Ansatz wurde das eindimensionale Heisenberg Modell gelöst,
ein wichtiges Modell zur Beschreibung von Magnetismus in Isolatoren.
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erweitert, gewissermaßen ein Speichermedium für Photonen. Indem wir die

Kopplung der Kavität an die Superatome sorgfältig wählen, können nur Pho-

tonen in einem ganz bestimmten Zustand die Kavität betreten. Bestimmen wir

im Anschluss die Besetzung der Kavität, dann erhalten wir alle Informationen

über die Photonen-Besetzung des entsprechenden Zustands.

Dieser dritte Formalismus ist eine direkte Erweiterung der zuvor diskutierten

Lindblad-Gleichung. Damit kann er auf der einen Seite mehr Problemstellungen

lösen, entsprechend steigt aber auch der Aufwand. Dieser Kompromiss taucht,

genau umgekehrt, auch im Vergleich zu dem Bethe-Ansatz auf. Der Bethe-

Ansatz beinhaltet alle Informationen über das Licht und die Superatome, aber

ist deutlich am schwersten zu berechnen. In der Anwendung müssen wir immer

wieder die Komplexität gegenüber den gesuchten Informationen abwiegen.

Mit diesen drei Formalismen sind wir nun gerüstet, um effizient die Licht-Su-

peratom-Wechselwirkung zu beschreiben, Ergebnisse aus Experimenten zu veri-

fizieren und neue Vorhersagen zu treffen.

 Quantenmechanische Systeme ermöglichen Wechselwirkungen, die in klas-

sischen Systemen nicht möglich sind. Photonen-Korrelationen, also die relative

Wahrscheinlichkeit, zwei oder mehrere Photonen zu unterschiedlichen Zeiten

zu finden, sind eine Signatur der quantenmechanischen Wechselwirkungen in

unserem System. Zum Beispiel, erhöht die Anwesenheit von Photonen dieWahr-

scheinlichkeit, dass ein angeregtes Superatom zerfällt und ein Photon emittiert.

Dieser quantenmechanische Prozess heißt stimulierte Emission und resultiert

in einer erhöhten Wahrscheinlichkeit, zwei Photonen nahe beieinander zu fin-

den [219]. Kapitel 3 untersucht die Korrelationen der Photonen nach Streuung

von kohärentem Licht an einem Superatom.

Die Gruppe von S. Hofferberth [90] hat in ihren Experimenten die Kor-

relationen zwischen bis zu drei Photonen gemessen. Normalerweise ist die

Wechselwirkung von Licht mit freien Atomen zu schwach, als dass die Korrela-
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tionen zwischen drei Photonen messbar wäre, aber hier macht die superradiante

Wechselwirkung mit dem Superatom diese Effekte sichtbar.

Die gemessenen Korrelationen können hervorragend durch den Bethe-Ansatz

erklärt werden. Dieser beinhaltet Zustände, in denen zwei oder mehrere Photon-

en immer nahe aneinander liegen, weswegen wir die Zustände auch gebundene

Zustände nennen. Durch die Wechselwirkung mit dem Superatom teilt sich

die Wellenfunktion des Lichts gewissermaßen in die freien und gebundenen

Zustände auf. Die so erhaltenen Korrelationen passen qualitativ gut zu den

experimentellen. Im Experiment treten aber zusätzliche Verlusteffekte auf, die

nicht im Bethe-Ansatz berücksichtigt werden können. Diese können aber in die

Lindblad-Gleichung eingebaut werden und die Analyse der Lindblad-Gleichung

von J. Kumlin2 führt zu einer guten Übereinstimmung mit dem Experiment.

 Die Korrelations-Ergebnisse zeigen, dass die Superatome die Photonen stark

beeinflussen. In Kapitel 4 untersuchen wir, wie die Superatome die Besetzung

einzelner Photonen-Zustände beeinflussen.

Hierfür betrachteten wir zunächst nur ein einzelnes Superatom im Feld eines

Lasers. Sobald das Lasersignal abrupt startet, fängt die Superatom-Photonen-

Wechselwirkung an, wodurch sich der quantenmechanische Zustand der Pho-

tonen ändert. Aus dem Bethe-Ansatz wissen wir, dass grundsätzlich sehr viele

unterschiedliche Photonen-Zustände auftreten können, in dem letzten unserer

theoretischen Formalismen können wir aber immer nur einen Zustand gleichzei-

tig untersuchen. Als Anhaltspunkt für die Stärke der Wechselwirkung beschrän-

ken wir uns auf Zeitfenster nach dem Start der Wechselwirkung und betrachten

wie in diesem, die Photonen den Originalzustand des Lasers besetzen.

Wie sehr die Besetzung nach der Wechselwirkung von der urpsrünglichen

abweicht, hängt besonders von dem gewählten Zeitfenster ab. Betrachten wir

zum Beispiel das Licht, welches zum Zeitpunkt der stärksten Anregung des

2Co-Author des Artikel [90].
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Superatoms erzeugt wird, dann hat das Superatom eine hoheWahrscheinlichkeit,

zu zerfallen und ein einzelnes Photon zu emittieren. Ein einzelnes Photon ist

hochgradig „nicht-klassisch“, das Licht des Lasers hingegen kann vollkommen

klassisch verstanden werden. Zu einem Zeitpunkt starker Superatomanregungen

ist die Abweichung vom Ursprungszustand des Lasers folglich am größten.

Sobald allerdings mehrere Superatome beteiligt sind, muss auch die Wech-

selwirkung zwischen den Superatomen berücksichtigt werden, da sie auch die

emittierten Photonen beeinflusst. Es ist sogar möglich, dass ein zweites Su-

peratom genau die Wirkung des vorherigen Superatoms auflöst und sich der

Zustand der Photonen nicht ändert. Es wird also nicht einfach ein Photon pro

Superatom emittiert. Dieser Effekt kann mithilfe des Bethe-Ansatzes erklärt

werden und basiert mathematisch auf einem doppelten Vorzeichenwechsel nach

der Wechselwirkung an dem zweiten Superatom.

Dieser Effekt tritt nur lange nach dem Start des Lasers auf. Zu früheren Zeit-

punkten ist die paarweise Auslöschung nicht perfekt, aber beeinflusst dennoch

maßgebend die Wirkung der Superatome auf die Photonen.

In vielen Fällen sind also die Photonen, welche unter der Wechselwirkung

eines Lasers mit Superatomen erzeugt werden, anders verteilt als das ursprüng-

liche Laserlicht. Die neue Verteilung macht das Licht unter anderem interessant

für potenzielle Anwendungen.

Ein konkretes Beispiel ist eine Längen-Messung in einem Interferometer,

beispielsweise wie bei der Detektion von Gravitationswellen [220]. Die Quan-

tenmechanik schränkt allerdings ein, wie genau diese Länge bestimmt werden

kann [116]. Bestimmte Lichtzustände können die Sensitivität der Messung maß-

geblich erhöhen [174]. Für das, von dem Superatom erzeugte, Licht finden wir

eine Verbesserung in der Messgenauigkeit von fast 20% im Vergleich zu reinem

Laserlicht.

 Wie alle größeren physikalischen Systeme unterliegen auch Superatome Stör-

150



effekten. Ein explizites Beispiel ist, dass Superradianz, also die starke Licht-

Superatom-Koppelung, nur für einen perfekt abgestimmten Superatom-Zustand

auftritt. Störungen an dieser fein justierten Konfiguration, zum Beispiel durch

thermische Bewegung der einzelnen Atome, treiben das Superatom in Zustände,

die nicht länger superradiant sind und somit keine Photonen emittieren kön-

nen, zumindest nicht innerhalb der Dauer eines Experiments. Das Superatom

bleibt dabei aber natürlich angeregt und die Rydberg-Blockade verhindert eine

erneute Photon-Absorption. Effektiv kann das Superatom also nicht länger mit

Photonen wechselwirken und wird durchsichtig. Gleichzeitig bleibt das Photon,

welches das ursprüngliche Superatom angeregt hat, in diesem gespeichert.

Dieser Effekt kann also genutzt werden, um kontrolliert Photonen aus dem

einfallenden Licht zu entfernen. Kapitel 5 zeigt, dass Superatome genau solche

Photonen-Subtrahierer sind und die Gruppe von S. Hofferberth hat so einen

3-Photonen Subtrahierer realisiert [92]. Hier verwenden wir unser Superatom-

Modell, um die perfekten Bedingungen für Photonen-Subtraktion vorher zu

sagen.

Die Erwartung legt nahe, dass mit zunehmender Stärker der oben genannten

Störeffekte auch die Chance für die Subtraktion eines Photons zunimmt. Aller-

dings unterbinden diese auch die Wechselwirkung zwischen den Superatomen

und dem Licht. Deshalb ist ein Kompromiss nötig, zwischen der Geschwindig-

keit, mit dem das Superatom angeregt wird, und der Geschwindigkeit, mit der

das angeregte Superatom in einen gestörten Zustand übergeht. Konkret ergibt

sich, dass diese beiden konkurierenden Effekte von der Stärke des einfallenden

Lasers abhängen, und, sollten weitere Photonen-Verlust-Effekte vorhanden sein,

auch von der Dauer des Experimentes.

 Die Superradianz eines Superatoms ist ein kollektiver Effekt aller Atome in dem

Superatom. Genau so können aber auch kollektive Effekte auftreten, sobald

mehrere Superatome miteinander wechselwirken. Ein Beispiel hierfür war die
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Ausführliche Zusammenfassung in deutscher Sprache

Auslöschung der Lichtwechselwirkung für Superatom-Paare, wie in Kapitel 4

besprochen.

Im sechsten Kapitel dieser Dissertation wird ein weiterer dieser Wechsel-

wirkungseffekte genauer untersucht. Dazu betrachten wir den Zerfall einer

Superatom-Kette, angeregt in ihrem superradianten Zustand.

Wie zunächst erwartet, findet auch hier der Zerfall zunächst superradiant

statt, wird also umso schneller, je mehr Superatome sich in der Kette befinden.

Allerdings bremst die Wechselwirkung zwischen den Superatomen den Zerfall

nahezu sofort aus und die Kette geht in subradiante Zustände über, also Zustände

die nicht oder kaum zerfallen.

Besteht die Kette nur aus wenigen Atomen, wird der Zerfall irgendwann

von dem unkorrelierten Zerfall der einzelnen Superatome dominiert. Für hin-

reichend viele Atome ändert die Superatom-Wechselwirkung aber sogar dieses

Zerfallsverhalten. Dabei geht die Superatom-Kette in einen Zustand, bei dem die

verbleibende Anregung äußerst langsam zerfällt und sich auch im zeitlichen Ab-

lauf von dem Zerfall eines einzelnen Superatoms unterscheidet, ein sogenannter

algebraischer Zerfall.

Wir haben zuvor besprochen, dass Superatome chiral sind, dass sie also Pho-

tonen nur in eine Richtung streuen. Interessanterweise tritt das exakt gleiche

Zerfallsverhalten auch auf, falls wir auf Chiralität verzichten und wir Streuung

in beide Richtungen erlauben; zumindest sofern die Superatome über ein hinrei-

chend großes Gebiet verteilt sind. Damit gehen diese Zerfalls-Ergebnisse über

Superatom-Systeme hinaus und finden auch Anwendung in anderen eindimen-

sionalen Systemen.

 Alle bis zu diesem Punkt präsentierten Ergebnisse basieren auf dem Superatom-

Modell, welches das Superatom nur durch seinen superradianten Zustand und

etwaige Störeffekte beschreibt. Effektiv wurde die interne Wechselwirkung der

einzelnen Atome im Superatom ignoriert. Mit dieser Beschreibung wurden
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sämtliche experimentelle Ergebnisse in den vorangegangenen Kapiteln präzise

reproduziert und erklärt.

In Kapitel 6 haben wir aber ein Beispiele gesehen, in der die Wechselwirkung

zwischen Superatomen dominiert. Diese ähnelt in vielerlei Hinsicht der internen

Wechselwirkung der Atome in einem Superatom. Entsprechend gibt es Regime,

in welchen diese interne Wechselwirkung ebenfalls relevant wird. Das letzte

Kapitel behandelt genau so einen Fall.

Dazu präparierte die Gruppe von S. Hofferberth zunächst ein einzelnes Su-

peratom in einem angeregten Zustand, indem sie das Superatom für eine feste

Zeit mit einem Laser bestrahlen [91]. Der anschließende Zerfall des Superatoms

hängt von der vorherigen Laser-Dauer und -Intensität ab, was im wechselwir-

kungsfreien Superatom-Modell nicht möglich ist.

Erweitern wir unser Superatom-Modell um einen weiteren wechselwirkenden

Zustand, reicht dies bereits aus, um wieder Ergebnisse im Einklang mit dem

Experiment zu liefern. Das allein bedeutet aber noch nicht, dass unser neues

Modell die korrekte Physik beschreibt, also die Wechselwirkung im Superatom

die Ursache hinter dem modifizierten Zerfallsverhalten ist. Besser ist es, wenn

wir eine Motivation des neuen Modells in einer fundamentaleren Beschreibung

des Superatoms finden.

Wir erinnern uns, dass die Wechselwirkung im Superatom große Ähnlichkei-

ten mit der Wechselwirkung in einer Superatom-Kette hat. Betrachten wir die

subradianten Zustände der Kette, also Zustände, die nicht direkt ein Photon

emittieren können, dann sehen wir, dass diese mit unterschiedlicher Stärke an

den superradianten Zustand gekoppelt sind. Die schwach gekoppelten Zustände

entsprechen den langlebigen Störungszuständen der Superatome, die für die

kontrollierte Photon-Absorption in Kapitel 5 relevant waren. Alle weiteren, stark

gekoppelten Zustände, lassen sich, wie der Vergleich mit dem vereinfachten

Modell zeigt, in einem einzigen Zustand zusammenfassen.
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Ausführliche Zusammenfassung in deutscher Sprache

Zusammenfassend lässt sich sagen: Superatome sind vielseitige Systeme, die

stark wechselwirkend an das Lichtfeld gekoppelt sind. Sie ermöglichen es, Pho-

tonen in stark korrelierte Zustände zu bringen oder ihnen auch nicht-klassische

Eigenschaften zu vermitteln. Mit Superatomen können wir effektiv Photonen

aus dem einlaufenden Lichtfeld entfernen. Gleichzeitig liefern sie Systeme mit

hochgradig interessanten Wechselwirkungen, bei denen sich zum Beispiel die

Wirkung zweier Superatome auf das Lichtfeld gegenseitig aufheben können oder

in denen mehrere Superatome in schwach zerfallende, subradiante Zustände

übergehen.
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