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Chapter 1

Introduction

Since the first design of an atomic trap by Steven Chu, Claude Cohen-
Tannoudji and William D. Phillips in 1985 [1], huge effort has been invested
in the fields of ultracold matter from both the experimental and theoretical
point of view [2]. From the sheer task of cooling and trapping atoms and
molecules, to the realisation of the first Bose-Einsein condensates [3] and
quantum logic gates [4], great progress has been made and still a wide range
of promising matter waits to be discovered. In recent times, significant theo-
retical interest has been attracted by cold polar molecules placed on optical
lattices [5–9]. A main reason for this is the high tunability of the system
parameters, that enables the creation of new shapes of interaction poten-
tials, and the simulation of various models known from solid-state physics.
Examples to the latter point are spin models that could provide insight to
the mechanisms of superconductivity and magnetic ordering. In contrast to
magnetic interaction, the electric dipole-dipole-interaction of polar molecules
is much stronger and could thus provide a wider range of interesting phenom-
ena. For example, it could present a way to investigate ferroelectric ordering
on the transition from a crystal to a liquid phase. This is not observable in
nature, where ferrolelectricity and ionic binding always go hand in hand.

In this work, we investigate quantum phases and quantum phase transitions
of a system of cold polar molecules loaded on an optical lattice. The system
parameters are controlled via a static electrical field and a microwave field.
In contrast to classical phase transitions, quantum phase transitions are not
driven by thermal fluctuations, but by the competition of different ground
states at zero absolute temperature.
First, we will prepare the fundamentals for the later investigation by micro-
scopically deriving the Hamiltonian of the system. Starting with a simple
rigid rotor, we subsequently introduce the electrical fields and the dipole-
dipole-interaction. A profound study of the Hamiltonian for the case of one
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spatial dimension is made in chapter 3. Following an extensive mean-field
discussion, the system is mapped onto different boson-, spin- and fermion-
representations. Next, two opposite regimes, the crystal phase and the su-
perfluid are discussed. We close the one-dimensional case with an investi-
gation at a half-filled lattice using bosonization techniques and dimensional
arguments. In chapter 4, we focus on the square and the hexagonal lattice
with triangular tiling. Following the calculations in one dimension, we dis-
cuss different mean-field states and examine the transition from square to
hexagonal lattice. We conclude our work with a short summary and an out-
look sketching possible modifications of the setup and proposing a further
proceeding.



Chapter 2

Microscopic Derivation Of The
Hamiltonian

Our setup consists of polar molecules loaded on a two-dimensional optical
lattice with only one molecule per lattice site, see Figure 2.1. A static electri-
cal field Edc perpendicular to the lattice and a circular polarized microwave
field Eac with field vector parallel to the lattice is applied. The dc-field in-
duces electrical dipole moments that can be manipulated by the ac-field and
that lead to dipole-dipole-interaction. Changing the parameters of the fields
thus provides a way to control the molecules and the mutual dipole-dipole-
interaction.

We will now deduce the Hamiltonian of the system beginning with a single
molecule in the cold temperature limit and then include the electrical fields
and the dipole-dipole-interaction. Through all the following calculations, ~
is set equal to one.

2.1 The Single Molecule Energy Spectrum

At very cold temperatures, electronic and vibrational excitations are strongly
suppressed. Only the lowest electronic and vibrational state is populated.
Thus only the rotational part of the spectrum is left over. We can express
the Hamiltonian of a molecule by the rigid rotor

Hrot = BJ2 (2.1)

with the angular momentum operator1 J as well as the constant B, depend-
ing on the moment of inertia of the molecule. The spatial representation of
the eigenbasis of Hrot is formed by the spherical harmonics2 YJm with the

1See [10, 11] for discussions on the angular momentum in quantum mechanics.
2An overview of the spherical harmonics is given in Appendix B.



4 2.1. The Single Molecule Energy Spectrum

ac

Edc

Figure 2.1: Schematic setup consisting of molecules on an optical lattice in
the presence of a perpendicular dc-field and an ac-field rotating in the plane

quantum number J for the total angular momentum and the magnetic quan-
tum number m for its orientation. To every J there are 2J + 1 degenerate
states with magnetic quantum number

m = −J,−J + 1, .., J − 1, J (2.2)

and energy
Erot = BJ(J + 1). (2.3)

An important property of these states is that they do not possess a perma-
ment dipole moment, that is

〈YJm|d|YJm〉 = 0. (2.4)

This property is a direct consequence of the unambigious parity of the YJm.
The inevitably even parity of their product and the odd parity of the dipole
operator lead to an odd parity of the whole expression which is in contradic-
tion to the invariance with space inversion as long as it is not zero3.
However, in order to couple the molecules to the ac-field, a permanent dipole

3See Appendix B.2 for a more technical use of this symmetry argument.
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moment must be present.In the next step we will therefore introduce a static
electrical field mixing states with different quantum numbers and generating
new eigenstates with nonvanishing dipole moments.

2.2 The DC-Field

The correct quantum mechanical description of the interaction between elec-
trically neutral molecules and electrical fields is given by the Hamiltonian

Hdc = −d ·Edc, (2.5)

with the dipole operator d and the classical4 dc-field Edc = Edce0.
Projected on the spherical basis5 this yields

Hdc = −dEdc cos θ, (2.6)

with the constant of proportionality d depending on the type of molecule.
The total Hamiltonian, describing both the inner rotational structure of the
molecule and its interaction with the electrical field, thus reads

H = Hrot +Hdc = BJ2 − dEdc cos θ. (2.7)

To demonstrate the effect of the dc-field we apply nondegenerate perturba-
tion theory and obtain the perturbed states to first order in η = dEdc/B
to

Y00 ⇒ Φ00 = Y00 +
η

2
√

3
Y10, (2.8)

Y10 ⇒ Φ10 = Y10 −
η

2
√

3
Y00 +

η

2
√

15
Y20, (2.9)

Y1+1 ⇒ Φ1+1 = Y1+1 +
η

4
√

5
Y2+1, (2.10)

Y1−1 ⇒ Φ1−1 = Y1−1 +
η

4
√

5
Y2−1. (2.11)

The superposition of eigenstates with different magnetic quantum number
m now leads to nonvanishing dipole moments that in turn interact with the
dc-field. For example we have

〈Φ00|d|Φ00〉 =
η

2
√

3
(〈Y10|d|Y00〉+ 〈Y00|d|Y10〉) = d

η

3
e0. (2.12)

4In this semi-classical approach no quantization of the fields is applied.
5See Appendix A and E for the projection of d onto spherical coordinates.
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E[B]

2

0
J=0 m=0

J=1 m=0 J=1 m=+1J=1 m=-1

E[B]

2

0
-ç /62

+ç /102

-ç /202-ç /202

E  =0dc E  =0dc

Figure 2.2: Energies of the lowest states with and without dc-field

The result of this interaction is a shift in the energy spectrum, the so called
Stark effect, that we calculate by perturbation theory to second order in η

E00 = 0 ⇒ Ẽ00 = −η2/6, (2.13)

E10 = 2 ⇒ Ẽ10 = 2 + η2/10, (2.14)

E1+1 = 2 ⇒ Ẽ1+1 = 2− η2/20, (2.15)

E1−1 = 2 ⇒ Ẽ1−1 = 2− η2/20. (2.16)

Hence the degeneracy of the excited states is partially lifted by the presence
of the dc-field, see Figure 2.2.

Though perturbation theory is a good way to show the qualitative effects
of the dc-field, more accuracy is achieved by diagonalizing the Hamiltonian
(2.7) numerically, for a more detailed look, see Appendix D. The resulting
eigenstates are superpositions of, in principal, every quantum number J , but
due to the selection rules with only one quantum number m. Just like in
perturbation theory, there is always one J having the biggest contribution to
the superposition. Indicating the new states by this quantum number, the
energy spectrum can be separated into two parts, those states with J = 0 and
J = 1, and those with J ≥ 2. In the cold temperature limit, it is possible to
neglect the second part of the spectrum, because of the comparatively large
excitation energies leaving only four states; the ground state with J = 0 and
m = 0 and the three excited states with J = 1 and m = 0, ±1. We denote
them as |g〉, | − 1〉, |0〉 and |1〉. In this four-state basis, the Hamiltonian
takes the form

H =

1∑
i=−1

|i〉〈i|E(i), (2.17)

with
E(i) = E(i)

num − Egnum (2.18)

being the energy of the state |i〉 and E(i)
num, E

g
num the numerically calculated

energies of the Hamiltonian (2.7). Subtracting the overall energy offset Egnum,
we set E(g) = 0. Hence the ground state does not appear here.
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2.3 The AC-Field

Once prepared in their state, the molecules remain unaffected to changing
external parameters due to the lacking possibility of energy exchange. How-
ever, in order to observe a dynamic reaction of the system including quantum
phase transitions, the molecules must be able to alter their state.
This is achieved by coupling them to the ac-field Eac which we include in
the same way as the dc-field. The Hamiltonian then reads

H =
1∑

i=−1

|i〉〈i|E(i) − d ·Eac(r, t), (2.19)

with the representation of Eac in spherical coordinates6

Eac(r, t) =
1∑

q=−1

Eqace
−iωt(r)eq + (−1)qEq

∗
ace

iωt(r)e−q. (2.20)

Here, eq are the spherical coordinate vectors and Eqac denotes the corre-
sponding amplitude of the ac-field. Also expressing the dipole operator in
spherical coordinates, we get the complete projection of the Hamiltonian
onto the spherical basis

H =
1∑

i=−1

|i〉〈i|E(i) −
1∑

q=−1

Eqace
−iωt(r)dq + (−1)qEq

∗
ace

iωt(r)d−q. (2.21)

A general discussion of this Hamiltonian is complicated by its time depen-
dence. The standard approach to this problem is the so called rotating wave
approximation[12] (RWA) which implies a transformation to the rotating
frame of the ac-field. In this frame all the time-dependent terms can then be
neglected in good approximation. The transformation to the rotating frame
is described by the transformation rules

|g̃〉 = |g〉, | − 1̃〉 = e−iwt| − 1〉, |0̃〉 = e−iwt|0〉, |1̃〉 = e−iwt|1〉, (2.22)

with the tilde denoting the rotating frame. Only in this chapter rigorous
use of the tilde sign is made. However, the operating frame should be clear
anywhere in this work. To tranform the Hamiltonian to the rotating basis,

6See Appendix A for spherical coordinates.



8 2.3. The AC-Field

we first present it in the old basis

H = E(−1)| − 1〉〈−1| + E(0)|0〉〈0| + E(1)|1〉〈1|

−
(
E0
acd

gg
0 |g〉〈g|+ E0

acd
g0
0 |g〉〈0|+ E−1

ac d
g1
−1|g〉〈1|+ E1

acd
g−1
1 |g〉〈−1|

+ E0
acd

00
0 |0〉〈0|+ E0

acd
0g
0 |0〉〈g|+ E1

acd
0−1
1 |0〉〈−1|+ E−1

ac d
01
−1|0〉〈1|

+ E0
acd
−1−1
0 | − 1〉〈−1|+ E−1

ac d
−1g
−1 | − 1〉〈g|+ E−1

ac d
−10
−1 | − 1〉〈0|

+ E0
acd

11
0 |1〉〈1|+ E1

acd
1g
1 |1〉〈g|+ E1

acd
10
1 |1〉〈0|

)
e−iωt

−
(
E0∗
acd

gg
0 |g〉〈g|+ E0∗

acd
g0
0 |g〉〈0| − E

1∗
acd

g−1
1 |g〉〈−1| − E−1∗

ac dg−1
1 |g〉〈−1|

+ E0∗
acd

00
0 |0〉〈0|+ E0∗

acd
0g
0 |0〉〈g| − E

−1∗
ac d0−1

1 |0〉〈−1| − E1∗
acd

01
−1|0〉〈1|

+ E0∗
acd
−1−1
0 | − 1〉〈−1| − E1∗

acd
−1g
−1 | − 1〉〈g| − E1∗

acd
−10
−1 | − 1〉〈0|

+ E0∗
acd

11
0 |1〉〈1| − E−1∗

ac d1g
1 |1〉〈g| − E

−1∗
ac d10

1 |1〉〈0|
)
eiωt, (2.23)

with the abbreviation dlmk = 〈l|dk|m〉. Using the substitution rules (2.22) we
then obtain the Hamiltonian in the rotating frame to

H = E(−1)| − 1̃〉〈−1̃| + E(0)|0̃〉〈0̃| + E(1)|1̃〉〈1̃|

−
(
E0
acd

gg
0 |g̃〉〈g̃|+ E0

acd
g0
0 |g̃〉〈0̃|+ E−1

ac e
−iwtdg1−1|g̃〉〈1̃|

+ E1
ace
−iwtdg−1

1 |g̃〉〈−1̃|+ E0
acd
−1−1
0 | − 1̃〉〈−1̃|+ E−1

ac e
iwtd−1g

−1 | − 1̃〉〈g̃|

+ E−1
ac d

−10
−1 | − 1̃〉〈0̃|+ E0

acd
00
0 |0̃〉〈0̃|+ E0

ace
iwtd0g

0 |0̃〉〈g̃|

+ E1
acd

0−1
1 |0̃〉〈−1̃|+ E−1

ac d
01
−1|0̃〉〈1̃|+ E0

acd
11
0 |1̃〉〈1̃|

+E1
ace

iwtd1g
1 |1̃〉〈g̃|+ E1

acd
10
1 |1̃〉〈0̃|

)
e−iωt

−
(
E0∗
acd

gg
0 |g̃〉〈g̃|+ E0∗

ace
−iwtdg00 |g̃〉〈0̃| − E

1∗
ace
−iwtdg11 |g̃〉〈1̃|

− E−1∗
ac e−iwtdg−1

1 |g̃〉〈−1̃|+ E0∗
acd
−1−1
0 | − 1̃〉〈−1̃| − E1∗

ace
iwtd−1g

−1 | − 1̃〉〈g̃|

− E1∗
acd
−10
−1 | − 1̃〉〈0̃|+ E0∗

acd
00
0 |0̃〉〈0̃|+ E0∗

ace
iwtd0g

0 |0̃〉〈g̃|

− E−1∗
ac d0−1

1 |0̃〉〈−1̃| − E1∗
acd

01
−1|0̃〉〈1̃|+ E0∗

acd
11
0 |1̃〉〈1̃|

−E−1∗
ac eiwtd1g

1 |1̃〉〈g̃| − E
−1∗
ac d10

1 |1̃〉〈0̃|
)
eiωt. (2.24)

Now not only the Hamiltonian is affected by the transformation to a time-
dependent basis, but also the time-derivation in the corresponding Schrödinger
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equation

i∂t|ψ〉 = H|ψ〉. (2.25)

Take, for example, the ansatz

|ψ〉 = cg|g〉+ c−1e
−iωt| − 1〉+ c0e

−iωt|0〉+ c1e
−iωt|1〉

= cg|g̃〉+ c−1| − 1̃〉+ c0|0̃〉+ c1|1̃〉 (2.26)

and insert it into equation (2.25). We calculate the time-derivate in the
non-rotating basis obtaining the left-hand side to

∂t|ψ〉 =
(
ċg|g〉 + ċ−1e

−iωt| − 1〉+ ċ0e
−iωt|0〉+ ċ1e

−iωt|1〉

− iωc−1e
−iωt | − 1〉 − iωc0e

−iωt|0〉 − iωc1e
−iωt|1〉

)
=
(
ċg|g̃〉+ ċ−1| − 1̃〉+ ċ0|0̃〉+ ċ1|1̃〉 − iω

(
c−1| − 1̃〉+ c0|0̃〉+ c1|1̃〉

))
.

(2.27)

Returning back to the standard form of the Schrödinger equation with all
time-derivates on the left yields

i
(
ċg|g̃〉+ ċ−1| − 1̃〉+ ċ0|0̃〉+ ċ1|1̃〉

)
= H|ψ〉 − ω

(
c−1| − 1̃〉+ c0|0̃〉+ c1|1̃〉

)
.

(2.28)
Thus the change to the rotating frame leads to a subtraction of the diagonal
terms of the Hamiltonian (2.24) by ω. Assuming ω is approximately of the
same size as the diagonal terms, that is near resonance, this subtraction
leads to a cancellation of the fast dynamics of the states which are already
contained in the factor e−iwt. Instead the characteristic time scale7 on which
the dynamic takes place is 1

E(i)−ω . With that in mind, we write out the

7No distinction between the E(i) is made in this qualitative argument.
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right-hand side of equation (2.28) in full

H|ψ〉 − ω
(
c−1| − 1̃〉+ c0|0̃〉+ c1|1̃〉

)
=

− cg

(
E0
ace
−iωtdgg0 |g̃〉+ E−1

ac d
−1g
−1 | − 1̃〉+ E0

acd
0g
0 |0̃〉+ E1

acd
1g
1 |1̃〉+

E0∗
ace

iωtdgg0 |g̃〉 − E
1∗
ace

2iωtd−1g
−1 | − 1̃〉+ E0∗

ace
2iωtd0g

0 |0̃〉−

E−1∗
ac e2iωtd1g

1 |1̃〉
)

+ c−1

((
E(−1) − ω

)
| − 1̃〉

−
(
E1
ace
−2iωtdg−1

1 |g̃〉+ E0
ace
−iωtd−1−1

0 | − 1̃〉+ E1
ace
−iωtd0−1

1 |0̃〉−

E−1∗
ac dg−1

1 |g̃〉+ E0∗
ace

iωtd−1−1
0 | − 1̃〉 − E−1∗

ac eiωtd01
1 |0̃〉

))
+ c0

((
E(0) − ω

)
|0̃〉

−
(
E0
ace
−2iωtdg00 |g̃〉+ E−1

ac e
−iωtd−10

−1 | − 1̃〉+ E0
ace
−iωtd00

0 |0̃〉+

E1
ace
−iωtd10

1 |1̃〉+ E0∗
acd

g0
0 |g̃〉 − E

1∗
ace

iωtd−10
−1 | − 1̃〉+

E0∗
acd

00
0 |0̃〉 − E−1∗

ac eiωtd10
1 |1̃〉

))
+ c1

((
E(1) − ω

)
|1̃〉

−
(
E−1
ac e

−2iωtdg1−1|g̃〉+ E−1
ac e

−iωtd01
−1|0̃〉+ E0

ace
−iωtd11

0 |1̃〉−

E1∗
acd

g1
−1|g̃〉 − E

1∗
ace

iωtd01
−1|0̃〉+ E0∗

ace
iωtd11

0 |1̃〉
))

, (2.29)

and neglect in good approximation all the rotating terms that are too fast
for the system to follow. This yields the final result in matrix notation

i∂t



cg

c−1

c0

c1


=



0 E−1∗
ac dg−1

1 −E0∗
acd

g0
0 E1∗

acd
g1
−1

−E−1
ac d

−1g
−1 E(−1) − ω 0 0

−E0
acd

0g
0 0 E(0) − ω 0

−E1
acd

1g
1 0 0 E(1) − ω


︸ ︷︷ ︸

H0



cg

c−1

c0

c1


.

(2.30)
Choosing a certain polarization or relating the different dipole matrix ele-
ments dlmk with each other, this expression is further simplified quite easily.
For the moment we keep the general form and focus on the characteristics
of our setup, the dipole-dipole-interaction.



Chapter 2. Microscopic Derivation Of The Hamiltonian 11

2.4 The Dipole-Dipole-Interaction

The interaction energy of two electrical dipoles with separation
vector Rij = Rj −Ri, see Figure 2.3, is given by

V dd
ij =

di · dj − 3 (di · eR) (eR · dj)
R3
ij

, (2.31)

where Rij = |Rij | is the distance between the two dipoles and eR = Rij/Rij
a vector of unit length pointing from dipole i to dipole j. Again, we inter-
pret the dipole moments di,j as operators. To take into account the special
geometry of our setup, we project the coordinate-free representation onto
spherical coordinates

V dd
ij = − 1

R3
ij

{(
3 cos2 θ − 1

)
di0dj0 +

1

2

(
3 cos2 θ − 1

)
(di1dj−1 + di−1dj1)

+
3√
2

sin θ cos θ
(
e−iφ (di−1dj0 + di0dj−1)− eiφ (di1dj0 + di0dj1)

)
+

3

2
sin2 θ

(
e2iφdi1dj1 + e−2iφdi−1dj−1

) }
, (2.32)

and then set θ = π/2 for being in a two dimensional plane. This yields

V ddij =
1

R3
ij

{
di0dj0 +

1

2
(di1dj−1 + di−1dj1)− 3

2

(
e2iφdi1dj1 + e−2iφdi−1dj−1

)}
.

(2.33)

To avoid from confusion we emphasize that dik is the k-th spherical coor-
dinate of the dipole operator of the i-th particle and dlmk is the transition
matrix element from state m to l of its k-th spherical coordinate.

di

dj

Figure 2.3: Two molecules interacting by their dipole moments

Since V dd
ij is a two particle interaction, we have to expand our former basis of

four states taking all the possible dyadic products of two one particle states,
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for example |g̃g̃〉 = |g̃〉⊗ |g̃〉, |g̃1̃〉 = |g̃〉⊗ |1̃〉, so that the new basis then owns
16 states. The representation in this basis then takes the general form

V dd
ij =

∑
lmnk

|l̃m̃〉〈l̃m̃|V dd
ij |ñk̃〉〈ñk̃|, (2.34)

where the summation indices run over the ground state and the three excited
states yielding in total 44 = 256 summands. Before calculating the above
expression we try to reduce the number of terms. This is done by first going
back to the non-rotating single particle frame and using selection rules to
obtain those dipole matrix elements that do not vanish:

〈g|d0|g〉 = dgg0 〈0|d0|0〉 = d00
0

〈1|d0|1〉 = d11
0 〈−1|d0| − 1〉 = d−1−1

0

〈g|d0|0〉 = dg00 〈0|d0|g〉 = d0g
0

〈−1|d−1|g〉 = d−1g
−1 〈g|d1| − 1〉 = dg−1

1

〈−1|d−1|0〉 = d−10
−1 〈0|d1| − 1〉 = d0−1

1

〈g|d−1|1〉 = dg1−1 〈1|d1|g〉 = d1g
1

〈0|d−1|1〉 = d01
−1 〈1|d1|0〉 = d10

1 . (2.35)

Then we translate these terms to the rotating frame

〈g̃|d0|g̃〉 = dgg0 〈0̃|d0|0̃〉 = d00
0

〈1̃|d0|1̃〉 = d11
0 〈−1̃|d0| − 1̃〉 = d−1−1

0

〈g̃|d0|0̃〉 = e−iωtdg00 〈0̃|d0|g̃〉 = eiωtd0g
0

〈−1̃|d−1|g̃〉 = eiωtd−1g
−1 〈g̃|d1| − 1̃〉 = e−iωtdg−1

1

〈−1̃|d−1|0̃〉 = d−10
−1 〈0̃|d1| − 1̃〉 = d0−1

1

〈g̃|d−1|1̃〉 = e−iωtdg1−1 〈1̃|d1|g̃〉 = eiωtd1g
1

〈0̃|d−1|1̃〉 = d01
−1 〈1̃|d1|0̃〉 = d10

1 , (2.36)

and build the two particle matrix elements by a simple product of two of
them. For example we have

〈1̃g̃|d0d1|1̃− 1̃〉 = 〈1̃|d0|1̃〉 × 〈g̃|d1| − 1̃〉 = e−iωtdg−1
1 . (2.37)

In the rotating wave approximation all the oscillating terms are eliminated
and we finally get the spectral factorization of V dd

ij still holding 42 terms8.
However, by the choice of a certain polarization in the next chapter, many
of them cancel out.

8See Appendix E Table E.1 and E.2 .
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2.5 Choosing A Polarisation

Setting E−1
ac = E0

ac = 0 and E1
ac ∈ C we choose a circular polarized ac-

field. By this step, the single molecule Hamiltonian H0 of equation (2.30)
and the dipole-dipole-operator8 V dd

ij become significantly less complicated.
The reason for this is that we can completely neglect the state |0̃〉 because
of the selection rule of the circular polarized field ∆m = ±1 preventing a
population of that state. Since E1

ac only couples the ground state with |1̃〉
the question arises why this does not also apply to | − 1̃〉. Here it has to be
reminded that neither |0̃〉 nor | − 1̃〉 are eigenstates of the system, but that
in contrast to |0̃〉, |−1̃〉 can exchange energy with |1̃〉 due to their degeneracy.

To express the Hamiltonian in a compact and understandable way, we use
the results of Appendix B and some preparatory definitions.
First, ∆ = E(1)−ω is the detuning of the microwave field, and second, A, R
and L are single-particle operators with the following representation in the
basis {| − 1̃〉, |g̃〉, |1̃〉}:

A =

1 0 0
0 0 0
0 0 1

 , R =

0 0 0
0 0 1
0 0 0

 , L =

0 0 0
1 0 0
0 0 0

 , (2.38)

R and R† describe transitions between |g̃〉 and |1̃〉 (the (R)ight state in Figure
2.4), L and L† between |g̃〉 and | − 1̃〉 (the (L)eft state in Figure 2.4), and A
is a unitary operator restricted to the excited states. The two parts of the
Hamiltonian then read

H0
i = ∆Ai − d1g

1

(
E1
acR

†
i + E1∗

acRi

)
, (2.39)

V dd
ij =

1

R3
ij

{((
d11

0 − d
gg
0

)
Ai + dgg0 1i

)
⊗
((
d11

0 − d
gg
0

)
Aj + dgg0 1j

)
− 1

2
d1g2

1

(
L†i ⊗

(
Lj − 3e−2iφRj

)
+ Li ⊗

(
L†j − 3e2iφR†j

)
+R†i ⊗

(
Rj − 3e2iφLj

)
+Ri ⊗

(
R†j − 3e−2iφL†j

))}
,

(2.40)

with the dipole matrix elements d1g
1 , d

11
0 , d

11
0 , the amplitude of the ac-field Eac

and the angle φ between the x-axis and the line segment from one molecule
to the other. Together they form the total Hamiltonian

H =
∑
i

H0
i +

∑
i,j
i 6=j

V dd
ij . (2.41)
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Figure 2.4: Action of the operators A,R,L and their hermitian conjugates



Chapter 3

Polar Molecules In A 1D
Optical Lattice

As a first starting point, we replace the two-dimensional lattice by a one-
dimensional chain. The reduction of dimension not only simplifies the Hamil-
tonian, but also enables us to apply methods restricted to one dimension,
like the Jordan-Wigner-transformation or bosonization.

The chain is aligned along the x-axis, or in spherical coordinates at the
angle φ = 0. Equation (2.40) then takes the form1

V dd
ij =

1

Rij

{((
d11

0 − d
gg
0

)
Ai + dgg0 1i

)
⊗
((
d11

0 − d
gg
0

)
Aj + dgg0 1j

)
− 1

2
d1g2

1

(
L†i ⊗ (Lj − 3Rj) + Li ⊗

(
L†j − 3R†j

)
+R†i ⊗ (Rj − 3Lj) +Ri ⊗

(
R†j − 3L†j

))}
. (3.1)

We focus on the steady state with the response of the system to external
parameters completed. In this state the ac-field is already turned off adia-
batically and H0

i from equation (2.39) reduces to the special case

Hss
i = ∆Ai. (3.2)

The Hamiltonian of the one-dimensional chain in the steady state then reads

H =
∑
i

Hss
i +

1

2

∑
i,j
i 6=j

V dd
ij . (3.3)

Though working in the rotating frame, we will drop the tilde-signs in this
chapter. Expressions in the non-rotating frame will be emphasized explicitly.

1See page 13 for the definition of the different quantities.
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3.1 Mean-Field-Approach

For the sake of simplicity we assume, that every molecule has the same
wave-function

|ψ1〉 =
∏
i

[
cos(ε)|g〉i +

1√
2

sin(ε)eiδ
(
| − 1〉i + eiγ |1〉i

)]
, (3.4)

with the variational parameters ε, δ, γ ∈ R+
0 . Since all the molecules possess

the same wave-function, we can rescale the Hamiltonian (3.3) to

H/N = Hss +
∞∑
j=1

V dd
0j . (3.5)

H/N now describes the energy per particle or energy density and N is the
total molecule number, with N → ∞. Taking the expectation value of the
reduced Hamiltonian in the state |ψ1〉 yields

Eψ1/N = ∆ sin2(ε) +
ζ3

a3

{(
dgg0 cos2(ε) + d11

0 sin2(ε)
)2

−d1g2

1 cos2(ε) sin2(ε)(1− 3 cos(γ))
}
, (3.6)

with the lattice spacing a and ζ3 =
∑∞

j=0 j
−3. Minimizing this energy will

provide us with a relation between the parameters ε, γ, δ of the wave function
and the experimentally adjustable quantities ∆, dlmk .

In order to find a minimal energy, we have to set γ = ±π2. In contrast,
the choice of the second phase factor δ is arbitrary due to Eψ1/N being in-
dependent of it. This U(1)-symmetry is broken inevitably at the transition
from ε = 0 to ε 6= 0. The question whether the symmetry breaking [13] is
spontaneous or not, will be dealt with at the end of this chapter. The re-
maining parameter ε is computed by taking the derivate ∂(Eψ1/N)/∂ε = 0.
This delievers as solutions

ε0 = 0, ε1 = arcsin

(√
∆p −∆

q

)
, ε2 =

π

2
. (3.7)

While ε0 corresponds to all the molecules being in the ground state, ε2 stands
for the totally excited state. The transition inbetween begins at the right
border

∆p =
2ζ3

a3

[
dgg0
(
dgg0 − d

11
0

)
+ 2d1g2

1

]
, (3.8)

and ends at the left border ∆p − q, with the transition width given by

q =
2ζ3

a3

[(
dgg0 − d

11
0

)2
+ 4d1g2

1

]
. (3.9)

2A further discussion on this phase factor follows in chapter 3.2.
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Reinserting the values for ε from equation (3.7) into equation (3.6) then
yields the dependence of the energy on the detuning of the microwave field

Eψ1/N =


ζ3
a3
dgg

2

0 ∆ > ∆p

ζ3
a3
dgg

2

0 − (∆p−∆)2

2q ∆p − q < ∆ < ∆p

ζ3
a3
d112

0 + ∆ ∆ < ∆p − q
. (3.10)

The corresponding phase diagram is shown in Figure 3.1. It is continuous
and continuously differentiable. However, the order parameter sin ε is not
continuously differentiable at ∆ = ∆p and ∆ = ∆p − q. Thus, the phase
transition is of second order.

Ä [a.u.]

ÄpÄ  -qp

å0å1
å2

E
/N

 [
æ 

 /
a

 ]
3

3 0
gg2

          d    

0
gg2

          d   +      Ä  -qp

0          
11                  d  (2 0

gg          d   -    0
11          d  )-4    1

1g2
          d    

Figure 3.1: Phase diagram of the reduced Hamiltonian (3.5) with the mean-
field ansatz |ψ1〉

To obtain a physical interpretation of the state |ψ1〉 we calculate the expec-
tation value of the dipole operator3 in the non-rotating frame

〈ψ1|d|ψ1〉 = 2d1g
1 sin(γ/2) sin(ωt+ γ/2 + δ) cos(ε) sin(ε)ex

− 2d1g
1 cos(γ/2) sin(ωt+ γ/2 + δ) cos(ε) sin(ε)ey

+
(
cos2(ε)dgg0 + sin2(ε)d11

0

)
ez. (3.11)

First, we recognize that the ratio of dipole moment parallel and perpendic-
ular to the z-axis is determined by ε. Second, the part of the dipole moment
in the xy-plain is oscillating and not rotating. Third, the angle between
oscillation and coordinate axis is determined by γ with γ = ±π describing
an oscillation parallel to the x-axis (in direction of the chain) and γ = 0 an
oscillation parallel to the y-axis. And forth, the phase factor δ acts as the
phase shift of the oscillation.
In addition to energy and dipole moment, another way to characterize the
system is given by the so called dipole-dipole correlation functions such as

〈djxdkx〉 = 4d1g2

1 sin2(γ/2) sin2(ωt+ γ/2 + δ) cos2(ε) sin2(ε) (3.12)
3See Appendix B.2 for the spatial representation of the dipole operator.
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which is again calculated in the non-rotating frame. The time average of
this expression

〈djxdkx〉
t

= 2d1g2

1 sin2(γ/2) cos2(ε) sin2(ε) (3.13)

is equivalent to calculate everything in the rotating frame and applying the
rotating wave approximation. The reason that the energy is independent of
δ can be interpreted nicely by the above results. As long as all the dipoles
oscillate with the same phase, the phase itself does not matter for the en-
ergy, since time averaging cancels it out. Despite that, the system chooses a
certain phase and therefore breaks the U(1)-symmetry.

An illustrative representation of the symmetry breaking is given in Figure
3.2 and 3.3. Figure 3.2 is an extended version of the usual mexican hat po-

EE

rr

1Ä 2Ä 3Ä

4Ä 5Ä 6Ä

7Ä 8Ä 9Ä

Figure 3.2: Mexican hat potential with rotational symmetry, ∆i > ∆i+1

tential known from Landau theory [14] of phase transitions. While the z-axis
of the spherical coordinate system describes the energy of the system, the
radius corresponds to a parameter which has all the molecules in the ground
state at zero radius and a fully excited lattice at infinity4. The azimuthal
angle is δ from equation (3.4). The pictures differ by the chosen value of ∆,
with ∆i > ∆i+1. To understand the phase transition we simply follow the
pictures number by number. At ∆1 the minimum in energy is easily found,
the surface has its lowest point at the origin and all the molecules are in the

4Such a parameter is, for example, tan(ε)



Chapter 3. Polar Molecules In A 1D Optical Lattice 19

ground state (ε = 0). Then, with ∆ decreasing, a small peak rises at the
centre. The minimum in energy is no longer a single point, but lies in the
circular valley around the origin. The peak becomes clearly visible the first
time at ∆4. The symmetry breaking can be imagined in the following way:
Place a little billiard ball on the energy surface at ∆1. It will roll down the
hill and come to a stop at zero radius. The rotational symmetry is main-
tained. With ∆ decreasing the circular valley will rise and the billiard ball
will roll down and come to a stop at some point in that valley, thus breaking
the rotational symmetry of the whole object. The question remains whether
the point in the valley is totally random (spontaneous symmetry breaking)
or imposed by something. Before finding an answer to that, we finish the
phase transition at around ∆8, where the circular valley vanishes. The min-
imum of energy then lies at infinity and all the molecules are excited.
To settle the question of spontaneous or not spontaneous symmetry breaking
we have to leave the steady state and include the effect of the ac-field. This
is done with replacing 〈ψ1|Hss|ψ1〉 by5

〈ψ1|H0|ψ1〉 = ∆ sin2(ε) + d1g
1

√
2 sin(ε) cos(ε)|E1

ac| cos(C1 − δ), (3.14)

with E1
ac = |E1

ac|eiC1 . To minimize the additional second term, we see that
C1 and δ must differ by ±π. The mean-field ansatz (3.4) then takes the form

|ψ1〉 =
∏
i

[
cos(ε)|g〉i −

1√
2

sin(ε)eiC1 (| − 1〉i − |1〉i)
]
. (3.15)

In the picture of the billiard ball, the ac-field slightly tilts the energy surface
to one side. The billiard ball then comes to a stop at the bottom of the
blue region in Figure 3.3. Hence, the symmetry breaking is not spontaneous.
However, after adiabatically turning off the ac-field, the choice of δ is without
any effect.

Figure 3.3: Energy surface with ac-field turned on

5Here γ is already set to ±π.
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3.1.1 Alternative Ansatz 1

Previously we have seen, that a second order phase transition can be observed
for the mean-field state |ψ1〉. To find an energetically more favourable state,
we propose as a second ansatz

|ψ2〉 =
∏
i

[
cos(ε)|g〉i + sin(ε)eiδ|1〉i

]
(3.16)

and compare it with |ψ1〉. Again, we calculate the expectation value of the
dipole operator in the non-rotating frame

〈ψ1|d|ψ1〉 = 2d1g
1 sin(γ/2) sin(ωt+ γ/2 + δ) cos(ε) sin(ε)ex

− 2d1g
1 cos(γ/2) sin(ωt+ γ/2 + δ) cos(ε) sin(ε)ey

+
(
cos2(ε)dgg0 + sin2(ε)d11

0

)
ez, (3.11)

〈ψ2|d|ψ2〉 = −
√

2d1g
1 cos(ωt+ δ) cos(ε) sin(ε)ex

−
√

2d1g
1 sin(ωt+ δ) cos(ε) sin(ε)ey

+
(
cos2(ε)dgg0 + sin2(ε)d11

0

)
ez. (3.17)

In contrast to the already known oscillating dipole moment of |ψ1〉, the
ansatz |ψ2〉 describes a rotating one. As a result the time averaged dipole
correlation functions of equal direction

|ψ1〉 : 〈djxdkx〉
t

ψ1
= 2d1g2

1 sin2(γ/2) cos2(ε) sin2(ε), (3.13)

〈djydky〉
t

ψ1
= 2d1g2

1 cos2(γ/2) cos2(ε) sin2(ε), (3.18)

|ψ2〉 : 〈djxdkx〉
t

ψ2
= d1g2

1 cos2(ε) sin2(ε), (3.13)

〈djydky〉
t

ψ2
= d1g2

1 cos2(ε) sin2(ε) (3.19)

are γ-dependent in the case of |ψ1〉 and equal in the case of |ψ2〉. This leads
to a difference in the corresponding energies

|ψ1〉 : Eψ1/N = ∆ sin2(ε) +
ζ3

a3

{(
dgg0 cos2(ε) + d11

0 sin2(ε)
)2

−d1g2

1 cos2(ε) sin2(ε)(1− 3 cos(γ))
}
, (3.6)

|ψ2〉 : Eψ2/N = ∆ sin2(ε) +
ζ3

a3

{(
dgg0 cos2(ε) + d11

0 sin2(ε)
)2

−d1g2

1 cos2(ε) sin2(ε)
}
. (3.20)

With γ set to γ = ±π, we obtain the energy difference

Eψ1/N = Eψ2/N − 3
ζ3

a3
d1g2

1 . (3.21)

After comparing both ansätze, we see, that the first state |ψ1〉 is energetically
preferred.



Chapter 3. Polar Molecules In A 1D Optical Lattice 21

3.1.2 Alternative Ansatz 2

Before presenting a third ansatz, we take a more detailed look at equation
(3.3). A remarkable property of the Hamiltonian (3.3) in the steady state
is, that it does not alter the total number of excitations. In terms of opera-
tors, this means that the commutator of the number operator of excitations
n̂ =

∑
iAi and the Hamiltonian [n̂,H] = 0 vanishes6.

As a result, the eigenspace of the system decomposes into a manifold of sub-
spaces, each corresponding to a certain number of excitations. The question
rises, whether this is a natural property of the dipole-dipole-interaction or if
it is born out of the rotating wave approximation. We thus take a look at
the matrix elements neglected in the rotating wave approximation

〈g̃i, g̃j |V dd| − 1̃i,−1̃j〉 ⇒ − 1

R3
ij

e−2iωtd1g2

1 L⊗ L,

〈g̃i, g̃j |V dd|1̃i, 1̃j〉 ⇒ − 1

R3
ij

e−2iωtd1g2

1 R⊗R,

〈g̃i, g̃j |V dd| − 1̃i, 1̃j〉 ⇒ 1

R3
ij

e−2iωtd1g2

1 L⊗R,

〈g̃i, g̃j |V dd|1̃i,−1̃j〉 ⇒ 1

R3
ij

e−2iωtd1g2

1 R⊗ L. (3.22)

If we do not neglect these terms, V dd
ij couples states with n and n ± 2 ex-

citations. To appropriately describe these states, we introduce new nota-
tions. First, |r1λ1r2λ2...rnλn〉 denotes a state with n excitations at the sites
r1, r2, . . . and of type λ1, λ2, . . . respectively. For example, |3, 1, 5,−1, 20, 1〉
has all the molecules in the ground state, except for site 3, 5 and 20, where
the molecules are in the state |1〉, | − 1〉 and |1〉 respectively. And second,
|ψ(n)〉 is an arbitrary linear combination of states with n excitations.
We estimate the error, which the rotating wave approximation presents, us-
ing stationary state perturbation theory in the non-rotating frame, with the
ac-field turned off. This yields the energy for the state |ψ(0)〉7 in second order
perturbation

Ẽ0 = 0 + 〈ψ(0)|
∑
i 6=j

V dd
ij |ψ(0)〉+

∑
|φ〉

|〈ψ(0)|
∑

i 6=j V
dd
ij |φ〉|2

E0 − Eφ

=
1

2

∑
i 6=j

1

R3
ij

dgg
2

0 +
∑
|ψ(2)〉

|〈ψ(0)|
∑

i 6=j V
dd
ij |ψ(2)〉|2

−2B

=
1

2

∑
i 6=j

1

R3
ij

dgg
2

0 − 5

4

1

B

∑
i 6=j

d1g4

1

R6
ij

. (3.23)

6To prove this statement, it is sufficient to show that [Am, V
dd
nm] = −[An, V

dd
nm].

7|ψ(0)〉 has all molecules in the ground state.



22 3.1. Mean-Field-Approach

In line 2 we have used the finding, that states with n excitations only couple
to states with n ± 2 excitations. The summation over the |ψ(2)〉 is done by
inserting the states |r1λ1r2λ2〉 and taking the sum over r1, r2, λ1 and λ2.
In the previous calculations we have seen that in the chosen range of ∆,∑

i 6=j d
1g2

1 /R3
ij ≈ ∆, thus

Ẽ0 ≈
1

2

∑
i 6=j

1

R3
ij

dgg
2

0 −∆
∆

B
. (3.24)

With ∆/B � 1, we recognize that the corrections by the Van-der-Waals
terms (C6/R

6) are small and the error of the rotating wave approximation
is negligible.

Due to the decomposition of the eigenspace of H, we expect, that for a given
∆, there is exactly one number of excitations, or speaking of an infinite lat-
tice one density of excitations, which minimizes the energy. Expanding the
first ansatz |ψ1〉 in the ratio of excited and ground states, that is tan(ε), to

|ψ1〉 = cosN (ε)

[∏
i

|g〉i +
1√
2

tan(ε)eiδ
∑
r1

|r1,−1〉

+
1√
2

tan(ε)eiδeiγ
∑
r1

|r1, 1〉

+
1

2
tan2(ε)e2iδ

∑
r1r2

|r1,−1, r2,−1〉+ ...

]
, (3.25)

with N → ∞ being the total number of molecules, we find that it can be
interpreted as a mixture of states with different number of excitations. The
major part of these states has an inappropriate number of excitations and
costs extra energy. We thus present the third ansatz

|ψ(n)
3 〉 =

1

Norm

N−n+1∑
r1=1

N−n+2∑
r2>r1

...
N∑

rn>rn−1

∑
λ1=±1

...
∑

λn=±1

|r1λ1r2λ2...〉
∏
i

λi,

(3.26)
consisting of states with only one certain number of excitations. We have
chosen the factor

∏
i λi to have a maximal negative energy contribution from

the off-diagonal terms of V dd
ij (those with d1g

1 ). The normalization

Norm =

√
2nN !

n!(N − n!)
, (3.27)

is simply the square of the number of states, i.e., the number of possibilities
to occupy n of N sites, times the number of possibilities to choose n times
|1〉 or | − 1〉.
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The energy of |ψ(n)
3 〉 can be calculated by first determining the matrix el-

ements of the Hamiltonian in the basis |r1λ1r2λ2...〉 and then taking the
appropriate sums. We begin with the single excitation states

〈r, λ|H|sκ〉 = δrsδλκ∆ contribution of H0
ss

+ δrsδλκ

 ∑
m 6=r

1

R3
mr

dgg0 d
11
0

interaction of | ± 1〉 at r
with |g〉 at all other sites

+
∑
m,n
m<n

1

R3
mn

dgg
2

0 interaction of all ground states

−
∑
m6=r

1

R3
mr

dgg
2

0

 subtracting the ones that include
the ground state on site r

+ (1− δrs)δλκ

[
−1

2

d1g2

1

R3
rs

]
interaction between same kind of

excitation on different sites

+ (1− δrs)(1− δλκ)

[
3

2

d1g2

1

R3
rs

]
interaction between different kind
of excitations on different sites

(3.28)

and get the corresponding energy

〈ψ(1)
3 |H|ψ

(1)
3 〉 =

1

Norm2

∑
r,s

∑
λ,κ

〈r, λ|H|sκ〉 · λκ

=
1

2N

 2N∆ + 2N
1

2

∑
m,n
m 6=n

dgg
2

0

R3
mn

+ 2
∑
r

∑
m
m 6=r

dgg0 d
11
0

R3
mr

−2
∑
r

∑
m
m 6=r

dgg
2

0

R3
mr

− 2
∑
r,s
r 6=s

1

2

d1g2

1

R3
rs

− 2
∑
r,s
r 6=s

3

2

d1g2

1

R3
rs


(3.29)

with the last ocurring minus sign resulting from the factor
∏
i λi. Using the

translational symmetry of the lattice, we simplify this expression to8

〈ψ(1)
3 |H|ψ

(1)
3 〉 =

1

2

∑
m,n
m 6=n

dgg
2

0

R3
mn

+ ∆−∆p. (3.30)

8See equation (3.8) for the definition of ∆p.
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We compare this with the energy of |ψ(0)
3 〉

〈ψ(0)
3 |H|ψ

(0)
3 〉 = 0 + 〈ψ(0)

3 |
∑
i,j
i 6=j

V dd
ij |ψ

(0)
3 〉 =

1

2

∑
m,n
m 6=n

dgg
2

0

R3
mn

(3.31)

and find, that the transition from zero to one excitation is ocurring at ∆ =
∆p, just like in the first ansatz |ψ1〉. The reason for this is that the term of
first order in eq. (3.25) is9 equal to |ψ(1)

3 〉.
Instead of repeating the above procedure with n and n + 1 excitations, we
look for a more elegant way to calculate the transition regime. We start
with the question of how the dipole correlation functions look like in the
new ansatz, for example

〈djxdkx〉ψ(n)
3

=
1

2
〈dj1d

k
1 + dj−1d

k
−1 + dj1d

k
−1 + dj−1d

k
1〉ψ(n)

3

. (3.32)

For better comparison with previous results, we calculate these expressions
in the non-rotating frame. However, with |ψ(n)

3 〉 having only one number of
excitations, the oscillating terms of the bra- and ket-vector cancel each other.
Hence, the expressions are time independent and equal to the rotating frame.
Since |ψ(n)

3 〉 is a superposition of the states |r1λ1r2λ2...〉, we must first find
the combinations of two such states, that contribute to the dipole correlation
function. We begin with 〈dj1dk1〉 from the right hand side of equation (3.32),

〈r1λ1r2λ2 . . . |dj1dk1|s1κ1s2κ2 . . . 〉 6= 0 if

• 〈. . . 1j . . . gk . . . |dj1dk1| . . . gj · · · − 1k . . . 〉 6= 0

• 〈. . . gj . . . 1k . . . |dj1dk1| · · · − 1j . . . gk . . . 〉 6= 0

Due to orthogonality, the dots must describe the same configuration on the
left and the right side. These are the only possibilities for the sites j and
k, since otherwise the total number of excitations would differ on both sites.
Thus every state, that has exactly one excitation and one ground state on the
sites j and k contributes with d1g

1 d
g−1
1 = −d1g2

1 . The number of states that
fulfill this condition, i.e., the possibilities to distribute n − 1 excitations on
N−2 sites, times the possibilities to choose 2n−1 times the type of excitation
|1〉 or | − 1〉, is given by

cn =
2n−1(N − 2)!

(n− 1)!(N − 2− (n− 1))!
. (3.33)

9Setting γ = ±π.
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Repeating this calculation for the rest of eq. (3.32), we obtain the dipole-
dipole-correlation function

〈djxdkx〉ψ(n)
3

= 4d1g2

1

2n−1(N − 2)!

(n− 1)!(N − 2− (n− 1))!

n!(N − n)!

2nN !

= 2d1g2

1

n

N

N
(
1− n

N

)
N − 1

. (3.34)

In the limit N →∞, this yields

〈djxdkx〉ψ(n)
3

= 2d1g2

1

n

N

(
1− n

N

)
(3.35)

with the fraction or density of excitation n/N . There is a similarity between
equation (3.35) and the time averaged correlation function of the first ansatz
(3.4) with γ = ±π,

〈djxdkx〉
t

ψ1
= 2d1g2

1 cos2(ε) sin2(ε) = 2d1g2

1 sin2(ε)
(
1− sin2(ε)

)
, (3.36)

that is somehow interesting. However, n/N is not necessarily sin(ε)10. From
Figure 3.4 we see that the alignement of the dipoles is the strongest at
n = N/2.

d dx x
j k

d 1
1g21

2

0 0.5 1

 n/N or sin(å)

11
g

2
d
 d

  
  
[d

  
  
]
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Figure 3.4: Dipole correlation function in the mean-field ansatz ψ1 and ψ(n)
3

We now use these results to calculate the energy of ψ(n)
3 . For this, we express

〈V dd
ij 〉 in terms of dipole-correlation functions and do the same combinatorial

considerations as above. This yields

Eψ3(n) = n∆ +
ζ3

a3

N

N − 1

{
n2

N

((
dgg0 − d

11
0

)2
+ 4d1g2

1

)
+
n

N

((
dgg

2

0 − d112

0

)
+ 2N

(
dgg0 d

11
0 − d

gg2

0 − 2d1g2

1

))
+Ndgg

2

0

}
, (3.37)

10We could have written cos2(ε)(1− cos2(ε)) just as well.
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with the Riemann zeta ζ3 =
∑∞

j=0 j
−3. Calculating the point of intersection

of energies with n and n + 1 excitations, we find the optimal number of
excitations

n =
∆p −∆

q
(N − 1). (3.38)

We recognize, that in the limit N → ∞, the fraction of excitations n/N
really seems to be equivalent to sin(ε) of our first ansatz and that the range
of the transition from no excitation to a totally excited lattice goes from
∆p − q to ∆p, just as in the first ansatz. Reinserting equation (3.38) into
equation (3.37), we obtain the energy

Eψ3 = −(∆p −∆)2

2q
(N − 1) +

∆p −∆

q

(
ζ3

a3

(
dgg

2

0 − d112

0

)
−∆p

)
+
ζ3

a3

N2

N − 1
dgg

2

0 . (3.39)

Taking the limit N →∞, we get an energy per particle

Eψ3/N =
ζ3

a3
dgg

2

0 − (∆p −∆)2

2q
, (3.40)

which is valid for ∆p−q ≤ ∆ ≤ ∆p. The ansatz |ψ3〉 is obviously energetically
equivalent to |ψ1〉11. The reason for this may lie in the thermodynamic limit
(N → ∞). Although |ψ1〉 is a mixture of states with different number of
excitations, the effect of those, that are inappropriate to the chosen ∆, is
negligible due to the infinite number of molecules12.

3.1.3 Mean-Field And Variational Calculus

The approach of the previous calculations, that is, assuming a wave function
with different parameters and appropriately adjusting them, is also known
as variational calculus. In the narrower sense, this is not equal to the mean-
field-method. However, we will show that both techniques lead to the same
result, excusing the rather sloppy language.
In mean-field, we focus on an arbitrary, single molecule. An external field
replaces the individual interactions with all the other molecules. It presents
an average of the fields, that actually would be induced by them. The many-
particle problem thus reduces to a one-particle problem. Still an assumption
has to be made for the external field. Here, we describe the average field by
our first ansatz

|ψ1〉 =
∏
i

[
cos(ε)|g〉i +

1√
2

sin(ε)eiδ
(
| − 1〉i + eiγ |1〉i

)]
. (3.4)

11For ∆ > ∆p and ∆ < ∆p− q the wavefunctions are not only energetically equivalent,
but the same.

12Like the volume of a sphere is in high dimensions mainly at its surface.
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We have seen, that this state corresponds to an oscillating dipole moment
with orientation and phase determined by γ and δ respectively. The ratio
of molecules in ground and excited states is described by ε. With this, the
many-particle Hamiltonian (3.3) reduces to

H = ∆A+
2ζ3

a3

{(
d11

0 − d
gg
0

) (
d11

0 sin2 ε+ dgg0 cos2 ε
)
A

− 1

2
d1g2

1

(
1√
2
eiδ sin ε cos ε

(
L† + eiγR† − 3eiγL† − 3R†

)
+ h.c.

)}
,

(3.41)

As before, djki are dipole matrix elements and a is the lattice spacing. The
definition of the operators A,L,R can be found on page 13. Diagonalizing
this Hamiltonian, we obtain three eigenstates. The energies of these states
are positive, zero and negative. The second step in the mean-field approach
is to provide self-consistency. This means, that the state of the randomly
chosen molecule must match the assumed average field. We thus identify the
eigenstates with |ψ1〉. In the case of the zero-energy eigenstate, this leads
directly to a contradiction. It does not present a solution to the problem13.
The first resctriction, that we impose on the remaining eigenstates is, that a
phase difference of eiγ between | − 1〉 and |1〉 exists, just like in |ψ1〉. This is
only possible if γ = ±π. Then we compare the first components, that is the
prefactor of | − 1〉, of the eigenstates and |ψ1〉. Here, a polynomial equation
of rank six in sin2 ε must be solved. We find as solutions sin2 ε = 0 (twice)
and sin2 ε = 1 (twice), as well as

sin2 ε =
2ζ3
a3
dgg0
(
dgg0 − d11

0

)
+ 4ζ3

a3
d1g2

1 −∆
2ζ3
a3

(
dgg0 − d11

0

)2
+ 8ζ3

a3
d1g2

1

=
∆p −∆

q
(3.42)

and

sin2 ε =
2ζ3
a3
dgg0
(
dgg0 − d11

0

)
− 4ζ3

a3
d1g2

1 −∆
2ζ3
a3

(
dgg0 − d11

0

)2 − 8ζ3
a3
d1g2

1

. (3.43)

The familiar solution (3.42) corresponds to the negative eigenenergy and
thus solves the mean-field ansatz. Again, the energy is independent of δ.
Nevertheless, δ must be taken into account to maintain self-consistency. This
is not possible with the last solution (3.43). It corresponds to the positive
eigenenergy and describes a state which is equal to |ψ1〉, but with a phase
shift of δ′ = δ ± π. Speaking in terms of dipole moments, this solution
oscillates in the same direction as |ψ1〉, but always with opposite phase.
This is also reflected in the sign of the d1g2

1 in equation (3.43).
To sum up, the parameters δ, γ, and ε must obey the same relations as in the
previous chapters. The variational and the mean-field approach thus lead to
the same results.

13The zero-energy eigenstate is of the type |ψ〉 = α|1〉+ β| − 1〉 with α, β ∈ C.
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3.2 The Optimal Excitation

The existence of two excited states makes it hard to map the system onto
more accessible ones like the Bose-Hubbard model [9], or Spin-Hamiltonians,
like the Heisenberg model [15]. The reduction to a dual system with only one
optimal excited state would thus present a helpful simplification. However,
care must be taken not to exclude the overall ground state by this step.
Consider, as a starting point, the completely general state

|ψ〉i =
∑
i

cgi |g〉+ cei (αi|1〉+ βi| − 1〉) . (3.44)

For the moment, we are not interested in finding the optimal number of
excitations, but the optimal excitation itself. We thus fix the coefficients
cgi , c

e
i ∈ R+ and set |αi|2 + |βi|2 = 114. With this restriction, cgi and cei

describe the ratio of ground and excited states for the molecule at site i.
The αi and βi determine the amplitude and phase of the corresponding
excitations. Calculating the energy of this state, we recognize, that the
choice of the αi and βi is only affecting the off-diagonal terms of V dd

ij with
the prefactor d1g

1 . Their contribution to the energy is

Eoff-diagonal =− 1

4

∑
ij
i6=j

d1g2

1

R3
ij

cgi c
e
i c
g
jc
e
i

(
α∗iαj + α∗jαi + β∗i βj + β∗j βi

)

+
3

4

∑
ij
i6=j

d1g2

1

R3
ij

cgi c
e
i c
g
jc
e
i

(
α∗i βj + α∗jβi + β∗i αj + β∗jαi

)
. (3.45)

Using x = |x|earg(x), with arg(x) being the complex argument of x, we obtain

Eoff-diagonal =− 1

2

∑
ij
i 6=j

d1g2

1

R3
ij

cgi c
e
i c
g
jc
e
i (|αi||αj | cos (arg(αi)− arg(αj))

+|βi||βj | cos (arg(βi)− arg(βj)))

+
3

2

∑
ij
i 6=j

d1g2

1

R3
ij

cgi c
e
i c
g
jc
e
i (|αi||βj | cos (arg(αi)− arg(βj))

+|βi||αj | cos (arg(βi)− arg(αj))) . (3.46)

To minimize this expression, we have to set

arg(αi)− arg(αj) = arg(βi)− arg(βj) = 0 and arg(αi)− arg(βj) = π,
(3.47)

14Any other constant, that is not equal to zero, could have been chosen here.
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with i 6= j. This determines the complex parts up to a phase between ground
state and excitations. Reinserting into eq. (3.46) and using the normalization
of the excitations (|αi|2 + |βi|2 = 1) then yields

Eoff-diagonal =− 1

2

∑
ij
i 6=j

d1g2

1

R3
ij

cgi c
e
i c
g
jc
e
i

(
|αi||αj |+

√
1− |αi|2

√
1− |αj |2

+3|αi|
√

1− |αj |2 + 3|αj |
√

1− |αi|2
)
.

(3.48)

The maximum of the expression in brackets is at |αi| = |αj | = 1/
√

2. To
minimize the whole expression, we thus set |αk| = 1/

√
2 for every k and find

as the optimal excitation15

|e〉 =
1√
2

(|1〉 − | − 1〉) (3.49)

Replacing the two excitations | − 1〉 and |1〉 by |e〉 does not eliminate the
overall ground state.

15|ψ1〉 of chapter 3.1 thus presents the energetically most favourable mean-field-ansatz.
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3.3 Mapping To The Bose-Hubbard Model

In order to get more insight to the physics involved, we now want to map
the Hamiltonian onto the more familiar form of the extended Bose-Hubbard
model. The Bose-Hubbard model is constructed by the boson creation and
annihilation operators b†i and bi respectively, and the boson number opera-
tor ni = b†ibi. We use the following correspondance between excitations of
molecules and bosons:

particle ⇔ excitation |e〉,
no particle ⇔ ground state |g〉. (3.50)

The whole Bose-Hubbard-Hamiltonian then reads

H =
1

2

∑
ij
i6=j

niUijnj−µ
∑
i

ni+
1

2

∑
ij
i 6=j

tij

(
b†ibj + h.c.

)
+V

∑
i

ni(ni−1)+offset.

(3.51)
The main task, to get the right prefactors of this expression, is the calculation
of matrix elements, such as, for example, 〈e|V dd

ij |g〉 or 〈e|H0
ss|e〉. Instead of

presenting the whole calculation, we explain the origin of the different terms:

The two-particle-interaction Uij follows from the terms of V dd
ij , that go

with Ai ⊗Aj

Uij =

(
dgg0 − d11

0

)2
R3
ij

=

(
dgg0 − d11

0

)2
a3

1

|i− j|3
. (3.52)

The chemical potential µ comes from H0
ss and the terms of V dd

ij with Ai⊗1j
and 1i ⊗Aj

µ =
2ζ3

a3
dgg0
(
dgg0 − d

11
0

)
−∆ (3.53)

The hopping term tij results from the terms of V dd
ij which go with L† ⊗R,

L† ⊗ L, R† ⊗ L, R† ⊗R, and their hermitian conjugates

tij =
−2d1g2

1

R3
ij

=
−2d1g2

1

a3

1

|i− j|3
. (3.54)

The offset follows from the terms of V dd
ij with 1i ⊗ 1j

offset =
1

2

∑
mn
m6=n

dgg
2

0

R3
mn

. (3.55)

V →∞ is the on-site repulsion, which has to be added by hand. The reason
for this term is, that it supresses the multiple occupation of lattice sites.
This is not possible in the two state molecule system. Bosons in this limit
are also referred as hard-core bosons.



Chapter 3. Polar Molecules In A 1D Optical Lattice 31

3.4 Mapping To Spin Operators

The Hamiltonian (3.51) is a correct description of our system only in the
hard-cose boson limit V → ∞. However, the inclusion of the on-site inter-
action makes it harder to solve the problem. We thus eliminate the term,
using spin instead of boson operators.

The definition of the spin-1
2 operators is

Sx =
1

2

(
0 1
1 0

)
, Sy =

1

2

(
0 −i
i 0

)
and Sz =

1

2

(
1 0
0 −1

)
. (3.56)

The matrices are known as Pauli matrices. With these matrices, we introduce
the raising and lowering operators

S+ = Sx + iSy =

(
0 1
0 0

)
and S− = Sx − iSy =

(
0 0
1 0

)
. (3.57)

S+ (S−) flips a spin-down (spin-up) particle and annihilates a spin-up (spin-
down) particle. Assuming the following correspondance between the states

|g〉 ⇔ |−〉 =

(
0
1

)
and |e〉 ⇔ |+〉 =

(
1
0

)
, (3.58)

we obtain the transformation rules

bj ⇔ S−j , b†j ⇔ S+
j and nj ⇔ Szj +

1

2
. (3.59)

With S+|+〉 = 0, the artificial hard-core boson condition V →∞ is fulfilled
by itself. The Spin-Hamiltonian then reads

H =
1

2

∑
ij
i6=j

Szi UijS
z
j − µspin

∑
i

Szi +
1

2

∑
ij
i6=j

tij

(
S+
i S
−
j + S+

j S
−
i

)
+ offsetspin,

(3.60)
with the chemical potential of spin-particles

µspin = µ− ζ3

a3
(dgg0 − d

11
0 )2 (3.61)

and the new offset

offsetspin = offset +
1

8

∑
ij
i6=j

Uij −
µ

2

∑
i

1. (3.62)
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3.5 Mapping To Fermion Operators

The commutator relations of the raising and lowering operators behave like a
mixture of boson and fermion operators. They anticommute on same lattice
sites,

{S+
n , S

+
n } = {S−n , S−n } = 0, {S−n , S+

n } = 1, (3.63)

but commute on different lattice sites

[S+
n , S

+
m] = [S−n , S

−
m] = [S−n , S

+
m] = 0 for n 6= m. (3.64)

We will now correct the latter relation applying the Jordan-Wigner-transformation.
This maps spin to fermion operators. We present the unitary16, so called
soliton operator

Kn = exp

iπ n−1∑
j=1

S+
j S
−
j

 = in−1 exp

iπ n−1∑
j=1

Szj

 (3.65)

It rotates all the spins left to the n-th site and multiplies by a phase, so that

Kn|+1 +2 · · ·+n−1 +n+n+1 . . . 〉 = in−1|−1−2 · · ·−n−1 +n+n+1 . . . 〉. (3.66)

With this, the transformation is given by

cn = KnS
−
n , S−n = K†ncn = e−iπ

∑n−1
j=1 c

†
jcjcn,

c†n = S+
nK

†
n, S+

n = c†nKn = c†ne
iπ

∑n−1
j=1 c

†
jcj . (3.67)

Using these relations, we find the fermionic commutator relations

{cn, cm} = {c†n, c†m} = 0 and {cn, c†m} = δnm. (3.68)

The Hamiltonian then reads

H =
1

2

∑
ij
i6=j

niUijnj − µ
∑
i

ni +
∑
ij
i<j

tij

j−1∏
l=i+1

(1− 2nl)
(
c†icj + c†jci

)
+ offset

(3.69)
with ni = c†ici

17. Two things are different to the Bose-Hubbard Hamiltonian
(3.51). First, the on-site-interaction has vanished and second, a new factor
has been added in the hopping term. This factor

∏j−1
l=i+1 (1− 2nl) gives a

minus sign for every particle between i and j. It has no effect for neighbouring
particles.

16K†K = KK† = 1.
17The multiple usage of ni as the number operator of bosons and fermions should not

lead to any confusion since there is no simultaneous appearance of fermion and boson
operators in this work.



Chapter 3. Polar Molecules In A 1D Optical Lattice 33

The proof of relation (3.68) is done in two steps. First, we show that

S−nKm = −KmS
−
n for m > n and S−nKm = KmS

−
n for m ≤ n.

(3.70)
Since the spin operators on different sites commute, the latter part of the
above equation is clear. To prove the first part, we apply the Baker-Campbell-
Hausdorff formula [16]

eA+B = eAeBe−[A,B]/2 (3.71)

and the commutators of equation (3.64), to obtain

Kn = exp

iπ n−1∑
j=1

S+
j S
−
j

 =
n−1∏
j=1

eiπS
+
j S
−
j , (3.72)

and with that

S−nKm = S−n

m−1∏
j=1

eiπS
+
j S
−
j =

m−1∏
j=1
j 6=n

eiπS
+
j S
−
j S−n e

iπS+
n S
−
n . (3.73)

Then we simplify the last exponential

e±iπS
+
n S
−
n = e±iπ(Szn+1/2) = e±

iπ
2 e±iπS

z
n = ±ie±

iπ
2
σzn = ±i

∞∑
m=0

(
± iπ

2 σ
z
n

)m
m!

= ±i

[ ∞∑
m=0

(
± iπ

2

)2m+1
σz

2m+1

n

(2m+ 1)!
+

(
± iπ

2

)2m
σz

2m

n

(2m)!

]

= ±i

[
±i

∞∑
m=0

(−1)m
(
π
2

)2m+1

(2m+ 1)!
σzn +

∞∑
m=0

(−1)m
(
π
2

)2m
(2m)!

1n

]
= − sin

(π
2

)
σzn ± i cos

(π
2

)
1n = −σzn = −2Szn, (3.74)

and calculate the commutator

S−n S
z
n =

(
0 0
1 0

)
n

(
1 0
0 −1

)
n

= −
(

1 0
0 −1

)
n

(
0 0
1 0

)
n

= −SznS−n . (3.75)

Inserting all this into expression (3.73), we get

S−nKm =

m−1∏
j=1
j 6=n

eiπS
+
j S
−
j S−n (−2Szn) = −

m−1∏
j=1
j 6=n

eiπS
+
j S
−
j (−2Szn)S−n

= −
m−1∏
j=1
j 6=n

eiπS
+
j S
−
j e±iπS

+
n S
−
n S−n = −

m−1∏
j=1

eiπS
+
j S
−
j S−n = −KmS

−
n .

(3.76)
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With this relation, the different parts of equation (3.68) are shown easily.
Take, for example, m > n and consider

{cn, cm} = {KnS
−
n ,KmS

−
m}

= KnS
−
nKmS

−
m +KmS

−
mKnS

−
n

= −KnKmS
−
n S
−
m +KmKnS

−
mS
−
n

= −KnKmS
−
n S
−
m +KnKmS

−
mS
−
n

= −KmKn[S−n , S
−
m]

= 0, (3.77)

with [Kn,Km] = 0 being evident from eq. (3.64) and eq. (3.73).

For the proof of the Hamiltonian (3.69), two things must be clarified. The
easy one is the transformation of the fermionic number operator

ni = c†ici = S+
i K

†
iKiS

−
i = S+

i S
−
i = Szi +

1

2
. (3.78)

The more complicated question is how to express S+
i S
−
j with i 6= j in the

operators c̃i and c̃
†
i . To show, how this is done, we start with the case i > j

and use the transformation rules to express the spin operators by fermionic
ones:

S+
i S
−
j = c†ie

iπ
∑i−1
l=1 c

†
l cle−iπ

∑j−1
m=1 c

†
mcmcj

= c†ie
iπ

∑i−1
l=j c

†
l clcj = c†i

i−1∏
l=j

eiπc
†
l clcj

= c†i

i−1∏
l=j

 ∞∑
m=0

(
iπc†l cl

)m
m!

 cj

= c†i

i−1∏
l=j

(
1 +

∞∑
m=1

(iπ)m

m!
c†l cl

)
cj

= c†i

i−1∏
l=j

(
1− 2c†l cl

)
cj

=

i−1∏
l=j

(1− 2nl) c
†
icj (3.79)

Here, we have made usage of the Baker-Campbell-Hausdorff formula and
the commutator relation of number operators on different sites in line two,
and in line four we used nkl = nl, which holds for every natural k > 018.

18This is simply a consequence of the fermionic character, that nl is either zero or one.
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The product runs from j to i − 1 and is equal to one for j = i − 1. This
means, that in a nearest-neighbour model, such a term does not appear, and
the Jordan-Wigner transformation is more or less a substitution of all the
boson operators by fermion operators. Repeating the analogous calculation
for i < j then yields the fermionic Hamiltonian (3.69).

3.6 The Crystal Phase

In view of the different terms of the Hamiltonians (3.51) and (3.69), there
are two very contrary approaches to the energetically most favourable state.
On the one hand, there is the crystal phase, which corresponds to a high
two-particle-interaction Uij and low hopping tij . On the other hand, there
is the so called superfluid [17, 18], that minimizes the kinetic energy and is
suitable to the case where Uij is small compared to tij . We will start assum-
ing a crystal phase, make a rough estimation, up to which ratio of tij/Uij
this would be stable, and if such a ratio is reachable in our setup.

In the case of zero hopping tij = 0 and a convex interaction with infinite
range Uij , the minimum energy state of equation (3.69) is a crystal with
periodicity q and filling p/q19, both depending on µ. Since the rational num-
bers are everywhere dense, two values p/q and p′/q′, corresponding to µ and
µ′, are always separated by an infinity of steps with rational filling inbe-
tween. The whole function of filling versus chemical potential then builds
the so called devil’s staircase [19–21]. It is continuous everywhere and has
zero derivative almost everywhere. However, with the chemical potential in-
creasing, it goes from zero to one. The range of the chemical potential ∆µ,
over which a commensurate state with filling p/q is stable, that is, the range
where adding or subtracting a particle raises the overall energy, is given by

∆µ =

∞∑
n=1

nqU(nq + 1) + nqU(nq − 1)− 2nqU(nq), (3.80)

with U(i − j) = Uij . In our estimation, it is sufficient to consider states
with p = 1. Despite using this shortcut, equation (3.80) holds for every
filling p/q ∈ Q. To understand the procedure, first take a look at Figure 3.5.
In the first line, a sector of the infinite lattice with a commensurate phase
of periodicity q = 5 is shown. Every dot stands for a particle and every
circle for an empty lattice site, that is, a hole. Thus, the number of particles
in a lattice with N sites is N/q. The second line corresponds to adding a
particle, i.e., a hole defect and the last line to subtracting a particle, i.e., a
particle defect. The existence of a hole/particle defect alters the energy in
the following way: First, the interaction between particles on the same side

19p is the number of particles per period.
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of the dashed line is not effected. Second, the interaction between particles
in A with those in B is

∞∑
m=1

∞∑
n=m

U(nq) =
∞∑
n=1

nU(nq) (3.81)

in the case of no defect,

∞∑
m=1

∞∑
n=m

U(nq − 1) =

∞∑
n=1

nU(nq − 1) (3.82)

for the hole defect, and

∞∑
m=1

∞∑
n=m

U(nq + 1) =

∞∑
n=1

nU(nq + 1) (3.83)

for the particle defect. The range of µ, over which the commensurate phase
with filling 1/q is stable, is determined by the points, where adding or sub-
tracting a particle does not change the energy. Thus we receive

∆µ =

∞∑
n=1

nU(nq + 1)−
∞∑
n=1

nU(nq)−

( ∞∑
n=1

nU(nq)−
∞∑
n=1

nU(nq − 1)

)

=
∞∑
n=1

nqU(nq + 1) + nqU(nq − 1)− 2nqU(nq). (3.84)

B
B
B

A
A
A

Edc

Eac

N/q

+1

-1

Figure 3.5: Adding a particle/hole defect to a commensurate phase

Using the abbreviation

U =
(
dgg0 − d

11
0

)2
, (3.85)
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we obtain as a closed expression in the limit of large q

∆µ =
∞∑
n=1

nqU(nq + 1) + nqU(nq − 1)− 2nqU(nq)

=
U

a3

∞∑
n=1

nq

(nq + 1)3
+

nq

(nq − 1)3
− 2nq

(nq)3

≈ 12U

a3q4

∞∑
n=1

1

n4
=

12Uζ4

a3q4
. (3.86)

The center of this range is found by minimizing the energy at filling p/q

E = −N
(
p

q

)
µ+

NUζ3

a3

(
p

q

)4

. (3.87)

This yields

µ0 =
4Uζ3

a3

(
p

q

)3

. (3.88)

Since we assumed equal-spaced particles, this result is only exact for p = 1.
However, it is still a good approximation for an arbitrary p. In total, we
have stable ranges at µ = µ0 ± ∆µ/2. In these regimes, µ can be altered
without effecting the commensurate ground state (CGS) due to the energy
gap between the CGS and the state with ±1 additional particle. If we now
include the hopping term, the energies of the degenerate states20 with ±1
particles split up and the stable range shrinks, depending on the ratio of
interaction and hopping term. We use degenerate, time independent pertur-
bation theory21 to calculate this effect. Beginning with the hole defects, we
introduce the notation |hi〉, for a state with, in comparison to the CGS, one
missing hole between particle i− 1 and i. Due to orthogonality, the hopping
term only couples hole defects with i− j = ±1. In the subspace of one hole
defect, the perturbation operator thus takes the form

Tij = − (δij+1 + δij−1)
t

a3
, (3.89)

with
t = 2d1g2

1 . (3.90)

Choosing the energy offset in such a way, that the energy of the CGS is zero,
we find, that the lower border of the stable range must satisfy the eigenvalue
equation

det

[
δij(

∆µ

2
− λ)− (dij+1 + δij−1)

t

a3

]
= 0. (3.91)

20The degeneracy of the states with one particle (hole) defect follows from the transla-
tional invariance of the lattice, i.e., it does not matter where to put the particle.

21See Appendix C.
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The minimal/maximal solution of this equation describes the half-width of
the emerging CGS-lobe, at a certain value of t. Applying some substitions
and considerations about the maximal and minimal eigenvalues of the infinite
matrix (M)ij = dij+1 + δij−1, we find

λmin =
∆µ

2
− 2

t

a3
. (3.92)

Analogously, we get

λmax = −∆µ

2
+ 2

t

a3
(3.93)

for the highest energy of a particle defect. At λmin = λmax the perturbative
approach breaks down and we obtain the condition

3ζ4

q4
<

t

U
(3.94)

for a stable CGS lobe. In Figure 3.6, we have plotted this result for q > 4.
At t/U = 0, we find the part of the devil’s staircase with p = 1. The yellow
regions present the CGS lobes. Inside of them, the commensurate state is
stable. The full diagram, without the restriction p = 1, differs only little to
Figure 3.6 due to the comparatively small lobes with p 6= 1. At the borders
of the lobes, a so called floating solid may be expected [19]. However, we
have not examined this region.
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Figure 3.6: Phase diagram of the crystal phase. The CGS are stable inside
the yellow lobes.

The question remains, whether the region of the CGS lobes is reachable
within our setup. We thus take a look at the critical ratio

t

U
=

2d1g2

1(
dgg0 − d11

0

)2 . (3.95)

Using the numerical calculations of Appendix D, we plot22 the fraction t/U
versus the external parameter η, corresponding to the strength of the dc-field

22See Figure 3.7.
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in units of B/d. We recognize, that the hopping term is much stronger than
the interaction term, and that the smallest fraction is at around t/U ≈ 10.
However, the biggest lobe with 1/q = 1/2 is only stable for t/U . 0.2. This
value changes by a factor of two, if we calculate ∆µ numerically, i.e., without
the assumption that q should be a very large number. Hence, the crystal
phase is not a good approach to the ground state of the system.

ç=dE   /B

U/a 
3

t/
U

 

30

20

10

0

dc

0 2 104 6 8

Figure 3.7: The fraction t/U of hopping to interaction term versus the
strength of the dc-field.

3.7 The Superfluid

After examining the crystal phase in the previous section, we now pass on
to the contrary approach of the superfluid. The superfluid is an appropriate
ansatz in the case of a dominant hopping term. We thus neglect for the mo-
ment the interaction Uij , and also the complicated product

∏j−1
l=i+1 (1− 2ñl),

which was a result of the Jordan-Wigner transformation. The Hamiltonian
(3.69) then reduces to

H = −µ
∑
i

ni +
1

2

∑
ij
i 6=j

tij

(
c†icj + c†jci

)
+ offset. (3.96)

We apply a Fourier transformation [22], using the transformation rules

cj =
∑
k

c̃ke
−ikj , (3.97)

c†j =
1

N

∑
k

c̃†ke
ikj , (3.98)

with k = 2π n
N , n = −N

2 , . . . ,
N
2 , and N the number of lattice sites. The

Fourier transformation of the |R|−3-potential reads

f(k) =
∑
j

e−ikj

|j|3
. (3.99)
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Hence, the hopping factor can be written as

tlm = − t

a3

1

N

∑
k

f(k)eik(l−m). (3.100)

We insert equations (3.97–3.100) into equation (3.96) and neglect the offset,
to obtain

H =− µ
∑
j

∑
k,k′

1

N
c̃†k c̃k′e

−i(k′−k)j

+
1

2

∑
lm
l 6=m

∑
q,k,k′

1

N2
t(q)eiq(l−m)

[
c̃†k c̃k′e

ikle−ik
′m + c̃†k′ c̃ke

−ikleik
′m
]
.

(3.101)

By using 1
N

∑
j e
−i(k′−k)j = δkk′ , this can be further simplified to

H =
∑
k

εkñk, (3.102)

with the fermionic number operator ñk = c̃†k c̃k and the dispersion relation
εk = t(k) − µ. The ground state of the system is now found filling up the
Fermi sea to the quasi Fermi momentum kF satisfying εkF = t(kF )− µ = 0.
Using creation operators, this reads

|F 〉 =

kF∏
|k|=0

c̃†k|0〉. (3.103)

Based on |F 〉, we now include the lacking terms of the Hamiltonian (3.69)
in first order perturbation theory. Taking a look at the, in this sense unper-
turbed, Hamiltonian

H0 = −µ
∑
i

ni +
∑
ij
i<j

tij

(
c†icj + c†jci

)
, (3.104)

and the perturbation

H1 =
1

2

∑
ij
i 6=j

niUijnj +
∑
ij
i<j

tij

(
j−1∏
l=i+1

(1− 2nl)− 1

)(
c†icj + c†jci

)
, (3.105)

we point out, that, while at small values of kF the terms of H0 should be
linear, those of H1 are quadratic in the Fermi momentum. Hence, at least
close to kF = 0, we should find a good approximation to the lowest energy
of the system. Due to the complicated form of the additional hopping terms,
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we will not transform the potentials, but only the operators. For a better
comparison, we will not only calculate the different parts of 〈F |H1|F 〉, but
also those of H0 once more. This is done on the following pages, one after
another.

• the chemical potential

〈F |µ
∑
j

nj |F 〉 = 〈F |µ
∑
j

∑
k,k′

1

N
c̃†k c̃k′e

i(k−k′)j |F 〉

= µ
∑
j

1

N

∑
|k|,|k′|≤kF

δkk′e
i(k−k′)j

= µ
∑
j

∑
|k|≤kF

1

N

= µ

(
N

2π

)∫ kF

−kF
dk

= µ

(
N

2π

)
2kF (3.106)

• the hopping term

〈F |
∑
lm
l<m

tlm

(
c†l cm + c†l cm

)
|F 〉

=〈F |
∑
lm
l<m

tlm
∑
k,k′

1

N
c̃†k c̃k′

(
eikle−ik

′m + eikme−ik
′l
)
|F 〉

=
∑
lm
l<m

tlm
∑
|k|≤kF

1

N

(
eik(l−m) + eik(m−l)

)

=
∑
lm
l<m

tlm
1

N

(
N

2π

)∫ kF

−kF
dk
(
eik(l−m) + eik(m−l)

)

=4
∑
lm
l<m

tlm
1

N

(
N

2π

)
τlm(kF ) (3.107)

with

τlm(k) =
sin(k(l −m))

l −m
=

1

2

∫ k

−k
dk eik(l−m). (3.108)

The substitution of the summation by an integral is exact in the limit
N → ∞. While the summation counts up the n, the integration is over
k. Thus, the prefactor

(
N
2π

)
must be added.
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• the interaction term

1

2

∑
lm
l6=m

nlUlmnm =
1

2

∑
lm
l 6=m

Ulm
∑
k,k′
q,q′

1

N2
c̃†k c̃k′ c̃

†
q c̃q′e

i(k−k′)lei(q−q
′)m (3.109)

A clean method to handle products of creation and annihilation operators is
provided by Wick’s theorem, See Appendix F. From this, the useful relation

〈0|ABCD|0〉 = 〈AB〉0〈CD〉0 − 〈AC〉0〈BD〉0 + 〈AD〉0〈BC〉0 (3.110)

follows. Here, |0〉 is the vacuum state. The proof of the theorem requires,
among other things, that ai|0〉 = 0. To apply relation (3.110), we thus have
to transform our operators in such a way, that every annihilation operator
destroys the Fermi ground state, that is c̃k|F 〉 = 0. This is achieved by a
particle-hole transformation:

c̃†k → ãk and c̃k → ã†k for |k| ≤ kF
c̃†k → ã†k and c̃k → ãk for |k| > kF . (3.111)

Since the total number of annihilation and creation operators must be equal
for any nonvanishing expectation value, the number of transformed operators
must be even. Additionally, no annihilation (creation) operator is allowed
to stand at the last (first) position. With this, we have only two possible
situations: All the operators are transformed, i.e., all the indices lie inside
the Fermi sphere23, or only the first and the last operator is transformed,
that is |k|, |q′| ≤ kF and |k|, |q′| > kF . With these considerations, we obtain
the expectation value of the interaction term to be

1

2

∑
lm
l6=m

〈F |nlUlmnm|F 〉

=
1

2

∑
lm
l6=m

Ulm

 ∑
|k|,|q|≤kF

1

N2
+

∑
|k|≤kF
|k′|>kF

1

N2
eik(l−m)eik

′(m−l)


=

1

2

∑
lm
l6=m

Ulm
1

N2

(
N

2π

)2 (
4k2

F − 4τ2
lm(kF )

)
. (3.112)

Following the calculation backwards, we see that the constant 4k2
F corre-

sponds to a classical density-density-interaction and the second term 4τ2
lm(kF )

describes an exchange-interaction.
23In 1d the Fermi sphere is not really a sphere, but a sector on the number line.



Chapter 3. Polar Molecules In A 1D Optical Lattice 43

• the hopping term correction of first order in nj

−
∑
lm
l<m

tlm

m−1∑
j=l+1

2nj

(
c†l cm + c†mcl

)
(3.113)

A complete calculation of the hopping term corrections is analytically not
possible. We thus expand the product in sums, with different powers of the
number operator. The term (3.113) presents the first order of this series. We
calculate its expectation value with the same techniques as above:

−
∑
lm
l<m

tlm

m−1∑
j=l+1

〈F |2nj
(
c†l cm + c†mcl

)
|F 〉

=
∑
lm
l<m

tlm

m−1∑
j=l+1

4

N2

(
N

2π

)2

(4τjl(kF )τjm(kF )− 4kF τlm(kF )) (3.114)

• the hopping term correction of second order in nj

∑
lm
l<m

tlm

m−1∑
j=l+1

m−1∑
k=j+1

4njnk

(
c†l cm + c†mcl

)
(3.115)

Again, the expectation value can be calculated with familiar techniques. Due
to the rising possibilities of particle-hole transformations, and the growing
number of terms in the Wick theorem, already at this order the expression
becomes lengthy.

∑
lm
l<m

tlm

m−1∑
j=l+1

m−1∑
k=j+1

〈F |4njnk
(
c†l cm + c†mcl

)
|F 〉

=
∑
lm
l<m

tlm

m−1∑
j=l+1

m−1∑
k=j+1

4

N3

(
N

2π

)3

×
(

16k2
F τlm(kF )− 16kF τkm(kF )τml(kF )

+ 16τjk(kF ) (τjl(kF )τkm(kF ) + τjm(kF )τkl(kF ))

−16kF τjm(kF )τjl(kF )− 16τ2
jk(kF )τlm(kF )

)
(3.116)

The terms in the last bracket of the equation above are illustrated in Figure
3.8. Every arrow corresponds to a hopping particle, and every dot without
an arrow to a particle, which stays on its site.
For example, the last combination describes a mixture of density-density-
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Figure 3.8: The possibilities of hopping in zeroth, first and second order

and exchange-interaction. The arrows contribute with a factor τ(kF ) and
the dots with kF . From this illustration, we can deduce a recipe to find
the different correction terms in random order, with the right prefactors
and signs, by graphical considerations. It correctly delievers the already
calculated terms, but we have not proved it and will not present it here.
Nevertheless, it predicts 23 new terms in third order, which is at least of the
right dimension. We therefore relinquish to calculate any higher orders.

The energy of the Fermi sea in first order perturbation theory, including
the hopping term corrections to second order, is then given by

EF (kF )/N =− µ 1

π
kF

+

∞∑
j=1

U0j

(
1

π

)2 (
k2
F − τ2

0j(kF )
)

+
∞∑
j=1

t0j

(
2

π

)
τ0j(kF )

+

∞∑
j=1

t0j

j−1∑
l=1

(
2

π

)2

(τl0(kF )τlj(kF )− kF τ0j(kF ))

+
∞∑
j=1

t0j

j−1∑
l=1

j−1∑
m=l+1

(
2

π

)3 (
k2
F τ0j(kF )− kF τmj(kF )τm0(kF )

+ τlm(kF ) (τl0(kF )τmj(kF ) + τlj(kF )τm0(kF ))

−kF τlj(kF )τl0(kF )− τ2
lm(kF )τ0j(kF )

)
+ ζ3

dgg
2

0

a3
. (3.117)

We have used the translational invariance of the system to simplify the sums.
The last term is the overall offset (3.55), divided by N . We try to expand
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the energy in orders of kF using the expansion of eq. (3.108)

τlm(k) =
sin(k(l −m))

l −m
= k − 1

3!
k3(l −m)2 +

1

5!
k5(l −m)4 − . . . . (3.118)

As expected, the linear terms are parts of the ordinary hopping and the
chemical potential. The next higher order vanishes, because all the quadratic
terms cancel out. The effects of the interaction term and the hopping correc-
tions are even smaller than expected. At the third order in kF , the expansion
in a polynomial breaks down, due to the divergence of

∑∞
j=1 j

−1, which ap-
pears after inserting the next order of kF in the hopping term. The several
sums cannot be further expanded by expansion of their summands24. How-
ever, the expansion in first order

E
(1)
F (kF )/N = −µ 1

π
kF −

4ζ3

π

d1g2

1

a3
kF + ζ3

dgg
2

0

a3
, (3.119)

gives us the point of transition from zero to one excitation

µp = −4ζ3
d1g2

1

a3
. (3.120)

Using the mapping rule (3.53), we find, that ∆(µp) = ∆p from the mean-field
discussion. Due to the difficulties in expanding the energy to higher orders,
it is impossible to find an analytic relation of the form kF = kF (µ). The
only option, to compare the energy of the Fermi sea with the one, that we
found in the mean-field approach, is of numerical nature.

Before doing so, we want to recall, that equation (3.117) is only sufficiently
accurate at small values of kF , i.e., in the proximity of µp = µp, or ∆ = ∆p. If
we want to transfer the results to the other end of the transition range25, we
must modify the mapping to the Bose-Hubbard-Hamiltonian (3.51). Instead
of taking an empty lattice as starting point, we assume a fully filled lattice
and construct the Hamiltonian with hole operators. While the hopping term
and the on-site interaction remain invariant under this transformation, the
offset changes to

offseth = offset +
1

2

∑
i,j
i 6=j

Uij −Nµ = N
ζ3

a3
d112

0 +N∆. (3.121)

Now, for adding a hole at site j, we must subtract the energy due to the
chemical potential

−(−µ
∑
i

nhi ), (3.122)

24Functions like
∑∞
j=1

sin(kj)

j4
are so called polylogarithms and their expansion in k

shows logarithmic parts, for example
∑∞
j=1

sin(kj)

j4
= ζ3k + (− 11

36
+ ln(k)

6
)k3 +O(k5) [23].

25We will see, that this corresponds to ∆ = ∆p − q.
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and the former interaction between particles at i 6= j and the one at site j

−
∑
i,j
i 6=j

Uijn
h
j . (3.123)

To avoid double counting, we include the correction term

+
∑
i,j
i 6=j

nhi Uijn
h
j . (3.124)

In total, this yields the Bose-Hubbard-Hamiltonian expressed in hole opera-
tors

H =
1

2

∑
i,j
i6=j

nhi Uijn
h
j − µh

∑
i

nhi +
1

2

∑
i,j
i6=j

tij

(
bh
†
i b

h
j + h.c.

)
+ V

∑
i

nhi (nhi − 1) + offseth, (3.125)

with the modified chemical potential

µh = −µ+
∑
i
i 6=j

Uij =
2ζ3

a3
d11

0 (d11
0 − d

gg
0 ) + ∆. (3.126)

The representations of the Bose-Hubbard-Hamiltonian by particle and hole
operators differ only by the definition of their offset and chemical potential.
Hence, all the calculations made in the former regime can be transfered
directly to the other end of the transition. For example, inserting µh = µp
into equation (3.126) yields the point, at which a fully excited lattice is
energetically equal to one with a single missing excitation

∆ = −4ζ3

a3
d1g2

1 − 2ζ3

a3
d11

0 (d11
0 − d

gg
0 ) = ∆p − q. (3.127)

In Figure 3.9, we compare the energy of the perturbed Fermi sea with the one
of the mean-field ansatz |ψ1〉. Since the perturbative approach is only valid
at small values of kF , the graphs of the Fermi sea of particles and holes are
only drawn up to a half filled band. We find, that in the vicinity of the right
and left borders, ∆ = ∆p and ∆ = ∆p − q, the mean-field state is a good
approximation to the the perturbed Fermi sea, which itself is close26 to the
real ground state in these regions. The picture does not change qualitatively
taking other values for η = dEdc/B, i.e., the strength of the ac-field in units
of B/d.
To compare the physical behaviour of the states, we again take a look at the
dipole-dipole-correlation functions. We translate them to the particle-hole

26The perturbative calculation is exact in first order of kF .
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Figure 3.9: Comparison of the energies of the mean field ansatz |ψ1〉 (mf)
and the perturbed Fermi sea (F) with η = 2. For ∆ > ∆p, all molecules
are in the ground state, and for ∆ < ∆p − q, every molecule is excited.
EhF is computed with the alternative mapping, i.e., a hole corresponds to an
excitation.

picture analogously to the Bose-Hubbard-Hamiltonian (3.51). We calculate
the matrix elements of the dipole operator in the non-rotating basis {|g〉, |e〉}
and assign the appropriate creation or annihilation operators. Using the ap-
propriate transformation rules, we advance from the bosonic representation

dlxd
m
x

t
= d1g2

1

(
b†l bm + b†mbl

)
, (3.128)

to the representation by spin operators

dlxd
m
x

t
= d1g2

1

(
S−l S

+
m + S−mS

+
l

)
, (3.129)

and finally to the fermionic one

dlxd
m
x

t
= d1g2

1

m−1∏
l=l+1

(1− 2nj)
(
c†l cm + c†mcl

)
. (3.130)

Again, the Jordan-Wigner product term is equal to one for neighbouring
particles. The correlation functions, that include the y-component of the
dipole operator, vanish due to the chosen excitation |e〉. We recognize, that
the time averaged correlation function of the x-components is, up to some
prefactor, the summand of the already calculated hopping terms. In second
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order of nj , this is given by

〈dlxdmx
t
〉F = d1g2

1

[(
2

π

)
τlm(kF )

+
m−1∑
j=l+1

(
2

π

)2

(τjl(kF )τjm(kF )− kF τlm(kF )) (3.131)

+
m−1∑
j=l+1

m−1∑
k=j+1

(
2

π

)3 (
k2
F τlm(kF )− kF τkm(kF )τml(kF )

+ τjk(kF ) (τjl(kF )τkm(kF ) + τjm(kF )τkl(kF ))

−kF τjm(kF )τjl(kF )− τ2
jk(kF )τlm(kF )

) ]
.

(3.132)

This expression is exact only within |l−m| < 4. The dipole-dipole-correlations
of lattice sites, which are farther away from each other, are only well de-
scribed at small values of kF . The reason is the rising contribution of the
corrections of third and higher order in nj . This can also be observed in
Figure 3.10. The behaviour of the correlation functions of the nearest neigh-
bour (+1), next-nearest neighbour (+2), and so on, are very much the same
at small Fermi momenta. However, with kF increasing, there is a noticeable
difference between the different graphs. Especially the function of the sites
i and i + 4 behaves strangely at kF > π/2, due to the missing third order
terms in nj .
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Figure 3.10: The dipole-dipole-correlation of site i with site i+1, i+2, i+3,
and i+4. The ordinate describes the time averaged dipole-dipole-correlation
function and the abscissa is the quasi Fermi momentum going grom 0 (empty
lattice) to π (full lattice).

To compare these results with the mean-field approach, we must use as ab-
scissa ∆ instead of kF . This is done in Figure 3.11. Since the filled Fermi
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sea is only a good approximation at small kF , we focus on the vicinity of
∆ = ∆p

27. Several things can be obtained from these graphs. First, since
the correlation function of the mean-field state is independent of the number
of sites between the particles, there is only one graph corresponding to it.
Second, while the graph of the mean-field state grows slowly and analytically
(quadratic) at ∆ = ∆p, the ones of the Fermi sea do not. This is due to the
relation ∆ = ∆(kF ), which itself is not analytic at this point. Third, the
Fermi sea seems to enhance the dipole correlation of neighbouring particles,
which is energetically advantageous due to the prefactor 1/a3. We point out,
that, although the mean-field approach is a good approximation in terms of
energy, the state itself, or its physical behaviour, might differ significantly
from the real ground state. Take, for example, the big difference in the
dipole-dipole-correlation functions of the mean-field state and the Fermi sea,
which are energetically very close to each other. Instead of searching for a
state with minimal energy, we thus directly ask for the correlation functions
of the real ground state. This will be done in the, by now rather unattended,
vicinity of kF = π/2, i.e., at half-filling.
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Figure 3.11: The dipole correlation of the mean-field state |ψ1〉 and the
Fermi sea with first (i+ 1), second (i+ 2) and third (i+ 3) neighbour. The
ordinate describes the time averaged dipole-dipole-correlation function and
the abscissa corresponds to the detuning of the microwave field ∆. ∆p and
∆p − q describe the right and left borders of the transition from having all
molecules in the ground state to a fully excited lattice.

27The other end of the transition range is well described after the transformation to
hole operators.



50 3.8. Bosonization

3.8 Bosonization

Up to now, major focus of our studies lay in the regime of very small or large
number of excitations. In the picture of particles and holes, this corresponds
to a low or high filling. Here, we take a deeper look on the region inbetween,
i.e., a half filled lattice. For this purpose, we apply bosonization methods.
Bosonization is a technique to map fermionic fields onto bosonic ones. It
provides the possibility to calculate correlation functions of interacting par-
ticles by transforming them to free ones. To apply this method, we must
express the system in terms of continuum fields instead of discrete lattice
sites. Here, we present two different ways to perform this transition.

3.8.1 Continuum Limit 1

We take as a starting point the Hamiltonian of the superfluid discussion

H =
∑
k

εkñk. (3.102)

For the moment we neglect the interaction term and the hopping corrections
[24]. We now focus on a half-filled lattice, i.e., with |kF | = π/2. At cold
temperatures, the major part of the excitations is at the Fermi points, and
we can split the sum into

H =

kF−Λ∑
k=−kF+Λ

εkñk+

kF+Λ∑
k=kF−Λ

εkñk+

−kF+Λ∑
k=−kF−Λ

εkñk+

−kF−Λ∑
k=−∞

εkñk+
∞∑

k=kF+Λ

εkñk,

(3.133)
with Λ being a Fermi momentum cut-off. While the first sum only con-
tributes with a constant, the last two sums vanish in the low energy limit.
The Hamiltonian thus simplifies to

H =

kF+Λ∑
k=kF−Λ

εkñk +

−kF+Λ∑
k=−kF−Λ

εkñk. (3.134)

Replacing the sums by integrals and expanding the dispersion relation to
first order yields

H =
N

2π

∫ kF+Λ

kF−Λ
dk ε(k)ñ(k) +

N

2π

∫ −kF+Λ

−kF−Λ
dk ε(k)ñ(k)c̃(k)

≈N
2π

∫ Λ

−Λ
dk

(
ε(kF ) + k

∂ε

∂k |k=kF

)
ñ(kF + k)

+
N

2π

∫ Λ

−Λ
dk

(
ε(−kF ) + k

∂ε

∂k |k=−kF

)
ñ(−kF + k)

=
N

2π

∫ Λ

−Λ
dk vF k ñ(kF + k)− N

2π

∫ Λ

−Λ
dk vF k ñ(−kF + k). (3.135)
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In the last line we have used the definition of the Fermi velocity vF = ∂ε
∂k |k=kF

and ε(±kF ) = 0. We simplify this expression using operators that act in the
vicinity of the Fermi points:

α(k) = c̃(kF + k), α(−k) = c̃(−kF − k),

β(k) = c̃†(kF − k), β(−k) = c̃†(−kF + k), (3.136)

with α (β) anhililating (creating) fermions at the right Fermi point k = kF if
k > 0, and at the left Fermi point k = −kF if k < 0. Splitting the integrals of
equation (3.135) into positive and negative values and inserting the relation
(3.136), we obtain

H =
N

2π

∫ Λ

0
dk vF k α

†(k)α(k)− N

2π

∫ Λ

0
dk vF k β

†(k)β(k)

+
N

2π

∫ 0

−Λ
dk vF k β

†(k)β(k)− N

2π

∫ 0

−Λ
dk vF k α

†(k)α(k). (3.137)

After some rearrangement this reduces to

H/N =
1

2π

∫ Λ

−Λ
dk vF |k|

(
α†(k)α(k) + β†(k)β(k)

)
. (3.138)

This Hamiltonian is, up to an offset, the linearized form of the Hamiltonian
(3.102). The idea of the procedure is illustrated in Figure 3.12. Choosing a
momentum cut-off Λ, we set an energy cut-off, which is approximately vFΛ.
We thus concentrate on excitations that are within the dark grey squares. In
this region, the dispersion relation is well approximated by a linear one (red
lines). The summation over all number operators is reduced to an integration
over the ones near the Fermi points and the dispersion relation is replaced
by vF |k|. From the linearized momentum space, we go back to real space
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Figure 3.12: Dispersion relation versus Fermi momentum showing momen-
tum and energy cut-off and the linear dispersion at the Fermi points.

and define the correspoding continuous creation and annihilation operators
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by a slightly modified Fourier transformation to

ψR(x) =
1

2π

∫
k>0

dk
[
eikxα(k) + e−ikxβ†(k)

]
,

ψL(x) =
1

2π

∫
k<0

dk
[
eikxα(k) + e−ikxβ†(k)

]
. (3.139)

The indices R and L refer to right (k > 0) and left (k < 0) moving particles.
This separation becomes clear by writing out the time-dependence of the
creation and anhililation operators

ψR(x, t) =
1

2π

∫
k>0

dk
[
eik(x−vF t)α(k) + e−ik(x−vF t)β†(k)

]
,

ψL(x, t) =
1

2π

∫
k<0

dk
[
eik(x+vF t)α(k) + e−ik(x+vF t)β†(k)

]
. (3.140)

To express the Hamiltonian (3.138) in these operators, we need to get a
factor k from the exponential functions. For this, we calculate

ψ†R∂xψR =
1

(2π)2

∫∫
k,k′>0

dkdk′
[
ikei(k−k

′)xα†(k′)α(k)− ike−i(k−k′)xβ(k′)β†(k)

−ike−i(k+k′)xα†(k′)β†(k) + ikei(k+k′)xβ(k′)α(k)
]
.

(3.141)

After integrating over space, this computes∫
dxψ†R∂xψR =

1

2π

∫
k>0

dk ik
[
α†(k)α(k) + β†(k)β(k)− 1

]
. (3.142)

Together with the analogous left-moving term, we obtain the Hamiltonian

H/N = −ivF
∫

dx

(
ψ†R

∂ψR
∂x
− ψ†L

∂ψL
∂x

)
, (3.143)

which is the continuum approximation to the Hamiltonian (3.69), without
interaction and hopping correction.
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3.8.2 Continuum Limit 2

The transition to continuum fields can also be performed directly in real
space. For this, we start with the roughest approximation to the Hamiltonian
(3.69), i.e., a nearest-neighbour model without interaction term [25]

H0 =
J0

2

N∑
j=1

(
c†(j)c(j + 1) + h.c.

)
+ µ

N∑
j=1

c†(j)c(j). (3.144)

In the case of a fixed filling, the last term is simply an offset. We neglect
this constant28 and rearrange to

H0 =
J0

2

N∑
j=1

c†(j) [c(j + 1) + c(j − 1)] . (3.145)

As most of the excitations in a half-filled lattice are around the Fermi points
(kF = ±π/2), we expect the characteristic functions of the system to be
rapidly oscillating with eikF j = eiπj/2 = ij . We separate this fast oscillation
with the transformation29

a(j) = i−jc(j). (3.146)

The Hamiltonian then reads

H0 =
J0

2

N∑
j=1

ia†(j) [a(j + 1)− a(j − 1)] , (3.147)

and after splitting the sum into odd and even sites

H0 =
J0

2

∑
j

i
(
a†(2j) [a(2j + 1)− a(2j − 1)]

+a†(2j + 1) [a(2j + 2)− a(2j)]
)
. (3.148)

We define the continuous operators as

ψe(x) =
1√
2a0

a(2j),

ψo(x) =
1√
2a0

a(2j + 1), (3.149)

with the indices e and o denoting even and odd sites, and a0 being the
lattice spacing. With these rules, we replace the brackets of eq. (3.148) by

28In momentum space, this term only shifts εk. It would not have any effect on the
resulting continuum Hamiltonian of the first approach.

29The expansion of operators in gradients becomes more accurate by this step.
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an expansion in gradients

a(2j + 1)− a(2j − 1) =
√

2a0

(
ψo(x)−

(
ψo(x)− 2a0∇ψo(x) +O(∇2)

))
=(2a0)3/2∇ψo(x), (3.150)

a(2j + 2)− a(2j) =
√

2a0

(
ψe(x) + 2a0∇ψe(x) +O(∇2)− ψe(x)

)
=(2a0)3/2∇ψe(x). (3.151)

In the continuum limit, not only the operators, but also the sum must be
replaced consistently. This is achieved by the substitution

lim
a0→0

∑
j

2a0f(j) =

∫
dxf(x). (3.152)

Inserting equations (3.149)-(3.152) into eq. (3.148) then yields the contin-
uum approximation to the nearest-neighbour model

H0 = J0a0i

∫
dx
(
ψ†e∇ψo + ψ†o∇ψe

)
. (3.153)

This expression is equivalent to the Hamiltonian of a massless Dirac Spinor
field in one dimension [26]

H0 = Ja0i

∫
dxΨ†α∇Ψ (3.154)

with spinor Ψ = (ψe, ψo)
t and Pauli matrix α = σx. The velocity of the

Dirac-particle is Ja0. Rotating the basis with the transformation

ψe =
1√
2

(−ψR + ψL),

ψo =
1√
2

(ψR + ψL), (3.155)

we arrive at the familiar form of the continuum Hamiltonian

H0 = −J0a0i

∫
dx

(
ψ†R

∂ψR
∂x
− ψ†L

∂ψL
∂x

)
, (3.156)

which is equal to eq. (3.143), if we set J0a0 = NvF . The reason for doing
both of the calculations, are the prefactors in the calculated Hamiltonians
(3.143) and (3.156). On the one hand, the first approach is more accurate
with respect to the energy scale. While NvF is a well-defined number and
completely compatible to our previous results, J0a0 vanishes for a0 → 0 un-
less J0 doesn’t go to infinity. On the other hand, the second approach is
advantageous concerning interactions. It allows to compare the prefactors
of the interaction terms with the ones of the Hamiltonian H0 (3.156). This
will be relevant later on.
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We expand our model by the next-important terms of the Fermion-Hubbard
model (3.69).These are the nearest-neighbour interaction

H1 = J1

N∑
j=1

n(j)n(j + 1), (3.157)

and the next-nearest-neighbour hopping correction

H2 = J2

∑
j=1

c†(j)n(j + 1)c(j + 2) + c†(j + 2)n(j + 1)c(j). (3.158)

Using the fermionic property n(j) = n2(j) and the assumption of half-filling,
we rewrite H1 to

H1 = −J1

2

N∑
j=1

(n(j)− n(j + 1))2 + constant. (3.159)

We substitute the slowly varying operators of relation (3.146) and neglect
the offset to obtain

H1 = −J1

2

∑
s

[(
a†(2s)a(2s)− a†(2s+ 1)a(2s+ 1)

)2

+
(
a†(2s− 1)a(2s− 1)− a†(2s)a(2s)

)2
]
. (3.160)

Analogous to equations (3.150) and (3.151), this yields the continuum ex-
pression

H1 = −2J1a0

∫
dx
(
ψ†eψe − ψ†oψo

)2
. (3.161)

In terms of left- and right moving particles this reads

H1 = −2J1a0

∫
dx

[(
ψ†RψL

)2
+
(
ψ†LψR

)2
− ψ†RψRψ

†
LψL − ψ

†
LψLψ

†
RψR

]
.,

(3.162)
where left and right moving particles are meant in the same spirit as in
the previous section. The last two terms of this expression describe the
scattering of left- and right moving particles, better known as dispersion
scattering. The first two terms include mutiple annihilation or creation
operators, and have to be understood in the sense of an operator expan-
sion30, like in equations (3.150) and (3.151). In lowest order, we thus have
(ψ†RψL)2 ∝ ψ†RψL∇ψ

†
R∇ψL. These terms refer to umklapp processes, which

are only possible at kF = ±π/2. Two left moving particles with momentum
30Otherwise, these terms would completely vanish.
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−2kF are annihilated (created) and two right moving particles with momen-
tum 2kF are created (annihilated). Seemingly, momentum conservation is
violated by 4kF . However, at half-filling, the residual momentum is a lattice
vector (4kF = 2π) and the process fulfills momentum conservation in the
lattice.

An analogous calculation for the hopping correction yields

H2 = J2a0

∫
dx

[
1

2

(
ψ†RψL

)2
+

1

2

(
ψ†LψR

)2
− ψ†RψRψ

†
LψL − ψ

†
LψLψ

†
RψR

]
.

(3.163)

3.8.3 Translation Rules

So far, we showed how to express the system in terms of fermionic contin-
uum fields. The transformation to bosonic fields is now described by the
bosonization procedure. This will be done on the following pages by deriv-
ing translation rules between the fermionic and bosonic fields. Therefore,
we place the system on a finite length L and assume anti-periodic boundary
conditions31

ψR,L(x+ L) = −ψR,L(x), (3.164)

the indices again denoting right and left moving particles. In the limit L→
∞, this choice has no effect. Due to the periodicity, we can expand the
operator ψR, and likewise ψL, in Fourier components

ψR(x) =
1√
L

∞∑
n=−∞

ψRne
i(2n−1)πx/L, (3.165)

with the ψRn obeying the usual fermionic commutator relations. The part
of the right moving fermions of the Hamiltonian (3.143) then reads32

HR =− ivF
∫

dxψ†R∂xψR

=− ivF
L2

∫
dx
∑
n

ψ†Rne
−i(2n−1)πx/L

∑
n′

ψRn′i(2n
′ − 1)πei(2n

′−1)πx/L

=
πvF
L

∞∑
n=−∞

(2n− 1)ψ†RnψRn − E0, (3.166)

where we have added the constant by hand, thus HR is zero in the ground
state. Analogously for the Hamiltonian of the left moving particles, we find

HL = −πvF
L

∞∑
n=−∞

(2n− 1)ψ†LnψLn + E0. (3.167)

31Here, we follow for the most part the procedure of S.Sachdev in [27].
32For the moment we let go of the factor N , the Hamiltonian then represents the energy

per particle.
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In the ground state ofHR, all the states with n > 0 are empty, and those with
n ≤ 0 are filled, vice versa for HL. The basic step towards a representation
in boson operators is leaving the picture of particles, holes, and occupation
numbers of single fermion states. Instead, we consider the particle-hole-
excitations as a whole. To make this point clearer, we define the fermion
number operator, or fermion charge, of right and left moving particles

QR =
∑
n

: ψ†RnψRn :,

QL =
∑
n

: ψ†LnψLn : . (3.168)

Due to the normal ordering, denoted by the dots : :, we have zero fermion
charge in the ground state (QR = QL = 0). Now take a random state |FR〉 of
right moving fermions with charge QR, and compare it to the energetically
lowest one with the same charge |QR〉,see Figure 3.13. The two states can
be mapped onto each other unambiguously by counting the particle-hole-
excitations and their energy, beginning at the most energetic particle of both
states. In our example, we have the sequence 5−5−3−3−3−1−1−1−1,
i.e., two bosons in "5", three in "3" and four in "1".

531

QR

FR

Figure 3.13: Mapping to bosonic operators adressing the fermionic particle-
hole-excitations. |QR〉 represents the energetically lowest state with charge
QR and |FR〉 is a random state with the same charge.

With these scheme, we express the Hamiltonian (3.166) in terms of particle-
hole-excitations

H ′R =
πvFQ

2
R

L
+

2πvF
L

∞∑
n=1

nb†RnbRn. (3.169)

We have shown that a bosonic representation of the initially fermionic Hamil-
tonian (3.138) is possible. However, more physical insight can be obtained
using continuous bosonic fields33. We therefore go on and define the fermion
density and its Fourier expansion to

ρR(x) = : ψ†(x)ψ(x) : =
QR
L

+
1

L

∑
n6=0

ρRne
i2nπx/L. (3.170)

33Nevertheless, Hamiltonian (3.169) is a helpful step in the bosonization procedure. It
makes it easier to show the equivalence of the energy spetra of HR and H ′′R.
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Inserting eq. (3.165), we find, that due to the vanishing ground state expec-
tation value of the ψ†Rn1

ψRn1+n, we receive

ρRn =
∑
n1

: ψ†Rn1
ψRn1+n : =

∑
n1

ψ†Rn1
ψRn1+n for n 6= 0. (3.171)

With this relation, we can calculate the commutator

[ρRn, ρR−n′ ] =
∑
n1,n2

[
ψ†Rn1

ψRn1+n, ψ
†
Rn2

ψRn2−n′
]

=
∑
n2

ψ†Rn2−nψRn2−n′ − ψ
†
Rn2

ψRn2+n−n′ , (3.172)

where we have used {ψRn, ψ†Rn′} = δnn′ . Since both terms diverge separately,
we cannot simply change the indices of summation. Instead, we replace the
operator products by normal ordered ones, see Appendix F, and add the
corresponding ground state expectation values:

[ρRn, ρR−n′ ] =
∑
n2

: ψ†Rn2−nψRn2−n′ : +〈ψ†Rn2−nψRn2−n′〉0

− : ψ†Rn2
ψRn2+n−n′ : −〈ψ†Rn2

ψRn2+n−n′〉0. (3.173)

At low energies, excitations to high modes are practically zero, and the nor-
mal ordered terms converge separately. This allows a change of indices of the
normal ordered operators, which then cancel each other. The commutator
thus reduces to

[ρRn, ρR−n′ ] =
∑
n2

δnn′〈ψ†Rn2−nψRn2−n〉0 − δnn′〈ψ
†
Rn2

ψRn2〉0. (3.174)

In the ground state of HR, all the states with negative or zero index, or
quantum number, are filled. For the first summand, we thus have as nonva-
nishing indices n2 = n, n − 1, n − 2, . . . ,−∞, and for the second summand
n2 = 0,−1,−2, . . . ,−∞. Subtracting the summands, we receive

[ρRn, ρR−n′ ] = δnn′n. (3.175)

After the appropriate rescaling, this commutator takes the familiar bosonic
form. However, we drop the rescaling and express the Hamiltonian (3.166)
in the quasi-bosonic operators

H ′′R =
πvFQ

2
R

L
+

2πvF
L

∞∑
n=1

ρR−nρRn. (3.176)

To prove this assertion, we first show that the above Hamiltonian has the
same spectrum as H ′R, which was obviously equivalent to HR. Second, we
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demonstrate that the Hamiltonians HR and H ′′R and its operators obey the
same commutation relation, i.e.[

H ′′R, ρR−n
]

=
[
HR, ρR−n(ψ†Rn′ , ψRn′′)

]
. (3.177)

The spectrum of H ′′R is obtained similar to the algebraic treatment of the
quantum mechanic harmonic oscillator[11]. We assume |α〉 is an eigenvector
of ρR−nρRn with eigenvalue α, and calculate the eigenvalues of ρRn|α〉 and
ρR−n|α〉 to

(ρR−nρRn)ρRn|α〉 = (ρRnρR−n − n)ρRn|α〉 = (α− n)ρRn|α〉 (3.178)
(ρR−nρRn)ρR−n|α〉 = ρR−n(ρR−nρRn + n)|α〉 = (α+ n)ρR−n|α〉. (3.179)

The ρRn are, by definition, positive semi-definit. Thus, the right hand sides
of these equations must not be zero. This is only achievable if α ∈ N0.
The resulting spectrum of ρR−nρRn has the same shape as nb†nbn from H ′R,
i.e., a ladder with spacing n, which starts at zero. With both Hamiltonians
(3.166) and (3.176) possessing the same offset, the equivalence of the spectra
is shown.
To prove relation (3.177), we write out both sites seperately. Using equation
(3.175), we obtain the left side to[

H ′′R, ρR−n
]

=

[
πvFQ

2
R

L
+

2πvF
L

∞∑
n′=1

ρR−n′ρRn′ , ρR−n

]
,

=

[
2πvF
L

ρR−nρRn, ρR−n

]
=

2πvFn

L
ρR−n. (3.180)

Applying fermionic commutator relations and doing some rearrangements,
we find, that this is equal to the right side[
HR, ρR−n(ψ†Rn′ , ψRn′′)

]
=

[
πvF
L

∑
n′

(2n′ − 1)ψ†Rn′ψRn′ ,
∑
n1

ψ†Rn1ψRn1−n

]

=
2πvFn

L

∑
n1

ψ†Rn1ψRn1−n =
2πvFn

L
ρR−n. (3.181)

We have shown that the quasi-bosonic Hamiltonian H ′′R (3.176) is equiva-
lent to the fermionic one HR (3.166). Together with equations (3.175) and
(3.171), this presents a major step in the bosonization process. However,
the work in Fourier modes gives only small physical insight. We thus switch
back to a local space representation. This last transformation is given by
the definition of the bosonic fields

φ(x) = −φ0 +
πQx

L
− i

2

∑
n6=0

ei2nπx/L

n
[ρRn + ρLn] ,

θ(x) = −θ0 +
πJx

L
− i

2

∑
n 6=0

ei2nπx/L

n
[ρRn − ρLn] . (3.182)
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Some new definitions have been made here. First, Q = QR + QL is the
total charge, and J = QR − QL is the current, or difference between left
and right moving charge. The φ0 and θ0 are canonically conjugate to J
and Q respectively, i.e., [φ0, J ] = [θ0, Q] = i are their only non-vanishing
commutators. Under this transformation, the Hamiltonian H ′′R takes the
form

H ′′′ = H ′′′R +H ′′′L =
vF
2π

∫ L

0
dx
[
(∇φ)2 + (∇θ)2

]
. (3.183)

Of nearly equal importance is the commutator relation

[∇φ(x), θ(y)] = [∇θ(x), φ(y)] = iπδ(x− y). (3.184)

Both, relation (3.183) and (3.184) can be proved by straight forward calcula-
tion. Before dedicating our attention to finding the translation rules between
the fermion fields ψ(x) and ψ†(x) and the bosonic ones φ(x) and θ(x), we
further examine the new fields. We take the gradient of the φ-field

∇φ(x) =
πQ

L
+
π

L

∑
n 6=0

ei2nπx/L [ρRn + ρLn] , (3.185)

and compare it with the definition of the fermion density (3.170), to obtain

∇φ(x) = πρ(x) = π (ρR(x) + ρL(x)) . (3.186)

We recognize, that the derivate of φ is proportional to the particle density,
and φ itself increases by π each time the coordinate x passes a particle.
Analogously, we get

∇θ(x) = π (ρR(x)− ρL(x)) . (3.187)

The derivate of θ is proportional to the current or difference of left and
right moving particle density. Aside from that, ∇θ is proportional to the
canonically conjugate momentum of φ, and vice versa:

Πφ = − 1

π
∇θ, (3.188)

Πθ = − 1

π
∇φ. (3.189)

This can be seen by comparison of relation (3.184) with the ordinary commu-
tator relation assumed in the quantum mechanical transition from particles
to fields

[φ(x),Πφ(y)] = iδ(x− y), (3.190)
[θ(x),Πθ(y)] = iδ(x− y). (3.191)
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Due to these properties, φ and θ are so called dual fields. A characteristic
of such fields is that the corresponding Lagrangian density takes the same
form, no matter which field is used to express it. For example, if we write
the Hamiltonian density in terms of the φ-field

H =
vF
2π

[
(∇φ)2 + (πΠφ)2

]
, (3.192)

and make the Legendre transformation [28] with ∂tφ = ∂H
∂Πφ

, we obtain

L =Πφ∂tφ−H

=
1

2π

[
1

vF
(∂tφ)2 − vF (∇φ)2

]
. (3.193)

Doing the steps with the θ-field, we receive

L =
1

2π

[
1

vF
(∂tθ)

2 − vF (∇θ)2

]
. (3.194)

The Lagrangian provides a way to calculate correlation functions in the for-
malism of path integrals. We do not know yet which correlation functions
of the fields θ and φ are necessary to express, for example, familiar ones like
〈djxdkx〉. We thus look for a direct connection between the fermion operators
ψ and ψ† and the boson fields θ and φ.
Going back to eq. (3.186) and integrating over space, we find

φ(x) = −π
∫ ∞
x

dx′ρ(x′) + constant. (3.195)

Now if we annihilate a particle at x′ > x, the integral reduces by one and
φ(x) is shifted by +π. This action can be achieved by the operator

exp

(
−iπ

∫ x′

−∞
dyΠφ(y)

)
= exp

(
iθ(x′)

)
. (3.196)

We prove this statement with the aid of

[
φ(x),−iπ

∫ x′

−∞
dyΠφ

]
= i

x′∫
−∞

dy [φ(x),∇θ(y)]︸ ︷︷ ︸
−iπδ(x−y)

=

{
π x′ > x

0 x′ < x
. (3.197)

For x′ < x, this yields[
φ(x), exp

(
−iπ

∫ x′

−∞
dyΠφ

)]
= 0, (3.198)
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and for x′ > x, we have[
φ(x), exp

(
−iπ

∫ x′

−∞
dyΠφ

)]

=

φ(x), 1− iπ
∫ x′

−∞
dyΠφ +

1

2!

(
−iπ

∫ x′

−∞
dyΠφ

)2

+ . . .


=π exp

(
−iπ

∫ x′

−∞
dyΠφ

)
. (3.199)

If we assume |α〉 is an arbitrary normalized state, with expectation value
〈α|φ(x)|α〉 = α(x), the action of the above introduced operator (3.196) is

〈α exp
(
−iθ(x′)

)
|φ(x)| exp

(
iθ(x′)

)
α〉 = α(x) + Θ(x′ − x)π. (3.200)

The Heaviside function

Θ(x) =

{
0 x < 0

1 x ≥ 0
(3.201)

results from changing the position of φ(x) using the commutator (3.199).
Hence, exp (iθ(x′)) fulfills the function of a particle annhililator. With the
particle being a fermion, we must take account of the antisymmetric nature
of the wave-function. Like in the Jordan-Wigner transformation of chapter
3.5, we thus have to pick up a minus sign for every particle to the left of x′.
This is done by a continuous version of the soliton operator

∑
m odd

Am exp

(
imπ

∫ x′

−∞
ψ†(y)ψ(y)dy

)

=
∑
m odd

Am exp

imπ ∫ x′

−∞
dy : ψ†(y)ψ(y) :︸ ︷︷ ︸

ρ(y)

+ 〈ψ†(y)ψ(y)〉0︸ ︷︷ ︸
≈kF π

dy


=
∑
m odd

Am exp

(
imkFx

′ + im

∫ x′

−∞
dy∇φ(y)dy

)
=
∑
m odd

A′m exp
(
imkFx

′ + imφ(x′)
)
, (3.202)

with the Am being unknown constants. The summation overm takes account
of the initially discrete nature of our system, which is lost in the smooth
density operator ρ(x) [29]. The fermion annihilation operator then takes the
form

ψ(x) =
∑
m odd

A′m exp (imkFx+ imφ(x) + iθ(x)) . (3.203)
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In both approaches to the continuum limit, the annihilation operators of
right and left moving were seperated from the fast oscillation e±ikF x. The
total fermion density thus reads

ψ(x) = eikF xψR(x) + e−ikF xψL(x). (3.204)

In good approximation, we take only the first term of eq. (3.203) and obtain
the translation rules to

ψR ∝ : eiφ(x)+iθ(x) : ,

ψL ∝ : e−iφ(x)+iθ(x) : , (3.205)

with the normal ordering to avoid terms leading to infinities. In terms of
spin operators 34, this yields

S−j = S−(xj) ∝ : eiθ(xj) : ,

S+
j = S+(xj) ∝ : e−iθ(xj) : . (3.206)

With this relation, we can express arbitrary combinations of raising and low-
ering operators in terms of the continuous bosonic fields. This enables us to
calculate expectation values, for example dipole-dipole-correlation functions,
in the formalism of path integrals.

3.8.4 Correlation Functions

Most of the previous states have been characterized by the time averaged
dipole-dipole-correlation function

dlxd
m
x

t
= d1g2

1

(
S−l S

+
m + S−mS

+
l

)
. (3.129)

Using the translation rules (3.206), we are now able to compute the expecta-
tion value of this expression in the case of a half-filled lattice, or respectively,
at equal number of molecules in the ground and excited states. To this end,
we translate (3.129) to a representation in bosonic fields

dlxd
m
x

t
∝ : eiθ(xl) :: e−iθ(xm) : + : eiθ(xm) :: e−iθ(xl) :, (3.207)

where the dots again represent the normal order. To calculate expectation
values of products of normal ordered exponential operators, we present the
relation [24]

: eA :: eB : = : eA+B : e〈AB〉0 . (3.208)

We sketch the prove of this equation using operators of a single harmonic
oscillator, i.e., A = αa + α′a† and B = βa + β′a†. Following the steps,

34Here, the Jordan-Wigner factors cancel each other in lowest order.
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it should be clear, that this also applies to other types of operators. In
particular, to the boson fields φ and θ.
We rewrite the first exponential to

: eαa+α′a† : = :

∞∑
n

(
αa+ α′a†

)n
n!

: =

∞∑
n

n∑
k=0

(
n
k

) (
α′a†

)n−k (
αa
)k

n!

=

∞∑
n=0

(
α′a†

)n
n!

+

∞∑
n=0

(
α′a†

)n
n!

(αa) +

∞∑
n=0

(
α′a†

)n
n!

(
αa
)2

2!
+ . . .

=

∞∑
n=0

(
α′a†

)n
n!

∞∑
n′=0

(αa)n
′

n′!
= eα

′a†eαa. (3.209)

We have explicitly normal ordered the terms in the first line, and in the
second line, the first summands with k = 0, 1 and 2 are written out and the
index n is changed appropriately. Using twice the Baker-Campbell-Hausdorff
formula (3.71), the left side of eq. (3.208) then reads

: eA :: eB : = eα
′a†eαaeβ

′a†eβa = eα
′a†eβ

′a†eαaeβaeαβ
′
. (3.210)

Now, αβ′ is exactly the expectation value of AB in the ground state of the
harmonic oscillator. Applying relation (3.209) in the opposite direction and
once more the expression (3.71), we thus arrive at

eα
′a†eβ

′a†eαaeβaeαβ
′

= e(α′+β′)a†e(α+β)ae〈AB〉0 = : eA+B : e〈AB〉0 , (3.211)

which is equal to the right-hand side of equation (3.208). Bearing in mind,
that the ground state expectation value of normal ordered states vanishes,
we find

dlxd
m
x

t
∝ e〈θ(xl)θ(xm)〉0 . (3.212)

The remaining task is the calculation of 〈θ(x′, t′)θ(x, t)〉0. In the formalism
of path integrals [30] this is

〈θ(x′, t′)θ(x, t)〉0 =

∫
D[θ]eiS[θ]θ(x′, t′)θ(x, t)/

∫
D[φ]eiS[θ], (3.213)

with the action
S =

∫
dxdtL. (3.214)

To avoid time ordering operators, we resctrict t to t ≤ t′. Changing from
Minkowski to Euclidian space time

τ = −it, (3.215)

we replace the oscillatory damping of contributions with high action by an
exponential one. The path integral is modified by this transformation to∫

D[θ]e−SE [θ]θ(x′, t′)θ(x, t)/

∫
D[φ]e−SE [θ], (3.216)
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with
iSE = S(θ(t→ −iτ)), (3.217)

and
LE = −L(θ(t→ −iτ)). (3.218)

The calculation of expression (3.216) is performed more elegantly and gen-
erally with the aid of the so called generating functional

Z[j] =

∫
D[θ]e−SE [θ]−

∫
dxdτ θx,τjx,τθ(x′, t′)θ(x, t). (3.219)

The auxiliary quantity j(x, τ) is also called current or source field j(x, τ).
The advantage of this approach is, that it yields arbitrary high correlation
functions, i.e., products of two, four and more fields, by simple functional
derivates. For example, the exponential of expession (3.212) is given by

〈θ(x′, t′)θ(x, t)〉0 = Z[0]−1 ∂

∂j(x′, τ ′)

∂

∂j(x, τ)
Z[j]|j=0

. (3.220)

We transform the Lagrangian density (3.194) to Euclidian space time

LE =
1

2πvF

(
(∂τθ)

2 + v2
F (∇θ)2

)
(3.221)

and obtain the corresponding action

SE =
1

2πvF

∫
dxdτ

(
(∂τθ)

2 + v2
F (∇θ)2

)
. (3.222)

After integrating by parts in τ and x and with neglection of the boundary
terms, this yields

SE =
1

2

∫
dxdτ θ

1

πvF

(
∂2
τ + v2

F∇2
)

︸ ︷︷ ︸
=:G−1

θ. (3.223)

Thus, Z[j] can be written as a generalized form of a Gaussian integral

Z[j] =

∫
D[θ]e−

1
2

∫
dxdτ θG−1θ+

∫
dxdτ θj . (3.224)

Comparing with the familiar solution of ordinary Gaussian integrals [31]∫
dnx exp

(
−1

2
xtAx+ btx

)
= Z(0) exp

(
1

2
btA−1b

)
, (3.225)

we recognize, that calculating Z[j] reduces to finding the inverse function G
of G−1, so that G−1G = GG−1 = 1. This is accomplished by the Green’s
function35 of the (rescaled) Laplace operator

1

π

(
∂2
τ + v2

F∇2
)
G(x′, x, τ ′, τ) = δ(x′ − x)δ(vF (τ ′ − τ)), (3.226)

35The derivation of the Green’s function of the Laplace operator can be found in every
standard electrodynamics book, for example [32].
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and the following integration over x′ and τ ′. The generating functional thus
takes the form

Z[j] = Z[0]

∫
D[θ]e

1
2

∫
dxdτdx′dτ ′ j(x,τ)G(x′,x,τ ′,τ)j(x′,τ ′). (3.227)

The correlation function (3.220) then reads

〈θ(x′, τ ′)θ(x, τ)〉0 = G(x′, x, τ ′, τ) = −1

4
ln
((
x′ − x

)2
+ v2

F (τ ′ − τ)2
)
.

(3.228)
Using equation (3.212), we obtain the equal-time dipole-dipole-correlation
function

〈dlxdmx
t
〉0 ∝ |xl − xm|−1/2. (3.229)

More correlation functions can be calculated from these results. For example,
the equal-time correlation of particle density is given by

〈ρ(xl)ρ(xm)〉0 ∝ ∂xl∂xm〈φ(xl)φ(xm)〉0 ∝ |xl − xm|−5/2. (3.230)

3.8.5 Including Interactions

Two types of interaction terms appeared in the continuum limit. Adding
equations (3.162) and (3.163), we have on the one hand the terms from
dispersion scattering36

Hd = (2J1 − J2)a0

∫
dx
[
ψ†RψRψ

†
LψL + ψ†LψLψ

†
RψR

]
, (3.231)

and on the other hand, those which arise from umklapp processes

Hu = −(2J1 −
J2

2
)a0

∫
dx

[(
ψ†RψL

)2
+
(
ψ†LψR

)2
]
. (3.232)

Again, a0 is the lattice spacing of the discrete system and J1 and J2 are
prefactors that can be received by comparison to the full Hamiltonian (3.69).
We first focus on Hd and redraft it to

Hd = (2J1 − J2)a0

∫
dx (ρR + ρL)2 (3.233)

With equation (3.185), including this type of interaction simply leads to a
modification of prefactors in the Hamiltonian density of free particles

H =
vF
2π

[
K2 (∇φ)2 + (∇θ)2

]
, (3.234)

36In the case of spinless fermions, these terms can also be identified with backward
scattering due to the impossibility of distinguishing the particles.
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with the constant
K2 = 1 +

2(2J1 − J2)a0

vFπ
. (3.235)

This alters the Lagrangian density to

L =
1

2πK

[
1

v′F
(∂tθ)

2 − v′F (∇θ)2

]
, (3.236)

with v′F = vFK. The dipole-dipole-correlation function of interacting parti-
cles then reads

〈dlxdmx
t
〉0 ∝ |xl − xm|−K/2. (3.237)

A rough approximation to the value of K can be made by replacing vF by
J0a0. Inserting the appropriate values from the full Hamiltonian (3.69)37,
this yields K ≈ 1 + π−1.

The second interaction term Hu is bosonized using the translation rules
(3.205) and the relation (3.208) for normal-ordered exponential operators.
In lowest order, we obtain

Hu ∝
∫

dx

[(
: e−iφ−iθ : : e−iφ+iθ :

)2
+
(

: eiφ−iθ : : eiφ+iθ :
)2
]

∝
∫

dx cos(4φ). (3.238)

The whole Hamiltonian, or Lagrangian density, describes the so called Quan-
tum Sine-Gordon model [27, 33]. To find out, whether the new term has a
significant influence on the system, in the sense of altering the long-range
behaviour of the correlation functions38, we calculate its scaling dimension39

[34, 35]. Expressing the cosine-function by complex exponential functions,
we have

〈: e−i4φ(x) : : ei4φ(x′) :〉 ∝ |x− x′|−8/K = |x− x′|−2d, (3.239)

with d = 4/K. The calculation of this expression is analogous to the one
of equation (3.237). However, representing the Lagrangian density in terms
of the φ-field changes K to K−1. The question of Hu being relevant or not,
can be solved by a simple dimensional analysis. If

d > D, (3.240)

with D = 1 being the number of spatial dimensions, the perturbation that
arose from umklapp processes is irrelevant and the long-range behaviour of

37J0 = −2d1g
2

1 , J1 = (dgg0 − d110 )2 and J2 = 0.5d1g
2

1 .
38Such an operator is called relevant.
39The scaling dimension d of an operator Ad(x) is given by 〈Ad(x)A†d(x

′)〉 ∝ |x−x′|−2d.
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the system remains uneffected. Sketching the Wilson-Kadanoff renormaliza-
tion scheme [30], we will make this statement plausible in the following.

In section3.8.1, we introduced a momentum cut-off Λ, hence we could neglect
excitations with higher energy and linearize the dispersion relation. Focus-
ing on the long-range properties, i.e., the slow modes in momentum space,
we integrate out the high Fourier modes. The new action then reads

exp(−S̃′[θ̃, ui]) =

∫
Λ/s<|k|<Λ

D[θ̃(k)] exp(−S̃[θ̃, ui]), (3.241)

with θ̃ being the Fourier transformation of θ and S̃ the corresponding action.
The ui are prefactors of the various terms in the Lagrangian density, for
example, u1 could be the mass in a massive free boson model. The new
slow-mode action can be compared with the old one after applying a scale
transformation, so that the cut-off Λ is the same for both actions. This
transformation is given by

k → k′ = sk or respectively x→ x′ = x/s. (3.242)

It affects the fields by

θ̃′(sk) = sd−Dθ̃(k) or respectively θ′(x/s) = sdθ(x). (3.243)

Both steps, the integration of fast modes and the rescaling, form together a
so-called renormalization-group transformation. Since only fast modes have
been integrated out, the two actions are, with respect to the slow modes,
equivalent. Nevertheless, the parameters ui might have changed. If the
ui stay invariant under the procedure, we have found a fixed point of the
renormalization group. It can be shown by straight forward calculation, that
the massless free boson model, i.e., the part of our system (3.236) withoutHu,
is such a point. The total action of the system, with any kind of interaction,
may thus be expressed in the vicinity of this fixed point by

S[θ] = S0[θ] +
∑
i

ui

∫
dxOi(x). (3.244)

The Oi(x) are operators expressed in terms of the θ-field. The full procedure,
i.e., both Fourier transformation back and forth and renormalization-group
transformation, then yields

S′[θ] = S0[θ] +
∑
i

u′i(s)

∫
dxOi(x). (3.245)

We assume, that the integration of the fast modes has only negligible effect
on the u′i(s), we hence have

u′i = uis
D−di . (3.246)
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The factor sD−di results from the scale transformation of the operators Oi(x),
with the di being the corresponding scaling dimensions and D the spatial
dimension. For di > D, the contributions of the Oi become smaller by inte-
gration of the high modes. Thus, an operator with scaling dimension higher
than the spatial dimension doesn’t effect the long-range. It is referred as
irrelevant.

In our case, we have d = 4/K ≈ 4/(1 + π−1) ≈ 3 > 1. Hence, Hu will
not significantly alter the behaviour of the system at long distances. This
could present a motivation to modify the experimental setup, and with it
the relevant parameters in such a way, that we are able to choose K ≥ 1.
With that, a wider range of phenomena and phase transitions would open up.
Possible new phases would for example be the so called Tomonaga-Luttinger
liquid and Spin-Peierls or Néel order [27].





Chapter 4

Polar Molecules In A 2D
Optical Lattice

The reduction to a one-dimensional chain presented a significant simplifica-
tion to the Hamiltonian. With all the molecules aligned in a row, the angle-
dependence of the dipole-dipole-interaction was strongly restricted and equal
for every pair of interacting particles1. However, in a two-dimensional lat-
tice, the azimuth angle φ = φij is not the same for every pair of molecules.
We emphasize this point writing out the indices explicitly. The
dipole-dipole-interaction then reads

V dd
ij =

1

R3
ij

{((
d11

0 − d
gg
0

)
Ai + dgg0 1i

)
⊗
((
d11

0 − d
gg
0

)
Aj + dgg0 1j

)
− 1

2
d1g2

1

(
L†i ⊗

(
Lj − 3e−2iφijRj

)
+ Li ⊗

(
L†j − 3e2iφijR†j

)
+R†i ⊗

(
Rj − 3e2iφijLj

)
+Ri ⊗

(
R†j − 3e−2iφijL†j

))}
,

(4.1)

with the dipole matrix elements djki , the distance between two molecules Rij
and the operators A,R,L described in Figure 2.4. We focus on two lattices
with rotational symmetry2, i.e., the square lattice (C4) and the hexagonal
lattice (C6) with triangular tiling, see Figure 4.1. In these lattices, the angles
between nearest neighbours are 0, π/2, π, 3π/2 and 0, π/3, 2π/3, π, 4π/3, 5π/3
respectively. Again, we work in the steady state, with the single molecule
Hamiltonian given by

Hss
i = ∆Ai. (3.2)

1This point was crucial for the existence of an optimal excitation |e〉.
2See, for example, [36] for the notation of symmetry operations.
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The Hamiltonian of the full system then takes the same form as equation
(3.3), but with a different dipole-dipole-interaction

H =
∑
i

Hss
i +

1

2

∑
i,j
i6=j

V dd
ij . (4.2)

Figure 4.1: Square (left) and hexagonal lattice with triangular tiling (right)

4.1 Mean-Field-Approach

As in one dimension, we want to receive a first insight into the system by
assuming, that all molecules possess the same wave function. Under this
restriction, the most general ansatz is given by

|ψ2D
1 〉 =

∏
j

1

Norm
[α|g〉j + β| − 1〉j + γ|1〉j] , (4.3)

with the normalization

Norm =
√
|α|2 + |β|2 + |γ|2, (4.4)

and the complex amplitudes α, β, γ for the ground state and the excited
states respectively. Analogous to chapter 3.1, we rescale the Hamiltonian
and take its expectation value in the state |ψ2D

1 〉. Using the notation α =
|α|eiδα , β = |β|eiδβ , and γ = |γ|eiδγ , with the phases of the complex numbers
{δα, δβ, δγ} ∈ R, this yields the energy per particle

Eψ2D
1
/N2 =

|β|2 + |γ|2

Norm2 ∆ +
1

Norm4

1

2

∑
j6=0

1

R3
j0

{(
dgg0 |α|

2 + d11
0

(
|β|2 + |γ|2

))2
−d1g2

1

(
|α|2

(
|β|2 + |γ|2

))
− 6|α|2 (|β||γ| cos(2φj0 + δβ − δγ))

}
.

(4.5)
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The index j = n1a1 + n2a2 describes the positions of the lattice sites, with
a1 and a2 being the primitive vectors of the lattice. The summation goes
over all combinations of n1 and n2, except for 0. In the case of a square or
hexagonal lattice, the cosine-term vanishes due to the rotational symmetry.
With this, Eψ2D

1
/N2 depends only on |α|2 and |β|2 + |γ|2, i.e., the ratio

of ground and excited states. To simplify the calculation we present the
alternative ansatz

|ψ2D
2 〉 =

∏
j

[cos(ε)|g〉j + sin(ε)|1〉j] . (4.6)

In chapter 3.1.1, we found that this state corresponds to a rotating dipole
moment3. However, any state |ψ2D

1 〉 with |β|2 + |γ|2 = sin2(ε) is energet-
ically equivalent. This includes states with, projected onto the xy-plane,
arbitrarily orientated oscillating dipole moments. The system thus obeys a
U(1)⊗ SU(2) -symmetry.

To minimize the energy in of the state |ψ2〉, we have as solutions

ε0 = 0, ε1 = arcsin

√∆′p −∆

q′

 , ε2 =
π

2
. (4.7)

The order parameter ε describes a second order phase transition, similar to
the one in one dimension, but with different characteristic quantities

∆′p =
∑
j6=0

1

R3
j0

[
dgg0
(
dgg0 − d

11
0

)
+

1

2
d1g2

1

]
, (4.8)

q′ =
∑
j6=0

1

R3
j0

[ (
dgg0 − d

11
0

)2
+ d1g2

1

]
. (4.9)

Again, ∆′p is the right border of the transition from having all molecules in
the ground state to a fully excited lattice and q is the width of the transition.
The numerical prefactors are

∑
j6=0R

−3
j0 ≈ 11.03 a−3 for the hexagonal lattice

and ≈ 9.03 a−3 for the square lattice, with a being the lattice spacing. The
energy per particle is given by

Eψ2D
2
/N2 =



∑
j6=0

1
R3

j0
dgg

2

0 ∆ > ∆′p∑
j6=0

1
R3

j0
dgg

2

0 − (∆′p−∆)
2

2q′ ∆′p − q′ < ∆ < ∆′p∑
j6=0

1
R3

j0
d112

0 + ∆ ∆ < ∆′p − q′
. (4.10)

Thus, the phase diagram of the mean-field ansatz of both square and hexag-
onal lattice are qualitatively the same as in the case of a one-dimensional
chain. The shape of the curve describing the energy versus detuning looks
similar to the one in Figure 3.1.

3To be precise, only the projection on the xy-plane is rotating.
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4.2 Mapping To The Bose-Hubbard Model

We again want to gain more understanding of the system by mapping it to
a particle-Hamiltonian. In contrast to the one-dimensional chain, it is not
possible to find an optimal excitation in two dimensions without eliminating
the overall ground state. To express the Hamiltonian in a Bose-Hubbard
model, we thus have to address the two types of excitations separately. This
is achieved by using the correspondance

spin-↑-particle ⇔ excitation | − 1〉,
spin-↓-particle ⇔ excitation |1〉,

no particle ⇔ ground state |g〉. (4.11)

We build the Bose-Hubbard model by creation and annihilation operators of
spin-1

2 -particles to obtain

H =
1

2

∑
σ,σ′

∑
i,j
i6=j

niσUijnjσ′ − µ
∑
σ

∑
i

niσ +
1

2

∑
σ

∑
i,j
i6=j

tij

(
c†iσcjσ + h.c.

)

− 3

2

∑
i,j
i6=j

tij

(
c†i↑cj↓e

−2iφij + h.c.+ c†i↓cj↑e
2iφij + h.c.

)
+ V

∑
i

(
ni↑(ni↑ − 1) + ni↓(ni↓ − 1) + ni↑ni↓

)
+ offset. (4.12)

The prefactors of the different terms are presented in the following. Again,
Rij = a3|i− j|3 is the distance between two lattice sites and a is the lattice
spacing.

• the two-particle-interaction Uij

Uij =

(
dgg0 − d11

0

)2
R3

ij

=

(
dgg0 − d11

0

)2
a3

1

|i− j|3
, (4.13)

• the chemical potential µ

µ =
∑
j 6=0

dgg0
(
dgg0 − d11

0

)
R3

j0

−∆, (4.14)

• the hopping term tij

tij =
−1

2d
1g2

1

R3
ij

=
−1

2d
1g2

1

a3

1

|i− j|3
, (4.15)
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• the offset

offset =
1

2

∑
i,j
i6=j

dgg
2

0

R3
ij

. (4.16)

Again, the hard-core boson limit V →∞ has to be added by hand.

4.3 Discussion At Small Filling

The discussion in one dimension showed, that at small filling, the dominant
parts of the Hamiltonian are the chemical potential and the hopping terms.
We thus neglect the interaction terms and the offset to get

H =− µ
∑
σ

∑
i

niσ +
1

2

∑
σ

∑
i,j
i6=j

tij

(
c†iσcjσ + h.c.

)

− 3

2

∑
i,j
i 6=j

tij

(
c†i↑cj↓e

−2iφij + h.c.+ c†i↓cj↑e
2iφij + h.c.

)
. (4.17)

Comparing to the one dimensional case, the on-site interaction V has not
been eliminated by mapping to fermion or spin operators. With this, the
Hamiltonian is correct only in the special case of one single particle. However,
it presents a way to improve the mean-field states of the previous chapter.

We apply a Fourier transformation, using the transformation rules

cjσ =
∑
k

c̃σ(k)e−ik·j, (4.18)

c†jσ =
1

N2

∑
k

c̃†σ(k)eik·j, (4.19)

with k = k1b1 +k2b2
4 and {k1, k2} ∈ Z. Introducing the dispersion relation

of equal-spin particles

ε↑↑(k) =
∑
j6=0

tj0e
−ik·j − µ, (4.20)

and the Fourier transformation of the hopping terms including a spin-flip

ε↑↓(k) = −3
∑
j 6=0

tj0e
−2iφj0e−ik·j, ε↓↑(k) = −3

∑
j 6=0

tj0e
2iφj0e−ik·j, (4.21)

the Hamiltonian (4.17) takes the form

H =
∑
k

(
c̃†↑(k) c̃†↓(k)

)ε↑↑(k) ε↑↓(k)

ε↓↑(k) ε↑↑(k)

c̃↑(k)

c̃↓(k)

 . (4.22)

4The reciprocal primitive vectors b1 and b2 are determined by bi · aj = 2πδij .
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We diagonalize the matrix to obtain the dispersion relations

ε1(k) = ε↑↑(k)−
√
ε↑↓(k)ε↓↑(k) and ε2(k) = ε↑↑(k) +

√
ε↑↓(k)ε↓↑(k),

(4.23)
with the corresponding creation operators given by

c̃†1(k) =
1√
2

(
c̃†↑(k)− e

i
2(arg(ε↓↑(k))−arg(ε↑↓(k)))c̃†↓(k)

)
,

c̃†2(k) =
1√
2

(
c̃†↑(k) + e

i
2(arg(ε↓↑(k))−arg(ε↑↓(k)))c̃†↓(k)

)
, (4.24)

With this, the Hamiltonian (4.17) reduces to

H =
∑
k

[
ε1(k)c̃†1(k)c̃1(k) + ε2(k)c̃†2(k)c̃2(k)

]
. (4.25)

Special attention must be paid to the so called Γ-point (k = 0). At this
point, we have ε↑↓(0) = ε↓↑(0) = 0, thus the matrix in equation (4.22) is, up
to some prefactor, equal to the identity matrix. In this case, the eigenstates
are completely arbitrary and the operators (4.24) create the same type of
excitation at all lattice sites. The Γ-point thus corresponds to the states of
the mean-field discussion. Conversely, the mean-field ansatz is only a good
approach, if the minimum of the lowest band lies at the Γ-point. We settle
this question taking a look at the band structure in Figure 4.2 and 4.3.
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Figure 4.2: Band structure of the square (left) and hexagonal (right) lattice

In Figure 4.2, the first Brillouin zone is drawn along two characteristic direc-
tions, from L = 〈12

1
2〉 to Γ and from Γ to X = 〈1 0〉. The brackets stand for

all symmetrically equivalent reciprocal lattice points. For example, in the
square lattice, X describes the points k = b1,−b1,b2,−b2

5.
We recognize, that in the case of the hexagonal lattice, the minimum of the
two energy bands is in fact located at the Γ-point. In contrast, the minimum
of the lower energy band of the square lattice lies at the X-point. At this

5For the directions of the reciprocal primitive vectors, see Figure 4.3.
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Figure 4.3: First Brillouin zone of square (left) and hexagonal (right) lattice

point, the corresponding creation operators take the form

c̃†1(±b1) =
1

2

(
c̃†↑(±b1) + c̃†↓(±b1)

)
=

1

2

∑
j

e∓iπn1

(
c†j↑ + c†j↓

)
,

c̃†1(±b2) =
1

2

(
c̃†↑(±b2)− c̃†↓(±b2)

)
=

1

2

∑
j

e∓iπn2

(
c†j↑ − c

†
j↓

)
. (4.26)

The above operators create a state with parallel orientated dipole moments
along one coordinate axis, and antiparallel orientation along the other axis.
All the dipole moments oscillate in the direction of the parallel orientation,
see Figure 4.4.

x

y

x

y

Figure 4.4: Dipole moments for k = ±b1 (left) and k = ±b2 (right)

4.3.1 Improving The Mean-Field State

In the previous chapter, we examined a Hamiltonian without interaction
terms (4.17). For the square lattice we found, that certain states, with par-
tially parallel and antiparallel orientation of dipole moments, presented an
improvement in terms of the energy. The creation of these states was de-
scribed by equation (4.26). Here, we include the interaction terms and check,
whether in this case the states from equation (4.26) are still energetically pre-
ferred to the ansatz (4.6). For this purpose, we translate one of them to the
notation of the mean-field discussion

|ψ2D
3 〉 =

∏
j

[
cos(ε)|g〉j + sin(ε)e−iπn2

1√
2

(| − 1〉j − |1〉j)
]
, (4.27)
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and insert it into the full Hamiltonian (4.2). The results of the calculation
are similar to the ones of chapter 4.1, but with slightly different quantities

∆′′p =
∑
j6=0

1

R3
j0

[
dgg0
(
dgg0 − d

11
0

)
+

1

2
(−1)n2(1 + 3 cos(2φj0))d1g2

1

]
, (4.28)

q′′ =
∑
j6=0

1

R3
j0

[ (
dgg0 − d

11
0

)2
+ (−1)n2(1 + 3 cos(2φj0))d1g2

1

]
. (4.29)

Comparing the numerical prefactors∑
j 6=0

1

R3
j0

≈ 9.03 a−3 and
∑
j6=0

(−1)n2

R3
j0

(1 + 3 cos(2φj0)) ≈ 10.12 a−3,

we recognize, that ∆′′p > ∆′p and ∆′′p − q′′ < ∆′p − q′. The range of the
phase transition is larger and, for a given ∆, the energy of |ψ2D

3 〉 is always
lower than that of |ψ2D

2 〉. Replacing |ψ2D
2 〉 by |ψ2D

3 〉 thus always improves
the energy contributions from the in-plane dipole-dipole-interaction. Hence,
|ψ2D

3 〉 is not only an improvement in the case of zero interactions (4.17), but
also for the full Hamiltonian (4.12).

4.3.2 Deforming The Lattice

In this chapter, we examine the transition from square to hexagonal lattice.
The minima of the energy bands was found at k = b1,−b1,b2,−b2 for
the square lattice and k = 0 for the hexagonal lattice. We saw, that the
minimum energy states of these two cases differed significantly. However, the
two lattices can be converted into each other continuously by shearing them.
In the following, we investigate how the structure of the dipole moments
change under this deformation.
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Figure 4.5: Lower energy band between Γ and X for different shear angles

We therefore plot the lower energy band along the direction Γ to X for
different angles, beginning with 60◦ for the hexagonal lattice, and ending
with 90◦ for the square lattice, see Figure 4.5. We recognize, that around
78.4◦, the energy at Γ and X is the same. However, the two points are always
seperated by an energy maximum inbetween. Thus, shearing the lattice, the
two state do not continuously transform into each other. The resulting phase
transition is of first order.



Chapter 5

Summary And Outlook

In this work, we have investigated quantum phase transitions in a system of
cold polar molecules placed on an optical lattice. It has been shown, how to
manipulate the rotational excitation spectrum of the molecules and the mu-
tual dipole-dipole-interaction by external electrical fields. In one dimension,
the classical intuitiv expectation, of all dipole moments aligned in a row,
was confirmed by the discovery of an optimal excitation. This allowed us to
map the system onto Hamiltonians of different types of particles. We have
found, that in one dimension, a superfluid is present at least for the case of
a small number of excitations. In this regime, the proposed state from the
mean-field discussion is a good approximation to the overall ground state. A
crystal phase could not be observed due to the restrictions in the prefactors
of the Hamiltonian, that were imposed by the given setup. We were able
to transfer the results, valid for few excitations, to the domain of a nearly
completely excited lattice. At half filling, bosonization was applied to map
the system onto free massless bosons. We found, that including interactions
and higher neighbours did not have a significant impact on the long-range
behaviour of the system. Following the results in one dimension, a dominant
hopping term was assumed in the two-dimensional case. For small filling,
ferroeletric ordering in one direction and antiferroelectric ordering, perpen-
dicular to it, was observed for the square lattice. In contrast, the mean-field
discussion of the hexagonal lattice presented a full U(1)⊗ SU(2) -symmetry
of the ground state.

Taking these calculations as a starting point, a deeper analysis of the two-
dimensional lattice could be rewarding. In the case of one dimension, a
wider range of intriguing phenomena could be accessed through modifying
the setup in a way, that enhances the interaction and weakens the hopping
terms. With this, a phase transition to the crystal phase could become
possible and the quantum sine-Gordon model of the bosonized Hamiltonian
should show more variety. A future task could be, to weaken the lattice to
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zero strength, observing a possible self-ordered crystal or liquid structure.
Here, Van der Waals interaction should probably be included to provide an
attractive term. Particularly interesting could be the dependence of the at-
traction between molecules on the choice of ground or excited state and its
consequence on a crystal structure.



Appendix A

Spherical Coordinates And
Basis

A.1 Spherical Coordinates

We use the following convention for the spherical coordinates to describe the
position of a point P , see Figure A.1.

• The radius r with r ≥ 0 is the Euclidean distance from P to the origin.

• The polar angle θ with 0 ≤ θ ≤ π is the angle between the z-direction
and the line segment from the origin to P .

• The azimuth angle φ with 0 ≤ φ < 2π is the angle measured from the
x-direction to the orthogonal projection of the line segment from origin
to P on the xy-plane.

The spherical unit vector is eR = (cosφ sin θ, sinφ sin θ, cos θ)t.

z

è

ö
x

y

P

Figure A.1: Comparison of cartesian and spherical coordinates
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A.2 Spherical Basis

Working with circular polarized fields and angular momentum operators is
more comfortable in a spherical basis1. The three vectors which form the
spherical basis are defined as

e−1 =
1√
2

(ex − iey) , e0 = ez, e1 = − 1√
2

(ex + iey) , (A.1)

and conversely

ex =
1√
2

(e−1 − e1) , ez = e0, ey =
i√
2

(e1 + e−1) . (A.2)

Hence„ the transformation from a cartesian to a spherical basis is achieved
by the matrix multiplication with T

e−1

e0

e1

 =

 1/
√

2 0 −1/
√

2

−i/
√

2 0 −i/
√

2
0 1 0


︸ ︷︷ ︸

T


ex
ey
ez

 . (A.3)

For an arbitrary vector to be constant under such a transformation, we must
rotate its coordinates with T−1. Consider, for example, the behaviour of the
dipole moment under the transition from a cartesian to a spherical basisd−1

d0

d1

 =

 1/
√

2 i/
√

2 0
0 0 1

−1/
√

2 i/
√

2 0


︸ ︷︷ ︸

T−1=T †

dx
dy
dz

 . (A.4)

The components of the vector describing the dipole moment thus are

d−1 =
1√
2

(dx + idy) , d0 = dz, d1 = − 1√
2

(dx − idy) , (A.5)

and conversely

dx = − 1√
2

(d1 − d−1) , dz = d0, dy = − i√
2

(d1 + d−1) . (A.6)

1See, for example, Appendix E and the scalar products of the spherical unit vector
with the spherical basis vectors.



Appendix B

Selection Rules

B.1 Sphericals Harmonics

Here, we give a small overview of the spherical harmonics YJm(θ, φ) [37],
which are defined by

YJm(θ, φ) =

√
2J + 1

4π

(J −m)!

(J +m)!
PmJ (cos θ)eimφ. (B.1)

PmJ (z) stands for the associated Legendre polynomial

PmJ (z) = (−1)m
(
1− z2

)m/2 dm

dzm
PJ(z) für m ≥ 0, (B.2)

P−mJ (z) = (−1)m
(J −m)!

(J +m)!
PmJ (z), (B.3)

and PJ(z) is the (ordinary) Legendre polynomial

PJ(z) =
1

2JJ !

dJ

dzJ
(z2 − 1)J . (B.4)

Examples of the spherical harmonics are given in the following, see Figure
B.1.

J = 0 : Y00 =
1√
4π

J = 1 : Y10 =

√
3

4π
cos θ Y1±1 = ∓

√
3

8π
sin θe±iφ

J = 2 : Y20 =

√
5

16π

(
3 cos2 θ − 1

)
Y2±1 = ∓

√
15

8π
sin θ cos θe±iφ

Y2±2 =

√
15

32π
sin2 θe±2iφ. (B.5)
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(0,0)(0,0)

(1,0) (1,1)

(2,0) (2,1) (2,2) (10,0)

Figure B.1: Polar plot of spherical harmonics. The distance to origin de-
scribes the value of the spherical harmonic at the corresponding azimuthal
and polar angle. The brackets denote the quantum numbers (J,m).

B.2 Selection Rules

To calculate the dipole matrix elements, we need the space representation of
the dipole operator. In spherical coordinates we have

d = d−1e−1 + d0e0 + d1e1, (B.6)

d−1/d =
1√
2
e−iφ sin θ, (B.7)

d0/d = cos θ, (B.8)

d1/d = − 1√
2
eiφ sin θ, (B.9)

with d being a simple scalar with units of a dipole moment. The matrix
element

〈Jm|d−1,0,1|J ′m′〉 (B.10)

is calculated by integration over the whole sphere∫∫
Y ∗Jmd−1,0,1YJ ′m′d(cos θ)dφ, (B.11)

with the boundaries 0 ≤ φ < 2π and −1 ≤ cos θ ≤ 1. Using symmetry
arguments, we can show that most combinations of J,m, J ′,m′ lead to a
vanishing integral. The corresponding transition is called forbidden. For
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example, having linear polarized light (E · d ∝ d0), the only φ -dependent
term in the integrand is e−i(m−m′)φ. The integration from 0 to 2π is zero,
except for the case that m = m′, that means ∆m = 0. Similar arguments
lead to the remaining selection rules

∆J = ±1, (B.12)
∆m = 0 for linear polarisation, (B.13)
∆m = ±1 for circular polarisation. (B.14)

B.3 Reducing The Number Of Matrix Elements

Although the selection rules lead to a reduction in the number of possible
dipole matrix elements, there are still many left. However, it is possible
to express all the different elements by only three of them. These are dgg0
and d11

0 , for the expectation value in the ground or a excited state, and d1g
1 ,

for the transistion between ground and excited state. The following simple
relations have to be used for this simplifaction

• d†q = (−1)qd−q (B.15)

follows directly from equation (B.7-B.9)

• d†q = (−1)qd−q (B.16)

in (B.11) either the complex parts cancel out or the integral vanishes

• dijq = (−1)qdji−q (B.17)

taking the above relations it follows that

dijq = dij
∗

q = 〈i|dq|j〉∗ = 〈j|d†q|i〉 = 〈j|d†q|i〉 = (−1)q〈j|d−q|i〉 = (−1)qdji−q
(B.18)

• d−1−1
0 = d11

0 (B.19)
from the definition of the spherical harmonics follows
YJ−m = (−1)mY ∗Jm – thus replacing both functions in (B.11)

does not change the integral

• dg−1
1 = −d1g

1 (B.20)
we again use YJ−m = (−1)mY ∗Jm and get

dg−1
1 = 〈g|d1| − 1〉 = −〈1|d1|g〉 = −d1g

1

• d−1g
−1 = −dg1−1 (B.21)

by doing the same as in (B.20)

All these relations have been derived using spherical harmonics, i.e., the
eigenfunctions of the rigid rotor. Every eigenstate of the Hamiltonian includ-
ing the dc-field is a linear combination of spherical harmonics with the same
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magnetic quantum number m. Since equations (B.15-B.21) hold for every
summand of such a linear combination, they also hold for the whole state1.
The relations therefore also apply to the eigenstates of the Hamiltonian(2.7).

1The unique quantum number m of a linear combination is crucial for this point.



Appendix C

Time Independent
Perturbation Theory

C.1 Nondegenerate Case

Discussion on time independent or stationary state perturbation theory can
be found in every standard quantum mechanics book, such as [10, 11]. Here,
we present the expressions for the energy, calculated to second order, and for
the wavefunction, calculated to first order in the perturbation. Characteristic
of the perturbative approach is a Hamiltonian of the form

H = H0 + ηH1. (C.1)

H1 describes the perturbation and H0 is the unperturbed Hamiltonian, with
eigenstates |n0〉 and corresponding energies E0

n. The perturbed energies and
states are given by

En = E0
n + η〈n0|H1|n0〉+ η2

∑
k 6=n

|〈k0|H1|n0〉|2

E0
n − E0

k

+ . . . , (C.2)

|n〉 = |n0〉+ η
∑
k 6=n

〈k0|H1|n0〉
E0
n − E0

k

|k0〉+ . . . . (C.3)

In chapter 2.2, we have H0 = J2, and an eigenbasis formed by spherical
harmonics, with corresponding eigenergies E0

J = J(J+1). The perturbation
is H1 = −ẑ. Thus, the major task is to calculate the matrix elements
〈YJ ′m′ |ẑ|YJm〉, see Appendix B, and insert them in the equations above.
The index k then runs over all pairs (J ′,m′) 6= (J,m). Using selection rules,
this reduces to k = (J + 1,m) and k = (J − 1,m).
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C.2 Degenerate Case

In the case of degeneracies, like in the crystal phase discussion of chapter 3.6,
the energy denominators in the equations (C.2) and (C.3) become zero, and
the expressions are no longer well-defined. This problem can be overcome by
degenerate perturbation theory. The main difference to the nondegenerate
case is, that we treat those states, that are in the degenerate subspace of
the eigenbasis, seperately from those which are not. The calculation of the
perturbed eigensystem is then achieved by diagonalization of H0 + Heff in
the degenerate subspace D. The new eigenenergies En are solutions of

det
[
E0
nδn0l0 + 〈l0|Heff|n0〉 − Enδn0l0

]
= 0 , {|n0〉, |l0〉} ∈ D. (C.4)

To first order in η, we have Heff = ηH1, and the new eigensystem is obtained
by simply diagonalizing the full Hamiltonian H in the degenerate subspace.
If the degeneracies are not lifted by this, the next order must be included.
Heff then has the following form:

〈l0|Heff|n0〉 = η 〈l0|H1|n0〉+ η2
∑
k0 /∈D

〈l0|H1|k0〉〈k0|H1|n0〉
E0
n − E0

µ

, |l0〉 ∈ D.

(C.5)



Appendix D

Numerical Calculations

The numerical calculations and plots of this work have been done using
MATHEMATICA 7.0. On the following pages we present parts of the listings.

D.1 Energies And Dipole Moments In The DC-Field

We obtain the eigenenergies of the Hamiltonian (2.7) by diagonalization,
using the built-in function Eigensystem[]. After expressing the dipole op-
erator in the appropriate basis, the calculation of the dipole moments then
comes down to a simple matrix multiplication. To reduce calculation time
and paperwork we have used the results of Appendix B. Thus, it was suffi-
cient to include only terms with m = 0 and m = 1.

Setting a maximum angular momentum quantum number J , we determine
the number of states that contribute to the calculation. The chosen value
presents a good balance between accuracy and calculation time.

1 Jmax = 15;
nmax = 2*Jmax +1;

We number the eigenbasis of J2 in such a way that a single index maps
unambigiously onto a pair of quantum numbers J and m. For example we
have 0→ J = 0,m = 0; 1→ J = 1,m = 0; 2→ J = 1,m = 1;...

a[0, \[ Theta]_, \[Phi]_] = SphericalHarmonicY [0, 0, \[←↩
Theta], \[Phi ]];

4 k = 1;
For[j = 1, j <= Jmax , j++,

6 For[i = 0, i <= 1, i++,
{a[k, \[ Theta]_, \[Phi]_] =

8 SphericalHarmonicY[j, i, \[ Theta], \[Phi]];
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k = k + 1;} ] ]

In this basis we express J2 and the operator part of d ·Edc, i.e., in spherical
coordinates cos θ.

10 h[0] = 0; k = 1;
For[j = 1, j <= Jmax , j++,

12 For[i = 0, i <= 1, i++,
{h[k] = j (j + 1);

14 k = k + 1;} ] ]
hlist = Table[h[j], {j, 0, nmax - 1}];

16 Hrot = DiagonalMatrix[hlist ];

18 Hdc = Table[
Integrate[

20 Conjugate[a[i, \[Theta], \[Phi ]]]* Cos[\[ Theta←↩
]]* Sin [\[ Theta ]]*

a[j, \[ Theta], \[Phi]]
22 , {\[ Theta], 0, \[Pi]}, {\[Phi], 0, 2 \[Pi]}]

, {i, 0, nmax - 1}, {j, 0, nmax - 1}];

Hdc is up to a prefactor equal to the matrix representation of d0. To avoid
confusion we therefore copy the matrix here.

24 D0Matrix = Hdc;

The same calculation is done for d1.

D1Matrix = Table[
26 Integrate[

-1/Sqrt [2] Exp[I*\[ Phi ]]* Conjugate[a[i, ←↩
\[Theta], \[Phi ]]]* Sin [\[ Theta ]]*Sin←↩
[\[ Theta ]]*a[j, \[ Theta], \[Phi]]

28 , {\[ Theta], 0, \[Pi]}, {\[Phi], 0, 2 \[Pi←↩
]}]

, {i, 0, nmax - 1}, {j, 0, nmax - 1}];

The calculation of the eigenenergies of Hrot - \[Eta]*Hdc is done with the
command Eigensystem[], sorting the resulting list and picking the wanted
value at the appropriate position.

30 Eg[\[Nu]_] := Last [{\[ Eta] = N[\[Nu]];,
H0 = (Hrot - \[Eta]*Hdc);,

32 Last[Sort[Eigensystem[H0][[1]] , ←↩
Greater] ] } ]



Appendix D. Numerical Calculations 91

E1[\[Nu]_] := Last [{\[ Eta] = N[\[Nu]];,
34 H0 = (Hrot - \[Eta]*Hdc);,

Last[Take[Sort[Eigensystem[H0←↩
][[1]] , Greater], nmax - 1] ] ←↩
} ]

Depending on \[Eta], the eigenvectors \[Psi]g[\[Nu]_] and
\[Psi]p1[\[Nu]_] are calculated. Therefore \[Eta] is taken over by \[nu],
H0 is definied from scratch, the list of eigenenergies gained by the com-
mand Eigensystem is sorted according to the value, and the two last po-
sitions are read out. Afterwards, it is checked, at which position in the
not sorted eigenwert list these values are. These positions correspond to
the positions of the eigenvectors, which are then read out by the command
Eigensystem[HO][[2, pos]]. The Sign command adds a consistent sign
convention, so that always the dominant part of a wavefunction is positive,
just as in perturbation theory. For example, g has a positive value at the
first position and m1 and the second one.

36 \[Psi]g[\[Nu]_] := Take [{\[ Eta] = N[\[Nu]];,
H0 = (Hrot - \[Eta]*Hdc);,

38 pos = Position[Eigensystem[H0][[1]] ,
Last[Sort[Eigensystem[H0][[1]] , Greater ]]][[1 , ←↩

1]];
40 Sign[Eigensystem[H0][[2, pos , 1]]]* Eigensystem[H0←↩

][[2, pos]]
}, -1][[1]]

42 \[Psi]p1[\[Nu]_] := {\[ Eta] = N[\[Nu]];,
H0 = (Hrot - \[Eta]*Hdc);,

44 pos = Position[Eigensystem[H0][[1]] ,
Take[Sort[Eigensystem[H0][[1]] , Greater]

46 , {nmax - 1}][[1]]][[1 , 1]];,
Sign[Eigensystem[H0][[2, pos , 3]]]* Eigensystem[H0←↩

][[2, pos ]]}[[4]]

The result is a vector consisting of prefactors to the corresponding spherical
harmonics. For example
\[Psi]p1[0.1]= {0.999584, 0.0288379, 2.22 x10ˆ-16, ...}
corresponds to
ψp1 = 0.999584Y00 + 0.0288379Y10 + 2.22 ∗ 10−16Y11 + . . . ,
where the last term is a numerical error. Calculating the dipole moments
now reduces to a simple matrix multiplication,
for example 〈g|d1|1〉 = ”(ψg)t.D1Matrix. ψp1”.

48 d11g [\[Nu]_] =
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Hold[Last[{g = \[Psi]g[\[Nu]]; p1 = \[Psi]p1[\[Nu]];
50 Sum[p1[[i]]* D1Matrix [[i, j]]*g[[j]], {i, 1, nmax}

, {j, 1, nmax }]}]];
52 d0gg [\[Nu]_] =

Hold[Last[{g = \[Psi]g[\[Nu]];
54 Sum[g[[i]]* D0Matrix [[i, j]]*g[[j]], {i, 1, nmax}

, {j, 1, nmax }]}]];
56 d011 [\[Nu]_] =

Hold[Last[{p1 = \[Psi]p1[\[Nu]];
58 Sum[p1[[i]]* D0Matrix [[i, j]]*p1[[j]], {i, 1, nmax}

, {j, 1, nmax }]}]];

Due to the considerations of Appendix B, these are the only dipole moments
necessary to describe the system. Taking a look at Figure D.1, we recognize,
that they show the expected behaviour. Only d1g

1 is non-zero at η = 0.
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Figure D.1: Dipole moments of the eigenstates in the dc-field
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Dipole-Dipole-Interaction

The interaction between two polar molecules is described by the so called
dipole-dipole-interaction. In the classical model, it is usually derived by
a multipole expansion of the electrostatic potential of one molecule. The
energy of the second molecule in this potential is then given by [32]

V dd
ij =

di · dj − 3 (di · eR) (eR · dj)
R3
ij

. (E.1)

E.1 Representation In Spherical Coordinates

The representation of the dipole-dipole-interaction V dd
ij in spherical coor-

dinates is obtained by projecting the products di · dj and eR · dj onto the
complex basis {e−1, e0, e1}. We calculate the required (complex) scalar prod-
ucts1 to

eR · e−1 =
1√
2
e−iφ sin θ = C

(1)
−1 , (E.2)

eR · e0 = cos θ = C
(1)
0 , (E.3)

eR · e1 = − 1√
2
eiφ sin θ = C

(1)
1 , (E.4)

with eR = (cosφ sin θ, sinφ sin θ, cos θ)t being the spherical unit vector and
C

(1)
q a so called unnormalized2 spherical harmonic of rank one, i.e., J = 1.

Due to the transformation to a complex basis, some emphasis must be put

1The complex scalar product is defined as x · y =
∑
i yix

∗
i .

2The difference to the ordinary spherical harmonics is the normalization
√

2J+1
4π

.
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on the order of the vectors in the scalar products. For example, we have

e1 · dj = −dj · e−1 = − 1√
2

(djx − idjy) = dj1, (E.5)

e0 · dj = dj · e0 = dj0 = djz, (E.6)

e−1 · dj = −dj · e1 =
1√
2

(djx + idjy) = dj−1, (E.7)

where djq is the q-th spherical coordinate of the dipole moment of the j-th
molecule. With this, we obtain the projection of the scalar products to

di · dj =
1∑

q=−1

di · (eq ⊗ eq)dj =
1∑

q=−1

(−1)qdiqdj−q, (E.8)

eR · dj =

1∑
q=−1

eR · (eq ⊗ eq)dj =

1∑
q=−1

djqC
(1)
q , (E.9)

hence the dipole-dipole-interaction reads

V dd
ij =

1

R3
ij


1∑

q=−1

(−1)qdiqdj−q − 3

 1∑
q=−1

djqC
(1)
q

2 (E.10)

=
1

R3
ij

{
di0dj0

(
1− 3C

(1)2

0

)
− (di1dj−1 + di−1dj1)

(
1 + 3C

(1)
1 C

(1)
−1

)
−3 (di0dj−1 + di−1dj0)C

(1)
0 C

(1)
−1 − 3 (di0dj1 + di1dj0)C

(1)
0 C

(1)
1

−3di1dj1C
(1)2

1 − 3di−1dj−1C
(1)2

−1

}
. (E.11)

Writing out the unnormalized spherical harmonics and using trigonometric
identities, this yields

V dd
ij = − 1

R3
ij

{(
3 cos2 θ − 1

)
di0dj0 +

1

2

(
3 cos2 θ − 1

)
(di1dj−1 + di−1dj1)

+
3√
2

sin θ cos θ
(
e−iφ (di−1dj0 + di0dj−1)− eiφ (di1dj0 + di0dj1)

)
+

3

2
sin2 θ

(
e2iφdi1dj1 + e−2iφdi−1dj−1

) }
. (E.12)

E.2 Representation In The Rotating 16-State Basis

The results of the calculations on page 12 are given in the following two
tables. Every element of a table belongs to a projection operator, which is
built by the tensor product of the bra- and ket-vectors that correspond to
the appropriate column and row. To obtain the full representation of V dd

ij in
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the rotating 16-state-basis, all the terms additionally have to be multiplied
by 1/R3

ij . To reduce the size of the tables, we have used the abbreviation
ζ = −3

2e
2iφ.

〈g̃g̃| 〈−1̃− 1̃| 〈0̃0̃| 〈1̃1̃| 〈g̃ − 1̃| 〈g̃0̃| 〈g̃1̃| 〈−1̃g̃|

|g̃g̃〉 d
gg2

0 0 0 0 0 0 0 0

| − 1̃− 1̃〉 0 d−1−12

0 ζ∗d−102

−1 0 0 0 0 0

|0̃0̃〉 0 −ζd0−12

1 d00
2

0 −ζ∗d01
2

−1 0 0 0 0

|1̃1̃〉 0 0 −ζ∗d10
2

1 d11
2

0 0 0 0 0

|g̃ − 1̃〉 0 0 0 0 d
gg
0 d−1−1

0 0 0 1
2
d
g−1
1 d

−1g
−1

|g̃0̃〉 0 0 0 0 0 d
gg
0 d000 0 00

|g̃1̃〉 0 0 0 0 0 0 d
gg
0 d110 ζd

g−1
1 d

1g
1

| − 1̃g̃〉 0 0 0 0 1
2
d
−1g
−1 d

g−1
1 0 ζ∗d−1g

−1 d
g1
−1 d−1−1

0 d
gg
0

| − 1̃0̃〉 0 0 0 0 0 0 0 0

| − 1̃1̃〉 0 0 1
2
d−10
−1 d101 0 0 0 0 0

|0̃g̃〉 0 0 0 0 0 d
0g
0 d

g0
0 0 0

|0̃− 1̃〉 0 0 0 0 0 0 0 0

|0̃1̃〉 0 0 0 0 0 0 0 0

|1̃g̃〉 0 0 0 0 ζd
1g
1 d

g−1
1 0 1

2
d
1g
1 d

g1
−1 0

|1̃− 1̃〉 0 0 1
2
d101 d−10

−1 0 0 0 0 0

|1̃0̃〉 0 0 0 0 0 0 0 0

Table E.1: Matrix elements of V dd
ij in the 16-state product basis, 1st part.

〈−1̃0̃| 〈−1̃1̃| 〈0̃g̃| 〈0̃− 1̃| 〈0̃1̃| 〈1̃g̃| 〈1̃− 1̃| 〈1̃0̃|

|g̃g̃〉 0 0 0 0 0 0 0 0

| − 1̃− 1̃〉 0 0 0 0 0 0 0 0

|0̃0̃〉 0 1
2
d0−1
1 d01−1 0 0 0 0 1

2
d01−1d

0−1
1 0

|1̃1̃〉 0 0 0 0 0 0 0 0

|g̃ − 1̃〉 0 0 0 0 0 ζ∗dg1−1d
−1g
−1 0 0

|g̃0̃〉 0 0 d
g0
0 d

0g
0 0 0 0 0 0

|g̃1̃〉 0 0 0 0 0 1
2
d
g1
−1d

1g
1 0 0

| − 1̃g̃〉 0 0 0 0 0 0 0 0

| − 1̃0̃〉 d−1−1
0 d000 0 0 1

2
d−10
−1 d0−1

1 ζ∗d−10
−1 d01−1 0 0 0

| − 1̃1̃〉 0 d−1−1
0 d110 0 0 0 0 0 0

|0̃g̃〉 0 0 d000 d
gg
0 0 0 0 0 0

|0̃− 1̃〉 1
2
d0−1
1 d−10

−1 0 0 d000 d−1−1
0 0 0 0 ζ∗d01−1d

−10
−1

|0̃1̃〉 ζd0−1
1 d101 0 0 0 d000 d110 0 0 1

2
d01−1d

10
1

|1̃g̃〉 0 0 0 0 0 d110 d
gg
0 0 0

|1̃− 1̃〉 0 0 0 0 0 0 d110 d−1−1
0 0

|1̃0̃〉 0 0 0 ζd101 d0−1
1

1
2
d101 d01−1 0 0 d110 d000

Table E.2: Matrix elements of V dd
ij in the 16-state product basis, 2nd part.



Appendix F

Wick’s Theorem

Wick’s theorem is very useful, when working with multiple products of cre-
ation and annihilation operators and provides a clean way to calculate expec-
tation values in the Fock space. Before stating the theorem, two preliminary
definitions have to be made.

The normal product or normal ordered product of a set of creation and
annihilation operators is a product of the same kind of operators with all
the creation operators to the left and the annihilation operators to the right.
In the case of fermions this product additionally has to be multiplied by a
factor of (−1) for every pair interchange of fermions. For example we have

: bib
†
j : = b†jbi (bosons) (F.1)

: cic
†
j : = −c†jci (fermions) (F.2)

: cicjc
†
l c
†
mcn : = c†l c

†
mcicj

= −c†mc†ncicj . (F.3)

The contraction of a product of two operators A and B is its expectation
value in the ground state

〈AB〉0 = 〈0|AB|0〉. (F.4)

With this we can now state Wick’s theorem:
An ordinary product of creation and annihilation operators is equal to the
sum of normal ordered products to which 0, 1, 2, . . . contractions have been
applied in all possible ways.

This statement should become more comprehensible taking a look at the
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case of two and four operators:

AB = : AB : +〈AB〉0 (bosons and fermions) (F.5)
ABCD = : ABCD : (fermions)

+ : AB : 〈CD〉0− : AC : 〈BD〉0+ : BC : 〈AD〉0
+ : AD : 〈BC〉0− : BD : 〈AC〉0+ : CD : 〈AB〉0
+ 〈AB〉0〈CD〉0 − 〈AC〉0〈BD〉0 + 〈AD〉0〈BC〉0 (F.6)

ABCD = : ABCD : (bosons)
+ : AB : 〈CD〉0+ : AC : 〈BD〉0+ : BC : 〈AD〉0
+ : AD : 〈BC〉0+ : BD : 〈AC〉0+ : CD : 〈AB〉0
+ 〈AB〉0〈CD〉0 + 〈AC〉0〈BD〉0 + 〈AD〉0〈BC〉0. (F.7)

A general proof of the theorem is given in [11] and uses only two properties.
First, any annihilation operator acting on the ground state must yield zero.
And second, the commutator (anticommutator) of two bosons (fermions)
must be a multiple of the identity.

In this work, Wick’s theorem is mainly used in the context of the Fermi
ground state. Here, a particle-hole transformation is necessary for the first
property to be fulfilled.
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