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ABSTRACT

One of the most intriguing ideas in quantum theory is the concept of entanglement. It is
well-famed in its role in quantum computation and quantum information, as well as for its
puzzling peculiarities, challenging the way we think about nature. In general, entanglement
emerges from the interaction of quantum systems with their environment. In a controlled
setting, such as an experiment, entangling two systems is usually achieved by the application
of unitary interactions.
A key feature of these non-local correlations is the fact that measuring a constituent of an

entangled state erases part of the underlying entanglement structure. As such, the growth of
entanglement in the lab by the application of unitaries can be stunted by locally measuring
parts of the system. Circuits characterized by the interplay between unitaries and local
measurements are called hybrid circuits.
In the past decade, the study of these hybrid circuits have unveiled intriguing patterns in

the dynamics of entanglement. If measurements are sufficiently frequent, one finds that the
degree of entanglement between subsystems follows an area law, while in the limit of rare
measurements one has a volume law scaling. Remarkably, one can find that there is a phase
transition between these two regimes, with a critical measurement rate. These transitions
are calledmeasurement-induced entanglement phase transition, or entanglement transition
for short.
Entanglement transitions have not only been theorized in hybrid circuits, but also in

setups, where the (discrete) time evolution is driven by projectivemeasurements alone, where
pairwise and local measurements compete. A paradigmatic measurement-only model with
such a transition is the projective transverse-field Ising model, which features an area law to
area law phase transition [1].
However, detecting entanglement transitions in an experimental setting proves to be

a difficult, seemingly sysiphean task, due to the postselection problem—also referred to as
sampling problem. It states that due to the probabilistic nature of quantummeasurements,
one is exponentially unlikely to obtain the same state twice when repeatedly applying the
identical protocol. This then obfuscates the precise nature of the state, when probing for it,
which is required to quantify the degree of entanglement.
Recently, some protocols have been proposed to circumvent the sampling problem. In

particular, Li et al. proposed a quantity which acts as order parameter for the measurement-
induced phase transition in hybrid circuits, called the linear cross entropy. Furthermore,
Garratt andAltmanproposed a differentmethod, employing an upper bound fromquantum
information theory known as Klein’s inequality.



abstract

In this thesis we put these protocols to test in the projective transverse-field Ising model.
It consists of four main chapters and is structured as follows

Chapter 1: In this chapter we give an introduction to the concepts relevant throughout the
thesis. We begin by outlining the stabilizer formalism, as it is a useful representation
of quantum states and the foundation of the simulation algorithm employed for the
numerical approaches in the thesis. We then provide an overview of the concept of
entanglement transitions in general, before specifically introducing the projective
transverse-field Ising model. This model serves as the primary subject of our studies.
We then discuss the post-selection or sampling problem, motivating the rest of the
thesis.

Chapter 2: In this chapter we examine the quantity defined by Li et al. in the context of
the projective transverse-field Ising model. We particularily motivate post-selection
algorithms and compare our results to previous investigations of similar nature (see
Ref. [4]), while also raising critiques.

Chapter 3: In this chapter we investigate the approach of Garratt and Altman to detect the
entanglement transition in the projective transverse-field Ising model. We first derive
an expression for the cross- and relative entropy in the stabilizer formalism, before
trying different numerical approaches to circumvent the post-selection problem. We
finalize the chapter by outlining two regularization approaches to deal with appearing
infinities.

Chapter 4: In this chapter we introduce the simulation algorithm, which is based on the
stabilizer formalismoutlined inChapter 1. Wefirst give a brief summary of the existing
algorithms. We then introduce the extensions necessary for the numerical simulations
performed throughout the thesis, especially concerning mixed states and the different
entropies derived in Chapter 3.

vi



ZUSAMMENFASSUNG

Eine der faszinierendsten Ideen in der Quantenmechanik ist das Konzept der Verschränkung.
Dieses ist bekannt für seine zentrale Rolle in der Quanteninformation sowie für seine ver-
blüffenden Eigenheiten, die unsere Vorstellungen von der Natur herausfordern. Allgemein
entsteht Verschränkung durch die Wechselwirkung von Quantensystemen mit ihrer Um-
gebung. In kontrollierten Umgebungen, wie etwa Experimenten, wird die Verschränkung
zweier Systeme üblicherweise durch die Anwendung unitärer Wechselwirkungen erreicht.
Ein zentrales Merkmal dieser nichtlokalen Korrelationen ist die Tatsache, dass das Messen

eines Bestandteils eines verschränkten Zustands einenTeil der zugrunde liegendenVerschrän-
kungsstruktur zerstört. Daher kann das Wachstum der Verschränkung im Labor durch die
Anwendung von unitären Operationen gehemmt werden, wenn Teile des Systems lokal
gemessen werden. Schaltkreise, die durch das Zusammenspiel von unitären Operationen
und lokalenMessungen gekennzeichnet sind, werden als hybride Schaltkreise bezeichnet.
In den letzten zehn Jahren hat die Untersuchung solcher hybrider Schaltkreise faszinie-

rende Muster in der Dynamik der Verschränkung offengelegt. Bei hinreichend häufigen
Messungen zeigt sich, dass der Grad der Verschränkung zwischen Teilsystemen einem Flä-
chengesetz folgt. ImGegensatz dazu ergibt sich bei seltenenMessungen eine Skalierung nach
einemVolumengesetz. Bemerkenswerterweise gibt es einen Phasenübergang zwischen diesen
beiden Regimen, der durch eine kritische Messrate gekennzeichnet ist. Diese Übergänge
werden als messungsinduzierte Verschränkungsphasenübergänge oder kurz Verschränkungs-
übergänge bezeichnet.
Verschränkungsübergänge wurden nicht nur in hybriden Schaltkreisen theoretisiert, son-

dern auch in Konfigurationen, bei denen die (diskrete) Zeitentwicklung allein durch pro-
jektive Messungen bestimmt wird, wobei paarweise und lokale Messungen konkurrieren.
Ein paradigmatisches Modell mit einem solchen Übergang ist das projektive transversale
Ising-Modell, das einen Übergang zwischen zwei Flächengesetz-Phasen zeigt [1].
Die experimentelle Detektion von Verschränkungsübergängen erweist sich jedoch als

schwierige, scheinbare Sisyphusaufgabe, was auf das sogenannte Postselektionsproblem—
auch als Sampling-Problem bezeichnet—zurückzuführen ist. Dieses Problem besagt, dass
es aufgrund der probabilistischen Natur von Quantenmessungen exponentiell unwahr-
scheinlich ist, denselben Zustand zweimal zu erhalten, selbst wenn das identische Protokoll
wiederholt angewendet wird. Dies verschleiert dieNatur des Zustands bei der Untersuchung,
deren Kenntnis erforderlich ist, um den Grad der Verschränkung zu quantifizieren.
Kürzlich wurden einige Protokolle vorgeschlagen, um das Sampling-Problem zu umge-

hen. Insbesondere schlugen Li u. a. eine Größe vor, die als Ordnungsparameter für den



zusammenfassung

messungsinduzierten Phasenübergang in hybriden Schaltkreisen dient, die sogenannte linea-
re Kreuzentropie. Außerdem schlugen Garratt und Altman eine alternative Methode vor,
die eine obere Schranke aus der Quanteninformationstheorie nutzt, bekannt als Kleinsche
Ungleichung.
In dieser Arbeit werden diese Protokolle im Kontext des projektiven transversalen Ising-

Modells getestet. Die Arbeit besteht aus vier Hauptkapiteln und ist wie folgt aufgebaut:

Kapitel 1: In diesem Kapitel werden die für die Arbeit relevanten Konzepte eingeführt.
Wir beginnen mit einer Einführung in den Stabilizer-Formalismus, da dieser eine
nützlicheDarstellung vonQuantenzuständen bietet und die Grundlage für den Simu-
lationsalgorithmus bildet, der für die numerischen Ansätze in der Arbeit verwendet
wird. Anschließend geben wir einen Überblick über das Konzept der Verschränkungs-
übergänge im Allgemeinen, bevor wir das projektive transversale Ising-Modell speziell
einführen. Dieses Modell ist das Hauptobjekt unserer Untersuchungen. Abschlie-
ßend wird das Postselektions- bzw. Sampling-Problem erörtert, welches den weiteren
Verlauf der Arbeit motiviert.

Kapitel 2: In diesem Kapitel untersuchen wir die von Li u. a. definierte Größe im Kontext
des projektiven transversalen Ising-Modells. Besonders wird die Motivation hinter
Postselektionsalgorithmen beleuchtet, und unsere Ergebnisse werden mit früheren
Untersuchungen ähnlicher Natur (vgl. Ref. [4]) verglichen, wobei auch Kritikpunkte
aufgezeigt werden.

Kapitel 3: In diesem Kapitel untersuchen wir den Ansatz von Garratt und Altman zur
Detektion von Verschränkungsübergängen im projektiven transversalen Ising-Modell.
Zunächst leiten wir einen Ausdruck für die Kreuz- und relative Entropie im Stabilizer-
Formalismus her, bevor wir verschiedene numerische Ansätze testen, um das Postse-
lektionsproblem zu umgehen. Abschließend werden zwei Regularisierungsansätze
vorgestellt, um auftretende Divergenzen zu bewältigen.

Kapitel 4: In diesem Kapitel wird der Simulationsalgorithmus eingeführt, der auf dem
in Kapitel 1 beschriebenen Stabilizer-Formalismus basiert. Zunächst geben wir eine
kurze Zusammenfassung bestehender Algorithmen. Anschließend werden die Erwei-
terungen erläutert, die für die numerischen Simulationen in der Arbeit erforderlich
sind, insbesondere in Bezug auf gemischte Zustände und die in Kapitel 3 abgeleiteten
Entropien.

viii
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1
INTRODUCTION

“I am fascinated by numbers”
Baron-Cohen et al.

This chapter serves to familiarize the reader with the core concepts relevant to this thesis.
We will first introduce the stabilizer formalism, as it will later enable us to perform efficient
numerical experiments on a classical computer. Next, we provide an overview of the field of
entanglement transitions and cite some important examples and works of the field. We will
then introduce the model system that is subject to the main part of this thesis, the projective
transverse-field Ising model, motivate it and highlight its most intriguing features. Finalizing
this chapter is a more metaphysical section on the sampling problem, which deals with the
ontology of entanglement and phase transitions in entanglement.



introduction

1.1 the stabilizer formalism

In quantum computation and quantum computing we are exposed to a multitude of obsta-
cles to overcome. For starters, there is the issue of quantum error correction. The encoding
of information in a qubit allows for more than the usual bit-flip error from classical com-
puting. Then there is the problem of simulating a quantum computer on a classical one.
This requires, in principle, the storage of exponentially many amplitudes for every additional
qubit onewants to simulate. While it seems almost absurd to suggest that these two problems
would be dealt with by the same formalism, we nevertheless want to wash out doubts about
this fact in the present section and present an introduction to the stabilizer formalism.

Although it was originally introduced as an approach to quantum error correction [8–11],
the notion of stabilizers has become synonymous with efficient classical simulability in the
world of quantum information theory [8, 12–15].

As the stabilizer formalism relies heavily on group theoretic arguments, we will first begin
by giving a brief overview of the foundational algebra.

1.1.1 Basic notions of group theory

Group theory is one of themost important concepts from algebra in the toolset of theoretical
physicists. From classifying crystalline structures [16], (gauge) symmetries in the standard
model [17], to the classification of (topological) phase transitions [18, 19], group theory
perpetually permeates theoretical physiscs.

The stabilizer formalismmakes no exception. It is a clever application of group theory,
allowing for a more compact representation of quantum states compared to the state vector.
We therefore introduce necessary prerequesites of group theory needed for the stabilizer
formalism and its role in this thesis, starting with the notion of a group.

A group𝐺 is a collection of some particulars 𝑔 that can be composed according to some
convention. To be called a group, the set of entities {𝑔𝑖} and the operation

1 with which we
compose them, need to obey a certain ruleset [20]. This ruleset, called the group axioms,
reads as follows [21].

1In the discussion on groups and group theory, the words composition, group operation, and multiplication
are used interchangeably

2



the stabilizer formalism

Definition 1.1 (Group). A group 𝐺 is a non-empty set equipped with a binary
operation (here denoted with ⋅) that satisfies the following axioms.

Associativity: The group operation is associative, i.e.

∀𝑎, 𝑏, 𝑐 ∈ 𝐺 ∶ (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐).

Identity element: The group contains an identity element, which does nothing
with respect to composition, i.e.

∃𝐼 ∈ 𝐺 ∀𝑔 ∈ 𝐺 ∶ 𝐼 ⋅ 𝑔 = 𝑔 ⋅ 𝐼 = 𝑔.

Inverse element: Each group element has a unique element associated to it that
when composed with it gives the identity. In other words,

∀𝑔 ∈ 𝐺 ∃𝑔−1 ∈ 𝐺 ∶ 𝑔𝑔−1 = 𝑔−1𝑔 = 𝐼.

Note thatwedonot require the group elements to commutewith respect tomultiplication.
Groups that satisfy commutativity for all their elements are called abelian groups.

Numerous different mathematical objects and concepts can fall under the umbrella of
group theory.2 Althoughwewill discuss specific groups in greater detail later, we do notwant
to fail to mention some other important groups appearing all across physics. There are the
rotation groups 𝑆𝑂(𝑛) and unitary groups𝑈(𝑛) (both in 𝑛 dimensions), the permutation
group of𝑛 elements𝑆𝑛 and the group of square roots of 1undermultiplication,ℤ2 = {1, −1}.
The first two are examples of continuous groups, while the others are discrete. Note that
discrete and infinite are not mutually exclusive. The group (ℤ, +) is an example of a discrete
group with infinite number of elements. The number of elements in a finite group 𝐺 is
called the order of a group, which we write as ord(𝐺).

For larger finite groups, it can become cumbersome to keep track of all the elements and
their relation to each other. Luckily, there is a way we can condense all the information to
construct the whole group in its presentation, also known as its generating set [20]. The
elements of such a generating set are referred to as generators.

2One can even describe the Rubik’s Cube puzzle in the language of group theory

3
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Definition 1.2 (Generating set and generators). Let 𝐺 be a finite group and 𝑆 a
subset of𝐺. 𝑆 is called a generating set of𝐺 if all elements in𝐺 can be obtained from
(possibly repeated) multiplication of elements in the generating set. Generating sets
are denoted by angled braces, such that we write

𝑆 = ⟨𝑔1, … , 𝑔𝑛⟩, 𝑔1, … , 𝑔𝑛 ∈ 𝐺. (1.1)

The 𝑔𝑖 are called generators of𝐺. The trivial group ({𝐼}, ⋅) is generated by the empty
set.

While there are also generators of continuous or infinite groups, they take on a fundamen-
tally different form compared to the finite counterpart. As an example of a generating set in
the finite case, consider the group of fourth roots of 1withmultiplication,𝑍4 = ({±1, ±𝑖}, ⋅).
It is easy to verify that the subset𝑆 = {𝑖} of the group uniquely reproduces all of the elements
in 𝑍4, by taking powers of 𝑖.

In the process of constructing a generating set we are generally faced with two restrictions.
The first is the fact that the entire group needs to emerge from the multiplications of gen-
erators. We cannot simply choose arbitrary group elements. 𝑆 = {−1} ⊂ 𝑍4 would be a
perfectly fine set of generators for ℤ2, but not 𝑍4. Next, we ideally want to have the least
number of generators possible to build up the rest of the group. This restriction is one we
impose on ourselves rather than one imposed on us by necessity. Choosing 𝑆 = {−1, 𝑖, −𝑖}
as generators also recovers 𝑍4, however, we have already seen that 𝑔 = −1 and 𝑔 = −𝑖 are
redundant in this context. Theorem 1.3 gives an upper bound on the number of generators
needed to generate finite groups.

Theorem 1.3 ([8]). The minimum size of a generating set for a finite group𝐺 of
generators is at most log2(ord(𝐺)).

With Theorem 1.3 we have that for 𝑍4, choosing a generating set with 3 elements should
be cause for concern, since we would need 2 at most. However, we also saw that 𝑍4 is special
in that way, since we only needed one generator. A way of quantifying this quality is the
rank of a group. It is defined as the size of the smallest generating set of𝐺 and is denoted by
|𝐺|. Thus, for the example of 𝑍4 we have |𝑍4| = 1.

When discussing subsets of groups, one naturally arising concept is the notion of sub-
groups. Suppose we take some set of elements {𝑔} forming a group𝐺 under multiplication
and take a subset {ℎ} thereof. If the subset also forms a group𝐻, we call it a subgroup of𝐺
and write𝐻 ≤ 𝐺.

4



the stabilizer formalism

Definition 1.4 (Subgroup [20]). A subgroup 𝐻 of 𝐺, written as 𝐻 ≤ 𝐺, is a
non-empty subset𝐻 of𝐺, which forms a group under the same group operation as
𝐺.

Going back to some of the previous examples, we can consider 𝑆𝑂(2), rotations along the
unit circle, as rotations on the equator of a unit sphere. We can consequently take 𝑆𝑂(2) as
a subgroup of the rotation group of the unit sphere 𝑆𝑂(3). The group of permutations of
𝑚 ≤ 𝑛 elements is just the group of permutations of 𝑛 elements, where 𝑛−𝑚 elements are left
invariant, and as such 𝑆𝑚 ≤ 𝑆𝑛. Note that for any group𝐺we have𝐺 ≤ 𝐺 and ({𝐼}, ⋅) ≤ 𝐺,
where ({𝐼}, ⋅) is the trivial group containing only the identity. These two special cases are
referred to as trivial subgroups. Subgroups that are not trivial are called proper subgroups
denoted by𝐻 < 𝐺.
Before introducing another important family of subgroups, we define a special kind of

operation known as conjugation. If ℎ, 𝑔 ∈ 𝐺, the conjugate of ℎwith respect to 𝑔 is 𝑔−1ℎ𝑔.3

We can not only perform this operation on individual group elements, but also subgroups
of 𝐺. Consider the proper subgroup𝐻 < 𝐺 with elements {ℎ𝑖}. If we take any element
𝑔 ∈ 𝐺 ∖ 𝐻, we can arrive at another subgroup of 𝐺 by conjugating all elements of the
subgroup𝐻with 𝑔, written as

𝑔−1𝐻𝑔 = {𝑔−1ℎ𝑔 ∣ ℎ ∈ 𝐻}. (1.2)

In general, the two subgroups𝐻 and 𝑔−1𝐻𝑔need not be the same. However, if there are some
𝑔which leave𝐻 invariant under conjugation, we say that these 𝑔 normalize𝐻. A collection
of these normalizing elements can be compiled together to form yet another subgroup of𝐺,
called the normalizer.

Definition 1.5 (Normalizer [11]). Let𝐺 be a group and𝐻 < 𝐺 a proper subgroup
of𝐺. The normalizer of𝐻 in𝐺 is the subgroup of𝐺 that leaves𝐻 invariant under
conjugation, i.e.

𝑁𝐺(𝐻) = {𝑔 ∈ 𝐺 ∣ 𝑔−1𝐻𝑔 = 𝐻}. (1.3)

In the special case of every element of𝐺 normalizing𝐻, that is𝑁𝐺(𝐻) = 𝐺,𝐻 is called
an invariant subgroup of𝐺 [20]. In the next section we will introduce an important example
of a finite group and its normalizer.

3This operation is colloquially referred to as “sandwiching” ℎwith 𝑔.
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1.1.2 The Pauli group and Clifford gates

Consider the Pauli matrices with the identity,

𝜎0 = 𝐼 = (1 0
0 1), 𝜎𝑥 = (0 1

1 0), 𝜎𝑦 = (0 −𝑖
𝑖 0 ), and 𝜎𝑧 = (1 0

0 −1). (1.4)

These well-known matrices are both hermitian and unitary, and consequently square to
the identity. For the latter three of them one can show that they satisfy the following
commutation and anticommutation relations,

[𝜎𝑗, 𝜎𝑘] = 2i𝜖𝑗𝑘𝑙𝜎𝑙
{𝜎𝑗, 𝜎𝑘} = 2𝐼𝛿𝑗𝑘 and

𝜎𝑗𝜎𝑘 =
1
2 ([𝜎𝑗, 𝜎𝑘] + {𝜎𝑗, 𝜎𝑘}) = 𝛿𝑗𝑘𝐼 + i𝜖𝑗𝑘𝑙𝜎𝑙,

(1.5)

with the Levi-Civita tensor 𝜖𝑗𝑘𝑙 (where Einstein summation convention is implied) and the
Kronecker delta 𝛿𝑗𝑘. Furthermore, the latter three are traceless and have eigenvalues of ±1.
To ease up on the indices, especially once tensor products of Pauli matrices come into play,
one also writes the Pauli matrix with the corresponding capital letter, 𝜎𝑥 = 𝑋, …. These
matrices also form a basis for hermitian 2 × 2matrices. Recall that physical observables are
represented by hermitian matrices. We can therefore consider the Pauli matrices as a basis for
physical observables on qubits.
While they also play an important role in representation theory, especially of Lie and

Clifford algebras, they themselves also form a group known as the Pauli group𝒫. The
single-qubit Pauli group is defined as the Pauli matrices with phases ±1 and ±𝑖,

𝒫 = {±𝐼, ±𝑖𝐼, ±𝑋, ±𝑖𝑋, ±𝑌, ±𝑖𝑌, ±𝑍, ±𝑖𝑍}. (1.6)

This definition can also be generalized to 𝑛 qubits.

Definition 1.6 (Pauli group [11]). The Pauli group 𝒫𝑛 is composed of tensor
products of 𝐼, 𝑋, 𝑌, and 𝑍 on 𝑛 qubits with an overall phase of ±1 and ±𝑖.

We can deduce from Equation (1.5) that𝒫𝑛 is not Abelian. The commutation relations
can be extended for the tensor products of Paulis, but there are some cases that then commute
non-trivially. For instance, 𝑋 ⊗ 𝑋 ≡ 𝑋1𝑋2 commutes with 𝑍 ⊗ 𝑍 ≡ 𝑍1𝑍2, even though
the individual Pauli matrices in the tensor products do not commute. These commutation
relations can be compacted into a general statement on tensor products of Pauli operators.
Two 𝑛-qubit Pauli operators commute non-trivially if there are an even number of anti-
commuting pairs in the tensor product structure. This excludes the identity, of course,
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since everything commutes trivially with the identity. The task of finding the commutation
relation between two operators then becomes a counting task.
Another group worth considering is the Clifford group, C𝑛, which is often defined as

the subgroup of unitary matrices with dimension 2𝑛 that normalize (cf. Definition 1.5) the
𝑛-qubit Pauli group,

C𝑛 = {𝑢 ∈ 𝑈 (2𝑛) ∣ 𝑢†𝒫𝑛𝑢 = 𝒫𝑛}.

Instead of being a finite group the Clifford group defined in this way is infinite, since it
includes all matrices of the form 𝑢 = 𝑒𝑖𝜑𝐼with some phase 𝜑 ∈ ℝ. By defining it in terms of
a finite subgroup of the above definition, the physical significance of the Clifford group also
becomes apparent.

Definition 1.7 (Clifford gates [11]). The Clifford group is the group generated by
the Hadamard, Phase and CNOT gates. These are called the Clifford gates.

TheClifford gates forman important subset of gates in quantumcomputing and especially
quantum error correction [22–26]. However, it should be noted that they do not form a
universal set of quantum gates. While the gates in the Clifford group can create entangled
states with theHadamard andCNOTgates, one needs an additional gate to achieve universal
quantum computation.

1.1.3 The stabilizer group

So far we have only examined groups in isolation. Among other things, we have shown
that the group generated by the Clifford gates normalizes the Pauli group. However, the
major role group theory plays in physics can best be demonstrated if one considers the action
of group elements on other mathematical objects outside of the group. These could be,
for example, Lagrangians, or more relevant for us, state vectors. Consider the two-qubit
state vector |+⟩ = (|0⟩ + |1⟩) /√2. As an eigenstate of the Pauli operator 𝑋, we can tell
that this state is resistant to bitflips. The group-theoretic way to put this is to say that |+⟩ is
ℤ2-symmetric. This notion of symmetry is where group theory finds most of its utility in
physics. As an additional example, consider the 2-qubit Bell state

∣𝜙⟩ = |00⟩ + |11⟩
√2

. (1.7)

Note that the unitary operations𝑋1𝑋2 and 𝑍1𝑍2 both have ∣𝜙⟩ as eigenstate with eigen-
value +1. Since

𝑋1𝑋2𝑍1𝑍2 ∣𝜙⟩ = ∣𝜙⟩ = 𝑍1𝑍2𝑋1𝑋2 ∣𝜙⟩ ,
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we can also see how these two operators commute with each other. The operators 𝑋1𝑋2
and 𝑍1𝑍2 are then said to stabilize the state ∣𝜙⟩. It is easy to convince oneself that these
operations stabilizing the state ∣𝜙⟩ should form a group. Doing nothing, i.e. the identity 𝐼,
clearly stabilizes the state, and since the Pauli matrices square to the identity, each element
of this stabilizer group is its own inverse (we omit verifying associativity, as this is inherited
from𝒫𝑛). The matrices𝑋1𝑋2 and 𝑍1𝑍2 therefore generate a symmetry group of ∣𝜙⟩, since
their product is clearly also a symmetry transformation on ∣𝜙⟩. Therefore, the final concept
of group theory we introduce is that of a symmetry group.

Definition 1.8 (Symmetry group). Let𝐺 be a group acting on a set𝑀. Let 𝑎 ∈ 𝑀.
We then call the subgroup

𝐻 = {ℎ ∈ 𝐺 ∣ ℎ𝑎 = 𝑎} ≤ 𝐺

symmetry group or fixpoint group of 𝑎.

In our example, we have the group of 2-qubit Pauli matrices,𝒫2, acting on the 2-qubit
Hilbert space𝐻⊗2, with a subgroup of this group, 𝒮 = {𝐼, 𝑋1𝑋2, −𝑌1𝑌2, 𝑍1𝑍2} ≤ 𝒫2, being
the symmetry group of the state ∣𝜙⟩ ∈ 𝐻⊗2. In general, we say that a unitary𝑈 stabilizes
a pure state ∣𝜓⟩ if 𝑈∣𝜓⟩ = ∣𝜓⟩. In other words, the stabilizer group of a pure state ∣𝜓⟩
is the set of all unitaries that have ∣𝜓⟩ as eigenvector with eigenvalue +1. For all further
considerations we restrict the unitaries to Pauli operators. Thus, the formal definition of an
𝑛-qubit stabilizer group can be stated as follows.

Definition 1.9 (Stabilizer group). Let𝐻⊗𝑛 denote the 𝑛-qubit Hilbert space. Given
a subset𝑉 ⊆ 𝐻⊗𝑛, the stabilizer is defined as

𝒮𝑉 = {𝑔 ∈ 𝒫𝑛 ∣ 𝑔 ∣𝜙⟩ = ∣𝜙⟩ ∀ ∣𝜙⟩ ∈ 𝑉} ≤ 𝒫𝑛. (1.8)

It would, in principle, be possible to define stabilizer groups of all unitaries instead of
the Pauli group. We will later see, however, that this restriction leads to an important result,
namely Theorem 1.14.
We note that global phase matters here. The operators with prefactor, such as −𝐼 are

not in the stabilizer. Furthermore, we have that the stabilizer is an Abelian subgroup of𝒫𝑛,
which can be shown by generalizing the example above. We can show the necessity of this
condition in the following. Suppose ∣𝜙⟩ ∈ 𝑉𝑆 is non-zero, and𝑀 and𝑁 are in 𝒮. Since𝑀
and𝑁 are tensor products of Pauli matrices, they either commute or anticommute. If they
anticommute we have

∣𝜙⟩ = 𝑀𝑁∣𝜙⟩ = −𝑁𝑀∣𝜙⟩ = − ∣𝜙⟩ , (1.9)

8



the stabilizer formalism

leading to a contradiction, since we had ∣𝜙⟩ being non-zero. (By the same argument we can
rule out −𝐼 to be in the stabilizer.)
At this point, we need to be careful not to put the cart before the horse. The stabilizer

group is not the stabilizer of𝑉 as such. If that were the case, then𝑉 = {|00⟩ , |11⟩}would
be stabilized by𝑋1𝑋2. Rather,𝑉𝑆 is the intersection of subspaces spanned by the eigenvalue
+1 eigenspaces of the operators in 𝒮. What this means in practice is that when working with
the stabilizer formalism, we would much rather first write out an Abelian subgroup of the
Pauli group (without −𝐼) and then deduce the subspace stabilized by this subgroup.

Definition 1.10 (Stabilized state space). Let 𝒮 ≤ 𝒫𝑛 be Abelian with −𝐼 ∉ 𝒮. The
space of states stabilized by 𝒮 is

𝑉𝑆 = {∣𝜙⟩ ∣ 𝑔 ∣𝜙⟩ = ∣𝜙⟩ ∀𝑔 ∈ 𝒮}. (1.10)

In the literature this space is also sometimes equivalently referred to as the code space
of the stabilizer.

So far, it is not entirely obvious how keeping track of operators growing exponentially in
size is a worthwhile method of representing quantum states or subspaces of a larger state
space. However, we can simplify the problem drastically by realizing two facts.
The first is summarized inDefinition 1.2 andTheorem1.3. Recall thatwe can equivalently

write a finite group as a collection of at most log(ord(𝐺)) generators. The Bell state example
from above has a full stabilizer group of𝒮 = {𝐼, 𝑋1𝑋2, −𝑌1𝑌2, 𝑍1𝑍2}. With Equation (1.5) we
can infer that𝑋1𝑋2 ⋅ 𝑍1𝑍2 = −𝑌1𝑌2, and since all of them square to the identity, an equivalent
form of the stabilizer group is given by the generating set𝐺 = ⟨𝑋1𝑋2, 𝑍1𝑍2⟩. At this point
we remark that while the generating set is explicitly not the entire group, the distinction
between the two is kept rather loosely. Oftentimes we will write that some stabilizer group
𝒮 is equal to its generating set. This is mostly a matter of convenience and readability. If
context does not explicitly demand it, we write the generating set and group interchangeably.
The second fact is a more subtle one. It uses the commutation relations laid out in

Equation (1.5). If we briefly neglect the phases again, or keep track of them separately, we
can write 𝑌 = 𝑋𝑍. As such, we can encode the entire stabilizer group in a bit matrix, where
𝐼 ≡ 00, 𝑍 ≡ 01,𝑋 ≡ 10, and 𝑌 ≡ 11. The bit matrix of the Bell state is

𝒮 ≡ [1 1 0 0
0 0 1 1]. (1.11)

This check matrix has a multitude of different use cases, one of them being the focus of
the entirety of Chapter 4. Another one is that if the rows of the check matrix are linearly
independent (mod 2), we have a minimal generating set. The generators of such a minimal
generating set are then called independent.
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Stabilizer density matrix
Before we go on to discuss the dynamics in the stabilizer formalism, i.e. stabilizer circuits,
we define the density matrix for stabilizers. We know that a stabilizer group 𝒮 consists of
Pauli operators, which share eigenstates. Thus, the density matrix of a pure state 𝜌 = ∣𝜙⟩⟨𝜙∣
is a projector onto all +1 eigenstates of the Pauli operators in the stabilizer. This can be
constructed by multiplying the projectors onto +1 eigenstates of the generating set. This
follows from ℙ2 = ℙ and the fact that the generating set recovers the whole group with
multiplication. Since we can write projectors of Pauli operators 𝑔 as ℙ = 1

2(𝐼 + 𝑔), we can
write

𝜌 = 1
2𝑛

𝑛
∏
𝑖=1
(𝐼 + 𝑔𝑖) (1.12)

for the density matrix of a pure state.
A mixed state in the stabilizer formalism can be described by removing generators from

the generating set.

Definition 1.11 (Stabilizer density matrix). Let 𝒮 be an 𝑛-qubit stabilizer group
with generating set ⟨𝑔1, … , 𝑔𝑙⟩with 0 ≤ 𝑙 ≤ 𝑛. The density matrix corresponding to
this stabilizer group is given by

𝜌 = 1
2𝑛

𝑙
∏
𝑖=1
(𝐼 + 𝑔𝑖) (1.13)

or alternatively as

𝜌 = 1
2𝑛 ∑𝑠∈𝒮

𝑠. (1.14)

We can convince ourselves that this definition is consistent with the general properties we
demand density matrices to fulfill.

1. Tr[𝜌] = 1, which is given by the fact that every matrix in the product of Equa-
tion (1.13) or the sum of Equation (1.14) is either a traceless Pauli matrix, or the
identity of dimension 2𝑛. The trace of the latter thus gets absorbed by the leading
factor.

2. Tr[𝜌2] ≤ 1 is given by the fact that 𝜌 = 𝑐ℙ𝑆 with 𝑐 ≤ 1, and ℙ𝑆 the projector onto the
code space of the stabilizer group. We have

Tr[𝜌2] = Tr[𝑐2ℙ2𝑆 ] = Tr[𝑐2ℙ𝑆] ≤ Tr[𝑐ℙ𝑆] = Tr[𝜌] = 1. (1.15)

3. 𝜌 = 𝜌†, which is given by the hermiticity of the Pauli matrices.
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Entropy of entanglement
With the notion of a density matrix defined in the stabilizer formalism, we can ask the
question about entropic quantities. Since we introduce methods to compute other entropic
and information-theoretic quantities in Section 3.1.2, we will here only define the entropy
of entanglement. Its definition can be stated as follows.

Definition 1.12 (Entropy of entanglement). Let ∣𝜙⟩ ∈ 𝐻⊗𝛮 be a bipartite pure
state with subsystems𝐴 and 𝐵. The entropy of entanglement of ∣𝜙⟩ then reads

𝑆E (∣𝜙⟩) = −Tr[𝜌𝛣 log 𝜌𝛣] = 𝑆vn(𝜌𝛣), (1.16)

where 𝜌𝛣 = Tr𝛢[∣𝜙⟩⟨𝜙∣] is the reduced density matrix of subsystem 𝐵 and 𝑆vn(𝜌𝛣) is
the von Neumann entropy, where one usually drops the index “vn” when referring
to the von Neumann entropy. Conventionally, one uses the logarithm of base 2.

In bipartite states this quantity measures how entangled one subsystem is with the other.
That is, it gives a numerical value to the non-local correlations between subsystems. If we split
our stabilizer group into local subgroups of𝐴 and 𝐵, 𝒮𝛢 and 𝒮𝛣, we have the possibility of
another subgroup remaining, namely 𝒮𝛢𝛣 accounting for correlations. 𝒮𝛢(𝛣) are subgroups
containing only operators acting on𝐴(𝐵). If we split our stabilizer group in this way, we
find that there is a nice closed-form expression for the entanglement entropy [27].

Theorem 1.13 (Entropy of entanglement – stabilizer). The entropy of entanglement
of a bipartite pure state ∣𝜙⟩

𝛢𝛣
with partitions𝐴 and 𝐵 is given by

𝑆𝛦(∣𝜙⟩) =
1
2|𝒮𝛢𝛣|. (1.17)

For the 2-qubit Bell state we once again have 𝒮 = ⟨𝑋𝑋,𝑍𝑍⟩. Notice that 𝒮𝛢 = 𝒮𝛣 = {𝐼}
and 𝒮𝛢𝛣 = 𝒮. The entropy of entanglement between 𝐴 and 𝐵 should be 1 since there is
only one independent entangled pair. We could additionally compute the reduced density
matrices and the matrix logarithm instead, arriving at the same result.
With Equation (1.17) we find that this result is also obtained by counting the generators

in 𝒮𝛢𝛣, which is 2, then dividing by 2, which gives the correct result of 1.
The proof of Theorem 1.13 and the practical computational implementation are rather

involved. The interested reader is invited to consult Ref. [27], where the method is intro-
duced. For now, it suffices to say that the generating set can be brought into a canonical
form, consisting of two sets generating 𝐴 and 𝐵, respectively, and two sets of generators,
which anticommute in pairs, that generate𝐴𝐵. The size of this last set is the one which gives
the entanglement entropy.
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1.1.4 Stabilizer circuits

Finally, we discuss the dynamics of stabilizer states in quantum circuits. This is where we can
see the main advantages of the stabilizer formalism, as it will ultimately lead to the efficient
simulation of a wide class of quantum circuits with classical computers. As introductory
note we define a stabilizer circuit to be a quantum circuit using only Clifford gates and
measurement gates of Pauli operators. Let us therefore begin by discussing unitary gates.

Unitary gates
Suppose we apply a unitary𝑈 to a vector space𝑉𝑆 stabilized by 𝒮. For any ∣𝜙⟩ ∈ 𝑉𝑆 and any
𝑔 ∈ 𝒮we have

𝑈∣𝜙⟩ = 𝑈𝑔 ∣𝜙⟩ = 𝑈𝑔𝑈†𝑈⏟
𝛪

∣𝜙⟩ . (1.18)

We thus have that the state𝑈∣𝜙⟩ is stabilized by the operator𝑈𝑔𝑈†. Since our choices of
∣𝜙⟩ and 𝑔were arbitrary in𝑉𝑆 and 𝒮, respectively, we have that the transformed vector space
is stabilized by the conjugated stabilizer group

𝑈𝒮𝑈† = {𝑈𝑔𝑈† ∣ 𝑔 ∈ 𝒮}. (1.19)

Since we restricted ourselves to unitary gates in the Clifford group, which normalizes the
Pauli group, we still exclusively have Pauli operators in𝑈𝑆𝑈†. Our task then becomes to
track the effects of Clifford group elements on a subset of Pauli operators. In particular, we
conjugate the generators in the generating set with the unitary operation corresponding to
the applied gate. Let us therefore consider the conjugation of the Pauli matrices with the
unitary Clifford gates. For the Hadamard gate𝐻 = 𝛸+𝑍

√2
we have

𝐻𝑋𝐻† = 𝑍, 𝐻𝑌𝐻† = −𝑌, 𝐻𝑍𝐻† = 𝑋 (1.20)

For the CNOT gate𝑈with qubit 1 as control and qubit 2 as target we have

𝑈𝑋1𝑈
† = 𝑋1𝑋2, 𝑈𝑋2𝑈

† = 𝑋2 (1.21)
𝑈𝑍1𝑈

† = 𝑍1, 𝑈𝑍2𝑈
† = 𝑍1𝑍2, (1.22)

where for all other twoqubit Pauli operatorswe canuse the above relations andEquation (1.5)
to deduce their conjugation relations. Furthermore, we already know an efficient method of
tracking generating sets through𝑋 and 𝑍 alone. Lastly, we want to consider the action of
the phase gate on the Pauli operators,

𝑆𝑋𝑆† = 𝑌 𝑆𝑍𝑆† = 𝑍. (1.23)

Note that the Clifford gates being the normalizer of the Pauli group means that we will
inevitably lose gates, which would realize universal quantum computing. Notable examples
of gates not included in the gate set generated by the Clifford group are the 𝑇 gate, also
known as 𝜋/8 gate, and the Toffoli gates.
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Measurements
We now know the mechanisms behind unitary gates in the stabilizer formalism. However,
we can also include measurement gates in quantum circuits. It turns out that measurements
can also be described in a simple way in the stabilizer formalism. Since physical observables
are represented by hermitian operators, we can assume that the measurement operator is a
product of Pauli matrices𝑀 ∈ 𝒫𝑛. Suppose we measure𝑀 in a system in a state ∣𝜙⟩with
stabilizer group 𝒮 = ⟨𝑔1, … , 𝑔𝑛⟩. Two questions naturally arise: what is the measurement
result, and how does the stabilizer group transform under this measurement?
To answer both of these, we first need to realize the two distinct possibilities:

1. 𝑀 commutes with all the generators of the stabilizer group.

2. 𝑀 anticommutes with at least one of the generators. By restructuring the generating
set, we can ensure that there is at most one generator anticommuting with𝑀. We
thus assume without loss of generality that𝑀 anticommutes with 𝑔1.

For the first case, we have that either𝑀 or −𝑀 is itself an element of the stabilizer group,
since for arbirtary generators 𝑔𝑗

𝑔𝑗𝑀∣𝜙⟩ = 𝑀𝑔𝑗 ∣𝜙⟩ = 𝑀∣𝜙⟩ . (1.24)

As this holds for any 𝑔𝑗, we have that𝑀∣𝜙⟩ = ± ∣𝜙⟩, where either ±𝑀 is in the stabilizer
group. Assuming w.l.o.g. that𝑀 ∈ 𝒮, we have that the measurement of𝑀 yields the result
+1with probability one, i.e. deterministically. Since the stabilizer group already contained
𝑀, it does not change.
In the second case, we have that the measurement operator anticommutes with 𝑔1. Note

that the projectors for the measurement outcomes are ℙ = 1
2 (𝐼 ±𝑀). Therefore, the

probabilities for the respective outcomes are given by

𝑃(±1) = Tr[12 (𝐼 ±𝑀) ∣𝜙⟩⟨𝜙∣]. (1.25)

With 𝑔1 ∣𝜙⟩ = ∣𝜙⟩ and {𝑔1,𝑀} = 0we have

𝑃(+1) = Tr[𝐼 +𝑀2 𝑔1 ∣𝜙⟩⟨𝜙∣]

= Tr[𝑔1
𝐼 −𝑀
2 ∣𝜙⟩⟨𝜙∣]

= Tr[𝐼 −𝑀2 ∣𝜙⟩⟨𝜙∣ 𝑔1]

= Tr[𝐼 −𝑀2 ∣𝜙⟩⟨𝜙∣] = 𝑃(−1). (1.26)

Since we can only measure +1 or −1 and the probabilities for either are equal, we can deduce
that 𝑃(±1) = 1/2. After the measurement, the generating set gets affected such that it is
now ⟨±𝑀, 𝑔2, … , 𝑔𝑛⟩ depending on the measurement outcome.
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Stabilizer circuits and error correction
No discussion of the stabilizer formalism would be complete without as much as a mention
of its applications in quantum error correction. To this end, consider the quantum circuit
shown in Figure 1.1. A variation of this circuit will play an important role in our discussion
of the projective transverse-field Ising model in Section 1.3.

|0⟩ 𝐻
ZZ

|0⟩
ZZ

|0⟩
X

Figure 1.1.: Circuit showing the error detection and correction capabilities within the stabilizer
formalism. First, a Bell cluster is created by the application of the Hadamard and two
CNOT gates. Afterwards, an error occurs in the form of an𝑋measurement, which we
can attempt to detect via stabilizer measurements.

Initially, we have the state |000⟩, which is stabilized by𝒮 = ⟨𝑍1, 𝑍2, 𝑍3⟩. After applying𝐻
to qubit 1 in the circuit, the stabilizer generators are conjugated with𝐻1, such that we now
have𝒮 = ⟨𝑋1, 𝑍2, 𝑍3⟩. The corrresponding state stabilized by𝒮 is |+⟩⊗|00⟩ =

|0⟩+|1⟩
√2

⊗|00⟩.
After the first CNOT, we have 𝒮 = ⟨𝑋1𝑋2, 𝑍1𝑍2, 𝑍3⟩ according to the transformation
rules given in Equation (1.21). Before the measurement on qubit 1, we apply another
CNOT gate, thus creating a 3-qubit Bell cluster (|000⟩ + |111⟩)/√2with stabilizer group
𝒮 = ⟨𝑋1𝑋2𝑋3, 𝑍1𝑍2, 𝑍2𝑍3⟩.
Then, an error occurs in the form of an 𝑋 measurement on qubit 3. The stabilizer

generators are now ⟨𝑋1𝑋2, 𝑍1𝑍2, 𝑋3⟩, which we are, in principle, unaware of. However, since
we are performing syndrome measurements afterwards in the form of 𝑍𝑍measurements,
we can detect, and subsequently correct the error. In our example, a measurement of 𝑍1𝑍2
would be ameasurement of a stabilizer generator, andwould thus yield+1. Next, wemeasure
𝑍2𝑍3. According to the previously introduced rules, the outcome is ±1with probability

1
2

and the stabilizer generators afterwards are 𝒮 = ⟨𝑋1𝑋2𝑋3, 𝑍1𝑍2, ±𝑍2𝑍3⟩. In the case where
the outcome is +1, we effectively corrected the error already, since we recovered the previous
stabilizers. In the converse case, we at least detected the syndrome of the error: bit flip on
qubit 3must have occurred! We can then correct the error appropriately and flip it back by
means of applying a Pauli-𝑋.
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Simulation of stabilizer circuits
Simulating stabilizer circuits can thus be done by keeping track of all the generators and
updating them accordingly. As we have seen in above example, we were not required to
perform exponentially hard calculations to get to the final state of the circuit. This fact can
be used to formulate the following theorem [28].

Theorem 1.14 (Gottesman-Knill theorem). Suppose a quantum computation is
performed which involves only the following elements: state preparations in the
computational basis, Clifford gates, and measurements of observables in the Pauli
group (which includes measurement in the computational basis as a special case),
together with the possibility of classical control conditioned on the outcome of
such measurements. Such computation may be efficiently simulated on a classical
computer.

We will forego a detailed discussion of the simulation of stabilizer circuits on classical
computers, as well as the proof to Theorem 1.14 until Chapter 4. For now we remind
ourselves that the Clifford gate set does not constitute a universal set of quantum gates.
Thus, classical computers cannot suffice to efficiently simulate quantum computers.
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1.2 entanglement transitions
Quantum entanglement is one of the most important features of quantummechanics, open-
ing the door to quantum computation and quantum information. It distinguishes quantum
information from classical information, as the creation, manipulation, and exploitation
of entanglement is what quantum information science is ultimately all about. In the past,
entanglement has famously perplexed even the greatest physicists [29, 30]. This tradition
has been kept ongoing as it still, to this day, excites the curiosity of physicists; from the study
of black holes to entanglement growth on a microscopic scale [31, 32], among other things.
One particular excitation of the curious minds specifically relevant to this thesis is the

field of measurement-induced entanglement phase transitions, or entanglement transitions
for short. This area in the study of entanglement, kickstarted by three groups independently
[33–35], has since become an active field in theoretical physics [36–43]. In this section
we provide an overview over the key concepts of measurement-induced phase transitions
relevant to the thesis.
This section is a rough adaption of and largely follows Ref. [44], if not explicitly stated

otherwise. In this spirit, we invite the interested reader to follow the suggestion in the
aforementioned paper, and further deepen their understanding by referring to the review
papers [15] and [45], as well as the author’s initial introduction to the field, Ref. [36].

1.2.1 Quantifying entanglement

A quantum state is called entangled if we cannot specify it by describing the components
independently. Alternatively, a more mathematical description can be stated as follows.
Suppose that a quantum system contains two distinct parts 𝐴 and 𝐵. If we can write the
state of the system as ∣𝜙⟩ = ∣𝜙𝛢⟩ ⊗ ∣𝜙𝛣⟩, where ∣𝜙𝛢⟩ and ∣𝜙𝛣⟩ are the states of subsystems𝐴
and 𝐵, respectively, the state of the system is called separable. If ∣𝜙⟩ cannot be decomposed
in this way, then𝐴 and 𝐵 are entangled.
As an example, consider the state

∣𝜑⟩ = |+𝛢⟩ ⊗ |+𝛣⟩

= 1
√2

(|0𝛢⟩ + |1𝛢⟩) ⊗
1
√2

(|0𝛣⟩ + |1𝛣⟩) (1.27)

= 1
2 (|0𝛢0𝛣⟩ + |0𝛢1𝛣⟩ + |1𝛢0𝛣⟩ + |1𝛢1𝛣⟩) .

The state ∣𝜑⟩ in this example is separable, since the two partitions of the system are in their
respective |+⟩ states. Conversely, we can consider the state

∣𝜙⟩ = 1
√2

(|0𝛢0𝛣⟩ + |1𝛢1𝛣⟩) . (1.28)
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Here, the state ∣𝜙⟩ cannot be separated as before. We therefore call this an entangled state.
Although technically correct, this definition, along with the paradigmatic examples given

above, can be misleading. It insinuates a sort of binary relation in the sense that a system
is either in an entangled state or in a separable (product) state. It thus does not obviously
lead to a quantitative description of the degree of entanglement between𝐴 and 𝐵. To move
beyond this limiting binary perspective, we can reframe entanglement through the lens of
correlations, not unlike the correlations known from classical statistics, such that we can
employ the toolset of classical statistics and information theory. That is, we can just as well
consider entanglement in terms of possible measurement outcomes for the subsystems𝐴
and 𝐵 for subsequent measurements on 𝐵 or𝐴. The quantum nature of entanglement then
arises from the non-locality of these correlations.4

For a better grasp of this intuition, we return to the examples from above. Suppose
we perform a computational basis measurement on qubit 𝐴, while the system is in the
state described by Equation (1.27). This measurement yields either +1 or −1 as outcome
with equal probability, 𝑃(±1) = 1/2, and collapses the state of the qubit accordingly.
A subsequent measurement of qubit 𝐵 in the computational basis then turns out to be
unaffected by the previous measurement;𝐴 and 𝐵 are thus uncorrelated, i.e. unentangled.
The probabilities of the measurement outcomes +1 or −1 on qubit 𝐵 are still the same as
before.
If we were to perform the same procedure on a system in the state described by Equa-

tion (1.28), thiswouldno longer be the case. Ameasurement of qubit𝐴 in the computational
basis would still yield the outcomes ±1with equal probability, 𝑃(±1) = 1/2. However, the
wave function now collapses in a fundamentally quantum manner: the measurement of
one qubit instantaneously collapses the state of the other as well, since the total wave func-
tion collapses to one of |0𝛢0𝛣⟩ or |1𝛢1𝛣⟩. This yields a definitive outcome for a subsequent
measurement of qubit 𝐵. For instance, if we measured +1, corresponding to |0𝛢⟩, the state
after the measurement is ∣𝜙′⟩ = |0𝛢0𝛣⟩. A measurement of 𝐵would therefore also yield +1.
Therefore, by measuring one of the constituents of the bipartite system, we have eliminated
the uncertainty of the measurement outcome of the other.
This uncertainty canbequantifiedby the entanglement entropy. Formally, it quantifies the

reduction of the statistical entropy of measurement outcomes of𝐴 by completely measuring
subsystem 𝐵. We have already discussed the entropy of entanglement in the context of the
stabilizer formalism in Section 1.1.3 with Definition 1.12. Here, we motivate it further and
convince ourselves that the previously given definition is reasonable.
First, construct the density matrix 𝜌 of the system. For a pure state ∣𝜙⟩, the density matrix

4Note that entanglement is not the only type of quantum correlation. There is a wide variety of correlations
that are entirely non-classical in nature. This non-classicality is characterized by a measure called “quantum
discord” [46]
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is the projector onto ∣𝜙⟩,

𝜌 = ∣𝜙⟩⟨𝜙∣ . (1.29)

As the density matrix is an extension of (discrete) probability distributions over the state
space of qubits, the density matrix of a pure state is just the state itself with probability 1.
We can nowmarginalize over the measurement outcomes of measurements on a qubit. This
is done by the partial trace operation and defines the reduced density matrix

𝜌𝛢 = Tr𝛣[𝜌]. (1.30)

For the previous example of the entangled state ∣𝜙⟩we have a density matrix

𝜌 = ∣𝜙⟩⟨𝜙∣ = 1
2(

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

) (1.31)

with the rows and columns corresponding to the two-qubit basis vectors. The partial trace
now corresponds to a trace over the 2 × 2 submatrices in the corners,

𝜌𝛢 = Tr𝛣[𝜌] =
1
2(
1 0
0 1). (1.32)

Note that this reduced density matrix corresponds to a mixed state. It is not a coherent
superposition of basis states, but rather a classical mixture of |0𝛢⟩ and |1𝛢⟩, both with
probability 1/2. The entanglement entropy is then the statistical entropy of this specific
mixture. As already given in Definition 1.12, it is defined as

𝑆E(∣𝜙⟩) = −Tr[𝜌𝛢 log 𝜌𝛢], (1.33)

which is equivalent to the von Neumann entropy of the subsystem density matrix 𝜌𝛢, which
is in turn equivalent to the Shannon entropy [47, 48].
We remark that the entanglement relation between subsystems𝐴 and 𝐵 is a symmetric

one: asking how entangled 𝐴 is with 𝐵 yields the same degree of entanglement as asking
how entangled 𝐵 is with𝐴. This symmetry resolves the seemingly contradictory notation in
Definition 1.12 and Equation (1.33). It is the same phenomenon from either perspective.
While that is the case for subsystems𝐴 and 𝐵 once they have been fixed, the same level of
agnosticism cannot be ascribed to the choice of subsystems. If the partitioning of𝐴 and 𝐵
is ambiguous, the degree of entanglement is dependent on how one slices the system apart.
Once one fixes a choice of𝐴 and 𝐵, the degree of entanglement between them is symmetric.
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1.2.2 Random circuits

In the context of entanglement transitions, we often deal with unitary circuits, either con-
sisting of randomly chosen unitary operators, or with unitaries randomly placed in a circuit
layout (cf. Figure 1.2). This naturally raises two questions: why unitary circuits, and why
should they, in any way, be random? In this subsection we try to answer both of these,
starting with the first.

Why unitary circuits?

A unitary circuit is an alternative way next to the Schrödinger equation to describe the time
evolution of a quantum state. While the Schrödinger equation describes the time evolution
in continuous-time, unitary circuits are employed to describe the dynamics in discrete-time.
That is, in a unitary circuit, the state evolves according to the unitaries applied at certain
timesteps. As a visualization, consider the circuits depicted in Figure 1.2. From an initial
product state (represented by the arrows pointing up) we have a discrete-time dynamics to
some steady state.
Describing the time evolution of a system with a discretized time dimension can be

motivated by amutlitude of factors. Themost straightforwardmotivation is the discrete time
evolution bymeans of the application of unitaries inherent in quantum computers. Another
reason is the approximation of continuous time dynamics. When simulating quantum
systems on a classical computer, one only has access to a discrete set of timesteps. As such,
a unitary circuit can function as an approximation of the continuous-time dynamics. An
implementation of the circuit depicted in subfigure (b) of Figure 1.2 could, for instance,
approximate the continuous-time dynamics of a one-dimensional spin chain with nearest-
neighbor interactions.
We remark that the approximation of continuous-time dynamics can not only be moti-

vated from a technical standpoint, but also from a mathematical one. As a matter of fact,
the validity of this approximation is not as simple as it may seem. For some Hamiltonian
with nearest-neighbor interaction, we may write𝐻 = ∑𝑗𝐻𝑗 with local interactions𝐻𝑗. In
general, we have5

𝑒−𝑖𝛨𝑡 = 𝑒−𝑖∑𝑗𝛨𝑗𝑡 ≠ ∏
𝑗
𝑒−𝑖𝛨𝑗𝑡. (1.34)

If we now consider the limit where 𝑡 → 𝛥𝑡 → 0, we obtain

𝑒−𝑖𝛨𝛥𝑡 = 𝑒−𝑖∑𝑗𝛨𝑗𝛥𝑡 = ∏
𝑗
𝑒−𝑖𝛨𝑗𝛥𝑡 + 𝒪 ((𝛥𝑡)2) . (1.35)

5~ = 1
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𝑡

𝑥

(a) Random placement of
unitary operators

random
unitary

𝐻𝑗

𝑡
(b) Fixed “brickwork” pattern
of random unitary operators

Figure 1.2.: Examples of unitary quantum circuits. Note that in the theory of random circuits and
entanglement- or measurement-induced phase transitions, circuit diagrams are conven-
tionally shown in time-position representation, instead of the usual position-time. The
arrows on the respective 𝑥-axes represent an array of spins—or qubits—initially in a prod-
uct state. Subfigure (a) shows a random circuit, where “random” refers to the placement
of unitary gates in the space-time lattice. Subfigure (b) shows a random circuit with a
fixed “brickwork” pattern, where random refers to the choice of unitaries, in that we
choose unitaries from a given ensemble. The circuit diagrams are adapted from Fig. 1 of
Ref. [44]

Therefore, the total time evolution of the many-body system can be represented as a product
of local time evolutions, as long as one chooses to discretize the time evolution with suffi-
ciently small 𝛥𝑡. The error of discretizing the time evolution of length 𝑇 in steps of size 𝛥𝑡
is of order 𝒪(𝛥𝑡/𝑇). Both the error and Equation (1.35) follow from the Trotter product
formula [49], which is why this process of discretizing the dynamics is often referred to as
“Trotterization”.

The use of unitary circuits is therefore both motivated by the applicability for prospective
quantum computers, as well as the simulation of quantum dynamics on a classical computer
by means of Trotterization. Having answered the first question, we can now turn towards
the question of why the unitary operations in the circuit should be random.

Why random?
Under the umbrella of “quantum dynamics” does of course fall the dynamics of entangle-
ment, and the question of why the unitary circuit should in any way be random brings
us back to exactly that (particularily the growth of entanglement). By choosing a specific
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Hamiltonian to dictate the dynamics, we fix the time evolution to be somewhat streamlined
to the specific system. (In a classical simulation, we would simulate the circuit in subfigure
(b) of Figure 1.2 with fixed unitaries given by the Hamiltonian.) The motivation of ran-
domizing the unitaries—or the placement thereof in the space-time grid (subfigure (a) of
Figure 1.2)—is then that one aims to unveil generic entanglement dynamics, abstracted away
from any particular Hamiltonian.
Furthermore, investigation of entanglement dynamics, in particular entanglement growth,

is important for the simulation of quantum states on a universal quantum computer. For
short-range entangled states there are efficient algorithms to simulate their behavior such
as matrix product state simulations. For states with extensive entanglement, i.e. where
the entanglement entropy scales with the system’s volume, this is no longer the case. (The
stabilizer formalism would be agnostic to this, which is why we specified the universal
quantum computer.)
With the circuit layout given, e.g. subfigure (b) of Figure 1.2, we are now tasked with

selecting for random unitary operators. That is, we need to specify an ensemble of unitaries
from which we randomly choose. A sensible first choice would be to select uniformly from
the set of all unitarymatrices. This type of random unitary is referred to asHaar-randomma-
trix. The dynamics of random circuits with Haar-random unitaries is the most generic type
of dynamics. However, it is in general exponentially hard to simulate, as the dimensionality
goes with 2𝛮 for𝑁 qubits. As previously introduced, the Clifford group—generated by the
Clifford gate set (see Definition 1.7)—constitutes a narrower ensemble of Restricting the set
of operators in this way then allows for efficient classical simulations. As the peculiarities of
the Clifford gate set and its connection to classical simulability have been discussed in other
sections, we refer the reader to Sections 1.1.2, 1.1.3 and 4.1.1 and Theorem 1.14, and forego
additional discussions thereof.
Naturally, there is more to the choice of random unitary circuits for the study of entangle-

ment dynamics and entanglement growth, with excursions to the eigenstate thermalization
hypothesis among other things. However, this would go far beyond the scope of this thesis.
For our purposes it suffices that we have done our due diligence and convinced ourselves that
the framework of random circuits is a practical one for the study of entanglement growth.

1.2.3 Measurement-Induced Phase Transitions

We have now discussed how entanglement can grow and spread in a system by means of
random unitary operations. As a concrete example of a circuit that generates entanglement,
recall the circuit depicted in Figure 1.1 and consider the first three (or two, if one chooses
the middle qubit as control qubit for the second CNOT gate) “timesteps”. If we had chosen
our random unitaries from the Clifford gate set—or had gotten infinitely lucky with Haar-
randommatrices—this could have been one possible circuit. This created an entangled state
over the three qubits, a 3-qubit Bell cluster.
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𝑡 = 0

𝑡 = 1

𝑡 = 2

𝑡 = 3

𝑡 = 4

𝑡 = 5

𝑡 = 6

random unitary

local measurement

Figure 1.3.: Example of a random unitary circuit model studied in the context of measurement
induced phase transitions with measurements performed with probability 𝑝 at each site
for each timestep. In this paradigmatic circuit, two-qubit unitary gates are arranged in a
way resembling a brickwork wall, and local single-qubit measurement gates are randomly
distributed. The circuit diagram is adapted from Fig. 1 of Ref. [36].

Let us now also consider the operation immediately following the second CNOT in
Figure 1.1, a measurement gate on qubit 3. What was merely implied in the previous
discussion of the circuit, we now state explicitly: the measurement gate removed the third
qubit from the entanglement cluster, thus reducing the degree of entanglement in the system.
This is in contrast to the preceeding gates, which created the cluster to begin with. (The fact
that the syndromemeasurements succeeding the localmeasurement restore the entanglement
becomes important in the projective transverse-field Ising model.)
With these insights we can intuit the idea of the measurement-induced entanglement

phase transition (MIPT): Unitary operators tend to increase the degree of entanglement in a
system, while local measurements tend to decrease it. Two qubits can be entangled with a
Hadamard andCNOT, while measuring either one disentangles the two. A natural question
that arises is the following. How, if at all, is the entanglement dynamics altered if the circuit
as depicted in subfigure (b) of Figure 1.2, is augmented by sporadic local measurements,
such as depicted in Figure 1.3?
The answer to this question is, as is so often the case, “it depends”. Specifically, it depends

onhow frequent themeasurements are, that is, it depends on themeasurement rate𝑝. If there
are no, or only a minimal amount of measurement gates, 𝑝 ≪ 1, the entanglement growth
remains (qualitatively) unaffected, since we only rarely remove a qubit from an entanglement
cluster. However, if there is a measurement gate for each qubit at every timestep, 𝑝 → 1, we
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stun or effectively stop the growth of entanglement.
As it turns out these two extremes cases of the measurement frequency fall into two

distinct phases, where there is a phase transition between them with a critical rate 𝑝𝑐. This is
the measurement-induced entanglement phase transition. If measurements are rare, 𝑝 < 𝑝𝑐,
the system is in the entangling phase. Conversely, if measurements are sufficiently frequent,
i.e. more frequent than the critical frequency 𝑝𝑐, the system is in the disentangling phase (also
sometimes called “weak” and “strong monitoring” phases, respectively). The key features of
the two phases are as follows.

Entangling phase: This phase is characterized by extensive entanglement when initializing
the system with a (highly separable) pure state. The entanglement then grows linearly
in time, proportional to the size of the subsystem.
Furthermore, if one has a mixed state initially, the state will most likely never be
purified. Only in timescales exponential in the system size does the mixedness decay.

Disentangling phase: This phase is characterized by the absence of entanglement growth.
A pure state will either never develop extensive entanglement if it is a product state
initially, or will disentangle if initially entangled. A mixed state will find itself purified
over an 𝒪(1) timescale.

The original problem of the MIPT concerned itself with the circuit of the form depicted
in Figure 1.3, which is known as a hybrid circuit. The basic layout for 𝐿 qubits and total
time 𝑡 is a brickwork pattern of Haar-random unitaries, which are followed by measurement
gates applied on each site with a classical probability 𝑝. This probability is also referred to
as the measurement rate. Once the procedure has concluded we quantify entanglement
between two partitions of the total system of 𝐿 qubits. The most relevant partitioning for
theMIPT and also in the context of this thesis is the exact halving of the system. That is, one
is primarily interested in the half-system entanglement entropy. (For the remainder of this
thesis we refer to the half-system entanglement entropy, if not explicitly stated otherwise.)
The phenomenology of the phase transition in this setup can be split in two limiting cases:
infinite system size 𝐿 → ∞ with finite time 𝑡, and finite system size 𝐿 in the steady state
𝑡 → ∞. We have

𝑆(𝑡, 𝐿 → ∞) ∝ {
𝑡, 𝑝 < 𝑝𝑐
log 𝑡, 𝑝 = 𝑝𝑐
const., 𝑝 > 𝑝𝑐

(1.36)

for the limit of large sizes and

𝑆(𝑡 → ∞, 𝐿) ∝ {
𝐿, 𝑝 < 𝑝𝑐
log 𝐿, 𝑝 = 𝑝𝑐
const., 𝑝 > 𝑝𝑐

(1.37)
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for the steady-state limit. In the weak monitoring regime, we therefore have volume-law
entanglement, since in one dimension the volume of a chain is its lenth. We then have
logarithmic scaling at the critical point, where entanglement grows, but much slower than
in the weak monitoring case. In the strong monitoring phase, the entanglement entropy is
proportional to a constant, not scaling with system size or timescale. This is referred to as an
area-law phase. Since the area is the boundary of a volume, and the boundary of a partition
is just a single site (or two, in case of periodic boundary conditions), we have a constant.
There are three concluding notes to this section we do not want to fail to bring up.

First, although the study of hybrid circuits, such as the one shown in Figure 1.3 was the
initially studied setup, entanglement transitions have also been theorized in measurement-
only circuits. We can convince ourselves that this theorizing is reasonable by considering the
second half of the circuit shown in Figure 1.1. There, the initial entanglement structure is
restored by a two-qubit projective measurement, after a perturbation in the form of a single-
qubit projective measurement disentangled the cluster. While the state is not necessarily the
same as before, we have the same distribution of entanglement among the qubits. 6

Second, the general problem of a measurement-induced phase transition is not entirely
quantum in its nature. Of course, we already established that entanglement is a quantum
phenomenon. However, what we mean by that is that questions concerning the critical
behavior of hybrid—or even measurement-only—circuits can oftentimes be mapped to
classical problems that have an exact solution. For instance, one can understand the MIPT
in hybrid circuits as minimal cut in the circuit diagram, where measurements “cut through”
an entanglement structure generated by the application of unitaries. This in turn can be
understood by a specific mapping to 2D percolation, which has already been studied with
great rigor in the past (for more context on percolation theory, see Refs. [50–53]). These
mappings allow for (a) bounds on the critical points of the phase transitions and (b) more
substantiated predictions, supporting the ones one arrives at through quantum-mechanical
considerations and classical simulations.
This then brings us to the third and final point. Notice that in the previous paragraphs,

as well as the entirety of the present section, we have meticulously avoided to use the word
“experiment”. The reason behind this choice stems not from some grudge against exper-
imentalists. On the contrary! Beyond all the beautiful theory of measurement-induced
entanglement phase transitions hides a haunting spectre, known as the sampling problem7.
This problem makes it difficult (not to say impossible) to observe these transitions in an
experimental setting. Since one of the goals of this thesis is to circumvent the sampling
problem in a specific circuit model (the projective transverse-field Ising model), we dedicate
Section 1.4 to the details behind the sampling problem and continue with the introduction
of the model system.

6For some nice visualizations of entanglement pairing and clustering, we refer to Figures 1 and 11 in Ref. [42].
7also called the postselection problem
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1.3 the projective transverse-field ising model
In the previous section we gave an overview of the field of entanglement transitions. How-
ever, phase transitions are a ubiquitous phenomenon all across theoretical physics. One
paradigmatic example of a system exhibiting critical behavior is the Ising model, named after
Ernst Ising, who, in his Ph.D. thesis, showed that there is no ferromagnetic ordering (i.e. no
phase transition) in one dimension for finite temperatures [54]. Only for higher dimensions
does the Ising model exhibit critical behavior. Following that, we have the transverse-field
Ising model, which does have a phase transition in one dimension [19].
This all culminates into the model studied in this thesis, the projective transverse-field Ising

model (PTIM) introduced in Ref. [1]. This model also has a phase transition, namely an
entanglement transition. In this section we want to motivate the PTIM by going backwards
through its name, and discuss the entanglement transition explicitly.

1.3.1 The Ising model

In this subsection, we briefly review the classical Ising model, following Refs. [54, 55].
Although it is often made subject in undergraduate courses on statistical mechanics, its
importance for the paradigm of phase transitions cannot be understated. It is one of the
simplest systems exhibiting critical behavior. Crucially this is not the case in one dimension.
We now want to specifically highlight the absence of a phase transition in one dimension.
To this end consider a chain of 𝐿 classical spins. “Classical” in the sense that they are only
allowed to point up or down. The Hamiltonian of the system reads8

𝐻 = −2𝐽
𝐿−1
∑
𝑖=1

𝑆𝑧𝑖 𝑆
𝑧
𝑖+1 (1.38)

with 𝐽 > 0, such that the ground state is obtained by all adjacent spins lining up. The energy
of this state is thus −𝑁𝐽/2, since 𝑆𝑧𝑖 = +1/2 for all 𝑖 in the chain. Consider now the case
where a “mistake” is added to the system in the form of one spin flipping. This is associated
with an energy cost of 𝛥𝐸 = 𝐽, since we go from an energy saving 𝐽/2 contribution to −𝐽/2.
However, we did not specify where this defect appeared. It could have been on any of the 𝐿
sites. Thus, there is an entropy gain of 9 𝑆 = ln 𝐿. In the thermodynamic limit (𝐿 → ∞),
the cost of a defect is still 𝐽, whereas the contribution from the entropy becomes infinite.
For our considerations, we have that the properties of the system are determined by the free
energy

𝐹 = 𝐸 − 𝛽−1𝑆 (1.39)

8Here, 𝑆𝑧𝑖 is the 𝑧-component of the classical spin with 𝑆
𝑧
𝑖 = ±1/2.

9𝑘𝛣 = 1
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with 𝛽 = 1/𝑇. It is clear that for finite 𝛽 (or non-zero temperatures) 𝐹 → −∞ in the
presence of defects. We therefore have that for temperatures above absolute 0, spin-flips
will spontaneously occur, and there is no long-range order in one dimension. Equivalently,
one can say that the critical temperature is 𝑇 = 0. This consideration is valid for all one-
dimensional lattices.

1.3.2 The transverse-field Ising model

The Ising model as conceived byWilhelm Lenz is a model from classical statistical mechanics.
The spins that constitute it can only take on discrete values, yes, but they cannot exist in a
coherent superposition of up and down, but only up. Furthermore, it concerns itself with
finite temperatures, 𝑇 > 0, and not the quantum limit 𝑇 → 0. For a quantummechanical
analogue to the classical Ising model, we look towards the transverse-field Ising model, which
we briefly want to introduce in this section, following its introduction in Ref. [19]. The
transverse-field Ising model is especially interesting in the context of quantum phases and
quantum phase transitions, where we examine ground states of the Hamiltonian, i.e. at
0 temperature. The phases and phase transitions are then with respect to parameters of
the Hamiltonian, or more precisely, the coefficients of non-commuting terms within the
Hamiltonian.
In the one-dimensional case for 𝐿 spin-1/2 degrees of freedom, the Hamiltonian of the

transverse-field Ising model (TIM) reads

𝐻 = −𝐽
𝐿
∑
𝑖=1

𝜎𝑧𝑖 𝜎
𝑧
𝑖+1 − ℎ

𝐿
∑
𝑖=1

𝜎𝑥𝑖 , (1.40)

where we choose 𝐽 > 0 (ferromagnetic coupling), periodic boundary conditions (𝐿 + 1 ≡ 1),
and a magnetic field ℎ > 0. With positive ℎ, the magnetic field it points in 𝑥-direction,
which is transverse to the 𝑧-direction, hence the name transverse-field. Notice that in Equa-
tion (1.40), the terms 𝜎𝑧𝑖 𝜎

𝑧
𝑖+1 and 𝜎

𝑥
𝑖 do not commute, [𝜎𝑧𝑖 𝜎

𝑧
𝑖+1, 𝜎

𝑥
𝑖 ] ≠ 0. Thus, they do

not have a shared eigenbasis, and the ground state of the Hamiltonian will in general be
a superposition of eigenstates of one of the operators. Conventionally, one chooses the
basis of 𝜎𝑧𝑖 𝜎

𝑧
𝑖+1. Note that the ferromagnetic coupling implies aligned spins, where nearest

neighbours tend to share directions, while the transverse magnetic field will flip some spins
arbitrarily in the evolution.
Let us now consider the two limits of 𝐽 ≪ ℎ, i.e. 𝐽 → 0, and ℎ ≪ 𝐽, i.e. ℎ → 0. In

the former we have a weaker coupling between the spins and thus a higher tendency for
individual spins to flip. The ground state is then the product state of local ground states of
𝜎𝑥𝑖 , |𝐺+⟩ = |+ + ⋯+⟩. This ground state is unique, since each constituent is locally a unique
ground state. One further feature of it is that is possesses no long-range order. The spin on
site 𝑖 is completely agnostic to the happenings of the spin on site 𝑗—if 𝑖 and 𝑗 are sufficiently
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far apart—, i.e. 𝑖 and 𝑗 are on average not aligned (similar to the classical ising model for
higher temperatures). Mathematically, this expresses as

lim
∣𝑖−𝑗∣→∞

⟨𝐺+|𝜎
𝑧
𝑖 𝜎

𝑧
𝑗 |𝐺+⟩ → 0. (1.41)

The converse case turns out to be rather different. Here, we have that the coupling is
strong, and thus the spins tend to align. Crucially however, alignment is the only quality
of relevance in the context of the ground state, since the +1 eigenvalue of 𝜎𝑧𝑖 𝜎

𝑧
𝑖+1 is two-fold

degenerate with the eigenstate spanned by |00⟩ and |11⟩. The full Hamiltonian then inherits
this degeneracy, such that its ground state space is spanned by two states |𝐺0⟩ = |00 ⋯ 0⟩
and |𝐺1⟩ = |11 ⋯ 1⟩. The ground state |𝐺⟩ is then an arbitrary coherent superposition of
|𝐺0⟩ and |𝐺1⟩,

|𝐺⟩ = 𝛼 |𝐺0⟩ + 𝛽 |𝐺1⟩ . (1.42)

Note that we here do have long-range order, since we are in the regime, where ferromagnetic
coupling is strong. This corresponds to the 0-temperature limit of the classical Ising model.
Analogously to the paramagnetic phase we can write

lim
∣𝑖−𝑗∣→∞

⟨𝐺|𝜎𝑧𝑖 𝜎
𝑧
𝑗 |𝐺⟩ → 1. (1.43)

Note that 𝜎𝑧𝑖 thus corresponds to a local order parameter for the ferromagnetic phase.
Once we were in the paramagnetic regime, we had ⟨𝜎𝑧𝑖 𝜎

𝑧
𝑗 ⟩ → 0 in the long-range limit. A

natural question to follow is, what happens between the regimes of ℎ/𝐽 → 0 and ℎ/𝐽 → ∞?
The answer is, of course, that there is a phase transition. Remarkably, this phase transition
happens already in the one-dimensional case, contrary to the classical Ising model which
did not have a phase transition in one dimension. To understand what we mean by a phase
transition, consider the symmetry group of the Hamiltonian, 𝒢𝛨 = {𝐼, 𝑋} ≅ ℤ2 with
𝑋 = ∏𝑖 𝜎

𝑥
𝑖 , which corresponds to flipping all spins. In the paramagnetic phase, the ground

state shares this symmetry, since𝑋 |𝐺+⟩ = |𝐺+⟩. In the ferromagnetic phase, we do not have
this symmetry in general, since flipping all spins would transform one ground state into the
other. Thus, the symmetry of the Hamiltonian is spontaneously broken. This breaking of
a symmetry corresponds to a phase transition according to the Landau paradigm of phase
transitions [18].

1.3.3 The projective transverse-field Ising model

We now have the baseline set to introduce the projective transverse-field Ising model. Our
detailed introduction follows Ref. [1]. The initial setup of the model is similar to the TIM,
in that we have a linear chain of 𝐿 spin-1/2 degrees of freedom on sites 𝑖 ≤ 𝐿. However,
in the PTIM we do not consider time evolution generated by a Hamiltonian, such as the
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one in Equation (1.40), but rather as time evolution in discrete steps of a quantum circuit
consisting of projective measurements, as discussed in Section 1.2.2. In fact, the PTIM is an
example of a circuit as depicted in subfigure (a) of Figure 1.2, with projective measurements
instead of unitary measurements. The action of a measurement of observable𝑂 on a state
∣𝜙⟩ is given by

ℳ[𝑂](∣𝜙⟩) =
ℙ𝜆 ∣𝜙⟩

√ ⟨𝜙∣ℙ𝜆∣𝜙⟩
(1.44)

with the eigenvalue 𝜆 of𝑂 and probability 𝑃(𝜆; ∣𝜙⟩) = ⟨𝜙∣ℙ𝜆∣𝜙⟩.
The connection to the TIM is through the choice of observables𝑂 and the measurement

scheme; by choosing observables 𝜎𝑥𝑖 and 𝜎
𝑧
𝑖 𝜎

𝑧
𝑖+1 for each site 𝑖 and edge between adjacent sites

𝑒 = (𝑖, 𝑖 + 1), we have the same non-commuting observables that constitute the Hamilto-
nian in Equation (1.40). Repeated measurements on the same site thus lead to nontrivial
dynamics.
As initial state, we choose the product state of |+⟩ = (|0⟩ + |1⟩)/√2,

∣𝜙(0)⟩ = |+ + ⋯+⟩ . (1.45)

The circuit governing the (discrete) time evolution is then constructed as follows. (This
is also the protocol for circuit generation in upcoming numerical experiments, i.e. simu-
lations.) For each time step, we go through each site and set the site variable 𝑥𝑖 to 1 with
probability 𝑝, and 0 otherwise. Independently from this we set the edge variable 𝑧𝑒 = 1with
probability 1 − 𝑝, and 0 otherwise. These vectors correspond to the sites and edges where𝑋
and 𝑍𝑍measurements will be performed in the circuit. In each timestep we perform the
corresponding measurements, thus evolving the state. An example of a circuit generated by
such a protocol is shown in Figure 1.4 for 𝑝 = 1/2. The full circuit defines a (discrete time)
quantum trajectory ∣𝜙(𝑡)⟩.
With this dynamics of the system, we can probe different quantities, such as the entangle-

ment entropy 𝑆𝛦(𝐴) of a subsystem𝐴, over many trajectories. Averaging them defines the
sample average,

𝑋 = 1
𝑀 ∑

∣𝜙⟩∈𝛮

𝒳(∣𝜙⟩), (1.46)

where𝑁 is a set of𝑀 randomly generated trajectories. Note that we typically fix a parameter
𝑝 and a time 𝑡when sampling specific quantities, where the circuit generation and application
defines a classical probability distribution.
In spirit of the TIM, we are interested in (sample averaged) quantities as a function of the

probability parameter 𝑝 characterizing the relative strength between the non-commuting
observables. Varying 𝑝 in the interval [0, 1] is thus analogous to the limits of ℎ/𝐽 → 0
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𝑡 = 1

𝑡 = 2

𝑡 = 3

𝑡 = 4

𝑡 = 5

𝑡 = 6

𝑡 = 7

= ℳ𝑍𝑍
𝑒

= ℳ𝛸
𝑖

|+ + ⋯+⟩

Figure 1.4.: Example of a PTIM circuit for 𝑝 ≈ 0.5 for a chain of 𝐿 = 8 spins with periodic boundary
conditions. The rectangles on horizontal edges of the grid, 𝑒 = (𝑖, 𝑖 + 1), denote 𝑍𝑍
measurements,ℳ𝑍𝑍

𝑒 , while the circles on vertical edges of the grid, 𝑖, denote𝑋measure-
ments,ℳ𝛸

𝑖 .

or ℎ/𝐽 → ∞ in the TIM. As the example most relevant to entanglement transitions, we
highlight the behavior of the entanglement entropy as a function of 𝑝. This is shown in
Figure 1.5.
Comparing Figure 1.5 to the phenomenology discussed in Section 1.2.3, there are two

conspicuous features of the entanglement entropy in the PTIMwe want to highlight in par-
ticular. First, we can see that the entropy in the disentangling phase, where𝑋measurements
are more frequent, has an area-law scaling, manifest in the fact that it is independent of the
chain length, i.e. the volume. Additionally, the scaling at the critical point is logarithmic.
This fact is highlighted by the choice of chain lengths. Doubling the length of a chain scales
the entanglement entropy linearly at the critical point.
Secondly, we observe that the entangling phase now also has an area-law scaling as well.

This can be explained by the fact that in the 𝑝 → 0 limit, the initial product state tends to
get entangled in a singular cluster, characterized by unit entropy.
As a final note we interpret the critical behavior of the entanglement entropy shown in

Figure 1.5 in the context of quantum error correction. The specific choice of observables is
not only interesting in their connection to the TIM. Recall the circuit shown in Figure 1.1.
If we have an entangled state over multiple qubits, we can think of 𝑍𝑍measurements as sta-
bilizer (syndrome) measurements and projective𝑋 erors in the circuit. Due to the projective
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Figure 1.5.: Half-system entanglement entropy in the steady-state limit, 𝑆(𝐿/2, 𝑡 → ∞), shown as a
function of the probability parameter 𝑝 for systems of lengths 𝐿 ∈ {64, 128, 256}. The
dashed horizontal line corresponds to the area-law entanglement in the regime of 𝑝 ≪ 𝑝𝑐.
The dashed vertical line corresponds to the critical probability 𝑝𝑐 = 1/2. At the critical
point, the entanglement grows logarithmically with the system size, analogous to the
MIPT in hybrid circuits (see Equation (1.37))

dynamics, we not only detect, but also sometimes correct the error. More importantly, the
entanglement structure stays the same no matter what. (This is also manifest in the fact that
the local observables commute with the symmetry operator𝑈 = ∏𝑖𝑋𝑖, which generates
a global ℤ2 symmetry.) For 𝑝 → 0, we thus have a lot of effective entangling gates, which
are stabilized by sufficiently frequent 𝑍𝑍measurements. As a consequence, each qubit is
entangled with every other qubit, giving a half-system entanglement entropy of 1 (as there is
only one independent Bell pair).
For 𝑝 → 1/2we approach the critical point, where entanglement clusters are sporadically

created and merged together. The dynamics at this point is nontrivial, and can be charac-
terized by a mapping to a conformal field theory. Interestingly, the PTIM and its phase
transition is identical to two-dimensional percolation, which is analytically solvable and has
a well-known critical point of 𝑝𝑐 = 1/2. The interested reader is invited to consult Refs. [53,
56] for further details on percolation and conformal field theories, which go beyond the
scope of this work. For now, we can see that the emergence of new entanglement clusters
peaks at 𝑝 = 1/2.
In the 𝑝 → 1 regime, we do not stabilize any entanglement, but rather have a product

state of𝑋 eigenstates. The more frequent𝑋measurements are (and conversely, less frequent
𝑍𝑍measurements), the more we stabilize a product state.
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1.4 sampling problem
The metaphysics of this endeavour (i.e. this thesis) can be condensed in the following way;
we (a) know from experiments how quantum systems behave under certain conditions,
and (b) predict through theoretical calculations what these systems might do in another
experimental setting. In the latter case however, there is an uncanny regime of utility, where
we either (a) cannot precisely pass predictions, (b) cannot perform the experiment on the
grounds of hardware limitations10, or (c) try to predict the behavior of quantities not directly
measurable. In the field of quantum information, and especially in entanglement transitions,
we face the latter two of these bottlenecks in increasing severity. The main focus of this
thesis, however, is the overcoming of the last problem, which lies at the heart of the so-called
sampling problem.
The measurement-induced phase transitions theorized in random circuits, in particular

also the projective transverse-field Ising model, is only a feature of the average over many
post-selected pure states. That is, from a given measurement recordm, we can construct a
density matrix

𝜌m = ∣𝜙m⟩⟨𝜙m∣ . (1.47)

The entanglement entropy of this state is then given by Equation (1.33). In principle,
determining a density matrix in an experiment can be performed by tomographical means,
such as shadow tomography [58]. However, tomographical methods require the same state
to be prepared—otherwise one would obviously probe an entirely different state. On an
entirely classical platform11, this would merely be a technical issue, since we could then, by
fixing the positions of measurement gates, eliminate the element of stochasticity under our
control, and prepare the state deterministically.
Unfortunately, quantummechanics is an intrinsically probabilistic theory: the outcome

to each measurement of a measurement gate is given by the Born rule. Thus, in a circuit
with 𝑁 measurement gates, the probability of obtaining a specific measurement record
is 𝒪 (2𝛮).12 Therefore, even with the measurement gates fixed in place one would—on
average—require exponentially many runs of the same circuit. This, in conjunction with the
tomography problem, makes detecting an entanglement transition almost insurmountably
difficult to detect.
Not that this has not been tried. See Refs. [60–62] for attempts to observe the phase

transition in an experimental setting. However, these experiments are not even remotely
realizing the steady-state limit, but are restricted to short times and small systems (fewer
lattice sites in the space-time grid imply a lower number of measurement gates). Thus, one
10The Higgs particle was predicted 40 years before it was discovered [57]
11such as a stabilizer simulator
12One could say that the problemof preparing the samequantum state twice in a randomhybrid ormeasurement-

only circuit is in EXPTIME (see [59] and the beginning of Chapter 4)
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of the greatest problems in the field of entanglement transitions is to find a way around the
sampling problem to detect the phase transition.
While there are other measures for probing entanglement, also employed in an exper-

imental context [63, 64], we specifically investigate two approaches in the context of the
entanglement transition in the PTIM: the linear cross entropy as introduced in [2], as well as
the approach of Garratt and Altman in [3], which is based on Klein’s inequality, bounding
the entanglement entropy from above by the cross entropy. In the following we will briefly
summarize the basic ideas behind the approaches.

Linear Cross Entropy
The linear cross entropy was originally introduced to act as an order parameter to distinguish
between the volume law and area law phases. The idea is to compare two distinct initial states
for the same circuit. In the volume law phase, they cannot be distinguished, while in the area
law phase they can. The linear cross entropy is then a quantifier of the distinguishability of
the two initial states, where one has unit linear cross entropy in the volume law phase and a
linear cross entropy smaller than 1 in the area law phase.
The advantage of this is that one does not need a post-processing step. If we perform

an experiment on a quantum simulator, then compare it with a classical simulation, where
we pipe the measurement outcomes to the classical simulator, we do not require a post-
processing step on the quantum level.
The precise mathematical definitions and properties of the linear cross entropy are given

in Section 2.1.

Upper Bound
Contrary to the previous idea, the approach suggested in Ref. [3] is not a precise order
parameter for the phase transition, but rather relies on bounding the entanglement entropy
from above. To this end, they derive a relation incorporating shadow tomography that relates
the average over many runs of an experiment to the quantummechanical expectation value.
For a set of matrices dependent on the measurements,𝑊𝑚, and the shadow of a density
matrix 𝜌𝑆𝑟 they obtain

𝔼𝑟[𝑊𝑚𝑟𝜌
𝑆
𝑟 ] = 𝔼𝑚[𝑊𝑚𝜌𝑚], (1.48)

with the average over experimental realizations 𝔼𝑟[•] and the average over all measurement
outcomes 𝔼𝑚[•], weighted by the Born probabilities 𝑃𝑚. For the detailed derivation of
Equation (1.48), see the original work, Ref. [3].
If onenowchooses𝑊𝑚 = − log 𝜎𝑚, where𝜎𝑚 is a classical estimate for thepost-measurement

density matrix, one can employ Klein’s inequality to bound the measurement-averaged en-
tanglement entropy,

𝔼𝑚[𝑆𝛦,𝑚] ≤ 𝔼𝑟[𝑆
𝑆𝐶
𝑟 ], (1.49)
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where 𝑆𝑆𝐶𝑟 is the cross entropy between the shadow and the classical estimate.
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2
LINEAR CROSS ENTROPY

“Check the circuit”
Spock to helmsman; Star Trek: The Original Series —

Season 1, Episode 1

In this chapter we examine a measure known as the linear cross entropy proposed by
Li et al. in [2] to experimentally access measurement-induced phase transitions. Despite
its novelty, it has already been employed in experiments to probe hybrid quantum circuits
[62], and other theoretical works are based on it. Even for our model system, the projective
transverse-field Isingmodel (PTIM), a study has been conducted (see Ref. [4]1). With this in
mind we thus build on the work of Tikhanovskaya et al. in [4]. In particular, we reproduce
their findings, provide a more detailed insight into the features and technicalities of the
linear cross entropy, and further expand on their work by introducing more general types of
noise. We thereby aim to detect the theorized measurement-induced phase transition in the
projective transverse-field Ising model in the best case, or gain a new understanding from
failure in the worst case.
The chapter is structured as follows. We will first introduce the quantity itself in Sec-

tion 2.1, where we also provide a shortcut for computing the LXE in clifford circuits. We
then investigate the behavior of it in the PTIM, comparing it to the entanglement entropy
of an ancilla qubit attached to the system. Next, we introduce faulty gates to the process and
examine the LXE for a system with errors. Lastly, we motivate the discarding of either𝑋 or
𝑍𝑍measurement results with probability-theoretic arguments and evaluate the utility of
the LXE for the different cases.

1While this reference points to a preprint on arXiv, we remark that the cited work has since been published in
Physical Review B with no significant alterations (see Ref. [66]).



linear cross entropy

2.1 definition and properties
In this section we provide a definition for the linear cross entropy 𝜒 (also abbreviated as LXE)
and a detailed derivation for its computation in Clifford circuits. To this end, we follow the
results of Ref. [2, 4] for the generalities, and provide our own derivations and proofs for the
particularities surrounding the projective transverse-field Ising model.
Before introducing all the technical details surrounding the linear cross entropy, we want

to give a quick remark on the motivation behind the linear cross entropy. In Ref. [2], they
mention that eariler studies found a quantity closely related to − ln 𝜒 corresponding to the
free energy cost after fixing a boundary condition in a replicated spin model [2, 37, 67–69].
The linear cross entropy is thus also motivated from classical statistical physics.

2.1.1 General random circuits

We first introduce the linear cross entropy (also abbreviated as LXE) in the context of general
random quantum circuits. We then provide a concrete description and expression of the
LXE for our system, the projective transverse-field Ising model.
Consider a hybrid circuit with some cicruit layout𝐶, consisting of unitary and measure-

ment gates. The measurement gates within the circuit yield results𝑚𝑖, which are collected
in the sequencem = {𝑚1, 𝑚2, … , 𝑚𝛮}, where𝑁 is the number of measurement gates. We
call this sequence of measurement outcomes themeasurement record. For some initial state
𝜌 of our hybrid circuit, we can compute the unnormalized output state as

𝜌m ≡ 𝐶m𝜌𝐶
†
m. (2.1)

Here,𝐶m is the time-ordered product of all gates in the circuit, unitary and measurement,
and can be written as [2]

𝐶m = ℙ𝑚𝛮ℙ𝑚𝛮−1 ⋯ℙ𝑚𝛮−𝛮𝛵+1𝑈𝛵ℙ𝑚𝛮−𝛮𝛵 ⋯ℙ𝑚𝛮−𝛮𝛵−𝛮𝛵−1+1𝑈𝛵−1 ⋯ . (2.2)

The action of𝐶m on the initial state 𝜌 is the mathematical object representing one possible
trajectory with measurement outcomesm. Leaving the state unnormalized after projection
operations is a deliberate choice; it allowsus todefine theprobability of a certianmeasurement
record.

Definition 2.1 (Probability of a trajectory). Given a random circuit𝐶 and an initial
state 𝜌with corresponding measurement recordm, the probability ofm is denoted
by

𝑃 (m ∣ 𝐶, 𝜌) ≡ Tr[𝜌m] = Tr[𝐶m𝜌𝐶
†
m]. (2.3)
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Although we do not want to delve too deep into probability theory at this point, let us
nonetheless first convince ourselves that Definition 2.1 really does define a proper probability
measure. To this end, consider the simplest example of a circuit with initial state 𝜌 = |+⟩⟨+|
and a single measurement in the Pauli-𝑍 basis. By Equation (2.1) our unnormalized output
state reads

𝜌m = ℙ𝑚 |+⟩⟨+| ℙ
†
𝑚 = {

1
2 |0⟩⟨0| , 𝑚 = 1
1
2 |1⟩⟨1| , 𝑚 = −1

(2.4)

with ℙ𝑚 = 1
2 (1 + 𝑚𝑍). Computing the trace then yields

1
2 for the probability of each

trajectory. This is also consistent with our expectation from elementary quantummechanics.
As projectors sum to the identity (completeness), all the probabilities sum to 1, as they should.
Furthermore, since unitaries leave the norm invariant, the trace only picks up projections.
However, one needs to be careful here. Applying a Hadamard gate to |+⟩⟨+| transforms the
state, and the probabilities change.2. Conversely, applying a Hadamard gate to any of the
output states in Equation (2.4) does not alter the trace, but rather the output state itself.
We will later continue this discussion for the measurement-only circuit of the PTIM. For

now, we employ Definition 2.1 and define the circuit-level linear cross entropy 𝜒𝐶 (𝜌, 𝜎).

Definition 2.2 (Linear cross entropy). Given a random circuit𝐶with two distinct
initial states𝜌 and𝜎, andmeasurement recordsm, the normalized linear cross entropy
is defined as

𝜒𝐶 = ∑
m
𝑃(m ∣ 𝐶, 𝜌) 𝑃(m ∣ 𝐶, 𝜎)

∑m′ (𝑃(m′ ∣ 𝐶, 𝜎))2
, (2.5)

where the sums∑m go over all possible measurement outcomes of the measurement
gates in the circuit.

Most times when dealing with random circuits, we want to investigate numerous different
circuit realizations for a given parameter (usually probability). Hence, when referring to the
linear cross entropy, we will mostly refer to the circuit-averaged linear cross entropy,

𝜒 ≡ ⟨𝜒𝐶⟩𝐶 . (2.6)

We will later also see the utility of defining 𝜒 and 𝜒𝐶 this way, especially concerning the
denominator in Equation (2.5). For now it suffices to remark that it is a normalizing factor
such that the linear cross entropy is bounded from above by 1, 0 ≤ 𝜒 ≤ 1.
We can interpret this quantity like a classical fidelity between two probability distributions.

For two given initial states, we have a probability distribution over measurement records.
2The probabilities for the outcomes of a Pauli-𝑍measurement become 1 and 0
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For each measurement record, Definition 2.1 provides a way to quantify the probability.
For these probabilities, the linear cross entropy quantifies the overlap of one probability
distribution with the other. If 𝜒 = 1, the probability distributions are identical, and if we
chose different initial states, a unit linear cross entropy tells us that this circuit (or parameter
𝑝) is not suited to distinguish between the initial states 𝜌 and 𝜎. On the other hand, if 𝜒 = 0,
we have no measurement record, which is compatible with 𝜌 and 𝜎 simultaneously.

2.1.2 Clifford circuits and PTIM

Now that we have introduced the general concept of the linear cross entropy and defined
the relevant quantities formally, we will examine it more closely in the context of the pro-
jective transverse-field Ising model. As we are able to simulate the PTIMwith a stabilizer
simulator, we will also introduce a way to compute the LXE in Clifford circuits, which will
be implemented in the simulator.
InEquation (2.5), the choice of placement of the individual probabilities is a deliberate one.

It is to highlight the fact that we are averaging a quantity depending on 𝜎 over a probability
distribution that depends on 𝜌. As a means of cirumventing the sampling problem, we’d
like 𝜎 to correspond to a classical simulator and 𝜌 to the experiment. It will therefore prove
useful to examine the part dependent on 𝜎more closely, as it will later enable us to efficiently
compute the linear cross entropy. As intermediate step we first derive an expression for the
probabilities 𝑃 (m ∣ 𝐶, 𝜌), laid out in Lemma 2.3.

Lemma 2.3 (Probability of a trajectory in measurement-only Clifford circuits).
Given a Clifford circuit𝐶with𝑁measurement gates and no other gates, with initial
stabilizer state 𝜌, the probability of a measurement record is

𝑃 (m ∣ 𝐶, 𝜌) = 2−𝛮rand , (2.7)

where𝑁rand ≤ 𝑁 is the number of random outcomes for the measurement gates.

Proof. Suppose we have a Clifford circuit 𝐶 with 𝑁 measurement gates and an 𝑛-qubit
initial stabilizer state 𝜌. We already know from Section 1.1.3 that there are two types of
measurement outcomes, random or deterministic. Each measurement potentially has 2
outcomes, and in the former case each outcome has probability 1/2 of occuring. (The other
outcomes, the deterministic ones, trivially have unit probability.) Furthermore, we know
that 𝜌 can be expressed as the product of projectors (see Definition 1.11)

𝜌 = 1
2𝑛

𝑛
∏
𝑖=1
(𝐼 + 𝑔𝑖) (2.8)
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with generators 𝑔𝑖, or equivalently as a sum of all stabilizer group elements

𝜌 = 1
2𝑛 ∑

𝑔∈𝒮(𝜌)
𝑔. (2.9)

If we now subject𝜌 to the circuit𝐶, we obtain ameasurement recordm. ByDefinition 2.1
we compute the probability by tracing the unnormalized output state (see Equation (2.1)),
which in turn is obtained by application of the respective projectors on the input state, i.e.

𝜌m = 𝐶m 𝜌 𝐶†
m = 𝑇 {

𝛮
∏
𝑖
ℙ𝕚} 𝜌 𝑇 {

𝛮
∏
𝑖
ℙ𝕚}

†

. (2.10)

Here, 𝑇{•} is the time-ordering operator and ℙ𝑖 is the projection operator on measurement
outcome 𝑖. The probability of some measurement record is then given by

𝑃 (m ∣ 𝐶, 𝜌) = Tr[𝐶m𝜌𝐶
†
m], (2.11)

which can be written as

𝑃 (m ∣ 𝐶, 𝜌) = Tr[𝑇 {
𝛮
∏
𝑖
ℙ𝑖} 𝜌], (2.12)

with the cyclic property of the trace and ℙ2 = ℙ. We can now consider the successive
application of measurement gates. We know that each of the𝑁 measurements is either
random or deterministic. Let us therefore consider these two cases separately.
Case 1 – Deterministic outcome: If a measurement has a deterministic outcome, the

measurement operator was already part of the stabilizer group. We can therefore construct a
set of commuting operators ⟨𝑔𝑖⟩, containing the measurement operator𝑀, which generate
the stabilizer group. If we let 𝑔1 = 𝑀w.l.o.g., we have

𝑃 (m ∣ 𝐶, 𝜌) = Tr[ℙ𝛮 ⋯ℙ𝑖𝜌]

= 1
2𝑛−1

Tr[ℙ𝛮 ⋯ 1
2(𝐼 +𝑀)12(𝐼 + 𝑔1)

𝑛
∏
𝑖=2
(𝐼 + 𝑔𝑖)]

= 1
2𝑛−1

Tr[ℙ𝛮 ⋯ 1
2(𝐼 +𝑀)

𝑛
∏
𝑖=2
(𝐼 + 𝑔𝑖)]

= 1
2𝑛 [ℙ𝛮 ⋯ℙ𝑖+1

𝑛
∏
𝑖=1
(𝐼 + 𝑔𝑖)], (2.13)

where we used the fact thatℙ2 = ℙ. The last line of Equation (2.13) tells us that deterministic
measurements do nothing on the state and the probability.
Case 2 – Random outcome: In the case of a random outcome, the operator to be mea-

sured was not in the stabilizer group. Technically, it should be replaced, which is done by
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conjugation with the projector. However, it turns out that for the probability, we only need
to consider a single projection. It is

𝑃 (m ∣ 𝐶, 𝜌) = Tr[ℙ𝛮 ⋯ℙ𝑖
1
2𝑛 ∑

𝑔∈𝒮(𝜌)
𝑔]

= Tr[ℙ𝛮 ⋯ 1
2 (

1
2𝑛 ∑

𝑔∈𝒮(𝜌)
𝑔 + ∑

𝑔∈Stab(𝜌)
𝑀𝑔)]. (2.14)

Since the second sum is exclusively one over Pauli matrices, which are traceless, they don’t
contribute to the total. We thus have

𝑃 (m ∣ 𝐶, 𝜌) = Tr[ℙ𝛮 ⋯ℙ𝑖+1
1

2𝑛+1
∑

𝑔∈𝒮(𝜌)
𝑔]. (2.15)

Combining cases 1 and 2, knowing that measurements with deterministic outcomes don’t
alter the state at all, we have

𝑃 (m ∣ 𝐶, 𝜌) = Tr[ 1
2𝑛+𝛮rand

∑
𝑔∈𝒮(𝜌)

𝑔]

= 1
2𝛮rand

= 2−𝛮rand . (2.16)

We can now use this result to find a nice expression for the linear cross entropy in Clifford
circuits, and in particular the projective transverse-field Ising model.

Theorem 2.4 (LXE for Clifford circuits). Let𝐶 be a Clifford circuit with𝑁mea-
surement gates and a measurement recordm obtained from a realization of𝐶with
some initial state 𝜌. Furthermore, let 𝜎 ≠ 𝜌 be a different state, where m′ are all
possible measurement records from applying𝐶 on 𝜎. Then

𝑃(m|𝐶, 𝜎)
∑m′ (𝑃(m′|𝐶, 𝜎))2

= {
1 𝜎 is compatible with𝐶 andm
0 𝜎 is not compatible with𝐶 andm

. (2.17)

Proof. We can consider two (disjoint) cases:

1. No projection in𝐶m is orthogonal to 𝜎, meaning that 𝜎 is compatible with𝐶 andm.
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This implies that the trace in the computation of 𝑃 (m ∣ 𝐶, 𝜎)will always be strictly
above 0. In fact, the probability will be 2𝛮rand , since each projection was successful.
Together with the fact that there are 2𝛮rand measurement gates we have

𝑃(m|𝐶, 𝜎)
∑m′ (𝑃(m′|𝐶, 𝜎))2

= 2−𝛮rand

∑m′ 2−2𝛮rand
= 2−𝛮rand

2−𝛮rand
= 1. (2.18)

2. At least one projection in 𝐶m is orthogonal to 𝜎, meaning that 𝜎 is not compatible
with𝐶 andm.

Here we have at least one projection in 𝐶m, which projects 𝜎 onto the 0-vector. In-
cidentally, we require exactly one projection to be orthogonal, since we then have
no object that can be projected to anything. Thus, the trace becomes 0, and as a
consequence we have

𝑃(m|𝐶, 𝜎)
∑m′ (𝑃(m′|𝐶, 𝜎))2

= 0. (2.19)

The second case in the proof of Theorem 2.4 is an interesting one to consider, especially
in the context of the PTIM. Suppose we run a PTIM circuit on some 𝑛-qubit platform
with an initial state of ∣𝜙0⟩ = (|0 ⋯ 0⟩ + |1 ⋯ 1⟩) /√2 or 𝜌 = ∣𝜙0⟩⟨𝜙0∣. This produces a
measurement record, which we then feed into a classical simulator with an orthogonal Bell
state ∣𝜑0⟩ = (|0 ⋯ 0⟩ − |1 ⋯ 1⟩) /√2 or 𝜎 = ∣𝜑0⟩⟨𝜑0∣. There are of course other orthogonal
Bell states we could choose as initial state for our simulator. However, these two states are
additionally orthogonal in the logical basis. That is, if we encode information in ∣𝜙0⟩, the
opposite information is encoded in ∣𝜑0⟩. That this choice is a reasonable one gets even more
apparent when considering generating sets of the respective stabilizers,

𝒮𝜌 = ⟨𝑋…𝑋,𝑍1𝑍2, … , 𝑍𝑛−1𝑍𝑛⟩ and 𝒮𝜎 = ⟨−𝑋…𝑋,𝑍1𝑍2, … , 𝑍𝑛−1𝑍𝑛⟩. (2.20)

Notice that they are almost identical with a different sign in front of the global𝑋 stabilizer,
implying orthogonality in the logical basis. In the hypothetical, measurement outcomes
of 𝜌 are projected onto 𝜎. Let us consider the two types of measurement, pairwise 𝑍𝑍 and
single-site𝑋. Performing a pairwise 𝑍𝑍measurement is a stabilizer measurement, apparent
from the generating sets given in Equation (2.20). A measurement thereof will (at least
initially) produce deterministic measurement outcomes with𝑚 = +1. This is different for
the𝑋measurements. Initially, an𝑋measurement will not have an outcome we can infer
beforehand. This, however, is the case for both of them, up to a certain degree, since the
pairwise 𝑍 stabilizers anticommute with the single-site𝑋measurement. This also provides
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an explanation onwhy this is not always the case. If𝑋measurements are sufficiently frequent,
therewill be a pointwhere there are no𝑍𝑍 generators left, as all of themwere replaced by𝑋by
means ofmeasuring. Consequently, subsequentmeasurements of𝑋 are deterministic, which
will detect the sign difference of the global𝑋 stabilizer. This detection would correspond to
the point where the initial cluster dies in the colored cluster model.
It turns out that this is the only case for the circuit-level linear cross entropy to be 0, i.e.

𝜒𝐶 = 0. One can argue from the structure of the stabilizer group, or just the generating set,
that any measurements producing a random outcome will produce a random outcome no
matter what the previous results were.3 For an outcome to be random, the measurement
operator may not be contained in the stabilizer of the state. Conversely, for an outcome to be
deterministic, the operator is a stabilizer. After measuring, the operator is guaranteed to be
in the stabilizer group of the state and subsequent measurements of this operator produce
the same result with unit probability. With the structure of the group changed, we also have
new anticommuting measurement operators, and so on. This boils down to the conclusion
that once the circuit 𝐶 is fixed, the type of measurement outcome is fixed. One could tell,
without knowing the actual outcomes to measurements, which of them were random and
which were deterministic. As such, a given circuit, which detects the sign difference between
𝜎 and 𝜌, does so in all of the runs, as deterministic measurement outcomes stay so regardless
of the previous history. Consequently, the circuit-level linear cross entropy is 0 regardless of
measurement recordm, if𝐶 contains a deterministic measurement in𝑋, where the outcome
is not given by a previous measurement, but by the sign of the initial global𝑋 stabilizer.
Figure 2.1 shows a minimal example of vanishing linear cross entropy on the circuit level

with initial states chosen as orthogonal Bell states.

2.2 a first ptim simulation
In this sectionwewill examine the linear cross entropy in the context of ourmodel system, the
projective transverse-field Ising model. In particular, we will perform stabilizer simulations,
as we have now worked out how the LXE can be computed in the context of Clifford
circuits. As we also know an efficient method of computing the (experimentally inaccessible)
entanglement entropy, we will also compare the LXE with the entropy of entanglement.

2.2.1 Methods

Beforewe discuss the linear cross entropy in detail, we introduce the setup for our simulations.
If not explicitly stated otherwise, the simulations were performed with a stabilizer simulator
written in C++ using the algorithm detailed in Chapter 4 and Section 4.1.1 [70]. Previous
numerical investigations of the projective transverse-field Ising model have that the sample

3They are “Markovian” in that sense.
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𝜌 (“Experiment”)
𝑆 = ⟨+𝛸𝛸,𝑍𝑍⟩

𝜎 (“Simulation”)
𝑆 = ⟨−𝛸𝛸,𝑍𝑍⟩

𝑡 = 1

𝑡 = 2

+1

𝑆 = ⟨+𝛸1, +𝛸2⟩

+1

ℙ (+𝑋)

𝑆 = ⟨+𝛸1, −𝛸2⟩

ℙ (+𝑋)

Figure 2.1.: Minimal example of a PTIM setup showcasing the mechanism behind vanishing LXE
with 𝐿 = 2, 𝑇 = 2, and 𝑝 ≠ 0. The experimental circuit is shown on the left side.
In this particular circuit the initial Bell cluster dies in the first measurement layer by
measuring𝑋, and thus removing the singular 𝑍𝑍 stabilizers. The +1 in the box refers
to the actual outcome of the result. The circuit on the right corresponds to the post-
processing algorithm with orthogonal initial state in the logical basis. Here we project
onto the measurement results given by the measurement record, represented by ℙ(+𝑋).
The second projection is unsuccessful, since we had a sign difference initially.

average of a system is [71]

⟨⟨𝑓𝐷⟩⟩ = ∑
𝒯∈{𝒯}

𝑃 (𝒯) ⋅ 𝑓 (𝒯;𝐷(𝑆)) , (2.21)

where𝒯 indicates a trajectory in the system and {𝒯} is the set of all possible trajectories for
a given initial state. The double angled braces denote the average over both measurement
records within one circuit as well as circuits of a given probability. In the followingwe discuss
how we should go about sampling the circuits in order to get a sensible ensemble average,
such that we arrive at something of the form in Equation (2.21).
In Equation (2.21), a trajectory is defined as the circuit 𝐶, i.e. the measurement pattern,

and the outcomes of said measurements,m, including the initial state. A reasonable place to
start is to find a probability we average over. If we split the measurement record into disjoint
records of𝑋measurements𝕞𝛸 and𝑍𝑍measurements𝕞𝑍, we have that the probability of a
trajectory is

𝑃(𝒯) = 𝑝|m𝛸|(1 − 𝑝)𝐿𝛵−|m𝛸| ⋅ 𝑝(𝐿−1)𝛵−|m𝑍|(1 − 𝑝)|m𝑍| ⋅ 2−𝛮rand

= 𝑝|m𝛸|+(𝐿−1)𝛵−|m𝑍|(1 − 𝑝)𝐿𝛵−|m𝛸|+|m𝑍| ⋅ 2−𝛮rand , (2.22)
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where 𝐿 is the number of qubits (without periodic boundary conditions) and 𝑇 the number
of timesteps. This follows from the fact that we have probability 𝑝 of 𝑋 measurements
occuring and probability 1 − (1 − 𝑝) = 𝑝 of 𝑍𝑍 no measurements occuring, with the
converse for the exponent of (1 − 𝑝). The factor 2−𝛮rand is from the fact that𝑁rand of the
occuring measurements are random in nature and thus contribute a probability of 1/2 each.
However, recall that the quantity we really want to average (first over the measurement

records, then over circuits), is the quantity defined in Equation (2.17). From Theorem 2.4
we know that we can consider each circuit exactly once, since for each circuit it will either
give 0 or 1. We should therefore think about how to average the quantity

𝑓(m, 𝐶𝑝, 𝜎) =
𝑃(m|𝐶𝑝, 𝜎)

∑m′ (𝑃(m′|𝐶𝑝, 𝜎))
2 (2.23)

for aPTIMcircuit𝐶𝑝withprobability parameter𝑝, giving theprobability of𝑋measurements
being performed on each site. We thus have a system average for the PTIMwith initial state
𝜌 and probability parameter 𝑝,

⟨⟨𝑓⟩⟩
𝑝,𝜌

= ∑
𝐶𝑝

𝑃(𝐶𝑝)∑
m
𝑃(m|𝐶𝑝, 𝜌) ⋅ 𝑓(m, 𝐶𝑝, 𝜎). (2.24)

In principle, the sums over𝐶𝑝 andm, i.e. the sum over𝒯, include all possible circuits𝐶𝑝
and corresponding measurement outcomesm. However, as already discussed, this creates a
lot of unnecessary redundancy; with stabilizer circuits, eachm contributes the same factor of
2−|𝛮rand| to the total probability, it doesn’t change anything to sample over it. Thus, we can
instead opt for the generation of random circuits and subjecting 𝜌 to them once. We then
use a project function (see Algorithm 4.9) to verify if a different initial state 𝜎 is compatible
with the measurement record obtained from applying𝐶 on 𝜌.
In the stabilizer formalism, projections can be done as efficiently as applyingmeasurement

gates, since themechanism behind it is similar. However, we do not get ameasurement result,
but rather obtain feedback on the success of the projection. For a detailed introduction
into the simulation algorithm used in the numerical experiments, consult Chapter 4 and in
particular Section 4.2, as well as Algorithm 4.9.
The actual simulation of the PTIMwith the computation of the linear cross entropy is

then done as follows. First, as outlined in Section 1.3.3, we generate two binary matrices
of size 𝑇 × 𝐿, representing the locations of𝑋 and 𝑍𝑍measurements, respectively. We also
initialize two additional matrices of the same size to 0, where the measurement outcomes of
the respective run is stored. We then simulate a PTIMwith a stabilizer simulator (see Ref.
[70] and Chapter 4). Afterwards we repeat the circuit for the other initial state, but use the
measurement results in the “outcome matrices” as argument for the project function. If at
any point during the simulation we encounter a failed projection, the loop over the circuit

44



a first ptim simulation

stops and continue with the next one. If it successfully completes, we add 1 to the total and
repeat the procedure for the next circuit.
Consequently, we technically compute the quantity

⟨⟨𝑓⟩⟩
𝑝,𝜌

= ∑
𝐶𝑝

𝑃(𝐶𝑝) ⋅ 𝑓(m, 𝐶𝑝, 𝜎), (2.25)

when sampling for the linear cross entropy numerically, where we generate𝐶𝑝 as a random
circuit in our simulator.
In the following, we will drop the index 𝑝 from the labelling of the circuit𝐶𝑝 for the sake

of readability. It is nonetheless implied, and should be clear from context that𝐶 is a circuit
randomly generated from a probability parameter 𝑝.

2.2.2 Results

As [4] already explored the linear cross entropy on the projective transverse-field Ising model,
we choose the identical setup with the maximally entangled states 𝜌 = |𝐺𝐻𝑍+⟩⟨𝐺𝐻𝑍+|
and 𝜎 = |𝐺𝐻𝑍−⟩⟨𝐺𝐻𝑍−| as initial states with 𝐿 = 𝑇 for better comparability with their
results in this and the upcoming sections of this chapter.
Figure 2.2 shows the linear cross entropy and the entanglement entropy for different

system sizes.
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Figure 2.2.: Linear cross entropy and entanglement entropy in the projective transverse-field Ising
model and for 𝐿 = 𝑇 and initial states 𝜌 = |𝐺𝐻𝑍+⟩⟨𝐺𝐻𝑍+| for the actual system and
𝜎 = |𝐺𝐻𝑍−⟩⟨𝐺𝐻𝑍−| for the classical replica. Note that we here use open boundary
conditions. For each probability parameter 𝑝, we sampled over ∼ 105 circuit realizations.

From Figure 2.2 one can see that the linear cross entropy acts as an order parameter for
the phase transition, with every line coinciding at the critical point. One can also see that
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the linear cross entropy converges faster towards the critical point than the entanglement
entropy. The entanglement entropy is still somewhat smooth at the critical point, while the
linear cross entropy is already smoothed out. This is due to the fact that the LXE probes
the survival of an initial entanglement cluster, while the entanglement entropy quantifies
independent entanglement pairs at the very end of the circuit. As such, the linear cross
entropy in this form is equivalent to the entanglement entropy of an ancilla qubit entangled
initially to the rest of the system. We will make use of this fact later to test the reliability of
the LXE in the presence of noise.

A more subtle fact we do not want to fail to mention is that the entanglement entropy is
off-center in the case of open boundary conditions. In case of periodic boundary conditions,
we have the transition in the entanglement entropy centered at the critical point. Wehighlight
both the convergence behavior and the shift of the critical point in Figure 2.3. Note that we
also use larger system sizes compared to Figure 2.2.
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Figure 2.3.: Linear cross entropy and entanglement entropy zoomed in at the critical point for periodic
boundary conditions. The dotted vertical line corresponds to the theoretical critical point
of the PTIM in the steady state. Each datapoint corresponds to ∼ 105 circuit realizations
per probability parameter.

What Figure 2.3 also remarkably shows is that with periodic boundary conditions 𝜒(𝑝 =
1/2) > 1/2, whereas with open boundary conditions it was 𝜒(𝑝 = 1/2) = 1/2. The
latter implies that half of the initial clusters do not survive at the critical point, while the
other half does. With periodic boundary conditions, we add another source for stabilizer
measurements, thus leading to a more stable cluster towards the critical point, which is still
𝑝𝑐 = 1/2.
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2.3 marinalizing over probabilities

In [4] they argue that by tracking only the outcomes of𝑋measurements, one obtains the
identical results for the linear cross entropy compared to tracking all results. In this section,
we will prove this statement with arguments from classical probability theory, using that the
probability 𝑃(m ∣ 𝐶, •) is a joint probability distribution of two discrete random variables
m𝛸 andm𝑍.

The group theoretic arguments leading to vanishing linear cross entropy also give rise to an-
other insight into a more subtle property thereof. Since the sign difference in the initial states
is in the global𝑋 stabilizer, we can be certain of the fact that it must be an𝑋measurement,
which failed to project, thus leading to a vanishing linear cross entropy. Furthermore, we
argued that the type of a measurement (random or deterministic) is not altered by previous
measurements. (Note that this fact is completely independent of the initial state!) It will
therefore prove useful to write the entire measurement record asm = m𝛸 ∩m𝑍, wherem𝛸/𝑍
are the measurement records of𝑋 and 𝑍𝑍. The individual outcomes inm are independent
of their preceeding outcomes. It follows thatm𝛸 andm𝑍 are independent random variables.
Starting with orthogonal𝐺𝐻𝑍 states, we could then, theoretically, marginalize overm𝑍 and
should arrive at the same linear cross entropy.

Let us consider what it implies to have independent random variables. Probability theory
tells us that for independent random variables 𝐴 and 𝐵 we have 𝑃(𝐴, 𝐵) = 𝑃(𝐴)𝑃(𝐵),
which gives us

𝑃(m|𝐶, 𝜌) = 𝑃(m𝛸 ∩m𝑍|𝐶, 𝜌) = 𝑃(m𝛸|𝐶, 𝜌) ⋅ 𝑃(m𝑍|𝐶, 𝜌). (2.26)

Note that this argument relies on the fact that in Equation (2.3) we replace each measure-
ment we want to marginalize by an identity of the form

1 = ℙ+ + ℙ−, (2.27)

with the projectors onto measurement results 𝑚𝛸/𝑍 = ±1. The sum that emerges when
all 𝑋 (𝑍𝑍) projections are replaced by this identity is then the marginalized probability
distribution of 𝑍𝑍 (𝑋).

Since the linear cross entropy solely consists of probabilities of this form, we can insert
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above separation into Equation (2.5) to yield

𝜒𝐶 = ∑
m
𝑃(m ∣ 𝐶, 𝜌) 𝑃(m ∣ 𝐶, 𝜎)

∑m′ (𝑃(m′ ∣ 𝐶, 𝜎))2

= ∑
m𝛸∩m𝑍

𝑃(m𝛸 ∩m𝑍|𝐶, 𝜌)
𝑃(m𝛸 ∩m𝑍|𝐶, 𝜎)

∑m′
𝛸∩m

′
𝑍
(𝑃(m′

𝛸 ∩m′
𝑍|𝐶, 𝜎))

2

= ∑
m𝛸∩m𝑍

𝑃(m𝛸|𝐶, 𝜌)𝑃(m𝑍|𝐶, 𝜌)
𝑃(m𝛸|𝐶, 𝜎)𝑃(m𝑍|𝐶, 𝜎)
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𝛸∩m
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(𝑃(m′

𝛸|𝐶, 𝜎)𝑃(m
′
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Subset ZZ

∑m𝛸
𝑃(m𝛸|𝐶, 𝜌)𝑃(m𝛸|𝐶, 𝜎)

∑m′
𝛸
(𝑃(m′

𝛸|𝐶, 𝜎))
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Subset X

(2.28)

with “Subset ZZ” and “Subset X” being the marginalized versions of the linear cross entropy,
where the other type of measurement is traced out.
As of yet, we have not proven the statement that tracking the outcomes of𝑋measurements

yields the same linear cross entropy as tracking all outcomes of all measurements. We have
only shown that when tracking only a subset of measurements, we can multiply it by the
complement to obtain the full linear cross entropy.
However, if we paradigmatically start the circuit in orthogonal GHZ states, where the

only difference between the two initial states (the one of the quantum and the one of the
classical simulator) is the sign of the global𝑋 stabilizer, we can deduce that there will never
be a difference in the “Subset ZZ” linear cross entropy, since replacing the projectors onto
𝑋 measurement results by an identity will never project onto 0. Therefore, it should be
identically 1.

2.3.1 Methods and results

To implement a marginalized version of the linear cross entropy, we need to replace each
projection we would perform in the replicated circuit by an identity operation. Naively, we
could then just remove all complementary measurement gates in the numerical implementa-
tion. For a more accurate description, or simulation, of what we actually want to achieve,
we replace each projection we would do when tracking all outcomes with a measurement
gate, where we choose to be agnostic to the outcome. This is done to keep the underlying
group structure intact. Note that contrary to the projection operation we implemented, a
measurement can always be performed and always has an outcome.
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For the results of a simulation implemented this way, consider the first row of subplots in
Figure 2.7. In this figure, we show the linear cross entropy as a function of the probability
parameter 𝑝, where the different columns correspond to different marginalizations. We
additionally plot the entanglement entropy of an ancilla qubit entangled to the initial Bell
cluster of the system, as we already noted that this is a physically equivalent quantity in
this case. In column “Track𝑋 (𝑍𝑍)” we only store the measurement outcomes of𝑋 (𝑍𝑍)
measurements and perform ameasurement of𝑍𝑍 (𝑋) instead of a projection in the “classical
version” of the circuit.
Note that the label A in the subplot of columns𝑋 and all correspond to the mechanism,

which leads to a vanishing cross entropy we discussed earlier and which is depicted schemati-
cally in Figure 2.1. The reason we introduce this becomes apparent in the next section, where
we examine the behavior of the linear cross entropy in the presence of symmetric (projective)
noise. For the noiseless case, the previously introduced mechanism, which we will refer to as
mechanism A, is the only way where the linear cross entropy vanishes.
The first row in Figure 2.7 clearly shows that only tracking the outcomes of 𝑍𝑍 mea-

surements yields a (marginalized) linear cross entropy that is identically 1. Conversely, the
tracking of only the outcomes of𝑋measurements yields the same curve as the one where we
track everything. This is an indicator that the probability theoretic argument thatm𝛸 and
m𝑍 are independent random variables holds water. By our choice of initial states, there is no
mechanism present in the circuit, where the marginalized cross entropy of 𝑍𝑍 goes to 0. We
will take special note of this fact when we introduce noise to the circuit.

2.4 ptim with faulty gates
So far, the LXE appears to be a promising candidate for the order parameter of the phase
transition in the projective transverse-field Ising model. Nevertheless, it is a well known fact
that the world is not perfect. It is utopian to imagine a quantum simulator going through a
circuit without any errors. Hence it seems a worthwile endeavor to investigate the robustness
of the linear cross entropy when the “experimentally realized” circuit with initial state 𝜌 is
subjected to noise.
In this section and the remainder of this chapter we investigate the impact of a type of

error model on the linear cross entropy and verify its robustness to noise. We build on and
critique the work of Ref. [4] insofar as we implement their error model in our simulations,
expand it to include also 𝑍𝑍 noise, as well as the marginalized linear cross entropies, and
contextualize the results.
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2.4.1 Error model

As errormodel, we implement themodel from [4], where they considered symmetric noise in
𝑋. The protocol to introduce errors is as follows. Between each timestep, apply a quantum
channel of the form

𝜀(𝜌) = 1
2𝜌 +

1
2𝑋𝜌𝑋 (2.29)

on each qubit with an error rate 𝑞.4 That is, after each timestep, before applying the mea-
surement gates of the next one, we construct an additional measurement layer, where mea-
surements of certain types are performed with probability 𝑞. This scheme is generic insofar
as we can also imagine𝑍𝑍 errors happening in this way, as well as errors on both observables.
This type of error can be interpreted as additional measurements we failed to keep track of

in general, and not by choice. Another way of interpreting it is that they constitute projective
errors, akin to the one shown in a minimal example in Figure 1.1. Our expectation from the
interpretation of the survival rate of the initial cluster would be that for𝑋 noise, we have
the phase transition at a smaller probability, since the initial cluster dies earlier due to the
presence of more frequent𝑋measurements. In the converse we expect the cluster to survive
longer, since we artificially introduce stabilizer measurements at a rate 𝑞.
Before we put this expectation to the test, we need to consider how we go about sampling

this quantity. We implement this noise in a way closest to what one could consider noise
in a real experiment starting with our usual scheme of designing a random circuit 𝐶 and
measuring accordingly. However, this time we measure additionally on each qubit after
each timestep with an error rate 𝑞. These measurements we don’t keep track of and seed
randomly in the simulation of 𝜌.
By introducing errors to the circuit, we subject it to quite impactful alterations. Previously

we could consider the reduced measurement pattern—which we had access to—and apply
it to both initial states, with mechanism A being the only source of vanishing terms in the
sampling. Now we need to consider the designed, albeit still randomly generated, circuit𝐶
and the faulty pattern �̃�, where �̃� is parametrized by both 𝑝 and 𝑞. Crucially, the new faulty
circuit �̃� constitutes a superset of𝐶, since each measurement of𝐶 is performed regardless.
That is, we have𝐶 ⊆ �̃�.
Note that this leaves the fraction in Equations (2.5) and (2.17), that is,

𝑓(m, 𝐶, 𝜎) = 𝑃(m|𝐶, 𝜎)
∑m′ (𝑃(m′|𝐶, 𝜎))2

(2.30)

invariant; we are still trying to find the compatibility between classical simulation (𝐶, 𝜎)
and “quantum” experiment (�̃�, 𝜌). However, we will obtain a different expression for the
4We refer to this quantum channel as “error” and “noise” interchangeably.
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sample average, Equation (2.25). As we are trying to realistically model errors, we should
be unaware of the location they happen in, but assume that they happened. As such, �̃� is a
random circuit with probability parameters 𝑝 and 𝑞 for measurements we do and do not
have control over, respectively. Equation (2.25) then becomes a sum over �̃�𝑝,𝑞,

⟨⟨𝑓⟩⟩
𝑝,𝑞,𝜌

= ∑
�̃�𝑝,𝑞

𝑃(�̃�𝑝,𝑞) ⋅ 𝑓(m, 𝐶𝑝, 𝜎). (2.31)

With the sampling scheme defined in a more precise way, we can refine our predictions
on the results in the simulation. Although the 𝑓 in Equation (2.31) and Equation (2.25) are
identical, the measurement record we take as input is not generated from the same circuit.
Consequently, we can now identify other causes of the function going to 0.
Previously we argued that the probability of a measurement outcome is not influenced by

preceeding measurements, that is, they are independent random variables. While this is still
the case, the argument only holds on a circuit-level. The only way where an error does not
alter the probability of the succeedingmeasurements is, if it commuteswith themeasurement
operators on the same site that directly preceed or succeed the error. For instance, if the
circuit dictates a measurement of𝑋, which is then followed by the noise channel, the state is
not altered and nothing is affected.
Thus, we argue that there is an additional mechanism for vanishing circuit-level linear

cross entropy, where an error is not bypassed by the mechanism described above, but is
entrapped by the competing measurement.
Take, for instance, theminimal example of twoqubitswith𝑋-Errors. A validmeasurement

pattern would be (𝑍1𝑍2, 𝑍1𝑍2). Starting with a Bell state would yield the outcomes (+1, +1)
deterministically. If we now squeeze an error inbetween the two measurements, we have
halved the probability of getting +1 at the second timestep. Thus, for half of the runs we
would get an unsuccessful projection.
The mechanism of the circuit-level linear cross entropy going to 0 due to errors which

fail to not get noticed will henceforth be denoted with B1 and B2 for 𝑋-errors and 𝑍𝑍-
errors respectively. Possible examples of them occuring in a PTIM experiment with the
corresponding simulation are depicted schematically in Figures 2.4 and 2.5.
It is not hard to convince oneself that the linear cross entropy sampled with faulty circuits

is less than or equal to the original cross entropy, since the original source of it going to
0 is still present nonetheless. We can do a simple estimation on the probability of one of
the above introduced mechanisms to bound the error-influenced linear cross entropy from
above. These considerations also serve to better understand them.
Let us consider mechanism B1, where𝑋 errors occur with probability 𝑞. The measure-

ment recordm obtained from �̃� applied on 𝜌 is incompatible with 𝜎 if there is a projection
onto the zero-vector. Thus, for a non-zero LXE we want this not to happen. One way for
this to happen is if mechanism B1 takes effect. To derive the probability of B1 occuring,
consider the following train of thought.
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𝜌 (Experiment)
𝑆 = ⟨+𝛸𝛸,𝑍𝑍⟩

𝜎 (Simulation)
𝑆 = ⟨−𝛸𝛸,𝑍𝑍⟩

𝑡 = 𝑖

𝑡 = 𝑖 + 1

𝑍𝑍 = +1

𝑋

𝑍𝑍 = −1

ℙ (+𝑍𝑍)

ℙ (−𝑍𝑍)

Figure 2.4.: Excerpt of a possible PTIM circuit with non-zero probability of𝑋-errors occuring show-
casingmechanismB1. At timestep 𝑡 = 𝑖, we performa𝑍𝑍measurement on twoneighbor-
ing qubits with result +1, and an𝑋-error occurs on the first qubit after the measurement.
Then in the next timestep, we measure 𝑍𝑍 once more. As a consequence of the error,
this 𝑍𝑍measurement is not deterministically +1, but randomly ±1with probability 1

2 .
When trying to project in the classical simulation, this discrepancy gets noticed, since we
do not have access to the precise nature of the errors. Upon failed projection we have
𝜒 = 0.

1. Two successive 𝑍𝑍measurements must occur in𝐶 on the same edge. This event has
probability (1 − 𝑝) ⋅ (1 − 𝑝) = (1 − 𝑝)2 by the construction rules of the PTIM circuit.

2. No𝑋measurements on the site where the error occurs. This event also has probability
(1 − 𝑝)2, as 𝑝 is the probability of 𝑋measurements, again by the rules on how we
construct a PTIM circuit.

3. An error must occur on one of the sites, which gets detected. The error rate is 𝑞, with
an effective probability of 𝑞/2, since the “correct” measurement result is still a valid
outcome in the circuit.

4. The mechanism is symmetric in the two sites encompassed in the edge the 𝑍𝑍mea-
surements occur, which multiplies the above points by 2.

Thus, the probability of B1 is

𝑃(B1; 𝑝, 𝑞) = 2
2𝑞 (1 − 𝑝)

2 (1 − 𝑝)2 = 𝑞 (1 − 𝑝)4 . (2.32)
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𝜌 (Experiment)
𝑆 = ⟨+𝛸𝛸,𝑍𝑍⟩

𝜎 (Simulation)
𝑆 = ⟨−𝛸𝛸,𝑍𝑍⟩

𝑡 = 𝑖

𝑡 = 𝑖 + 1

+1

𝑍𝑍

−1

ℙ (+𝑋)

ℙ (−𝑋)

Figure 2.5.: Excerpt of a possible PTIM circuit with non-zero probability of 𝑍𝑍-errors occuring
showcasing mechanism B2. At timestep 𝑡 = 𝑖, we perform an𝑋measurement on the left
qubit with result +1, and a 𝑍𝑍 error occurs on the shown pair after the measurement.
Then in the next timestep, wemeasure𝑋 on the left qubit oncemore. As a consequence of
the error, this𝑋measurement does not yield+1deterministically, but±1with probability
1
2 for either result. When trying to project in the classical simulation, this discrepancy
gets noticed, since we do not have access to the precise nature of the errors. Upon failed
projection we have 𝜒 = 0.

Since this should not happen anywhere in the space-time lattice, we have

𝜒 ≤ (1 − 𝑞 (1 − 𝑝)4)
(𝐿−1)(𝛵−1)

(2.33)

as an estimation for the linear cross entropy for𝑋-errors. The LXE is thus exponentially
suppressed for 𝑝 < 1 in the thermodynamic limit of 𝐿 → ∞. We should also not confuse the
facts here; this estimate does not give the actual behavior of the linear cross entropy. It is only
a heuristically derived upper bound for the rate of occurence of mechanism B1. In principle,
this probability would need to be multiplied by the probability of the other mechanisms
to get a tighter upper bound. However, it stands to reason that even if this were the only
mechanism (and we will come across an example of exactly this later), the linear cross entropy
would still go to 0 for large systems, with a singular value of 𝜒 = 1 at 𝑝 = 1.5 Note that the
converse is the case for B2 by an analogous line of reasoning, where it is 𝜒 = 1 at 𝑝 = 0 and
𝜒 = 0 otherwise.

5This follows from the sandwich lemma.
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2.4.2 Tracking all measurement outcomes

We first discuss the results for tracking every measurement outcome. For a visualization,
consider the “Track all” column of Figure 2.7. The annotations in the individual subplots
highlight the predominant mechanism leading to a vanishing cross entropy, referring to the
situations depicted in Figures 2.4 and 2.5. We set up the system the same way as before with
𝜌 = |𝐺𝐻𝑍+⟩⟨𝐺𝐻𝑍+| and 𝜎 = |𝐺𝐻𝑍−⟩⟨𝐺𝐻𝑍−|, and an additional error rate of 𝑞 = 0.01,
consistent with the choice in Ref. [4]. Note that in the cases where𝑋 errors are present, we
show the plots of systems with fewer qubits. As we can infer from Equation (2.33) the linear
cross entropy is exponentially suppressed with larger system size. We therefore obtain 𝜒 ≡ 0
for sufficiently large systems, which would be the case for 𝐿 = 64 and 𝐿 = 128, as shown in
the other subplots. Shown additionally is the entanglement entropy of an ancilla qubit, 𝑆anc,
which was the initial interpretation of the linear cross entropy in case of no noise. One can
clearly see that this interpretation is no longer a valid one.
To highlight the shift of the critical point in case of noise, consider Figure 2.6, where

the entanglement entropy of an ancilla qubit entangled to the initial cluster is shown with
the corresponding linear cross entropy. For the simulation we probed a region of 𝑝 close
to the critical point with an error rate of 𝑞 = 0.1, higher than the one in Figure 2.7. We
here chose smaller systems as well. Notice that the critical point moves as expected, where
the linear cross entropy leaves no possibility for inference thereof. Its behavior is seemingly
decoupled from the actual dynamics of the entanglement cluster, and is dominated by the
other mechanisms leading to a vanishing cross entropy. Even for relatively small systems of
𝐿 = 16, the linear cross entropy is not robust to the influence of noise.
Our results thus show that the linear cross entropy in the form defined in Definition 2.2 is

not a sensible choice for an order parameter of the phase transition, as experimental realiza-
tions of the projective transverse-field Isingmodel will inevitably include noise, exponentially
suppressing the linear cross entropy. Its utility with regards to the phase transition in the
PTIM is therefore rather limited.
As an aside, we want to bring attention to the fact that our results differ from the results

obtained by [4]. Their results for the linear cross entropy in a noisy circuit show little
deviation from the noiseless behavior, seemingly only scaled down by some factor. However,
by the provided upper bound, we know the LXE to be exponentially suppressed. This
discrepancy between our results and theirs could be caused by a multitude of different issues.
First, the source of the discrepancy could be statistical in nature, due to different sample
sizes. Additionally, they could also process their data with alternative methods. However,
from the material available to us, it remains unclear what causes this difference in results.

2.4.3 Marginalization

Notice that if, instead of applying projection operations, we applied measurement gates in
the right hand side circuits depicted in Figures 2.4 and 2.5, we would – obviously – not
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Figure 2.6.: Ancilla entanglement entropy and linear cross entropy for an error rate of 𝑞 = 0.1 to
highlight the behavior of𝑆anc. The system sizes are chosen smaller compared to Figure 2.7
since 𝜒would be 0 for larger systems. Note that this is shown for the region around the
critical point 𝑝 = 0.5 in the ideal case. This was done to make the shift of 𝑆anc in 𝑝more
noticeable without having the cross entropy be 0 for small system sizes. Grey vertical
dots indicate the critical point in the ideal case of no errors at 𝑝 = 0.5. Each datapoint
corresponds to the sampling of ∼ 105 circuit realizations.
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project onto the 0-vector, and thus the circuit would continue. This is exactly what happens
when one marginalizes out the measurement results of 𝑍𝑍 or𝑋measurements, as discussed
in Section 2.3. It thus stands to reason that we should entertain this probability theoretic
trick for the noisy circuits.
Within �̃� and𝐶 the same argument as in Section 2.3 holds. The outcomes we track are

still independent random variables, now only with a different circuit that produces them, i.e.

𝑃(m𝛸 ∩m𝑍|�̃�, 𝜌) = 𝑃(m𝛸|�̃�, 𝜌) ⋅ 𝑃(m𝑍|�̃�, 𝜌). (2.34)

Therefore, despite the fact that 𝜌 and 𝜎 are being subjected to physically different circuits,
we can still separate the respective probabilities as we did before. We just need to be careful
with the interpretation. That is, we can follow the derivation in Equation (2.28), where we
replace𝐶 in the probabilities conditioned on initial state 𝜌with �̃�,

𝜒�̃�,𝐶 = ∑
m
𝑃(m ∣ �̃�, 𝜌) 𝑃(m ∣ 𝐶, 𝜎)

∑m′ (𝑃(m′ ∣ 𝐶, 𝜎))2

= ∑
m𝛸∩m𝑍

𝑃(m𝛸 ∩m𝑍|�̃�, 𝜌)
𝑃(m𝛸 ∩m𝑍|𝐶, 𝜎)

∑m′
𝛸∩m

′
𝑍
(𝑃(m′

𝛸 ∩m′
𝑍|𝐶, 𝜎))

2

= ∑
m𝛸∩m𝑍

𝑃(m𝛸|�̃�, 𝜌)𝑃(m𝑍|�̃�, 𝜌)
𝑃(m𝛸|𝐶, 𝜎)𝑃(m𝑍|𝐶, 𝜎)

∑m′
𝛸∩m

′
𝑍
(𝑃(m′

𝛸|𝐶, 𝜎)𝑃(m
′
𝑍|𝐶, 𝜎))

2

=
∑m𝑍

𝑃(m𝑍|�̃�, 𝜌)𝑃(m𝑍|𝐶, 𝜎)

∑m′
𝑍
(𝑃(m′

𝑍|𝐶, 𝜎))
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟
Subset ZZ

∑m𝛸
𝑃(m𝛸|�̃�, 𝜌)𝑃(m𝛸|𝐶, 𝜎)

∑m′
𝛸
(𝑃(m′

𝛸|𝐶, 𝜎))
2 .

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Subset X

(2.35)

As discussed previously, by tracing out the other measurement outcomes, we effectively
replace them by an identity in the calculation of the probability. It therefore turns out that
tracking only the outcomes𝒪-measurements prevents us from seeing𝒪-errors. Another way
one can convince oneself of this fact is the following. If we do not care about the outcomes
of the observable, where no errors happen, then every error gets necessarily bypassed as
described above. We can no longer distinguish if a measurement turned from random to
deterministic due to a faulty randommeasurement. The outcome is still a valid one with
respect to𝐶 (and possibly 𝜎, for that matter). On the other hand, it will be impossible to tell
if the initial entanglement cluster died because of a faulty measurement or a native one.
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In particular will marginalizing over 𝑍𝑍, i.e. tracking𝑋, with𝑋-errors yield the identical
linear cross entropy as in the noiseless case. With the results of Section 2.3 we also know
that this is then equivalent to tracking every outcome in the noiseless circuit. Furthermore
will tracking 𝑍𝑍 while having 𝑍𝑍 errors still be identically 1. Note that this implies that
the different mechanisms for the different error types get absorbed depending on which
observable we choose to keep track of.

Results

The results of the numerical analysis are shown in Figure 2.7. The linear cross entropy and
the entanglement entropy of an ancilla qubit are shown, where every possible combination of
error type and marginalization is represented in a separate subplot. Although we previously
made reference to the figure, we will clarify how the tableau presentation is to be read, as we
will employ it again for our numerical results in Chapter 3.
Along the rows of the tableau of subplots we simulate the PTIMwith noise represented

by different observables. In the first row, there are no errors, 𝑞 = 0. In the second row, we
introduce symmetric noise in𝑋 as defined in Section 2.4.1 and Equation (2.29). As error
rate we choose 𝑞 = 0.01 in agreement withRef. [4]. In the third rowwe proceed analogously
with 𝑍𝑍 errors, also at a rate of 𝑞 = 0.01. In the last row, we combine the two, where first
the noise channel of𝑋 and then the one of 𝑍𝑍 is applied.
Along the columns of Figure 2.7, we use a different subset of measurement outcomes. In

the first column, titled “Track X”, we track the outcomes of𝑋measurements, and replace
projections onto𝑍𝑍 results withmeasurement operations. The second column, titled “Track
ZZ” is the converse of the first, with 𝑍𝑍 outcomes tracked and𝑋 outcomes marginalized.
The last column is where we track everything.
The solid line denotes the linear cross entropy, while the dashed line is the ancilla entan-

glement entropy. Note that each simulation was done twice: once for an isolated system,
which we then compared with 𝜎 in order to compute the linear cross entropy, and another
one entangled to an ancilla qubit. We want to emphasize that the different combinations of
errors and marginalizations are qualitatively different in that some system sizes need not be
shown for one or the other. For instance, in the “X Errors, Track all” case, the linear cross
entropy for 𝐿 = 64would be 0 almost everywhere, with miniscule deviations. We thus omit
some system sizes in some subplots, also in an effort to retain legibility.
Within each subplot we annotated each curve to qualitatively indicate the predominant

mechanism that sends 𝜒 to 0, refering to the previously defined denotions of saidmechanism.
For the “𝑋Errors –Track𝑋”, “No Errors –Track𝑋”, and “NoErrors –Track all” situations,
the only mechanism is the one where the initial cluster dies by means of an𝑋measurement.
As such, mechanism A is the predominant one. For the “𝑋 Errors – Track all”, we have A, as
well as B1, the latter of which is predominant in the regime 𝑝 < 𝑝𝑐, whereas the former is
predominant for 𝑝 > 𝑝𝑐. Notice that this can be seen in the combination of the subplots to
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the left of it. In the “No Errors – Track 𝑍𝑍” case, the linear cross entropy is identically 1,
which is no longer the case for𝑋 errors. Here, we have B1, which is the only mechanism by
which the 𝑍𝑍 linear cross entropy goes to 0.
Since we also know that the “Track all” linear cross entropy is the product of the marginal-

ized ones, we can read each line as the product of the first two plots equaling the third one.
For rows 1 and 3, this is rather trivial. For the others, it offers an explanation as to why it was
necessary to lower the system size in the last column.6 This shows that the simulations agree
with the prediction.
These remarkable results notwithstanding, we would still be hard-pressed to find any

evidence of the real, i.e. measureable, phase transition of the projective transverse-field Ising
model in noisy systems. This is highlighted by the fact that the “true” behavior of the system
is simulated as well in the form of the ancilla entanglement entropy. For this we especially
focus on the last row of the tableau, which would be the noisiest system, where the behavior
of the linear cross entropy is seemingly decoupled from the dynamics of the cluster. In
particular, due to the exponential suppression in the thermodynamic limit the mechanisms
that are not A dominate.
However, this exponential suppression can be synthesized into an advantage. Notice that

as a consequence of this suppression, the “Track 𝑍𝑍” column is highly sensitive to𝑋 noise.
Where it is identically 1 in the ideal case, even small error rates in small systems lead to the
deviation from the ideal behavior. We can therefore use this fact, as well as Equation (2.33),
to estimate how noisy our system is. As such, one could still draw some utility from the linear
cross entropy, in that the “Track 𝑍𝑍” column could function as an indicator of noise in the
system, albeit only noise in𝑋, i.e. bitflips.

6The last row offers the better visualization of this phenomenon in the nontrivial case compared to the second.
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Figure 2.7.: Linear cross entropy (solid) and entanglement entropy of an ancilla qubit entangled to the
initial cluster (dashed) for 𝑝 ∈ [0, 1] for all combinations of errors and marginalizations
and different system sizes. Note that the ancilla entropy is unaffected by the marginaliza-
tions. Annotations within the subfigures reference the predominant mechanisms of the
linear cross entropy going to 0. A corresponds to Figure 2.1, B1 and B2 correspond to
Figures 2.4 and 2.5, respectively.
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2.5 summary
In this chapter we examined the linear cross entropy in the projective transverse-field Ising
model. The linear cross entropy was introduced by Li et al. in [2], and first investigated
for the projective transverse-field Ising model by Tikhanovskaya et al. in [4]. In search of a
promising candidate for an order parameter of the phase transition that is measureable in an
experimental setting, we picked up where these previous works left off. Our investigations
showed that while it is a fitting quantity for noiseless systems, the linear cross entropy is not
at all robust to noise in the system, as it gets exponentially suppressed with larger system
size. We additionally showed that we can marginalize over measurement outcomes of one
operator and still find some utility in the linear cross entropy. In an experimental setting, the
marginalized linear cross entropy could be employed in attempts to minimize the influence
of noise, as it is highly sensitive to noise.
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3
UPPER BOUND

“To Infinity And Beyond”
Buzz Lightyear

In this chapter we explore the approach of Garratt and Altman presented in [3]1. They
introduce a method to probe the critical point of the phase transition of a hybrid circuit. In
particular, they make use of Klein’s inequality, bounding the entanglement entropy from
above. In the present chapter we introduce the idea behind this approach, translate it to our
system—the projective transverse-field Ising model (PTIM)—, and evaluate the quality of
the resulting estimate.
The chapter is structured as follows. In Section 3.1 we state the principles behind the

idea and derive the upper bound. Moreover, we state and prove that for Clifford circuits,
i.e. in the stabilizer formalism, there is only a limited class of cases, where the upper bound
is non-trivial. In Section 3.3 we introduce different numerical post-processing algorithms,
trying to combat infinities appearing, when introducing an error model akin to the one in
Section 2.4.1. The results of which are shown and discussed in ??. Finally, we provide and
discuss regularizations of divergences, weighing out utility and computational efficiency.

1While this reference points to a preprint on arXiv, we remark that the cited work has since been published in
PRXQuantum with no significant alterations (see Ref. [72])



upper bound

3.1 the idea & stabilizers
In this section we will introduce the upper bound on entanglement entropy, provide an
information-theoretic interpretation and derive an expression for the quantity of interest
in case of stabilizer states. First however, we will recall the definitions of some important
quantities.

Entropy of entanglement
The main quantity of interest in the whole field of entanglement transitions is the entropy
of entanglement. It is a measure for how entangled one subsystem of a bipartite state ∣𝜙⟩

𝛢𝛣
is with the other. We recall from Section 1.2 that its definition can be stated as follows [27].

Definition 3.1 (Entanglement entropy). Let ∣𝜙⟩ ∈ 𝐻⊗𝛮 be a bipartite pure state
with subsystems𝐴 and 𝐵. The entropy of entanglement of ∣𝜙⟩ then reads

𝑆E (∣𝜙⟩) ≡ −Tr[𝜌𝛣 log 𝜌𝛣], (3.1)

where 𝜌𝛣 = Tr𝛢[∣𝜙⟩⟨𝜙∣] is the reduced density matrix of subsystem 𝐵. Convention-
ally, one uses the logarithm of base 2.

This quantity can be efficiently computed in clifford circuits via the stabilizer formalism.
It is important to note that the density matrix of the whole system 𝜌 = ∣𝜙⟩⟨𝜙∣ describes a
pure state. For a more universal measure of entropy, where the entropy of entanglement is a
special case, we need to consider the more general von Neumann entropy.

Von Neumann entropy
The von Neumann entropy lets us quantify the average information content in a mixture
of quantum states. Originally, von Neumann introduced it as an extension of the classical
Shannon entropy to quantum systems, as density matrices serve as extension of the classical
notion of (discrete) probability distributions [47].2 Consequently, we can write down a
definition of the von Neumann entropy.

Definition 3.2 (Von Neumann entropy). Let 𝜌 be an𝑁-qubit density matrix. The
von Neumann entropy of 𝜌 is given by

𝑆 (𝜌) ≡ ⟨− log 𝜌⟩ = −Tr[𝜌 log 𝜌]. (3.2)

2Shannon entropy is a measure of the average information of probabilistic events. Since Information is defined
as 𝛪 = − log 𝑝𝑥 for some event 𝑥 with probability 𝑝𝑥, we can write down an average, 𝑆 = ⟨− log 𝑝𝑥⟩𝑥 =
−∑𝑥 𝑝𝑥 log 𝑝𝑥, which defines the Shannon entropy [48].
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For diagonalizable matrices (as we expect density matrices to be) we can also express
Equation (3.2) as a sum over eigenvalues 𝜆𝑘 of 𝜌, i.e.

𝑆 (𝜌) = −∑
𝑘
𝜆𝑘 log 𝜆𝑘, (3.3)

where 0 ≤ 𝜆𝑘 ≤ 1. This can be shown by diagonalizing 𝜌 and using the fact that the
matrix logarithm of a diagonal matrix is just the logarithm of the entries. (Note that we set
0 ⋅ log 0 ≡ 0.)
From this definition we can already derive some important properties, namely its lower

and upper bound. Firstly, 𝑆(𝜌) is non-negative and 0 iff. 𝜌 is pure. It is easy to convince
oneself of that fact. For pure states we have 𝜌 = ∣𝜙⟩⟨𝜙∣, which has only one non-zero
eigenvalue, 𝜆 = 1. Consequently, Equation (3.3) reduces to 𝑆(𝜌) = −1 ⋅ log 1 = 0. Next,
𝑆(𝜌) is maximal for the maximally mixed state. In a 𝑑-dimensional Hilbert space, the density
matrix of the maximally mixed state is 𝜌 = 1/𝑑. Hence, Equation (3.3) reduces to

−∑
𝑘

1
𝑑 log 1𝑑 = − log 1𝑑 = log𝑑.

Quantum relative entropy
Lastly, we want to introduce the quantum relative entropy. The same way we motivated the
von Neumann entropy, we want to define a quantummechanical analogue to the classical
relative entropy. This quantity will play a role of major importance in this chapter and is
defined as follows.

Definition 3.3 (Quantum relative and cross entropy). Let 𝜌 and 𝜎 be density matri-
ces with identical dimension. The relative entropy of 𝜌 to 𝜎 is

𝑆 (𝜌 ∣∣ 𝜎) ≡ Tr[𝜌 log 𝜌] − Tr[𝜌 log 𝜎] = −𝑆(𝜌) − Tr[𝜌 log 𝜎], (3.4)

with the von Neumann entropy 𝑆(𝜌). The last term in Equation (3.4), that is,

𝑆 (𝜌 ∣∣ 𝜎) + 𝑆(𝜌) ≡ 𝑆𝐶(𝜌 ∣∣ 𝜎) = −Tr[𝜌 log 𝜎] (3.5)

is known as cross entropy.

Relative entropy, classical or quantum, quantifies excess surprisal when one assumes 𝜎 as
a state3, when the actual state is 𝜌. In that sense it tells us how different two quantum states
are. Interpreting it in this way also provides us with a neat heuristic approach to possible
values: the only way we do not lose information is if we assume correctly, and in any other
3or probability distribution in the classical case
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case we lose some. The most extreme form of this is if supp(𝜌) ∩ ker(𝜎) = 0, where the
relative entropy diverges. In most general terms the relative entropy fulfills

𝑆(𝜌 ∣∣ 𝜎) < ∞⟺ supp(𝜌) ⊆ supp(𝜎), (3.6)

where supp(•) ≡ ker(•)⟂ is the support of a linear operator, which is defined as the or-
thogonal complement to the kernel. Alternatively, for diagonalizable matrices, it is the
subspace spanned by eigenvectors with non-zero eigenvalues [73, 74]. This condition can be
interpreted in a physical way. Let

𝜌 = ∑
𝑖
𝜆𝑖 |𝜆𝑖⟩⟨𝜆𝑖| and 𝜎 = ∑

𝑖
𝜇𝑖 ∣𝜇𝑖⟩⟨𝜇𝑖∣

be orthonormal eigendecompositions of 𝜌 and 𝜎. Then 𝑆(𝜌 ∣∣ 𝜎) diverges iff. there are states
that 𝜌 features in its mixture that 𝜎 does not. That is, 𝜌 has to be more mixed than, or at least
as mixed as, 𝜎. If it is as mixed as 𝜎, it has to be a mixture of the same states. This means that
the information lost under the assumption of a purer state is infinite. Since we know the von
Neumann entropy to be bounded, this divergence occurs solely in the −Tr[𝜌 log 𝜎] term.
One property hinted at earlier is the non-negativity of the relative entropy. This property

goes by many different names, depending on context. For instance, in classical statistical
mechanics, this result is known as theGibbs inequality. Its quantummechanical analog is
also known asKlein’s inequality.

3.1.1 Klein’s inequality

In this section we will state and prove the relation central to this chapter. Its statement reads
as follows.

Theorem 3.4 (Klein’s inequality). The quantum relative entropy is non-negative,
𝑆(𝜌 ∣∣ 𝜎) ≥ 0, with equality iff. 𝜌 = 𝜎.

While the statement in itself is written out rather simply, proving Theorem 3.4 requires us
to introduce two auxiliary relations, namely Jensen’s inequality and the log sum inequality.

Theorem 3.5 (Jensen’s inequality). Let 𝑓 be a convex function, that is,
𝑓 (𝜆𝑥1 + (1 − 𝜆) 𝑥2) ≤ 𝜆𝑓 (𝑥1) + (1 − 𝜆) 𝑓(𝑥2) with 0 ≤ 𝜆 ≤ 1, and 𝑋 a discrete
random variable. Then

𝔼 [𝑓(𝑋)] ≥ 𝑓 (𝔼 [𝑋]) . (3.7)
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Proof of Jensen’s inequality. We will prove Jensen’s inequality by induction over the mass of
𝑋. Associated with each event 𝑥𝑖 ∈ 𝑋 is its probability 𝑝𝑖, such that our induction hypothesis
is

𝑛
∑
𝑖=1

𝑝𝑖𝑓 (𝑥𝑖) ≥ 𝑓 (
𝑛
∑
𝑖=1

𝑝𝑖𝑥𝑖) . (3.8)

As base case we have 𝑛 = 2;

𝔼 [𝑓(𝑋)] = 𝑝1𝑓(𝑥1) + 𝑝2𝑓(𝑥2)
= 𝑝1𝑓(𝑥1) + (1 − 𝑝1)𝑓(𝑥2) (Kolmogorov)
≥ 𝑓(𝑝1𝑥1 + (1 − 𝑝1)𝑥2) (𝑓 convex)
= 𝑓(𝔼[𝑋]).

For the induction step, assume Equation (3.8) holds for some 𝑛 ∈ ℕ>1, it must then also
hold for 𝑛 + 1;

𝑛+1
∑
𝑖=1

𝑝𝑖𝑓(𝑥𝑖) = 𝑝𝑛+1𝑓(𝑥𝑛+1) +
𝑛
∑
𝑖=1

𝑝𝑖𝑓(𝑥𝑖)

= 𝑝𝑛+1𝑓(𝑥𝑛+1) + (1 − 𝑝𝑛+1)
𝑛
∑
𝑖=1

𝑝𝑖
1 − 𝑝𝑛+1

𝑓(𝑥𝑖)

≥ 𝑝𝑛+1𝑓(𝑥𝑛+1) + (1 − 𝑝𝑛+1)𝑓 (
𝑛
∑
𝑖=1

𝑝𝑖
1 − 𝑝𝑛+1

𝑥𝑖) (Induction hypothesis)

≥ 𝑓 (𝑝𝑛+1𝑥𝑛+1 + (1 − 𝑝𝑛+1)
𝑛
∑
𝑖=1

𝑝𝑖
1 − 𝑝𝑛+1

𝑥𝑖) (𝑓 convex)

= 𝑓 (
𝑛+1
∑
𝑖=1

𝑝𝑖𝑥𝑖) .

Since the base case and the induction step hold, we conclude that it holds ∀𝑛 ∈ ℕ>1.

Corollary 3.6 (Log sum inequality). Let 𝑎1, … , 𝑎𝑛, 𝑏1, … , 𝑏𝑛 ≥ 0 and let 𝑎 = ∑𝑖 𝑎𝑖
and 𝑏 = ∑𝑖 𝑏𝑖. Then

𝑛
∑
𝑖=1

𝑎𝑖 log
𝑎𝑖
𝑏𝑖
≥ 𝑎 log 𝑎𝑏 . (3.9)

Proof. Let 𝑓(𝑥) = 𝑥 log 𝑥. It is easy to convince oneself that 𝑓 is convex, and that it lets us
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rewrite the left side of Equation (3.9). We then have

∑
𝑖
𝑎𝑖 log

𝑎𝑖
𝑏𝑖
= ∑

𝑖
𝑏𝑖𝑓 (

𝑎𝑖
𝑏𝑖
) = 𝑏∑

𝑖

𝑏𝑖
𝑏 𝑓 (

𝑎𝑖
𝑏𝑖
)

≥ 𝑏 ⋅ 𝑓 (∑
𝑖

𝑏𝑖
𝑏
𝑎𝑖
𝑏𝑖
) (Theorem 3.5)

= 𝑏 ⋅ 𝑓 (1𝑏 ∑𝑖
𝑎𝑖) = 𝑏 ⋅ 𝑓 (𝑎𝑏)

= 𝑎 log 𝑎𝑏 .

We now have all the tools ready to prove Theorem 3.4. Our proof follows the one laid out
in [8], with slight modifications.

Proof of Theorem 3.4. Let 𝜌 = ∑𝑖 𝑝𝑖 |𝑖⟩⟨𝑖| and 𝜎 = ∑𝑗 𝑞𝑗 ∣𝑗⟩⟨𝑗∣ be orthonormal decompo-
sitions for 𝜌 and 𝜎. FromDefinition 3.3 we can write

𝑆(𝜌 ∣∣ 𝜎) = ∑
𝑖
𝑝𝑖 log 𝑝𝑖 −∑

𝑖
⟨𝑖| 𝜌 log 𝜎 |𝑖⟩ . (3.10)

With the eigendecomposition of 𝜌 and 𝜎we can write ⟨𝑖| 𝜌 = 𝑝𝑖 ⟨𝑖| and

⟨𝑖|log 𝜎|𝑖⟩ = ⟨𝑖|(∑
𝑗
log 𝑞𝑗 ∣𝑗⟩⟨𝑗∣)|𝑖⟩ = ∑

𝑗
𝑃𝑖𝑗 log 𝑞𝑗, (3.11)

with 𝑃𝑖𝑗 = ⟨𝑖∣𝑗⟩ ⟨𝑗∣𝑖⟩ ≥ 0. Plugging this into Equation (3.10) yields

𝑆(𝜌 ∣∣ 𝜎) = ∑
𝑖
𝑝𝑖 (log 𝑝𝑖 −∑

𝑗
𝑃𝑖𝑗 log 𝑞𝑗) . (3.12)

Note that 𝑃𝑖𝑗 satisfies∑𝑖 𝑃𝑖𝑗 = ∑𝑗 𝑃𝑖𝑗 = 1. We can thus interpret the last term in Equa-
tion (3.12) as an average of − log 𝑞𝑗. Since − log is a strictly convex function it follows from
Theorem 3.5 that

−∑
𝑗
𝑃𝑖𝑗 log 𝑞𝑗 ≥ − log 𝑟𝑖, (3.13)

where 𝑟𝑖 = ∑𝑗 𝑃𝑖𝑗𝑞𝑗, with equality iff. there exists a value of 𝑗where 𝑃𝑖𝑗 = 1. This implies

𝑆(𝜌 ∣∣ 𝜎) ≥ ∑
𝑖
𝑝𝑖 log

𝑝𝑖
𝑟𝑖
, (3.14)
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where the equality occurs iff. there exists a 𝑗with 𝑃𝑖𝑗 = 1, i.e. iff. 𝑃𝑖𝑗 is a permutation matrix.
By Corollary 3.6 and the double stochasticity of 𝑃𝑖𝑗 we obtain the final result

𝑆(𝜌 ∣∣ 𝜎) ≥ ∑
𝑖
𝑝𝑖 log

𝑝𝑖
𝑟𝑖
≥ 1 ⋅ log 11 = 0. (3.15)

This result is essentially already our upper bound on the entanglement entropy, since we
have

𝑆(𝜌 ∣∣ 𝜎) ≥ 0 ⇔ −Tr[𝜌 log 𝜎] ≥ 𝑆 (𝜌) (3.16)

with the relative and von Neumann entropy 𝑆(𝜌 ∣∣ 𝜎) and 𝑆(𝜌) respectively. Since the
von Neumann entropy is a more general form of the entanglement entropy, we can employ
Klein’s inequality to upper bound the entanglement entropy as well and thus try to find a
signature of the phase transition.
This idea was used in [3] for a hybrid circuit ofHaar-random 2-qubit unitaries and local𝑍

measurements. As discussed in Section 1.2.2, simulating such a system is computationally ex-
pensive. Thus, to test their approach they employedmatrix product state (MPS) simulations.
These allow for a broader spectrum of mixed states than stabilizers do, and it is computation-
ally expensive, but feasible, to diagonalize the density matrix and take its logarithm, to then
compute the cross entropy upper bound. In our case, however, we investigate a random
circuit consisting of Pauli measurements only and thus employ stabilizer simulations to run
simulations on a classical computer. As elaborated in Sections 1.1.4 and 4.1.1, the stabilizer
formalism allows for lots of elegant computational shortcuts, allowing efficient quantum
simulations on classical computers. Consequently, one might ask if there also is an efficient
way to compute the cross or relative entropy. Wewill explore this question in the next section.

3.1.2 Stabilizers

When resarching the quantum relative entropy and cross entropy and possible expressions
thereof in the stabilizer formalism, we have not been successful in finding an efficientmethod,
such as the one for the entanglement entropy (see Ref. [27]) [8, 75–83]. In this section we
will therefore examine the upper bound on the entanglement entropy given by Theorem 3.4
in the context of stabilizers and the stabilizer formalism. In particular, we will explore the
condition of infinite relative entropy, provide and prove a necessary and sufficient condition
for 𝑆(𝜌 ∣∣ 𝜎) < ∞when 𝜌 and 𝜎 are stabilizer density matrices (Theorem 3.8), and derive an
expression for finite cross and relative entropy.
Recall that we have 𝑆(𝜌 ∣∣ 𝜎) < ∞ for supp(𝜌) ⊆ supp(𝜎). For the proof of Theorem 3.8

it will prove useful to introduce an auxiliary lemma, which relates the support of a density
matrix to the stabilized subspace.
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Lemma 3.7. Let 𝜌 be an𝑁-qubit stabilizer density matrix with stabilizer group
𝒮 = ⟨𝑔1, … , 𝑔𝑛⟩, and 0 ≤ 𝑛 ≤ 𝑁. Then

supp(𝜌) = 𝑉𝒮.

Proof of Lemma 3.7. By definition (see Definition 1.10), we take𝑉𝒮 to be the vector space
stabilized by𝒮. Further, it is the intersection of subspaces fixed by each operator in𝒮, i.e. the
eigenvalue one eigenspaces of elements of 𝒮 (see Section 1.1.3). More formally we can write

𝑉𝒮 = ⋂
𝑔∈𝒮

{∣𝜓⟩ ∣ 𝑔 ∣𝜓⟩ = ∣𝜓⟩} = {∣𝜓⟩ ∣ 𝑔 ∣𝜓⟩ = ∣𝜓⟩ ∀𝑔 ∈ 𝒮} .

This subspace is projected onto by

ℙ𝒮 ≡
1
2𝑛 ∏𝑔∈𝒮

(1 + 𝑔) .

Recall from Section 1.1 and Definition 1.11 that 𝜌 can be written as a product of projectors

𝜌 = 1
2𝛮

∏
𝑔∈𝒮

(1 + 𝑔) = 2𝑛−𝛮ℙ𝒮

We thus have

supp(𝜌) = supp(ℙ𝒮) = 𝑉𝒮.

Theorem 3.8. Let 𝜌 and 𝜎 be𝑁-qubit stabilizer density matrices with respective
stabilizer groups 𝒮𝜌 and 𝒮𝜎. Then

supp(𝜌) ⊆ supp(𝜎)⟺ 𝒮𝜎 ≤ 𝒮𝜌.

That is, with Equation (3.6), 𝑆(𝜌 ∣∣ 𝜎) takes on finite values iff. 𝒮𝜎 is a subgroup of
𝒮𝜌.

Proof of Theorem 3.8. We will prove implication from both directions to prove equivalence.
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“⇐” Let 𝒮𝜎 ≤ 𝒮𝜌. Then

supp(𝜌) = 𝑉𝒮,𝜌 = ⋂
𝑔∈𝒮𝜌

{∣𝜓⟩ ∣ 𝑔 ∣𝜓⟩ = ∣𝜓⟩}

= ⋂
𝑔∈𝒮𝜎

{∣𝜓⟩ ∣ 𝑔 ∣𝜓⟩ = ∣𝜓⟩}
⏟⏟⏟⏟⏟⏟⏟

𝑉𝒮,𝜎

∩ ⋂
𝑔∈𝒮𝜌∖𝒮𝜎

{∣𝜓⟩ ∣ 𝑔 ∣𝜓⟩ = ∣𝜓⟩} (𝒮𝜎 ≤ 𝒮𝜌)

= 𝑉𝒮,𝜎 ∩ ⋂
𝑔∈𝒮𝜌∖𝒮𝜎

{∣𝜓⟩ ∣ 𝑔 ∣𝜓⟩ = ∣𝜓⟩}

⊆ 𝑉𝒮,𝜎 = supp(𝜎)

which finishes the proof of this direction.
“⇒” Let𝑉𝑆,𝜌 = supp(𝜌) ⊆ supp(𝜎) = 𝑉𝑆,𝜎. For the proof of this direction, consider the

relations between the subspaces of the𝑁-qubit Hilbert space𝐻⊗𝛮 ≡ ℋ outlined in the
following diagram.

ℋ 𝑉𝜌

𝑉𝜎

ℙ𝜎

ℙ𝜌

ℙ𝜌

We can read the diagram as follows: From the𝑁-qubit Hilbert space we can project onto
the vector space stabilized by 𝒮𝜎,𝑉𝜎, by means of a projection operator. Likewise we can do
the same for𝑉𝜌. Since we require𝑉𝑆,𝜌 ⊆ 𝑉𝑆,𝜎, the same projection that takes us from𝐻⊗𝛮 to
𝑉𝑆,𝜌 will take us from𝑉𝑆,𝜎 to𝑉𝑆,𝜌. It follows that ℙ𝜎ℙ𝜌 = ℙ𝜌.
Let ∣𝜓⟩ ∈ 𝑉𝜌. We thus have

∣𝜓⟩ = ℙ𝜌 ∣𝜓⟩ = ℙ𝜎ℙ𝜌 ∣𝜓⟩ = ℙ𝜎 ∣𝜓⟩ .

Since ∣𝜓⟩ was an arbitrary element from 𝑉𝑆,𝜌 and ℙ𝜎 = 1
2𝑛 ∏

𝑛
𝑖=1 (1 + ℎ𝑖) with ℎ𝑖 ∈ 𝒮𝜎 it

follows that all stabilizers of 𝜎 also stabilize 𝜌 and thus

𝒮𝜎 ≤ 𝒮𝜌.

This concludes the proof.

We have thus shown that the condition for finite values of the relative entropy is equiv-
alent to a simple statement about the group structure of the respective stabilizer groups.
Furthermore, we know from [27] that the entropy of entanglement can be expressed in a
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simple way through group properties. We’d like for this to also be the case for other entropic
quantities, especially the cross and relative entropy, which are our main concern.
It turns out that one can indeed derive expressions for the cross and relative entropy

that put these information-theoretic quantities in a relation with abstract group properties.
Confer with Theorem 3.10 and Corollary 3.11 for the precise statements. The resulting
expressions are remarkable in their simplicity, as well as their similarity to each other and to
previous results. As a warm-up for the proofs of Theorem 3.10 and Corollary 3.11 we will
derive an expression for the von Neumann entropy in the stabilizer formalism first. This will
also aid in the derivation of the expression for relative entropy, since it is a difference of the
cross and von Neumann entropy.

Lemma 3.9 (Von Neumann entropy – stabilizers). Let 𝜌 be an𝑁-qubit stabilizer
density matrix with stabilizer group 𝒮𝜌 and rank ∣𝒮𝜌∣ ≡ 𝑟. Then

𝑆 (𝜌) = 𝑁 − 𝑟. (3.17)

Proof. Let 𝒮𝜌 be an𝑁-qubit stabilizer group of rank 𝑟with corresponding density matrix 𝜌.
By Definition 3.2, or Equation (3.3) in particular, we have

𝑆 (𝜌) = −Tr[𝜌 log 𝜌] = −∑
𝑘
𝜆𝑘 log 𝜆𝑘. (3.18)

Thus, we need to diagonalize, i.e. find the eigenvalues 𝜆𝑘 of 𝜌.
Since 𝜌 is a stabilizer density matrix, it can – up to a constant multiple – also be written as

a product of projectors onto the +1 eigenspaces of group generators

𝜌 = 1
2𝛮

𝑟
∏
𝑖=1
(1 + 𝑔𝑖) = 2𝑟−𝛮ℙ𝜌. (3.19)

Knowing that projections are diagonalizable with eigenvalues of either 0 or 1, we know that
the diagonal form of 𝜌 is the diagonal form of ℙ𝜌 with a constant multiple 2

𝑟−𝛮, that is4

𝐷𝜌 = 2𝑟−𝛮(
1

⋱
0
). (3.20)

With Tr[𝜌] = 1 it follows that the eigenvalues of 𝜌must be 𝜆𝑘 = 2𝑟−𝛮 for 𝑘 = 1, … , 2𝛮−𝑟

and 𝜆𝑘 = 0 for all other 𝑘. Inserting this back into Equation (3.18) yields

𝑆 (𝜌) = −
2𝛮

∑
𝑘=1

𝜆𝑘 log 𝜆𝑘 = −
2𝛮−𝑟

∑
𝑘=1

2𝑟−𝛮 log 2𝑟−𝛮 = −2𝛮−𝑟2𝑟−𝛮 log 2𝑟−𝛮 = − log 2𝑟−𝛮

= 𝑁 − 𝑟.
4Note that the bottom right entry need not be zero. This specific choice was made for illustratory purposes.
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The expression of the vonNeumann entropy is not only interesting going forward, e.g. in
the derivation of the relative entropy, but also from a group theoretic perspective. That is, it
should be noted that by asking an information-theoretic question, we got a group theoretic
answer. Let us convince ourselves that it is a reasonable one, by testing it on our intuition on
entropy.
With𝑁 qubits we have a generating set of size𝑁, at most. In the case where we have

𝑁 generators, the state associated with the stabilizer group is a pure state, and the entropy
should be 0, which is the case for 𝑟 = 𝑁. For the maximally mixed state, the generating set is
the empty set and the stabilizer group the trivial group. In accordance to our expectations,
this should yield log(2𝛮) = 𝑁 for the von Neumann entropy. Indeed, since the size of the
empty set is 0, we have that 𝑟 = 0 and thus 𝑆(𝜌) = 𝑁.
Removing one generator thus increases entropy by 1, or put differently, starting from

the empty set and adding generators to it decreases entropy by 1 for each generator added.
This too should come to no surprise, as we know that for each generator removed (added)
from a full set of stabilizers, we double (halve) the stabilized state space, effectively creating
(purifying) a perfect mixture of stabilized states.

Theorem 3.10 (Cross entropy – stabilizers). Let 𝜌 and 𝜎 be 𝑁-qubit stabilizer
density matrices with respective stabilizer groups 𝒮𝜌 and 𝒮𝜎 that satisfy 𝒮𝜎 ≤ 𝒮𝜌.
Further, let |𝒮𝜎| ≡ 𝑠. Then

𝑆𝐶(𝜌 ∣∣ 𝜎) = 𝑁 − 𝑠. (3.21)

Proof. Let 𝒮𝜌 and 𝒮𝜎 be𝑁-qubit stabilizer groups that satisfy 𝒮𝜎 ≤ 𝒮𝜌. Their respective
density matrices can be written as

𝜌 = 1
2𝛮

𝑟
∏
𝑖=1
(1 + 𝑔𝑖) and 𝜎 = 1

2𝛮
𝑠
∏
𝑖=1
(1 + ℎ𝑖) (3.22)

with 𝑟 ≡ ∣𝒮𝜌∣ and 𝑠 ≡ |𝒮𝜎|. Since we require 𝒮𝜎 ≤ 𝒮𝜌, we can construct a generating set
𝐺𝜎 of 𝑆𝜎, where each element of𝐺𝜎 commutes with the generating set of𝐺𝜌. Note that the
generating sets are not necessarily identical. However, since𝒮𝜎 is by construction a subgroup
of 𝒮𝜌, which in turn is an abelian subgroup of𝒫𝛮, all elements of 𝒮𝜎 commute with all
elements of 𝒮𝜌. It follows that the density matrices themselves also commute, i.e.

[𝜌, 𝜎] = 0. (3.23)

It is a well-known fact from linear algebra and functional analysis that commuting operators
share a common eigenbasis and can be diagonalized simultaneously. We therefore write
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𝜌 = 𝑈𝐷𝜌𝑈
−1 and 𝜎 = 𝑈𝐷𝜎𝑈

−1 with transformation matrix𝑈 and corresponding diagonal
matrix𝐷𝜌/𝜎. We also have that the logarithm of a diagonalizable matrix is [49]

log 𝜎 = 𝑈 log𝐷𝜎𝑈
−1.

Consequently,

𝑆𝐶(𝜌 ∣∣ 𝜎) = −Tr[𝜌 log 𝜎] = −Tr[𝑈𝐷𝜌𝑈
−1𝑈 log𝐷𝜎𝑈

−1] = −Tr[𝐷𝜌 log𝐷𝜎]. (3.24)

With𝐷𝜌 and𝐷𝜎 diagonal we can write the trace as

−Tr[𝐷𝜌 log𝐷𝜎] = −∑
𝑘
𝜆𝑘 log 𝜇𝑘 (3.25)

with the eigenvalues 𝜆𝑘 and 𝜇𝑘 of 𝜌 and 𝜎, respectively.
As we know from the previous proof, 𝜆𝑘 = 2𝑟−𝛮 for 𝑘 = 1, … , 2𝛮−𝑟 and 0 otherwise,

and analogously, 𝜇𝑘 = 2𝑠−𝛮 for 𝑘 = 1, … , 2𝛮−𝑠 and 0 otherwise. Note that the subgroup
condition implies that 𝑟 ≥ 𝑠 or more specifically𝑁 − 𝑟 ≤ 𝑁 − 𝑠. This ensures that to every
non-zero entry in𝐷𝜌 there is a corresponding non-zero entry in𝐷𝜎. In other words, for all 𝑘,
𝜆𝑘 ≠ 0 ⇒ 𝜇𝑘 ≠ 0. More importantly for us, however, is the contrapositive, 𝜇𝑘 = 0 ⇒ 𝜆𝑘 = 0,
which tells us that any divergence that might occur in the logarithm gets intercepted by a
leading factor of 0.
Inserting this into the sum in Equation (3.25) we get

−∑
𝑖
2𝑟−𝛮 log 2𝑠−𝛮 = −2𝛮−𝑟2𝑟−𝛮 (𝑠 − 𝑁) = 𝑁 − 𝑠, (3.26)

which concludes the proof.

Although Theorem 3.10 and Equation (3.21) are in dire need to be discussed, we do not
want to fail to mention that the relative entropy between two stabilizer density matrices
follows as a corollary.

Corollary 3.11 (Relative entropy – stabilizers). Let 𝜌 and 𝜎 be𝑁-qubit stabilizer
density matrices with respective stabilizer groups 𝒮𝜌 and 𝒮𝜎, where ∣𝒮𝜌∣ ≡ 𝑟 and
|𝒮𝜎| ≡ 𝑠. If 𝒮𝜎 ≤ 𝒮𝜌, then the relative entropy of 𝜌 to 𝜎 is

𝑆 (𝜌 ∣∣ 𝜎) = 𝑟 − 𝑠. (3.27)

Proof. Let 𝜌 and 𝜎 be density matrices satisfying the stated requirements, 𝒮𝜎 ≤ 𝒮𝜌 in partic-
ular. FromDefinition 3.3, or more precisely Equation (3.4), we have

𝑆 (𝜌 ∣∣ 𝜎) = −𝑆 (𝜌) − Tr[𝜌 log 𝜎]. (3.28)
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Inserting our results from Lemma 3.9 and Theorem 3.10 yields

−𝑆 (𝜌) − Tr[𝜌 log 𝜎] = −(𝑁 − 𝑟) + 𝑁 − 𝑠 = 𝑟 − 𝑠. (3.29)

Notice that although it is defined as a quantity relating 𝜌 to 𝜎, there is no explicit depen-
dence of 𝜌 in Equation (3.21). What Theorem 3.10 seems to imply is that the cross entropy
between two stabilizer density matrices 𝜌 and 𝜎 just amounts to the von Neumann entropy
of 𝜎. However, this is where one needs to be careful. While the resulting numerical value
is entirely dependent on 𝜎 and its stabilizer group alone, we have an implicit dependence
through the requirement that 𝒮𝜎 ≤ 𝒮𝜌. Since we were able to show that the cross entropy is
infinite in the converse case (see Theorem 3.8), we could add the 𝜌 dependence back in, i.e.

−Tr[𝜌 log 𝜎] = {
𝑁 − |𝒮𝜎| 𝒮𝜎 ≤ 𝒮𝜌
∞ 𝒮𝜎 ≰ 𝒮𝜌

. (3.30)

This detail will be important later on, as we try to avoid explicit dependences on 𝜌, which
would take us back to the sampling problem.
The independence of 𝜌 in the first case, however, is still quite a remarkable result. Let’s

examine the expression and convince ourselves that this simplicity is no accident. From
the subgroup condition we know that the state described by 𝜎 needs to be more mixed or
at least as mixed as 𝜌. That is, the probability distribution on the state space represented
by 𝜎 contains more states than 𝜌. However, all states of 𝜌 are featured in 𝜎 with uniform
probability. Any state in the mixture of 𝜎 thus gets assigned the same weight when averaging.
Additionally, the probabilities over the larger state space are uniformly distributed as well,
turning log 𝜇𝑘 into a constant factor. It is therefore an average of a constant over a uniform
probability distribution, which is just the constant itself.
We have discussed the mathematical and information-theoretic aspect of the derived

statements, but we should also think about the physical implications of these statements. Al-
though we summarized the idea, we want to reemphasize the utility behind these expressions.
Our ultimate goal is an upper bound on the half-system entanglement entropy, 𝑆𝛦 (𝜌),

5

which can be derived from Equation (3.16). With that, we try to detect a signature of the
critical point of the phase transition found by classical simulations. Recall that the half-
system entanglement entropy is non-linear in the density matrix, that is, it is an observable
of the state itself, requiring exponentially many copies of the same state. Therefore, it is
infeasible, and practically impossible, to performmeasurements quantifying entanglement
with the entanglement entropy. However, by Equation (3.16) we can obtain an upper bound,
𝑆𝛦 ≤ −Tr[𝜌 log 𝜎], thus circumventing the sampling problem. The choice of 𝜎 has some
5Here, 𝜌 refers to the reduced density matrix of half the system, where the entire system is in the pure state ∣𝜙⟩
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degree of arbitraryness; as long as supp (𝜌) ⊆ supp (𝜎)we get a finite upper bound, and even
have equality if 𝜌 = 𝜎. But this is not the whole picture. It stands to reason that we should be
picky with our choice of 𝜎 and be consistent with it. In particular, we ideally would like to
relate 𝜎 to the experimental state 𝜌 in some way or another. This can be done by classically re-
constructing 𝜌 bymeans of projecting the measurement outcomes from the recordm. Then,
by tracing out half of the system, we obtain some 𝜎, which we can use in the upper bound.
The classical post-processing of the measurement record requires us to efficiently simulate
the system, as well as to be able to project onto specific outcomes. To this end, we prefer to
use stabilizer simulations, as they allow the efficient simulation and post-processing of our
system. With Theorem 3.10 we now additionally have an efficient method of computing the
upper bound to the entanglement entropy, such that the inequality becomes

𝑆𝛦 ≤ 𝑁 − 𝑠. (3.31)

The following sections therefore pertain to the various possible post-processing algorithms
one might make use of.

3.2 naive approach
The key idea of the upper bound is to have a quantity that is linear in 𝜌. By obtaining
a measurement recordm, we can try and classically reconstruct the experimental density
matrix 𝜌 from the record. Since we are doing a classical computation, we have the advantage
of being able to project onto measurement results. We therefore can – naively – attempt a
reconstruction of our experiment based on the data. Of course, in our case, we also use a
classical simulator to generate data.

3.2.1 Methods

After the data has been generated we peform the same protocol as in Chapter 2 and project
the measurement outcomes onto 𝜎. However, we start from the same state 𝜌 = 𝜎 =
|𝐺𝐻𝑍+⟩⟨𝐺𝐻𝑍+|. After we have completed the circuit, we trace out one half of the qubits
and compute the cross entropy, which is given by Equation (3.21).
For our prospective numerical experiments, we would therefore have them support the

simulation of mixed states, since we might encouter them by means of partially tracing out
the system. To this end, we refer to Chapter 4, in particular Sections 4.3, 4.3.3 and 4.3.4.
In these sections, we introduce the algorithms used to realize mixed states, the different
entropic quantities, and the partial trace, respectively. Of course, we additionally need to
adapt the projection function, since we now force the projection upon the state. For the
computation of the linear cross entropy, it sufficed to know if projections were successful all
the way through. If they were not, we would simply break the loop over the measurement
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Figure 3.1.: Cross and entanglement entropy in the noiseless system. We project the measurement
outcomes from 𝜌 onto 𝜎 if possible. Note that we here use periodic boundary conditions.
Each datapoint corresponds to ∼ 105 samples.

record and stop the projections. Here, we really want a faithful reconstruction of the density
matrix. The algorithm to force projections is outlined in Algorithm 4.10.
As we use the general setup from Chapter 2, we also employ the error model introduced

in Section 2.4.1 to emulate noise in the circuit. This is to ensure comparability between the
general approaches of the linear cross entropy and the cross entropy as upper bound.
As we have access to the “experimental” density matrix 𝜌 through our numerical simula-

tion, we employ the implementation of the cross entropy as outlined in Theorem 3.10. An
important detail to note, however, is that we do not want infinities appearing in our data.
As such, in the case of 𝒮𝜎 ≰ 𝒮𝜌, we add𝑁/2, where𝑁 is the number of qubits in the system.
This amounts to replacing the density matrix 𝜎 by the maximally mixed state.

3.2.2 Results

In Figure 3.1 the results of the upper bound are shown in the case of no noise in the circuit.
Figure 3.1 shows that there is perfect overlap between the original and the replicated system
in the noiseless case. This is also what one would expect, since we effectively computed
the entanglement entropy of a pure state that happens to have had the same measurement
record as 𝜌. And incidentally, every outcome in the measurement record corresponded to an
outcome that could be projected perfectly onto 𝜎. We thus perfectly saturated the upper
bound Equation (3.16).
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Figure 3.2.: Cross and entanglement entropy in the system with projective𝑋 errors. Measurement
outcomes from a simulated experiment are projected onto a replica in the classical simu-
lation. If the subgroup condition is not met, we replace the appearing infinity with 𝐿/2.

We now turn towards a more realistic scenario, namely that of a noisy circuit. The error
model we use to emulate noise is the one introduced in Section 2.4.1. Note that we force
the projections onto 𝜎, and thus should recover a close estimate of the experimental density
matrix. If it turns out that the density matrix obtained from the experiment does not have
support in 𝜎, we replace the appearing infinity with 𝐿/2, where 𝐿 is the number of qubits.
Figure 3.2 shows that the naive approach fails here already. In the 𝑝 < 𝑝𝑐 regime we often

need to correct for infinities in the sample, which get replaced, yes, but since the trivial upper
bound is so far off the actual entanglement entropy, we have this diverging behavior even
for relatively small systems, which is why only systems up to 𝐿 = 64 are shown. For 𝑝 > 𝑝𝑐
we saturate the bound again, since the𝑋 noise commutes with the then more frequently
occuring𝑋measurements of the circuit, thereby restoring the adherence to the subgroup
condition.
This tells us that we need some way to cope with noise. The subgroup condition requires

us to detect the errors, since errors which are not succeeded by a measurement (of any kind)
will lead to a change in the structure of𝒮𝜌, which is never detected. This undetectable change,
as we can tell from Figure 3.2, happens if an error occurs on a qubit in a state stabilized by an
operator, which anticommutes with the type of noise, for instance, if an𝑋 error occurs on a
qubit stabilized by 𝑍. Since𝑋measurements are more frequent for 𝑝 > 1/2, the𝑋 noise is
directly mitigated by the frequent measurements.
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What about the part where𝑋measurements are not as frequent? We can again estimate a
probability of not detecting the altering of the stabilizers. Imagine an error occurs in the very
last layer, i.e. after all the measurements in the circuit happened. This is the complementary
probability to no errors occuring. We thus have

𝑃(#err > 0) = 1 − (1 − 𝑞)𝐿. (3.32)

As simple example, consider the probability of an𝑋 error occuring in the very last layer of a
system with 𝐿 = 32 qubits. The probability that an error does not get detected is 𝑃 ≃ 0.275.
Thus, about one in every four samples would yield infinity as upper bound, which is useless.
We thus make the rather unphysical assumption that no error is allowed to happen after a
certain threshold. As we design the circuit in a classical simulator as well, we simply restrict
the allowed errors occurring.
Furthermore, recall that the cross entropy is a measure of the quality of an estimate of a

probability distribution [84]. As we are essentially estimating the experiment, represented
by the density matrix 𝜌, with a uniform probability distribution over the support of 𝜌, the
quality of our estimate depends only on howmany events (or in this case, states) we choose
to include in our estimate. In other words, we project onto an eigenstate ∣𝜙⟩ of 𝜌, where
our estimate of the probability of ∣𝜙⟩ is scaled by howmany other states we consider with
equal probability. Alternatively, in the case where the subgroup condition is not met, we do
not have ∣𝜙⟩ in supp (𝜎). In this scenario, we project onto the 0-vector, giving us a divergent
term in the cross entropy. This also shows how stabilizer states are particular in that sense.
Any stabilizer density matrix we choose for 𝜎will yield this result, independent of 𝜌, as long
as 𝜌 is a valid density matrix.
This means that if we were to continue with the cross entropy and the upper bound in a

pure stabilizer setting, we should think about how we could have a finer-grained selection
of values the cross entropy can take up. If we only insert pure states, we might get lucky a
couple of times, but in all generality, we will fail to estimate the density matrix obtained in
an experiment. Thus, for the purely numerical approaches, we should abandon the naive
one in favor of reconstruction algorithms that include a broader set of states to support 𝜌.
Of course, they should, as we have been made aware of by the previous results, ensure the
fulfillment of the subgroup condition as well.
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3.3 other numerical approaches
We have seen that the naive approach fails once noise comes into play, especially if the
modelled errors are not succeeded by a measurement natively included in the circuit. We
have also noted that due to the limitations of the stabilizer formalism, we either end up in
agreement with the experiment or add infinities to the mix. As we would like to stay in the
stabilizer formalism, since it allows polynomial-time simulation of the quantum circuit in
question, we need to cope with noise in a different way, that also encompasses the tools we
have at our disposal.
We have further found an irreconcilable limit to Equation (3.16) in the form of errors

appearing in the last measurement layer. For all the further considerations, we disallow errors
after the last measurements. This is, of course, an unphysical assumption to make, but it is,
as of right now, not our main concern, as we here want to test the limits of Equation (3.16)
on our system. This uncertainty of errors within the very last layers seems to be one of
these limits. If we relax the assumption of errors happening everywhere, we could try other
numerical approaches and maybe get an idea of how viable the general approach of an upper
bound is to find a signature of the entanglement transition. With the primer of the previous
protocol failing, we also include two new quantities next to the cross entropy.
The first one is the “infinity ratio”, i.e. the ratio of simulations not agreeing with the

subgroup condition, therefore having diverging contributions in the sample average, which
we regularize “primitively” by replacing it with the trivial upper bound 𝐿/2. Since this is
once more not how a conventional physical observable behaves, we keep track of how often
we cheat in the simulation algorithm. This measure therefore quantifies if the algorithm we
conceived really did work as intended or if we made conceptual errors. Furthermore, it aids
in explaining the behavior of the cross entropy, as we can then gauge if anomalously high
values for the upper bound come from the algorithm or the primitive regularization.
To this end, we also have the next quantity, which is the von Neumann entropy of the

entire density matrix before the partial trace over half the system. This measure quantifies
the degree of mixedness left in the system at the very last timestep. For the naive approach,
this last quantity is obviously 0 everywhere, since it produces pure states only.
The following sections introduce the methodology behind two numerical post-processing

algorithms that utilize mixed states with the aim to uphold the subgroup condition, as well
as show the results of the performed simulations.

3.3.1 Minimal Mixing

The first post-processing algorithm we introduce is what one could call “minimal mixing”.
In the following, we will introduce the algorithm and the results. Note that the presentation
of the results parallels the presentation shown in Figure 2.7, with the methods to obtain this
mirroring the ones in Chapter 2. As such, we assume knowledge of how Figure 2.7 is to be
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read.

The algorithm
We start our classical reconstruction in the same state as the initial state of the experiment,
which is |𝐺𝐻𝑍+⟩⟨𝐺𝐻𝑍+| in particular. Then, we project onto the measurement outcomes
where possible. In a noiseless circuit, this recovers the standard entanglement entropy once
more. Once we introduce noise this will no longer be given. Recall the scenario shown in
Figure 2.4. In this case we had that the projection was successful only with probability 1/2,
i.e. unsuccessful in about half of the performed projections.
For this numerical approach, we choose to ignore the stabilizer generator with the failed

projection. That is, we replace the stabilizer by 1where the incompatibility was detected,
instead of forcing the projection. This should, in principle uphold the subgroup condition,
since we remove particular generators from the generating set. Until it gets measured again,
we have that this stabilizer is not a generator. The technical details behind the implementation
are laid out in Section 4.3.5 and Algorithm 4.17.
The procedure to compute the cross entropy is still the same as before. We trace out one

half of the system, then perform the subgroup check, and add

�̃�𝐶(𝜌 ∣∣ 𝜎) = {
𝑁 − |𝒮𝜎| 𝒮𝜎 ≤ 𝒮𝜌
𝐿
2 𝒮𝜎 ≰ 𝒮𝜌

(3.33)

to the sample average. In addition to the previous protocol, we also compute the von
Neumann entropy of the full state obtained by the algorithm, as well as count how often we
added 𝐿/2 in the case of a mismatching group structure.
One critique that could immediately be raised at this point is the (ab)use of mixed states in

this context. Each timewe come across a discrepancy, we throw out the generator in question,
even though this is the most recent information we have on the state of the system. However,
we have already made some unphysical assumptions before, and this is no exception. At this
point we want to test the performance of the upper bound in the extreme case of stabilizers
and we want to use all the tools available to us, and selectively removing stabilizer generators
from the generating set is one of them. Howwe select them is then judged by the performance
of the selection in the numerical simulation.

Results
Figure 3.3 shows the upper bound (opaque) and the entanglement entropy (transparent) as a
function of the probability parameter 𝑝 for the minimal mixing algorithm. For the “no error,
track everything” case, we—unsurprisingly—recover the identical behavior to the regular
entanglement entropy, since every projection is successful.
For all the marginalized runs, we can see that they end up in the infinite case rather often

(see also Figure 3.4). This is because we measure instead of project. Thus, we might measure
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and get a random result that is orthogonal to the one we would have projected onto, even
if there is no error present. In the case where we marginalized out 𝑍𝑍, i.e. the “Track X”
column, we have that for no errors and 𝑝 = 0, the cross entropy agrees with the entanglement
entropy. This is because there are no𝑋measurements to track either way, so there is nothing
that can go wrong.
However, once we have even the tiniest amount of𝑋measurements, everything goes hor-

ribly wrong. Even for relatively small systems of 𝐿 = 16 and 𝐿 = 32 qubits, we almost always
end up at the trivial upper bound of 𝑆𝛦 ≤ 8 and 𝑆𝛦 ≤ 16 respectively. An interpretation in
terms of quantum error correction would be that we did not correct an error, but chose to
let it happen. In a sense, this plot tells us that we have done a poor job correcting errors, or
rather that we did not do so at all.
In the case where we only tracked the outcome of 𝑍𝑍measurements, this phenomenon

is not as intense as it is for the outcome of 𝑋measurements. This can be explained with
the fact that we perform stabilizer measurements, i.e. we know where errors happened, yes,
but we do not know the outcome of them. In spirit, this is similar to a decoding or error
correcting protocol [71]. Also, the scaling of this particular plot is exponential in the system
size up to the theorized critical point, where it flattens and goes to the trivial upper bound.
What about the noisy circuits? Recall from the linear cross entropy that in the case of

𝑋-noise occurring, i.e. projective 𝑋 errors, we had that the marginalized 𝑍𝑍 / Track 𝑋
plot with𝑋 errors was identical to the ideal system. This was due to the fact that the linear
cross entropy only contained the probabilities of success or failure, and the fact that the
error type commuted with the tracked measurement outcomes. Here, we do not have this
luxury. In fact, the same things that apply to the case without errors apply here. We even
notice that for 𝑝 = 0, there is no agreement anymore, since we effectively shifted the lines
to the left a bit. Before, every 𝑍𝑍 measurement was a genuine stabilizer measurement,
since we measured generators of the stabilizer group. This is not the case anymore, since
even with 𝑝 = 0, we have sporadic creation and annihilation of clusters everywhere, which
perturb the entanglement structure. Sure, it should be corrected instantly, since we perform
𝑍𝑍measurements everywhere at any time. But this is not enough if errors are sufficiently
frequent, which is the case for larger systems. This is also the reason why we chose to show
all these situations for smaller system sizes only.
When tracking only the outcomes of 𝑍𝑍measurements, we find that we do not have the

nice exponential growth, but a superexponential growth. the occurrence of𝑋measurements,
which we do not even try and “guess” the outcome is now larger. The regime where we only
have trivial upper bounds is shifted to the left slightly. The more interesting plot is the one
where we track everything. We must have failed in our quest to bring everything under the
umbrella of the𝒮𝜌 stabilizer group, since we can see a disturbing discrepancy between 𝑆𝛦 and
the cross entropy.
This discrepancy can be explained by the fact that twomeasurement layers are not enough

to fully rule out undetectable errors. We can have clusters emerging that fit the measurement
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outcomes just enough so that they bypass our detection/error handling scheme. However,
they do not bypass the subgroup check. With𝑋-errors occurring, we, of course, correct a lot
of errors, which can be seen in the fact that we have a tighter upper bound towards 𝑝 = 0.
Closer to the critical point we find a peak, where𝑋 errors are frequently contributing to
the creation of unforseen clusters, which bypass the error handling scheme. In the regime
of 𝑝 > 𝑝𝑐, we find that there is again agreement with the entanglement entropy, since 𝑋
measurements are more frequent to 𝑍𝑍measurements𝑋 errors, such that noise is.
For 𝑍𝑍 errors, the converse is the case, while we have a combination of both divergences

in the case where we include both types of errors.
We can therefore infer already that we have not done enough to sanitize the input of the

subgroup check. To confirm this suspicion, consider Figure 3.4. In Figure 3.4 we show how
often we add 𝐿/2 instead of∞ in the data of Figure 3.3. This gives us an estimation on how
much trickery is involved for our approach to not include infinities. That is, what is the ratio
of simulations that have to get regularized primitively.
As expected, the different marginalizations yield a high rate of infinities, meaning that the

behavior in the corresponding subplots of Figure 3.3 is largely determined by the lack of
support of 𝜌 in 𝜎.
Remarkably, however, some of the group structure survives the impact in the case of small

systems, even in the presence of errors. This can be attributed to the fact that the initial
entanglement survivies in some cases where 𝑝 < 𝑝𝑐. Note that it seems that the large values
of the cross entropy in Figure 3.3 in the “Track all” column really do seem to stem from that
we replaced with another upper bound. This is yet another indicator that even in the case
where we assume that no errors occur in the last segment of the run, we can still feel the
pressing weight of errors. Therefore, this algorithm is unfit for post-processing.
As measure for howmuch contribution the algorithm has in the end, consider Figure 3.5,

where the von Neumann entropy of the full density matrix of the reconstruction attempt
is shown for all the various previous cases. We can see in the “Track X” column, that there
is some contribution from the algorithm itself, since we do not track the results from 𝑍𝑍
measurements, which would interfere with projections in𝑋 towards the regime where the
initial cluster dies.
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Figure 3.3.: Cross Entropy and entanglement entropy of selected system sizes with periodic boundary
conditions for the “minimal mixing” algorithm. To be able to adequately compare it to
LXE the different trackings and errors are shown in the same manner as in Figure 2.7.
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Figure 3.4.: Ratio of divergences in cross entropy to number of samples for the “minimal mixing”
algorithm with different system sizes and periodic boundary conditions. To be able to
adequately compare it to LXE the different trackings and errors are shown in the same
manner as in Figure 2.7.
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Figure 3.5.: 𝑆(𝜎) of full density matrix 𝜎 periodic boundary conditions for the “minimal mixing”
algorithm. This quantifies howmuch mixedness was left at the end of a simulation. To
be able to adequately compare it to LXE the different trackings and errors are shown in
the same manner as in Figure 2.7.
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3.3.2 Maximal Mixing

The next algorithm is what we could call “maximal mixing”.

The algorithm
It is similar to the previously introduced algorithm with the caveat that we are now not
selectively removing stabilizer generators, but removing the whole generating set. This is the
most extrememethod of how one could deal with the noise, since now oncewe catch it, we in
principle act as if no generator of our generating set is to be trusted. Also, as the trivial group
is always a subgroup of any group (see Section 1.1.1), and as the trivial group is generated by
the empty set (see Definition 1.2), we should most definitely ensure the fulfillment of the
subgroup condition. The technical details behind the implementation of this algorithm is
given in Section 4.3.5 and Algorithm 4.18.
Note that this approach should also saturate the upper bound perfectly in the noiseless

case, since we only throw out generators when we encounter a mismatch in the projections.

Results
For the maximal mixing approach, we find that the first row of Figure 3.6 is almost identical
to the corresponding plots in Figure 3.3 for the other processing algorithm. This is due to
the fact that we have not introduced errors and the maximal mixing procedure has no effect
on this.
We also see that almost all the “Track𝑋” or “Track𝑍𝑍” columns are similar in appearance,

except for “Track 𝑍𝑍” when𝑋 errors are present. We can infer an explanation for this by
considering Figure 3.8, where the von Neumann entropy of the entire density matrices is
shown.
For the “Track all” columns, we have values for the cross entropy that are way smaller than

with the previous algorithm. When taking Figure 3.7 into account, we notice that these
contributions are (almost) entirely from the post-processing algorithm we chose. For 𝑋
errors we have that the upper bound attains larger values for 𝑝 ≈ 𝑝𝑐 with a slight slant to the
left the converse is true for 𝑍𝑍 errors, where the upper bound almost doesn’t go back to the
original curve.
For the noisiest system with𝑋 and 𝑍𝑍 errors, we have a combination of the two effects

Interestingly, the scaling at the critical point is linear, since the peaks roughly double in
magnitude with doubling the system size 𝐿. This is in contrast to the “ideal” case, where we
have logarithmic scaling at the critical point The peaks in the top right subplot are spaced
evenly, which is as expected with the doubling of system size.
For the infinity ratios, we have made progress: In the “Track all” column, we find that we

had no infinities almost everywhere. However, there are noticeable bumps in some of the
plots. They are miniscule, but still there. So miniscule that we can rule out the possibility
of them substantially contributing to the behavior shown in Figure 3.6. Nonetheless, this
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Figure 3.6.: Cross Entropy and entanglement entropy of selected system sizes with periodic boundary
conditions. To be able to adequately compare it to LXE the different trackings and errors
are shown in the same manner as in Figure 2.7.
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shows that even with the most extreme measure of trying to ensure the adherence to the
subgroup condition, we still have some samples bypassing it. This undermines the fact that
clusters emerge undetected, even within the last measurement layers. Consequently, we find
that even when compensating with the most extreme measures, we do not generally comply
with the subgroup condition. This fact rules out any purely numerical approaches to detect
the phase transition.
When considering the full density matrix, we can again qualitatively measure how good

our approach was at the very end. We see that even though the “mixedness” was set to
the max, we never have an extremely large value for the von Neumann entropy, as seen in
Figure 3.8.
We find that for noisy systems, the algorithm did what it was designed to do, namely,

intercept errors. In the presence of𝑋 errors we almost immediately recover the whole group,
but fail to recover the global 𝑋 stabilizer. This shows itself in the “Track all” column of
Figure 3.8, where it goes to 1 for 𝑝 → 0. At the critical point, there is a peak for large enough
systems, since there we have the highest impact of additional measurements of the competing
kind. Remarkably, just as in Figure 3.5 we have “𝑍𝑍 errors – Track 𝑍𝑍” be identically 0.
This follows from the group structure. We never maximally mix. For the “Track𝑋” column,
we just see the peak where the initial cluster dies, which was also present in Figure 3.5.
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Figure 3.7.: Ratio of divergences in cross entropy to number of samples for different system sizes
periodic boundary conditions. To be able to adequately compare it to LXE the different
trackings and errors are shown in the same manner as in Figure 2.7.
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Figure 3.8.: 𝑆(𝜎) of full density matrix 𝜎 periodic boundary conditions. To be able to adequately
compare it to LXE the different trackings and errors are shown in the same manner as in
Figure 2.7.
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3.4 regularization
We can see that, even though we chose our numerical algorithms in a way that should
mitigate the infinities, we still have them. Furthermore, the subgroup check is a subtle way
to incorporate once more what we try to avoid. Namely, we want to find a density matrix,
which is independent of the experimental density matrix 𝜌. However, with the subgroup
check, we implicitly introduce it into our computation again. As we once more require
knowledge of the full density matrix, this would bring us right back to the sampling problem.
In the following we present two approaches to regularize the infinity appearing in the cross
entropy. These approaches require nothing but the numerically computed density matrix
𝜎. The first approach is one, which could be implemented in a stabilizer simulator, which
has the drawback of being exponentially worse than the trivial upper bound𝑁, among
other things. The other is more flexible, but lacks an efficient implementation in a stabilizer
simulation.6 Note that these approaches are designed to not need the subgroup condition to
be fulfilled. As such, the assumption of a noiseless last measurement layer could be restricted
again to include errors up to the end of measurements.
Both of these approaches could be the subject of further study, as the computational

argument is one of feasibility, but not possibility (i.e., it is possible, but atwhat computational
cost).

3.4.1 Exponential Ansatz

For the first regularization we choose an exponential Ansatz. The basic reasoning behind
this Ansatz is twofold. First, we want to ensure that the support of 𝜎 is large enough to
contain the support of 𝜌. That is, what we failed to achieve numerically, we attempt to
achieve analytically. We want to ensure that the classical processing step is only a function of
the measurement outcomes, 𝜎 ≡ 𝜎(m), and not the experimentally obtained density matrix,
which we implicitly had by checking the subgroup condition on each run.
The second reason for this Ansatz in particular is the computability. Since we are perform-

ing classical computations via the stabilizer formalism, we reduce the memory requirements
significantly. Storing a state of an𝑁 qubit Hilbert space is done in quadratic space com-
plexity (see Chapter 4). If we were to write out the density matrix of, e.g.,𝑁 = 100 qubits
explicitly, we would have to deal with an exponentially large matrix. That is, if we choose 𝜎
arbitrarily, we would be faced with the herculean task of diagonalizing a 2100 × 2100 matrix
when computing its logarithm, way beyond the scope of any reasonable computational
feasibility. By exponentiation we ensure that the logarithm “gets eaten up” such that we are
dealing with the density matrix itself with an additional normalizing term.

6It is not definitive if there exists such an implementation or not. For now, it does not exist yet.
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As mathematical expression we may write7

�̃� =
exp[ln(2)𝜎]

Tr[exp[ln(2)𝜎]]
. (3.34)

Substituting �̃� back into the right hand side of Equation (3.16) we get

−Tr[𝜌 log 𝜌] ≤ −Tr[𝜌 log �̃�] = −Tr[𝜌𝜎] + log(Tr[exp[ln(2)𝜎]]). (3.35)

Note that the original 𝜎 is still our classical reconstruction, i.e. a density matrix in the
stabilizer formalism. As 𝜎 is therefore a product of commuting projectors, and with that
a projector itself, we can once again compute −Tr[𝜌𝜎] efficiently. If 𝜌 = 𝜎, it recovers the
purity of 𝜌 with a negative sign, and if 𝜌 ⟂ 𝜎, then the trace is 0. In a sense, we here have
recovered an inner product between density matrices, defined as

⟨𝜌, 𝜎⟩ = Tr[𝜌𝜎]. (3.36)

This inner product can be efficiently computed in the stabilizer formalism, as we merely
need to count projectors, and if they are orthogonal, the resulting inner product is 0. We
remark that for density matrices, this inner product is bounded withTr[𝜌𝜎] ∈ [0, 1].
To efficiently compute the resulting upper bound from choosing the exponential Ansatz,

weneed to resolve the logarithm inEquation (3.35). To this endweproceedbyfirst calculating
the argument of the trace, which turns out to yield the result of the trace as byproduct.
Since the density matrix of interest is, up to a prefactor, a projector, we rewrite ln(2)𝜎 as

𝑐ℙwith some constant factor 𝑐. By the matrix exponential we have

exp[𝑐ℙ] =
∞
∑
𝑘=0

(𝑐ℙ)𝑘

𝑘! = 1 +
∞
∑
𝑘=1

(𝑐ℙ)𝑘

𝑘!

= 1 + ℙ
∞
∑
𝑘=1

𝑐𝑘

𝑘! (ℙ2 = ℙ)

= 1 + ℙ (
∞
∑
𝑘=0

𝑐𝑘

𝑘! − 1) (shift index)

= 1 + ℙ (𝑒𝑐 − 1)

= 1 + 2𝛮−𝑛𝜎 (22
𝑛−𝛮

− 1) (𝑐 = 2𝑛−𝛮 ln(2) and 𝜎 = 2𝑛−𝛮ℙ𝑠).

We can then calculate the trace easily, sinceTr[1] = 2𝛮 andTr[𝜎] = 1. It follows that

Tr[exp[ln(2)𝜎]] = 2𝛮 + 2𝛮−𝑛 (22
𝑛−𝛮

− 1) . (3.37)

7The factor of ln 2 comes from the fact that we have the entropic quantities with base 2. By a leading factor of
1/ ln 2 this factor can be omitted.
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Note that the parentheses in Equation (3.37) never vanish, but only asymptotically reach 0
in the thermodynamic limit. This is also the case if one flips the sign, i.e. exp[−𝑐ℙ], where
one obtains

Tr[exp[ln(2)𝜎]] = 2𝛮 + 2𝛮−𝑛 (1 − 2−2
𝑛−𝛮
) . (3.38)

For both of these caseswe have that the resulting upper bound isworse than trivially assuming
𝑁, with diminishing fluctuations in 𝑛,

log (Tr[exp[ln(2)𝜎]]) = log(2𝛮 + 2𝛮−𝑛 (22
𝑛−𝛮

− 1)) ≥ 𝑁. (3.39)

Since this Ansatz is worse than the trivial upper bound with variations in 𝑛 being small
compared to the system size, we did not immediately see utility in this approach. However,
all quantities in the above calculations are technically computable in the stabilizer simulator,
and could thus be subject of future study.

3.4.2 Rescaling probabilities

The second regularization approach could be called the naive regularization approach. We
again want the support of 𝜎 to span the entire Hilbert space. With 𝜎 being a product of
projectors, it is a projector itself, up to multiplicative factors. To complete the Hilbert space,
we would need to add the rest of the 2𝛮 − 2𝛮−𝑛 projectors needed, and rescale them in order
to put more (or less) weight on our prediction. Concretely, we want 𝜎 to have the form of

�̃� = (1 − 𝜀)𝜎 + 𝑐 ∑
𝑠∈ker(𝜎)

ℙ𝑠 (3.40)

= (1 − 𝜀)𝜎 + 𝜀

Tr[∑𝑠∈ker(𝜎) ℙ𝑠]
∑

𝑠∈ker(𝜎)
ℙ𝑠, (3.41)

such that the diagonal form of 𝜎 is

𝐷𝜎 = (

1 − 𝜀
𝑐

⋱
𝑐

𝑐

). (3.42)

This way, every basis vector of𝐻⊗𝛮 is included in 𝜎with a weight of either (1−𝜀) or 𝑐. As we
want to ensure thatTr[�̃�] = 1, 𝑐 is parametrized by 𝜀. We now want to derive an expression
for 𝑐(𝜖), i.e. the trace in Equation (3.41), as well as a way to determine the constituents of
the sum in Equation (3.40).
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In principle, we need the sum in Equation (3.40) to go over all orthogonal projections in
the kernel of 𝜎. Since the support of 𝜎 is fixed by the projectors onto the eigenspaces of the
tensor products of Pauli matrices contained in the generating set, we need the orthogonal
complement of each of them. Suppose we have the respective signs of the generators 𝑔𝑖 in a
bitstring 𝑟𝑖 of length 𝑛, i.e. r ∈ 𝔽

𝑛
2 . We then write 𝜎 as

𝜎 = 1
2𝛮

𝑛
∏
𝑖=1

(1 + (−1)𝑟𝑖𝑔𝑖) . (3.43)

The remaining sum in Equation (3.40) is then one over all the combinations of values of 𝑟𝑖,
which are not the original bitstring. We might write this as

∑
𝑠∈ker(𝜎)

ℙ𝑠 = ∑
r′≠r

1
2𝑛

𝑛
∏
𝑖=1

(1 + (−1)𝑟𝑖𝑔𝑖) . (3.44)

The subspaces of each of the above projectors are one-dimensional, and thus their trace
is 1. Since there are 2𝛮 total dimensions, and 2𝛮−𝑛 of them are already in the support of
𝜎, we have a total of 2𝛮−𝑛 (2𝑛 − 1) additional projectors.8 By rearranging and by using
the completeness relation, one can also reduce the number of projectors needed to |𝒮𝜎|.
However, the trace still remains the same, since we want to rescale the missing diagonal
entries uniformly. This then yields

𝑐 = 𝜀
2𝛮−𝑛 (2𝑛 − 1)

(3.45)

and thus

�̃� = (1 − 𝜀)𝜎 + 𝜀
2𝛮−𝑛 (2𝑛 − 1)

∑
𝑠∈ker(𝜎)

ℙ𝑠. (3.46)

Having determined a form for the auxiliary density matrix, we want to examine it in the
context of the cross entropy. It now becomes

−Tr[𝜌 log 𝜎] = −∑
𝑛

⟨𝑛|𝜌|𝑛⟩ log 𝜆𝑛 (3.47)

with 𝜆𝑛 = (1− 𝜀) or 𝜆𝑛 = 𝜀 (2𝛮−𝑛(2𝑛 − 1))
−1
. While this appears to be better than the diago-

nalization of a 2𝛮 ×2𝛮matrix, we still need to be aware of – or compute – the representation
of 𝜌 in the space, where 𝜎 is diagonal. Therefore, we do not quite dodge the task of handling
an exponentially large matrix.

8One can also arrive at this through combinatorical arguments over the sign vector r.
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3.5 summary
In this chapter we investigated the utility of Klein’s inequality to detect the entanglement
transition in the projective transverse-field Ising model. The idea behind this approach is
fromGarratt and Altman in [3], where it was numerically studied withMPS simulations
for Haar-random hybrid circuits. To adapt to our system, we derived the inequality in the
stabilizer formalism. We then employed the derived expressions in a stabilizer simulation of
the PTIM, where we investigated different numerical post-processing approaches. We then
concluded the chapter by suggesting regularizations to deal with unwanted infinities.
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4
CLASSICAL SIMULATION OF STABILIZER
CIRCUITS

“Always programming a new type of antidote in your
perimeter”

Quasimoto

In this chapter we present the simulation algorithm and the modifications to the existing
infrastructure (see Ref. [70]) that were necessary for the numerical experiments of this thesis.
Usually, these would fall into theMethods sections of the respective chapters. However,
the modifications were extensive enough to warrant the dedication of an entire chapter to
them. First, we will briefly introduce the simulation algorithm based on the results from
Gottesman and Knill [28], and Aaronson and Gottesman [12]. Then, we briefly present
the functions necessary for computing the linear cross entropy 𝜒 from Chapter 2 as this
was only a small addition. We then finish off with the larger discussion of mixed states in
the stabilizer formalism and the realizations of the mixed state simulation algorithms, as
well as the functions for the various entropic quantities, implementing our results from
Section 3.1.2.



classical simulation of stabilizer circuits

A computer science primer

This chapter is something of an outlier compared to the other chapters. While the previous
part of thiswork pertains tonatural science – namely, theoretical physics –where simulations
served us as a tool rather than as the primary object of study, a substantial portion of this thesis
has been dedicated to expanding an existing stabilizer simulator to deal with new problems
(see Sections 2.2.1, 3.1.2 and 3.3). As a result, our discussion thereof will necessarily feature
terminology commonly associated with the field of computer science. To ensure clarity, we
will briefly introduce key computer science concepts relevant to our discussion.

The first concept we introduce is asymptotic behavior, along with the so-called Big 𝒪
notation. It is not exclusive to computer science as such, as we often deal with asymptotic
behavior in physics as well. In computer science, the Big 𝒪 notation is used to describe the
space (i.e. data storage) and time requirements of algorithms with increasing input size. The
notation is defined precisely in Definition 4.1.

Definition 4.1 (𝛩 and 𝒪 notation [86]). Let 𝑔(𝑛) be a positive function. Then
𝛩(𝑔(𝑛)) is the set of functions

𝛩(𝑔(𝑛)) = { 𝑓(𝑛) ∣ lim inf𝑛→∞

𝑓(𝑛)
𝑔(𝑛) > 0 ∧ lim sup

𝑛→∞

𝑓(𝑛)
𝑔(𝑛) < ∞ } .

Similarly, 𝒪(𝑔(𝑛)) is the set of functions

𝒪(𝑔(𝑛)) = { 𝑓(𝑛) ∣ lim sup
𝑛→∞

𝑓(𝑛)
𝑔(𝑛) < ∞ } .

We will later see some examples of this notation in use. For now it suffices to note that
different problems and the algorithmsweuse to solve them (or verify the validity of a solution)
are grouped into a variety of complexity classes. For instance, an algorithm is said to scale
polynomially (in time) if its asymptotic behavior is 𝒪(𝑛𝛼)with 𝛼 ≥ 1, and exponentially if it
is 𝒪(2𝑛). These classes constitute an important subfield in theoretical computer science in
the form of complexity theory, where numerous classes exist.1 The two examples from above
fall in the classes P (polynomial time) and EXP (exponential time) respectively. While there
are lots of caveats to this highly simplified explanation, a deeper examination of complexity
theory lies beyond the scope of this thesis. The key takeaway for our purposes is summarized
in Definition 4.2.

1A comprehensive and continuously updated list can be found in [59].
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Definition 4.2 (Algorithmic efficiency [59]). A problem is considered efficiently
solvable on a classical computer if it belongs to the complexity class P.

We acknowledge that this definition is highly simplified, and specifically tailored to our
purposes.2 However, within the scope of our work, this definition suffices.
Having laid out these foundational concepts of computer science, we can nowdelve deeper

into the subtleties of stabilizers and the problem of simulating stabilizer circuits, potentially
gaining a new appreciation for their intricacies.

4.1 consequences of the gottesman-knill theorem

In this section we explore the implications of Theorem 1.14 and provide a proper introduc-
tion to the simulation algorithm that forms the foundation for the numerical experiments
in this thesis. In particular, we present the tableau algorithm, as proposed by Aaronson and
Gottesman in [12]. Consequently, this section draws largely from outside sources, namely
Refs. [9, 12, 28, 83]. As the present section serves to introduce the computational algorithms
based on the stabilizer formalism, it can (and should) be read as a sequel to Sections 1.1
and 1.1.3.
We begin by recalling that the stabilizer group does not need to be stored in full to un-

ambiguously describe the state. Since the stabilizer group is finite, its structure can be fully
encapsulated by storing only its generators in memory. This reduces the amount of data to
be stored to memory from 2𝑛 to 𝑛, owing to the well-known fact from group theory that a
finite group 𝐺 has a generating set of size log |𝐺|. That is, an 𝑛-qubit pure state ∣𝜙⟩ with
stabilizer group 𝒮 (∣𝜙⟩) has a generating set of size log 2𝑛 = 𝑛.
To determine the actual memory requirements we examine the generators themselves.

Each generator consists of an array of 𝑛 Pauli matrices and a sign. Since there are four Pauli
matrices (including the identity), we require two bits to encode each of them, along with an
additional bit for the sign. Consequently, the memory requirements for encoding a pure
state in the stabilizer formalism are 𝑛(2𝑛 + 1). In other words, storing only the stabilizer
generators reduces the space complexity of stabilizer simulations from 𝒪 (2𝑛) to 𝒪 (𝑛2).
For practical purposes, these bits can be assorted to two 𝑛×𝑛matrices and a vector contain-

ing the 𝑛 signs. This way of writing the generators is called the Tableau Representation. As
an example, consider the state ∣𝜙⟩ = |0000⟩, which is stabilized by𝒮(∣𝜙⟩) = ⟨𝑍1, 𝑍2, 𝑍3, 𝑍4⟩.

2It even omits the mention of Turing machines entirely.
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The stabilizer tableau𝒯 of ∣𝜙⟩ is then given by

𝒯∣𝜙⟩ = [

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

] . (4.1)

Each row in Equation (4.1) represents a generator of 𝒮(∣𝜙⟩). The first four columns are the
𝑋-matrix, the next four are the 𝑍-matrix and the last column represents the sign. The 𝑖-th
column of the𝑋 and𝑍matrix encode the Pauli matrix at position 𝑖 in the tensor product of
the corresponding generator, where 00 ≡ 𝐼, 01 ≡ 𝑍, 10 ≡ 𝑋, and 11 ≡ 𝑌.
At this point, we have merely stored the state in memory. However, Theorem 1.14 implies

that simulations of stabilizer circuits can also be done efficiently on a classical computer. As
stated inDefinition 4.2, for an algorithm to be considered “efficient”, itmust have polynomial
time complexity. Thus, the Gottesman-Knill theorem can be rephrased to state that the bits
encoding ∣𝜙⟩ can be updated in polynomial time after a Clifford gate is applied to ∣𝜙⟩. Before
we show this, let us first consider how the individual gates act on our generator tableau.

Algorithm 4.3 (Application of Clifford gates to stabilizer tableau). The following
modifications have to be applied to the stabilizer tableau after the application of

• 𝐻 to qubit 𝑎:

Swap column 𝑎 of the𝑋matrix with the 𝑎-th column of the 𝑍-matrix.

• 𝑆 to qubit 𝑎:

Modify column 𝑎 of the𝑍-matrix such that the new 𝑧𝑖𝑎 = 𝑧𝑖𝑎XOR𝑥𝑖𝑎, i.e. apply
bitwise XOR from column 𝑎 of𝑋 into column 𝑎 of 𝑍.

• CNOT from control 𝑎 to target 𝑏:

Apply bitwise XOR from column 𝑎 to 𝑏 of𝑋, and from column 𝑏 to column 𝑎
of 𝑍.

• Random or deterministic outcome of computational basis measurement on
qubit 𝑎:

The outcome is deterministic iff. column 𝑎 of the𝑋-matrix is all 0s.

• Measurement of qubit 𝑎with a random outcome:

Let 𝑥𝑖𝑎 = 1. We first apply bitwise XOR from row 𝑖 into any subsequent row 𝑗,
where 𝑥𝑗𝑎 = 1. We then set row 𝑖 to 0 everywhere, except 𝑧𝑖𝑎 = 1 and set the
sign to 0 or 1 randomly.
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These rudimentary algorithms follow the rules of the stabilizer formalism, as laid out in
Section 1.1. Let us now consider the performance of the algorithms in Algorithm 4.3.

Theorem 4.4 (Simulating stabilizer gates). Simulating a Clifford gate on an 𝑛-qubit
stabilizer state requires𝛩(𝑛) time, while a measurement gate is simulated in𝑂(𝑛2)
or𝑂(𝑛3) time for random and deterministic outcomes respectively.

Proof. We already know that an 𝑛-qubit stabilizer state ∣𝜙⟩ can be represented as an 𝑛 ×
(2𝑛 + 1) tableau𝒯, where the rows are the 𝑛 generators in the aforementioned (2𝑛 + 1)-bit
representation. Any computational basis state can thus be represented by

𝒯 = [

0 0 … 0 1 0 … 0 ±
0 0 … 0 0 1 … 0 ±
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 0 0 0 … 1 ±

] , (4.2)

where 𝑍 and 𝐼 are encoded as 01 and 00 respectively, and ± is a placeholder for either 0 or 1
depending on the sign. Simulating a Clifford gate𝑈 on ∣𝜙⟩maps 𝑔𝑖, that is, the 𝑖-th row of
𝒯, to𝑈𝑔𝑖𝑈. As discussed in Algorithm 4.3, this operation updates at most two columns.
Therefore, simulating𝑈 takes𝛩(𝑛) time.
To show the scaling behavior of measurements we consider computational basis mea-

surements on qubit 𝑎, 𝑍𝑎, without loss of generality.
3 Each individual qubit in ∣𝜙⟩ is either

in a computational basis state |0⟩ or |1⟩, where we have a deterministic outcome, or in a
superposition of both states with equal amplitude, where either outcome is randomwith
probability 𝑝 = 1/2. Recall from Section 1.1 that the process of determining the type of
outcome (random or deterministic) is done by checking the commutation relations between
the measurement operator and the generators of ∣𝜙⟩. If some generator 𝑔𝑘 anticommutes
with 𝑍𝑎, i.e.

{𝑔𝑘, 𝑍𝑎} = 0 or [𝑔𝑘, 𝑍𝑎] ≠ 0,

the outcome is random, otherwise it is deterministic (this implies a scaling of 𝒪(𝑛) already,
since we go through the entire matrix in the worst case). We now consider these cases
separately.
Case 1, random outcome: Let 𝑔𝑘 be a stabilizer generator with {𝑔𝑘, 𝑍𝑎} = 0, implying a

random outcome. As the outcome, we randomly choose 𝑥 ∈ {0, 1}. We then multiply any
subsequent rows that anticommute with 𝑍𝑎 by 𝑔𝑘 in order for them to commute with 𝑍𝑎.
We then replace 𝑔𝑘 by ±𝑍𝑎 depending on the random outcome. Since this algorithm takes up
to 𝑛 row multiplications, the runtime scales with 𝒪(𝑛2).
3We can consider those without loss of generality, since we can always apply 𝒪(𝑛) unitaries to change basis in
𝛩(𝑛) time, which does not affect the scaling behavior of 𝒪(𝑛2).

99



classical simulation of stabilizer circuits

Case 2, deterministic outcome: If we did not find an anticommuting generator, we
know that our stabilizer group contains 𝑍𝑎. However, this does not necessitate 𝑍𝑎 be-
ing in the generating set. We thus need to modify 𝒯 such that its row space contains
(00 ⋯ 0𝑎 ⋯0 ∣ 00 ⋯ 1𝑎 ⋯0 ∣ ±) = ±𝑍𝑎 and then read out the signs vector, which is the re-
sult. This is done by Gaussian elimination, which requires 𝒪(𝑛3) time.

This proof, in principle, also provesTheorem1.14, since the simulation of any of a circuit’s
constituents is in P. Consequently, a finite number𝑚 of them will be in 𝒪(𝑚𝑛𝛼), and thus
also in P.

4.1.1 The Aaronson-Gottesman Algorithm

In the previous section we have shown that measurements take 𝒪(𝑛3) time in practice.
However, Aaronson and Gottesman showed in [12] that with the cost of a factor 2 increase
in memory requirements we can improve measurements to have quadratic time complexity
𝒪 (𝑛2), independent of “outcome type”. In particular, for each of the 𝑛 stabilizer generators
we store a destabilizer (also equivalently referred to as antistabilizer) generator, which are also
tensor products of Pauli operators. These 2𝑛 operators together generate the full 𝑛-qubit
Pauli group𝒫𝑛.
The tableau idea applied in Equation (4.1) can be expanded into

𝒯∣𝜙⟩ =
⎡
⎢
⎢
⎢

⎣

𝑥11 ⋯ 𝑥1𝑛 𝑧11 ⋯ 𝑧1𝑛 𝑟1
⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑛 𝑧𝑛1 ⋯ 𝑧𝑛𝑛 𝑟𝑛

𝑥(𝑛+1)1 ⋯ 𝑥(𝑛+1)𝑛 𝑧(𝑛+1)1 ⋯ 𝑧(𝑛+1)𝑛 𝑟𝑛+1
⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮

𝑥(2𝑛)1 ⋯ 𝑥(2𝑛)𝑛 𝑧(2𝑛)1 ⋯ 𝑧(2𝑛)𝑛 𝑟2𝑛

⎤
⎥
⎥
⎥

⎦

(4.3)

for an arbitrary stabilizer state ∣𝜙⟩. The first 𝑛 rows represent the newly introduced destabi-
lizer states, while the last 𝑛 rows constitute the tableau of stabilizers we have already discussed.
For later convenience, an additional (2𝑛 + 1)st row is added to the tableau. A minimal
example of the generalized tableau is the state |00⟩, which has

𝒯|00⟩ = [

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

] . (4.4)

A quick remark on notation: we will refer to the 𝑖-th row of 𝒯 by 𝑅𝑖, where it is clear
from the respective context if the row refers to a stabilizer or destabilizer generator. If we
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explicitly refer to one of them, we write 𝑔𝑖 for the 𝑖-th stabilizer generator and ℎ𝑖 for the 𝑖-th
antistabilizer generator. Matrix elements of the𝑋 and 𝑍matrices are denoted by 𝑥𝑎𝑏 and 𝑧𝑎𝑏
respectively. Entries of the sign vector are denoted by 𝑟𝑖 (see Equation (4.3)).

Although it is simply stated, it is not immediately obvious how (a) we choose destabilizer
generators, and (b) how this improves the scaling of measurements. For now we say that the
simulation algorithm starts in the state |0⟩⊗𝑛, where the initial tableau is taken as the 𝑛-qubit
generalization of Equation (4.4). Any other stabilizer state can then be arrived at via Clifford
or Pauli measurement gates. The former can be implemented as follows.

Algorithm 4.5 (Improved simulation of Clifford gates). Let⊕ denote bitwise XOR.
The implementations are

• CNOT from control 𝑎 to target 𝑏:

∀𝑖 ∈ {1, … , 2𝑛} 𝑟𝑖 ∶= 𝑟𝑖 ⊕ 𝑥𝑖𝑎𝑧𝑖𝑏 (𝑥𝑖𝑏 ⊕ 𝑧𝑖𝑎 ⊕ 1), 𝑥𝑖𝑏 ∶= 𝑥𝑖𝑏 ⊕ 𝑥𝑖𝑎, and 𝑧𝑖𝑎 ∶=
𝑧𝑖𝑎 ⊕ 𝑧𝑖𝑏.

• 𝐻 on qubit 𝑎:

∀𝑖 ∈ {1, … , 2𝑛} 𝑟𝑖 ∶= 𝑟𝑖 ⊕ 𝑥𝑖𝑎𝑧𝑖𝑎, then swap 𝑥𝑖𝑎 and 𝑧𝑖𝑎.

• 𝑆 on qubit 𝑎:

∀𝑖 ∈ {1, … , 2𝑛} 𝑟𝑖 ∶= 𝑟𝑖 ⊕ 𝑥𝑖𝑎𝑧𝑖𝑎, then set 𝑧𝑖𝑎 to 𝑧𝑖𝑎 ⊕ 𝑥𝑖𝑎.

We know from earlier considerations that simulating measurement gates, requires the
multiplication of generators. To this end, we introduce a subroutine called rowsum(h,i).
It updates the ℎ-th generator to be ℎ + 𝑖 and keeps track of the phase 𝑟ℎ. Its implementation
is given in Algorithm 4.6.
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Algorithm 4.6 (rowsum). First we define a function 𝑔(𝑥1, 𝑧1, 𝑥2, 𝑧2) taking 4 bits as
input and outputting the exponent of the imaginary unit 𝑖 after 𝑥1𝑧1 and 𝑥2𝑧2 are
multiplied. We focus on four cases explicitly, namely

𝑥1 𝑧1 𝑔(𝑥1, 𝑧1, 𝑥2, 𝑧2)

0 0 0
0 1 𝑥2 (1 − 2𝑧2)
1 0 𝑧2 (2𝑥2 − 1)
1 1 𝑧2 − 𝑥2

For the rowsum routine we set 𝑟ℎ to 0 if

2𝑟ℎ + 2𝑟𝑖 +
𝑛
∑
𝑗=1

𝑔 (𝑥𝑖𝑗, 𝑧𝑖𝑗, 𝑥ℎ𝑗, 𝑧ℎ𝑗) ≡ 0 (mod 4). (4.5)

or set 𝑟ℎ to 1 if the sum in Equation (4.5) is congruent to 2mod 4. Next, we set 𝑥ℎ𝑗 to
𝑥𝑖𝑗 ⊕ 𝑥ℎ𝑗 and 𝑧ℎ𝑗 to 𝑧𝑖𝑗 ⊕ 𝑧ℎ𝑗 for all 𝑗, where⊕ denotes bitwise XOR.

Next it will prove useful to define the symplectic inner product between two Pauli operators
𝐴 and 𝐵 in tableau representation as

𝐴 ⋅ 𝐵 = 𝑥𝑎1𝑧𝑏1 ⊕ ⋯ ⊕ 𝑥𝑎𝑛𝑧𝑏𝑛 ⊕ 𝑥𝑏1𝑧𝑎1 ⊕ ⋯ ⊕ 𝑥𝑏𝑛𝑧𝑎𝑛. (4.6)

This inner product is 0 if𝐴 and 𝐵 commute and 1 if they anticommute.
Equipped with rowsum and the symplectic inner product, we can now examine the

simulation of measurement gates.

Algorithm 4.7 (Improved simulation of measurement gates). Suppose we measure
�̂�. As a 0-th step, check if there exists a 𝑝 ∈ {𝑛 + 1, … , 2𝑛} (the stabilizer gener-
ators) such that [�̂�, 𝑅𝑝] ≠ 0. This can be done by multiplication with respect to
Equation (4.6). Then there are two cases:
Case 1, such a 𝑝 exists. First, call rowsum(𝑖, 𝑝) for all 𝑖 ∈ {1, … , 2𝑛} such that 𝑖 ≠ 𝑝
and [�̂�, 𝑅𝑖] ≠ 0. Next, set the (𝑝 − 𝑛)-th row equal to the 𝑝-th row. Then, set
row 𝑝 equal to �̂� and set 𝑟𝑝 to 0 or 1 with equal probability. Finally, return 𝑟𝑝 as
measurement outcome.
Case 2, such a 𝑝 does not exist. First, set the entire (2𝑛 + 1)st row (the one added for
convenience earlier) to 0. Next, call rowsum(2𝑛 + 1, 𝑖 + 𝑛) for all 𝑖 ∈ {1, … , 𝑛} (the
destabilizer generators) such that [�̂�, 𝑅𝑖] ≠ 0. Finally, return 𝑟2𝑛+1 as measurement
outcome.
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With Algorithms 4.5 and 4.6, all possible allowed modifications to the stabilizer tableau
𝒯 are defined. Proposition 4.8 collects some symmetries of this simulator. That is, some
commutation relations are invariant under operations of the Aaronson-Gottesman tableau
algorithm. It is these relations wewant to keep intact, when setting out to expand the existing
simulator with more functionalities.

Proposition 4.8 (Invariants of the tableau algorithm). The following are invariant
under operations of the tableau algorithm:

1. 𝑅𝑛+1, … , 𝑅2𝑛 generate 𝒮(∣𝜙⟩), and 𝑅1, … , 𝑅2𝑛 generate𝒫𝑛.

2. 𝑅1, … , 𝑅𝑛 commute.

3. ∀ℎ ∈ {1, … , 𝑛}, {𝑅ℎ, 𝑅ℎ+𝑛} = 0

4. ∀𝑖, ℎ ∈ {1, … , 𝑛}, with 𝑖 ≠ ℎ, [𝑅𝑖, 𝑅ℎ+𝑛] = 0

We will conclude this section with a note of caution. The simulator we set out to expand
has, in contrast to how it was defined in this section, the stabilizers in even-numbered rows
of the tableau, and each associated antistabilizers in the row below it. Although it is merely a
change of indices, it is a major one, and for didactic reasons we chose to forego this change.
Since it only matters which antistabilizer is associated with each stabilizer, we try to limit the
mention of any explicit ordering of generators in the tableau.

4.2 new functions on pure states

The first function implemented is the project function. It is used in the algorithm for
computing the linear cross entropy, as successful projections in the circuit yield 𝜒 = 1 and
𝜒 = 0 otherwise. Luckily for us, projections are already a part of the existing simulator in
the form of projective measurements. The important difference between the measurement
algorithm and projections is that we already know themeasurement outcome as an argument
of our function. That is, we take the usual measurement algorithm, but add a new argument
for the measurement result, which is projected onto. As such, the projection always works
for a random result, since one of the steps in the measurement was to flip a coin for the sign,
which is now a fixed value. However, for the deterministic case we are not as agnostic. Since
we try to project onto a state, which is already in the stabilizer, the signs of what we have and
what we pass as argument should match. If they do not, the function returns false. This is
then used as break condition when computing the LXE. The project algorithm is outlined
in Algorithm 4.9.
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Algorithm 4.9 (Projection onto Pauli eigenstates). Suppose we want to apply
𝑃 = 𝛪+�̂�

2 . As step 0, we again need to check if projection changes the state, by
checking if there exists a stabilizer generator 𝑅𝑝 such that [�̂�, 𝑅𝑝] ≠ 0. Then there
are two cases:
Case 1, projectionmodifies the state. We repeat the steps from case 1 ofAlgorithm4.7,
but instead of randomly choosing the sign, we use the one we want to project onto.
Finally, we return true since the projection was successful.
Case 2, projection does not modify the state. We similarly repeat the steps from case
2 of Algorithm 4.7, but return true or false depending on if the sign we pass as
function argument matches 𝑟2𝑛+1 or not.

An important point to note is that this function does not resemble anything we could
do in an experiment. There is no experimental apparatus conceivable to perform the oper-
ation we are simulating. It is possible only because we perform a classical simulation and
knowmathematically what a projection operation does. This kind of degree of freedom is
noteworthy, and we should keep it in mind going forward.

Forced projection
As we just discussed, the projection can fail and return false. This is rather unhelpful,
since this would terminate the simulation. In Section 3.2, this behavior is undesirable.
Consequently, we need to add a function, which forces a specific projection by altering the
structure of the tableau.
The only way we know if a projection fails is by computing the outcome of the determinis-

tic measurement and checking if the value is equal. This process involves reconstructing the
measurement operator with the help of anticommuting antistabilizers (see Algorithm 4.7).
If the result is not equal, we do not have the generator with the correct sign in the stabilizer
group. As a consequence, we need to alter the tableau in a certain way. To this end, we
employ the method of case 1 in Algorithm 4.7 and place the correct sign. We thus pretend
to be able to project successfully. This algorithm is summarized in Algorithm 4.10.

Algorithm 4.10 (Forced projection). The algorithm works the same way as Algo-
rithm 4.9, but instead of returning false upon failed projection, we manipulate the
tableau analogously to case 1 of Algorithm 4.7 and insert the correct sign.

Note that both Algorithms 4.9 and 4.10 utilize the pre-existing subroutines for measure-
ment gates from the improved simulation algorithm. Consequently, they are also 𝒪 (𝑛2),
with the latter being slightly worse than the former, but equal asymptotic behavior.
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4.3 implementing mixed states
The tableau algorithm in the form it is outlined in Section 4.1.1 currently supports stabilizer
circuit simulations exclusively for pure states. This, however, neglects a more general class of
quantum states, namely, mixed states. It has become apparent inChapter 3why this adaption
is necessary for our purposes. Ideally, we want to build on the existing infrastructure we have
been using for pure states and extend it such that pure states arise as a special case within
the simulator. Let us approach this problem heuristically by thinking about an intuitive
approach to incorporate mixed states to the simulator.
Consider the density matrix of a general 𝑁-qubit stabilizer state with generating set

𝒮 (𝜌) = ⟨𝑔1, … , 𝑔𝑛⟩,

𝜌 = 1
2𝛮

𝑛
∏
𝑖=1

𝐼 + 𝑔𝑖. (4.7)

Here, 𝜌 describes a pure state iff. 𝑛 = 𝑁 and a mixed state otherwise. That is, by reducing
the number of generators, we increase the state’s mixedness, with the maximally mixed state
represented by the trivial group, generated by the empty set.
What about the action of unitary transformations, i.e. Clifford gates, on our state? Since

applying unitaries to densitymatrices works by conjugationwith𝑈 and𝑈†, their application
remains unchanged from the pure-state case. Measurements, however, introduce a new
challenge: One can show thatwhenmeasuring anyPauli operator �̂� on a qubit in amaximally
mixed state, the outcomes will be random and their probabilities uniformly distributed.
However, this contrasts the previous instances where measurement outcomes were random,
since there are no anticommuting generators of 𝜌 with �̂�. This is certainly something to
take note of in modifying the existing measurement algorithm.
With mixed states come new possibilities for quantities we could query on our system.

For instance, the Von Neumann entropy (see Definition 3.2) of a pure state is always 0. It
is only non-zero for a mixed state. Furthermore, the cross and relative entropy only really
get particularily interesting when considering mixed states, as we have discussed in detail in
Section 3.1.2. We should therefore include the ability to access these entropic quantities,
and also compare two states to another, as is done for the cross and relative entropy.
One central question remains left unanswered: how do we obtain mixed states within

this framework? That is, if the previous program pertained to pure states only, what would
be a natural way to introduce mixedness? One approach could certainly be to start with a
pure state of a larger system and then trace out entangled qubits. So, a natural inclusion to
our algorithm would be a partial trace function. Alternatively, we can recognize once more
that we are not bound by the limits of nature; similarly to the project function, which has
no natural or experimental pendant, we can artificially introduce mixedness by selectively
removing stabilizers. For instance, removing a generator that acts only on one qubit (which
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is not coupled to other qubits) should yield a mixed state for that qubit. This allows outside
control of mixedness within the simulation.
Let us briefly summarize this train of thought:

Minimal reworking: The current algorithm (see Section 4.1.1) should be extended with
minimal changes. Any previously written simulation based on it may not break.

Generator count: An𝑁-qubit pure state has𝑁 stabilizer generators, while a mixed state
has 0 ≤ 𝑛 < 𝑁 generators.

Unitaries: The application of unitaries is agnostic to mixedness. They should work exactly
the same way they have before.

Measurements: Measurements introduce a new contingency for random results. The
existing measurement function should be made to be able to handle it.

Entropy: Mixed states allow for a broader spectrum of entropic quantities to be computed.

Partial trace: There should be a function, which implements the partial trace over (at least)
one qubit.

Classical advantages: Classical simulation allows us to construct artificial ways of intro-
ducing mixedness.

In the following sections we will go over the algorithms and their implementations of each
of the above points in detail.

On “minimal reworking”
Thepoint about “minimal reworking” is somewhat unrelated to physics, but rather computer
science (once again). Going forward, our working philosophy should, of course, be the
faithful implementation of physical phenomena to classical computers. However, we also
try to follow common practices and principles of software development. In particular, we
aim for as little repetition as necessary, by the DRY (don’t repeat yourself) principle, and
introduce new subroutines only if deemed unavoidable. If there exists a function that does
what we want, we will use it, as we have already done for Algorithms 4.9 and 4.10.

4.3.1 The mix attribute

For the first point4 – the generator count –, we introduce themix attribute to the simu-
lator. In the existing implementation, each multi-qubit stabilizer system is an instance of
4Considering “Minimal reworking” is our working philosophy, the thing to keep in mind, we count it as 0-th
point.
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the Qubits class. Its member functions are the possible actions on a stabilizer state. By
introducing the mix attribute, which is an integer 0 ≤ 𝑚𝑖𝑥 ≤ 𝑁, we keep track of how
many stabilizers contribute to the description of the physical state. The technical use of
this attribute is to control which rows of the tableau correspond to those generators which
describe the physical state, and which rows are generators completing the tableau. To clar-
ify, if we were to take the stabilizer tableau of an arbitrary pure state, its mix value will be
0. Incrementing this value by 1 increases the mixedness and constraints the rows of the
tableau we interpret as the stabilizer generators. Consider the example of the two-qubit bell
state ∣𝜙⟩ = (|00⟩ + |11⟩) /√2with generating set ⟨𝑍𝑍,𝑋𝑋⟩. The corresponding stabilizer
tableau (omitting the scratch row) is

𝒯∣𝜙⟩ = [

1 0 0 0 0
0 0 0 1 0
0 0 1 1 0
1 1 0 0 0

] . (4.8)

If we now increment mix by 1, the last (anti)stabilizer row is still carried around in the
simulation, but does not correspond to any stabilizer of the state. For the above state,
incrementing mix reduces the generating set to ⟨𝑍𝑍⟩, which corresponds to a mixed state
with density matrix

𝜌 = 1
4 (𝐼 + 𝑍𝑍) =

1
2(

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

). (4.9)

The corresponding bit matrix in the tableau representation then reads

𝒯𝜌 = [

1 0 0 0 0
0 0 0 1 0
0 0 1 1 0
1 1 0 0 0

] (4.10)

where the dashed lines correspond to the increment of mix. Note that we, in principle, have
all the freedoms laid out in Proposition 4.8 to choose the generators below the dashed line
as it is only needed for mathematical and technical convenience. We will see the advantages
of keeping tabs on the full-rank tableau in the following sections.

4.3.2 Unitaries and measurements

Now that we have introduced a method to describe a mixed state to the simulator, let us
further investigate how its member functions need to be adapted in order to faithfully
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simulate the behavior of mixed states. Luckily for us, adapting unitary transformations is
a rather simple task, since it works the same as for mixed states. It thus requires no further
inquiry.
The same cannot be said about measurements. As introductory example, consider the

mixed state described by the density matrix in Equation (4.9). Suppose we now perform a 𝑍
measurement on the first qubit. The fact that the measurement operator commutes with
every generator5 might lead us to believe that the measurement outcome is deterministic.
However, we also have

𝑝(𝑚𝑍 = +1) = Tr[
𝐼 + 𝑍1
2

1
4(𝐼 + 𝑍𝑍)]

= Tr[18 (𝐼 + 𝑍1𝑍2 + 𝑍1 + 𝑍2)]

= 1
8 Tr[𝐼] = 1

2 . (4.11)

This seems to contradict our previous method of determining the type of measurement
outcome. As a consequence, we need to include this new contingency into the existing
measurement function. At this point, recall that we still keep the whole tableau of generators,
as if we had a pure state, and just track howmany are not descriptors of the physical state.
Therein also lies the solution to the problem; we can intercept the case for random outcomes
in a mixed state by checking the tableau below the mix line as well. Note that we also include
the antistabilizers in this case. The commutation relations laid out in Proposition 4.8 ensure
the success of this algorithm. The augmentations of Algorithm 4.7 are summarized in
Algorithm 4.11.

Algorithm 4.11 (Simulation of measurement gates on mixed states). Suppose we
measure �̂�. As a 0th step, check if there exists a𝑝 ∈ {𝑛+1, … , 2(𝑛−𝑚𝑖𝑥)} (generators
describing the state) such that [�̂�, 𝑅𝛲] ≠ 0. Then there are three cases:
Case 1, such a 𝑝 exists. This case is the same as case 1 of Algorithm 4.7.
Case 2, such a 𝑝 does not exist. First, check analogously to step 0 if there exists a
𝑝 ∈ {𝑛 − 𝑚𝑖𝑥, … , 𝑛, 2(𝑛 − 𝑚𝑖𝑥), … , 2𝑛} such that [�̂�, 𝑅𝛲] ≠ 0. If such a 𝑝 does not
exist, this case reduces to case 2 of Algorithm 4.7. If it exists, we have the new third
case.
Case 3, there exists a 𝑝 ∈ {𝑛 − 𝑚𝑖𝑥, … , 𝑛, 2(𝑛 − 𝑚𝑖𝑥), … , 2𝑛} such that [�̂�, 𝑅𝛲] ≠ 0.
We perform the steps from case 1 of Algorithm 4.7 with this 𝑝. Then we swap rows
such that 𝑅𝑝 is included in the topmost row of the mix stabilizers. (Depending on 𝑝,
this might include a swap of an antistabilizer to the stabilizers.) Then, we decrement
mix by 1.

5𝑍𝑍 in this simple example
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Note that this additional case does not worsen the time-complexity of the simulation
of measurement gates, in theory as well as in practice. The only addition to the existing
algorithm is another loop over more rows. The total number of rows, however, is limited
to 2𝑁 for𝑁 qubits, which does not worsen the performance or change the asymptotic
behavior.

4.3.3 Entropies

By taking a broader class of quantum states into our consideration, we unlock a broader set
of entropic quantities to be investigated and computed. Wewill here introduce the functions
that compute the von Neumann, cross and relative entropy.

Von Neumann entropy
The first new function the mix attribute allows us to realize is the von Neumann entropy.
We know from Section 3.1.2 that the von Neumann entropy has a simple expression for
stabilizer states, namely

𝑆 (𝜌) = −Tr[𝜌 log 𝜌] = 𝑁 − ∣𝒮𝜌∣ (4.12)

with the number of qubits𝑁 and the rank of the stabilizer group ∣𝒮𝜌∣. Since the rank of a
group is the size of its smallest generating set, we already have the von Neumann entropy
baked into our extension. By definition, mix is the number of generators the state has fewer
than a pure state, which has𝑁 generators. Thus, the von Neumann entropy is just mix.
Remarkably, we therefore have𝒪(1) scaling for the vonNeumann entropy, since it is a lookup
of a constant. Due to its simplicity we will forego a detailed summary of the function here.
Nonetheless, the implementation of the von Neumann entropy in the simulator (written in
C++) can be found in Appendix A.

Cross and relative entropy
We want to include a way to compute the cross and relative entropy between two stabi-
lizer states in our simulator. However, this requires an auxiliary subroutine, which will be
introduced beforehand.

is_subgroup_of

We know fromTheorem 3.8 that the relative or cross entropyTr[𝜌 log 𝜎] only takes on finite
values if and only if the stabilizer group of 𝜎, 𝒮(𝜎), is a subgroup of the stabilizer group of 𝜌,
𝒮(𝜌). As such, before continuing with the implementation of other entropic quantities, it
seems a worthwhile endeavor to introduce a subroutine that verifies if one stabilizer group is
a subgroup of the other. To simplify notation, we fix the Qubit objects such that we ask if 𝜎
is a subgroup of 𝜌.
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The function is_subgroup_of should, as its name implies, return a boolean; true if
𝜎 is a subgroup of 𝜌, and false if it is not. Its implementation could, for instance, be as
a member function of the Qubit class, which takes as input a reference to an instance of
another Qubit object. This way, the function is still within the scope of the class, and already
has access to the tableau and consequently the generators.
Answering the question if one stabilizer group is the subgroup of another is equivalent

to answering the question if we can generate the smaller group from group elements of the
larger one. That is, if there is no generating set of 𝒮(𝜌) that does not also generate 𝒮(𝜎), we
know that 𝒮(𝜌) ≰ 𝒮(𝜎). Put differently, if there is an element in the stabilizer of 𝜎 that
cannot be constructed with 𝜌 stabilizers by means of the group operation, the condition
fails. It follows that we need a way to determine if the generating set of 𝜎 is contained in 𝜌.
One advantage of the tableau representation is that, while it is not a proper “representation”

in the strictest mathematical sense6, it does feature a way to represent the group operation,
namely rowsum. The question to answer can then be abstracted to the following. Given two
stabilizer tableaus, corresponding to𝜎 and𝜌, respectively, can the tableau of𝜎 be transformed
to contain only 0s using only rowsum(𝑠, 𝑟), where 𝑟 and 𝑠 are rows of𝒯𝜌 and𝒯𝜎, respectively?
Note that this question pertains to matrices and row manipulation thereof. What we

arrived at through this chain of arguments is Gaussian elimination of a combined stabilizer
tableau. If we write the stabilizer tableaus of 𝜌 and 𝜎 above one another and then perform
Gaussian elimination on the resulting tableau, we can deduce the subgroup property by
checking if the rows corresponding to 𝜎 have non-zero entries. If they do, there is a generator
of 𝜎we could not construct from generators of 𝜌. Consequently, the function should return
false in these cases and true for all zeros. The algorithm of this function is summarized in
Algorithm 4.12.

Algorithm 4.12 (Is subgroup of). Let𝒯𝜎 and𝒯𝜌 be tableaus of (possibly mixed)𝑁-
qubit stabilizer states 𝜎 and 𝜌, respectively. W.l.o.g we say that we want to determine
if 𝒮(𝜎) ≤ 𝒮(𝜌).
First, construct a new auxiliary matrix𝑀 as follows. Rows 1, … ,𝑁 − rho.mix of
𝑀 correspond to the “non-mix” stabilizer generators in𝒯𝜌. Rows (𝑁 − rho.mix +
1), … , (2𝑁 − rho.mix − sigma.mix) correspond to the analogous rows of𝒯𝜎.
Next, perform a standard Gaussian elimination algorithm on𝑀. If, at any point
during the algorithm, the pivot is found in a row corresponding to𝒯𝜎, return false.
Finally, if the elimination algorithm finished without returning false, the pivot was
never found in a row corresponding to the 𝜎 tableau. Thus, these rows are all 0s, and
the function returns true.

6In representation theory, the group elements are mapped onto GL(𝑉) and the group operation becomes
matrix multiplication.
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As this is a Gaussian elimination algorithm, which scales as 𝒪(𝑛3) in practice, Algo-
rithm 4.12 scales as such. Recall that this is also what Fattal et al. had for their algorithm of
the entanglement entropy.

Cross and relative entropy, ctd.
With the subgroup check in place, we can tend to the computation of the other entropic
quantities. If the subgroup condition does not hold, the functions for the cross and relative
entropy should return∞. With finite computational resources, representing an infinite value
is rather impossible. Thus, in the case where the subgroup check fails, these functions return
quiet_nans.
In the other case, we employ the results from Section 3.1.2, namely Theorem 3.10

andCorollary 3.11 for the cross and relative entropy, respectively. The cross entropy between
𝜌 and 𝜎 then simply becomes the von Neumann entropy of 𝜎, while the relative entropy
becomes the difference between sigma.mix and rho.mix.
In conjunction with Algorithm 4.12 we find agreement with the 𝒪 (𝑛3) scaling of the

entanglement entropy, found by Fattal et al. in Ref. [27].

4.3.4 Partial trace

The next item on the list is a function that implements the partial tracing over a subsystem.
The function itself is rather short, but relies on two auxiliary functions, which hide the work
required. We first introduce the subroutines to then combine it into the full partial trace
function.

get_state_type

Thefirst auxiliary subroutine needed for the partial trace algorithmwe callget_state_type.
It takes a qubit position 𝑎 as input and outputs the number of unique stabilizer generators
minus one on that qubit. The name of the function stems from the fact that we can have
three different state types: entangled, product andmixed. A qubit with two unique stabilizer
generators, i.e. 𝑔𝑖𝑎 = 𝑍 and 𝑔𝑗𝑎 = 𝑋with 𝑖 ≠ 𝑗, will be in an entangled state with another
qubit 𝑏 ≠ 𝑎. If there is only one unique stabilizer generator, we have qubit 𝑎 in a product
state, where the state is the state stabilized by the generator. Finally, no stabilizers correspond
to amixed state, since the empty set generates the trivial group, which corresponds to amixed
state in the stabilizer formalism.
The algorithm works by checking the 𝑞-th column for each stabilizer in the tableau. This

is then decoded the same way we encoded the Pauli matrices in the tableau algorithm (00 ≡ 𝐼,
01 ≡ 𝑍, 10 ≡ 𝑋, 11 ≡ 𝑌) and (in case of a non-zero value) stored into a variable dummy. If
we have two differing non-zero values for our Pauli encoding, we know our qubit to be in an
entangled state with at least one other qubit, andwe return 1. If there are no other generators,
we return 0 and if dummy is 0, qubit 𝑎 is in a mixed state. This algorithm is formally written
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out in Algorithm 4.13. Since this is a novel subroutine, which has no counterpart in the
previous simulator, we have included a flowchart representation of the algorithm, shown in
Figure 4.1.

Algorithm 4.13 (Determine state type). Let 𝑎be the qubitwewant to determine the
“state type” of. First, set a dummy variable to 0. Then, loop over non-mix stabilizers
and compute 2𝑥𝑖𝑎 + 𝑧𝑖𝑎. If this quantity is non-zero, set the dummy variable equal to
it, then continue looping if necessary. If 2𝑥𝑖𝑎 + 𝑧𝑖𝑎 is non-zero again, and not equal to
dummy, return 1. If the loop ends and dummy is non-zero, return 0. If the loop breaks
with dummy = 0, return −1.

rowreduce

The next subroutine we expand the simulator with is rowreduce, which is also vital to the
ptrace algorithm. Remember that the tableau algorithm is based on the stabilizer generators
and we already know that adding two rows together, i.e. multiplying two generators, leaves
the commutation relations invariant. This means that we can perform row reduction to row
echelon form on our tableau without effect on the described state.
However, some subtleties need to be taken into account. In principle it is possible to row

reduce the entire tableau. But it turns out that we need only to reduce the columns associated
with one particular qubit, when employed as subroutine to ptrace. Next, we need to pay
attention to the fact that our stabilizer tableau has dimensions 𝑛 × 2𝑛. Ideally, rowreduce
should modify our stabilizers in a way that there are at most one of𝑋 or𝑍 stabilizers for our
qubit. A natural first step would then be to treat the respective𝑋 and 𝑍 column separately.
This is where one needs to be careful. Although the 𝑋 and 𝑍 stabilizers are in separate
columns, they share the rows, e.g. in the case where𝑋𝑖𝑎 = 𝑍𝑖𝑎 = 1 ≡ 𝑌𝑖𝑎, meaning that a
reduction of𝑋will influence the 𝑍 column and vice versa. One way to reconcile this is to
reduce the𝑋 stabilizers first, swapping the row containing𝑋 to the bottom if necessary, then
doing 𝑍 stabilizers. That way we ensure that we do not introduce𝑋 stabilizers when adding
rows together to get rid of 𝑍 stabilizers. This already hints to the next subtlety we need to
take into account.
A priori, one would probably performGaussian elimination to obtain an upper triangular

form. The algorithm thereof is widely studied and the plight of many computer science
first year students. It would thus be natural to assume that we want to have the reduced
rows as first rows of the matrix. Nevertheless, our case is different; since we exclusively call
rowreduce to trace out a qubit, it will later prove convenient to have the reduced rows on
the bottom of the tableau. This way, we can later simply set N=N-1;. We refer to the later
discussion of the partial trace function for a more in-depth explanation why this is done.
The last subtlety we want to highlight is the fact that with each modification of the
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Loop over stabilizers
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2𝑋𝑖𝑎 +𝑍𝑖𝑎 = val ≠ 0?

dummy = 0?

End of loop?

dummy = 2𝑋𝑖𝑎 + 𝑍𝑖𝑎
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Figure 4.1.: Flowchart representation of the get_state_type subroutine for qubit 𝑎. Note that
the function terminates upon returning one of the possible values.

113



classical simulation of stabilizer circuits

stabilizer generators, we need an appropriate modification of the antistabilizers to keep the
commutation relations of Proposition 4.8 intact. Although we do not technially need to
modify the antistabilizers for our purposes, it is still necessary if wewant to continue applying
the tableau algorithm on the rowreduced tableau. To this end, see Proposition 4.14, where
this statement is formalized and proven.

Proposition 4.14. Let𝒯 be a tableau with stabilizer and antistabilizer generators
𝑆 = ⟨𝑔1, … , 𝑔𝑛⟩ and 𝐴 = ⟨ℎ1, … , ℎ𝑛⟩ respectively, where the generators fulfil the
commutation relations of Proposition 4.8. Replacing 𝑔𝑗 by 𝑔𝑖𝑔𝑗 in the stabilizer
generators leaves Proposition 4.8 invariant if ℎ𝑖 is replaced by ℎ𝑖ℎ𝑗 in the antistabilizer
generators.

Proof of Proposition 4.14. We will first recall the invariants as given in Proposition 4.8. They
read

1. 𝑅𝑛+1, … , 𝑅2𝑛 generate 𝒮(∣𝜙⟩), and 𝑅1, … , 𝑅2𝑛 generate𝒫𝑛.

2. 𝑅1, … , 𝑅𝑛 commute.

3. ∀ℎ ∈ {1, … , 𝑛}, {𝑅ℎ, 𝑅ℎ+𝑛} = 0

4. ∀𝑖, ℎ ∈ {1, … , 𝑛}, with 𝑖 ≠ ℎ, [𝑅𝑖, 𝑅ℎ+𝑛] = 0

We prove the statement by showing that each of the above points still hold for the proposed
modifications.

1. Since we merely multiplied generators, this holds by group theoretic arguments

2. All of the antistabilizers did commute previously, therefore, their product commutes
as well

3. There are only two relations of relevance for this point

{ℎ𝑖ℎ𝑗, 𝑔𝑖}
!= 0 and {ℎ𝑗, 𝑔𝑖𝑔𝑗}

!= 0,

since all the other generators are left as they were. To show this anticommutation
relation we employ the well-known identity

{𝐴𝐵, 𝐶} = 𝐴[𝐵, 𝐶] + {𝐴, 𝐶}𝐵

to obtain

{ℎ𝑖ℎ𝑗, 𝑔𝑖} = ℎ𝑖 [ℎ𝑗, 𝑔𝑖]⏟
=0

+ {ℎ𝑖, 𝑔𝑖}⏟
=0

ℎ𝑗 = 0 and

{ℎ𝑗, 𝑔𝑖𝑔𝑗} = {𝑔𝑖𝑔𝑗, ℎ𝑗} = 𝑔𝑖 [𝑔𝑗, ℎ𝑖]⏟
=0

+ {𝑔𝑖, ℎ𝑖}⏟
=0

𝑔𝑗 = 0.
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Start

first_x = −1,
first_z = −1

Loop over stabilizers
𝑔𝑖, 𝑖 ≤ 𝑁

𝑋𝑖𝑎 = 1?
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rowsum(i, first_x)
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Figure 4.2.: Flowchart representation of the rowreduce subroutine. Since the function returns noth-
ing, or void, it terminates after the loop over𝑍 stabilizers. The “repeat loop with𝑍” box
is therefore to be read as the loop over stabilizers with every 𝑥 or𝑋 replaced by 𝑍.
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4. As we started from a valid tableau, fulfilling the commutation relations, we need to
verify this point only for one of the combinations, namely

[�̃�𝑗, ℎ̃𝑖] = [𝑔𝑖𝑔𝑗, ℎ𝑖ℎ𝑗].

This is done with another commutator identiy,

[𝐴𝐵, 𝐶𝐷] = 𝐴[𝐵, 𝐶]𝐷 + [𝐴, 𝐶]𝐵𝐷 + 𝐶𝐴[𝐵,𝐷] + 𝐶[𝐴,𝐷]𝐵.

We thus have

[𝑔𝑖𝑔𝑗, ℎ𝑖ℎ𝑗] = 𝑔𝑖 [𝑔𝑗, ℎ𝑖]⏟
=0

ℎ𝑗 + [𝑔𝑖, ℎ𝑖]𝑔𝑗ℎ𝑗 + ℎ𝑖𝑔𝑖[𝑔𝑗, ℎ𝑗] + ℎ𝑖 [𝑔𝑖, ℎ𝑗]⏟
=0

𝑔𝑗

= (𝑔𝑖ℎ𝑖 − ℎ𝑖𝑔𝑖)𝑔𝑗ℎ𝑗 + ℎ𝑖𝑔𝑖(𝑔𝑗ℎ𝑗 − ℎ𝑗𝑔𝑗)

= 𝑔𝑖ℎ𝑖𝑔𝑗ℎ𝑗 − ℎ𝑖𝑔𝑖𝑔𝑗ℎ𝑗 + ℎ𝑖𝑔𝑖𝑔𝑗ℎ𝑗 − ℎ𝑖𝑔𝑖ℎ𝑗𝑔𝑗
= {𝑔𝑖, ℎ𝑖}⏟

=0

𝑔𝑗ℎ𝑗 − ℎ𝑖𝑔𝑖 {𝑔𝑗, ℎ𝑗}⏟
=0

= 0.

With all the subtleties accounted for, we can begin to construct rowreduce. It should
take a qubit position as input, and return void, since it merely modifies the matrix. We
start by looping through the 𝑋 stabilizers. The first time where 𝑋𝑖𝑎 = 1, the row num-
ber 𝑖 is stored in a variable first_x = i. For each subsequent row with𝑋𝑘𝑎 = 1 we call
rowsum(k,first_x) and rowsum(first_x+1,k+1), where h+1 is the associated antista-
bilizer to stabilizer h. After looping through the 𝑋 stabilizers, we move row first_x to
the bottom if necessary. We then repeat the previous procedure with the 𝑍 stabilizers, also
moving first_z to the bottom if necessary. The rowreduce algorithm is summarized in
Algorithm 4.15 and represented as a flowchart in Figure 4.2.

Algorithm 4.15 (Rowreduce). Let 𝑎 denote the qubit we want to reduce. First,
set two helper variables first_x and first_z to −1. Then loop over all rows in
the 𝑋matrix of the stabilizers. If 𝑋𝑖𝑎 = 1 for the first time, set first_x to 𝑖. For
any subsequent rows 𝑗with𝑋𝑗𝑎 = 1, call rowsum(𝑗, first_x) and the dual in the
antistabilizers according to Proposition 4.14. Once the loop hits the end, swap row
𝑖 to the bottom of the tableau, depending on if first_x ≠ −1. Then repeat the
previous steps for the 𝑍matrix.

A last thing to remark is the scaling behavior. Since we essentially perform Gaussian
elimination on one (or two) columns only, we reduce the time complexity from 𝒪(𝑛3) of
the usual Gaussian elimination algorithm to 𝒪(𝑛2).
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Partial trace
We can now combine the two previous subroutines to an algorithm realizing the partial trace,
also refered to as ptrace for short. The algorithm traces out one qubit and modifies the
remaining stabilizers accordingly. For instance, tracing out a qubit in a product state will just
remove this qubit, since it does not correlate with any other qubit. If we do have correlations
in the form of entanglement, the algorithm will modify the remaining stabilizers in a way
that increases the mixedness.
Consider the paradigmatic example of the two-qubit Bell state

∣𝜙⟩ = |00⟩ + |11⟩
√2

with density matrix 𝜌 = ∣𝜙⟩⟨𝜙∣ .

After tracing out any of the two qubits we are left with a mixed state of the form

𝜌𝑖 =
1
2 [|0⟩⟨0|𝑖 + |1⟩⟨1|𝑖] ,

which is the maximally mixed state for qubit 𝑖. The analogous operation in the stabilizer
picture is starting with the state stabilized by Stab(∣𝜙⟩) = ⟨𝑍𝑍,𝑋𝑋⟩. Then, by means of
partially tracing out one qubit arriving at Stab(𝜌𝑖) = ⟨⟩ = {𝐼}.
Conversely, if we start out in a product state, such as ∣𝜙⟩ = |00⟩, and then trace out one

qubit, the state of the qubit is still pure. Thus, the decrease in purity after the partial trace
operation depends on the correlations of the qubit to be traced out. This is what we need
the get_state_type function for. One of the steps in the partial trace function should be
to increase or decrease the mix attribute by an amount depending on the state type. The
value of this alteration is exactly the return value of get_state_type for the qubit to be
traced out. With that we have a sensible first step in the ptrace algorithm, namely calling
get_state_type and updating mix accordingly.
The next step is to move the columns corresponding to qubit 𝑎 to position 𝑁. The

reason for this is the same as why we moved the rows to the bottom in the rowreduce
subroutine (see Algorithm 4.15). Since we decrease the system size by 1, we set𝑁 to𝑁 − 1,
and since the tableau dimensions depend on this𝑁 explicitly, moving a column to𝑁 and
then decrementing𝑁 by 1 amounts to deleting the column.
Then, we call rowreduce on the last column. After rowreduce has been called, the stabilizer

generators of qubit 𝑎 are in column𝑁 and row𝑁, or possibly𝑁 − 1 too.
Finally, we decrement 𝑁, thereby removing the qubit from the system. The ptrace

function is summarized in Algorithm 4.16.

Algorithm 4.16 (Partial trace). Let 𝑎 be the qubit to be traced out. First, call
get_state_type (see Algorithm 4.13) and add its return value to mix. Then, move
column 𝑎 to 𝑁 by means of transposition. Next, call rowreduce on column 𝑁.
Finally, decrement𝑁 by 1.
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4.3.5 Classical control of mixedness

The last point we want to discuss is the control we wield over the quantum simulation and
the possible algorithms we can conceive to artificially introduce mixedness to our system.
The algorithms used in Sections 3.3.1 and 3.3.2 were realized by selectively choosing the
appropriate qubits to be cast to a mixed state. We therefore conclude the presentation of the
algorithms added to the simulator by explaining how they function.

Minimal mixing

The first algorithm introduced is the more involved of the two. Here, we specifically choose
a generator to be discarded such that the subgroup condition should be met in principle.
The physics of the algorithm (and why it is a rather unphysical one) is discussed in detail in
Section 3.3.1. Here, we only concern ourselves with the algorithm as it is implemented in
the simulator.
The basic idea of the algorithm is similar to the projection function, but instead of

returning true or false if a projection is successful or not, we do some more work on the
tableau after the default projection algorithm would return false. In a sense, it is a softer
version of a forceful projection, as it is done in the naive approach (see Section 3.2). Once
we detect a faulty projection, we ensure that the measurement operator is included with the
correct sign. This is done by imitating the case of a measurement with random outcome. In
a way, we pretend that the projection has to alter the tableau (which is has to anyway) and
insert the correct generator. We want to emphasize that one needs to take Proposition 4.14
into account when altering the tableau in this manner. Not being careful in this step could
result in a tableau containing −𝐼 as generator, which is not allowed.
After the correct generator is in place, we move it to the “mix” generators and increment

mix by 1. The whole algorithm is summarized in Algorithm 4.17.

Algorithm 4.17 (Minimal mixing). The algorithm works the same way as Algo-
rithm 4.9 with one key exception. When a projection fails, the pertinent generator
gets assigned the correct sign by doing the steps in case 1 of Algorithm 4.7. Then,
swap rows such that the generator is with other mix generators, then increment mix
by 1.

Maximal mixing

The second algorithm is rather simple. As we discard the entire generating set once a projec-
tion fails, there is no complex manipulation of the tableau in the subroutine. Instead, we set
mix=N once the measurement outcome in the record does not match the expectation. For
completeness’ sake, Algorithm 4.18 summarizes the steps.
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summary

Algorithm 4.18 (Maximal mixing). The algorithm works the same way as Algo-
rithm 4.9 with a contingency added in case of failed projection. If a projection fails,
set mix=N.

4.4 summary
In this chapterwe introduced a simulation algorithmused to simulate awide class of quantum
circuits, known asClifford circuits. We gave an overview of the existing infrastructure present
to perform numerical experiments of quantum computations on a classical platform using
the stabilizer formalism. We then derived algorithms for new functionalities employed in
the simulations in the remainder of the thesis. In particular, we introduced the simulability
of mixed states by extending the previous functions and subroutines to handle this class of
quantum states appropriately. We furthermore introduced new functions that only become
well-defined on mixed states.
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CONCLUSION AND OUTLOOK

In this thesis we investigated different approaches to detect the measurement-induced en-
tanglement phase transition in the projective transverse-field Ising model. In particular, the
approaches employed measures related to cross entropy: a linearized cross entropy, and an
upper bound on the entanglement entropy via Klein’s inequality, which features the cross
entropy.
In Chapter 1 we provided a broad overview of the core concepts pertaining to the thesis.

We introduced the stabilizer formalism and its connection to classical simulations of quantum
circuits. We then gave an introduction to the theory of entanglement transitions, with the
projective transverse-field Ising model (PTIM) as the primary paradigm used throughout
the rest of the thesis. We then explained the sampling problem in greater detail.
InChapter 2 we discussed the first approach, the linear cross entropy. We gave an intuition

behind the quantity and derived a method to efficiently compute it in Clifford circuits. We
then utilized this method to investigate the behavior of the linear cross entropy in classical
simulations of the projective transverse-field Ising model. Furthermore, we showed that the
linear cross entropy factorizes elegantly into a product of two separate quantities dependent
only on one type of measurement. Finally, we highlighted its behavior in noisy realizations
of the PTIM by employing an error model with different error types.
In Chapter 3 we examine the approach based on bounding the entanglement entropy

from above. In particular, we employed Klein’s inequality to provide an upper bound with
the cross entropy. We first derived the inequality in general, before giving an expression
thereof in the stabilizer formalism. We then employed the derived expression in stabilizer
simulations of the PTIM, exploring the utility of different post-processing algorithms with
the previously presented noise protocol. We finalize the chapter by proposing two different
regularization Ansätze to deal with infinities and discussing their utility as well.
It is clear that stabilizer simulations played an important part in the scope of this thesis.

We therefore dedicated Chapter 4 to outlining the simulation algorithm, as well as the
introduction of new functions and subroutines added to the simulator, specifically relevant
to the thesis. These most notably include the addition of mixed states to the simulator, as
well as the adaptation of the previously existing functionalities.

outlook
While we exhaustively covered the linear cross entropy and different numerical approaches,
one could more closely investigate the subgroup condition of the cross entropy. While the
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proof of the condition is rigorous and makes sense in the context of information theory,
single qubits in orthogonal product states equally do not contribute to the entanglement
entropy. One could thus try an approach, where one is agnostic to the signs when comparing
product states on the same site with the cross entropy.
Furthermore, one could try other approaches, which are not explicitly discussed in this

thesis. For instance, one could employ other measures, such as the entanglement asymmetry,
or imagine entirely new algorithms, possibly by combining the approaches of the upper
bound and the linear cross entropy.
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A
CODE LISTINGS

C++ code for the computation of 𝜒𝐶.

Listing A.1: Computation of the linear cross entropy for one measurement history of a circuit
1 bool success = true;

2 for (int t=0; t<t_max; t++) {

3 for (int s=0; s<L; s++) {

4 if (random_circuit_x[t][s] && success) {

5 success = P.project(X,s,measurements_x[t][s]);

6 }

7 }

8 for (int s=0; s<L-1; s++){

9 if (random_circuit_zz[t][s] && success) {

10 success = P.project(Z,s,Z,periodic(s+1,L),measurements_zz[

t][s]);

11 }

12 }

13 }

14 if (success) {

15 results.lxs.av++;

16 results.lxs.se++;

17 }

C++ code for the entropy_vn function, computing the von Neumann entropy.

Listing A.2: entropy_vn function in the simulator
1 int Qubits :: entropy_vn () {

2 return mix;

3 }

C++ code for the is_subgroup_of function.

Listing A.3: is_subgroup_of function in the simulator
1 bool Qubits :: is_subgroup_of(Qubits& other) {

2 if (other.N != N || other.mix > mix) return false;

3

4

5 // Signs

6 BYTE* comb_r = new BYTE [(2*N+1+7) /8];
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7

8 for (int i=0; i<(2*N+1+7) /8; i++)

9 comb_r[i] = 0;

10

11 for (int g = 0; g<N-other.mix; g++) {

12 set_bit(comb_r ,g,get_bit(other.r,2*g));

13 }

14 for (int g = N; g<2*N-mix; g++) {

15 set_bit(comb_r ,g,get_bit(this ->r,2*(g-N)));

16 }

17

18

19 // Table

20 int Nb = (2*N+1+7) /8; // N X stabilizer , N Z stabilizer

21

22 BYTE* loc_buf = new BYTE [2*N*Nb];

23 for (int i=0; i<2*N*Nb; i++) loc_buf[i]=0;

24 // 2N rows , since we're comparing two stabilizer matrices

25 BYTE** local = new BYTE *[2*N];

26 for (int r=0; r<2*N; r++) {

27 local[r] = loc_buf+Nb*r;

28 }

29 for (int i=0; i<2*N; i++) {

30 for (int j=0; j<((2*N+1)+7) /8; j++)

31 local[i][j] = 0;

32 }

33

34 for (int c=0; c<N; c++) { // fill columns

35 for (int r=0; r<N-other.mix; r++) { // fill rows 1-N

with other

36 set_bit(local[r],2*c,other.has(X,c,2*r));

37 set_bit(local[r],2*c+1,other.has(Z,c,2*r));

38 }

39 for (int r=N; r<2*N-mix; r++) { // fill rows N+1-2N

with this

40 set_bit(local[r],2*c,this ->has(X,c,2*(r-N)));

41 set_bit(local[r],2*c+1,this ->has(Z,c,2*(r-N)));

42 }

43 }

44

45

46 int R=0;

47 for (int c=0; c<2*N; c++) {

48

49 #if DEBUG_ES

50 /* print_bit_matrix(local ,N,2*n); */

51 #endif

52

53 // Find pivot
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54 bool pivot = true;

55 for (int r=R; r<2*N; r++) {

56 if (get_bit(local[r],c)) {

57 // Swap pivot to top

58 if (pivot && r<N) {

59 swap_rows(local ,R,r);

60 swap_bits(comb_r ,R,r);

61 pivot = false;

62 }

63 // pivot should never be on the bottom ,

64 // since it is then no longer a subgroup

65 else if (pivot && r>=N) {

66 return false;

67 }

68 // Zero column below pivot

69 else {

70 add_row_to(local ,Nb,R,r);

71 // XOR the bit at position r in comb_r[r]

with the bit at position R in comb_r[R]

72 comb_r[r / 8] ^= (( comb_r[R / 8] >> (R %

8)) & 1) << (r % 8);

73 }

74 }

75 }

76 if (!pivot) R++;

77 }

78 // check that there is no hanging sign anywhere

79 // This would be the case if the groups matched perfectly

up to

80 // sign differences

81 for (int i=N; i<2*N-mix; i++) {

82 if (get_bit(comb_r , i)) return false;

83 }

84

85 return true;

86

87

88 delete [] comb_r;

89 delete [] local;

90 delete [] buf;

91

92 }

C++ code for the cross_entropy function.

Listing A.4: cross_entropy function in the simulator
1 double Qubits :: cross_entropy(Qubits& other) {

2 if (!(this ->is_subgroup_of(other))) return std:: numeric_limits <

double >:: quiet_NaN ();
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3 else return (double) mix;

4 }

C++ code for the relative_entropy function.

Listing A.5: relative_entropy function in the simulator
1 double Qubits :: relative_entropy(Qubits& other) {

2 if (!(this ->is_subgroup_of(other))) return std:: numeric_limits <

double >:: quiet_NaN ();

3 else return (double) mix - other.mix;

4 }

C++ code for the get_state_type function.

Listing A.6: get_state_type function in the simulator
1 int Qubits :: get_state_type(const int q) {

2 int dummy{}, val{};

3 for ( int i = 0; i < 2*(N-mix); i+=2 ) {

4 val = 2* get_bit(tab[q],2*i)+get_bit(tab[q],2*i+1);

5 if ( val != 0 && dummy == 0 ) dummy = val;

6 else if ( val != 0 && val != dummy ) return 1;

7 }

8 if (dummy) return 0;

9 else return -1;

10 }

C++ code for the rowreduce function.

Listing A.7: rowreduce function in the simulator
1 void Qubits :: rowreduce(const int q) {

2 // helper variables

3 int first_x = -1, first_z = -1;

4 int num_x{}, num_z {};

5 int last_stab = 2*(N-1), last_anti = 2*N-1;

6

7 // loop through x stabilizer

8 for (int j = 0; j < 2*N; j += 2) {

9 if ( get_bit( tab[q], 2*j ) && num_x == 0 ) {

10 first_x = j;

11 num_x ++;

12 }

13 else if ( get_bit( tab[q], 2*j ) && num_x > 0 ) {

14 rowsum(j,first_x); // update stabilizer

15 rowsum(first_x+1, j+1); // update antistabilizer in

parallel

16 num_x ++;

17 }

18 }
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19

20 if ( num_x > 0 && first_x != last_stab ) {

21 for (int k = first_x; k<last_stab; k++){

22 rowswap(k,k+2);

23 }

24 }

25

26

27 // loop through z stabilizer

28 for (int j = 0; j < 2*N; j += 2) {

29 if ( get_bit( tab[q], 2*j+1 ) && num_z == 0 ) {

30 first_z = j;

31 num_z ++;

32 }

33 else if ( get_bit( tab[q], 2*j+1 ) && num_z > 0 ) {

34 rowsum(j,first_z); // update stabilizer

35 rowsum(first_z+1,j+1); // update antistabilizer in

parallel

36 num_z ++;

37 }

38 }

39

40

41 if ( num_z > 0 && ((num_x > 0 && first_z != last_stab) || num_x

==0)) {

42 for (int k = first_z; k<last_stab; k++){

43 rowswap(k,k+2);

44 }

45 }

46

47 }

C++ code for the ptrace function.

Listing A.8: ptrace function in the simulator
1 void Qubits :: ptrace(const int q) {

2 assert(q>=0);

3 assert(get_num_qubits () >1);

4 assert(q<N);

5

6 // helper variables

7 BYTE* helper_tab = tab[q];

8 int last_stab = 2*(N-1);

9 int last_anti = 2*N-1;

10

11 // move the traced -out qubit to the end of the table so that the N

-=1

12 // line at the end of this function becomes the tracing -out step
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13 // we need to do this before anything else , otherwise we break

stuff ,

14 // since we do rowsum ()

15 for (int j = q; j < N - 1; j++) {

16 tab[j] = tab[j + 1];

17 }

18 tab[N-1] = helper_tab;

19

20 mix = mix + get_state_type(N-1);

21 rowreduce(N-1);

22 --N;

23 }

C++ code for the various project functions. An arument decides what to do upon failed
projection. This function was exclusively used in Chapter 3, and not for the linear cross
entropy.

Listing A.9: project_or_mix function in the simulator for a single qubit
1 void Qubits :: project_or_mix(const int8 o, const int q, const bool m,

const int alg) {

2

3 // Random or not random?

4 int p=-1;

5 for (int h=0; h<2*(N-mix); h+=2) {

6 if (! commutes(o,q,h)) {

7 p=h;

8 break;

9 }

10 }

11

12 if (p==-1) {

13 for (int h = 2*(N-mix); h<2*N; ++h) {

14 if (! commutes(o,q,h)) {

15 // Antistabilizer with 'mix' label anticommutes ->

random

16 p=h;

17 break;

18 }

19 }

20 }

21

22

23 // Random result!

24 if (p!=-1) {

25

26 // Make projector o commute with everything except

stabilizer p

27 for (int h=0; h<2*N; h++) {
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28 if ( !commutes(o,q,h) && h!=p ) rowsum(h,p);

29 }

30

31 // Make p new antistabilizer

32 if (p%2) copyrow(p-1,p);

33 else copyrow(p+1,p);

34

35

36 // Replace p by new stabilizer

37 zerorow(p);

38 set_qubit(o,q,p);

39 set_sign(p,m);

40

41 // add mix generators to (anti -) stabilizers

42 if (p >= 2*(N-mix)) {

43 if (p%2) {

44 if (p==2*(N-mix)+1) {

45 rowswap(p-1,2*(N-mix)+1);

46 }

47 else {

48 rowswap(p-1,2*(N-mix)+1);

49 rowswap(p,2*(N-mix));

50 }

51 --mix;

52 }

53 else {

54 rowswap(p,2*(N-mix));

55 rowswap(p+1,2*(N-mix)+1);

56 --mix;

57 }

58 }

59

60 }

61 // Deterministic result!

62 else {

63 zerorow (2*N);

64 std::vector <int > dummy = {};

65 for (int h=0; h<2*N; h+=2) {

66 if ( !commutes(o,q,h+1) ) {

67 rowsum (2*N,h);

68 dummy.push_back(h);

69 }

70 }

71 if (!( get_bit(r,2*N) == (bool) m)) {

72 switch (alg) {

73 case 0:

74 {

75 /* MINIMAL MIXING

76 * ==============
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77 *

78 * The algorithm works as follows:

79 * 1. pretend that we just got a random

result

80 * on antistabilizers (i.e. measurement

operator

81 * anticommutes with some antistabilizer)

82 * 2. perform subroutine of random result on

83 * said antistabilizer

84 * 3. update the corresponding _stabilizer_!

85 * 4. swap the stab/destab rows to the mixed

states

86 * 5. increment mix

87 */

88 p = dummy [0];

89 dummy.erase(dummy.begin ());

90 toggle_bit(r,p);

91 for (auto const& h : dummy) {

92 rowsum(p,h);

93 rowsum(h+1,p+1);

94 }

95 if (p<2*(N-mix -1)){

96 for (int i=p; i<2*(N-mix -1); ++i){

97 rowswap(i,i+2);

98 }

99 }

100 mix++;

101 } break;

102 case 1:

103 {

104 /* MAXIMAL MIXING

105 * ==============

106 *

107 * This algorithm is pretty straightforward

:

108 * 1. add all generators to mixed

109 * 2. done

110 */

111 mix = N;

112 } break;

113 case 2:

114 {

115 p = dummy [0];

116 dummy.erase(dummy.begin ());

117 for (int h=0; h<2*N; h++) {

118 if ( !commutes(o,q,h) && h!=p )

119 rowsum(h,p+1);

120 }

121 zerorow(p);
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122 set_qubit(o,q,p);

123 set_sign(p,m);

124 } break;

125 }

126 }

127

128 }

129 }
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B
FRAGMENTS

on tangents — or: what is this chapter?
While writing this thesis my thoughts have wandered off once or twice. Almost always while
writing out something completely different. Incidentally, this is how the paragraph you’re
reading right now came to be.
Sometimes I’d write down something that amuses me, sometimes I’d get frustrated and

investigate my frustrations in text. Maybe I had even had a profound thought once in a while.
Regardless of how these tangents got there, or what they are about, off-topic tangents are
not something you’ll want to put in the main body of your thesis, no matter how ingenious
or witty they are. Come to think of it, they probably do not belong in the appendix either.
Either way, I would have been quite distraught to delete these paragraphs without any of

them ever seeing the inside of a printer. So, in order for them not to go to waste, I decided to
collect them here for mine andmy friends’ amusement. These texts really are silly sometimes.

on references
I like how references are provided in physics: all those little numbers in little brackets or as
superscript above a claim to support it. It allows me to follow the bibliography in parallel to
the paper and check some pertinent publications easily. This is, of course, very different in
many other disciplines, e.g. psychology or philosophy, where it is common-practice to give
your sources in alphabetical order sorted by the author’s surname.
I claim that physicists are not appreciative enough of this. It will never fail to frustrate

me if people cite some sh-t that has nothing at all to do with the claim in question. This is
especially so if the claim is better supported by the results of other papers; papers that a lot
of times make it into the .bib file of at least one of the authors, or why else would they be
prominently cited in a section, where it doesnt make sense to do so. Ultimately, the highest
degree of frustration for me is if the references are off by one, or cite a previous project by
the same authors. This kind of situation lies in the uncanny valley of ”is it them or me?”.
And more often than not, it should beme, right? But then you go on and on, read the cited
papers thoroughly, try to understand the context in which it is referenced in the work you
originally went through, and now, multiple layers deep in the reference rabbithole are you
ultimately forced to realize that it’s not you, it’s them.



fragments

on the utility of simulations
One of my favourite video games isCities: Skylines. As the name suggests, it is a city-building
game (which graciously runs natively on Linux). In it, you act as an almost omnipotent
mayor and are tasked with developing and maintaining a settlement raised from scratch.
Initially, one has a single plot of buildable area, located in a vast landscape, acting as a canvas
for you to design your city as you see fit. The initial plot of land usually conveniently features
a highway exit, where the canonical first step is the design of a road network with appropriate
residential, commercial, and industrial zoning for citizens to move in, and for industry and
businesses to ship cargo in and out. As the game progresses your city grows, unlocking you
more buildings and services such as schools, hospitals, or public transit. (If the populace is
sufficiently educated, one can even unlock a “Large Hadron Collider” in the later stages of
the game.) However, one also faces the challenges of a growing city, such as the increasing
demands for basic utilities, and most importantly, traffic congestion and its consequences.
All this is to say: it simulates the progression from a village to a metropolis.
At the end of the day, however, it is only a simulation of what is happening in the real

world. While the developers made sure to accurately model behavior of the masses, daily
routines of thousands—if not millions—of citizens, and their commutes constituted by
about as much vehicles, they at the same time made sure that I can play this game on my
used ThinkPad, more than 10 years of age. It is therefore only natural that somemechanisms
of human behavior had to be “coarse grained” away for the game to be (a) playable and (b)
enjoyable. (Think about walking around in Stuttgart: construction sites as far as the eye
can see. Confer Cities: Skylines, where buildings just spawn out of nowhere as soon as you
command them to be placed.) It would be highly absurd to suggest that every nuance of life
in a city can be mapped one to one to a program.
Yet as it turns out, the game does a surprisingly good job of accurately depicting traffic

flow and the dynamics of city life, now being used to teach urban planning and landscaping
students1 [87, 88]. Picture this: Cleverly assembled instructions run on cleverly assembled
silicon circuits teaching urban planning students that the road network they conceived of
was not-so cleverly assembled. An almost kafkaesque sight to behold.
Now, what can we as physicists learn from this excursion into my video game preferences?

The daily routine of many physicists today, even at the LHC, consists of running simulations
on (almost) the same x86 instruction set that allows me to build the Large Hadron Collider
in my virtual city with the press of a button. That is, the computer hardware is completely
agnostic to the simulation it is running. Matter of fact, within the confines of computability,
we can play God with the processors, making them produce any result we want.
This begs the question: what kind of results should we want from a simulation? Re-

member, the truly remarkable thing about the game Cities: Skylines is the way it accurately

1Educational software, now in your local steam library.
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portrays the real world, while still being a video game. Should our demands on simulations
of natural phenomena therefore be held to the same standard? If that were strictly so, a
radical conclusion one might draw is that the epistemic value of a simulation that models
something not translateable to an experiment is nill. It implies that the simulation tells me
about as much about the phenomenon it is supposed to model as the following C code:

#include <stdio.h>

int main(int argc, char *argv[]) {

printf("Hello World!");

return 0;

}

Or maybe it tells me that whatever phenomenon whose existence I advocate for, is not
“real”—whatever that means for you.
I claim that this, albeit a straw man argument, is short-sighted. The extrapolation from

well-establishedmodels topotentially untestable theories that only exist onpaper or computer
simulations can have epistemic value.2 One might still be able to answer how they are
untestable, potentially gaining insight in the workings of nature by understanding the
restrictions it shackles us with.

on cargo cult science
In my time at the institute I was fortunate enough to be able to attend the group retreat. For
this I prepared a talk on Feynman’s notion of Cargo Cult Science and how it connects to
Max Horkheimer and TheodorW. Adorno’s Dialectic of Englighenment. This might be
the biggest tangent i went on, since I wrote an entire transcript of what I was going to say
in the talk. This, of course, isn’t an exact transcription of what was presented, but a rough
outline and still a major tangent when writing this thesis.

The Talk

Hello everyone, it humbles me to start this day of talks by fellow members of this institute
with some topic merely tangentially related to the field of theoretical physics. Nonetheless, I
hope you’ll enjoy the talk and the topic interesting and thought-provoking. And alas, we
will not leave the realm of theory: As you can see, the title of my talk is Cargo Cult Science
and the Dialectic of Enlightenment, and in it I wanna give a brief, and hopefully entertaining,
overview of critical theory’s foundations.
To set the stage, I’d like to begin with a quote from a figure we all hold in high esteem:

Richard Feynman. In Caltech’s 1974 commencement address, he coined the term I used for
2Maybe this is just me coping with the fact that there is no pompous publishable result in my thesis, but I
digress.

135



fragments

the first half of this talk’s title. It is a reflection that resonates suprisingly well with the theme
of today’s talk. He said [89]:

During the Middle Ages there were all kinds of crazy ideas, such as that a piece
of rhinceros horn would increase potency. Then a method was discovered for
separating the ideas—which was to try one to see if it worked, and if it didn’t
work, to eliminate it. This method became organized, of course, into science.
And it developed very well, so that we are now in the scientific age. […]

But even today I meet lots of people who sooner or later get me into a conver-
sation about […] some form of mysticism.

Feynman, whose brilliance in both physics and pedagogy I think we all deeply admire,
captures a central tension that has persisted throughout the history of human thought. His
observation, highlighting the transition from superstition to science, echoes the broader
narrative of the Enlightenment—a period that heralded the triumph of reason and empirical
inquiry over myth and mysticism.
Because surely, this method, the scientific method as it were, which we hold as bedrock

of our endeavors, is a product of the Enlightenment era, of enlightenment thought. And
surely, this thesis of pure reason and rationality, stands in contradiction, in antithesis, to
UFOs or astrology.
But here’swhere it gets interesting: the story of theEnlightenment is not as straightforward

as a simple victory of light over darkness. As it turns out, two german philosophers, Max
Horkheimer (who was born in Zuffenhausen) and Theodor W. Adorno have decades prior
also grappled with the complexities and contradictions inherent in Enlightenment thought.
So much so that, when they were forced into exile by the emergence of fascism in the form
of national socialism, they wrote a book about it, entitledDialectic of Enlightenment.
In this work, Horkheimer and Adorno argue that the very rationality and scientific

progress that emerged from the englightenment era, contain within them the seeds of their
own undoing. Or to say it in their words [90, 91]: “ Seit jeher hat die Aufklärung im um-
fassendsten Sinn fortschreitenden Denkens das Ziel verfolgt, von denMenschen die Furcht
zu nehmen und sie als Herren einzusetzen. Aber die vollends aufgeklärte Erde erstrahlt im
Zeichen triumphalen Unheils. ” “ Enlightenment, understood in the widest sense as the
advance of thought, has always aimed at liberating human beings from fear and installing
them as masters. Yet the wholly enlightened earth is radiant with triumphant calamity. ”

Enlightenment
So what is aDialectic of Enlightenment? Well, let us maybe begin with the Age of Enlighten-
ment. If I would do this talk in german, I could refer to the english translation of the term
Aufklärung. It is sometimes referred to as the Age of Reason [92], and caused quite a ruckus
in 17th and 18th century europe. Think of the american and french revolution. The rise
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of the first democracies, secularism and also: industrialization. The invention of the steam
engine and so on. The most prominent englightenment thinkers include characters such as
Immanuel Kant, Francis Bacon, David Hume and this one, I am sure you are all well familiar
with the coordinate system named after him.
Enlightenment at its core represented a radical shift away from the teachings of priests

and witch doctors, explanations from religion and myth. Enlightenment, in Kant’s words, is
“the human being’s emergence from self-incurred minority. Minority is inability to make
use of one’s own understanding without direction from another.”; “Understanding without
direction from another” is understanding guided by reason [93, 94]. So instead of relying on
horror stories, the likes of Galileo, Newton or Kepler made use of their own understanding
without direction from another.
Francis Bacon, one of the intellectual architects of this movement, famously argued that

mythical thinking stood in the way of what he called “the happy match between the mind
of man and the nature of things” [95]. For Bacon, and indeed for many Enlightenment
thinkers, myths and superstitions were obstacles that clouded human understanding. The
goal was to clear these obstacles, to purify thought by aligning itmore closely with the natural
world, which could be understood through careful observation, experimentation, and the
application of reason.
But as you could probably guess, this profound shift in thought was not without its

complexities and contradictions. After all, why would someone as deeply embedded in the
scientific tradition as Richard Feynman identify a phenomenon like Cargo Cult Science if
we are truly living in a scientific age? Did the Enlightenment not champion ideals of liberty,
progress, and rationality that should have eradicated such pseudo-scientific practices?

Instrumental reason
Horkheimer and Adorno would argue that yes, the Enlightenment indeed promoted these
ideals. It encouraged a pursuit of knowledge that liberated humanity from the shackles of
superstition and myth, setting the stage for unprecedented progress in science, technology,
and human understanding. However, they also caution that this progress came with unin-
tended consequences. Alongside the liberation that Enlightenment thought provided, it
also introduced new forms of control and domination, encapsulated in what they describe
as “instrumental reason”.
To quote the Dialectic once more, Horkheimer and Adorno write:

Myth becomes enlightenment and nature mere objectivity. Human beings
purchase the increase in their power with estrangement from that over which
it is exerted. Enlightenment stands in the same relationship to things as the
dictator to human beings. He knows them to the extent that he canmanipulate
them. The man of science knows things to the extent that he can make them.
Their “in-itself” becomes “for him”.
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Instrumental reason refers to a way of thinking that prioritizes efficiency, utility, and
control above all else. It’s a kind of reasoning that asks not “What is true?” but rather
“What works?” or “What can we do with this?” While this approach can lead to remarkable
technological advancements and practical applications, it can also reduce human thought to a
mere tool formanipulating the world, stripping it of deepermeaning or ethical consideration
[96].
A seemingly harmless manifestation of this instrumental reason might be familiar to

many of us—think of the gut reaction from your relatives when they ask you what you’re
currently working on, perhaps during a holiday dinner. After hearing your explanation, they
might immediately ask, ”What can you do with it? How can it be applied?” This reaction,
though well-meaning, reflects a broader societal tendency to value knowledge primarily for
its practical utility rather than for its intrinsic worth or the deeper understanding it provides.
And even Feynman can provide us with an example for instrumental reason: In the

commencement address he says this while talking about scientific integrity:

For example, I was a little surprised when I was talking to a friend who was
going to go on the radio. He does work on cosmology and astronomy, and
he wondered how he would explain what the applications of this work were.
“Well,” I said, “there aren’t any.” He said, “Yes, but then we won’t get support
for more research of this kind.” I think that’s kind of dishonest.

This instrumental mindset, while useful in many contexts—and I cannot stress this
enough: Yes of course, the human condition has been immensely improved by modern
medicine and the likes—, also has the potential to narrow our vision. It can lead to a world
where theworth of ideas ismeasured solely by their immediate applicability, where knowledge
is pursued not for the sake of enlightenment but for the sake of control—whether that be
control over nature, over society, or even over ourselves.
In this way, the Enlightenment’s legacy is double-edged. While it has given us the tools to

understand and shape the world in ways that were previously unimaginable, it also carries the
risk of reducing all human thought and endeavor to mere instruments of utility, potentially
leading us down a path where the original humanistic goals of the Enlightenment—liberty,
progress, and the pursuit of truth—are overshadowed by the drive for efficiency and control.
Think of the developments of the information age: personal computers, cellphones, the

internet. What has started in the pursuit of science has ended up within the total com-
putability of human behavior. The incommensurable rigidity of the bureaucratic apparatus
is also one striking example we can name. It is the result of a long tradition of rationalization.
One of my favourite movies, Brazil by Terry Gilliam from 1985, brings this fetishization of
bureaucracy to its radical, fascistoid conclusion.
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Cargo cult science

This is but one of the Dialectics of Enlightenment, the thesis of liberation and the antithesis
of control. To finish off, let us now return back to Feynman and his Cargo Cult Science. His
idea is not too far off from the ones of Horkheimer and Adorno, in the sense that an element
of the mythical is still remanent in the age of science. We have pseudoscience co-opting the
language, the vocabulary of the “proper” sciences, and they even experiment and observe to
test for their hypotheses.
This persistence of the mythical within the scientific age is a crucial point. Feynman’s

concept of Cargo Cult Science is not merely about quackery or obvious pseudosciences;
it is a warning about the dangers that arise when the form of scientific inquiry is imitated
without the substance.
In Cargo Cult Science, the methods of science—experimentation, observation, and even

the use of scientific terminology—are employed, but they are disconnected from the rigorous
skepticism, critical thinking, and openness to disconfirmation that define genuine scientific
inquiry. The result is something that looks like science on the surface, but lacks the integrity
and depth of true scientific understanding.
This is where the connection to Horkheimer and Adorno’s critique becomes particularly

relevant. Just as the Enlightenment’s promise of liberation can be perverted into new forms
of control, so too can the tools and language of science be co-opted in ways that undermine
its true purpose. The rise of pseudoscience is a testament to this dialectical tension. Pseudo-
science often flourishes not in opposition to science, but by mimicking it, by adopting its
outward forms while stripping away its inner rigor.
Take, for example, the spread of misinformation in the digital age. The internet, a product

of Enlightenment ideals about the free exchange of information, has become a breeding
ground for both genuine scientific knowledge and dangerous pseudoscientific ideas. The
same technology that allows us to access vast repositories of knowledge can also lead us
down rabbit holes of conspiracy theories and falsehoods, all cloaked in the guise of scientific
legitimacy.
Moreover, the bureaucratic rationalization we discussed earlier plays a role here as well. In

the rush to measure, quantify, and control every aspect of human life, we may inadvertently
create environments where pseudoscientific ideas can thrive. The pressure to produce results,
the emphasis on measurable outcomes, and the bureaucratic obsession with procedures over
substance can all contribute to a culture where Cargo Cult Science becomes increasingly
prevalent.
Neural networks, machine learning algorithms, and large language models are the most

recent culmination of Enlightenment thinking. However, every time we open the ‘For You
page’ on our silicon-controlled block of glass and plastic, we find ourselves incapacitated
anew.
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wrapping up
So, what does thismean for us as scientists? Itmeanswemust remain vigilant. The Enlighten-
ment gave us powerful tools for understanding theworld, but it also gave us the responsibility
to use those tools wisely. We must constantly remind ourselves of the difference between the
appearance of science and its reality, between the mere performance of scientific procedures
and the genuine pursuit of knowledge.
In conclusion, Feynman’s cautionary tale about Cargo Cult Science is more relevant than

ever. As we navigate the complexities of the modern world, filled with both the promise of
technological advancement and the perils of pseudoscience, we must strive to uphold the
true spirit of the Enlightenment. This involves not only applying rigorous scientific methods
but also engaging in critical self-reflection, ensuring that our pursuit of knowledge remains
aligned with the ideals of reason, progress, and, ultimately, human freedom.
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CORRIGENDA

Since submitting this thesis, a number of orthographic and lexical errors have caught the
author’s eyes. Some of them are merely aesthetically displeasing, some of them actively
hinder reading flow. (None of the errors corrected perturb the presented physics in any way,
shape or form.) Thus, in pursuit of das Schöne und Erhabene in major passages of this text,
we have performed some minor edits to approach it. This chapter is dedicated to listing all
subsequent changes and post-hoc edits with reference to the main text.
In the very likely event of you, the reader, finding more mistakes, please do not hesitate to

write me at etiennespringer@protonmail.com with the location and nature of the error.
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