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Abstract
String nets containing long range entanglement, and their associated models have promising
applications like fault tolerant quantum computation, but are notoriously hard to realize. This
thesis investigates an approach to realize these string nets on lattices with Rydberg atoms on
their edges. A local perturbation is implemented on the lattice to enforce constraints on its
vertices. These constraints energetically punish vertices that do violate the defined structure of
the sting net. A realization of these constraints is a complex of Rydberg atoms. The atoms in
these are in a dipole blockade (Rydberg blockade) with each other. The blockade can be used to
realize logical languages like a NOT logic. This is because two detuned Rydberg atoms want to be
excited, but due to the blockade, only one can be. Such a approach is already used, to realize
a dimer model on the Kagome lattice, which hosts a interesting quantum many-body phase.1
These complexes can realize more logical languages though, like the NOR-gate. Because of this and
the functional completeness of the NOR-logic, all logical languages found in a classical Boolean
algebra can be realized with these complexes. A very precise formalism on how to archive this
has been constructed.2 The Hamiltonian for these complexes is a effective Ising model and the
(possibly) degenerate gapped ground state manifold of these complexes correspond to logical
correlations between some labelled atoms of the complex (called ports), that represent the words
of the realized language. However, constructing arbitrary languages by realizing the gates as
complexes and construct a proper Boolean circuit with them, leads to very large complexes,
impractical for implementation. In the second part of this thesis possible minimal realizations
of complexes realizing all elementary Boolean gates in the PXP model are being constructed,
and are proven to be minimal. Furthermore, the provably minimal string net complexes used to
construct the surface code and Fibonacci anyons and presented. In the subsequent chapter, the
mechanisms used to proof the minimal sizes of the complexes, are presented. In the last chapter,
the PXP approximation is being investigated, by looking at how valid the constructed complexes
are in hindsight of Van der Waals interaction. A quantity is introduced, that measures if, and
how valid these complexes are, when considering changing blockade radii due to the Van der
Walls interaction. We optimize the complexes numerically for this quantity.



Zusammenfassung
Das Konzept der Quanteninformation wird medial und wirtschaftlich immer relevanter. Quanten-
computer nutzten Eigenschaften der Quantenmechanik, um Berechnungen schneller durchzuführen
als herkömmliche Computer. Dabei werden sogenannte Qubits genutzt, das sind quantenmecha-
nische Zwei-Niveau-Systeme, um das Konzept des Bits zu verallgemeinern. Ein Beispiel eines
solchen Systems ist ein Rydberg Atom. Dieses kann entweder angeregt sein oder nicht. Manche
Berechnungen, wie die Faktorisierung großer Zahlen, können damit deutlich schneller durchgeführt
werden. Das bedeutet z.B. konkret, dass ein Algorithmen, welcher Shor’s Algorithmus heißt,
diese Faktorisierung in polynomialer Laufzeit erreicht,3 während herkömmliche Algorithmen auf
klassischen Computern (sub-)exponentielle Laufzeiten haben.3 Da viele kryptografische Prozesse
auf diesem Prinzip beruhen, d.h. dass große Zahlen eben nicht in polynomialer Laufzeit faktorisiert
werden können, hätte ein funktionierenden Quantencomputer großen Einfluss auf die Gesellschaft.
Jedoch sind alle bisherigen Quantencomputer sehr fehleranfällig bezüglich Störungen. Diese kön-
nen sowohl lokal sein, wie eine falsche Konfiguration der Qubits, als auch ’global’, wie dissipative,
also z.B. thermische Störungen. Dies führt zu einer geringen Fidelität der Quantenzustände,
und damit zu Fehlern der Berechnungen. Eine Möglichkeit, lokale Fehler zu unterbinden ist es,
Quantencomputer mit sogenannten String Netzen zu realisieren. In diesen Vielteilchen-Systemen
werden auf die Kanten eines Gitters Rydberg Atome platziert. Angeregte Kanten (Kanten
deren Atome angeregt sind) können Muster bilden. Durch Regeln, wie viele angeregte Kanten
an jeden Gitter-Knoten (engl. vertex) angrenzen dürfen, entstehen z.B. Dimer Modelle, oder
geschlossene Schleifen von angeregten Kanten, wie z.B. beim ’Toric Code’, einem Modell, welches
abelsche Anyonen als Quasi-Teilchen in angeregten Zuständen besitzt. Das Verletzen dieser
Regeln erfordert Energie, daher sind die (entarteten) energetischen Grundzustände der String
Netze durch Überlagerungen all solcher Schleifen Konfigurationen gegeben.
In dieser Arbeit wird eine Möglichkeit gesucht, diese String Netze auf einem Gitter zu realisieren,
indem man jedem Knoten energetische Constraints vorgibt. Diese bestrafen das Verletzen dieser
Regeln energetisch und sorgen so für die Erhaltung des durch diese Regeln definierten String Net-
zes an diesem Knoten. Diese Constraints basieren auf Anordnungen von Rydberg Atomen. Zwei
Rydberg Atome unterliegen einer gegenseitigen Van der Waals Wechselwirkung. In dieser Arbeit
wird diese Wechselwirkung durch ein PXP Model approximiert. In diesem ist die Wechselwirkung
unendlich, wenn zwei angeregte Atome einen bestimmten Blockade-Abstand rB unterschreiten,
ansonsten ist sie Null. Mittels solcher Anordnungen können logische Relationen zwischen diesen
Atomen gebildet werden. Sind z.B. zwei Atome näher zusammen als rB, kann nur eines von
beiden angeregt sein, sonst wäre die Energie des Systems unendlich. Dies entspricht einer NOT
Relation zwischen den Zuständen beider Atome. Eine Anordnung von Rydberg Atomen, welche
eine derartige logische Relation zwischen einer Auswahl ihrer Atome aufweist, heißt (funktionaler)
Rydberg Komplex.2 Da auch alle anderen Logiken elementarer Bauteile mit Rydberg Komplexen
realisiert werden können, kann man eine Vorschrift herleiten und beweisen, wie man aus kleineren
Komplexen, größere Schaltkreise zusammenbaut.2 Diese Mechanik bildet den Startpunkt dieser
Arbeit. Diese Schaltungen bestehen aus dutzenden Atomen. Dies ist sehr fehleranfällig. Daher
werden im zweiten Kapitel kleinstmögliche Komplexe angegeben, welche alle logischen Gatter
und ein ’Crossing’, also das planare Kreuzen zweier Leitungen’ realisieren. Alle Komplexe der
logischen Gatter haben maximal sieben Atome (das Crossing hat zehn), sodass eine ’brute-force’
Computersuche durchgeführt wurde um diese zu finden. Es wird auch die Nichteindeutigkeit
dieser Komplexe gezeigt. Anschließend werden Gitter konstruiert, welche energetisch die String
Netze erfüllen. Die Konstruktionen basieren auf der ’Kachelung’ minimaler Komplexe, welche die
gewünschen String Netz Regeln auf jedem Knoten des Gitters gewährleisten. Die angegebenen
Konstruktionen werden dabei sowohl auf Quadrat- also auch auf Hexaonal- (’honeycomb-’) Gittern
durchgeführt, wobei aus dem zweiten Fall der erste folgt. Auch hier werden meherere Optionen
gezeigt. Im vierten Kapitel wird ein allgemeines analytisches Verfahren gezeigt, mit welchem
man kleinstmögliche Komplexe (oder eine Untergrenze für die Atomanzahl dieser) findet. Des
Weiteren werden Eingenschaften logischer Sprachen und deren Einfluss auf realisierende Komplexe
angegeben. Es wird die Miminalität aller angegebener Komplexe gezeigt. Im letzten Abschnitt
wird der Übergang zur Van der Waals Wechselwirkung untersucht, indem die Komplexe optimiert
werden, sodass Atome, welche im PXP Modell miteinander interagieren, möglichst nah sind und
alle anderen möglichst fern. Abschließend werden kurz Komplexe komplett im Van der Waals
Model betrachtet.
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Chapter 1

Basic Theory

1.1 Topological Phases

1.1.1 Topological Phases as an Extension of the Landau Paradigm

The Landau paradigm introduces an approach to deal with classical and quantum phases, by
classifying the occurring phases with a local ordering parameter. This parameter, or its derivatives
are not continuous at the phase transition. An example of this phenomenon would be the phase
transition between a ferromagnetic and a paramagnetic phase in a traverse Ising model. The order
parameter is a given by local correlations between close spins. Either these are aligned in one
defined direction, which is the ferromagnetic phase, or they are unoriented in this direction, which
defines the paramagnetic phase. So the symmetry of the system defines its phase. The magnetic
phase transition can also be approached classically. Note, that this approach to phases is valid
with or without spontaneous symmetry breaking. For more details on local order parameters and
the mentioned models, see section 6.1.

However the Landau paradigm breaks down, when the intrinsic non locality of quantum me-
chanics comes into play - entanglement. Taking that into account, the definition of a phase
needs to be modified, because entanglement patterns can occur. These patterns may evolve
around the topology of the sample (lattice) they live on, or around other topological properties
like chirality, or winding numbers, which only change at phase transitions. So new phases
can occur, which are resistant against local perturbations as these do not affect the (global)
topology. Such phases are thus called topological phases.4 These topological invariants only
change at phase transitions, thus the phases of these models are now classified by these parameters.

Famous topological phases like the quantum hall effect or the Haldane model introduce such
topological invariants like the chern number, (that is based on the topological concept of holon-
omy). However the phases only show short range entanglement patterns, they do not realize long
range entanglement patterns. Examples for phases that do show such long range patterns are the
fractional quantum hall effect, or Z2 topological order. Some of these phases can contain excited
states that show abelian (fractional) or non-abelian anyonic statistics. Examples of such phases
are the toric code, or Fibonacci anyons, which are discussed in the following sections sections 1.2,
1.2.2 and 1.3. A toy model for topological order is the toric code, that realizes a Z2 gauge theory.

1.2 Toric Code

In this section, we give a brief overview of the toric code mode, its ground state properties, and
its anyonic excitations.

1.2.1 Basic Construction of the Model and the Protected Subspace

A key example, and the toy model for quantum stabilizer codes and topological quantum com-
puting is the toric code introduced by Kitaev.5 The following two sections will closely follow his
paper to sketch the basic properties of it. This section uses the notation of.4
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CHAPTER 1. BASIC THEORY

Consider a k × k Lattice on a torus with spins (or Rydberg atoms i.e. a two level system)
on its edges. An example is depicted in fig. 1.1. One can use a planar lattice with periodic
boundary conditions instead of a torus. In this case, models like the toric code are also called a
surface code.6 So there are (in the square case) 2k2 spins. The star operator As of a star s and
the plaquette operator Bp of a plaquette p are defined as:

As =
∏
j∈s

σx
j , Bp =

∏
j∈p

σz
j . (1.1)

These operators, which are also called stabilizers, thus act on all spins of a star s or plaquette p
such as the ones shown in fig. 1.1. All of the star and plaquette operators commute with each
other because a star and a plaquette share either zero or two edges, so in the two subspaces
{σx, σz} = 0 gives a (−1) and the two minuses cancel (trivially, two star (or plaquette) operators
commute because on shared edges the Pauli matrix commutes with itself). Further, because
σiσi = 1 it follows that ∏

s

As =
∏
p

Bp = 1 . (1.2)

The Hilbert space of the system on which the operators act is H = C2⊗2k2

. The protected or
invariant subspace PS ⊂ H is defined as:

PS = {|ξ⟩ ∈ H |As |ξ⟩ = |ξ⟩ , Bp |ξ⟩ = |ξ⟩ ∀s, p} . (1.3)

The goal is to encode qubits in this subspace, so at first we calculate the dimension of PS.
Looking at eq. (1.2), we see that there are m = 2k2 − 2 linear independent Operators that create
the space G of Operators, that commute with all As and Bp. Possible generators of G are the
string operators

Z[C] =
∏
j∈C

σz, X[C ′] =
∏
j∈C′

σx , (1.4)

Where C and C ′ are the contractible closed loops (dual loops) on the lattice (dual lattice) depicted
in fig. 1.2. These operators do commute with the stabilizers, because they are products of them.
A (dual-) loops is being created by sequencing (stars) plaquettes and using that (σx)2 = (σz)2 = 1.
If these operators do not act on a loop rather than a open string S, they do not commute with
the stabilizers, because a string has two endpoints, depicted in fig. fig. 1.2 (grey square markings).
On these endpoints, a star (plaquette) has only one edge in common with the corresponding
string. So we only have one site where a σx and a σz acts, and because they anticommute, the
open string operators anticommute with the stabilizers. This implies, that

As

∏
j∈S

σz |ξ⟩ = −
∏
j∈S

σzAs |ξ⟩ = −
∏
j∈S

σz |ξ⟩ (1.5)

and for the dual strings the same holds . So the open strings leave PS, and thus are not in G ,
and not in the algebra L(PS) ≃ G /I of linear operators from PS into itself.
However for closed loops, there is another class of (dual-) loops due to the fundamental group of
the torus T (at any point p) being π1(T, p) = Z×Z. The non contractible (dual-) loops commute
only with the (plaquette) star operator. So they are not in G . However they span the Algebra
L(PS), because they are the only nontrivial operators left commuting with the stabilizers (the
open strings leave the protected subspace) and the stabilizers act trivially on PS and are divided
out. There are four different non contractible loop operators on this space, we call them

Z[C ′
z] = Z1, Z[Cz] = Z2, X[Cx] = X1 X[C ′

x] = X2 . (1.6)

Because the two X operators share no lattice atom, and a non parallel loop/ dual loop pair share
one (red atom in fig. 1.2 ), they obey the Pauli Algebra

[Zi, Zj ] = [Xi, Xj ] = [Xi, Zj ] = 0, {Xi, Zi} = 0 . (1.7)

This implies that L(PS) ≃ {σx
1 , σ

x
2 , σ

z
1 , σ

z
2} and PS is 4-dimensional and PS ≃ C2 ⊗ C2, the

space of two qubits. As stated above, the non contractible (dual-) loops commute with either
a (plaquette) star and with the other non contractible loop of the same type. So they have

10



1.2. TORIC CODE

a common eigenbasis in which they can be diagonalized. Labelling these eigenstates by their
eigenvalues of the Z operators, which are ±1 because they consist of Pauli matrices, one gets a
representation of PS which is:

PS = {|ν1, ν2⟩ | ν1, ν2 ∈ {−1,+1}} . (1.8)

Due to the Pauli-Algebra, it holds

Zj |ν1, ν2⟩ = νj |ν1, ν2⟩ , X1 |ν1, ν2⟩ = |−ν1, ν2⟩ , X2 |ν1, ν2⟩ = |ν1,−ν2⟩ , (1.9)

which again is the same as σx and σz acting on two spin- 12 particles. So the non trivial X (X ′)
and Z (Z ′) loop operators can realize quantum gates on these qubits namely σx and σz.

All the calculations above are not restricted to a square lattice, but can be done with arbi-
trary lattices as long as topological boundaries can be chosen properly i.e. the lattice forms a
fundamental polygon of a topological space with a genus. With the calculations above the role of
the genus becomes clear. there are (up to winding numbers) two ways to form non contractible
loops around a torus and because all compact connected (orientable) closed surfaces are classified
by their genus, they are all multiple tori glued together and for each hole we can find four loops to
construct a Pauli Algebra thus getting 2 qubits or 4 dimensions per hole. For example the kagome
lattice can be used to enforce boundary conditions to form a double torus, so dimPS = 42 = 8,
so 4 qubits can be stored.

In the last step, one can construct a Hamiltonian of the system, which has exactly PS as
a subspace and the open strings as excitations. It is:

H = −JA
∑
s∈S

As − JB
∑
p∈P

Bp , (1.10)

where S (P) is the set of ll stars (plaquettes) and JA, JB > 0. Notice that due to the periodic
boundary conditions, two parallel loops can be created with a product of plaquette- (star-)
operators. The 4 degenerate ground states of this Hamiltonian are equal weight superpositions
of all closed (contractible) loop configurations with either none or one X-type (i.e. X or X ′) or
a Z− type non contractible loop. Note, that for each configuration of contractible loops (dual
loops), an even number of atoms on each plaquette (star) are excited. This is called Gauss’s law
on a Z2 gauge-theory on a charge free background.

P

S

Figure 1.1: A 5× 5 square lattice. A plaquette (blue) and a star (yellow) are depicted. The star
is a plaquette on the dual lattice and vice versa.
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CHAPTER 1. BASIC THEORY

Figure 1.2: A piece of a square lattice hosting a toric code model. Trivial closed contractible loops
and quasi particle excitations (left) and closed non contractible loops of the other homotopy class
(right). For each loop (dual loop), an even number of atoms on each plaquette (star) are excited.

Before we look at the excitations of this gapped Hamiltonian, we observe, that the system is
stable under local perturbations. These are of the form

V = −h
∑
j

σj −
∑
j<p

Jjp(σj, σp) . (1.11)

where only a small number (two) of local σ are contributing to the each term. Using time inde-
pendent perturbation theory of the gapped system one gets that the perturbation is proportional
to ⟨ξ|V m |η⟩ or ⟨ξ|V m |ξ⟩ − ⟨η|V m |η⟩ for |ξ⟩ , |η⟩ ∈ PS. These vanish for closed loops (again
σ2 = 1) unless it is a non contractible loop. This happens first in order k

2 . However the energy
splitting in that order is ∝ exp(−ak), where a is a positive constant. So the splitting is small
compared to the system gap if the correct parameters are chosen. Notice, that this potential
looks like the Hamiltonian in eq. (1.38), (where for our model, σi are exchanged with n = |1⟩ ⟨1|i)
and indeed, in section 2.4 we energetically enforce string nets with such perturbations.

1.2.2 Anyonic Excitations
The ground states of the Hamiltonian in eq. (1.10) are the ones in PS, their energy is −

∑
s JA −∑

p JB. Low excitations however are the open strings. In them at minimum only 2 signs are
flipped, so the gap of the Hamiltonian’s spectrum is min{2JA, 2JB} > 0. These elementary low
excitations crated by

Sz(S) =
∏
j∈S

σz, Sx(S′) =
∏
j∈S′

σx (1.12)

as stated in eq. 1.5. The endpoints of a Sz(S) live on the vertices of the lattice and are called
electric charges e, the endpoints of the dual strings Sx(S′) live inside the plaquettes (on the vertices
of the dual lattice) and are called magnetic vertices m. Because these low energy excitations are
exactly these open strings, it becomes clear that each of these quasi particles can only be generated
in pairs of 2 (two e or two m particles). Lets look at these states, i.e |ψm(S′)⟩ = Sx(S′) |ξ⟩ and
|ψe(S)⟩ = Sz(S) |ξ⟩. What happens if one exchanges two of those quasi particles with each other?
Start with a m particle and create a e particle |ψ⟩ = Sz(S) |ψx(S

′)⟩. Then loop the m particle
around the e particle, one gets

|ψfinal⟩ = Sx(S′)Sz(S) |ψm(S′)⟩ = −Sz(S)Sx(S′) |ψm(S′)⟩ = −Sz(S) |ψm(S′)⟩ = |ψinitial⟩
(1.13)

where we used Sx(S′)2 = 1 because the same Pauli matrix acts on the each state twice. So
the two quasi particles are not interchangeable, the system gets a −1 when two quasi particles

12



1.3. FIBONACCI MODEL

of different types are exchanged i.e. moved around each other. This means, they are abelian
anyons. Pairs of e or m particles however can be exchanged. These particles also are their own
antiparticles as (σz)2 = (σx)2 = 1 (if one traces one particle back to the other or one creates a
loop doing so, one leaves a A or B type pattern i.e. a closed loop). So their fusion rules become:

e× e = 1 , m×m = 1 , (1.14)
(1.15)

e×m = m× e = ϵ , (1.16)

where ϵ is the quasi particle that gets created when a m type particle occupies a plaquette while
in the corner of this plaquette a e type particle occupies the lattice site. Its fusion rules can be
derived from them of the other two:

m× ϵ = e , e× ϵ = m, (1.17)
(1.18)

f × f = 1 , f ∈ {e,m} (1.19)

These rules again show that the anyons are abelian. These quasi particles are deeply connected
to the topology of the model and thus to the structure of the ground state manifold. In fact the
degeneracy of the ground state manifold due to the topology follows from the existence of these
anyons: Lets create a pair of e type particles. One can move them around the lattice with local
perturbations i.e. apply the Pauli matrices or string operators of the same kind to the endpoints
of this string. So the following can be done: Start from a ground state |ξ⟩ in PS. Create a pair
of e particles. Move one around the torus with Z (or Z ′, where the starting point of the particle
is removed from the product) and then annihilate the pair The resulting state is Z |ξ⟩ (Z ′ |ξ⟩),
which is again a ground state in PS, as no particle excitations are present. So the operations of
the Z and X type operators on PS can be explained by operations on these anyons. If a pair of e
and a pair of m particles is generated, one can apply the following operator to the resulting state:∏

j∈Cz
j ̸=i

σz
j

∏
j∈C′

x

j ̸=i′

σx
j

∏
j∈Cz
j ̸=i

σz
j

∏
j∈C′

x

j ̸=i′

σx
j |e′i, e′k,mi,mk⟩ (1.20)

where i and i′ (k and k′) denote the endpoints of the string operators i.e. the lattice sites adjacent
to the vertex/plaquette of the particle. This operator propagates the e type particle around
the torus along Cx, then the m type particle along C ′

z, then it traces the e type particle back
(moving it the same way backwards) and finally the m type particle is being traced back. Using
the commutation relations of the Pauli matrices again it holds∏

j∈C′
z

j ̸=i

σz
j

∏
j∈Cx

j ̸=i′

σx
j

∏
j∈C′

z
j ̸=i

σz
j

∏
j∈Cx

j ̸=i′

σx
j |e′i, e′k,mi,mk⟩ = − |e′i, e′k,mi,mk⟩ (1.21)

on the other hand it holds: ∏
j∈C′

z
j ̸=i

σz
j

∏
j∈Cx

j ̸=i′

σx
j

∏
j∈C′

z
j ̸=i

σz
j

∏
j∈Cx

j ̸=i′

σx
j |e′i, e′k,mi,mk⟩ (1.22)

= Z−1
1 X−1

1 Z1X1 |e′i, e′k,mi,mk⟩ = Z1X1Z1X1 |e′i, e′k,mi,mk⟩ (1.23)

As Z−1 = Z and X−1 = X because (σi)2 = 1. The same can be done for X2 and Z2, while
nothing happens for mixed combinations. Thus the commutation relations of those operators and
the structure of ground state manifold follow from the existence of anyons. As mentioned above,
the these operations can be viewed as quantum gates acting on qubits. However abelian anyons
can not be used for universal quantum computing so the model needs to be generalized to non
abelian anyons.

1.3 Fibonacci Model
This section follows section IV and VI of Levin’s paper.7 The Fibonacci anyons are usually
mentioned in the context of chern insulators. However a string-net condensate hosting Fibonacci
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CHAPTER 1. BASIC THEORY

anyons on a lattice like the toric code can be constructed, in fact it generalizes this model of a Z2

gauge theory.
While the toric code is defined on a square lattice, the Fibonacci anyons are constructed on

the honeycomb lattice, where again the atoms (spins) sit on the edges of the lattice. This thesis
follows this approach although neither the Fibonacci model, nor the constructions of the surface
codes in this thesis are bound to one lattice type. The model consists of two particle types, the
trivial particle (i.e. the vacuum) 1 and the τ type particle, called a tauon. The fusion rules are8

1× τ = τ × 1 = τ, (1.24)
(1.25)

τ × τ = 1⊕ τ. (1.26)

This implies, that the anyons are non abelian. To describe the string net, and its excitations, we
thus need the F -symbols and quantum dimensions d of the tauons.
It is F abc

d = 1 if one index is 1. Solving the pentagon equations, so it follows that only one
F -symbol is nontrivial, which is8

F τττ
τ = (F τττ

τ )† =

(
φ−1 φ− 1

2

φ− 1
2 φ−1

)
, (1.27)

where φ = (1 +
√
5)/2, the golden ratio. It is also worth mentioning, that the ground

state manifold of a system with n separated tauons in the plane is Fn fold degenerate, where
Fn+1 = Fn + Fn−1 with F0 = 0 and F1 = 1. These numbers can be written as

Fn =
φn − (−φ)−n

√
5

., (1.28)

and are called the Fibonacci sequence, which gives these anyons their name. Thus the degeneracy
can be written in terms of the golden ratio as well (also note that limn→

Fn+1

Fn
= φ).

The quantum dimension d of the tauons is φ, so the to get a tauon after two tauons fusing is
p = 1

d = 1
φ . The probability to get 1 is thus 1− p = 1

φ2 .8

In the following we change the notation of the indices of the F abc
d symbols, such that i ∈ {0, 1}

for every index i. The map is {
1 7→ 0

τ 7→ 1
. (1.29)

Again, one can define star and plaquette operators acting on stars and plaquettes which are
depicted in fig. 1.4.

The star operator is defined as
As = δijk, (1.30)

where δijk = 1 if the configuration of the edges is allowed (that is the spins on either none, two or
three edges are excited, and δijk = 0 otherwise. So this operator is diagonal. This is similar to
the toric code where the star operator also is diagonal and acts as 1 on a allowed configuration.
However due to the fusion rules, more states are allowed, strings can now fuse at the star, i.e.
three lines can meet.

As fig. 1.4 shows, the plaquette operators change. They act on the plaquette as well es
the edges adjacent to it. It is now not just a product of Pauli matrices which act as ±1 on a
plaquette. Now it is defined with the F - symbols. As it does not change the states at a, .., f
from fig. 1.4, this 212× 212 matrix can be block diagonalized with 26 blocks of size 26 × 26. Let
|a, b, c, d, e, f ; g, h, i, j, k, l⟩ denote the plaquette. Then the Bp operator is given as a0B0

p + a1B
1
p

with

Bs
p |a, b, c, d, e, f ; g, h, i, j, k, l⟩ =

∑
g′,h′,i′,j′,k′,l′

Bs
p
g′,h′,i′,j′,k′,l′

g,h,i,j,k,l (abcdef) |a, b, c, d, e, f ; g′, h′, i′, j′, k′, l′⟩ ,

(1.31)
where s ∈ {0, 1} and

Bp
g′,h′,i′,j′,k′,l′

g,h,i,j,k,l = Fs
alg
g′l′Fs

bgh
h′g′Fs

chi
i′h′Fs

dij
j′i′Fs

ejk
k′j′Fs

fkl
l′k′ . (1.32)
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1.4. THE RYDBERG BLOCKADE AND THE PXP MODEL
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Figure 1.3: The edges of a star (blue) and a plaquette (red) act on. The edges are labelled with
variables, which are 0 if the edge is not excited and 1 if it is (The spins (or Rydberg atoms)
sitting on the edges are omitted here). The key difference is the plaquette which now includes
edges adjacent to the original honeycomb plaquette and the plaquette operators don’t change
these spins, but their action on the remaining ones depend on these spins.

It is a0 = 1 + φ and a1 = (1 + φ)/φ. With these operators at hand, on can again write down the
Hamiltonian similar to eq. (1.10):

H = −
∑
s

As −
∑
p

Bp. (1.33)

Again the ground state is a spin liquid consistent of a now weighted superposition of closed loops
as the operators As and BP commute with the Hamiltonian. These loops can however fuse now.

The excited states are again open strings as depicted in fig. 1.4, however these strings can fuse
again. The properties of the ground state manifold again follow from the properties of the anyons.
The degeneracy of the string nets the honeycomb lattice with PBC is (1 + φ2)M + (1 + φ−2)M

where M is the number of unit cells.9,10 Adding quantum fluctuations to them by applying the
plaquette operators theoretically realizes the Fibonacci anyons.

This model hosts non abelian anyons, thus here the actions on states in the ground state
manifold can describe universal quantum computing. The quasi particles are given by the end-
points of open weighted strings, see fig. 1.4.

As we have seen in the last two sections, these phases and their anyonic behavior are closely
related to the loop structure at the vertices of the lattice (and co-lattice). For the toric code only
an even number of spins of a star can be excited, and for the Fibonacci anyons also three edges
can be excited to allow for fusion.

In the following sections, we explain, how Rydberg atoms can be arranged, to enforce con-
strains on a lattice, that may be able to realize such string nets.

1.4 The Rydberg Blockade and the PXP Model
Rydberg atoms can be modeled as a two level system, with the excited state |1⟩ and the ground
state |0⟩.11 Due to the strong dipole moment of the excited state (it goes with n2), a system of
two close non overlapping Rydberg atoms can be modeled by the Hamiltonian:12,13

H =
Ω

2
(σx

1 + σx
2 ) +

C6

r6
n1n2 (1.34)

Here σx
i is the x-Pauli matrix on the i-th Atom and ni = (|1⟩ ⟨1|)i. The first part is a Rabi

oscillation with two non interacting Rydberg atoms. Ω is the corresponding Rabi-Frequency.
The second term is a Van der Waals potential, which has its source in the polarization of the
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Figure 1.4: A closed loop created by a product of weighted Bp operators and a general string
created by a generalized string operator. One can see that now the closed loops can fuse like the
quasiparticles (i.e. the open strings). The lighter marked edges are also acted upon. Their states
remain unchanged but the action of the operators on the other edges depend upon them.

charged cloud, which is the excited Rydberg atom. So the atoms are decoupled Rabi Oscillators
unless they are in the state |1⟩ ⊗ |1⟩. Two Regimes arise. The weak interacting regime is given
by |C6|

R6 << Ω. Here the perturbation is small and the Rabi Oscillations are hardly modified. In
the strong interacting regime it is |C6|

R6 >> Ω. The system is perturbed and the |1⟩ ⊗ |1⟩ is out
of resonance. It can not be reached by the Rabi oscillation, and dependent of the distance, the
offset can be arbitrarily large, so it can be decoupled from the dynamics. This situation called
’Rydberg blockade’.

Figure 1.5: Dynamics of the Rydberg blockade. The Hamiltonian ineq. (1.34) without the Van der
Waals potential describes a three level system, where H |gg⟩ = H |rr⟩ =

√
2
2 Ω |+⟩. However due

to the blockade the system is asymmetric and H |rr⟩ gets shifted by a ∝ 1
r6 potential. At some

rB the Rabi frequency equals the van der Waals interaction, where we leave the non interacting
regime and the Van der Waals interactions dominates i.e. the blockade kicks in.

Due to the strong decrease of the Van der Waals interaction with 1
r6 , a simplification to the

described model can be achieved by replacing this potential with the infinite Wall potential

VPXP(r) =

{
0 r ≤ rB

∞ r ≥ rB
(1.35)

where rB is called the blockade radius. This is the PXP model. So if now two neighboring
atoms are excited, the energy is infinite (relative to the allowed sates where no two atoms are in
blockade). One says, they violate the blockade. If many Rydberg atoms in blockade with each
other are driven by Rabi Oscillations Ω, interesting many-body quantum phases with long range
topological order can occur.1 This motivates a structured approach to the problem of creating
distinguished Rydberg arrays, which have interesting low energy correlations between their atoms.
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1.5. FUNCTIONAL COMPLETENESS OF RYDBERG COMPLEXES

1.5 Functional Completeness of Rydberg Complexes
In the following section, we define, how Rydberg atoms can be arranged, to realize logical
structures. Such Rydberg arrays have already been used for geometric programming.14 In this
section, and the remaining thesis, we use them, to realize structures which can realize string nets,
that can potentially host topological quantum phases like the toric code. This section follows
closely the first six chapters of the paper, to which this thesis contributes the other chapters.2

1.5.1 The physical Setup
Consider a planar arrangement of N Rydberg atoms. Each atom is assigned an index i ∈ V =
{1, ..., N}, and is placed at the position ri ∈ R2. Each atom is a two level system |ni⟩, where |0⟩
is the ground state, whereas |1⟩ is the excited Rydberg state. Each atom is coupled to external
lasers, with site dependent Rabi frequency Ωi and detunings ∆i. The Configuration of this
arrangement of Rydberg atoms thus is C = {ri,∆i,Ωi}i∈V , which we call a (Rydberg) structure.
The position data {ri}i∈V is called the geometry of the structure C. The Hamiltonian describing
this arrangement is given by

H[C] =
∑
i

(
Ω

2
σx
i −∆ini) +

∑
i<j

V (|ri − rj |)ninj . (1.36)

Here ni = |1⟩ ⟨1|i. The Hilbert space of the system is H = (C2)⊗N . In the general case, the
interaction between the atoms is the Van der Waals interaction V (|ri − rj |) = C

r6 . However in
the remainder of this thesis (except the last chapter), the interaction is being described with
the PXP-model, that is given by eq. (1.35) so all states that violate the Rydberg blockade can
be projected out. A state violates the (Rydberg blockade), when there are (at least) two atoms
at positions ri and rj such that |ri − rj | < rB, and ni = nj = 1, so both are excited. Then
V (|ri − rj |) = ∞ due to eq. (1.35).

Instead of writing the Hamiltonian in the form of eq. (1.36), one can use the projector P ,
that projects onto the low energy subspace (the subspace of states, that do not violate the
blockade), to write it as:

H[C] = P
∑
i

(
Ω

2
σx
i −∆ini)P. (1.37)

If one restricts the states the Hamiltonian is applied to, to the projected low energy subspace,
the P become relevant only in the first term, which is Pσx

i P . The the quantum fluctuations can
perturb the system out of the low energy subspace, so P needs to be applied. Here the name of
the model originates.

For the remaining thesis we look at the limit Ω → 0, so there are no quantum fluctuations
present and a structure is given only by C = {ri,∆i}i∈V . The Hamiltonian then simplifies to

H[C] = −
∑
i

∆ini +
∑
i<j

VPXP(|ri − rj |)ninj . (1.38)

which after projecting out the high energy states (which violate the blockade), becomes diagonal.
The prerequisites to realize such structures are already in place.15 In the PXP model the
interaction can be approximated by a kinematic constraint, which is completely encoded by a
blockade graph B = (V,E), whose vertices are the atoms, and its edges {i, j} between atoms i and
j indicate, that the two atoms are in blockade with each other, that is |ri − rj | < rB . An abstract
graph that realizes this, is called a unit disk graph,16 where here rB is the ’unit’. Obviously not
every graph has this property. If there exists a geometry GC , that realizes C as blockade graph,
this geometry is a unit disk embedding of this blockade graph (with the ’unit’ rB).

1.5.2 Definition of the Problem
In the next sections, a lot of consecutive definitions will be made, which will seem very technical.
In fig. 1.7 a graphical overview of the general problem is shown, and how these definitions are
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Figure 1.6: Setting & Objective.2 A structure C = (ri,∆i)i∈V of atoms at positions ri ∈ R2 and
site dependent detunings ∆i. The system is described by a Hamiltonian H(C). with the PXP
potential. The blockade radius is rB . The spectrum of the Hamiltonian gives rise to a low energy
eigenspace H0 < H of energy width δE which is gapped out from the high energy states by a gap
∆E. Finding small structures C so that H0 ≃ HT for a given target Hilbert space is the main
objective of this thesis.

related to it. The spectrum of the Hamiltonian defined in eq. (1.38) splits H into a low energy
eigenspace H0 < H of energy width δE, which is energetically separated by the energy gap ∆E
from the excited states. The main goal of this thesis is to find structures C such that their low
energy eigenspace H0 is isomorphic to a certain target Hilbert space HT , whose properties are
defined in the next part of this section.

Formal languages. A word (x1x2...xn) = x1x2...xn ∈ F∗
22 of length n is a finite string of

letters xi ∈ F22 (F∗
22 is the space of all such words). A language is a set of words. If all words

have the same length, the language is called uniform. We will only look at uniform languages
in this thesis. Examples of uniform languages are the class of languages generated by Boolean
functions ω : Fn−1

2 → F2. The language then is L[ω] := {x1...xn−1y | y = ω(x1...xn−1) ∈ F2} ∈ F∗
2.

Such a language has n− 1 words of length n. For n = 2, these languages thus have 4 words of
length 3. They are exactly the truth tables of the logic gates, depicted in fig. 2.1.

A important class of languages we investigate in section 2.4, are tessellated languages on a
lattice. The concept is not restricted to a lattice type but in the following a finite square lattice
L with periodic boundary conditions is used as an example, to illustrate the construction of
such a language. The setup is depicted in fig. 1.8. Place K qubits on each edge e ∈ E(L). A
bit configuration x ∈ XL ⊂ FK|E(L)|

2 ⊂ F∗
2 assigns every bit on the lattice a Boolean value xie

(i ∈ {1, ...,K}). These configurations can be arbitrary generated by all the qubits on the lattice.
However we want to look at a language that is characterized by local properties (like the string
nets in section 2.4). For each site s ∈ V (L) let the bit-projector us(x) = (x1e1 ...x

K
e4) be the function

that singles out the (ordered) set of the g = 4K bits of the four edges ei adjacent to s. Let
f : Fg

2 → F2 be an arbitrary Boolean function on g qubits. This language is called the (local)
check function. With this, a language on every qubit on the lattice can be built. The tessellated
language of bit patterns on L is generated by f and is defined as

LL[f ] := {x ∈ XL | ∀s ∈ V (L) : f(us(x)) = 1} . (1.39)

LL[f ] is thus the language that contains bit pattern on L, that satisfy local constraints imposed
on them by f .

Target Hilbert spaces. With the formal definition of languages at hand , we can now
define the properties of the target Hilbert spaces HT . Every formal uniform language naturally
gives rise to a linear subspace of n qubits. It is defined as

H(L) = span({|x⟩ |x ∈ L}) ⊂ (C2)⊗n . (1.40)
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Figure 1.7: Complete set of logic primitives.2 (a) (i) A Rydberg complex. Each port has a label.
Every atoms has a detuning ∆. Some atoms are within a blockade radius (grey circles) of each
other. They are then in blockade with each other (black line). (ii) The ground state manifold
is given by states, where some atoms are excited (on). In these states the ports satisfy certain
logical relations. In this example the relation is Q = Ā, the NOT logic (iii). This ’logics’ are given
by languages, whose words describe the states of the ports i.e. the word 10 corresponds to the
state where A is excited, and B is not. (b) Another example of a Rydberg complex (i). This
complex requires two ancillas which have no label (but detunings). It realizes the NOR language
(ii). given by a truth table (iii), which can be defined with a Boolean function Q = f(A,B). (c)
Complexes can be amalgamated. Here NOT complex gets amalgamated with a OR complex, by
identifying the output of the NOR complex with one of the ports of the NOT complex. The resulting
ground state manifold (ii) realizes the language of the OR logic given by Q = ¯f(A,B) (iii). The
old port is a ancilla in the new complex.

For example consider the ’copy’ language: LCPY = {000, 111}. The associated Hilbert space
is H(LCPY) = span{|000⟩ , |111⟩}. A target Hilbert space is then a Hilbert space defined by
eq. (1.40) with a target language fT , so HT := H(LT), where fT contains a logical structure (to
be realized with a structure C). If the language is a tessellated one, the tessellated target Hilbert
space is defined by the check function as

HT = HL(fT ) := H(LL[fT ]) . (1.41)

The tessellated language has a spatial structure (bits on the edges of L). The tessellated target
Hilbert space inherits that structure as this Hilbert space is the space of the system of K(( EL))
qubits, where K qubits sit on every edge on L. As an example look at the H||Z2 of the even Z2

gauge theory, which will become important in section 2.4. It is the subspace of a Hilbert space on
a square lattice (K = 1, g = 4). HZ2

is spanned by the product states in which the qubits in the
state |1⟩ form closed loops. This space can be realized as a tessellated target Hilbert space with
the check function

fZ2
(x1, x2, x3, x4) = 1⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 , (1.42)
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Figure 1.8: Tessellated language & target Hilbert space.2 Emanating from a lattice site s of a
lattice L are edges ei (4 on a square lattice). On each edge K bits sit. The bit projector us
selects the g = 4K bits adjacent to the site s, on which a check function fT : Fg

2 → F2 can be
applied. If the bits are replaced by qubits, the tessellated Hilbert space is the subspace of the
Hilbert space of those K bits, which is spanned by product states |x⟩ whose qubits form patterns
encoded by words x ∈ LL[fT ]. The tessellated target Hilbert space HT = HfT is the subspace of
qubits, whose patterns locally satisfy the constraints imposed by the Boolean check function fT .

where ⊕ denotes the addition in Z2 (addition modulo 2). The bit-projector is given as

us


 = (x1e1 , x

1
e2 , x

1
e3 , x

1
e4) .

2 (1.43)

The check function in eq. (1.42) can be viewed as Gauss’ law over a charge free background,
because strings of |1⟩ bits can not end or emerge from a site s. This is exactly the string net
emerging at the toric code. More general string nets (like the one discussed in section 1.3) can be
realized as tessellated target spaces as well.

1.5.3 Rydberg Complexes

In this section the connection between structure of Rydberg atoms and the concept of Languages
and check functions is established. This is done by introducing Rydberg complexes, which
generalize the concept of Rydberg structures. First realize that not all target Hilbert spaces
with languages of length n can be realized as ground state manifolds of structures with n
atoms. For example the CPY language LCPY = {000, 111}, whose target Hilbert space is HT =
span{|000⟩ , |111⟩} can not be realized with a 3 atoms structure CCPY because the state |111⟩ ∈
H0[CCPY]. This implies, that no atoms are in blockade with each other, so |111⟩ and |000⟩ can
not be the only two states in H0[CCPY]. This fact is true for many languages. One needs a
larger structures with N > n to realize this check function. We formalize this concept. Let C
be a structure of N Rydberg atoms and let L ⊂ Fn

2 be a uniform language of length n. Let
L = {A,B, . . . } be a set of N labels, where each label is associated with a fixed letter position
of the words in L (if the words of L are written as rows of a table, the labels are the column
headers). These labels are now assigned to n atoms with a injective function l : L → V . These n
atoms are called ports. The other N − n atoms are called ancillas. A structure combined with a
distinguished set of ports defined by l is called a (Rydberg) complex CL if H0(C) can be identified
by the port configurations alone, that is

H0[CL] := H0[C] = span{|x, a(x)⟩ ∈ H |x ∈ L} . (1.44)

20



1.5. FUNCTIONAL COMPLETENESS OF RYDBERG COMPLEXES

The states |x, a(x)⟩ are bit configurations , where the first n bits are defined by bit configurations
of x, the remaining ones by the ancilla configuration, defined by a function a : L→ FN−n

2 . The
ground state H0(CL) is called L-ground state-manifold. If the language is clear, the L is omitted.
Note, that the ancillas do not contribute degrees of freedom for this space, they are merely there to
realize states with the Rydberg blockade, which otherwise would not be energetically degenerate
(with width δE) or in the low energy space at all. We say, a complex CT = CLT realizes a target
Hilbert space, iff

(C2)⊗N ⊇ H0[CT ] ≃ HT = H(LT ) ⊆ (C2)⊗n (1.45)

with the isomorphism ≃ given by |x, a(x)⟩ ↔ |x⟩. A complex realizes a language L, if the target
Hilbert space HT = H(L) is defined by this language L.

As a example look at the Language of the logical gate XOR, which is generated by the check
function ωNOR(x1, x2) = x1 ⊗ x2. So the language is LNOR = L[ωNOR] = {001, 100, 010, 110}. The
ground state manifold of a Rydberg complex CNOR thus must be

H0[CNOR] = span{|001, a(001)⟩ , |100, a(100)⟩ , |010, a(010)⟩ , |110, a(110)⟩} . (1.46)

where the port configuration determines the ancilla configuration a. It is shown in section 3.1 that
we need at least 2 ancillas to realize this complex. Complexes that realize languages generated by
check functions that are logical gates are also called gates. The ports , that are assigned a input
of the gate by l are also called input (ports), and the output (port) is the port, that the output of
the gate is assigned to. This is extended to logical circuits that have more than two (one) input
(output). However there is no dynamic involved, so no information flows into and out of complexes.

Finally note two things:

1. The same structure C can be interpreted as different complexes depending on the labelling
function l.

2. A given structure C with a |L| fold degenerate ground state manifold does not have to allow
for a labelling l that realizes a certain language L.

So the general construction of these complexes is not trivial. And one can imagine, that these
complexes get really large and non trivial for a general check function of a large circuit. This
makes a reducible approach reasonable, where like in electronics, large circuits are built by small
and few primitives. This is defined in the next section.

1.5.4 Amalgamation
Combining two complexes to a larger one is called amalgamation. Let L1 and L2 be two uniform
languages of length n1 and n2. Let γ ⊆ {(p1, p2) | pi ∈ {1, . . . , ni}} be a set of disjoint pairs of
letter positions. Disjoint means (x1, y1) ̸= ((x2, y”)) if x1 ̸= x2 and y1 ̸= y2 . Let γi := {pi | p ∈ γ},
and for a word x ∈ L, xγi is the word with all letters at positions γi deleted. With that, the
γ-intersection of L1 and L2 is defined as

L1

γ
∩L2 :=

{
x yγ2 |x ∈ L1, y ∈ L2,∀(a,b)∈γ xa = yb

}
which is the Language of concatenations of words from L1 and L2, where the letters at the
positions defined by γ coincide and the second copy of these letters is deleted. It is a uniform
language with words of length n1 + n2 − |γ|. One can now define the reduced γ-intersection

L1

γ
∩ L2 :=

{
xγ1 yγ2 |x ∈ L1, y ∈ L2,∀(a,b)∈γ xa = yb

}
,

which is almost the same definition as above, only now both copies of the letters in γ are deleted.
The words are now of length n1 + n2 − 2|γ|.

As an example look at the NOR language LNOR = {001, 100, 010, 110} again. To copy the output
of the NOR gate one can amalgamate the output port of this gate (letter 3) with the input port
of a CPY gate (letter 1), where the CPY language is LCPY = {000, 111}. So γ = {(3, 1)}. The
γ-intersection then is the language
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LNOR
γ
∩LCPY = {00000, 01111, 10111, 11000} (1.47)

where the underscore denotes the letters, which come from both languages, i.e. they are the letter
3 in the NOR language and letter 1 in the CPY language, and where one copy is deleted. The words
are of length 3 + 3− 1 = 5. The reduced intersection the given by

LNOR
γ
∩ LCPY = {0000, 0111, 1011, 1100} . (1.48)

The words are of length 3 + 3− 2 = 4.

With these concepts at hand we can define the amalgamation of complexes. Given two complexes
CL1

and CL2
that realize languages L1 and L2 consisting of N1 and N2 atoms. To amalgamate

them, fix γ so that L′ := L1

γ
∩L2 ̸= ∅. Then combine the two complexes to one by identifying the

pairs of atoms in γ with each other:

CL′ = CL1

γ
⊗ CL2

:=

= .2 (1.49)

The new complex realizes the language L′. It has N1 +N2 − |γ| atoms. It is possible to arrange
complexes such that the ports are ’on the boundary’ of the complex (see section 1.5.5). The
Hamiltonian of the new complex is given by

H[CL′ ] = (H[CL1 ] +H[CL2 ] + δH) /γ (1.50)

where •/γ denotes that pairs in γ that are identified with each other. The residual part δH denotes
additional interactions between the atoms of the complexes. However in the PXP model, they
vanish. In the Van der Waals model they do not, however they decay quickly. The Hamiltonian
thus consists of all terms of the old ones. However if (i, j) ∈ γ these atoms get identified. So
(−∆ini −∆)/γ = −(∆1 +∆2)ni, because both identified atoms are in the same state. The new
complex realized the new language L′, which can be shown easily. Weather n′ = 0 or n′ = 1, the
ground state energy of the new complex is lower bounded by the configurations of the summands
H0(Li). This are just the words in L′. If |L1

γ
∩L2| = |L1

γ
∩ L2| the state of the atoms in γ provide

no new information about the ground state manifold, thus the new identified atoms can be made
an ancilla. Then L′ = L1

γ
∩ L2.

At last what happens if one wants to amalgamate complexes generated by a check function, for
example logical gates? Let f(x1, x2) and f ′(x′1, x′2) be two Boolean functions of two gates. These
gates get concatenated into a circuit with three inputs f̃(x′1, x1, x2) := f ′(x′1, f(x1, x2)). So the
two last ports go into the gate described by f , and its output is an input of f ′ together with x′1.
It is then L[w̃] = L[w]

γ
∩ L[w′] with γ = {(3, 2)}. Here 3 denotes y = f(x1, x2) and 2 denotes x′2.

Note that Boolean circuits without redundancies fulfil |L[w]
γ
∩L[w′]| = |L[w]

γ
∩ L[w′]| because the

input bits define all words. In the following we only look at Languages without redundancies. So
one can built large circuits with small Rydberg complexes. This is done in the next section.

1.5.5 Functional Completeness
In this section, a proof for the following theorem is given:

Theorem 1 (Functional completeness). For every tessellated target Hilbert space HT = HL[fT ]
on some lattice L that is generated by a check function fT , there exists a structure CT in the PXP
model such that

HT
loc≃ H0[CT ] , (1.51)

with finite gap ∆E > 0 and perfect degeneracy δE = 0.
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Figure 1.9: Decomposition of Boolean functions.2 (a) A oriented trivalent graph GfT that
has 6 ports at open links on its boundary. 5 ports are inputs x1, ...x5, and one is the output
y = fT (x1, ...x5). There are two types of vertices depending on the number of in- and outgoing
edges. The embedding is not planar. (b) The vertices are either a LNK complex or a NOR complex.
The oriented edges are LNK complexes. (c) By using a planar embedding for a crossing complex,
the embedding of the graph Γ(GfT ) can be made planar. Also, if any ports are not on its
boundary, one can add additional wiring (links) that may cross other links in the embedding
Γ(GfT ). Replacing these with the planar crossing keeps the embedding planar. (d) A logical
circuit for a crossing (CRS) circuit built from NOR gates.17 This gives a planar embedding for a
CRS complex consisting of the three primitives LNK, CPY and NOR.

Here
loc≃ denotes, that the formal isomorphism between those Hilbert spaces conserves local

structures. The local structure of H0(CT) is the underlying structure of the Rydberg atoms and
their excitation patterns. The local structures of HT = HL[fT ] comes from the lattice L and is
imposed by the check function f that defines the tessellated language LL[fT ]. So these local
structures define HT . This will become relevant in section 2.4.

Proof. The proof is constructive and completed in 5 steps. Steps 1 to 4 construct a complex
CfT=1 that implements a check function. Step 5 amalgamates copies of that complex to construct
CT.

Step 1: Decomposition of fT . At first we use the fact, that logical circuits are complete, that
is there exists a universal gate from which every circuit can be constructed. Here the universal
NOR gate

A ↓ B := A ∨B . (1.52)

is chosen as building block to decompose f . We can thus write

fT (x1, . . . , xg) = (. . . (xi ↓ xj) . . . (xk ↓ xl) . . . ) . (1.53)

Note that the same variable can occur at multiple places in this decomposition (due to copying
bits). So the logic of the check function can be transformed into a trivalent graph GfT , see
fig. 1.9a. This graph has g + 1 open vertices which is where the input bits (x1, . . . , xg) enter the
logic, and one where the result fT (x1, . . . , xg) is given out. GfT is trivalent, because bits can be
copied (’splitting a wire in a circuit’), directed and contains two sorts of vertices. The direction of
the edges displays the direction of information flow. They can be interpreted as the wires of the
circuit, and thus follow a ’link’ language (denoted as LLNK, see fig. 1.10). The vertices are then
distinguished by the number of edges that go into and come out of a vertex. A vertex is a NOR, if
two edges enter, and one comes out. A vertex is a CPY if one edge enters and two come out. If
the vertices are assigned with the truth tables of fig. 1.10b, the output bit of the graph is exactly
fT (x1, . . . , xg). Without redundancies there are 2g configurations for a circuit with g inputs.

Step 2: Embedding of GfT . To realize GfT as a Rydberg complex, it needs to be embedded
in R2. For this, there has to be a planar embedding Γ(GfT ). For graphs of our topology, there
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Figure 1.10: Complete set of logic primitives.2 (a) The (elementary) LNK-complex CLNK that
realizes the LLNK language can be realized with three atoms, which are two links amalgamated.
The ports are labelled A and Q by the labelling function l. Both have detuning ∆A = ∆Q = ∆
The Ancilla has a detuning ∆1 = 2∆. The spectrum has a the desired ground state manifold
H0[CLNK] with width = 0 and gap ∆E = ∆. The Atoms in blockade are connected with a black line
(A and Q are not in blockade). (b) The CPY-complex CCPY consists of three NOT amalgamated to a
single ancilla. The ports A, R and Q have detuning ∆. The ancilla has detuning 3∆. H0[CCPY] is
degenerate and a gap of width ∆ to the remaining spectrum. The ancilla is needed to connect
the ports as they must not be connected to realize a ground state manifold that contains |111⟩.
(c) The NOR-complex CNOR can be realized with two ancillas (blue and green circles). The blockade
graph is a ring where both ports A and B are blocked with Q. Again the spectrum is gapped
(which is why the ancillas are needed. Otherwise the the ports with the given blockades) between
them would be sufficient) with gap = ∆, and degenerate.

always exists an embedding, however it does not have to be planar. It can be made planar
however, if one can resolve wire crossings. This can be done in electronics as a there exists a
planar circuit consisting of NOR gates (and CPYs), that can replace two crossing wires without
changing the circuit, see fig. 1.9d. This circuit will be further discussed in section 2.3. So a
graph with the same properties as GfT can be constructed for that crossing circuit. One can thus
replace any crossings in Γ(GfT ) with a embedding of the crossing graph. Given that NOR, LNK
and LNK can be realized planar, the resulting embedding Γ(GfT ) is a planar embedding. In the
next step, these three planar embeddings are constructed. They are depicted in fig. 1.10.

Step 3a: Constructing the LNK complex. Unlike electrical circuits, which we used as a
blueprint for Γ(GfT ), our Complex has no wires. So one needs to construct a counterpart to
wires, which is the LNK complex. The most primitive logic to be realized as a complex is the NOT.
The NOT language is LNOT = {01, 10}. It is a single bit gate with the check function f(x) = x̄.
It realizes the core mechanics of the Rydberg blockade as it can be built as a complex by just
putting two atoms in blockade with each other. The Hamiltonian in the PXP model is

HNOT = −∆(nA + nQ) + VPXPnAnQ (1.54)

where |rA − rQ| < rB. The labels are given by the labelling function l, where A,B, ... are
inputs and Q,R, ... are outputs. The ground state manifold is H0[CNOT] = span { |01⟩ , |10⟩ } with
degeneracy δENOT = 0 and gap ∆ENOT = ∆ > 0. The LNK complex is then just the amalgamation
of two NOTs. The Hamiltonian is

HLNK = −∆nA − 2∆ñ1 −∆nQ + VPXPnAn1 + VPXPn1nQ , (1.55)

For the rest of the thesis we label ancilla with numbered indices and tildes. Again one finds
δELNK = 0 and gap ∆ELNK = ∆ > 0. The LNK ground state manifold is given by

H0[CLNK] = span { |0(1)0⟩ , |1(0)1⟩ } . (1.56)

The LNK complex is depicted in fig. 1.10a. For the remainder of this thesis, ancillas are written in
parenthesis. Arbitrary links can be built by amalgamating LNK complexes.
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Step 3b: Constructing the CPY complex. Classical bits can be copied by splitting a
wire. In the Rydberg formalism a complex is needed, that does this. The copy language is
LCPY = {000, 111}. The CPY complex can not be built with 3 atoms, see section 3.1. However it
can be realized with 4, see fig. 1.10b. One ancilla ñ1 is in blockade with all three ports, which are
not in blockade with each other so |111⟩ can be realized. The complex can be viewed as three NOT
amalgamated to a single ancilla. (Just three unconnected ports would result in three uncorrelated
atoms). The Hamiltonian is

HCPY = −∆(nA + nQ + nR)− 3∆ ñ1 + VPXPñ1nQ + VPXPñ1nQ + VPXPñ1nR . (1.57)

Its ground state manifold is

H0[CCPY] = span { |000(1)⟩ , |111(0)⟩ } . (1.58)

Again one finds δECPY = 0 and ∆ECPY = ∆ > 0.

Step 3c: Constructing the NOR complex. At last, the NOR gate must be realized with a
Rydberg complex. The NOR language is LNOR = {100, 100, 010, 110}. This language is not a
intersection of copies of the NOT language, the complex can thus not be amalgamated from NOT
complexes The NOR complex requires at least 5 atoms as proven in section 3.1 The complex is
depicted in fig. 1.10c. The Hamiltonian is

HNOR = −∆(nA + nQ + ñ1)− 2∆(nB + ñ2) + VPXPñ1n2 + VPXPñ2nB + VPXPnBnQ + VPXPnQnA + VPXPñ1nA.
(1.59)

Again one finds δENOR = 0 and ∆ENOR = ∆ > 0. The ground state manifold is

H0[CNOR] = span

{
|001(01)⟩ , |010(10)⟩ ,
|100(01)⟩ , |110(00)⟩

}
. (1.60)

In this complex the ancilla are only needed to energetically degenerate the states 010 and 100
with 110. This NOR complex is not unique. There exist other NOR complexes with N = 5 atoms.
However from all complexes realizing logical gates, the NOR complexes is the smallest. This is due
to the ’negating’ nature of the Rydberg blockade. This is why this universal gate was chosen in
this proof. At last note, that the graph GNOR is planar.

Step 4: Constructing the fT -complex. To construct the fT -complex one simply builds the
planar embedding Γ(GfT ), by placing LNK complexes where links are (as described above, they can
be adjusted in length, by amalgamating several LNK), CPY complexes on the CPY type vertices and
NOR complexes on the NOR type vertices. By separating everything with enough links, there are
no additional blockades in the PXP model so the resulting complex is a fT complex with g = 4K
designated input ports (labelled by a labelling function l) and a output port y = fT (x

1
e1 , ...) on

a output. These ports are on the boundary of the complex (one can place them there because
additional crossings that are created through the additional ’wiring’ can be made planar). It
follows δfTE = 0, so its ground state manifold is degenerate and it is gapped by ∆fT . The
situation thus looks like this:2

(1.61)

Now it is proven, that one can build all Boolean gates as a Rydberg complex. To realise a check
function and make this construction useful for amalgamation, on needs to enforce the condition
fT (x

1
e1 , ...) = 1. This can be achieved by adding a local detuning of order ∆E to the output y
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and make it an ancilla:2

→ (1.62)

The (degenerate and gapped) ground state manifold now consists of all the states that satisfy the
constraint imposed by the check function fT (x1e1 , ...) = 1.

Step 5: Constructing CT . To construct the tessellated complex CT, one places copies of CfT=1

on every site s of the lattice L, and amalgamate adjacent complexes by their correct ports (if
necessary, add links to avoid unwanted blockades):2

CT := (1.63)

The ground states of this resulting complex are in one to one correspondence with the words in
x ∈ LL[fT ] (using the blue squares as ports). And the resulting map maps excitation patterns of
the bits and the ancilla at the local site s (local unitaries of H0[CT ]) to word patterns imposed by
the check function (and the bit-projector), the local unitaries of HT . Note, that for the second
one, the ancillas play no role i.e. they add no degrees of freedom to these isomorphic subspaces.
In conclusion we showed HT

loc≃ H0[CT ] .

Two remarks need to be made:

• In eq. (1.62) the output port was given an additional ancilla and was then demoted to an
ancilla. However, if there are no blockades between inputs and this output, one can instead
simply delete it along with all ancillas in blockade with it, and get the same result.

• If fT (xe1 , ...) = 1, it can be rewritten as f1(x1e1 , . . . , x
1
e2 , . . . )

!
= f2(x

1
e3 , . . . , x

1
e4 , . . . ) , with

Boolean functions f1 and f2 that take 2K inputs each, then CfT=1 = Cf1
γ
⊗ Cf2 , so the

two sub-complexes Cf1 and Cf1 can be amalgamated along their output ports to realize the
resulting complex Cf :2

= (1.64)

This is used in this thesis for the some spin liquids in section 2.4, which have this property.
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So every (tessellated) Language (without redundancies) can be realized by a Rydberg complex.
However these complexes can get really large (see section 2.3), and easily require more than 100
atoms, which are not suitable, especially for tessellation. So they are an upper bound for the
size of the complexes. The main question and the topic for the next two chapters is, how small a
complex, realizing a certain language, can get.

27



CHAPTER 1. BASIC THEORY

28



Chapter 2

Minimal Complexes

The main goal of this thesis is to find Rydberg complexes, for different languages / check functions.
In principle, this can be achieved with the recipe given in section 1.5.5. However, the resulting
complexes are large, which makes error free experimental realisations of those nearly impossible,
especially when one wants to build a tessellated complex. So the question is, given an arbitrary
target Hilbert space HT = H(LT), what is a lower bound for N , the number of atoms to realize
a complex CT with ground state manifold H0[CT]. We want to find the minimal complexes for
given languages.

2.1 Preliminaries
To find complexes for given languages, we need to address some preliminaries first.

2.1.1 Blockade Graphs and Maximal Independent Sets
As we’ve proven in section 1.5.5, the local structure f HT can be translated to excitation patterns
of Rydberg states in the resulting complex CT, see fig. 1.7. The approach to find small (minimal)
complexes for given languages is graph theory. More precisely, we look at the blockade graph
B = (V,E) of the complex. Because all languages of interest for the remaining thesis can be
realized as Boolean check functions, no irreducible language or a language with the properties 1
or 2 of section 2.1.3 occur. We assume this from now on unless otherwise stated. W.l.o.g. we can
thus assume, that the graph is connected. If it is not, the states of both subgraphs are completely
uncorrelated, so the realizing language is reducible. As we concluded in section 1.5.5, H0[CT] is
perfectly degenerate. We can also conclude, that all atoms in the complex have positive integer
detunings. It follows, that ∆E ∈ N+ = {1, 2, ...}, and δE = 0.

Due to this, the ground states (their excitation pattern) is given by a weighted Maximal inde-
pendent set MIS∗ of the unit disc blockade graph (see fig. 1.7 and ??). A MIS∗ is a subset of
vertices, such that no vertices in the subset are connected by vertices, and no vertices can be
added without violating this condition. Maximum independent sets MIS are the largest MIS∗

(w.r.t. the number of selected vertices). Because the detunings determine the ground state energy,
the MIS∗ we look at are weighted, i.e. in addition to satisfying the condition to be a MIS∗, they
maximize the sum of the vertex labels (the detunings). So we focus on finding graphs with MIS∗,
which, create the desired pattern of excited ports to realize a language. Then the detunings are
used to balance these. This implies detunings of order ∆E ≈ 1.

2.1.2 Finding Complexes
Finding a Rydberg complex CT to realize a language LT is NP hard. This is for two main reasons:

• Finding a MIS∗ on a unit disc graph is NP hard18 (finding all MIS∗ in general is19,20), yet
alone weighted MIS∗. The proof of section 1.5.5 shows this as well. The check function for
three inputs has to satisfy f(x1, x2, x3) = 1 in the ground state. Finding this circuit is the
NP-hard 3sat-problem. As this is equivalent to finding the weighted MIS∗ in a Rydberg
complex this problem reduces to 3sat (so if we could find a Rydberg complex with the
desired properties in P, 3sat would be in P as well).
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• Finding unit disc embeddings is also NP hard.21

In addition there are many degrees of freedom given by the detunings ∆i, i ∈ V and the the
labelling function l. So to find the small complexes, we realize a potential blockade graph as a
adjacency matrix M , with Mii = −∆i

Mij =

{
V, {i, j} ∈ E

0, otherwise
, (2.1)

were V = 100 is large compared to the ∆i ≈ 1, and approximates VPXP = ∞. With this the
energy of a state of a complex with N atoms can be written as a QUBO22 problem:

E = −nTMn (2.2)

where n ∈ FN
2 , and ni = 1 denotes the atom i is excited, 0 denotes it is not. One can specify LT

and thus HT . Solving this NP hard minimization problem for several adjacency matrices leads
to the ground state manifold. One needs to compare the port bits of the found states with the
words in LT. Doing this leads eventually to a complex CT. Note that one still has degrees of
freedom from the labelling function l, to determine the realized language (so the algorithm might
miss the right complex at first due to wrong labelling). Also not all infinite possible detuning
combinations must theoretically be gone through. However, as explained in this subsection, only
positive detunings of order ∆, only cases of detunings in order of ∆E ≈ 1 are relevant. We
conducted a search with this approach with a program, and found all the complexes depicted in
figs. 2.1 and 2.2. The source code is available at DaRUS.23

For larger complexes N ≈ 8, 9, .. this is not a good approach. However some spin liquids and
the crossing require larger complexes (see section 3.2) which are not accessible with this numerical
approach as such. Even very effective ’graph generators’ implemented in mathematica failed at
the task of finding complexes, as one still must find all (relevant) MIS∗. Instead an analytical
’clever’ method is used to find lower boundaries N , for which a complex can be realized. which is
described in chapter 3

2.1.3 Irreducible Languages

For the remaining thesis, we only look at irreducible languages. These are languages L whose
words x are not concatenations of words a and b of two languages L1 and L2. This, by definition,
excludes ’dummy’ ports from the complexes realizing a language of interest. A ’dummy’ port is a
port p, which has two properties:

1. For every word x ∈ L, where xp = 1 (i.e. p is excited), there exists a otherwise identical
word x′ only with x′p = 0

2. The opposite is also true. For every word x ∈ L, where the letter assigned to xp = 0 (i.e. p
is not excited), there exists a otherwise identical word x′ only with x′p = 1 .

Languages can only have property 1 or property 2. If this is the case, the languages can still be
irreducible, like Lr = {000, 100, 011}, where the first letter has the first property, but Lr is not
reducible. We will only look at languages, which do not have this structure. These constrictions
come into play in the next section and in chapter 3 when we deal with NOT and LNK in a more
general matter.

2.1.4 Detunings

As stated above, the detunings are of order ∆. The arbitrary real detunings ∆ assigned to each
atom in a complex, can be chosen to be in N, where only the ports can have detuning ∆ = 0. If
the realizing language does not have the property of 1 from section 2.1.3, all detunings in the
complex can be chosen to be in N+.

Proof. Let CT be a Rydberg complex with N atoms, realizing a language LT. The ground state
manifold is H0[CT]
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Detunings are integers. First we show, that ∆i ∈ Q. Let the gap of the spectrum be and
H0[CT] has a width of so δE

∆E ≪ 1. Let the complex have a irrational detuning. We want replace
this detuning with a rational ones. To see that this is possible and H0[CT] remains gapped and
still contains the same lowest energy states we use that Q is dense in R. This implies that for
the detuning ∆ ∈ R \ Q a sequence {∆n}n∈N exists, such that the sequence converges towards
∆. But by definition this means that ∀ϵ > 0 ∃n0 ∈ N ∀n ≥ n0 |∆n −∆| < ϵ. Choose ϵ such
that δE+ϵ

∆E−ϵ ≪ 1, The choice is motivated by the fact that δE′ = δE + ϵ is the maximum possible
energetic width of H0[CT], and the new gap is at minimum ∆E′ = ∆E − ϵ. This is just the
condition δE′

∆E′ ≪ 1. Choose a ∆n with n > n0(ϵ), to replace ∆. The choice of ϵ ensures, that
H0[CT] is still gapped, and contains the same states as before. By expanding all the rational
detunings by the least common multiple lcm{∆i : i Lattice site}, all the detunings become
integers.

Detunings are positive. If a detuning is negative, all states that ’use’ it will not be in H0[CT],
because it is gapped by 1 from all the states that do not use it. But then one can remove it
without changing the GSM. So the remaining complex realizes the same logic without negative
detunings. Thus all detunings in a complex can be chosen to be positive Integers.

Ancillas also have nonzero detunings. Such an ancilla, lets call it ñ can not play a role en-
ergetically, it can merely act as a bridge between adjacent atoms. There are two types of states
in H0[CT]. Some in which ñ is excited and some in which ñ is not. In the first case however one
can put the detuning off as well, and the remaining unchanged bit configuration, (especially the
ports are unchanged), has the same energy. So for every state |ψ⟩1 ∈ H0[CT] with the detuning
excited, there is a state |ψ⟩2 ∈ H0[CT] which has the same energy and (other than the ancillas)
the same bit configuration. So if a ancilla with Deltañ exists, one can delete it and realize the
same language. Note, that if this ancilla is the only connection between the two sub complexes,
the language is already irreducible. For ports, the situation is differently. If a port p has zero
detuning, the additional degeneracy of the states in H0[CT] as described now leads to new words
in the realized language. This degeneracy realizes the property of Lr (see section 2.1.3). If the
language to be realized by a complex does not have this structure, all ports have nonzero, thus
positive detunings.

2.2 The Logic Primitives
They key part of section 1.5.5 is the decomposition of large circuits into smaller gates. One can
use the primitives to construct the other logical gates as Rydberg complexes. But even the other
logical gates can get very large and convoluted. For example the AND gate ∧ can be decomposed
into NOR gates:

A ∧B = (A ↓ A) ↓ (B ↓ B) . (2.3)

To satisfy this, two CPY and three NOR complexes are required, together with some LNK. So 20
atoms are required for a very simple gate. Thus the question arises, whether the important logic
primitives of Boolean logic can be realizes in a smaller, more elementary way. The answer is
positive. In addition to the common gates of Boolean algebra, NOT (¬ or •), AND (∧), and OR (∨),
there are four Boolean gates, we realize as provably minimal Rydberg complexes:

NOR: A ↓ B = A ∧B (2.4a)

NAND: A ↑ B := A ∨B (2.4b)

XOR: A⊕B := (A ∧B) ∨ (A ∧B) (2.4c)

XNOR: A⊙B := (A ∧B) ∨ (A ∧B) . (2.4d)

The complexes are depicted in fig. 2.1. Only NOR and NAND are universal gates. Some of these
gates are inverted versions of others (as the N in their name suggests). The relations are:

A ∧B = A ↑ B (2.5a)

A ∨B = A ↓ B (2.5b)

A⊕B = A⊙B . (2.5c)
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We already know minimal complexes for NOT (2 atoms), LNK (3 atoms), CPY (4 atoms) and NOR (5
atoms). We can immediately construct a small OR complex by using eq. (2.5b) and amalgamate a
NOT to the output of the NOR complex given in section 1.5.5. Using eq. (2.5b), we can immediately
construct an OR-complex with six atoms by amalgamation of a NOT-complex to the output port
of a NOR-complex. It is however unclear, whether this graph is a minimal realization of a OR

complex. In chapter 3, section 3.1 we proof that the complexes depicted in fig. 2.1, and thus the
so constructed OR complex, are indeed minimal. The method used to do this, is generalized in
chapter 3, section 3.2. It can not only find lower bounds for complexes, it can also, in principle,
find them, and, if they are not unique, it can find all of them. In addition to the method
described in chapter 3, a computer search for these small complexes has been conducted. The
script found all the complexes depicted in this section, (together with all choices of detunings (we
set max{∆i | i ∈ V (B)} = 3 in the code)). It is briefly discussed in section 2.1.2.

In fact, only the XNOR gate and the XOR gate are unique, i.e. their complexes have unique
blockade graphs, see section 6.2. The other gates are not unique and all their realisations are
depicted in fig. 2.2. Notice two things:

1. The AND gate can be realized from a NOR gate by amalgamating a NOT to one input and
change the labelling.

2. The relations of eq. (2.5) are reflected by the minimal complexes. Indeed, if we amalgamate
a NOT to the output of a minimal NOR complex, we get a minimal OR complex. The similar
amalgamation leads to a NAND complex from an AND complex and a XOR complex from a
XNOR complex. Looking at the relation between a NOT and a LNK, the NOT is the smaller one
and they are related by the same amalgamation. In the Boolean algebra and its circuits on
the other hand, a ’wire’ i.e. the LNK is the smallest unit, and a NOT is a larger one. Our
circuits are built from a intrinsic NOT logic, as it is the smallest operation the Rydberg
blockade can perform, because it is its defining operation.

Due to these points, all complexes of the gates emerge from the topology of the three realisations
of the NOR complexes, leading to the complexes in fig. 2.2. These are provably all minimal
complexes of the gates (see section 3.1.2).
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Figure 2.1: Common logic primitives.2 Minimal Rydberg complexes for all the logical gates,
which are the most common primitives for Boolean circuits. For the proof of their minimal size
see section 3.1. Some of the depicted minimal complexes are not unique. All different minimal
complexes of the non-unique gates are depicted in fig. 2.2. The depicted complexes consist of (1)
their geometry with blockade radii (grey dashed circles, and black lines between two atoms, which
in blockade with each other), (2) the ground state manifold (orange: |1⟩i, black: |0⟩i) and (3) the
truth table of the ports (labelled atoms), of the states in the ground state manifold. The rows of
these tables correspond to the configurations of the configurations of the ports in the realized
ground states (where A = 1 represents |1⟩A and A = 0 represents |0⟩A). Colors of ancillas and
ports in the geometry encode the detunings (see key).
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Figure 2.2: All minimal Versions of the complexes of gates. Except for the XNOR and the XOR, the
gates have multiple minimal realisations. All of these are depicted. Notice, that all gates have
three variations, which have the same basic structure. This is because the AND complex is the
NOR complex with a additional NOT amalgamated to one input, and with different labelling. All
gates and their ’negatives’ (like NOR and OR) differ in size by one, and the additional atom of the
larger gate is amalgamated to the output of the smaller.

2.3 Crossing
In circuits of electronics, crossing two wires can be achieved by simply placing them over each
other. However a circuit built from NOR gates alone exists,17 that realizes the same, see fig. 1.9d.
This is a somewhat surprising feature, because it allows information to pass two channels of
information around them self in a strict planar setting. This result is used in section 1.5.5 to ensure
the existence of a planar embedding of the abstract blockade graph of a circuit. Constructing
a crossing (CRS) complex by realizing such a circuit with Rydberg complexes as described in
section 1.5.5 however leads to huge complexes with ≈ 27 atoms, see fig. 2.3a. Note that the
depicted circuit uses XNOR gates a building blocks (which, in electronics are again build from NOR

gates). The question again is, whether we find a smaller elementary complex that realizes a CRS

logic.

We indeed find a smaller complex, that realizes a CRS complex. It is build from a complex
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that realizes a ICRS. This is the inverted crossing, where both outputs are inverted after the
crossing process. Again the inverted complex is smaller than the ’basic’ one. The ICRS complex
needs N = 8 atoms, and the CRS complex needs N = 10 atoms. The complexes are depicted in
fig. 2.3b and fig. 2.3c. The ICRS complex has also been described in another paper,14 where it is
used to map non planar optimization problems to planar Rydberg structures. Again we show
with the method described in section 3.2, that these complexes are minimal. We also show, that
the ICRS is unique. The additional difficulty here is the topological constraint, see section 3.5.1.
If one does not respect it, the method gives a N = 7 atom crossing, which however consists of
two connected parallel LNK, which is not a crossing.
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Figure 2.3: Crossing.2 (a) The crossing (CRS) constructed from logic primitives as explained in
section 1.5.5. Note, that instead of NOR gates, XOR gates are used. The gates are then amalgamated
with CPY and LNK complexes to realize the ’crossing’-circuit. The ground state manifold of the
complex (not shown) ensures A = Q and B = R. The complex requires ≈ 27 atoms and is
therefore too large to have practical relevance (as it realizes a very simple and common operation).
Note, that the XOR gates are not universal, so construct them from universal NOR’s, would require
dozens of atoms as well for each of the three gates, requiring ≈ 100 atoms for the CRS complex.
(b) A minimal CRS complex by contrast requires only N = 10 atoms. It is provably minimal, see
section 3.5.2. The depicted data is explained in the caption of fig. 2.1. (c) The (unique) minimal
inverted ’crossing’ ICRS complex is again smaller than the CRS complex, and requires N = 8
atoms. For the proof of minimal size and uniqueness again see section 3.5.2. To construct a CRS

from this complex, one needs to invert two adjacent ports by amalgamating a NOT to them. This
is again due to the negating nature of the Rydberg blockade.

2.4 The Surface Code and Fibonacci Anyons

In this chapter, we construct the complexes, that motivated this thesis and the paper it contributes
to,2 namely ones that realize tessellated languages of string nets. The idea is, that dimer models
can be based on Rydberg atoms on the edges of a lattice, that are in blockade with each other at
the lattice sites. So only one edge adjacent to a site can have its atom excited. These models
can carry topological order.1 So by placing proper complexes at the lattice sites, on can create
more complex string net models, like the toric code (or surface codes) and models that can carry
Fibonacci anyons.7

2.4.1 Constructing the Surface Code

In this section, we look at a surface code model like the toric code on a lattice with periodic
boundary conditions. Remember, that the ground states of the systems are based on equal weight
superposition of all allowed loop configurations. We want to realize them using a tessellated
language defined in section 1.5.2. A way to do this, is by using the property of the ground state(s)
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|G⟩ in these models:

Bp |G⟩ = As |G⟩ = |G⟩ , (2.6)

for all star operators As and plaquette operators Bp (see section 1.2). As two plaquettes (stars)
always act on an even number of sites the same time, one can trivially enforce the first condition
by choosing the state |0⟩ with σz

e |0⟩ = |0⟩ as |G⟩. This corresponds to the state where all spins
are aligned, or in our case, all Rydberg atoms are not excited. As does not act trivially on this
state, as this operator flips spins (changes the states of the Rydberg atoms). To create a state
that satisfies eq. (2.6), we modify the state: For the set of all stars S we define the multiplicative
group A = ⟨{As | s ∈ S}⟩.2 The state

|G⟩ ∝
∑
C∈A

C |0⟩ . (2.7)

then satisfies eq. (2.6). This is because A is left-invariant under multiplications with Bp (because
[BP , Bq] = 0) and because [As, Bp] = 0. Each state C |0⟩ imprints a loop of flipped spins (excited
Rydberg atoms) on the lattice of un-flipped spins (non-excited Rydberg atoms). So the state |G⟩
is exactly the equal weight superposition of all closed loop configurations that forms the basis for
the ground state manifold of the toric code, see section 1.2.

The toric code system would be realized by implementing the Hamiltonian eq. (1.10), then
cooling the system to its ground state,2 however each star (plaquette) consists of four atoms and
these four-atom-interaction makes this very hard to do.
A different approach on the Rydberg platform is more promising: On constructs only the subspace

HLoop := { |Ψ⟩ | ∀Sites s : Bp |Ψ⟩ = |Ψ⟩ }
= span { |C0⟩ |C ∈ A} . (2.8)

This space is thus spanned by all allowed loop configurations. It is the Hilbert space of a Z2-gauge
theory on a charge free background,2 and Bp |Ψ⟩ = |Ψ⟩ is a gauge symmetry of it, called Gauss’s
law .2 The As terms then are added perturbatively by ramping up the Rabi frequency Ω. This
gives rise to quantum fluctuations and the string net condensed ground state(s), leading to
interesting quantum phases,1 like the toric code ground state manifold. The boundary conditions
are important here, as the plane we construct here without them would only host a ’plane code’,
and as the genus of the plane is 0, the ground state would be one dimensional (and realize the
equal weight superposition of loop configurations.) Due to Gauss’s law, HLoop motivates the
construction of a complex Cloop, with

H0[CLoop]
loc≃ HT = HLoop = span {C |0⟩ |C ∈ A} . (2.9)

This Rydberg complex has ground states that one-to-one map to loop configurations on the
(square) lattice. H0[CLoop] has dimension ∝ 2M , where M is the number of unit cells of the square
lattice.2 Note that H0[CLoop] cannot be decomposed into factors of local Hilbert spaces, like the
full Hilbert space, which is H = (C2)⊗2M . Now we use the definitions from section 1.5, illustrated
in fig. 1.8 and apply our model to it: We assign one bit x1e to every edge, so K = 1 and g = 4.
The language we want to realize is LL[fLoop] which contains all bit patterns, so that the edges
assigned to the bits form the desired closed loop configurations. This implies, that the local check
function realizes Gauss’s law, so for each lattice site, an even number of adjacent edges (their
atoms/bits) must be excited (see fig. 1.2 and section 1.2). In other words, the bit projector us
selects the four bits adjacent to the site s,

us


 = (x1e1 , x

1
e2 , x

1
e3 , x

1
e4)

2 (2.10)

and the local check function is given by

fLoop(x1, x2, x3, x4) = (x1 ⊙ x2)⊙ (x3 ⊙ x4) (2.11)
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with the XNOR-gate ⊙ defined in eq. (2.4d), that is, A⊙B = 1 iff A = B. One can thus use the
XNOR complex from fig. 2.1, to build this complex, by amalgamating three of them in the following
way:

2

1

T

3

4

(2.12)

This complex uses N = 16 atoms to realize the vertex complex CSCU ≡ CfLoop=1. The complex
indeed realizes fLoop(x1, x2, x3, x4) = (x1 ⊙x2)⊙ (x3 ⊙x4) = 1. We can realize a smaller complex
though. Because in ground states fLoop(x1, x2, x3, x4) = 1, the check port T is always exited, so
we use the modification introduced in step 4 in section 1.5.5, and remove it and all ancillas in
blockade with it. The resulting complex has N = 13 atoms, and is depicted in fig. 2.6. Notice
how this complex then realizes the surface code on the honeycomb lattice , as depicted in fig. 2.6
as well. This complex consists of two XOR gates amalgamated at their outputs. Because

fLoop = 1 ⇔ x1 ⊙ x2 = x3 ⊙ x4 , (2.13)

we know from section 1.5.5, that the surface code complex CSCU can be realized by two complexes,
amalgamated at their ports. Further, For the square lattice, the LNK connecting both XNOR gates
can be removed (i.e. its edge gets contracted), and the (not unique) minimal surface code vertex
complex CSCU is two XNOR gates amalgamated at their outputs. It consists of N = 11 atoms, and
is depicted in fig. 2.4a. In fig. 2.4b the truth table of the vertex check function is depicted, and in
fig. 2.4c the ground state configurations realizing this table are depicted. In fig. 2.4d, a sample of
the square lattice formed by the ports of the tessellated CSCU complexes is depicted. A sample
of a string net on this lattice sample is depicted in fig. 2.5. The lattice has no PBC. So adding
quantum fluctuations like in eq. (1.10) would lead to a single ground state |G⟩ form eq. (2.7). For
the toric code, ports (which have detuning 1) on the opposing boundaries must be identified, so
they get detuning 2 as well. The depicted lattice on the torus would thus have uniform detunings.
Note, that CSCU is not unique. A different realization of it is CSCUALT depicted in fig. 2.7, together
with the ground state configurations and the lattice it creates. In this complex, one port has
degree one, so the remaining N = 10 atoms realize L̄SCU (see section 3.3).

The construction of removing a LNK is more general and is also used for the Fibonacci unit
cell complex CFMU: The hexagonal unit cell complexes also form a square lattice, as tessellated
unit cells form the lattice by definition. So they are also realisations of the square lattice check
function. However the opposite is not true, as the minimal surface code vertex complex CSCU
depicted in fig. 2.4a can not realize the model on a honeycomb lattice, as the center atom, at
which the two XNOR gates are amalgamated, can not act as a port for the additional lattice edge
needed, if fact it is (by construction) inverted to such a atom.

In fig. 2.6 the unit cell complex for the hexagonal lattice CSCUHX is depicted, together with
a sample of the resulting lattice. Note, that it is geometrically a amalgamation of two XOR gates
at their outputs, however this atom stays a port and does not get demoted to ancilla as it would
be by a formal amalgamation. It is also minimal, as the vertex complexes building it are (they
are XOR gates), and two ancillas can not be used by both vertices together as this would exclude
needed states from the ground state manifold (see fig. 2.6c for the configurations).

The constructed complexes are then being tessellated, to realize the tessellated language.
This is done by using step 5 of section 1.5.5, so the tessellated complexes are amalgamated at
their ports (except the center one in the honeycomb case), as depicted in fig. 2.4d, fig. 2.6d and
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Figure 2.4: Surface code on a square lattice.2 (a) A vertex complex CSCU of the surface code
for the square lattice. In this case, the vertex complex is also identical to the unit cell. The
complex is originally a amalgamation of two XOR gates at their outputs (see fig. 2.6). The XOR is
just a inverted XNOR, thus the output of a XOR is just in blockade with one ancilla, see fig. 2.1.
So we can deform the vertex complex into the depicted amalgamation of two XNOR gates (see
section 1.5.5). (b,c) Truth table and ground state manifold of the complex (the data is explained
in fig. 2.1). The ground state manifold realizes all configurations in which an even number of ports
is excited. This realizes Gauss’s law of the Z2-gauge theory on the lattice site. It provides a local
isomorphism between HT = HLoop and H0[CLoop], where local unitaries are mapped onto each
other. (d) Periodic tessellation CLoop of the vertex complex CSCU. The copies are amalgamated at
the ports (which makes the detunings uniform in the bulk).

fig. 2.7d.
Finally note, that the process of finding these minimal complexes is reversed to the way presented.
One starts by examining the states to satisfy the check function on a vertex of the honeycomb
lattice. The XOR gate does it. Then one amalgamates, and simplifies it, to get the desired unit
cell complexes (with or without a ’checking’ port that is always on in the ground states).

2.4.2 Constructing the Fibonacci Model

In this section we realize lattices for potential Fibonacci string nets, that might host non abelian
anyons. These anyons again derive their properties from the ground state manifold, the spin
liquid, they live on (and vice versa). Because these model and its ground state(s) can be realizes
as string nets (see section 1.3), we modify the complexes from the previous section to allow for
string nets that allow for the fusion rules (thus the fusion of loops) as described in section 1.3
and by Levin.7 The ground state in this model is no longer a equal weight superposition of all
allowed loop configurations, instead it is a weighted one. The ground state thus is

|G⟩ =
∑
S

Φ(S) |S⟩ , (2.14)

where the sum goes over all string nets (all loop configurations) S of flipped spins |1⟩ (excited
Rydberg atoms) on the edges of the lattice, where no strings end at a vertex of the lattice. This
means, that the string net also consists of loops, however two strings can fuse at vertices, so
loops can have connecting lines between them (so T shaped line are allowed), see section 1.3 and
fig. 2.9. The coefficients are products and square roots of 1±

√
(5)/2.7 This string net model
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Figure 2.5: A string net on the tessellated lattice of CSCU complexes. Excited ports and their edges
are marked orange, the other atoms have the color indicating their detuning (like in fig. 2.4).
Excited ancillas are not marked. Notice, how Gauss law is satisfied at each vertex. All such string
nets span HLoop. The depicted boundaries are not periodic. For a torus or PBC, the opposing
blue atoms are identified, so their detuning would be 2 as well.

motivates the definition of the tessellated target Hilbert space

H0[CFIB]
loc≃ HT = span { |S⟩ | String-netS } (2.15)

and the construction of a complex CFIB that realizes it.
The dimension of H0[CFIB] is (1 + φ2)M + (1 + φ−2)M where M is the number of unit cells of the
honeycomb lattice and φ = 1+

√
5

2 is the golden ratio.9,10 Note, that this only holds for trivalent
graphs, so one needs PBC in our case to satisfy this. Again, H0[CFIB] can not be decomposed into
factors of Hilbert spaces. We assign one atom x1e to each edge. The bit projector of a trivalent
honeycomb lattice vertex s now looks like

us


 = (x1e1 , x

1
e2 , x

1
e3) .

2 (2.16)

The check function, which realizes the desired string net and generates HT is

fFIB(x1, x2, x3) = (x1 ⊕ x2 ≡ x3) ∨ (x1 ∧ x2 ∧ x3). (2.17)

So fFIB(x1, x2, x3) = 1 for the bit configurations in LFIB = {000, 110, 101, 011, 111}, thus again an
even number of bits of the edges can be excited, which is encoded by the first term in eq. (2.17).
But in addition, two excited edges can fuse at the vertex (so all three bits are excited), which is
due to the second term in eq. (2.17), so this term contributes the fusion. Without it, we would
fall back to the abelian surface code from the previous section. Because |LFIB| = 5, the vertex
complex can, unlike the surface code, not be realized by a single logic primitive. And because it
has a odd number of ports, it is not a amalgamation of two gates. So constructing a circuit built
from primitives that realize it, would require ≳ 15 atoms for a single vertex. Again a smaller
complex CfFIB=1 can be realized, by building it from scratch. The minimal vertex complex CfFIB=1

has N = 8 atoms and is depicted in fig. 2.8 (for the proof of its minimal size see section 3.4). One
can amalgamate two of these complexes at their outputs (but do not demote the resulting ’sharing’
atom to a ancilla). This gives the Fibonacci model unit cell complex CFMU for the honeycomb
lattice. It contains N = 15 atoms and is minimal, as the vertex complexes CfFIB=1 building it are
(and two ancillas again can not be used by both vertices together). As in the previous section,
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Figure 2.6: Surface code on a honeycomb lattice. (a) A unit cell complex CSCUHX of the surface
code for the honeycomb lattice, amalgamated from two CfLoop=1 complexes, which are XOR gates
(see fig. 2.1). (b,c) Truth table and ground state manifold of the complex (the data is explained
in fig. 2.1). The ground state configurations realizes Gauss’s law of the Z2-gauge theory on each
vertex. This again provides a local isomorphism between HT = HLoop and H0[CLoop], where local
unitaries are mapped onto each other. (d) Periodic tessellation CLoop of the vertex complex CSCU.
The copies are amalgamated at the four ports on the boundary of the complex.

tessellation of the unit cell complex leads to the Fibonacci model complex CFIB. A potential string
net on this lattice sample is depicted in fig. 2.9.

The complex CfFIB=1 is not unique, another realization of the check function can be achieved
by modifying the XOR complex. The resulting complex is depicted in fig. 2.10. This alternative
complex forms a alternative Fibonacci unit cell complex CFMUALT, also depicted in fig. 2.10. This
complex again contains a LNK connecting both vertices, so it can be reduced to a square lattice
vertex complex CFMUSQ with N = 13 atoms (it is the amalgamation of two such modified XNOR

gates). Note however, that CFMUSQ is not minimal, there is a realization with N = 12 atoms, (see
section 6.3). This minimal complex however is not valid (see chapter 4).
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Figure 2.7: An alternative realisation of the surface code on the square lattice. (a) A vertex
complex CSCUALT of the surface code for the square lattice (in this case, the vertex complex is also
identical to the unit cell). CSCUALT is also minimal with N = 11 atoms but it is not a amalgamation
of two primitive gates. But one port has degree one, so the remaining N = 10 atoms realize
L̄SCU (see section 3.3). (b,c) Truth table and ground state manifold of the complex (the data is
explained in fig. 2.1). The ground state manifold realizes all configurations in which an even
number of ports is excited. (d) Periodic tessellation CLoop of the vertex complex CSCUALT. The
copies are amalgamated at the ports (which makes the detunings uniform in the bulk).
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Figure 2.8: Fibonacci model.2 (a) The unit cell complex CFMU for the Fibonacci model. The
complex is the amalgamation of two 8-atom complexes CfFIB=1 on the trivalent sites that form
the basis of the honeycomb unit cell. The CfFIB=1 complex realizes the single-site check function
constraint fFIB = 1 defined in eq. (2.17). Black edges denote blockades between atoms, gray edges
illustrate the underlying Honeycomb lattice. (b,c) Truth table and ground state manifold of the
complex (the data is explained in fig. 2.1). The ground state manifold realizes all configurations
except ones where only one port is excited. This ensures, that no loop ends at the vertex. So
in addition to closed loops, one can get three fusing strings at a site. This provides a local
isomorphism between HT and H0[CFIB]. (d) Periodic tessellation CFIB of the complex CFMU. The
copies are amalgamated at the ports on the edges of the complex.

Figure 2.9: A string net on the tessellated lattice of CFMU complexes. Excited ports and their
edges are marked orange, the other atoms have the color indicating their detuning (like in fig. 2.8).
Excited ancillas are not marked. All such string nets span H0[CFIB].

42



2.4. THE SURFACE CODE AND FIBONACCI ANYONS

(a)

C D

BA

E
CFMUALT

CfFIB=1

(c)

C D

BA

E

1
C D

BA

E

2
C D

BA

E

3
C D

BA

E

4
C D

BA

E

5
C D

BA

E

6
C D

BA

E

7
C D

BA

E

8
C D

BA

E

9
C D

BA

E

10
C D

BA

E

11
C D

BA

E

12
C D

BA

E

13

(b)

FIB

A B C D E

1

2

3

4

5

6

7

8

9

10

11

12

13

1 0 0 1 1

0 1 0 1 1

1 1 0 1 1

1 0 1 0 1

0 1 1 0 1

1 1 1 0 1

1 1 1 1 0

0 0 1 1 0

1 0 1 1 1

0 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0 0 0

(d)

CFIB

Figure 2.10: Fibonacci model with an alternative unit cell complex. (a) The alternative unit
cell complex CFMUALT for the Fibonacci model. The complex is the amalgamation of two 8-atom
complexes CfFIB=1 on the trivalent sites that form the basis of the honeycomb unit cell. They are
modified XOR gates. (b,c) Truth table and ground state manifold of the complex (the data is
explained in fig. 2.1). The ground state manifold realizes all configurations except ones where
strings end at a vertex. (d) Periodic tessellation CFIB of the complex CFMUALT. The copies are
amalgamated at the ports on the edges of the complex.
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Figure 2.11: Fibonacci model on the square lattice. (a) The vertex complex CFMUSQ for the Fibonacci
model on a square lattice. The complex is obtained by contracting the LNK connecting the vertices
in the CFMUALT complex from fig. 2.10. It has N = 13 atoms. (b,c) Truth table and ground state
manifold of the complex (the data is explained in fig. 2.1). The ground state manifold realizes all
configurations except ones where only one port is excited. (d) Periodic tessellation CFIB of the
complex CFMUSQ. The copies are amalgamated at the ports on the edges of the complex.
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Chapter 3

Proofs of Minimality

In this chapter we present the proof of the minimal sizes of the presented complexes.
Note 1: in this chapter we call the ground state manifold GSM.
Note 2: We say, a port has degree d, if it is connected to d other atoms, i.e. its assigned vertex in
the blockade graph has degree d.

3.1 The Logic Primitives

In this section, we proof that the logic primitives can not be realized with smaller complexes
that the ones given in fig. 2.1. This is trivial for the NOT, and the LNK, as they enforce the basic
properties of the Rydberg blockade.

3.1.1 The CPY Complex

Lemma 1. A CPY-complex cannot be realized with less than 4 atoms (1 ancilla).

Proof. The copy language LCPY = {000, 111} is irreducible, so the realizing complex must be
connected. Because (111) ∈ LGSM, the ports can not be in blockade with each other. Then the
only admissible blockade graph with N = 3 vertices is B = (V = {1, 2, 3}, E = ∅), which can only
realize a reducible language.

3.1.2 The NOR Complex

Lemma 2. A NOR-complex cannot be realized with less than 5 atoms (2 ancillas).

Proof. There are two ways to prove this. One, that uses only maximal independent sets on graphs
can be found below. This one is more basic as it uses energetic constraints for the ground states.2

• At first, we check if N = 3 atoms work for the NOR gate. The low energy Hamiltonian then
is

H = −∆1n1 −∆2n2 −∆3n3 =: En1n2n3 . (3.1)

For the GSM of the NOR complex to be degenerate, the following equations must be satisfied:

E001 = −∆3 (3.2a)
E010 = −∆2 (3.2b)
E100 = −∆1 (3.2c)
E110 = −∆1 −∆2 . (3.2d)

It follows immediately ∆1 = ∆2 = ∆3 and ∆1 = 0 so that all detunings must vanish.
But then the ground state energy EGSM vanishes as well, which implies that the state
(n1n2n3) = (000) is degenerate with those four states in the GSM (which it must not be).
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• we check N = 4 atoms. So the low energy Hamiltonian looks like this:

H = −∆1n1 −∆2n2 −∆3n3 −∆4ñ4 , (3.3)

Let ϵ(n1n2n3) be the energy contribution of the system coming from the ancillas alone,
when the ports are in the state (n1n2n3), and under the constraint of the Rydberg blockade.
We can thus define En1n2n3

:= −∆1n1−∆2n2−∆3n3+ϵ(n1n2n3). We have only one ancilla
ñ4, so either ϵ(n1n2n3) = 0 if ñ4 = 0, or ϵ(n1n2n3) = −∆4 if ñ4 = 1. So the degeneracy of
the GSM of the NOR complex demands the following four energies to be equal:

E001 = −∆3 + ϵ(001) (3.4a)
E010 = −∆2 + ϵ(010) (3.4b)
E100 = −∆1 + ϵ(100) (3.4c)
E110 = −∆1 −∆2 + ϵ(110) , (3.4d)

which immediately implies

∆1 = ϵ(110)− ϵ(010) (3.5a)
∆2 = ϵ(110)− ϵ(100) (3.5b)
∆3 = ϵ(110) + ϵ(001)− ϵ(100)− ϵ(010) . (3.5c)

Because we require a energy gap from the ground states and the excited ones, we can derive
that

ϵ(000) = E000

!
> E100 = −∆1 + ϵ(100) = ϵ(010)− ϵ(110) + ϵ(100) (3.6a)

⇔ ϵ(000) + ϵ(110) > ϵ(010) + ϵ(100) . (3.6b)

This is because (000) is a gapped excited state. The only kinematic constraints on the
ancillas in eq. (3.6b) can come from the two inputs, since n3 = 0. We show, that eq. (3.6b)
can not be satisfied with just one ancilla.
The energy can be lowered when the ancilla is excited, however there may be blockades
that prohibit that. Three cases can happen:

1. There are no blockades between ports and ancilla. But then the ancilla is excited in
all four terms of eq. (3.6b), so that eq. (3.6b) becomes −∆4 −∆4 > −∆4 −∆4, which
violates the gap condition.

2. The ancilla is in blockade with one input, lets say n1. This again violates the gap
condition as eq. (3.6b) becomes −∆4 + 0 > −∆4 + 0.

3. The ancilla is in blockade with both ports. Then eq. (3.6b) reads −∆4 + 0 > 0 + 0, so
∆4 < 0, which is a contradicts the non negativity of the detunings.

So the NOR-complex requires at least 5 atoms.

There is however a shorter proof for the minimal size of the NOR complex. The short proof uses
kinematic constraints and MIS∗ instead of energetic constraints. Methods from this proof are
used to prove the minimal size of the remaining gates quite effectively.

Proof. It can be realized with N = 5 atoms. So we need to exclude N = 3 and N = 4 atoms:

1. N = 3: The NOR-language LNOR = {001, 010, 100, 110} is irreducible and forbids a blockade
between the two input ports (because of (110)). The only valid blockade graph B that
realizes these constraints is the line graph on three atoms. But this graph has only two
maximal independent sets, and we need at least four to realize LNOR.

2. N = 4: Of the six connected graphs on four vertices, only the ’tetrahedron graph’, which
has four vertices, and all are connected with each other, has four maximal independent sets
(the other graphs have at most three). These four sets however are necessary to realize the
four words in LNOR. But none of these four maximal independent sets contain more than
one vertex, which would be necessary to realize (110) as ground state.

Finally note, that by evaluating all 11 connected graphs of degree 4, that have at least four MIS∗,
we find only three, that can host a NOR complex. These three are depicted in fig. 2.2.
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n1 ñ2 n3 ñ4 n5

(n1n3n5) = (111) (n1n3n5) = (001) (n1n3n5) = (100) (n1n3n5) = (000)

Figure 3.1: MIS∗ of the line graph.2 The line graph is the only connected blockade graph on five
vertices with (at least) four maximal independent sets (orange vertices), (at least) one of which
has (at least) three vertices. To realize the state |111⟩, the vertices 1, 3 and 5 must be chosen as
ports, with 3 as output; the four maximal independent sets then realize the truth table of AND.

3.1.3 The AND, OR, and XNOR Complexes
Lemma 3. AND-, OR- and XNOR-complexes cannot be realized with less then 6 atoms (3 ancillas).

Proof. All these complexes must realize the state |111⟩ so there are no blockades between the
ports. Thus they can not be realized with complexes that contain N < 5 atoms as the only
connected graph that satisfies this conditions is the blockade graph of the CPY, which can realize
only two MIS∗. One can go through all 21 connected graphs with four vertices and find 11 that
realize at least four MIS∗. However only the line graph can realize a MIS∗ that contains three
atoms. The four MIS∗ of this graph are depicted in fig. 3.1. One must choose the vertices 1, 2
and 3 as ports because the languages contain |111⟩. The four MIS∗ then realize the language
L = {111, 100, 010, 000}. This is the AND language. So OR and XNOR can not be realized with
N = 5 atoms. To exclude LAND for being realized, one must use energetic constraints. The ground
state degeneracy of the AND-GSM requires

E111 = −∆1 −∆3 −∆5 (3.7a)
E100 = −∆1 −∆4 (3.7b)
E001 = −∆2 −∆5 (3.7c)
E000 = −∆2 −∆4 , (3.7d)

which immediately implies ∆4 = ∆5 and therefore ∆3 = 0, which is not allowed. Thus the AND

complex can not be realized with N = 5 atoms.

3.1.4 The NAND and XOR Complexes
Lemma 4. NAND- and XOR-complexes cannot be realized with less than 7 atoms (4 ancillas).

Proof. The truth tables of both gates contain the states (110), (101) and (011). This implies,
that no ports can be in blockade with each other. One can conclude, that these gates can not be
realized with four atoms (see section 3.1.3). Lets check N = 5 atoms. Let one port be exited, thus
one ancilla is not. The remaining ports and the remaining ancilla must realize L = {01, 10}. But
because the ports can not be in blockade with each other and L is irreducible, both ports must
be connected to the ancilla. This structure then can only realize a LNK complex with language
LLNK = {00, 11}.

So lets check N = 6 atoms. Three cases need to be considered:

1. One port is in blockade with all three ancillas. Let it be excited. Then the other two ports
are excited as well. But then at least two of the three states |110⟩, |101⟩ and |011⟩ cannot
be realized in the GSM.

2. There is at least one port which is only connected to a single ancilla. This can be interpreted
as an amalgamated NOT-complex. If we delete the port, subtract its detuning from the
connected ancilla, and declare the latter as a new port. The new complex has five atoms
and must realize the language of the original one with one letter inverted. For both gates,
the GSM of this new language contains the states |010⟩, |001⟩ and |111⟩ (plus another one
that depends on the gate). The only blockade graph on five vertices with at least four
MIS∗, one of which contains at least three vertices (needed for |111⟩), has been identified
in section 3.1.3 as the line graph. It has also been shown in section 3.1.3 that there is no
assignment of detunings so that this graph can realize a fourfold degenerate GSM.
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∆1

∆̃1

∆2

∆̃3

∆3

∆̃2

(a) (b) (c)

Figure 3.2: The three bipartite graphs between three ports (red) and three ancillas (blue) where
all ports have degree two.2 Note that these do not represent complete blockade graphs rather
than classes of blockade graphs, as we omit blockades between ancillas. The detunings in (c) are
used in section 3.1.3.

3. All ports are in blockade with exactly two ancillas. There are three possibilities to connect
three ports with two ancillas each, depicted in fig. 3.2. For all of these three, one finds two
ports, that when excited block all ancillas adjacent to the third port. So this third port gets
excited as well. Thus at least one of the states |110⟩, |101⟩ or |011⟩ can not be realized.

So NAND and XOR can not be realized with N ≤ 6 atoms. Note: As this method used here is more
effective than the energy calculations used in section 3.1.2, it gets generalized in the next section.

3.2 A lower Bound for Complex Sizes
In this section we discuss the general analytical method to find a lower bound for the number of
atoms N a complex CL require to realize a irreducible language L as its GSM. The method is
recursive. It relies on three mechanisms.

mechanism 1: Amputating vertices. If a port p is only connected to one ancilla a, we can
delete p, and subtract its detuning from its ancilla and declare the ancilla a new port. We call this
amputation. This is the reverse of an amalgamation. We need to make sure, that the subtraction
of the detunings ∆a −∆p does not lead to a negative or zero detuning. If ∆p > ∆a, the port
p would always be excited. This is because in states, where the ancilla would be excited, the
system would reduce its energy if the port switches on instead. The port thus is superfluous and
the language of the GSM is reducible. If ∆p = ∆a then the for all states in the original complex
where the ancilla is on, there exists a state with the same energy with the port switched on. So
in the realizing language for every word x with xp = 0, there exists a otherwise identical word x′
only with x′p = 1. This is the property 2 described in section 2.1.3. No language in this thesis has
this property.

mechanism 2: Constructing subcomplexes. The following definition also justifies the final
remark of section 1.5.5. Consider a complex C that realizes a language L and whose ports are
not in blockade with each other. Select one port. We select a port p and define the sublanguage
LP ⊂ L of words x with xp = 1. let L′

p be the language which is obtained from L but the
constant letter corresponding to p is deleted. We want to construct a C′

p complex realizing L′
p.

The simplest solution is it ,to keep the geometry from C and increase the detuning of the port.
Thereby one creates a gap between the states where p is excited and the rest of the spectrum.
Because it no longer adds a degree of freedom to the GSM, p can be downgraded to an ancilla.
In the GSM this new ancilla is always excited and all adjacent ancillas in blockade with it are
not. This suggests, one can delete these atoms and obtain a smaller complex C′

p that realizes the
language L′

p:

Lemma 5. Let C be a finite complex, that realizes a irreducible language L, and whose ports are
not in blockade with each other, ∆E > 0 and δE = 0. Let p be a port with ∆p > 0 and let Lp and
L′
p be defined as above. Then the structure C′

p one gets from C by deleting p and the ancilla it is
in blockade with, is a L′

p complex if the ports of C′
p are inherited from C.
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Proof. Because L is irreducible, Lp ̸= ∅. So there are configurations, where the port p is active.
Two things need to be shown: (a) The new structure C′

p together with its inherited ports is a
complex i.e. its ground states can be labelled by configurations of those ports. (b) the language
that describes the new GSM is L′

p.
Let the GSM of the new structure C′

p be degenerate (δE = 0) and gapped (∆E > 0). This can
be achieved because we work in the PXP model and the structure is finite. Every kinematically
allowed configuration in this GSM can be extended to a allowed configuration in the GSM of C
because we can add the deleted atoms again and set the port to excited and the ancillas to not
excited. Let E0(C

′
p) denote the ground state energy of C′

p and E0(C) the one for C. It follows that
E0(C) ≤ E0(C′

p) −∆p. On the other hand, because Lp ̸= ∅, there are states in the GSM of C,
where p is excited, and all its adjacent ancillas are not. Truncating the configuration of the port
p and the ancillas, one gets an allowed configuration for C′

p with energy E0(C) + ∆p, implying
E0(C′

p) < E0(C) + ∆p. Thus we have

E0(C′
p) = E0(C) + ∆p. (3.8)

Using the process of extending and truncating can draw two conclusions:

1. Every configuration in the GSM of C′
p can be extended to a configuration in the GSM of C

which corresponds to a word in Lp. Two things follow:

• The configurations of Lp in the GSM of C can be distinguished by the ports without
p. Because the structure C′

p inherits all other ports from C in the natural way, the
configurations in the GSM of C′

p can also be distinguished by these ports. So C′
p is a

complex realizing some language L?.

• Every word in L? can be extended to a word in L, so L? ⊆ L′
p.

2. Every configuration in the GSM of C corresponding to a word in Lp can be truncated to an
allowed configuration of C′

p with energy 0(C′
p) = E0(C) + ∆p, implying L′

p ⊆ L?.

Thus L? = L′
p and therefore C′

p is a L′
p complex.

This lemma thus allows us to fix a port p to be excited and ignore all ancillas in blockade
with it, to examine the behaviour of the remaining atoms. They form a smaller complex (as the
port and its adjacent ancillas are being ignored), which has to realize the sublanguage of words
such that adding the letter xp and set xp = 1 gives the language L.

mechanism 3: Removing ancilla-ancilla blockades. lets look at a set of N Rydberg atoms,
all of which have positive, nonzero detuning. We want to check, if it can be a complex CL for
some given language L. For them to realize a complex, one must label certain atoms as ports,
realizing configurations that correspond the words in L. Let the n ports be {p1, ...pn}, and the
m = N −n ancillas {a1, ...am}. We again do not allow for blockades between ports. Each port has
a degree deg(pi), which in this chapter is usually larger than one (because we can amputate ports).

We now look at a bipartite graph B. One partition are the n ports, the other are the m
ancillas, and edges are between those two partitions. Also all vertices in the partition of the ports
have degree deg(pi), for i ∈ {1, ...n}, and the vertices of the ancilla-partition do have a degree
smaller than n. We also want, that every ancilla is connected to a port so their degree is larger
that one. There are, even for large complexes, rather few of such special bipartite graphs, if the
number of ports is small. Examples of these graphs are depicted in figs. 3.3, 3.7 and 3.8. One can
see that despite there are an enormous amount of graphs with 9 vertices, there are only 6 such
graphs, when all four ports have degree two. Each such graph corresponds to an class of possible
blockade graphs. The blockade graphs in this class derive from these bipartite graphs by adding
some blockades between ancillas. One can now go through the MIS∗ of this bipartite graph.
Because all atoms have positive nonzero detuning, they are exited if they are not in blockade.
The values of the detunings do not matter here. If the MIS∗ does not contain all configurations
of L, the class of blockade graphs can not realize a complex realizing L.

If one finds class that can realize all the configurations of L, one can investigate it further
by adding ancilla-ancilla-blockades or define detunings to see if the class can indeed has a working
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blockade graph to host complex CL. Here a numerical search, like with the program mentioned in
section 2.1 can be useful. The remaining degrees of freedom are drastically reduced, compared to
the ones from the general problem of finding blockade graphs.

This mechanism can also be used if there are blockades between ports, by adding the edge
to the bipartite graphs.

3.2.1 The Method: Finding lower Bounds for Complexes

Here we discuss the method used in the remaining chapter and in section 6.3 to find lower bounds
for the number N of atoms for a complex C to realize a certain language L. Note that it only
works fully, if we can amputate ports (i.e. all languages in the process do not have the property
2 of section 2.1.3). The strength of it lies in the fact, that one can for the most part ignore
detunings and blockades between ancillas, thus reducing the degrees of freedom for the problem.
The problem of finding a lower boundary for N boils down to falsify all smaller graph classes.
These are represented by graphs, where all blockades between ancillas are omitted (see above).
The method is thus iterative in the number of atoms.

Step 1. At first one looks at the language L to be realized. Then one negates the first letter in
the language to obtain a new language L̄. One does this with all letters and all combinations
of letters. In the worst case there are many possibilities but most useful languages (spin liquid
primitives, logical gates,...) have symmetries or properties, that reduces this to only view different
languages K = {L1, ..L, ..L̄, ...Ln}. If a complex realizes L and has a port pi with degree one, one
can amputate it and get a complex realizing Li. Vice versa if a complex with N − 1 atoms is a
minimal realization of a CLi

complex, the amalgamation of a NOT to the right port pi leads to
a not necessarily minimal CL complex. If a N − 1 atom complex of CLi

however is dis-proven,
we have found a minimal one. So the mentioned method must be conducted for all languages in
K. There may be more languages than ports, but the languages are cyclic. One starts with N
atoms, where we know, that there is no L complex with N atoms. A potential suitable lower
bound is the number ports required minus one (we need at least all the ports). For this bound
, we also know, that no other language in K can be realized. Then one looks at N + 1 atoms.
We then assume one port pi has degree one. Amputate in. We now must realize the language
Li with N atoms if this is possible with a complex CLi

we amalgamate a NOT to its pi port and
we have found a L complex. If this is not the case, we know, there is no L complex where port
pi has degree one. One must do this for all combination of nontrivial amputations (A trivial
combination of amputations would be one after which the language does not change). If we can
successfully falsify a all combinations of nontrivial amputations, we can conclude that L can only
be realized with a complex of N + 1 atoms, if all ports have at least degree two.

Step 2. One then uses mechanism 2 on some port pi to examine a upper bound z for the
maximal degree of the ports. At some degree, enough ancillas are in blockade with pi, that the
subcomplex C′

p can not realize a necessary sublanguage L′
p. So all ports must have a degree

between one and z.

Step 3. One then proceeds with mechanism three to falsify all remaining possible graph classes.
This is the main step to exclude graph-classes from hosting a CL complex. If all classes can be
falsified, L can not be realized with N + 1 atoms, and we set the new lower bound to N + 1. If
they can not be falsified, our lower bound remains N .

Note 1: There might be additional constraints to the complex, giving further methods to
falsify classes (see section 3.5).
Note 2: One might skip step 1 if the two mechanisms used in step 2 immediately can falsify all
classes with N atoms.
Note 3: As mentioned, on can improve the found lower boundary (also numerically), by extending
mechanism 3. In all our examples however even if one uses only kinematic constraints to observe
MIS∗, one gets a lower bound that is only one or two atoms off. Usually the method can find a
working complex whose size is of order N = 2|P |, where P = |{p1, ...pn}|. This is because with
this many atoms, the blockades between ancillas and ports have enough degrees of freedom, to
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allow for the desired configurations of L to happen, so detunings and ancilla-ancilla blockades
must be added only to energetically gap these out. In the worst case, additional ancillas must be
added to do so, but in the applied cases one is sufficient.
Note 4: This method can be used to show uniqueness of complexes (up to choices in detunings)
as well, as shown in sections 3.5.2 and 6.2.

3.3 The surface code CSCU
Lemma 6. The vertex complex (unit cell complex) CSCU of the surface code on the square lattice
cannot be realized with less than 11 atoms.

Proof. We now apply the method described in section 3.2 to show, that the surface code complex
CSCU requires at least N = 11 atoms.

At first we notice that the desired GSM of the surface code on a square lattice is symmet-
ric under the permutation of states. It also includes |1111⟩, so there can not be blockades between
the ports. Further, the GSM is symmetric under the process of amputating a even number of
ports, i.e. inverting a even number of letters in the words of LSCU:

LSCU ≡



1111

1100

0011

1001

0110

0101

1010

0000



inv. 4. letter−−−−−−−−→ LSCU ≡



1110

1101

0010

1000

0111

0100

1011

0001


(3.9)

inv. 3. letter−−−−−−−−→ LSCU =



1100

1111

0000

1010

0101

0110

1001

0011



inv. 2. letter−−−−−−−−→ LSCU =



1000

1011

0100

1110

0001

0010

1101

0111


· · · (3.10)

The conclusion is, that the minimal toric code complex can have at most one port of degree one.
Otherwise one could amputate two ports, and either end up at a smaller CSCU complex, or end up
with a complex realizing LSCU, which can be made to a SCU complex by amalgamating a NOT to
one of its ports (thus adding one atom). Then one gets a smaller LSCU complex. So the original
one was not minimal. Note, that fixing a letter xp in LSCU (LSCU) to 1, LSCUp (LSCUp) is the XNOR

(XOR) language. Here Lp is the language of words in L where xp is one, but where xp is deleted
(see section 3.2). We start the iterative method with N < 8.

• N < 8: We apply method 2: If we fix a port excited it blocks at least one ancilla. The
remaining N ′ < 6 atoms must realize a XNOR subcomplex, which requires at least N = 6
atoms. So the surface code can not be realized with N < 8 atoms.

• N = 8: Because only one port can have degree one, we choose a port that connects to
at least two ancillas and fix it the excited state, rendering the ancilla not excited. The
remaining N = 5 atoms again must realize a XNOR subcomplex which is impossible.

• N = 9: Three cases need to be considered:

1. Assume one port that connects to a single ancilla. We amputate it, and the remaining
N = 8 atoms must realize a LSCU subcomplex, where all ports have degree ≥ 2. Fixing
one of its ports p (which have degree 2) to the excited state blocking at least two
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ancillas, the remaining N ≤ 6 atoms must realize a XOR language (inspect LSCU states
with fixed letter xp = 1 to verify this). This is impossible as a XOR complex requires at
least N = 7 atoms as we’ve shown in section 3.1.

2. Assume a port being in blockade with three ancillas. We fix it to the excited state,
blocking those three ancillas. Again the remaining N = 5 atoms must realize a XNOR

logic which is impossible.
3. The case where all ports are in blockade with two ancillas remains. So we apply

mechanism 3 (see section 3.2). There are six non-isomorphic bipartite graphs that
connect sets of four (ports) and five vertices (ancillas), where all ports have degree 2,
see fig. 3.3. We exclude graphs with disconnected ancillas because these are typically
covered by the analogous step for N = 8. All these graphs except fig. 3.3c can be
excluded from realizing a minimal SCU complex. This is because one can find two ports
(like 1, 2 and in fig. 3.3a) which block all ancillas adjacent to a third port, so this one
is excited as well (like 3 in fig. 3.3a), which must not happen in a CSCU complex, as it is
inconsistent with the SCU language. The ’cross graph’ fig. 3.3c can not be excluded this
way as its set of MIS∗ is a superset of all MIS∗ required in a CSCU complex. We have
to use energetic arguments instead. Because the GSM realizing L must be gapped out,
we must require

E1111 = −∆1 −∆2 −∆3 −∆4

!
< −∆1 −∆2 −∆3 −∆8 = E1110 ⇒ ∆8 < ∆4 ,

(3.11a)

E1100 = −∆1 −∆2 −∆7 −∆8

!
< −∆1 −∆2 −∆7 −∆4 = E1101 ⇒ ∆8 > ∆4 .

(3.11b)

Hence this graph cannot realize the LSCU-manifold.

• N = 10:

1. One port is in blockade with only one ancilla. We amputate it and the remaining
N = 9 atoms must realize a LSCU subcomplex, where all ports have degree ≥ 2. Again
we fix one of these ports in the excited state, rendering two ancillas not excited. So we
can remove them and the remaining N = 6 atoms must realize a XOR language again,
which however requires seven atoms.

2. Assume a port being in blockade with four ancillas. We fix it to the excited state,
blocking those four ancillas. Again the remaining N = 5 atoms must realize a XNOR

logic which is impossible.
3. Assume a port being in blockade with three ancillas. We fix it to the excited state,

blocking those three ancillas. The remaining N = 6 atoms must realize a XNOR gate
as a subcomplex. AS shown in section 6.2, there is only one blockade graph that can
achieve this. So the setup for a CSCU then must look like this:

(3.12)

LSCU contains all states with a even number of ports excited. So there are two states
in which ports 2 and 3 are excited (note that the ancillas adjacent to port 1 can be
in blockade with ports 2 and 3, but as these ports are fixed excited, the ancillas are
fixed in the not excited state and thus do not contribute anything in the following).
In one of those two states, ports 1 and 4 are excited, in the other they are not. In
the XNOR complex alone, if ports 2 and 3 are excited, port 4 is as well, because it is
only in blockade with blocked out ancillas. So the second state, where port 4 is off,
must be realized with the three ancillas adjacent to port 1. All ports have to be on
the boundary of the complex, so the three ancillas attached to port 1 can not ’wrap’
around ports 2 and 3 to reach port 4. Also port 1 can not be in blockade with ancilla
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5, as it would increase its degree to four, which makes CSCU impossible (see above). So
the information about the state of port 1 must be passed to port 4 through the line on
which ancilla 5 sits. This is a topological constraint, see section 3.5.1. It corresponds
to the situation of eq. (3.19), where the two atoms marked with × are port 4 and
some ancilla(s) adjacent to port 1. Note, that port 4 however is not in blockade with
ancilla 5 (which is inside the green ellipse in eq. (3.19)), so one of the marked atoms in
eq. (3.19) is shifted in a way that its blockade circle dos not include the entire ellipse.
Then the two marked atoms (port 4 and some ancilla(s) adjacent to port 1) can not
be in blockade.
These arguments imply, that port 4 can not be in blockade with any of the (non fixed)
ancilla, it is thus always excited if ports 2 and 3 are, which is not consistent with LSCU.

Alternatively, one could rule out all graph classes with one port of degree 3.
4. The case where all ports are in blockade with two ancillas remains. There are five

non-isomorphic bipartite graphs that connect sets of four (ports) and five vertices
(ancillas), where all ports have degree 2, see fig. 3.4. Again we exclude graphs with
disconnected ancillas because these are covered in the case N = 9. One such graph
however remains: fig. 3.4c, as its connected part was only excluded with energetic
constraints. The classes fig. 3.4b, fig. 3.4d and fig. 3.4e can be excluded immediately
because two ports can be found that block all ancillas from a third port. So if the two
ports are excited, the third one is as well, which is not consistent with LSCU.
The cases fig. 3.4a and fig. 3.4c remains. For the first class the following must hold:

E1111 = −∆1 −∆2 −∆3 −∆4

!
< −∆1 −∆2 −∆3 −∆8 = E1110 ⇒ ∆8 < ∆4 ,

(3.13a)

E0110 = −∆2 −∆3 −∆5 −∆8

!
< −∆2 −∆3 −∆4 −∆5 = E0111 ⇒ ∆8 > ∆4 .

(3.13b)

So the class in fig. 3.4a is not possible for CSCU.
So fig. 3.4c remains. If 9 is only in blockade only with the center atom (the un-
labelled one), it is excited, whenever a port is excited, this includes the states
(1111), (1110), (1100) and (1101). So one can repeat the argument from eq. (3.11a).
So lets assume w.o.l.g. that it is in blockade with ancilla 6 (implying it is not in
blockade with 7). For port 2 to be not excited, either all ports are not excited and the
center atom is, or ancilla 6 is excited, blocking ancilla 9. The second case implies:

E1001 = −∆1 −∆4 −∆6 −∆7

!
< −∆1 −∆3 −∆4 −∆6 = E1011 ⇒ ∆3 < ∆7 ,

(3.14a)

E1010 = −∆1 −∆3 −∆6 −∆8

!
< −∆1 −∆6 −∆7 −∆8 = E1000 ⇒ ∆3 > ∆7 .

(3.14b)

which excludes this class.

3.4 The Vertex Complex of the Fibonacci Model CFIB
Lemma 7. The vertex complex CfFIB of the Fibonacci model on the Honeycomb lattice cannot be
realized with less than 8 atoms.

Proof. The language to investigate is LFIB = {000, 011, 110, 101, 111} . It contains (011), (110)
and (101). We used the states of these words to show in section 3.1, that XOR ad NAND can not
be realized with less than N = 7 atoms. Only kinematic arguments were used for this, and the
argument only relied on these states (and the existence of at least another one). So it can be
applied to the Fibonacci complex as well. So the Fibonacci complex can not be realized with
N = 6 atoms or less. These three states also do not allow for any ports to be in blockade with
each other. To see whether a Fibonacci complex with N = 7 atoms exists, we need to go through
three cases.
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(a) (b) (c)

1 2

3 4

5 6

7 8

(d) (e) (f)

Figure 3.3: The six classes of blockade graphs for the surface code vertex complex and the crossing
on nine atoms with ports of degree 2 and without disconnected ancillas.2 Ports (ancillas) are
colored red (blue) and connections between ancillas are omitted. The only class that cannot be
excluded kinematically is the “cross” graph (c) with atom labels {1, . . . , 8} and ports {1, 2, 3, 4},
see text.

1. At least one port is in blockade with a single ancilla. We amputate it. This corre-
sponds to inverting a letter in the symmetric LFIB- language so we must realize LFIB =
{100, 111, 010, 001, 011} with N = 6 atoms. The XNOR language is a subset from this
language, L⊙ ⊂ LFIB. We showed in section 6.2, that there is only one blockade graph with
six atoms that realizes the XNOR language. This graph has only four MIS∗, so it can not
realize the LFIB.

2. At least one port connects to three ancillas. We fix it to the excited state. It thus blocks those
three ancillas. The remaining atoms (two ports, one ancilla) must realize the sublanguage
L = {01, 10, 11}. As the language is irreducible, the atoms must be correlated. So the
blockade graph of them is connected. But there is no graph on three vertices with (at least)
three MIS∗ of which (at least) one has (at least) two vertices.

3. All ports are in blockade with two ancillas. There are three graph classes to investigate.
They are depicted in fig. 3.5. With a similar line of arguments as used for the surface code
(the case N = 9 in section 3.3), one can exclude two of the three graphs (a and c). The
remaining one (b), needs energetic arguments again. We have

E111 = E110 ⇒ −∆1 −∆2 −∆3 = −∆1 −∆2 −∆6. ⇒ ∆3 = ∆6. (3.15)

The same argument with (101) (and (011)) leads to ∆2 = ∆5 (and ∆1 = ∆4). We also have
to gap out unwanted states:

E111 < E100 ⇒ −∆1 −∆2 −∆3 < −∆1 −∆5 −∆6. (3.16)

Combining both equations leads to

−∆1 −∆2 −∆3 < −∆1 −∆5 −∆3 ⇒ ∆2 > ∆5. (3.17)

Hence this graph class cannot realize LFIB.

3.5 The CRS Complex

3.5.1 Topological Constraints
For some complexes the topology of the ports play a crucial role. For example, if the CRS complex
had two ports exchanged, it would become a trivial circuit of two parallel lines. So for a given
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(a) (b) (c)

1 2

3 4

5 6

7 8

9

(d)

(e)

Figure 3.4: The five classes of blockade graphs for the surface code vertex complex on ten atoms
with ports of degree 2 and without disconnected ancillas (except (c)). Ports (ancillas) are colored
red (blue) and connections between ancillas are omitted. The only class that cannot be excluded
kinematically is the “cross” graph (c) with atom labels {1, . . . , 9} and ports {1, 2, 3, 4}, see text.

(a) (b) (c)

Figure 3.5: The three classes of blockade graphs for the Fibonacci vertex complex on seven atoms
with ports of degree 2.2 Ports (ancillas) are colored red (blue) and connections between ancillas
are omitted. Only the graph in (b) must be energetically excluded.

counting direction (like clockwise), the ports (which lie on the boundary of the complex) thus
must have a fixed pattern when counting them. For the CRS complex the pattern is x− y − x− y
or y − x− y − x, as depicted in fig. 3.6.

This property thus enforces a topological constraint to deforming a complex. So we call this
property of a complex a topological constraint. All investigated elementary complexes in this
chapter so far, except the ones in section 2.3, do not have topological constraints. The surface
codes vertex primitives have completely symmetric languages, so ports can be exchanged. The
primitive gates have two symmetric inputs, and one fixed output, so they have three ports, so
changing their order always leaves the inputs adjacent to each other as seen in (ii):

(3.18)

In general also three ports can have topological constraints, as seen in (i). In the picture y follows
z, but after exchanging x and y, x follows z.

However these constraints become nontrivial, when one has four or more ports and information
must ’flow’ through the complex along a certain axis i.e. the logic of two logical ports is
independent of the other, and not a reducible language. The crossing has the property, that
information must flow through the two axis independently. The counting order of the ports lets
the complex assign directions ’up’, ’down’, ’left’ and ’right’, as depicted in fig. 3.6. Ports at the
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up

down

left right

Figure 3.6: A CRS complex C. We have two x-ports and two y-ports. Each port gets a direction
assigned, and these define two axis, through which information must pass. Because the ports lie
on the boundary, information must pass through the red line without circumventing the ’up’ and
’down’ ports, and through the green line without circumventing the ’left’ and ’right’ ports.

positions labelled x (y) are called x- (y-)ports. For the CRS complex, both x- (y-) ports have to
be in the same state. For a LCRS complex (see section 3.5) one x-type is the inverse of the other
(x2 = x̄1), while the y-ports still share the same state (or vice versa).

The following applies to complexes that have the structure of fig. 3.6 (They do not have to be
crossings as they may have other ports).

Lemma 8. Lets look at two ports with same fixed vertex degree, and both connect to the same
ancilla. Then

1. both ports are either x-ports or y-ports (w.o.l.g. one can choose).

2. either the x-ports are rendered uncorrelated by the y-ports or there are states where the
x-ports are not excited and the x-ports are rendered uncorrelated i.e. the complex can not
support a topological constraint where the x-ports are independent of the y-ports.

Proof. As both ports are connected to the same ancilla, if one is excited the other one is as well
so the have to be the same type, lets say both are x-ports. Two cases can happen:

• The two ports are not connected.

(3.19)

All the mentioned ancillas lie within the green ellipse.
case 1 : It holds r < (2 −

√
3)rB ⇒ s(r) < rB, see (ii). In that case two atoms can pass

information from left to right by placing them at the positions market with ×. They are
thus in blockade with each other. So information can be passed through them. If one of
them is excited every atom in the ellipse is blocked (see (ii)). Note, that one of them must
be excited at some point, otherwise there would be no connection between the left and
the right side. Thus the two ports are completely independent of each other and the sub
language created by those ports is reducible i.e. the two x-ports are uncorrelated. This is
exactly not the property of the crossing. However the two placed atoms can also not be in
blockade with each other. Then they either must circumvent the ports to pass information
from left to right (remember conditions for blockades with the ports). This can not happen
as the ports lie on the boundary of the complex. Or they are in blockade with atoms in
the ellipse. But if one of the two x-ports is excited, all atoms in the ellipse are blocked
out. This again renders the left side independent from the right side thus the x-ports are
uncorrelated.
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case 2 : If r < (2−
√
3)rB thus s(r) > rB , (see (i)), no information can be passed directly

’through’ the ellipse like in the last case (again note the condition for the ports). So the
remaining atoms must be in blockade with atoms in the ellipse again, and the same argument
as above holds.

• the ports are connected.

(3.20)

Then the minor axis r ≥ rB (black circle) of the ellipse is r > rB and The major axis
is s(r) > r. So again, no blockade can be established through the ellipse. This is again
the same as in case 2 above. Finally note, that for four atoms (which can be ports) the
following situation can trivially not happen if the black marked blockades should be the
only ones:

(3.21)

This also would violate the assumption, that the graphs are connected. But there have to
be additional bonds in this scenario which make this configuration connected (In fact, the
given minimal CRS complex revolves around a similar structure).

We say, a complex violates the topological constraint, if the complex satisfies the conditions for
the lemma. Note that when there is no sub complex on one side of the ellipse, the topological
constraint is trivially violated. A conclusion is, that complex that satisfies the conditions of the
lemma, cannot realize a CRS or LCRS (see below).

3.5.2 Minimality of the CRS Complex.
With the setup of topological constraints section 3.5.1 at hand, we can now proof the following
lemma:

Lemma 9. The complex CCRS of the surface code on the square lattice cannot be realized with less
than 10 atoms.

Proof. We again use the method introduced in section 3.2, and the (topological) labelling scheme
from fig. 3.6.

LCRS ≡


1111

1010

0101

0000


inv. 1. letter−−−−−−−−→ LCRS ≡


0111

0010

1101

1000


inv. 2. letter−−−−−−−−→ LCRS ≡


0011

0110

1001

1100

 . (3.22)
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Note that the language is symmetric, and inverting the first and third letter does not change the
CRS language as it corresponds to inverting both x-ports (or both x-ports). If a CRS complex
would have two x-ports (or x-ports) with degree one, one can just invert both (by amputation)
and the result is a smaller CRS complex. Inverting the first and second letter corresponds to
amputating a x- and a x-port. This results in the ICRS manifold. Inverting more than two letters
would mean, one could amputate three or more ports. Then again both x-ports (or both x-ports)
are being amputated, and the resulting complex would again realise one of the three languages
LCRS, LCRS or LICRS (up to permutation of the ports), but with a 2 atom smaller complex. Inverting
three or more letters always implies inverting two x- or two x-ports. So if ports are in blockade
with only one atom, it can only be one x-port and/or one x-port. Because |1111⟩ is in the GSM,
there can be no blockades between the ports. For the two inverted manifolds, this is not true. We
however assume, there is no such connection in the following cases and deal with it afterwards.

Let us now systematically exclude the existence of a CRS complex with N ≤ 9 atoms.

• N ≤ 5: The ports must be connected to a ancilla for the complex to be connected. With
N = 5 atoms the complex has the CPY GSM (with three copies) as MIS∗ which is not the
desired one.

• N = 6: If at least one port has degree two, it is connected to both ancillas. We can fix it to
be excited, rendering both ancillas not excited. Thus the other ports, which are connected
only to the as well are excited to minimize the energy (remember, we only look at irreducible
languages so ports do not have zero detuning). So one of the states |1010⟩ or |0101⟩ can
not be realized. ICRS is not possible with four atoms, as four unconnected ports are just
uncorrelated. So the CRS with 6 atoms where one x and one x-port have degree one is not
possible, So a N = 6 atom sized CRS complex where two ports are in blockade with only
one ancilla can not be realized. If only one port is connected to only one ancilla, we can
amputate it. The resulting CLCRS

can not be realized with 5 atoms as they again form a four
legged CPY complex and realize some MIS∗ of it as GSM.

• N = 7:

1. If two ports are in blockade with only to one ancilla, we amputate both. But ICRS can
not be realized with the remaining five atoms. Here one uses the same argument used
to show that CRS is not possible with five atoms.

2. If one port is in blockade with only one ancilla, we amputate it. Then CLCRS
with N = 6

atoms, where no port has degree one, must be realized:
This is impossible. Again, all ports must be connected to both ancillas so if one port is
excited the other are as well. Then |1101⟩ and |1000⟩, both of witch must be in GSM
L can not be realized.

3. If at least one port has degree three, it again blocks all ancillas, rendering the three
other ports uncorrelated.

4. The case where all ports have degree two remain. There are three non-isomorphic
bipartite graphs that connect sets of four (ports) and five vertices (ancillas), where all
ports have degree 2, and no double edges occur, fig. 3.7. There are no graphs with
free ancilla, as N = 6 crossings where all ports have degree 2 are not possible due to
the blockade rendering ports uncorrelated. An additional ancilla adds only energetic
constraints, none to the degrees of freedom coming from port-ancilla-blockades. The
graph in fig. 3.7c violates the Rydberg blockade. Port 1 has to be connected with
either port 2 or port 3 which would result in port-port blockades
(and one port having degree 3). In the graph in fig. 3.7b if port 1 is excited, port 2 is
excited as well. So they have to be both either x-ports or y-ports. Then however the
topological constraint is violated. The same is true for graph in fig. 3.7c. Here however
we can also choose ports 1 and 4 as x-ports, which would satisfy the topological
constraint. But if they are excited, ports 2 and 3 are as well, a CRS complex can not
be realized.

• N = 8:
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(a) (b) (c)

Figure 3.7: The remaining three classes of blockade graphs for the CRS complex on seven atoms
with ports of degree 2 and without disconnected ancillas. Ports (ancillas) are colored red (blue)
and connections between ancillas are omitted.

1. If two ports are in blockade with only one ancilla, we amputate them. So one has to
realise ICRS with N = 6 atoms where all ports have degree 2:
This is impossible because all four ports are connected to the same two ancillas, so if
one port is excited, the others are as well so states like |1100⟩, which are in GSMICRS

can not be realized.

2. If one port is blockade with only one ancilla, we amputate it and must realize LCRS

with N = 7 atoms where all ports have a degree larger than one:
This is not possible. If one port has degree three, it connects to all ancillas, rendering
the other ports excited again. If all ports are in blockade with two ancillas, the graphs
of fig. 3.7a and fig. 3.7a are the ones we need to check. (we already showed, that
fig. 3.7a violates the Rydberg blockade). But both have the property, that if three
ports are excited, all four are, thus they can not realize LCRS, as it contains states like
|1110⟩.

3. At least one port is in blockade with three ancillas. W.l.o.g let it be a x-port. We
can fix it to be excited. Therefore those three ancillas must be off. To realize a CRS

complex, one of the remaining ports has to be the second x-port and must be excited as
well, and the ports must be arranged to satisfy the topological constraint. This second
x-port is in blockade with at least two ancillas (otherwise it could be amputated).
There is only one ancilla not in blockade with the fixed port. So the second x-port has
to be in blockade with one (or more) of the three blocked ones. Then the topological
constraint is violated. Note that the fixed port is in blockade with additional ancillas,
but they are fixed to be not excited so these dummy ancillas don’t play a role in the
information flow.

4. All ports are in blockade with two ancillas. There are seven non-isomorphic bipartite
graphs that connect sets of four (ports) and five vertices (ancillas), where all ports have
degree 2, and no double edges occur, fig. 3.8. Again graphs with free ancilla do not
need to be considered. None of those can realize CRS, because the graphs in fig. 3.8b,
fig. 3.8c, fig. 3.8d, fig. 3.8f violate the topological constraint. The graphs fig. 3.8a,
fig. 3.8e, have the ports 1, 2, 3, where if two are excited, the third one is as well, in a
CRS complex only pairs of two can display this behavior (they are the (x-port,y-port)
pairs). The graph in fig. 3.8g has only one way to satisfy the topological constraint:
1 and 3 are the x-ports, 2 and 4 are the y-ports. But if the x-ports are excited, all
ancillas are blocked and the y-ports are excited as well and vice versa. So this graph
can not realize a CRS complex.

• N = 9:

1. If two ports are in blockade with only one ancilla, we amputate them. So one has to
realise a ICRS complex with N = 7 atoms where all ports have degree larger than 1:
If one port is in blockade with three ancillas, we fix it in the excited state. Then all
ancillas are off rendering the other ports excited as well. So in a complex with N = 7
atoms all ports have degree two. One can again check the graphs in fig. 3.7a and
fig. 3.7b. Both must realize the state where port 1 and port 4 are excited, the others
not. But if those two are excited, port 3 and 4 are excited in those graphs.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.8: The remaining seven classes of blockade graphs for the CRS complex on eight atoms
with ports of degree 2 and without disconnected ancillas. Ports (ancillas) are colored red (blue)
and connections between ancillas are omitted.

2. If there is one port with only one ancilla, we amputate it and must realize LCRS with
N = 8 atoms where all ports have a degree larger than one:
If one has degree three, we can fix it in the excited state. All other ports must be
connected to the remaining ancilla. So these remaining four atoms realize a CPY

complex a subset of the states {|000⟩ , |111⟩}. They should however realize |011⟩ or
|101⟩ (depending on which port was the amputated one). If all ports have degree two
one looks at fig. 3.8. The argument is the same as for why a CRS complex can not be
realized with them.

3. At least one port is in blockade with three ancillas. W.l.o.g let it be a x-port. We can
fix it to be excited. It blocks three ancillas, so two others remain. Because very port
has at least degree two, the other x-port can be in blockade with none or one of the
blocked ancillas, or it can be in blockade with both remaining ancillas. The first two
cases are the same as for a CRS-complex with N = 8 atoms. In the second case both
x-ports, (which are both excited due to the first one fixed and the second one copying
this state) block all five ancillas. So the remaining ports can both only be excited as
well, which is not the case for a CRS - complex.

4. All ports have degree two. Again we look at the graphs in fig. 3.3, where again graphs
with free ancilla do not need to be considered. The graphs in fig. 3.3b and fig. 3.3f
violate the topological constraint. The graph in fig. 3.3a can not realize a CRS- complex
as one can choose the three ports 1, 2 and 3, and if two are excited the third one is as
well. The graph in fig. 3.3c can not realize a CRS- complex, as it has to violate the
topological constraints. This is because fixing ports 1 and 4 excited makes ancillas 5
and 8 dummy ancillas, and no information can pass from 1 to 4. The graph in fig. 3.3d
can not realize a CRS- complex, because port 3 gets excited whenever either ports 1and
4 or ports 2 and 4 are excited. Such behavior can not occur for the ports of a crossing.
The graph in fig. 3.3e can not realize a CRS- complex. If ports 1 and 3 are, lets say,
x-ports, the must be excited the same time. Then however the y-port 2 is excited as
well. If ports 2 and 3 are the x-ports now, 1 and 4 are the x-ports. This labelling does
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not allow for the outer most ancilla to be in blockade and bring the complex to a circle
shape, because the labelling would violate the topological constraint. If they are open
however, one can reshape the line to a S-shape, which would allow for the topological
constraint to be satisfied. However fixing ports 2 and 3 excited, the complex has to
violate this constraint again as no information can pass from port 1 to port 4.

So we showed, that the CRS can not be realized with N = 9 atoms. Repeating this for N = 10
atoms requires for a ICRS complex to happen with N = 8 atoms where all ports have degree 2.
This however can not be excluded because the graph in fig. 3.8g can have the states of ICRS as
GSM. If two adjacent ports are excited (like 1 and 4 or 4 and 3) the remaining unblocked ancilla
can be excited, blocking the remaining two ports. Using the rotation symmetry of this graph, this
realizes all the states of LICRS. (see. fig. 2.3)c. To gap out the state |1111⟩, energetic constraints
must apply. The ancillas must have larger detunings than the ports. If the ports have detuning 1
this implies that the ancillas have detuning 3, so EGSM = −5. To gap out all states where at
least two ancillas are excited (which have E ≤ −6) we finally add the ancilla-ancilla- blockades:
all ancillas must be in blockade with each other. The realizing complex is shown in fig. 2.3c. In
fact it is the only one (up to the choice of port detunings) that can realize a ICRS with N = 8
atoms. Adding two NOT ports to two adjacent ports gives the depicted (not necessarily unique)
smallest CRS complex with N = 10 atoms.

The only thing left to discuss is, that LCRS and LICRS allow for blockades between ports. But both
languages require their complexes, to transfer information from the left side to the right side,i.e.
satisfy topological constraints. As shown in section 3.5.1, this can not happen when two ports
are in blockade.
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Chapter 4

Considering Van der Waals

In this thesis, complexes were constructed in the PXP model. In the following chapter we look at
the complexes with the Van der Waals interaction in mind. We check if, and how valid the PXP
approximation is for the found complexes. Lastly we take a look at potential string net vertex
complexes in a pure Van der Waals model.

4.1 Geometries of Complexes
So far we have optimized complexes by their size, that is the minimal number of atoms, they
require to realize a given language. We ended up with a blockade graph B, local detunings ∆ and
assigned ports l, that realize a desired language as ground state manifold (see section 1.5). In our
approach, these blockade graphs are unit disk graphs, where the ’unit’ is the blockade radius rB .
A geometry GC that realizes such a graph is called unit disk embedding of B. Whether such a
embedding exists or not is in general not clear, answering that question usually is NP-hard. So
far, it was only relevant, that a geometry and thus a unit disk embedding exists. When there
exists such a planar geometry GC = (ri)i∈V ∈ R2N ≡ CN that realizes a given blockade graph
B, there exist many of such geometries. In most cases, there is just some ’wiggle’ room for
the atoms. However there can be cases, in which there exist several valid geometries, that can
not continuously be transformed into each other without violating the blockade constraints, for
example:

2

This can lead to disconnected regions in the configuration space CN , that realize a given blockade
graph. In fig. 4.3b another similar thing happens: the atoms can break the symmetry and go
to different sides. So for a fixed geometry of each unit cell complex of a lattice, this can lead to
these complexes having different chirality.

To geometrically optimize a complex, we need to quantify what we mean by a ’good’ com-
plex. To this end we define a Γ : CN → R that quantifies the desired quality we seek to optimize.
One possible candidate would be

Γ̃(GC) =
δE

∆E
(4.1)

where δE and ∆E are the width and the gap of the ground state manifold (see fig. 1.6). However
this function (its configuration space) scales exponentially with the size of the complex N , because
we need to compute the low energy spectrum of the complex to evaluate it. Even with Ωi = 0
this the NP-hard QUBO problem (recall section 2.1). Furthermore, Γ̃ simply vanishes in the
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PXP-model when the blockade constraints are satisfied, because then = 0. So a finer optimization
function is needed, that can be directly computed from the complex itself: The Robustness.

4.2 Robustness as Optimization Parameter
To motivate the definition of the Robustness, we review the blockade radius in the PXP model: In
the limit of Ωi = 0, the blockade radius rB is the distance at which the Van der Waals interaction
matches its detuning, so C6 rB

−6
i = ∆i. The detunings vary from atom to atom in the complexes,

so their blockade radius changes. However, we like to work with a unique blockade radius rB , as
we have in all previous chapters of this thesis. In the following, we interpret a given blockade
graph B as the encoding of the constraints we would like to realize with a structure C of yet
unknown geometry GC .

We now introduce two dimensionless quantities. First, the robustness of a structure w.r.t. a
given blockade graph B = (V,E) is defined as

ξB(C) :=
min

(i,j)/∈E
d(ri, rj)− max

(i,j)∈E
d(ri, rj)

min
(i,j)/∈E

d(ri, rj) + max
(i,j)∈E

d(ri, rj)
, (4.2)

where d(ri, rj) denotes the Euclidean distance. The robustness is a scale-invariant, finite number
ξB(C) ∈ [−1, 1]. If ξB(C) > 0 the unit disc embedding GC realizes the blockade graph B for
blockade radii in some interval. The larger ξB(C), the more positional freedom the atoms have,
thus the embedding is more robust against atoms ’wiggling around’. Equivalently, more robust
embeddings realize the blockade graph for a wider range of blockade radii. Thus a robust
embedding is more valid in the Van der Waals model, as this allowed wider range separates
blocked atoms further from unblocked ones, leaving blocked atoms in the strong interacting
regime, and ones that are not in the low interacting regime. If ξB(C) < 0, the unit disk graph
induced by GC does not match the prescribed blockade graph B. Similarly, we define the spread
of a structure C as

s(C) := maxi rBi −mini rBi

maxi rBi +mini rBi

=
(maxi ∆i)

1/6 − (mini ∆i)
1/6

(maxi ∆i)1/6 + (mini ∆i)1/6
. (4.3)

The spread s ∈ [0, 1] quantifies the variations of the blockade radii due to the changing detunings
of the atoms. Just as eq. (4.2), the spread does not depend on the total length scale, neither does
it depend on the C6 coefficient of the Van der Waals interaction. We can now take into account
the variability of the blockade radius, and partly the Van der Waals model without abandoning
the PXP model: We call a structure C a valid implementation, if

s(C) < ξB(C) . (4.4)

This condition ensures, that the geometry GC can be scaled in a way, that all distances of atoms
that should (not) be in blockade according to B, are smaller (larger) than the smallest (largest)
blockade radius of the structure C. This condition is scale invariant, so we do not need to specify
rB and thus a length scale in the following. Not all complexes are valid. The one depicted in
fig. 6.2a has no valid geometry (note, that it is already optimal in the sense defined in section 4.3).
All other complexes in this thesis are valid, i.e. they have a valid geometry.

4.3 Numerical Optimization
These considerations suggest that the robustness ξB is a reasonable measure for the quality of
geometries. We set Γ = −ξB to maximize the robustness by minimizing Γ. As input we give
a blockade graph B, together with detunings ∆ and labels l. These are fixed and define the
functional properties of the complex. In particular, the spread s(C) is constant. We now optimize
for geometries that satisfy the validity constraint eq. (4.4), and that maximize the the margin
between spread and robustness. We call a complex C globally (locally) optimal if ξB(C) > 0 and
its geometry is a global (local) minimum of Γ in CN . For the minimization we use the SciPy
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implementation24 of simulated annealing, in combination with a local optimization that uses the
Nelder-Mead algorithm.25,26 The SciPy method is scipy.optimize.dual_annealing24,27,28

Our stochastic algorithm starts with a random initial geometry (that may, or may not realize
the blockade graph). However one can start from the ones given throughout this thesis, as they
are often close to the found optimum. The algorithm then completes iterations of jumps. Each
jump in CN is completed with a probability depending on the distance of the jump and the
variation of the objective function. The annealing is thus able to basin hop. The probability to
do so is high, as the search space is large (R2N for N atoms). After each jump, a local search is
conducted by the Nelder Mead algorithm. Note, that this algorithm does not use derivatives, and
it is non probabilistic. After ≲ 2000 iterations, the algorithm stops and returns the (potentially
global) minimum of the robustness, and the final geometry. Remember that the robustness is a
scale-invariant quantity, so that the scale of the optimized geometry is arbitrary. We thus can
renormalize the length scale by setting the blockade radius

rB :=
1

2

[
max

(i,j)∈E
d(ri, rj) + min

(i,j)/∈E
d(ri, rj)

]
!
= 1 . (4.5)

As we see in fig. 4.1c, there are atoms, that still have ’wiggle’ room in the optimized complex with-
out changing the robustness. This is because the robustness only looks for maximal blockades and
minimal ’un blocked’ distances. So the function has usually continuous valleys of minima,whose
complexes change by ’wiggling’ these atoms around. The source code is available at DaRUS.23

At first, we apply the algorithm to the logic primitives. All the logic primitives depicted
in section 2.2 and the crossing fig. 2.3 are optimal in the defined way, although we did not
construct them with that in mind. We also believe, that they are globally optimal, although we
did not prove this (the optimization can not provably return a global optimum). As depicted in
fig. 2.2, all logical gates are constructed from the three variations of the NOR gate (except XNOR
and XOR). All logical gates have thus the same robustness as the NOR-gate they are based upon.
In fig. 4.1, a random starting point is depicted (and in (c) the constructed gate) together with
the three optimal NOR gates. Their Robustness and their spread is shown. We find for these (and
thus all logical gates, including XNOR and XOR, which have the same triangle structure as one of
the NOR gates):

s(C(opt)
NOR△) = 0.058 < 0.268 = ξ(Copt

NOR△), (4.6)

s(C(opt)
NOR◦ ) = 0.058 < 0.236 = ξ(Copt

NOR◦), (4.7)

s(C(opt)
NOR ) = 0.0 < 0.0924 = ξ(Copt

NOR ). (4.8)

Note, that ξ(CNOR△) > ξ(CNOR). So the NOR complex based on triangles may be more robust in
some settings, than the ring shaped one. The optimized ICRS complex is depicted in fig. 4.4. The
optimized CRS complex is again the same as the optimized ICRS complex, with two amalgamated
NOT’s, which have some ’wiggle’ room. Lastly, we optimized string net unit cell complexes. The
found complexes are depicted in fig. 4.2 (surface codes) and fig. 4.3 (Fibonacci models). The
Fibonacci model unit cell depicted in fig. 2.8 is not valid as constructed. However the blockade
graph has a valid geometry. At this point note, that the described optimization is not reducible
to subcomplexes. However the shortest blockades occur within the unit cell complex, when
observing the presented tessellated lattices form fig. 2.4-fig. 2.11. So the interesting part are free
edges. However in the depicted unit cell complexes, each one has a free edge, that is just barely
outside the blockade radius, so only minor changes are to be expected when optimizing tessellated
languages.

4.4 Complexes in the Van der Waals Model
Lastly we notice, that complexes can be realized a lot smaller when using the additional degrees
of freedom from the real Van der Waals interaction. In fig. 4.5 the two vertex complexes for
the surface code and the Fibonacci model are depicted, where now the interaction between
the Atoms are given by the Van der Waals potential with C6 = 1. Note, that the complex
in fig. 4.5a also realizes the XOR gate. The atoms require only N = 4 atoms, in contrast to
the seven (surface code) and eight (Fibonacci model) atoms they need in the PXP model, and
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(a)

ξ(Copt
NOR△) = 0.268

ξ(CNOR△) = 0.088

s(C(opt)
NOR△ ) = 0.058

(b)

ξ(Copt
NOR◦) = 0.236

ξ(CNOR◦) = 0.111

s(C(opt)
NOR◦ ) = 0.058

(c)

ξ(Copt
NOR□) = 0.0924

ξ(CNOR□) = 0.0924

s(C(opt)
NOR□ ) = 0.0

Figure 4.1: Optimization (NOR gate). (a)2 and (b)2 Comparison of perturbed (black) and
optimized (red) geometries for the three minimal NOR-complexes. Maximum distance blockades
are highlighted yellow, minimum distances of unblocked atoms are indicated by dashed blue edges.
The optimal geometries are highly symmetric and match the manually constructed ones in fig. 2.1
and fig. 1.10c. Robustness for each complex is printed below the geometries and the spread on the
bottom of each column (we omit blockade graph indices). Note that ξ(Copt

NOR△) > ξ(Copt
NOR◦). This

makes the ’triangle version’ NOR△ potentially more robust than the ring-shaped NOR◦. For all
geometries the validity constraint s(C) < ξ(C) is satisfied. Note, that NOR has no spread, as all
detunings are the same. (c) The constructed third NOR gate from fig. 2.2 contains only blocked
edges of the same length. Thus we expect and find, that the optimization does not change the
robustness. However there are degrees of freedom. The ’top’ atom can thus ’wiggle’ a certain
amount, without changing the robustness, (in the constructed symmetric case depicted it is
placed, so that all blockade edges in the complex have the same length).

they share, up to scaling, the same geometry. The complexes still have degenerate ground
state manifolds. This suggests unit cell complexes, that are amalgamations of two copies of
these vertex complexes. This is the same procedure as for the PXP model. The resulting
complexes are depicted in fig. 4.6. Tessellating them would result in a honeycomb lattice where
one atoms sits on each vertex and edge - so quite simple. However a big point must be made:
The amalgamation does not work any more in the Van der Waals model, as there are residual
interactions between atoms from the amalgamated complexes. However, additional links can be
added with may reduce these interactions. Indeed, the unit cell complexes complexes in fig. 4.6
are not degenerate. For them we numerically23 find at best δE

∆E ≈ 0.2 by optimizing the detunings.

We close with a remark on a experimental note: Although the Van der Waals interaction
depicts the real physical setting instead of an approximation, these complexes may be harder
to realize, as they require an exact positioning and fixation of the atoms, which must be very
fine tuned (compared to the PXP model, where atoms can move around as long as they do not
violate the blockade graph). However an interesting advantage of the Van der Waals model is a
potential uniformity of detunings. The complex depicted in fig. 4.7 is a LNK complex, that can rise
detunings. So if a atom has detuning ∆ = 1, we can amalgamate this complex with it using port
A, and it gets a new detuning ∆ = 2 (the sum of the two amalgamated atoms). This is the same
detuning like the ancilla and the linked port B have. Such a LNK can not exist for the PXP model
because one of the two ground sates has odd, the other even ground state energy (as all atoms
have detuning two, except for one, which has detuning one). So by using this complex, circuits
can be realized with only one uniform detuning, which is useful for experimental applications, as
different detunings are hard to realize.
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(a)

ξ(Copt
NOR△) = 0.133

ξ(CNOR△) = 0.177

s(C(opt)
NOR△ ) = 0.058

(b)

ξ(Copt
NOR◦) = 0.180

ξ(CNOR◦) = 0.059

s(C(opt)
NOR◦ ) = 0.058

(c)

ξ(Copt
SCU ) = 0.133

ξ(CSCU) = 0.092

s(C(opt)
SCU ) = 0.058

Figure 4.2: Optimization of the surface code unit cell complexes. Comparison of perturbed (black)
and optimized (red) geometries for the three surface code unit cell complexes. The depicted
data is explained in fig. 4.1. For all geometries the validity constraint s(C) < ξ(C) is satisfied.
Note, that the complex in (c) has the same robustness as the one in (a).2 They share the same
maximum blocked edge, and the minimal free edge is barely larger than the blockade radius.

(a)

ξ(Copt
NOR△) = 0.161

ξ(CNOR△) = 0.080

s(C(opt)
NOR△ ) = 0.11

(b)

ξ(Copt
NOR◦) = 0.068

ξ(CNOR◦) = 0.059

s(C(opt)
NOR◦ ) = 0.058

(c)

ξ(Copt
SCU ) = 0.098

ξ(CSCU) = 0.070

s(C(opt)
SCU ) = 0.058

Figure 4.3: Optimization of the Fibonacci model unit cell complexes. Comparison of perturbed
(black) and optimized (red) geometries for the three Fibonacci model unit cell complexes. The
depicted data is explained in fig. 4.1. Note, that the unoptimized complex in (a)2 is not valid.
The blockade graph however has a valid geometry (the optimized one). For all other geometries
the validity constraint s(C) < ξ(C) is satisfied.
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ξ(Copt
ICRS) = 0.254

ξ(CICRS) = 0.155

s(C(opt)
ICRS ) = 0.091

Figure 4.4: Optimization of the ICRS complex. The optimized geometry for the ICRS complex.
Note, that it is almost the same as the unoptimized one, except the edges to the ports are rescaled,
so they match the longer ’diagonal’ edges. This reduces min(i,j)/∈E d(ri, rj). The depicted data is
explained in fig. 4.1. For all minimal and ICRS complexes in this thesis s(C) < ξ(C) is satisfied.

(a)

Vgreen = 0.75

Vblack = 36

1 1
1.25

1

A B

C

(b)

Vgreen = 0.5

Vblack = 14

1 1
1.5

1

A B

C

Figure 4.5: Surface code and Fibonacci vertex complexes. The detunings of complexes are red
numbers next to their atoms, the two possible distances between atoms are marked as black and
green edges. (a) The surface code vertex complex in the Van der Waals model. The complex also
realizes a XOR gate. Its ground state manifold is exact when enforcing the geometry as depicted.
All lengths are given in terms of the strength of the Van der Waals interaction with the coefficient
C6 = 1. Note, that Vblack ≫ 1, so it acts as effective Rydberg blockade. (b) The Fibonacci model
vertex primitive in the Van der Waals model. Note, that the complex has, up to scaling, the same
geometry as the surface code vertex primitive complex. Its ground state manifold is exact when
enforcing the geometry as depicted. All lengths are given in terms of the strength of the Van
der Waals interaction with the coefficient C6 = 1. Note, that Vblack ≫ 1, so it acts as effective
Rydberg blockade.
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(a)

1 1

1 1

1.25

1.25

2

(b)

1 1

1 1

1.5

1.5

2

Figure 4.6: surface code and Fibonacci model unit cell). The detunings of complexes are red
numbers next to their atoms. (a) The unit cell complex for the surface code in the Van der
Waals model, created by amalgamating two XOR gates from fig. 4.5. The complex is six atoms
smaller than its corresponding complex in the PXP model, making it almost half size. However
its ground state manifold is not degenerate. Optimizing it analytically and numerically23 lead
to δE

∆E ≈ 0.2. (b) The unit cell complex for the Fibonacci model in the Van der Waals model,
created by amalgamating two XOR gates from fig. 4.5. The complex is eight atoms smaller than
its corresponding complex in the PXP model, making it more than half size. However its ground
state manifold is not degenerate. Optimizing it analytically and numerically23 lead to δE

∆E ≈ 0.2.

Vgreen = 2.3, Vblack = 1.1, VAB = 0.1

A B1

2

2

2

Figure 4.7: The LNK complex in the Van der Waals model. The data is explained in fig. 4.5. With
the given distances of the atoms (lengths are again measured in interaction strength, see fig. 4.5),
the depicted complex realizes a LNK complex, that, when amalgamated, raises a detuning. That
means that if a atom has detuning ∆1, and it is amalgamated with port A of this complex, its
new detuning is ∆ = 2, which is the same as the one from port B (that has the same state as
the amalgamated atom), and from all ancillas. So all detunings is the system are now 2. The
degenerate ground state energy of this LNK is EGSM = −2.9, the gap is ∆E = 0.9.
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Chapter 5

Conclusion and Outlook

In this thesis we use arrangements of Rydberg atoms, called complexes, to realize logical languages
by exploiting the Rydberg blockade in the PXP model. The intrinsic logic of the Rydberg blockade
is the NOT logic. In this thesis we aimed to find all minimal complexes for all Boolean primitives
including a ’link’ LNK and a ’copy’ CPY. All these complexes can be realized with N ≤ 7 atoms.
We found, that complexes that realize inverted gates (like OR, which is an inverted NOR) differ by
size of one atom. This exploits the intrinsic negating nature of the blockade. In the second step
we developed vertex and unit cell complexes for string nets on a square or honeycomb lattice. The
investigated models are the surface code, which imposes Gauss’s law for a Z2 gauge theory with
a charge free background on each vertex, and a Fibonacci model, where, in addition, strings can
fuse at vertices. The non unique string net complexes contain N = 13 atoms (surface code) and
N = 15 atoms (Fibonacci model) on the honeycomb lattice. Some of complexes can be reduced
by removing a LNK in the center, which corresponds to contracting a edge in the honeycomb
lattice. The resulting complexes realize these models on the square lattice.

To find these complexes and to prove their minimal size, we developed an analytical method,
that exploits properties of the realizing language. This was complemented by a numerical
search for small complexes. The method reduces the problem of going trough all graphs by
ignoring blockades between ancilla and by reducing large graphs to smaller ones by performing
amalgamations or by evaluating subgraphs.

Finally we optimize complexes in hindsight of the Van der Waals interaction. The robustness
must be larger than the spread, which introduces the changing blockade radii due to the Van
der Waals model. We found, that all complexes except the one in fig. 6.2a have a valid geometry.
The logic primitives even are optimal by construction. Lastly we we depict the gates completely
in the Van der Waals model.

With that now have the tools at hand to realize Rydberg complexes for geometric programming
or to built string nets, that potentially can host topological phases, which can perform fault
tolerant (universal) quantum computing. In fact, such Rydberg arrays, emerge from geometric
programming, so we connected these two fields. This forms a good basis to continue the research
on the Rydberg complexes, as many interesting questions were raised during writing this thesis.
We thus conclude this thesis with some remarks on directions for future research:

Beyond the PXP model We briefly look at the Van der Waals model in the last chapter.
However the most important concept of our research, the amalgamation of complexes, fails, when
Van der Waals interactions are turned on, so the depicted complexes themself are not very useful.
Key here is the observation of the width δE when amalgamating complexes. In our model δE = 0.
This must no longer be the case in the Van der Waals model (look at the complexes depicted in
fig. 4.6). The most important amalgamation then is the amalgamation of LNK complexes, which
can be used to separate operational complexes from each other and reduce the width δE. How
the best complexes in the Van der Waals model look like is an open question.

Quantum phase diagrams In this thesis, we only studied the ground states of Hamiltonians
like eq. (1.36) without quantum fluctuations (Ωi = 0). As demonstrated in Refs,1 these fluctuations
in combination with the strong interaction of the blockade gives rise to interesting many-body
quantum phases at zero temperature. Thus, the natural next step could be to investigate the
quantum phase diagram of the spin liquid primitives and their tessellated lattices, for example
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numerically, using DMRG. The unit cell consists of N ≈ 15 atoms for the Fibonacci model, which
makes the analysis of two or three unit cells with it a feasible approach. Note, that, even with
additional LNK complexes in between, the unit cell primitives in the Van der Waals interaction are
≈ 5 atoms smaller, so an entire plaquette could be observed, if a small δE is taken into account.
Analytically, one could derive the effective Hamiltonians on the constructed low-energy manifolds
for finite but small Rabi frequencies Ωi ≪ ∆E in perturbation theory using a Schrieffer Wolff
transformation and examine the interactions in low energy subspace. Note, that the relative
strength of these interactions can depend on the specific complex used to implement the local
constraints. This raises the subsequent question whether these interactions can be tuned by
modifications of the used complexes.

Dynamical preparation In recent experiments,29 dynamical preparation schemes have been
used to drive long-range entangled many-body systems out-of-equilibrium. This can be done
with adiabatic protocols Ωi(t) and ∆i(t), where the Rabi frequency ensures the coupling of
different excitation pattern, the detuning increase continuously to its set target value. This
allows the preparation of the system given by our classical Hamiltonian eq. (1.38) in non trivial
superpositions of the low energy states. It would be interesting to study these effects on the
tessellated lattices presented in this thesis.
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Appendix

6.1 Appendix A: Brief Overview of Phases in the Landau
Paradigm

6.1.1 Classical Phases
To describe classical phases one uses Landau theory, so one defines an local order parameter which
locally describes the system. If this parameter is the same everywhere, the system is in a certain
phase. One can now change global system parameters like pressure or temperature. As long as
the system stays in a phase the order parameter changes smoothly. At certain critical parameters
(ex. critical temperature TC) the system can changes into a different phase. Formally this is
derived from the free enthalpy G. If S = ∂G(T,p)

∂T is not continuous, one has a phase transition of

the first order. If they are but Cp = ∂S
∂T

∣∣∣∣
p

= ∂2G(T,p)
∂T 2 are not, it is a second order transition. In

general, if G ∈ Cn in a neighbourhood of the t transition, the phase transition is of order n+ 1.
The symmetry of the system defines, how it ’looks like’ macro and microscopically (compare ice
and water). So the change of symmetry is key to classify phase transitions as we briefly discuss
in sec 6.1.2.

An example is the melting of ice. In ice and water the heat capacities are (almost constant)
over temperature. However at a critical temperature (273.5K = 0◦C as we know under normal
atmospheric pressure) the heat capacity is not continuous. But in addition, if we add heat at
that point, temperature stays (these are the famous 333kJ/kg). So ∆Q = T∆S implies a non
continuous change of Entropy at that point. That is clear as well because the symmetric ice
crystals break up. So melting is a phase transition of the first order. The above construction
is not limited to temperature as the example for a second order phase transition shows: The
transition from ferro- to paramagnetism at the Curie temperature. The free enthalpy at constant
pressure here is (see30 as source, and for more details)

G(T,M) = −SdT −MdH . (6.1)

Here the magnetisation M is the order parameter. expanding G in M one gets

G(T,M) = a(T − TC)M
2 + bM4 . (6.2)

The free enthalpy has to be at a maximum for the phase to be stable, so one gets

∂G

∂M

∣∣∣∣
T

= 2a(T − TC)M + 4bM3 !
= 0 , (6.3)

which leads to M = 0 for T > TC or M2 = −a(T−TC)
2b for T < TC . Notice that at these points

G = 0 for T > TC and G ∝ (T − TC)
2 for T < TC .so ∂G

∂T

∣∣∣∣
M

is continuous a t T = TC but ∂2G
∂T 2

∣∣∣∣
M

is not continuous at T = TC thus the phase transition is of second order.
Notice, that again a symmetry breaks at the transition, so the paramagnetic state, which is highly
isotropic (without, or weak external fields) breaks and the ferromagnetic state has a much lower
symmetry due to the ordered magnetic moments. Here however, the state has two ground states,
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in which it can decay (without external fields) depending on the orientation of the magnetic
moments. This is called spontaneous symmetry breaking.

Figure 6.1: G over M for T < TC . The symmetric state of M = 0 becomes unstable and there
are two stable ground states for the system with lower symmetry, in one of which the system can
spontaneously decay.

6.1.2 Quantum Phases and Spontaneous Symmetry Breaking

This section follow the lecture notes of N. Lang.31 All these observations can be transferred to
quantum phases as well. In this thesis it is always T ⇒ 0. The phase transition occurs due to
non commuting terms in the Hamiltonian, and the parameters of the Hamiltonian are the system
variables (and not T ). An example is the traverse Ising model in 1D given by

H = −J
L∑

i=1

σz
i σ

z
i+1 − h

L∑
i=1

σx
i , (6.4)

with the coupling strength J > 0 and the traverse field h > 0. Note that this is a (entangled
product of eigenstates of σz

i σi+1 :.) [σz
i σ

z
i+1, σ

x
i ] ̸= 0 so there are quantum fluctuations. The local

There are two regimes of the system.

J ≪ h and J ≫ h. In the first case the system is in the paramagnetic phase, all states
are oriented in x direction by h, leaving the z direction unaffected. The ground state thus is
G+ = |+++...+⟩, where |+⟩ is the eigenstate with eigenvalue +1 of σx in h-direction. Here
the correlation function lim|i−j|→∞ ⟨G+|σz

i σ
z
j |G+⟩ = 0 because the spins do not (very weakly)

interact in z direction so the system in this direction is non trivially unordered.
The case J ≫ h is the ferromagnetic phase. due to the strong spin interactions and the lack

of the external field the spins align, however the direction is arbitrary and dependent on the
orientation of the majority of spins, which is subject to fluctuations so it behaves chaotic. Either
way the general ground state is the superposition of the two degenerate gapped ground states
|G↑⟩ = |↑, ↑, .. ↑⟩ and |G↓⟩ = |↓, ↓, ... ↓⟩. So the ground state is |G⟩ = α |G↑⟩ + β |G↓⟩ and the
correlation function now becomes lim|i−j→∞ ⟨G|σz

i σ
z
j |G⟩ = 1, which is clear because all states

are aligned in the eigenbasis of σz, so it acts either as +1 or as −1 on both spin sites. Thus the
signs cancel and ⟨↑|↑⟩ = ⟨↓|↓⟩ = 1. So the system is ordered. However, σz

i is a site dependent
local order parameter so the system is not topologically ordered.

In the two cases above, the system is gapped, and the order parameter distinguishes them.
At the phase transition, the gap closes, because the higher non oriented states close it. In this
area, the correlation function based on the σz

i , the local order parameter, is continuous but
not differentiable. The system thus has a phase transition of second order. This implies that
with increasing field, the order by the interaction is destroyed, and a unordered system in z is
established. Thus the correlations go from 1 (perfect correlation) to 0 no correlation (continuous).

But as discussed in the previous section, when the system enters the ferromagnetic the spins
align thus the entire system becomes less symmetric. The spin alignment can be seen as more
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symmetric with a philosophical point of view, however the symmetry group of the Hamiltonian is

GS = {1, X}, with X =
∏
i

σx
i . (6.5)

This is because [σz
i σ

z
i+1, σ

x
i ] ̸= 0 due to the anti-commutation of the Pauli-matrices, products of

all [σz
i σ

z
i+1, X] = 0 because there are always two σx to anti commute with the two σz

i σ
z
i+1 so the

signs cancel. However there are no more operators to commute with H since all can be created
from Pauli matrices and this is the only operator that commutes with all products of two σz and
single σx. And since X |G+⟩ = |G+⟩ (because it is a product of +1-eigenstates of the σx

i ), this
is the symmetry ground of the paramagnetic phase. In the ferromagnetic phase however, it is
X |G↑ = |G↓⟩⟩ and X |G↓ = |G↑⟩⟩ (because σx flips the σz eigenstates.) So the symmetry group
GF of the ferromagnetic phase only is GF = {1} ⊊ GS . This is called spontaneous symmetry
breaking (SSB) because the states G↓ and G↑ break the symmetry and (also as described above)
the system is in a superposition and upon measurement collapses spontaneously into one of the
two orientations.

Famous examples of SSB are the breaking of the U(1) particle number symmetry in su-
perconductors, or breaking of the same U(1) symmetry of complex rotations in the (abelian)
Higgs-mechanism.

6.2 Appendix B: Uniqueness of the Blockade Graph of LXNOR

and LXOR

The minimal complexes do not have to be unique (see section 2.2). However the blockade graph
of the minimal LXNOR complex is.

Proof. The minimal blockade graph consists of N = 6 atoms, so lets assume, we have six atoms
at our disposal. We now try to construct a complex that realizes L⊙ = {001, 010, 100, 111}
systematically. Lets assume, there exists such a complex. Three cases can occur:

1. At least one port is only in blockade with one ancilla. We amputate it. The remaining 5
atoms must realize L⊙ = {101, 110, 000, 011}, which is impossible as proven in section 3.1.4.

2. A port is in blockade with all three ancillas. If it is excited, all ancillas are not, thus all
other ports are excited as well. But the states |100⟩, |010⟩ and |001⟩ must be realized, which
then can not work.

3. So all ports are in blockade with two ancillas. The three graph classes for this are depicted
in fig. 3.2. The first two graphs can be excluded from realizing the desired GSM, as they are
inconsistent with the states |100⟩, |010⟩ and |001⟩. So the graph fig. 3.2c remains. Without
additional blockades between ancillas, this graph can realize {000, 001, 010, 100, 111} ⊃ L⊙,
with its MIS∗.
Let ∆1,2,3 denote the detunings of the three ports and ∆̃1,2,3 the detunings of the three
ancillas (where ∆̃i describes the ancilla opposite of port i, fig. 3.2). In the state |100⟩ only
the first port is excited. Its opposite ancilla must be excited as well to block the two other
ports. To balance this state energetically with the state |111⟩, the detuning of the ancilla
must equal the sum of the detunings of its two adjacent ports. Due to the permutation
symmetry of L⊙ and the rotation symmetry of the “hexagon graph”, this argument is valid
for all three ancillas:

∆̃1 = ∆2 +∆3 , ∆̃2 = ∆1 +∆3 , and ∆̃3 = ∆1 +∆2 . (6.6)

Remember that all detunings are positive, which implies for any pair of ancillas

−∆̃i − ∆̃j < −∆1 −∆2 −∆3 = E111 . (6.7)

The state |111⟩ must be in the in the GSM so E111 is the lowest possible. To achieve this,
there have to be blockades between all pairs of ancillas to prevent two of them being excited
at the same time, lowering the energy of the GSM below E111. This yields the blockade
graph of the XNOR-complex depicted in fig. 2.1. The choices of the port detunings ∆i > 0
are arbitrary. The detunings of the ancillas are then fixed by eq. (6.6).
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We conclude that the blockade graph of the minimal realization of a XNOR-complex with six atoms
is unique up to the choice of the port-detunings. In addition, we proved that no strict superset
of L⊙ can be realized by a complex with six atoms or less (this is used in section 3.4). With
the same method, one can conclude, that the XOR complex has a unique realization with N = 7
atoms.

If one port has degree one, we amputate it. The resulting complex thus must realize a XNOR

logic (the result is the same, whether the amputated port is an in- or output). So in this case, we
get a unique XOR complex.

If a port has degree three, we fix it to the exited state. The remaining two ports and singe
ancilla must realize a LNK complex, because ports can not be in blockade with each other and the
language is irreducible. But the two ports must realize (10) and (01), so a NOT logic instead of a
LNK logic. So this case can not happen.

If all ports have degree two, we must look at the three graph classes depicted in fig. 3.5. These
can not realize the XOR logic for the same reasons they can not realize the vertex complex of
CFIB. So the presented seven atom XOR complex is unique (up to the aforementioned choice of
detunings).

6.3 Appendix C: Minimal Complex for Fibonacci Anyons
on a Square Lattice

In fig. 6.2 a minimal vertex complex for the Fibonacci model CMFMUSQ on a square lattice is depicted.
It consists of N = 12 atoms. Note that it is not valid in the sense of chapter 4.
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Figure 6.2: A minimal vertex complex for the Fibonacci model on a square lattice. (a) The
minimal vertex complex CMFMUSQ for the Fibonacci model on a square lattice. It has N = 12 atoms.
(b,c) Truth table and ground state manifold of the complex (the data is explained in fig. 2.1).
The ground state manifold realizes all configurations except ones where only one port is excited.
(d) Periodic tessellation CFIB of the complex CMFMUSQ. The copies are amalgamated at the ports of
the complex.

Lemma 10. The vertex complex (unit cell complex) CMFMUSQ of the surface code on the square
lattice cannot be realized with less than 12 atoms.

Proof. At first we look at the language, and how it behaves under inversion of ports. We find in
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the case of a square lattice

LFMU ≡



1111

1100

0011

1001

0110

0101

1010

0000

1110

1101

1011

0111



inv. 4. letter−−−−−−−−→ LFMU ≡



1110

1101

0010

1000

0111

0100

1011

0001

1111

1100

1010

0110



(6.8)

inv. 3. letter−−−−−−−−→ LFMU =



1100

1111

0000

1010

0101

0110

1001

0011

1101

1110

1000

0100



inv. 2. letter−−−−−−−−→ LFMU =



1000

1011

0100

1110

0001

0010

1101

0111

1001

1010

1100

0000



· · · (6.9)

Note, that inverting the first letter as well does not lead to the original language. Because these
languages are obtained by inverting ports, they can be realized by amputating or amalgamating
ports to the CMFMUSQ complex, and we only look at the amputation, as amalgamating would make
the complex larger. All of these languages contain either LSCU or LSCU as subset, so they require at
least N = 10 (or N = 9 atoms for LSCU.). All other cases were excluded kinematically, except the
cross class in fig. 3.3c, with which we deal separately. So if we amputate two ports, we have N = 9
atoms left to realize a complex that has to realize LSCU as sublanguage, which is not possible as
this has been ruled out kinematically (again, we deal with fig. 3.3c separately). So only the first
two languages are to be looked at. Because LFMU contains LSCU as subset, which requires at least
N = 11 atoms we only need to exclude all graph classes with N = 11 for LFMU and with N = 10
for LFMU.

• N = 11:

1. We start by proving, that LFMU can not be realized with N = 9 atoms. The only case
we need to look at is fig. 3.3c, as this class was only kinetically excluded from realizing
a CSCU. However we find:

E1111 = −∆1 −∆2 −∆3 −∆4

!
< −∆2 −∆3 −∆4 −∆5 = E0111 ⇒ ∆5 < ∆1 ,

(6.10a)

E0011 = −∆3 −∆4 −∆5 −∆8

!
< −∆1 −∆3 −∆4 −∆6 = E1011 ⇒ ∆5 > ∆1 .

(6.10b)

So this case is not possible.

2. We now show, that LFMU is not possible with N = 10 atoms. The classes are depicted
in fig. 3.4. Only the classes in fig. 3.4a and fig. 3.4c are to be checked. The other three
can be excluded immediately as one can find one (in fig. 3.4b) or two (in fig. 3.4d and
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fig. 3.4e) ports that, when excited, block all ancillas from a third port. So this third
port is excited as well. This is inconsistent with LFMU.
We exclude fig. 3.4a. Because {1111, 1110, 1101, 1011, 0111} ∈ LFMU, We have

∆5 = ∆1 , (6.11)
∆6 = ∆2 , (6.12)
∆7 = ∆3 , (6.13)
∆8 = ∆4 . (6.14)

Because (1100) ∈ LFMU, but (0011) /∈ LFMU, we can conclude, that ports 5 and 6 are in
blockade and ∆9 < ∆1 +∆2. This ensures that E1100 < E0011. But then

E0001 = −∆4 −∆7 + ϵ(0001) > −∆1 −∆2 −∆4 −∆7 = E1101. (6.15)

This is because ϵ(0001) equals either−∆5 or −∆6 or −∆7, all of which are smaller
than −(∆1 +∆2). So this graph class can not realize LFMU.
We now exclude fig. 3.4b. If ancilla 9 is only in blockade with the center atom, it is
always excited if a port is. So we use the identical argument we used for fig. 3.4a above.
Lets thus assume w.o.l.g., that 9 is in blockade with 6. We then find

E1011 = −∆1 −∆3 −∆4 −∆6

!
< −∆3 −∆4 −∆5 −∆6 = E0011 ⇒ ∆5 < ∆1 ,

(6.16a)

E0001 = −∆4 −∆5 −∆6 −∆7

!
< −∆1 −∆4 −∆6 −∆7 = E1011 ⇒ ∆5 > ∆1 .

(6.16b)

So again this class can not realize LFMU.
Lastly we must exclude a N = 10 atom class, where ports have degree three, from
realizing LFMU. Let us assume we have such a port. We fix it to the excited state thus
blocking all three ancillas. The remaining subcomplex containing N = 6 atoms must
realize the states (110), (101) and (011). These however require at least seven atoms,
so this setting is not possible.

3. Now we only need to exclude all classes with N = 11 atoms, where all ports have
degree ≥ 2, from realizing CMFMUSQ. At first we look at classes that have ports with
degree four. The argument to exclude these is exactly the same as used three lines
above.

4. The case of classes where all ports have degree two or three remains. We only look
at classes where only one port has degree three, as excluding them excludes all with
more such ports as well.
There are nine relevant classes to discuss. Two are fig. 3.4a and c, the other seven
are depicted in fig. 6.3. All other classes with free ancilla have connected parts of in
sum ten atoms, that have been excluded from realizing the surface code only with
kinematic constraints.
We can immediately exclude the classes in fig. 6.3c and fig. 6.3d, as we find port(s) in
them, that block all ancillas to another port. So if these port(s) are excited, the other
port is as well and this is inconsistent with LFMU.

– We deal with fig. 6.3a, which immediately excludes fig. 3.4a, as it is just obtained
from fig. 6.3a by removing a free ancilla and its degrees of freedom. w.o.l.g. let
11 be connected with 8 at first. Because (1111) and (1110) are ground states,
∆8 = ∆4 +∆11. Note, that ancilla 11 then can not be in blockade with ancilla 7,
because otherwise E1100 < EGSM (because that ancilla has detuning ∆8 = ∆4+∆11,
as E1110 = E1111, similarly ∆7 = ∆3 +∆11). The same argument implies, that
ancilla 11 can not be in blockade with ancilla 6 and with ancilla 5. We must realize
(1001), (1011) and (1101) as ground state. All this together implies :

E1001 = −∆1 −∆4 −∆6 −∆7 −∆11 = −∆1 −∆2 −∆4 −∆7 −∆11 = E1101 ,
(6.17)
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from which we can conclude ∆2 = ∆6 (and similarly ∆3 = ∆7), and that ancilla
6 can not be in blockade with ancilla 7. Then however E1000 = E1100, which is
again inconsistent with LFMU.
If 7 is in blockade with 8, then ∆10 = ∆3 +∆4. To prevent that E1100 < EGSM,
we have blockades between 7 and 10 and between 8 and 10. Then again the states
(1000) and (0100) are ground states which must not happen for LFMU.

– We now exclude fig. 6.3f. The argumentation is similar to the one above. Because
(1110), (1101) and (1011) are ground states, we can conclude that ∆2 = ∆8,
∆3 = ∆8 and ∆4 = ∆11. At first consider, that ancilla 11 is not in blockade
with ancilla 9. Then, because (1010) is a ground state, there can be no blockade
between 8 and 11, and, with the same argument, there is no blockade between 8
and 9. Then however E1000 = E1111 = EGSM, so (1000) is a ground state, which
must not be.
The case where ancilla 9 is in blockade with ancilla 11 remains. But then ancilla 9
and 11 cannot be both excited, so to realize (1100) as ground state, we must have
∆10 = ∆3 +∆4. But then

E1100 = −∆1 −∆2 −∆9 −∆10 < −∆1 −∆2 −∆3 −∆4 = E1111 = EGSM.
(6.18)

So (1100) is not a ground state, although for LFMU it must be.
– We now exclude fig. 6.3e. Again we can conclude, that ∆3 = ∆6, ∆1 = ∆5 and

∆2 = ∆9. To exclude (1000) from being a ground state, there must be at least one
blockade between either 5 and 6, or between 6 and 9, or between 9 and 5. If 5 is in
blockade with 6, we can not realize (0101) kinematically. So these blockades must
be between 5 and 9 or between 6 and 9. Lets assume there is a blockade between
5 and 9. To realize 0011 as ground state, we must have ∆7 = ∆1 or ∆7 = ∆2.
To exclude (0001) from being a ground state, there has to be a blockade between
either 7 and 6, or alternatively between 5 and 6. The second case restores the
situation above, which is already excluded. So let there be a blockade is between 7
and 6. To realize (0000) as ground state,ports 1, 2 and 3 must be not excited, for
this however ∆8 then must be excited. So ∆8 = ∆3 or ∆8 = ∆2. But switching
port 4 back on we again realize (0001) as ground state. so this class is excluded.

– We now exclude fig. 6.3g. If one of the free ancilla 9 and 10 are in blockade with
two ancillas besides 11, we can immediately exclude the class. To see this lets
assume ancilla 9 is in blockade with ancillas 5 and 6. Then to realize (0111) and
(1011) to be degenerate with (1111), (as both should be ground states), we find
that ∆5 = ∆1 +∆9 and ∆6 = ∆2 +∆9. But then

E0011 = −∆3 −∆4 −∆5 −∆6 + ϵ < −∆1 −∆2 −∆3 −∆4 −∆9 + ϵ = E1111,
(6.19)

where ϵ denotes energy contributions from ancilla 10. So (0011) is below the other
ground states. The cases where each of the free ancillas is in blockade with only
one of the other ancilla (and possibly the center ancilla 11) remains. This however
is similar to the case, where we have only one free ancilla.

– The class fig. 6.3b remains. Note, that we excluded this one also numerically
with a slightly changed version of the program introduced in section 2.1, by going
through all possible ancilla-ancilla blockades of the N = 7 ancillas.

However a analytical proof is given here. Again we see, that ∆1 = ∆5 and
∆2 = ∆7.
Let us first assume, that the ancillas in blockade with ports 3 and 4 are in blockade
pairwise (so 8 is in blockade with 9 and 10 is in blockade with 11). then one of
the two ancillas or both of them in blockade with the port must have the same
detuning than the port to realize (1110) and (1101). Lets assume only one ancilla
has the same detuning, and that this holds for both ports. Then they have to be
in blockade with each other. Otherwise either the state (1000) is a ground state,
or, to prevent this, we must imply a blockade between the mentioned ancillas of 3
(or port 4) and ancilla 7. Then the state (1001) is inconsistent with this blockade.
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Figure 6.3: The relevant seven classes of blockade graphs for the Fibonacci model vertex complex
on eleven atoms with ports of degree 2 and none or one port of degree three. Ports (ancillas) are
colored red (blue) and connections between ancillas are omitted.

Lets now assume, that one of the two ports 3 and 4, lets say port 3 has two ancillas
in blockade, which have the same detuning as it. Port 4 has still only one ancilla
with the same detuning at its own, lets say 10. The same argument as before still
holds, only now, both ancillas from port 3 are in blockade with the 10.
Lets assume, that for both ports 3 and 4, both ancillas have the same detuning as
the ports. Then there are two degenerate ways to realize (1101) and (1110) as
ground states, which is not consistent with LFMU.
Lastly we check what happens if the ancilla in blockade with ports 3 and 4 are
not in blockade pairwise. To realize (1110) and (1101) as ground states, that are
degenerate with (1111), we have ∆8 + ∆9 = ∆3 and ∆10 + ∆11 = ∆4. Then
however, none of the states, where only one of the two ancillas in blockade with a
ports 3 or 4 is excited, are ground states, because the system would be energetically
lower, if instead of this ancilla the adjacent port would be excited. Then the
two ancillas in blockade with the same port 3 or 4 are either both excited, or
both are not excited. So they act as a single atoms, however we already excluded
N = 9 atoms from realizing a LFMU-complex. This excludes fig. 6.3b from realizing
a LFMU-complex.
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