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Zusammenfassung in deutscher Sprache

Zu Beginn dieser Arbeit versuche ich einen möglichst leicht verständlichen Überblick über die in
dieser Arbeit behandelten Themen zu geben. Diese deutsche Zusammenfassung hat dabei den
Anspruch auch für nicht in der Physik ausgebildete Personen verständlich zu sein.
Ein guter Anfang hierfür ist der Titel der Arbeit: ”Properties of a supersolid in one dimension:
Study on the algebraic decay of correlation functions and the stability analysis of the supersolid
phase”.
Auf Deutsch übersetzen könnte man diesen Titel mit ”Eigenschaften eines Supersolids in einer
Dimension: Eine Studie über den algebraischen Zerfall der Korrelationsfunktionen und eine Sta-
bilitätsanalyse der supersoliden Phase”. Der erste spezielle Begriff der hier sofort ins Auge sticht
ist der des Supersolids. Ein Supersolid ist ein spezieller quantenmechanischer Materiezustand.
Um besser erklären zu können was genau ein Supersolid ausmacht, besprechen wir zuerst zwei
andere Materiezustände.
Der erste Zustand ist ein Kristall. Kristalle sind Festkörper, deren elementaren Bausteine
periodisch in einem Gitter angeordnet sind. Beispielhaft dafür ist Kochsalz: Dort bilden Cl−
und Na+ Ionen in einem periodischen Gitter den Salzkristall.
Der zweite Zustand den wir betrachten wollen ist wieder exotischer, da auch er quantenmecha-
nischer Natur ist. Wir betrachten hier ein sogenanntes Superfluid. Das übliche Beispiel für die
Superfluidität ist Helium bei Temperaturen nahe dem absoluten Nullpunkt. Die definierende
Eigenschaft ist hierbei, dass Superfluide keine innere Reibung besitzen, was einen verlustfreien
Fluss im Superfluid möglich macht.
Einem Supersolid liegt nun der folgende Gedanke zugrunde: Ist es möglich, die Eigenschaften
eines Superfluids mit denen eines Kristalls zu kombinieren, also einen Materiezustand zu erzeugen,
der sich sowohl durch Periodizität als auch einen verlustfreien Fluss auszeichnet? Auf den ersten
Blick scheint es unmöglich, dass Materie gleichzeitig fest und flüssig sein kann. Es wird plausibler
wenn man sich genau überlegt was fest und flüssig hier bedeuten. Ein Supersolid ist fest in
dem Sinne, dass eine periodische Struktur vorliegt. Würde man an einer Seite eines Supersolids
schieben, so würde sich die gesamte periodische Struktur verschieben wie man es auch von
einem Kristall erwarten würde. Gleichzeitig ist ein Supersolid superflüssig in dem Sinne, dass ein
verlustfreier Fluss in ihm existieren kann. Ein Atom aus dem Supersolid könnte also von der einen
zur anderen Seite des Supersolids fließen. Theoretisch vorhergesagt ist dieser Materiezustand
schon seit 1969, experimentelle Beweise existieren jedoch erst seit 2017.

In dieser Arbeit wird ein effektives Modell für ein Supersolid untersucht. Zunächst wird die
Wahl des Modellsystems anhand anderer Beschreibungen von Supersoliden motiviert. Daraufhin
wird das System charakterisiert, indem Korrelationsfunktionen berechnet werden. Korrela-
tionsfunktionen beschreiben einen Zusammenhang zwischen mehreren Größen. Ein einfaches
Beispiel für eine Korrelationsfunktion wäre: Wenn ich ein Atom an Position xA habe, mit
welcher Wahrscheinlichkeit finde ich dann auch eins an Position xB? Diese Korrelationsfunktion
ausgewertet für eine Flüssigkeit würde einen konstanten Wert für jedes paar Positionen ergeben.
Für einen Kristall ergibt sich ein anderes Bild. Falls die Positionen xA und xB der periodischen
Struktur entsprechen findet man bei xB auf jeden Fall auch ein Atom, falls nicht, findet man keins.
Anhand dieses Beispiels wird klar, dass Korrelationsfunktionen Information über das System
enthalten. Korrelationsfunktionen von besonderem Interesse sind diejenigen die zum Beispiel die
Superfluidität charakterisieren. Für diese erwarten wir dass sie sich wie |xA − xB|−α verhalten,
wobei α eine feste aber beliebige positive Zahl ist. Solches Verhalten nennt sich algebraischer
Zerfall.
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Der große Vorteil das Supersolid durch ein Modellsystem zu beschreiben ist, dass es so viel
einfacher ist den Effekt von Störungen am idealen Modell zu untersuchen. Dies lässt sich für die
Stabilitätsanalyse ausnutzen. Dafür werden bestimmte Störungen eingeführt und untersucht ob
diese das System beeinflussen. Mit der richtigen Wahl der Störung lassen sich dadurch Fragen
wie ”Lässt sich das System verschieben?” oder ”Existiert ein verlustfreier Fluss?” beantworten.
Damit lässt sich feststellen, für welche Parameter das Modellsystem tatsächlich ein Supersolid
beschreibt, und wo im Phasendiagramm sich der Übergang zu benachbarten Phasen befindet.
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Abstract

The concept of a supersolid is quite perplexing, as a system that has a periodic structure and is
superfluid at the same time defies our classical expectation. Even so, this state of matter was
predicted by theorists more than fifty years ago and, thanks to recent efforts, supersolids have
now also been observed in the lab.

In this thesis we are interested in further exploring the theoretical description of a supersolid.
We want to find out for what parameters in our models we actually obtain a supersolid. In order
to do this we move away from typical descriptions based on the Gross-Pitaevskii equation and
instead consider an effective Lagrangian, motivated by a paper by Josserand et al. With this
effective Lagrangian we can then employ the path integral formalism to readily obtain correlation
functions.
Further insights will prompt us to then switch to the Hamiltonian where we subsequently are
able to transform our model into two decoupled Luttinger liquids.

With the system now simplified, we turn to the question of when our model system actually
describes a supersolid. To answer this questions we use perturbations. We study the effects
of perturbations using renormalization group theory, where it is enough for our purposes to
consider only the perturbations only in lowest order. When choosing the proper perturbations
their relevance or irrelevance will tell us if we have the properties required of a supersolid or not.
Using this method we find several phases in the range of possible parameters: As expected there
is the supersolid, but there also exist a superfluid, solid and fluid phase in our model system.

V



Contents

1 Introduction 3

2 Supersolids 3
2.1 Symmetries and Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 A Note for 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Typical Theoretical Description of a Dipolar Supersolid . . . . . . . . . . . . . . 4

3 The Supersolid Model System 5
3.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Reduction to a 1D Quadratic Theory . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Connection to Physical Observables . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Studying the Model Lagrangian 9
4.1 Correlation Functions in the Path Integral Formalism . . . . . . . . . . . . . . . 10
4.2 Calculating Momentum Space Correlations . . . . . . . . . . . . . . . . . . . . . 11
4.3 Imaginary Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Real-Space Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Hamiltonian Treatment 17
5.1 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Parameter Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Connecting to the Original Parameters . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Expectation Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Stability Analysis 25
6.1 Renormalization Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Coupled Sine-Gordon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3.1 Periodic Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3.2 Impurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3.3 Josephson Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.4 Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.4.1 Phases in the Weakly Interacting Regime . . . . . . . . . . . . . . . . . . 39

7 Summary and Outlook 39

A Auxiliary Calculations for the Model Lagrangian 42
A.1 Real Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.2 Partial Fraction Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.3 Real Space Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B Auxiliary Calculation for the Hamiltonian Treatment 46
B.1 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.2 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.3 Complex Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
B.4 Full Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.5 Expectation Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.6 Parameter Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1



C Perturbations: Second Order 59
C.1 Impurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2



1 Introduction

Condensed Matter Physics concerns itself with the different phases of matter. From our everyday
experience we intuitively understand this concept, as there is an apparent difference between the
usual phases of solid, fluid and gas. The concept however is a much more general one and there
is a plethora of phases known to physicists. For instance one might study the phase diagram of
water some more and realize that gaseous and fluid water are not that different as well as for
high pressures notice many different types of ice. Looking at solids some more, one for instance
finds phase transitions from metals to superconductors or the transition between ferromagnetic
and paramagnetic phases in magnetic materials. From these examples alone one can see that
the concept is quite general. Physicists apply the label phase to something with distinct and
(usually) interesting properties. A more rigorous mathematical description of these phases is
introduced by Lev Landau in the form of Spontaneous Symmetry Breaking (SSB). Using this
concept we characterize phases by their symmetries. For a transition to occur then, one or more
of them must be spontaneously broken.
The typical example is again water. Looking at the liquid or gaseous phase we see that it has
translational invariance. This is just a fancy way of saying that at whichever position one looks
one sees the same thing: Water molecules floating around and bumping into each other. In the
solid phase (Ice) this is different. If one looks closely one observes a crystal structure. Thus there
is no translational invariance anymore, the system only looks the same if one moves it by an
amount perfectly corresponding to the crystal. If one wants to move from the liquid to the solid
phase, this translational invariance must be spontaneously broken

Physics in general can be either experimentally or theoretically driven. In the former there
is some new phenomenon or experimental data that leaves people baffled and scrambling to
explain it. In the latter, the development of a new theory or other mathematical tool allows new
predictions which people then try to verify in the lab. In the case of supersolids it was the latter.
The story begins with the discovery of superfluidity in liquid helium. The core property of a
superfluid is the ability to have a flow without dissipation, meaning the flow never stops. This is
demonstrated in experiments defying our very much classical intuition. After the discovery and
subsequent theoretical description, physicists began to theorize whether a crystal like material
could also have superfluid properties, thus bringing the idea of a supersolid alive.

The structure of this thesis is roughly as follows: First we will give an overview of supersolids
and give a usual theoretical description of a dipolar supersolid, as that is the system we can
actually observe in the lab. Then we will have a close look at the supersolid model we will base
our later calculations on. Subsequently we shall solve the simplified model and begin to lay out
perturbations to probe the stability of the superfluid. Finally we will calculate the effect of the
perturbations and determine the regions of stability in the supersolid model.

2 Supersolids

In this section we take a closer look at supersolids. We first look at properties of supersolids.
Although there have been new developments in the field of dipolar gasses ([1][2]), for a beginning
overview, [3] is still a good reference. This next part is based on their review.
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2.1 Symmetries and Order

As stated before a supersolid is supposed to have both the properties of a (crystalline) solid
and a superfluid. In more concrete mathematical language this means that a supersolid must
spontaneously break the characteristic symmetries of those two systems.

Solid In a (crystalline) solid, the spontaneously broken symmetry is translational invariance.
One can easily see this when comparing such a solid to a liquid: The liquid can be translated by
an arbitrary amount, it will still appear identical to an observer either way. For a solid however,
there exists structure. As such a translation which does ”nothing” must be one by exactly a
multiple lattice vector. To determine whether one is in a liquid or solid phase one can simply look
at the order parameter density ρ(r). With the average density n one can observe the quantity

ρ(r)− n (2.1)

which equates to zero for a uniform liquid phase but periodically oscillates in a solid. This
condition should hold for long range and thus one speaks of (density) long-range order (LRO) or
diagonal long-range order.

Superfluity The case of the superfluid is a bit more abstract. A usual description of a superfluid
is a interacting Bose-Einstein Condensate (BEC). There is a distinction between the two but it
is subtle and does not matter to us here. In a BEC all the constituent particles condense into
the same quantum mechanical ground state of zero momentum. This means the spontaneous
breaking of the U(1)-Gauge symmetry. In other words: One does not have the freedom to add a
position dependent phase to the state as the ground state is globally phase coherent. Having the
zero momentum mode macroscopically occupied

n(k) =
〈
ψ†(k)ψ(k)

〉
∝ n0δ(k) (2.2)

means that a macroscopic part of the system is delocalized. It is then less of a surprise that〈
ψ†(r)ψ(r′)

〉
→ n0 for

∣∣r − r′∣∣→∞ , (2.3)

which implies that a particle can be destroyed and then created again an arbitrary distance away.
This sort of order is called offdiagonal long-range order (ODLRO).

2.1.1 A Note for 1D

The comments of the previous section were made for a general superfluid. When going to low
dimensions there is the Mermin-Wagner theorem to consider. The general statement is that
continuous symmetries (such as U(1)) can not be spontaneously broken in dimensions d ≤ 2 at
finite temperature.
What we here are looking for instead is ”Quasi Long Range Order”, which still can be found
in one dimension for T = 0. This means our correlation functions won’t be constant but decay
algebraically with some exponent instead.

2.2 Typical Theoretical Description of a Dipolar Supersolid

Here, we briefly introduce a usual theoretical description of a dipolar supersolid in a harmonic
trap, which makes it effectively one dimensional. This is not a focus of this thesis. The reason
for introducing this description is to clarify the connection between the effective one dimensional

4



system we will treat later and the actual physical realization of a supersolid in the lab ([2],[1]).
Such systems are described by the effective theory which we will outline in this section.

This review here is a summary of parts of [4]. We begin with the description of a BEC.
Without interactions, theoretical description is simple as it works on the single particle level.
The ground state simply is the state where all the bosons condense in the lowest energy state
of the confining harmonic potential. When introducing interactions things become more tricky,
but this is a problem that has been extensively treated [5]. When written down in terms of field
operators, the problem is expressed as

i~∂tΨ = [Ψ,H] =
[
− ~2

2m∆ + Vext +
∫
dr′Ψ†V (r − r′)Ψ

]
Ψ. (2.4)

Further treatment requires approximations. The crucial thing about a BEC is the macroscopic
occupation of the single particle ground state. Expressed in equations this means the ground
state occupation fulfills N0 � 1 and N0/N finite with the total particle number N . Applying
the ground state creation or annihilation operator on this kind of state effectively leaves it
unaffected as N0 ± 1 ≈ n0. The operators can then just be approximated by their prefactor√
N0 ± 1 ≈

√
N0. The field operator is the sum of the single particle states with corresponding

creation/annihilation operators. The idea is now to separate the macroscopically occupied mode
from the field operator

Ψ = ψ + Ψ′ (2.5)

where ψ = 〈Ψ〉. This also fixes the density to n0 = |ψ|2. Ψ′ is a small contribution here and
is set to zero. A general potential V is still hard to treat. However, as an approximate case,
we consider only contact interaction in first Born approximation as well as dipolar interactions.
This leads to an approximate potential of the form

V (r − r′) = gδ(r − r′) + Vdd(r − r′) = gδ(r − r′) + 1− 3 cos2 θ

|r − r′|3
, (2.6)

where θ is the angle to the polarization direction. It turns out that for a useful description one
needs to include beyond mean field corrections to the BEC. Further reading can be found in [4].
This finally gives an effective description based on a extended Gross-Pitaevskii Equation (eGPE):

i~∂tψ =
[
− ~2

2m∆ + Vext + g |ψ|2 + Φdd + gqf |ψ|3
]
ψ , (2.7)

where
Φdd =

∫
dr′ψ†Vdd(r − r′)ψ . (2.8)

It is also important to note conditions for validity. With such a description we are in the weakly
interacting realm, where kinetic energy dominates over potential energy. This concludes the
brief outline we give of the description of a dipolar supersolid. The future goal, which we will
unfortunately not yet get to in this thesis, is then to connect the parameters of this kind of
description to the parameters of the model system which we will see later.

3 The Supersolid Model System

The goal of this thesis is to perform a stability analysis of this supersolid phase. To that end
the description introduced above is not as useful as an effective quadratic Lagrangian field
theory. There are several papers that introduce a Lagrangian for a supersolid. We will use an
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effective Lagrangian from a paper by Josserand et al [6] to motivate our further simplified model
Lagrangian. The description by Josserand et al explicitly explores periodically modulated ground
states. This is what we want as the GPE based description above also produces modulated
ground states in the right parameter range.

We will begin by summarizing the derivation of Josserands effective Lagrangian. The goal
here is to gain a more intuitive understanding of the physical meaning of the parameters in our
model system and to be able to define sensible observables.

3.1 Derivation

As stated before we now summarize calculations by Josserand. This gives us a better under-
standing how our later model system is connected to the more first principle calculations which
were outlined in the previous section. The system that is modeled here is a supersolid in three
dimensions without confinement. We begin with the Gross-Pitaevskii equation for a weakly
interacting BEC and a general interaction potential U

i~∂tψ =
[
− ~2

2m∆ + 1
2

∫
U
(∣∣r− r′

∣∣) ∣∣ψ (r′)∣∣2 dr′]ψ . (3.1)

This equation can be viewed as the Euler-Lagrange condition that makes the action S extremal.

S =
∫∫

dtdr
[
i~
2 (ψ∗∂tψ − ψ∂tψ∗)−

~2

2m |∇ψ|
2 −

∫
dr′U

(∣∣r− r′
∣∣) ∣∣ψ (r′)∣∣2 |ψ (r)|2

]
︸ ︷︷ ︸

L

. (3.2)

We now take the Ansatz
ψ = √ρeiφ , (3.3)

where ρ is positive and ρ as well as φ are dependent on time and position, and use it to rewrite
the Lagrangian as

L =
∫
dr

[
−
[
~ρ∂tφ+ ~2

2m

(
ρ (∇φ)2 + 1

4ρ (∇ρ)2
)]
− 1

2

∫
dr′U(

∣∣r − r′∣∣)ρ(r)ρ(r′)
]
. (3.4)

For this new Lagrangian the Euler Lagrange Equations are

∂tρ+ ~
m
∇ (ρ∇φ) = 0, (3.5)

~∂tφ+ ~2

2m (∇φ)2 + ~2

4m

(
(∇ρ)2

2ρ2 − ∇
2ρ

ρ

)
+
∫
dr′U(

∣∣r − r′∣∣)ρ(r′) = 0. (3.6)

Josserand et al point out that studies of superfluids based on equation 3.1 show periodicity after
a critical density. Motivated by this we now search for a ground state in the form ψ0e−iE0t/~,
where ψ0 is lattice periodic for some lattice vectors. Ground state means here that given an
average density the combination of lattice parameters and ψ0 has the smallest possible energy.
We should stress again that there is no external potential forcing the periodicity. It is an intrinsic
property instead.

An important distinction to classical crystals arises here. There we have an integer (or simple
fraction) number of atoms per unit cell. This is not necessarily the case here, where the lattice
parameters and the density are independent. There is now in total three sets of parameters for
the ground state: The average density n, the position of the lattice and the global phase. When
one considers low-frequency perturbations of this ground state these become the three slowly
varying fields n(r,t), Φ(r,t) and the displacement field u(r,t) of the lattice. In figure 1 we can see
an example how a possible ground state density might be constructed from these fields.
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ρ

x

n(x)

ρ0

u

x

Figure 1: An explanatory sketch of how the density ρ could be build up from the fields δn and u with
the help of ρ0. In principle the ground state could look totally different, the only restriction here is that
ρ0 must be a periodic function.

Effective Lagrangian The goal is now an effective Lagrangian for those three fields. The
technique used to do this is called Homogenization. It has its origin in fluid mechanics and is a
useful tool to separate the long range behavior from short range effects due to in our case the
lattice. This is particularly useful as our fields are in the approximation only supposed to be
slowly varying anyways.

The Ansatz for the density and phase is as follows

ρ(r,t) ≈ ρ0(r − u(r,t)|n(r,t)) + ρ̃(r − u,n,t) , (3.7)

φ(r,t) ≈ Φ(r,t) + φ̃(r − u). (3.8)

The φ̃(r − u) and ρ̃(r − u,n,t) are small and vary quickly compared to the three fields. Thus
begins the arduous task of inserting this Ansatz into the Lagrangian, collecting and simplifying
therms. We skip this part in this review, the interested reader is again referred to [6] and the
references within.

We obtain

Leff = −~n∂tΦ−
~2

2m

[
n (∇Φ)2 − ρik

(
∇Φ− m

~
Du

Dt

)
i

(
∇Φ− m

~
Du

Dt

)
k

]
−E(n)−1

2λijklεikεjl−µnεll
(3.9)

with
Du

Dt
= ∂tu+ ~

m
∇Φ · ∇u. (3.10)

The exact definition of the parameters is not relevant to us as we are only interested in their
physical meaning. If needed they can be found in [6]. The two definitions we want for later
replacements are

εik = −1
2(∂iuk + ∂kui) + 1

2∂lui∂luk, (3.11)

E(n) = µn− 1
2V

∫
drρ0(r)

∫
dr′U(

∣∣r − r′∣∣)ρ0(r′). (3.12)
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E(n) corresponds to an internal energy, solely dependent on n. µnεll is related to the compression,
µ the chemical potential and the Lagrange multiplier to the density. ρij can be interpreted as
the ”lattice part” of the supersolid since it has the property that in the considered cases of
ρij = ρ(n)δi,j for ρ(n)→ n the system behaves like a ordinary solid. λijkl as it is written in the
Lagrangian has the interpretation of an elastic density energy.

3.2 Reduction to a 1D Quadratic Theory

We now have obtained Josserands effective Lagrangian. The goal is now to use this as motivation
for our one dimensional quadratic model Lagrangian. We want to be able to compare to the
GPE based description from section 2.2 and to be able to apply the results to dipolar supersolids
in harmonic confinement. Making the Lagrangian quadratic lets us solve it analytically.

We begin by reducing the effective Lagrangian to one dimension

Leff = −~n∂tΦ−
~2

2m

[
n (∂xΦ)2 − ρxx

(
∂xΦ− m

~
∂tu− ∂xΦ∂xu

)2
]
− E(n)− 1

2λεxxεxx − µnεxx.

(3.13)
We consider only small perturbations in the three fields, up to quadratic order. For that purpose
we make the substitution n(r,t) → n + δn(r,t), where n is the average density and δn a local
variation with spatial average zero. From this point onward n will always refer to the average
density. There are several substitutions and simplifications to do:

• E(n): The first term µn drops out completely. After the substitution, there is one constant
term and one where the integral over it gives zero, both of which can be dropped. The
second term is of greater interest. It is quadratic in ρ0 and in case of U constant simplifies
to n(x,t)2. Again the terms we would keep would be (δn)2.
The replacement we choose is E(n)→ κ(δn)2, which corresponds to an attractive (for κ
positive) homogeneous interaction in the unit cell.

• ρxx: This quantity assumes the role of a parameter. As discussed previously, for ρxx → n
the system behaves like a ordinary solid. As such the replacement is ρxx → nL where nL is
a parameter that indicates the solid character of the system. Its range is zero to n.

• εxx: We only consider terms at most quadratic in the fields. As εxx never appears without
another field, we can simplify with the replacement εxx → −∂xu.

• µnεxx → ξδn∂xu: This replacement is only µ→ −ξ and applying the ones before. Terms
with the average density are dropped or incorporated into λ.

Applying these simplifications we arrive at the model Lagrangian density

L = −~δn∂tΦ−
~2

2m

[
n (∂xΦ)2 − nL

~2 (~∂xΦ−m∂tu)2
]
− κ

2 (δn)2 − λ

2 (∂xu)2 − ξδn∂xu. (3.14)

3.3 Connection to Physical Observables

Generally we are interested in calculating physically relevant expectation values in our system.
One reason for this is to possibly calculate the order parameters introduced in section 2.1. To
do this we need to be able to express the physically relevant fields through the fields contained
in our Lagrangian. The two important fields here are the phase field Φ and the density ρ. The
phase field is simple, as it is still part of the Lagrangian. The density is a bit more challenging
to consider. Keeping only the long range part from equation 3.7 we obtain

ρ ≈ ρ0(x− u(x,t)|n(x,t)) , (3.15)
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where ρ0(x|n) is a periodic function in x with period a and the corresponding reciprocal lattice
vector k0 = π/a. It can therefore be expanded in a Fourier series

ρ =
∑
m

cm(n)eimk0(x−u) (3.16)

with
cm(n(x,t)) =

∫
dyρ0(y|n(x,t))eimk0y. (3.17)

Considering only the longest range oscillations this reduces to

ρ ≈ n(x,t) + c1 cos (k0(x− u)) = n+ δn(x,t) + 2c1 cos (k0(x− u)) (3.18)

where we neglect the dependence of c1 on n(x,t) and replace it by only the average density n.
n(x,t) is an average or smeared density here. To get back a more discrete view of the density
operator we follow a procedure by Haldane [7]. We introduce a new field θ as the integrated
density

∂xθ = δn,

∫
dxδn = θ =⇒ θ + nx =

∫
dx′n(x′,t) . (3.19)

We reintroduce discretness by locating the particle at the points where the integrated density
has integer values.

n(x,t)→ n(x,t)
∑
j

δ(θ + nx− j). (3.20)

We can simplify further:

∑
j

δ(θ + nx− j) =
∑
j

∫
dk

2π eik(θ+nx−j). (3.21)

This term can be evaluated further using Poisson summation, yielding∑
j

δ(θ + nx− j) =
∑
l∈Z

e2πil(θ+nx) . (3.22)

Thus in total the replacement reads

n(x,t)→ n(x,t)
∑
l∈Z

e2πil(θ+nx) = n(x,t)
[
1 +

∑
l=1

2 cos (2πl (θ + nx))
]
, (3.23)

which gives us the final form of the density

ρ ≈ [n+ δn(x,t)]
[
1 +

∑
l=1

2 cos (2πl (θ + nx))
]

+ 2c1 cos (k0(x− u)) . (3.24)

4 Studying the Model Lagrangian

At this point in the thesis we have finished the fundamentals: We have the model Lagrangian and
understand its connection to more fundamental descriptions of a supersolid. We also know how
to write down physically meaningful correlation functions. The next step is to study the model
Lagrangian and to actually calculate correlation functions using the path integral formalism.
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4.1 Correlation Functions in the Path Integral Formalism

The great advantage of having an effective quadratic Lagrangian theory is that ground state
correlation functions are much simpler to calculate. We use the path integral formalism to
calculate correlation functions. This section provides only a brief overview about the most
important concepts, detailed introductions can be found in lecture notes or books such as [8],[9].
In the formalism we define a generating functional

Z[{Ji}] =
[∏
k

∫
Dφk

]
e
i
~S[{φj}]+

∫
dXJiφi , (4.1)

where the Ji are functions called sources and X = (t,x). The generating functional is closely
related to the partition function Z via Z = Z[{Ji = 0}]. Correlation functions are defined via
functional integrals as 〈∏

i

φi(Xi)
〉

= 1
Z

[∏
k

∫
Dφk

]∏
i

φi(Xi) e
i
~S[{φj}]. (4.2)

The generating functional can be used to find a different expression of the correlation functions〈∏
i

φi(Xi)
〉

= 1
Z

[∏
i

δ

δJi(Xi)

]
Z[{Ji}]

∣∣∣∣∣
Ji=0

. (4.3)

This is in principle hard to evaluate, but for a quadratic theory there are major simplifications.
Let us view the special case of a quadratic Lagrangian in the case of two fields and two dimensions,
so i ∈ {1,2} and Y = (t,x). Then the action is of the form

S[φ1,φ2] = 1
2

∫∫
dY dY ′

(
φ1(Y ), φ2(Y )

)
G−1(Y,Y ′)

(
φ1(Y ′)
φ2(Y ′)

)
(4.4)

= 1
2

∫∫
dY dY ′ vT (Y )G−1(Y,Y ′)v(Y ′) (4.5)

Under the assumption that G−1 is invertible (meaning G−1G = δ(Y − Y ′)) and symmetric, the
transformation ṽ = v− i~GJ gives

i

~
S[φ1,φ2]+

∫
dY Jv = 1

2
i

~

∫∫
dY dY ′ ṽT (Y )G−1(Y,Y ′)ṽ(Y ′)+1

2 i~
∫∫

dY dY ′ JT (Y )G(Y,Y ′)J(Y ′)
(4.6)

This transformation gives us a much simpler expression for the generating functional

Z[{Ji}] =
[[∏

k

∫
Dφ̃k

]
e
i
~(S[{φ̃j}])

]
e
i~
2

∫∫
dY dY ′ JT (Y )G(Y,Y ′)J(Y ′)

= Ze
1
2

∫∫
dY dY ′ JT (Y )[i~G(Y,Y ′)]J(Y ′) (4.7)

This allows us to calculate correlation functions easily, for instance the two point correlater〈
φi(X)φj(X ′)

〉
= i~Gij(X,X ′). (4.8)

In the same way one can calculate the Fourier transformed correlation

Z[{J i}] =
[∏
k

∫
Dφk

]
e
i
~S[{φj}]+

∫
dK

(2π)2
J
†
iφi = Ze

1
2

∫
dK
4π2 J†(K)[i~G(K)]J(K), (4.9)
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〈∏
i

φi(Ki)
〉

= 1
Z

[∏
i

(
4π2

) δ

δJ i(Xi)

]
Z[{J i}]

∣∣∣∣∣
Ji=0

, (4.10)

〈
φi(K)φj(K ′)

〉
= i~Gij(K)4π2δ(K +K ′). (4.11)

In similar fashion to X we define K = (ω,k). When calculating the expectation value of fields in
the exponent there is a great simplification one can make for a quadratic theory, which is usually
mentioned as a consequence of the Wick-Theorem:〈

exp
(∑

i

miφi(Xi)
)〉

= exp

1
2

〈[∑
i

miφi(Xi)
]2〉 . (4.12)

The proof of this is very simple in the path integral formalism. Simply observe that

1
Z
Z[{Ji}]

∣∣∣∣
Ji=−i~miδ(X−Xi)

=
〈

exp
(∑

i

miφi(Xi)
)〉

. (4.13)

But also

1
Z
Z[{Ji}]

∣∣∣∣
Ji=−i~miδ(X−Xi)

= exp

1
2
∑
i,j

mimj [i~G(Xi,Xj)]

 = exp

1
2

〈[∑
i

miφi(Xi)
]2〉 .

(4.14)

Generally, not setting the Ji to zero is a good way to calculate correlation functions which include
fields in the exponent.

4.2 Calculating Momentum Space Correlations

After the brief introduction to the path integral formalism we now proceed to calculate the
correlation functions of the quadratic Lagrangian

L = −~δn∂tΦ−
~2

2m

[
n (∂xΦ)2 − nL

~2 (~∂xΦ−m∂tu)2
]
− κ

2 (δn)2 − λ

2 (∂xu)2 − ξδn∂xu. (4.15)

The first thing to notice about this Lagrangian is that it consists of three fields. This is unexpected
since this Lagrangian describes a supersolid, which breaks two symmetries: The U(1) gauge
symmetry and translational symmetry. For each broken symmetry one expects a massless
Goldstone mode, so we would expect to see only two fields in the description. It turns out that
only two of our three fields are independent. δn becomes dependent quite naturally when we
transform to the Hamiltonian, as the Lagrangian does not contain its derivatives. To transform
to the Hamiltonian density, we first need the canonical momenta

Π = ∂L
∂ (∂tΦ) = −~δn,

p = ∂L
∂ (∂tu) = −nL (~∂xΦ−m∂tu) .

This gives the Hamiltonian density

H = ∂tΦ
∂L
∂∂tΦ

+ ∂tu
∂L
∂∂tu

− L (4.16)

= κ

2~2 Π2 + ~2

2mn (∂xΦ)2 + 1
2mnL

p2 + λ

2 (∂xu)2 − ξ

~
Π∂xu+ ~

m
p∂xΦ , (4.17)
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where we now only have two fields and two momenta, δn depending on the momentum Π. We
can obtain a Lagrangian that contains only two fields by simply transforming back. To do this,
we need Hamiltons equations of motion:

∂H
∂Π = − ξ

~
∂xu+ κ

~2 Π = ∂tΦ,

δH
δΦ = −~2

m
n∂2

xΦ− ~
m
∂xp = −∂tΠ,

∂H
∂p

= 1
mnL

p+ ~
m
∂xΦ = ∂tu,

δH
δu

= −λ∂2
xu+ ξ

~
∂xΠ = −∂tp.

This allows us to calculate

L = Π∂H
∂Π + p

∂H
∂p
−H (4.18)

= ~2

2κ (∂tΦ)2 − ~2

2m (n− nL) (∂xΦ)2 + mnL
2 (∂tu)2 − 1

2κ
(
λκ− ξ2

)
(∂xu)2 (4.19)

+ ~ξ
κ

(∂tΦ) (∂xu)− ~nL (∂tu) (∂xΦ) . (4.20)

The fact that we now only need to deal with two fields instead of three makes the calculation of
correlation functions simpler.

Dimensionless Units To further ease calculation we introduce dimensionless units.

φ1 := Φ, φ2 :=
√
nmκ

~
u, (4.21)

t̂ := κn

~
t, x̂ =

√
nmκ

~
x, (4.22)

E := κn, γ := nL
n
, ε1 := ξ

E
, ε2 := λ

En
, (4.23)

s0 =

√
~2n

κm
= ~
E
n

√
E

m
. (4.24)

This leads to our Lagrangian taking form

L(x̂,t̂) = En

2

[
(∂t̂φ1)2 − (1− γ) (∂x̂φ1)2 + γ (∂t̂φ2)2 −

(
ε2 − ε21

)
(∂x̂φ2)2

+2ε1 (∂x̂φ2) (∂t̂φ1)− 2γ (∂t̂φ2) (∂x̂φ1)

]
. (4.25)

We introduce the Fourier transform as

φi = F [φi] (ω,k) =
∫∫

dxdtφie
−i(kx+ωt), (4.26)

φi = F−1
[
φi

]
(x,t) =

∫∫
dk

2π
dω

2π φie
i(kx+ωt). (4.27)

This allows one to write the action as

S/~ = 1
~

∫∫
dxdtL = s0

∫∫
dx̂dt̂L(x̂,t̂) (4.28)

= s0
2

∫∫
dk̂

2π
dω̂

2π φ1φ
∗
1

[
ω̂2 − (1− γ)k̂2

]
+ φ2φ

∗
2

[
γω̂2 − (ε2 − ε21)k̂2

]
(4.29)

+ φ2φ
∗
1 [ε1 − γ] ω̂k̂ + φ1φ

∗
2 [ε1 − γ] ω̂k̂.
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This expression lends itself to a matrix form

S/~ = s0
2

∫∫
dk̂

2π
dω̂

2π
(
φ
∗
1 φ

∗
2

)( ω̂2 − (1− γ)k̂2 [ε1 − γ] ω̂k̂
[ε1 − γ] ω̂k̂ γω̂2 − (ε2 − ε21)k̂2

)(
φ1
φ2

)
(4.30)

= s0
2

∫∫
dk̂

2π
dω̂

2π
(
φ
∗
1 φ

∗
2

)
G−1(ω̂,k̂)

(
φ1
φ2

)
. (4.31)

As discussed in the previous section, to obtain the correlation functions one now only needs to
find G. This is relatively simple to write down as

G(ω̂,k̂) = 1
det(G−1(ω̂,k̂))

(
γω̂2 − (ε2 − ε21)k̂2 − [ε1 − γ] ω̂k̂
− [ε1 − γ] ω̂k̂ ω̂2 − (1− γ)k̂2

)
. (4.32)

One needs to be careful as not to forget to invert s0 as well. The correct generating functional
reads

Z[J1,J2] = Z exp
(
− i

2s0

∫
dK̂

4π2 J†(K̂)G(K̂)J(K̂)
)
. (4.33)

The determinant still needs to be calculated to have the full expression for G:

det(G−1(ω̂,k̂)) = γω̂4 + (1− γ)(ε2 − ε21)k̂4 −
[
γ(1− γ) + (ε2 − ε21) + (ε1 − γ)2

]
ω̂2k̂2 (4.34)

= γ
(
ω̂2 − v̂2

+k̂
2
) (
ω̂2 − v̂2

−k̂
2
)
, (4.35)

where
v̂2
± = 1

2γ

[
ε2 + γ − 2ε1γ ±

√
(ε2 + γ − 2ε1γ)2 − 4γ (1− γ) (ε2 − ε21)

]
. (4.36)

These are the same velocities that Josserand [6] also observes in his calculations (after accounting
for the substitutions we have made), which is a nice sanity check. Also we can see that one
obtains two real velocities (v̂2

± > 0) iff (ε2 − ε21) > 0 (see App. A.1). In figure 2 we show the two
velocities for a fixed γ. We can now explicitly write down the two point correlation functions

Figure 2: v̂2
± shown for fixed γ = 0.4 and variable ε1, ε2. The plot on the left shows v̂2

+ while on the
right v̂2

− is shown. Values are only given for ε2 − ε21 > 0 since only then both velocities are real. One can
see that v̂2

− goes to zero at that border.
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〈
φ1(ω̂,k̂)φ1(ω̂′,k̂′)

〉
= 4π2i

s0

γω̂2 − (ε2 − ε21)k̂2

γ
(
ω̂2 − v̂2

+k̂
2
) (
ω̂2 − v̂2

−k̂
2
)δ(k̂ + k̂′)δ(ω̂ + ω̂′), (4.37)

〈
φ2(ω̂,k̂)φ2(ω̂′,k̂′)

〉
= 4π2i

s0

ω̂2 − (1− γ)k̂2

γ
(
ω̂2 − v̂2

+k̂
2
) (
ω̂2 − v̂2

−k̂
2
)δ(k̂ + k̂′)δ(ω̂ + ω̂′), (4.38)

〈
φ1(ω̂,k̂)φ2(ω̂′,k̂′)

〉
= 4π2i

s0

− [ε1 − γ] ω̂k̂
γ
(
ω̂2 − v̂2

+k̂
2
) (
ω̂2 − v̂2

−k̂
2
)δ(k̂ + k̂′)δ(ω̂ + ω̂′). (4.39)

This can be written in a more compact form (see appendix A.2)

〈
φ1(ω̂,k̂)φ1(ω̂′,k̂′)

〉
= 4π2i

s0

[∑
±

α±11v̂±

ω̂2 − v̂2
±k̂

2

]
δ(k̂ + k̂′)δ(ω̂ + ω̂′), (4.40)

〈
φ2(ω̂,k̂)φ2(ω̂′,k̂′)

〉
= 4π2i

s0

[∑
±

α±22v̂±

ω̂2 − v̂2
±k̂

2

]
δ(k̂ + k̂′)δ(ω̂ + ω̂′), (4.41)

〈
φ1(ω̂,k̂)φ2(ω̂′,k̂′)

〉
= 4π2i

s0

[∑
±

α±12ω̂/k̂

ω̂2 − v̂2
±k̂

2

]
δ(k̂ + k̂′)δ(ω̂ + ω̂′). (4.42)

with

α±11 = ∓
1
γ (ε2 − ε21)− v̂2

±

v̂±
(
v̂2

+ − v̂2
−
) , (4.43)

α±22 = ∓1
γ

(1− γ)− v̂2
±

v̂±
(
v̂2

+ − v̂2
−
) , (4.44)

α±12 = ∓1
γ

[ε1 − γ]
v̂2

+ − v̂2
+
. (4.45)

There are two things to notice with these correlation functions: Firstly, they have divergences
at the characteristic velocities. That in itself is not a problem, but Fourier transforming then
becomes a tedious task. Here it is useful to use a Wick-Rotation and move to imaginary time.
This avoids the divergences and makes integration easier. The second thing to notice is the
peculiar form of the correlation functions. When comparing their form to textbooks like [8], they
appear to be the sum of two simpler correlation functions for free bosonic fields. This indicates
the existence of a transformation, which allows us to separate our Lagrangian into two simple
independent ones. Interesting is also that one of the fields appears like the canonically conjugate
field of the other. We shall first discuss the Wick-Rotation and imaginary time and then in the
next section look for the transformation.

4.3 Imaginary Time

Imaginary time might seem very odd at first, especially when trying to attach physical meaning to
the concept. However, as a mathematical tool it is incredibly useful, as it simplifies calculations
enormously. Take for instance the integrals with integrands ∼ 1/(ω̂2 − v̂2

±k̂
2). A switch to

imaginary time would in this case give integrands ∼ 1/(q̂2 + v̂2
±k̂

2), which gets rid of most
of the divergences. A sketch of this is presented in figure 3. We can see there that for each
fixed k̂ the integration with real and imaginary time gives the same result (after taking care
of the divergences correctly) due to contour integration. The only thing to be careful about is
the divergence at the origin: As long as it exists we can not rotate the original plane into the
imaginary time plane without crossing a divergence. Also we would still have a divergence in the
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k

<(ω)

=(ω)

Divergences

<(ω)

=(ω)

|k| = |ω|

Slice

Figure 3: Integration domains before and after imaginary time is introduced. On the left one can see a
slice of the right sketch for one fixed k. The integration paths for real and imaginary time can be seen to
give the same result due to complex contour integration.

new integration domain. As it turns out, correlation functions with a divergence at the origin
are not physical and do diverge. This gives some confidence that we can switch to imaginary
time for the calculation of correlation functions. The argument presented here is not rigorous
and one should still be careful when analyzing the results.
We now introduce imaginary time as

τ = it, t = −iτ, (4.46)

which then means for the derivatives

∂τ = −i∂t, ∂t = i∂τ . (4.47)

These definitions also make clear that imaginary time is made dimensionless exactly the same
way normal time is. This gives the new Lagrangian

L(x̂,τ̂) = En

2

[
− (∂τ̂φ1)2 − (1− γ) (∂x̂φ1)2 − γ (∂τ̂φ2)2 −

(
ε2 − ε21

)
(∂x̂φ2)2

+2iε1 (∂x̂φ2) (∂τ̂φ1)− 2iγ (∂τ̂φ2) (∂x̂φ1)

]
. (4.48)

We can again write down the Fourier transformed fields

φi = F [φi] (q,k) =
∫∫

dxdτφie
−i(kx+qτ), (4.49)

φi = F−1
[
φi

]
(x,τ) =

∫∫
dk

2π
dq

2πφie
i(kx+qτ), (4.50)

and then directly see the new action from this

S = iS/~ = s0
2

∫∫
dk̂

2π
dq̂

2π
(
φ
∗
1 φ

∗
2

)( −q̂2 − (1− γ)k̂2 i [ε1 − γ] q̂k̂
i [ε1 − γ] q̂k̂ −γq̂2 − (ε2 − ε21)k̂2

)(
φ1
φ2

)

= −is0
2

∫∫
dk̂

2π
dq̂

2π
(
φ
∗
1 φ

∗
2

)
G−1(q̂,k̂)

(
φ1
φ2

)
. (4.51)

With the determinant

det
(
G−1(q̂,k̂)

)
= γ

(
q̂2 + v̂2

+k̂
2
) (
q̂2 + v̂2

−k̂
2
)
, (4.52)
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we then also trivially know the inverse

G11(q̂,k̂) = −
∑
±

α±11v̂±

q̂2 + v̂2
±k̂

2
, (4.53)

G22(q̂,k̂) = −
∑
±

α±22v̂±

q̂2 + v̂2
±k̂

2
, (4.54)

G12(q̂,k̂) = −i
∑
±

α±12q̂/k̂

q̂2 + v̂2
±k̂

2
. (4.55)

Finally this gives the two point correlators

〈
φ1(q̂,k̂)φ1(ω̂′,k̂′)

〉
= 4π2

s0

[∑
±

α±11v̂±

q̂2 + v̂2
±k̂

2

]
δ(k̂ + k̂′)δ(q̂ + q̂′), (4.56)

〈
φ2(q̂,k̂)φ2(ω̂′,k̂′)

〉
= 4π2

s0

[∑
±

α±22v̂±

q̂2 + v̂2
±k̂

2

]
δ(k̂ + k̂′)δ(q̂ + q̂′), (4.57)

〈
φ1(q̂,k̂)φ2(ω̂′,k̂′)

〉
= 4π2

s0
i

[∑
±

α±12q̂/k̂

q̂2 + v̂2
±k̂

2
.

]
δ(k̂ + k̂′)δ(q̂ + q̂′). (4.58)

For further simplicity when calculating future correlation functions we write down the generating
functional

Z[{J i}] =
[∏
k

∫
Dφk

]
eS+

∫
dQ

4π2 φiJi = Z exp
(
− 1

2s0

∫
dQ̂

4π2J(Q̂)G(Q̂)J(Q̂)
)
, (4.59)

with Q̂ = (q̂,k̂) as well as the definition for observables〈∏
k

φk(Q̂k)
〉

=
[∏
k

4π2 δ

δJk(Q̂k)

]
Z[{J i}]

∣∣∣∣∣
Jk=0

. (4.60)

4.4 Real-Space Correlations

With this it is now also possible to calculate the real-space (but still imaginary time) correlation
functions by Fourier transforming again. One can see that the simple quadratic correlations
diverge: 〈

φi(X̂)φi(X̂ ′)
〉

=
∫

dQ̂

4π2
1
s0

[∑
±

α±11v̂±

q̂2 + v̂2
±k̂

2

]
eiQ̂(X̂−X̂′) =∞. (4.61)

This is not to much of a concern, as these do not constitute observables. More interesting are
terms of the form

1
2
〈

(φi(X̂)− φi(X̂ ′))2
〉

= 1
s0

∫
dQ̂

4π2

[
1− cos(Q̂(X̂ − X̂ ′))

] [∑
±

α±11v̂±

q̂2 + v̂2
±k̂

2

]
. (4.62)

These still diverge, but there is a distinction now. The first integrand had a divergence at zero
but also did not tend to zero quickly enough in the limit of |Q̂| → ∞. The second integrand
fixes the first but still has the later issue. However,this is where we can begin arguing from a
physical point of view that there is need for a short range cutoff, since our effective theory is
not expected to describe the system precisely at short range. We can then introduce a short
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range cutoff, which in turn leads to a UV cutoff α in momentum space. For ease of calculation
we choose this cutoff as

e−α̂|k̂|. (4.63)

With the integral now convergent we can calculate this correlation function. The calculation can
be found in appendix A.3. The result obtained is

1
2
〈

(φi(X̂)− φi(X̂ ′))2
〉

= 1
2πs0

∑
±
α±ii ln

(√
(1 + v̂± |∆τ̂ | /α̂)2 + (∆x̂/α̂)2

)
. (4.64)

For ((∆x̂)2 + (∆τ̂)2)/α̂2 � 1, this is approximated by

1
2
〈

(φi(X̂)− φi(X̂ ′))2
〉
≈ 1

2πs0

∑
±
α±ii ln

(√
v̂2
± |∆τ̂ |2 /α̂2 + (∆x̂)2 /α̂2

)
. (4.65)

This kind of correlation function also has physical meaning. In section 2.1 we introduced
off-diagonal long range order, the correlation function this order is tied to is〈

ψ(X)ψ†(X ′)
〉

=
〈√

ρ(X)ρ(X ′)ei(Φ(X)−Φ(X′))
〉
. (4.66)

When we consider only the longest range contribution to this expectation value this simplifies to〈
ψ(X)ψ†(X ′)

〉
≈ n

〈
ei(Φ(X)−Φ(X′))

〉
= ne−

1
2〈(Φ(X)−Φ(X′))2〉. (4.67)

This means that with the result from above we obtain in the limit ∆x→∞

〈
ψ(x)ψ†(x′)

〉
≈ n

∣∣∣∣∆x̂α̂
∣∣∣∣−
∑
±

1
4πs0

α±11
. (4.68)

We see that we do have quasi off-diagonal long range order.

5 Hamiltonian Treatment

As mentioned in section 4.2 before, the correlation functions we have calculated before look
suspiciously similar to correlation functions for 1D free bosonic fields. To be more precise, φ1 and
φ2 seem like conjugate fields in these correlation functions. With conjugate we mean something
along the lines of [∂xφ1,φ

′
2] ∼ δ(X −X ′) (see again [8]). This intuition turns out to be correct,

in the following we describe the transformation.
The goal of this section is to find a way to simplify the problem. We have technically solved

the problem on the Lagrangian side, however certain correlation functions containing terms such
as δn are unpleasant to evaluate. The goal is still to analyze perturbations, simplifying the
problem now will make this much easier later.

5.1 Transformation

With this motivation let us begin by first restating the Hamiltonian we have thus far

H = κ

2~2 Π2 + ~2

2mn (∂xΦ)2 + 1
2mnL

p2 + λ

2 (∂xu)2 − ξ

~
Π∂xu+ ~

m
p∂xΦ . (5.1)

In line with our motivation, we now define a ”new” field and its canonical conjugate

∂xθ = −1
~

Π, ∂xΦ = −1
~

Πθ. (5.2)
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As the observant reader may have noticed, this field is not exactly new as we have introduced
it in section 3.3 already, then motivated by Haldane [7]. The fact that this field has a physical
meaning already leads us to favor this definition instead of trying a similar approach with the
second field u.

To more precisely state the motivation: When considering the correlation functions from
section 4.2 and comparing them to the usual correlation functions for Luttinger Liquids, the two
fields seem to be different. One is conjugate to the other. With this definition we switch one of
the fields for its canonical conjugate. We can hope that this allows us to treat the fields more
easily in the Hamiltonian framework, as they now ”serve the same purpose”.
The second motivation is that this replacement separates the momenta and coordinates in the
Hamiltonian.
Before that we still need to check the validity of our slightly unusual replacement. We begin
with the known commutator [

Π,Φ′
]

= δ(X −X ′), (5.3)

where it is obvious that interchanging X and X ′ has no effect. Here Φ′ is short for Φ(X ′) . Now
consider

∂x′
[
Π,Φ′

]
= −1

~
[Π,Πθ] = ∂x [θ,Πθ] . (5.4)

The left hand side is known and especially also

∂x′δ(x− x′) = −∂xδ(x− x′) (5.5)

In total we can now conclude that θ and Πθ are canonically conjugate, as (theoretically only up
to a constant)

[Πθ,θ] = δ(x− x′). (5.6)

As we now know that the transformation is in a sense canonical, we can proceed by writing down
this new Hamiltonian

H = κ

2 (∂xθ)2 + n

2m (Πθ)2 + 1
2mnL

p2 + λ

2 (∂xu)2 + ξ∂xθ∂xu−
1
m
pΠθ. (5.7)

We can now conveniently write this Hamiltonian in matrix form and switch to dimensionless
units

H = n

2m
(

Πθ p/n
)( 1 −1
−1 1/γ

)(
Πθ

p/n

)
+ κ

2
(
∂xθ ∂x(nu)

)( 1 ε1
ε1 ε2

)(
∂xθ

∂x(nu)

)
(5.8)

= 1
2
~2n3

m

(
Π̂θ p̂

)( 1 −1
−1 1/γ

)(
Π̂θ

p̂

)
+ 1

2κn
2mκ

n~2

(
∂x̂θ̂ ∂x̂û

)( 1 ε1
ε1 ε2

)(
∂x̂θ̂
∂x̂û

)
(5.9)

= 1
2κn

2
[
n~2

mκ
vT1 M1v1 + mκ

n~2 v
T
2 M2v2

]
. (5.10)

In this context û = nu, Πθ = ~nΠ̂θ and p/n = ~np̂ (also θ̂ = θ for aesthetic consistency).

Canonical Transformation Our aim now is to find another canonical transformation that
simultaneously diagonalizes both M1 and M2. If both matrices would be diagonalized by the
same orthogonal transformation the problem would be simple. However, we know that two
matrices have a common Eigenbasis (e.g. are simultaneously unitarily diagonalizable) only if
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they commute. This is in general not the case for our two matrices. The idea that works here is
to use scaling transformations

Π̂′θ = 1
s1

Π̂θ θ̂′ = s1θ̂

p̂′ = 1
s2
p̂ û′ = s2û.

In matrix form this reads

S =
(
s1 0
0 s2

)
, S−1 =

(
1/s1 0

0 1/s2

)
. (5.11)

We use the scaling transformation to make the matrices commute. This allows us to simultaneously
diagonalize them with an orthogonal transformation W as the matrices are symmetric. It turns
out that we need another scaling transformation Q afterward to get rid of the imaginary units we
have picked up during the transformation. As this calculation is quite lengthy it can be found in
appendix B. The first scaling is applied in appendix B.1, the diagonalization is done in appendix
B.2 and the final scaling is applied in appendix B.3.

The full transformation is then given by

Wφ = QW TS, WΠ = Q−1W TS−1, (5.12)

where Wφ transforms the fields to the new ones while WΠ does the same for the momenta. Both
can be found in appendix B.4. Generally for a canonical transformation, we want to conserve
the commutator. Say for instance we have Π′i = UijΠj and φ′k = Pklφl. Then the commutator
would read [

Π′i,φ′k
]

= UijPkl [Πj ,φl] = Uij(P T )jk
!= δik. (5.13)

This condition in matrix form is UP T = I. In our case we calculate

WφW
T
Π = QW TS(S−1)TW (Q−1)T = I (5.14)

and see that this kind of transformation is canonical.

Summarizing the calculations in the appendix, we find a new diagonal Hamiltonian of the
form

H = 1
2κn

2∑
±

[
λ1±Π2

± + λ2± (∂x̂φ±)2
]
, (5.15)

where the eigenvalues (with δ = ±) are

λ1δ = Q2
δsign (γ − ε1)

2
√
γ |(ε2 − ε1) (γ − ε1)|

[
(γ + ε2 − 2ε1) + δ

√
∆
]
, (5.16)

λ2δ = Q2
δsign (ε2 − ε1)

2
√
γ |(ε2 − ε1) (γ − ε1)|

[
(2ε2γ − ε1 (ε2 + γ))− δε1

√
∆
]
. (5.17)

and
∆ = (γ − ε2)2 + 4γ (ε2 − ε1) (γ − ε1) . (5.18)

Additionally

Q2
δ =

{
−1 if sign (γ − ε1) = −δ ∧ sign (ε2 − ε1) = δ
1 else =

{
δsign (γ − ε1) if Q2 = −1

1 else .

(5.19)
The definition of the new fields can be found in section 5.3.
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5.2 Parameter Analysis

Now that the the Hamiltonian has been separated, we shall take a look at the parameters
and bring them in to a more commonly used form, which is convenient for further study and
comparison. To begin with we analyze the sign of the eigenvalues, starting with λ1±. To that
end we evaluate the sign of the term in brackets in equation 5.16. Luckily, after some calculation
we see that(

γ + ε2 − 2ε1 +
√

∆
) (
γ + ε2 − 2ε1 −

√
∆
)

= 4 (1− γ) (ε2 − ε1) (γ − ε1) .

This tells us that if the rhs. of this equation is negative, the sign of λ1δ will be δ. Otherwise the
sign is determined by γ + ε2 − 2ε1. Outside of the case that either of λ1δ = 0 we have that

sign
(
γ + ε2 − 2ε1 + δ

√
∆
)

=
{

δ if Q2 = −1
sign (γ + ε2 − 2ε1) if Q2 = 1 . (5.20)

We now want to simplify the case Q2 = 1. To do that let us have a look at figure 4. It shows the

ε1

ε2

γ

−γ

γ

ε2 < 2ε1 − γ
ε2 > 2ε1 − γ

2ε1 − γ

Q = i

Figure 4: Sketch of the parameter space to illustrate replacements

space of parameters ε1 and ε2. The green shaded region is when Q2 = −1. On the non shaded
region on the left the sign expression in 5.20 equates to +1. On the right it becomes −1. We can
now immediately see that there are a lot of lines we can draw through the shaded region which
all give this result. In particular sign(ε1 − γ) gives the same sign as sign (γ + ε2 − 2ε1) in the
non shaded region. With that and equation 5.19 we can rewrite equation 5.20 as

sign
(
γ + ε2 − 2ε1 + δ

√
∆
)

=
{

δ if Q2 = −1
sign (γ − ε1) if Q2 = 1 = sign (γ − ε1)Q2

δ . (5.21)

This implies that
sign(λ1δ) = 1.

We turn our attention to λ2δ. To that end we calculate

λ1δλ2δ = 1
2γ
[
γ + ε2 − 2γε1 + δ

√
∆
]
, (5.22)

and also
1

4γ2

[
γ + ε2 − 2γε1 +

√
∆
] [
γ + ε2 − 2γε1 −

√
∆
]

= 1
γ

(1− γ)
(
ε2 − ε21

)
.
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Since λ1δ is always positive, we can immediately conclude from these calculations that

sign(λ2δ) =
{

sign(γ + ε2 − 2γε1) if (ε2 − ε21) > 0
δ if (ε2 − ε21) < 0 .

Since γ + ε2 − 2γε1 = (ε2 − ε21) + γ(1− γ) + (ε1 − γ)2 we see that this simplifies to

sign(λ2δ) =
{

1 if (ε2 − ε21) > 0
δ if (ε2 − ε21) < 0 .

This negative sign that appears for δ = −1 is a result of the fact that one of the velocities becomes
imaginary for (ε2 − ε21) < 0. This excludes this region from a space of ”sensible” parameters.
This means that for ”sensible” parameters (ε2 − ε21 > 0) we have that

sign(λ2δ) = 1. (5.23)

In this case we can switch to a more common representation of the parameters by defining

v̂2
± = λ1±λ2±, K̂2

± = λ1±
λ2±

, (5.24)

such that
H = 1

2κn
2∑
±
v̂±

[
K̂±Π2

± + 1
K̂±

(∂x̂φ±)2
]
. (5.25)

It is quite nice to see that the same velocities as in the Lagrangian also naturally appear here.
The new parameters K̂± are shown in figure 5. This finishes the transformation. We can see
that the final result is a Hamiltonian, which is the sum of two decoupled Luttinger Liquids. The
fact that we have decoupled the Hamiltonian will simplify all future calculations, since we can
now define ∂x̂Θ± = Π±. This gives the Hamiltonian

H = 1
2κn

2∑
±
v̂±

[
K̂± (∂x̂Θ±)2 + 1

K̂±
(∂x̂φ±)2

]
. (5.26)

We will see in section 5.4 that we can calculate correlation functions for both φ± and θ±. This
makes it possible to easily calculate correlation functions which were troublesome to evaluate
with only the Lagrangian before.

5.3 Connecting to the Original Parameters

Having a simplified theory we now want to express our original fields in the new ones. From the
transformation we know that

W−1
φ

(
φ+
φ−

)
=
(
θ̂
û

)
, W−1

Π

(
Π+
Π−

)
=
(

Π̂θ

p̂

)
. (5.27)

As it is a canonical transformation we also have W−1
φ = WΠ and W−1

Π = Wφ. This is shown in
appendix B.4, where we also see that

Π̂θ = 1
s0

∑
±

(−a±)Π±, û = s0
∑
±
b±φ±, θ = s0

∑
±
c±φ±. (5.28)
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Figure 5: Plots for K̂± with a fixed γ = 0.4 and variable ε1, ε2. The visible lines in this plot are a
remnant of the transformation. When combined with the parameters of the fields to calculate physical
expectation values later, these lines vanish.

where

a± = ±sign(ε2 − ε1)Q2
±1

4

√
1
γ

∣∣∣∣ γ − ε1ε2 − ε1

∣∣∣∣
√√√√∣∣∣√∆± β0

∣∣∣
2
√

∆
, (5.29)

b± = Q2
∓1

4

√
1
γ

∣∣∣∣ γ − ε1ε2 − ε1

∣∣∣∣
√√√√∣∣∣√∆∓ β0

∣∣∣
2
√

∆
, (5.30)

c± = ∓sign (ε2 − ε1) 4

√
γ

∣∣∣∣ε2 − ε1γ − ε1

∣∣∣∣
√√√√∣∣∣√∆± β0

∣∣∣
2
√

∆
. (5.31)

We now fully connect this to the original fields. For this first see that

∂xΦ = −1
~

Πθ = −nΠ̂θ = n

√
κm

~2n

∑
±
a±Π± = n

√
κm

~2n

∑
±
a±∂x̂Θ±.

With this we can now easily write down the three fields

Φ =
∑
±
a±Θ±, u = û/n = 1

n

√
~2n

κm

∑
±
b±φ± = 1

n
s0
∑
±
b±φ±, (5.32)

δn = ∂xθ =

√
~2n

κm

√
nκm

~2

∑
±
c±∂x̂φ± = n

∑
±
c±∂x̂φ±. (5.33)

5.4 Expectation Values

In this section we now use the newly diagonal Hamiltonian to calculate correlation functions.
We will see that it reproduces the results from the original Lagrangian but the calculation is
simpler and more flexible.

Expectation value calculations now become exceedingly simple as one can simply look at
textbooks for the solutions (see [8] for instance). We go trough the steps here anyways. The goal
we have is to calculate not only expectation values for the field φ± but also for the conjugate
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fields, since the phase field Φ is connected to them. For this purpose we express the Hamiltonian
as follows

H = 1
2κn

2∑
±
v̂±

[
K̂±(∂x̂Θ±)2 + 1

K̂±
(∂x̂φ±)2

]
. (5.34)

We switch now to the Lagrangian. However, we do not fully do the replacement but keep the
four fields

L = 1
2κn

2∑
±

[
2∂t̂φ±∂x̂Θ− v̂±K̂±(∂x̂Θ)2 − v̂±

K̂±
(∂x̂φ±)2

]
. (5.35)

In imaginary time the action becomes

S = iS/~ = s0
2

∫∫
dQ̂

4π2

(
Θ± φ±

)( −v̂±K̂±k̂2 iq̂k̂

iq̂k̂ − v̂±
K̂±

k̂2

)
︸ ︷︷ ︸

:=M−1
±

(
Θ±
φ±

)
. (5.36)

As usual, we introduce a generating functional

Z[Jφ±,JΘ±] =
[∫∫

Dφ±

∫∫
DΘ±

]
e
S+
∫

dQ̂

4π2
∑
±

[
φ±J

†
φ±+Θ±J

†
Θ±

]
(5.37)

= Z exp
(

1
2

∫
dQ̂

4π2

∑
±
J±(−Q̂)

[
− 1
s0
M±(Q̂)

]
J±(Q̂)

)
, (5.38)

where the inverse of M−1
± is given by

M± = 1
k̂2(v̂2

±k̂
2 + q̂2)

(
− v̂±
K̂±

k̂2 −iq̂k̂
−iq̂k̂ −v̂±K̂±k̂2

)
. (5.39)

This then leads to the correlation functions〈
φ±(Q̂)φ±(Q̂′)

〉
= − 1

s0
(M±)22(Q̂)4π2δ(Q̂+ Q̂′) = 1

s0
K̂±

v̂±

v̂2
±k̂

2 + q̂2
4π2δ(Q̂+ Q̂′), (5.40)

〈
Θ±(Q̂)Θ±(Q̂′)

〉
= − 1

s0
(M±)11(Q̂)4π2δ(Q̂+ Q̂′) = 1

s0

1
K̂±

v̂±

v̂2
±k̂

2 + q̂2
4π2δ(Q̂+ Q̂′), (5.41)

〈
Θ±(Q̂)φ±(Q̂′)

〉
= − 1

s0
(M±)12(Q̂)4π2δ(Q̂+ Q̂′) = 1

s0
i
v̂±q̂/k̂

v̂2
±k̂

2 + q̂2
4π2δ(Q̂+ Q̂′). (5.42)

We can now check our calculations for consistency. We already have correlation functions
calculated via the Lagrangian in section 4.3. From section 5.3 we know how to express the
original fields in the new ones. With this we can write down the correlation functions for the
original fields

〈
u(Q̂)u(Q̂′)

〉
= 1
s0

~2

κmn

∑
±
b2±K̂±

v̂±

v̂2
±k̂

2 + q̂2
4π2δ(Q̂+ Q̂′), (5.43)

〈
Φ(Q̂)Φ(Q̂′)

〉
= 1
s0

∑
±

a2
±

K̂±

v̂±

v̂2
±k̂

2 + q̂2
4π2δ(Q̂+ Q̂′), (5.44)

〈
Φ(Q̂)u(Q̂′)

〉
= 1
s0
i

√
~2

κmn

∑
±

(a±b±) v̂±q̂/k̂

v̂2
±k̂

2 + q̂2
4π2δ(Q̂+ Q̂′). (5.45)
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When we now compare this to section 4.3 we see that we need to check whether it is true that
a2
±

K̂±
= α±11, b2±K̂± = α±22, a±b± = ±γ − ε1

2
√

∆
= α±12. (5.46)

After some calculation (see appendix B.6) we see that we indeed have

b2±K̂± = ±v
2
± − (1− γ)
v±
√

∆
,

a2
±

K̂±
= ±γv

2
± −

(
ε2 − ε21

)
v±
√

∆
, (5.47)

as well as
a±b± = ±γ − ε1

2
√

∆
. (5.48)

As such we see that after the transformation we can calculate expectation values more easily and
they give the same results in the end.

Density Correlation There is one important observable which we have not touched thus far.
The representation of the density field

ρ ≈ [n+ δn(x,t)]
[
1 +

∑
l=1

2 cos (2πl (θ + nx))
]

+ 2c1 cos (k0(x− u)) . (5.49)

The object of interest are density-density correlations 〈ρρ′〉. There are several types of correlation
functions which appear in the calculation of this term. We are interested in the long range
behavior and intend to only keep the longest range terms.
The actual calculations are somewhat lengthy and can be found in appendix B.5. In total we see
that there are only three correlation functions contributing

〈
δnδn′/n2

〉
= s0

∑
±

K̂±c
2
±

2π
v̂2
± (|∆τ̂ |+ α)2 − |∆x̂|2(
v̂2
±(|∆τ̂ |+ α)2 + |∆x̂|2

)2 (5.50)

〈
cos (2πlnx+ 2πls0cφ)2

〉
= cos (2πln∆x)

∏
±


√

(∆x̂)2 + (v̂2
± |∆τ̂ |+ α)2

α2

−2πs0l2c2±K̂±

(5.51)

〈
cos

(
k0x− s0

k0
n
bφ

)2〉
= cos (k0∆x)

∏
±


√

(∆x̂)2 + (v̂2
± |∆τ̂ |+ α)2

α2

−2πs0( k0
2πn )2b2±K̂±

(5.52)

The square in the expectation values here means the term multiplied by itself but with X̂ ′ instead
of X̂. If we consider the limit of ∆x̂→∞, the correlation functions simplify〈

δnδn′/n2
〉

= −s0
∑
±

K̂±c
2
±

2π (∆x̂)−2 (5.53)

〈
cos (2πlnx+ 2πls0cφ)2

〉
= cos (2πln∆x)

∣∣∣∣∆x̂α
∣∣∣∣−2πs0l2

∑
± c

2
±K̂±

(5.54)〈
cos

(
k0x− s0

k0
n
bφ

)2〉
= cos (k0∆x)

∣∣∣∣∆x̂α
∣∣∣∣−2πs0( k0

2πn )2
∑
± b

2
±K̂±

(5.55)

We want to include only the longest range contribution and set l = 1. The question then becomes
which of the three values{

1, πs0l
2∑

± c
2
±K̂±, πs0( k0

2πn)2∑
± b

2
±K̂±

}
, (5.56)

is the smallest. We skip the analysis of these exponents here as we will do it in section 6.3.2.
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6 Stability Analysis

After analyzing the system and introducing transformations to simplify it we are now at the point
where we can begin to characterize the phases in the system and analyze where in parameter
space they exist. From this information we can infer about the stability of for instance the
supersolid phase, for which parameters it exists and when the system transitions in and out of it.

To do this we first need to be able to decide when we have which phase. There are several
ways to do this. A usual one are order parameters, which would constitute evaluating the right
correlation functions. The method we use here is to probe the system with perturbations. The
idea behind this is very basic. Imagine simply poking an unknown system. If the whole system
moves one might say it is a solid. If, however, instead the system deforms and does not move
then it is not.

We still need a way to actually treat the perturbation, since they will break the nice quadratic
form of the Hamiltonian. The way we treat this here is perturbation theory and renormalization
group.

6.1 Renormalization Group

The renormalization group (RG) is a label that is applied to many similar but slightly different
methods. On one hand it is used to describe the procedure of dealing with infinities in Quantum
Field Theory by renormalizing bare parameters. On the other hand there is the problem of
critical phenomena in statistical mechanics. There we have the renormalization group as a
iterative procedure which integrates out degrees of freedom to obtain an effective low energy
theory. For the reader interested in leaning more there are Lectures[10], thesis’ [11] or books
[8],[9] which cover this topic.
Our focus here is on a method called Wilson RG the outline of which we discuss briefly. The
usual setting is that we have an action

S[{φi},{gi},Λ] (6.1)

depending on some fields φi and parameters gi as well as a a cutoff Λ in momentum or real space.
The idea is now that we try to lower that cutoff Λ→ Λ′. This can usually be done by splitting
of part of the action we call ∆S here

S[{φi},{gi},Λ] = S[{φi},{gi},Λ′] + ∆S[{φi},{gi},Λ,Λ′]. (6.2)

For instance when Λ is a momentum cutoff, this difference is a integral over the momentum shell.
The idea is now to integrate out this difference and incorporate it into the action in such a way
that

S[{φi},{gi},Λ] = S[{φ′i},{gi}′,Λ′], (6.3)

meaning that the general form of the action is kept invariant but only the couplings or fields
change. This step is usually actually done for the partition function

Z =
∫
Dφi eS[{φi},{gi},Λ], (6.4)

as there these calculations become expectation values. The last step is then to rescale the cutoff
back to its original value. With that we have completed one renormalization cycle. Integrating
out some degrees of freedom has brought us back to an action of the same form with different
coupling constants and fields

S[{φi},{gi},Λ]→ S[{φ′i},{gi}′,Λ]. (6.5)
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It is important to note that there is no guarantee that this kind of procedure works for a particular
system. The procedure might seem quite general here but there is no guarantee that is possible
to incorporate the shrinking of the cutoff into the parameters.

It is simple to see that this procedure can be repeated indefinitely and thus leads to a flow
of the couplings and fields. Along this flow we find different models with the same low energy
behavior, which may be more easily solvable. An overview of the procedure in flowchart form is
found in figure 6.

S[{φi},{gi},Λ] S[{φi},{gi},Λ]
= S[{φi},{gi},Λ′] + ∆S

S[{φ′i},{g′i},Λ] S[{φ′i},{g′i},Λ′]

lower cutoff

integrate out
between [Λ′,Λ]

rescale to
restore cutoff

Ready for next
renormalization
step

Figure 6: A flow chart for the RG procedure. Starting in the top left the cycle begins and can be
continued indefinitely. The idea for such a sketch is from [12].

6.2 Coupled Sine-Gordon

All the perturbations we will later consider lead to a similar problem: Two free bosonic fields
coupled to each other via a cosine term. This is called coupled sine-Gordon, alluding to the
sine-Gordon problem which is only one free field with a perturbation of cosine form. For
comparison

L = 1
K

[
v(∂xφ)2 + 1

v
(∂τφ)2

]
+ g cos (mφ) , (6.6)

would be the Lagrangian of a sine-Gordon theory, while the problem we face here is of the form

L = 1
2
∑
±

1
K̂±

[
v̂±(∂x̂φ±)2 + 1

v̂±
(∂τ̂φ±)2

]
+ g cos

(∑
±
m±φ±

)
. (6.7)

In the following we first treat this model problem and then use the results for the different
perturbations. The action has two components

S0 = s0

∫∫
dx̂dτ̂

1
2
∑
±

1
K̂±

[
v̂±(∂x̂φ±)2 + 1

v̂±
(∂τ̂φ±)2

]
, (6.8)

and
Sg = g

∫∫
dx̂dτ̂ cos (mφ) . (6.9)

We treat the perturbations with a Wilson renormalization scheme in momentum space. To
begin with we introduce a high energy cutoff in momentum space. We have needed this for the
calculation of correlation functions before (see section 4.4), here we use a hard cutoff instead of
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the exponential decay which was more useful before. It is not entirely clear which velocity v̂0
should be used to relate frequency and momentum as there are two velocities in the system. We
leave this open for now as it turns out not to matter. Define for now

Ω : 0 < q̂2 + v̂2
0 k̂

2 < Λ2. (6.10)

This means also
φ± =

∫∫
Ω

dq̂

2π
dk̂

2πφ±ei(q̂τ̂+k̂x̂), (6.11)

which leads to the transformed action

S0 = s0

∫∫
Ω

dq̂

2π
dk̂

2π
1
2
∑
±

1
K̂±

[
v̂±k̂

2 + 1
v̂±
q̂2
]
φ±φ

†
±. (6.12)

The RG scheme works by setting a lower cutoff and integrating out the high frequency component.
We therefore introduce

Ωl : 0 < q̂2 + v̂2
0 k̂

2 < Λ′2, (6.13)
Ωh : Λ′2 < q̂2 + v̂2

0 k̂
2 < Λ2. (6.14)

Naturally we can then introduce the functions

φl± =
∫∫

Ωl

dq̂

2π
dk̂

2πφ±ei(q̂τ̂+k̂x̂), (6.15)

φh± =
∫∫

Ωh

dq̂

2π
dk̂

2πφ±ei(q̂τ̂+k̂x̂), (6.16)

to immediately see that
S0[φ±] = S0[φl±] + S0[φh±] = S l0 + Sh0 , (6.17)

as the difference is only one of integration domain when in Fourier space. For the same reason it
is clear that

φ± = φl± + φh±. (6.18)

We now consider the quantity

1
Z0
Zg = 1

Z0

∫∫
Dφ± eS0+Sg =

〈
eSg
〉
. (6.19)

The goal is now to split of the high energy behavior of this quantity and integrate it out. We
choose this particular term since the calculations simplify to expectation values very quickly.
Since we are only interested in the critical behavior and not in a specific expectation value, this
is enough.

We split the fields in low and high frequency parts and integrate out the high frequency
contribution.

1
Z0
Zg = 1

Z l0

∫∫
Dφl±eSl0 1

Zh0

∫∫
Dφh± eS0[φh±]+Sg [φ±] = 1

Z l0

∫∫
Dφl±eSl0

〈
eSg
〉h
, (6.20)

where 〈A〉h =
∫∫
Dφh±A exp(Sh0 ) is the expectation value but only over the high frequency fields.

For small perturbations (g � 1) we treat this expectation in only first order as this is enough for
our purposes. In appendix C we begin to outline how to extend this to second order. For now
we have 〈

eSg
〉h
≈ 1 + g

∫∫
dx̂dτ̂

〈
cos

(
m
(
φh + φl

))〉h
. (6.21)
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The expectation value can be simplified using equation 4.12
〈

cos
(
m
(
φh + φl

))〉h
= cos

(
mφl

)
exp

(
−1

2
∑
±
m2
±

〈[
φh±

]2〉h)
. (6.22)

We now need to take a closer look at the high frequency expectation values,
〈

(φh±)2
〉h

= K̂±
s0

∫∫
Ωh

dq̂

2π
dk̂

2π
v̂±

q̂2 + v̂2
±k̂

2
= K̂±

4π2s0

∫ Λ

Λ′
dr

1
r

∫ 2π

0
dϕ

δ±
cos2(ϕ) + δ2

± sin2(ϕ) (6.23)

= K̂±
4π2s0

ln(Λ/Λ′)2δ±
∫ ∞
−∞

da
1

1 + δ2
±a

2 = 2π K̂±
4π2s0

ln(Λ/Λ′), (6.24)

where δ± = v̂±/v̂0. In total we see that

〈
eSg
〉h
≈ 1 +

[
ge
−(π/s0)

(∑
±(m±2π )2

K̂±

)
ln(Λ/Λ′)

] ∫∫
dx̂dτ̂ cos

(
mφl

)
. (6.25)

We have now dealt with the high frequency expectation values. To be able to identify the new
action with the old one we still need to rescale. This means we want a map

φl±(x̂,τ̂)→ φ′±(x̂′,τ̂ ′). (6.26)

This behavior is needed to keep the cosine term invariant so we can identify it later. When we
look at the definition in equation 6.15 we see that

φl±(x̂,τ̂) =
∫∫

Ωl

dq̂

2π
dk̂

2πφ±ei(q̂τ̂+k̂x̂) (6.27)

=
∫∫

Ω

dq̂

2π
dk̂

2π

[Λ′
Λ

]2
φ±

(Λ′
Λ Q̂

)
ei(q̂τ̂+k̂x̂)(Λ′/Λ) = φ′±

(Λ′
Λ x̂,

Λ′
Λ τ̂

)
, (6.28)

where
φ
′
±(Q̂) =

[Λ′
Λ

]2
φ±

(Λ′
Λ Q̂

)
. (6.29)

Introducing the scaling to equation 6.25 we obtain

〈
eSg
〉h
≈ 1 +

[
ge
[

2−(π/s0)
(∑

±(m±2π )2
K̂±

)]
ln(Λ/Λ′)

] ∫∫
dx̂dτ̂ cos

(
mφ′

)
≈ eSg̃ , (6.30)

with the new constant

g̃ = ge
[

2−(π/s0)
(∑

±(m±2π )2
K̂±

)]
ln(Λ/Λ′)

. (6.31)
For S0 the scaling works nicely with S0[φl±] = S0[φ′±], since the scaling of the second derivatives
cancels with the integrals. After resealing we obtain the same partition function as in the
beginning, only with a different parameter

1
Z0
Zg →

1
Z0
Zg̃. (6.32)

This completes the renormalization step. By parameterizing the new cutoff with Λ/Λ′ = el we
find the flow equation for the coupling

∂lg̃ =
[
2− (π/s0)

(∑
±

(
m±
2π

)2
K̂±

)]
g̃, g̃(l = 0) = g. (6.33)
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Depending on the sign of this prefactor the coupling either flows to zero or infinity. If it flows
to zero, the perturbation is considered irrelevant. It does not affect the low energy behavior
of the system and can be neglected. In the other case the perturbation is relevant and has
an effect on the system. In a first approximation one can then say that the fields will take
on a value that minimizes the cosine meaning the field inside of the cosine is pinned to a fixed value.

6.3 Perturbations

In this section we finally use perturbations as a probe for the stability of our supersolid. The
reasoning behind this we have already introduced in the beginning of this section. In the following
we give three perturbations.

Impurity The impurity (I) is the first perturbation we consider. The idea here is that if the
system does not sense the impurity (it is irrelevant) then we can move it around without moving
the system. Akin to the analogy from before this means the system does not have solid character.
Mathematically the impurity is implemented as a very localized potential V . This gives an
additional term in the Hamiltonian which is the overlap of this potential and the density∫∫

dxdt V (x)ρ(x,t). (6.34)

To simplify slightly, we take the impurity as delta localized at zero meaning we set V (x) = gδ(x)
and insert the definition for ρ from equation 3.24

S′ = g

∫
dt [n+ δn] [1 + 2 cos (2πθ)] + 2c1 cos (k0u) . (6.35)

Josephson Junction The Josephson Junction (JJ) is the perturbation we use to check for
superfluidity. The idea is to take two separate yet identical copies of the system, put them next
to each other and then try to couple the phase of one to the other. When these systems are in a
superfluid state we expect the phases to align. If they do not then we know that the superfluidity
is absent in the systems. Mathematically this coupling is archived by introducing

S′ = g

∫
dt cos (Φ1 − Φ2) . (6.36)

Periodic Modulation As a third perturbation we consider an external periodic modulation
and probe its effect on the system. For this purpose one can think of perturbing the system by
introducing a weak periodic modulation (an optical lattice for instance) of the form

S′ = g

∫∫
dxdt cos (kextx) ρ(x,t), (6.37)

and then observing whether this weak perturbation is enough to bring the system into a periodic
state.

6.3.1 Periodic Modulation

We consider this perturbation only briefly and focus on the physical interpretation as the effect
of an external optical lattice is intuitive: If the perturbation is relevant then the system conforms
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to the lattice, if it is irrelevant then the lattice can be neglected. The question now becomes
when we obtain relevant perturbations. We have defined the density as

ρ ≈ [n+ δn(x,t)]
[
1 +

∑
l=1

2 cos (2πl (θ + nx))
]

+ 2c1 cos (k0(x− u)) . (6.38)

Being brief and handwavy here, the relevant contribution from the density comes either from the
term cos (k0(x− u)) or cos (2π (θ + nx)). In case the relevance of the perturbation arises form
the former then the greatest overlap is for kext = k0 and the system conforms to the modulation
already intrinsic to our supersolid. If the relevance is due to the latter term then the greatest
overlap is given for kext = 2πn. This is the periodicity where every atom sits in its own potential
well and we call this configuration a Mott Insulator.
We will not discuss this perturbation in further detail here, as the other two perturbations let us
better characterize the phases.

6.3.2 Impurity

We now consider the impurity. The perturbation to our action reads

S′ = g

∫
dτ̂ [n+ δn] [1 + 2 cos (2πθ)] + 2c1 cos (k0u) . (6.39)

We can see already that this action looks very similar to the one we have already treated in
section 6.2. The difference is the extra n+ δn term as well as the fact that the dimension has
been reduced to 1D as the integral is evaluated at x = 0. This perturbation consists of several
fields that can become relevant. For this perturbation, we consider each term on its own. In the
end however we want to only consider the most relevant term in the perturbation, meaning the
term with the greatest prefactor in the flow equation. This is sensible as this term will grow the
fastest in the renormalization flow and subsequently dominate over other possibly also relevant
terms in the action.

Consider first the rightmost term cos(k0u). If we again reference section 6.2 we see that almost
nothing changes when we use this one dimensional perturbation instead of the two dimensional
one considered there. The only thing which changes is that in the end when rescaling we here
obtain a factor of 1 in the flow equation for g while with the two dimensional perturbation there
was a factor of 2. The flow equation for this term then reads

cos(k0u) : ∂lg̃ =
[
1− πs0/ (λ0n)2

(∑
±
b2±K̂±

)]
g̃. (6.40)

For the same reason we can write down the flow equation

cos(2πθ) : ∂lg̃ =
[
1− πs0

(∑
±
c2
±K̂±

)]
g̃, (6.41)

for the term 2n cos(2πθ) in the perturbation. The term n in the action we can neglect since it is
only a shift in the total energy, irrelevant to the dynamics. The two terms which are left are not
as well covered by the calculation in section 6.2. When following the same procedure as before
we need to calculate different high frequency correlation functions instead of the correlation
function in equation 6.22. For the term δn we evaluate

〈δn〉h = δnl +
〈
∂x̂cφ

h
〉h

= δnl. (6.42)
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The calculation is trivial as expectation values of only one field always give zero in a quadratic
theory. This leads to the flow equation

δn : ∂lg̃ = 0, (6.43)

which means the operator is marginal. We will neglect this operator for now, a more precise treat-
ment would require calculating the RG flow to higher orders. The last term in the perturbation
is 2δn cos(2πθ). Here we evaluate the high frequency expectation value

〈δn cos(2πθ)〉h = δnl 〈cos(2πθ)〉h +
〈
δnh cos(2πθ)

〉h
= δnl 〈cos(2πθ)〉h . (6.44)

The expectation value is not quite as trivial. After Fourier transformation we see that the
expectation value becomes

〈
δnh cos(2πθ)

〉h
∼
∫

Ωh

dQ̂

4π2 k̂

[∑
±
c±
〈
φ±(Q̂)φ±(−Q̂)

〉] 〈
e2πiθ

〉h
, (6.45)

and is therefore zero due to a parity argument. This leads to the flow equation

δn cos(2πθ) : ∂lg̃ = −πs0

(∑
±
c2
±K̂±

)
g̃. (6.46)

We can clearly see that when comparing this to equation 6.41 that cos(2πθ) is always a more
relevant perturbation than δn cos(2πθ). To summarize, the expressions we still need to analyze
further are

cos(2πθ) : ∂lg̃ =
[
1− πs0

(∑
± c

2
±K̂±

)]
g̃ := [1− C0] g̃

cos(k0u) : ∂lg̃ =
[
1− πs0/ (λ0n)2

(∑
± b

2
±K̂±

)]
g̃ := [1−B0] g̃

(6.47)

These equations give the conditions for relevance and irrelevance of the two operators. cos(2πθ) is
relevant for C0 < 1 and irrelevant for C0 > 1. For cos(k0u) the condition is B0 < 1 for relevance
and B0 > 1 for irrelevance. Before we proceed with further analysis it is important to take a
moment and think about what the different cases of relevance and irrelevance mean here.

• Both cos(k0u) and cos(2πθ) irrelevant: In this case the system is not affected by the
perturbation. We cannot move the system by moving the impurity, so we argue there is no
solid character.

• cos(k0u) relevant, cos(2πθ) irrelevant: The system is affected by the perturbation. The
field which is pinned is the displacement field u. For our model this means that the inbuilt
periodicity is kept perfectly, there are no fluctuations of displacement possible anymore.
This gives the system a solid character in this case

• cos(k0u) irrelevant, cos(2πθ) relevant: Again the system is affected by the perturbation.
However, the field pinned is θ, the integrated particle number. As motivated in section
6.3.1 this also means a solid character but with a different lattice.

• Both cos(k0u) and cos(2πθ) relevant: As we have argued before, this case equals one of the
two previous cases, depending on which one of the two operators is the most relevant.
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Analysis We want to now first consider the last case where both cos(k0u) and cos(2πθ) are
relevant. To understand this case we need to know which of the two quantities C0 and B0 is
smaller as this determines which is most relevant. In order to do this we first define

B :=
∑
±
b2±K̂± = 1

(v̂+ + v̂−)√γ

[
1
√
γ

+
√

1− γ
ε2 − ε21

]
, (6.48)

C :=
∑
±
c2
±K̂± = 1

(v̂+ + v̂−)√γ

[
√
γ + ε2

√
1− γ
ε2 − ε21

]
. (6.49)

Calculations for this can be found in appendix B.6. The quantity to consider is now the fraction

C0
B0

= πs0C

πs0
(
k0

2πn

)2
B

=
(2πn
k0

)2 C

B
= (λ0n)2C

B
, (6.50)

where λ0 is the characteristic wavelength in our supersolid. This means it is also the width of
one droplet, which means that λ0n = #Particles per droplet. In the experiment this is a large
number (see [2]). We are interested in finding out when C0/B0 = 1 as this gives us the line that
separates the regime where C0 > B0 from the one where C0 < B0. To do this we now analyze

C

B
=
γ
√
ε2 − ε21 + ε2

√
γ(1− γ)√

ε2 − ε21 +
√
γ(1− γ)

:= Γ. (6.51)

This analysis is done by finding lines of fixed Γ for constant γ. Restructuring equation 6.51 gives

(γ − Γ)
√
ε2 − ε21 = (Γ− ε2)

√
γ(1− γ). (6.52)

There is only a solution if sign(γ − Γ) = sign(Γ− ε2). For that case we can square the equation
to obtain

(γ − Γ)2
(
ε2 − ε21

)
= (Γ− ε2)2γ(1− γ). (6.53)

Writing this in a smart way shows that the equation actually has the form of a shifted Ellipse

ε21(γ − Γ)2 + γ(1− γ)
[
ε2 −

1
2

Γ2 + γ2(1− 2Γ)
γ(1− γ)

]2

= 1
4

(Γ2 + γ2 − 2Γγ2)2

γ(1− γ) − Γ2γ(1− γ). (6.54)

We see here that near the origin Γ has to be small while it becomes large away from it. To
obtain C0/B0 = 1 we need to choose Γ = 1/(λ0n)2, which is a small number. For this reason
we consider now the case Γ < γ. We know from equation 6.52 that we must then obey ε2 < Γ.
This means that the equipotential line for Γ = 1/(λ0n)2 lies in small region around the origin
bounded by ε2 < 1/(λ0n)2 and |ε1| < 1/(λ0n). This behavior can be observed in figure 7, where
we plot equipotential lines for different Γ with a fixed γ = 0.4. Below the line with Γ = 1/(λ0n)2

we have C0 < B0 while for other values of ε1 and ε2 we have C0 > B0.
We still need to consider the other case of Γ > γ. It is still the case that below the equipo-

tential line Γ = 1/(λ0n)2 we have C0 < B0 and above it C0 > B0. The difference is that
the equipotential lines are not bound to the origin anymore. We now that γ is small, since
γ < Γ = 1/(λ0n)2. It is therefore instructive to consider the case γ = 0. Then equation 6.51
shows that C0/B0 = 0 since we have ε2 − ε21 > 0. To be more precise we have C0 < B0 =∞.

In summary we have two cases. The first case is for γ ≈ 0 (γ < 1/(λ0n)2) where we have
that C0 < B0 for most parameters. The behavior of the impurity is then governed by the term
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Figure 7: Shown here is the value of Γ = C/B for a fixed γ = 0.4 and variable ε1, ε2. The red lines are
equipotential lines for Γ ∈ {0.1,0.3,0.5,0.9,1.2}. The line closest to the origin corresponds to Γ = 0.1. The
further away from the origin the equipotential line is the larger the corresponding Γ. One can observe
that as Γ becomes small the corresponding equipotential lines are closely confined to the origin.

cos(2πθ). The second case is for γ > 1/(λ0n)2. There we have B0 < C0 for most parameters,
except for very close to the origin. In this case the impurity is then governed by the term cos(k0u).

So far we have only investigated which of the two is larger. We have not yet answered the
question when cos(k0u) or cos(2πθ) are actually relevant. To answer it we have to find out
when we have B0 = 1 and C0 = 1 respectively. As before this is best achieved by calculating
equipotential lines for B and C while γ is also kept fixed. Unfortunately the calculations here are
harder than for C/B before and can be found in appendix B.6. The results of the calculations
are parameterized equipotential lines:

• For B with ϕ ∈ (−π/2,π/2)

ε1 = γ + 1
√
γB

sin (ϕ) +
√
γ (1− γ) tan (ϕ) (6.55)

ε2 = 1
γB2 cos2 (ϕ) + ε21 (ϕ) . (6.56)

• For C with ϕ ∈ (− arccos (
√

1− γ/C) , arccos (
√

1− γ/C))

T =
√
γ

2
(1− 2γ) cos (2ϕ)−

[
1 + 2

√
γ (1− γ) sin (2ϕ)

]
√

1− γ − C cos (ϕ) (6.57)

ε1 = γ +
[√

γ (1− γ) + T

]
tan (ϕ) (6.58)

ε2 = T 2 + ε21 (ϕ) . (6.59)

We see here that there are no parameters such that C is smaller than
√

1− γ. This gives
the condition C >

√
1− γ. As an example B and C are plotted for γ = 0.4 in figure 8 with

equipotential lines C = 1.1 and B = 1.1 respectively. The general behavior we can observe in this
plot is that both B and C are smallest for large ε1 and ε2 away from the border where ε2 = ε21.
Close to this edge we usually find large values of B and C. We now know the behavior of C and
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Figure 8: Plots with the values of B (left) and C (right) for fixed γ = 0.4 and variable ε1, ε2. The red
lines are example equipotential lines for a value of B = 1.1 and C = 1.1.

B but for relevance of the perturbation we need to consider

C0 = πs0C, B0 = πs0/(λ0n)2B. (6.60)

To further analyze this we need to gain intuition for the size of s0 =
√

~2n
κm . This parameter

is effectively the ration of kinetic energy ~2n2/m to the potential energy (of the pure density
interaction) κn. Thus we call s0 � 1 strongly interacting while s0 � 1 is called weakly interacting.
We will discuss both cases here, however due to how we derived our model we can only expect
valid results in the weakly interacting regime. We now take a look at the relevance of the impurity
in the two cases we have found,

• γ < 1/(λ0n)2: In this case the impurity is governed by cos(2πθ). We also know that
C >

√
1− γ which, since we are in the case of γ ≈ 0 gives us C > 1. This means that

C0 > πs0. When we are weakly interacting this inequality means that the impurity is then
irrelevant. In the strongly interacting case the impurity can be relevant.

• γ > 1/(λ0n)2: In this case the impurity is governed by cos(k0u). We see that in the
strongly interacting case the impurity is then almost always relevant since the factor
s0/(λ0n)2 is extremely small. In the weakly interacting case the exact size of s0/(λ0n)2

determines when the impurity is relevant or not. Generally we can say that it will become
relevant for sufficiently large ε1 and ε2 when ε2 6= ε21.

6.3.3 Josephson Junction

In the case of the Josephson Junction we have two systems with actions S1 and S2 which we
couple at x̂ = 0 with the term

S′ = g

∫
dτ̂ cos (Φ1 − Φ2) . (6.61)

The two actions for the left and right side respectively are

Sx̂<0[φ1±] = s0

∫
dτ̂

∫ 0

−∞
dx̂

1
2
∑
±

1
K̂±

[
v̂±(∂x̂φ1±)2 + 1

v̂±
(∂τ̂φ1±)2

]
, (6.62)

Sx̂>0[φ2±] = s0

∫
dτ̂

∫ ∞
0

dx̂
1
2
∑
±

1
K̂±

[
v̂±(∂x̂φ2±)2 + 1

v̂±
(∂τ̂φ2±)2

]
. (6.63)
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In this definition φ1± is defined for x̂ < 0 and φ2± for x̂ > 0. It is sensible to express the action
here not in the φ± but instead in the Θ± fields

Sx̂<0[Θ1±] = s0

∫
dτ̂

∫ 0

−∞
dx̂

1
2
∑
±
K̂±

[
v̂±(∂x̂Θ1±)2 + 1

v̂±
(∂τ̂Θ1±)2

]
, (6.64)

Sx̂>0[Θ2±] = s0

∫
dτ̂

∫ ∞
0

dx̂
1
2
∑
±
K̂±

[
v̂±(∂x̂Θ2±)2 + 1

v̂±
(∂τ̂Θ2±)2

]
, (6.65)

since the perturbation can also be expressed in them

S′ = g

∫
dτ̂ cos

(∑
±
c± (Θ1± −Θ2±)

)
. (6.66)

We now define new fields

Θs± = 1
2 [Θ1±(−x̂) + Θ1±(x)] , Θa± = Θ1±(−x̂)−Θ1±(x). (6.67)

These new fields are defined for x̂ > 0. They are not symmetrical or antisymmetrical although
the definitions are inspired by the idea. In these new fields the perturbation reads

S′ = g

∫
dτ̂ cos

(∑
±
c±Θa±

)
(6.68)

and the original action becomes

Sx̂<0[Θ1±] + Sx̂>0[Θ2±] = 2Sx̂>0[Θs±] + 2Sx̂>0[Θa±/2]. (6.69)

These terms look very similar to calculations we do in appendix C from which we could obtain
the flow equations. We can however also make the connection to section 6.2 again. For that we
see that for the evaluation of the critical point we only care about the action containing Θa±
since the perturbation also only contains these fields. When we now define

Θ′±(x̂) = Θa±(x̂) for x̂ > 0, Θ′±(x̂) = Θa±(−x̂) for x̂ < 0, (6.70)

we can write this relevant part of the action as

S = s0

∫∫
dτ̂dx̂

1
2
∑
±

K̂±
4

[
v̂±(∂x̂Θ′±)2 + 1

v̂±
(∂τ̂Θ′±)2

]
+ g

∫
dτ̂ cos

(∑
±
c±Θ′±

)
. (6.71)

This is exactly the form of action we consider in section 6.2 and as such we obtain the flow
equations

∂lg̃ =
[
1− 1/(πs0)

(∑
±

a2
±

K̂±

)]
g̃, g̃(l = 0) = g. (6.72)

Before we go further with the analysis, let us consider the physical meaning of this perturbation.
If the perturbation is irrelevant we simply keep the two separate systems. In case the perturbation
is relevant the field Φ1 − Φ2 is pinned in a minimum of the cosine. This means we now have one
global phase instead of two phases for the two systems. We interpret this as superfluid character.
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Analysis For further analysis we define

A =
∑ a2

±

K̂±
= 1

(v+ + v−)√γ

√γ +
√
ε2 − ε21
1− γ

 , (6.73)

such that the condition for relevance becomes 1 = A0 = 1
πs0

A. We will then try to find
equipotential lines for A with a fixed γ. This is done in appendix B.6. We obtain the equipotential
lines

ε2 = ε21 + (1− γ)
[

|ε1 − γ|A√
1− (1− γ)A2 −

√
γ

]2

, (6.74)

with the conditions

|ε1 − γ|A >
√
γ
√

1− (1− γ)A2, A < 1/
√

1− γ. (6.75)

To gain intuition for the behavior of A we plot it for γ = 0.4 with the equipotential line A = 1.1
in figure 9. In the plot we can see the effect of the condition |ε1 − γ| >

√
γ
√

1/A− (1− γ). Small

Figure 9: The plot shows the value of A for fixed γ = 0.4 and variable ε1, ε2. The red line is an example
equipotential line for a value of A = 1.1.

values of A can only be found near the edge where |ε1 − γ| is large. The largest values of A are
found near ε1 = γ but their value is still bound by the second condition A < 1/

√
1− γ. It is also

instructive to consider the edge cases here

γ = 0 : A =
√
ε2 − ε21
ε2

; γ = 1 : A ∼ 1/
√

1− γ =∞. (6.76)

We see that there is one special case where γ = 1. There the perturbation is always irrelevant
since A0 =∞ > 1. Away from this extreme case we need to again take the value of the prefactor
s0 into account. In the weakly interacting case (s0 � 1) far enough away from γ = 1 we realize
that since A < 1/

√
1− γ the perturbation will always be relevant. In the strongly interacting

case the perturbation is usually irrelevant except for near the edge of the plot where ε1 = γ.

6.4 Phase Diagram

We now combine the insights from both perturbations to obtain the phase diagram. We consider
the three cases we have observed so far, beginning with
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Case 1: γ < 1/(λ0n)2 We have established already that in this case γ is very small and
that the relevant contribution arises from the θ field, which counts the number of particles. The
critical value for the parameters is given by

1 = C0 = πs0
(v̂+ + v̂−)√γ

[
√
γ + ε2

√
1− γ
ε2 − ε21

]
≈ πs0

[√
ε2

ε2 − ε21
+
√
γ/ε2

]
. (6.77)

In this same regime the critical parameters for the Josephson Junction are

1 = A0 = 1
πs0

1
(v+ + v−)√γ

√γ +
√
ε2 − ε21
1− γ

 ≈ 1
πs0

√ε2 − ε21
ε2

+
√
γ/ε2

 . (6.78)

Except for a small correction we see that we have the relation

C0 ≈
1
A0
. (6.79)

This is particularly nice as we see here the usual duality between impurity and Josephson Junction.
The argument is that a strong impurity effectively splits the system in half with only a weak
coupling between the two. For the parameters this means that the Josephson Junction becomes
a relevant perturbation exactly when the impurity stops being relevant. We see that this is given
for γ = 0 in our system as if C0 > 1 then A0 = 1/C0 < 1 and vice versa.
On one side we have a regime where the Josephson Junction is relevant and the impurity is
irrelevant. This is the superfluid (SF), as we have no solid but only superfluid character. The
other regime has those roles reversed. We call this regime Mott Insulator (MI), motivated by
the brief discussion in section 6.3.1. There we had seen that the relevance of cos(2πθ) leads to a
Mott Insulator state when considering a weak optical lattice as perturbation.
For γ not exactly zero, there is a small region between (SF) and (MI) where neither of the
perturbations are relevant. The first guess is that this is then a normal fluid (F).

Case 2: 1/(λ0n)2 < γ < 1 In this regime the two parameters to observe are

A0 = 1/(πs0)A, B0 = πs0
(λ0n)2B. (6.80)

We begin by observing the edge cases of the parameter s0 =
√

~2n
κm . This parameter is effectively

the ration of kinetic energy ~2n2/m to the potential energy (of the pure density interaction) κn.
Thus we call s0 � 1 strongly interacting while s0 � 1 is called weakly interacting.

• Weakly interacting (s0 � 1):

– In this case πs0
(λ0n)2 is not necessarily small. Therefore B needs to be sufficiently small to

ensure the condition for relevance B0 < 1. This requires the other lattice parameters
ε1 and ε2 to be sufficiently large.

– Since we already know that A < 1/
√

1− γ, we obtain that A0 is always relevant as
long as s0 > 1/(π

√
1− γ), which means that in this case, since γ 6= 1, A0 is always

relevant.

• Strongly interacting (s0 � 1):

– Contrary to before πs0
(λ0n)2 is now definitely very small. This means B0 < 1 and thus

the impurity is relevant for practically all ε1 and ε2

37



Figure 10: Diagram showing equipotential lines for A = 1 (cyan) and B = 1 (red) for a fixed γ = 0.4
and variables ε1 and ε2. The phase labels are Solid (S), Fluid (F), Superfluid (SF) and Supersolid (SS).

– For the Josephson Junction to be relevant here, A needs to be very small. This can
only be the case on the edge of the ε2-ε1 diagram, where ε1 − γ is large.

To understand the intermediate part we can take a look at figure 10. This figure shows the
equipotential lines for A = 1 and B = 1. This corresponds to the critical lines in the special
case of πs0 = 1 and λ0n = 1. It is not a realistic choice of parameters however we can use it to
understand the dependence of A and B on ε1 and ε2. First it needs to be noted that B is smaller
in the upper part of the diagram, while it diverges toward the edge. Generally we can see that B0
is relevant for large ε1 and ε2. Therefore we see in figure 10 that the phases with solid character
lie in the upper region of the diagram. For A this is different: It is largest in the middle of the
diagram and becomes smaller toward the edge. It is generally smallest for ε1 − γ large. For this
reason we see in figure 10 that in the middle of the diagram we have the non superfluid phases.
Those four regions stay roughly the same for different γ. The value of γ plays a role in precisely
determining the shape of these areas and whether they are actually large enough to matter.

Case 3: γ ≈ 1 In the case of γ = 1 we have that A = ∞ meaning the Josephson Junction
is irrelevant. This is in line with our expectation as for nL = n we expect a normal solid
and therefore superfluidity should be absent here. Whether we have an actual solid or a nor-
mal fluid in this case still depends on the exact lattice parameters, but superfluidity does not exist.

To summarize, we have the following phases in the phase diagram

• Fluid: This phase appears when both the Josephson Junction (A0 > 1) and the Impurity
(B0 > 1) are irrelevant in the case of γ > 1/(λn)2. The impurity can be pulled through the
system but there is no superfluidity at the same time. Therefore the characterization as a
normal fluid.

• Mott Insulator: Here cos(2πθ) (C0 < 1) is most relevant which is (almost) only the case
for γ < 1/(λn)2. At the same time the phase requires A0 > 1. The system can then be
pushed via the impurity but is not superfluid. This speaks to a solid character, which is
obtained due to the perturbation pertaining to modulation with period 1/n. This leads to
the label Mott Insulator.

• Superfluid: The superfluid is the case when only A0 < 1. For γ < 1/(λn)2 it usually
exists when there is no Mott Insulator. When γ > 1/(λn)2 the borders between different
phases are more complex, but generally the superfluid vanishes as γ → 1.
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• Solid/Droplet: This is the phase characterized by relevance of the impurity (B0 < 1) and
irrelevance of the Josephson Junction (A0 > 1). As in the Mott Insulator case we can push
the system via the impurity, however the source of the interaction is from the periodic
modulation with frequency k0.

• Supersolid: The last case is then obviously when both perturbations are relevant at the
same time, which gives us the characteristically unintuitive behavior of the supersolid.

6.4.1 Phases in the Weakly Interacting Regime

For the previous analysis we have still allowed the strongly interacting case of s0 � 1. However,
as argued before, the motivation for our effective Lagrangian is based on theory which is weakly
interacting. For the sake of consistency we should also consider the possible phases when we
keep to the weakly interacting regime of s0 � 1.

γ < 1/(λ0n)2: In this region of the phase diagram only the superfluid phase (SF) exists when
s0 � 1.

1/(λ0n)2 < γ < 1: As long as we are not to close to γ = 1 the Josephson Junction is always
relevant for s0 � 1. Whether the impurity is relevant depends on the value of πs0

(λ0n)2 . If it is large
then the impurity is only relevant for very large ε1 and ε2. When it is small then the impurity is
relevant for most parameters. We see that we have two phases in this case. The supersolid phase
(SS) when the impurity is relevant and the superfluid phase (SF) when it is not.

γ ≈ 1: Toward this limit the Josephson Junction becomes irrelevant. The condition for
relevance for the impurity becomes

1 > B0 = πs0
(λ0n)2

1
v̂+
. (6.81)

We see that the impurity is relevant except for two cases. Case one is the system being extremely
weakly interacting such that πs0

(λ0n)2 � 1. The other case is when the parameters are chosen such
that v̂+ ≈ 0. These two cases make intuitive sense as for those choices we expect a weak solid
character. When the impurity is relevant we have a solid phase (S) here while we have a fluid
phase (F) for a irrelevant impurity.

In total if we choose the parameters ε1 and ε2 such that the lattice is not too weak then we
can observe a transition from Superfluid to Supersolid to Solid by varying γ from zero to one.
For parameters that make a weak lattice we do not transition into a solid state but at some point
only loose the superfluidity and transition to a normal fluid.

7 Summary and Outlook

In this thesis we have introduced a model Lagrangian for a supersolid. We have then proceeded to
analyze it and calculated correlation functions. This allowed us to find a suitable transformation
which simplified the model by transforming it into two decoupled Luttinger liquids.
In such a simplified model we have easy access to all correlation functions. This allowed us
to then effectively use renormalization group theory to deal with perturbations. In this thesis
we only considered them to first order, since it was enough for us to obtain only the critical
points, where the perturbations become relevant. The physical meaning of the relevance of our
perturbations, namely the impurity and the Josephson Junction, has been discussed but not
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yet more precisely explored in higher orders. This was however still enough to determine a
phase diagram for our effective model. We have found that, as long as our choice of parameters
guarantees a sufficiently strong lattice, when sweeping the parameter nL from zero to n we
obtain a transition from a superfluid via a supersolid toward a normal solid state. This is in line
with our expectations of nL characterizing the ”solid part” of our system. If the parameters are
however chosen such that the lattice is weak, then we do not obtain a solid character, instead at
some point transitioning from a superfluid to a normal fluid.

Future work on this topic will most likely focus on better connecting this toy model to actual
experimental parameters. Even though our model is based on a more microscopic model, as
we see in section 3, the connection to parameters which are actually useful in the lab is not
immediately clear. We would like to connect our model parameters to the parameters of other
models which are more closely related to experiments, such as the model referenced in section
2.2.
The closer connection to an experiment would then in turn allow us to restrict the choices of
parameters to only ones, which are accessible experimentally. This would allow us to properly
predict phase diagrams and check the validity of this model.
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A Auxiliary Calculations for the Model Lagrangian

A.1 Real Velocities

We check the sign of

v̂2
± = 1

2γ

[
ε2 + γ − 2γε1 ±

√
(ε2 + γ − 2γε1)2 − 4γ(1− γ)(ε2 − ε21)

]
, (A.1)

to see for which parameters one obtains real velocities. For that purpose, calculate

v̂2
+v̂

2
− = 1

γ
(1− γ)(ε2 − ε21). (A.2)

When this expression is negative exactly one of the v̂2
± is negative. We want the chance for both

velocities to be positive so we require (ε2 − ε21) > 0. This turns out to be enough of a condition
to make both velocities positive as we observe that then

ε2 + γ − 2γε1 = (ε2 − ε21) + γ(1− γ) + (ε1 − γ)2 > 0 (A.3)

One might still worry that the term in the square root may become negative. Fortunately, with
the same idea as before, we can see that that is not the case, since

(ε2 + γ − 2γε1)2 − 4γ(1− γ)(ε2 − ε21) =
[
(ε2 − ε21) + γ(1− γ) + (ε1 − γ)2

]2
− 4γ(1− γ)(ε2 − ε21)

=
[
(ε2 − ε21)− γ(1− γ) + (ε1 − γ)2

]2
+ 4γ(1− γ)(ε1 − γ)2 > 0

A.2 Partial Fraction Decomposition

Here we want to simplify the expressions

〈
φ1(ω̂,k̂)φ1(ω̂′,k̂′)

〉
= i

4π2
1
s0

γω̂2 − (ε2 − ε21)k̂2

γ
(
ω̂2 − v̂2

+k̂
2
) (
ω̂2 − v̂2

−k̂
2
)δ(k̂ + k̂′)δ(ω̂ + ω̂′) (A.4)

〈
φ2(ω̂,k̂)φ2(ω̂′,k̂′)

〉
= i

4π2
1
s0

ω̂2 − (1− γ)k̂2

γ
(
ω̂2 − v̂2

+k̂
2
) (
ω̂2 − v̂2

−k̂
2
)δ(k̂ + k̂′)δ(ω̂ + ω̂′) (A.5)

〈
φ1(ω̂,k̂)φ2(ω̂′,k̂′)

〉
= i

4π2
1
s0

− [ε1 − γ] ω̂k̂
γ
(
ω̂2 − v̂2

+k̂
2
) (
ω̂2 − v̂2

−k̂
2
)δ(k̂ + k̂′)δ(ω̂ + ω̂′) (A.6)

We illustrate the calculation via equation A.4. The goal is to bring the equation to the form

γω̂2 − (ε2 − ε21)k̂2

γ
(
ω̂2 − v̂2

+k̂
2
) (
ω̂2 − v̂2

−k̂
2
) = α+

11v̂+

ω̂2 − v̂2
+k̂

2
+ α−11v̂−

ω̂2 − v̂2
−k̂

2
. (A.7)

Now the challenge is to determine the newly introduced coefficients. They fulfill

α+
11v̂+ + α−11v̂− = 1 (A.8)

v̂2
−v̂+α

+
11 + v̂2

+v̂−α
−
11 = 1

γ
(ε2 − ε21) (A.9)

This can be solved to obtain

α±11 = ∓
1
γ (ε2 − ε21)− v̂2

±

v̂±
(
v̂2

+ − v̂2
−
) . (A.10)
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The same can be done for equation A.5, there we have

α+
22v̂+ + α−22v̂− = 1

γ
(A.11)

v̂2
−v̂+α

+
22 + v̂2

+v̂−α
−
22 = 1

γ
(1− γ) (A.12)

This yields

α±22 = ∓1
γ

(1− γ)− v̂2
±

v̂±
(
v̂2

+ − v̂2
−
) . (A.13)

Equation A.6 is different. There a sensible decomposition is

− [ε1 − γ] ω̂k̂
γ
(
ω̂2 − v̂2

+k̂
2
) (
ω̂2 − v̂2

−k̂
2
) = −1

γ

[ε1 − γ]
v̂2

+ − v̂2
+

 ω̂k̂

k̂2
(
ω̂2 − v̂2

+k̂
2
) − ω̂k̂

k̂2
(
ω̂2 − v̂2

−k̂
2
)


=
∑
±

α±12ω̂/k̂(
ω̂2 − v̂2

±k̂
2
) , with α±12 = ∓1

γ

[ε1 − γ]
v̂2

+ − v̂2
+

(A.14)

A.3 Real Space Correlations

Here we calculate

1
2
〈

(φi(X̂)− φi(X̂ ′))2
〉

= 1
s0

∫
dQ̂

4π2

[
1− cos(Q̂(X̂ − X̂ ′))

] [∑
±

α±11v̂±

q̂2 + v̂2
±k̂

2

]
e−α̂|k̂| (A.15)

Consider first only∫
dQ̂

4π2 v̂±
1− cos(Q̂(X̂ − X̂ ′))

q̂2 + v̂2
±k̂

2
e−α̂|k̂| =

∫∫
dk̂′

2π
dq̂

2π
1− cos(q̂∆τ̂ + k̂′∆x̂/v̂±)

q̂2 + k̂′2
e−α̂|k̂′|/v̂± (A.16)

=
∫∫

dk̂′

2π
dq̂

2π
1− cos(q̂∆τ̂) cos(k̂′∆x̂/v̂±)

q̂2 + k̂′2
e−α̂|k̂′|/v̂± (A.17)

The last equal sign follows by parity. Apply the transformation a = q̂

k̂′
gives

∫∫
dk̂′

2π
da

2π
1
k̂′

1− cos(∆τ̂ k̂′a) cos(k̂′∆x̂/v̂±)
1 + a2 e−α̂|k̂′|/v̂± . (A.18)

The first term is simple, as ∫ ∞
−∞

da

2π
1

1 + a2 = 1
2π [arctan(a)]∞∞ = 1

2 . (A.19)

For the other term, we employ some helpful transformations. First we need

1
1 + a2 = − 1

2i

[ 1
a+ i

− 1
a− i

]
= − 1

2i
∑
±

[
± 1
a± i

]
. (A.20)

Then one can also see that

cos(∆τ̂ k̂′a) = cos(∆τ̂ k̂′(a± i)) cos(∆τ̂ k̂′(∓i))− sin(∆τ̂ k̂′(a± i)) sin(∆τ̂ k̂′(∓i)) (A.21)
= cos(∆τ̂ k̂′(a± i)) cosh(∆τ̂ k̂′)± i sin(∆τ̂ k̂′(a± i)) sinh(∆τ̂ k̂′). (A.22)
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Figure 11: Sketch of the integration domain.

This leads to two types of integrals. One is of the following form

− 1
2i
∑
±

∫
da

2π

[
±cos(∆τ̂ k̂′(a± i))

a± i

]
= − 1

2i
∑
±

∫
C±

da±
2π

cos(∆τ̂ k̂′a±)
a±

, (A.23)

where C± is the contour that runs from ∓(∞− i) to ±(∞ + i). For more clarity this is also
sketched in figure 11. There we can already see the next idea: Our integrand tends towards zero
as a± →∞. There is also only a finite distance between the two contours, thus the integral over
the connection between the two contours (dubbed D± in the sketch) also tends to zero. Thus
the sum can be written as one contour integral

− 1
2i

∫
C

da

2π
cos(∆τ̂ k̂′a)

a
= 1

2 (A.24)

using the residue theorem. The other integral is

−1
2
∑
±

∫
da

2π
sin(∆τ̂ k̂′(a± i))

a± i
= −1

2
∑
±

∫ ∞±i
−∞±i

da±
2π

sin(∆τ̂ k̂′a±)
a±

= −1
2 . (A.25)

This was slightly more straight forward, as it is known that∫ ∞
−∞

da
sin(a)
a

= π (A.26)

and one can see fairly quickly that this does not change if the integration is shifted in the
imaginary direction by a finite value. With this equation A.18 becomes∫ ∞

0

dk̂′

2π
1
k̂′

[
1− cos(k̂′∆x̂/v̂±)e−|∆τ̂ |k̂′

]
e−α̂k̂′/v̂± . (A.27)

We can now finally move to solve this last integral∫ ∞
0

dk̂′

2π
1
k̂′

[
1− cos(k̂′∆x̂/v̂±)e−|∆τ̂ |k̂′

]
e−α̂k̂′/v̂± =

∫ ∞
α̂

dα̂′
1
v̂±

∫ ∞
0

dk̂′

2π
[
1− cos(k̂′∆x̂/v̂±)e−|∆τ̂ |k̂′

]
e−α̂′k̂′/v̂±

(A.28)

=
∫ ∞
α̂

dα̂′
1

2πv̂±

[
v̂±
α̂′
− 1

2

(
v̂±

α̂′ + v̂± |∆τ̂ |+ i∆x̂ + v̂±
α̂′ + v̂± |∆τ̂ | − i∆x̂

)]
(A.29)

= 1
2π

∫ ∞
α̂

dα̂′
[

1
α̂′
− α̂′ + v̂± |∆τ̂ |

(α̂′ + v̂± |∆τ̂ |)2 + (∆x̂)2

]
(A.30)

= 1
2π

[
ln
(√

[α̂+ v̂± |∆τ̂ |]2 + ∆x̂2
)
− ln (α)

]
≈ 1

2π ln
(√

v̂2
± (|∆τ̂ |)2 + (∆x̂)2

)
(A.31)
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This gives us the full correlation function as

1
2
〈

(φi(X̂)− φi(X̂ ′))2
〉

= 1
2πs0

∑
±
α±ii ln

(√
(1 + v̂± |∆τ̂ | /α)2 + (∆x̂/α)2

)
(A.32)
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B Auxiliary Calculation for the Hamiltonian Treatment

B.1 Scaling

In the first three sections of the appendix we construct a transformation to diagonalize the
Hamiltonian

H = n

2m
(

Πθ p/n
)( 1 −1
−1 1/γ

)(
Πθ

p/n

)
+ κ

2
(
∂xθ ∂x(nu)

)( 1 ε1
ε1 ε2

)(
∂xθ

∂x(nu)

)
(B.1)

= 1
2
~2n3

m

(
Π̂θ p̂

)( 1 −1
−1 1/γ

)(
Π̂θ

p̂

)
+ 1

2κn
2mκ

n~2

(
∂x̂θ̂ ∂x̂û

)( 1 ε1
ε1 ε2

)(
∂x̂θ̂
∂x̂û

)
(B.2)

= 1
2κn

2
[
n~2

mκ
vT1 M1v1 + mκ

n~2 v
T
2 M2v2

]
. (B.3)

In this context û = nu, Πθ = ~nΠ̂θ and p/n = ~np̂ (also θ̂ = θ for aesthetic consistency). In this
section we apply the first scaling transformation

Π̂′θ = 1
s1

Π̂θ θ̂′ = s1θ̂

p̂′ = 1
s2
p̂ û′ = s2û.

In matrix form this reads

S =
(
s1 0
0 s2

)
, S−1 =

(
1/s1 0

0 1/s2

)
. (B.4)

We apply the transformation to the matrices

M ′1 = n~2

mκ
SM1S

T =
(

s2
1 −s1s2

−s1s2 s2
2/γ

)
= s1s2

n~2

mκ

(
s −1
−1 1/(sγ)

)
, (B.5)

M ′2 = mκ

n~2S
−1M2(S−1)T = mκ

n~2
1

s1s2

(
1/s ε1
ε1 sε2

)
, (B.6)

where s = s1/s2. As said, we need to check for which values of s the new matrices commute. For
this purpose we calculate the commutator [M ′1,M ′2]. As the matrices are symmetric this can be
done efficiently by first evaluating

M ′1M
′
2 ∼

(
1− ε1 s(ε1 − ε2)

(−1 + ε1/γ)/s −ε1 + ε2/γ

)
. (B.7)

Now the commutator is given by[
M ′1,M

′
2
]

= M ′1M
′
2 −

(
M ′1M

′
2
)T ∼ [s(ε1 − ε2)− (−1 + ε1/γ)/s] iσy, (B.8)

and vanishes for
s2 = 1

γ

γ − ε1
ε2 − ε1

. (B.9)
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Note that for certain parameters we require an imaginary s in the scaling transformation. This
seems problematic at first as it would lead to imaginary fields but we will later see that we can
correct this. It is an artifact of the way we build the transformation. For now we must dutifully
carry this imaginary s with us until we can get rid of it. We define now

Q =
{
i if sign ((γ − ε1)(ε2 − ε1)) = −1
1 if sign ((γ − ε1)(ε2 − ε1)) = 1 , (B.10)

so we have

s = Q

√
1
γ

|γ − ε1|
|ε2 − ε1|

and Q2 = sign ((γ − ε1)(ε2 − ε1)) . (B.11)

There is still freedom in the exact choice of s1s2. To keep things simple we choose a phase and
get rid of the prefactors with s1s2 = e2iϕQ−1 mκ

n~2 .

B.2 Diagonalization

We now attempt to simultaneously diagonalize the matrices

M ′1 = e2iϕQ∗
(
|s|Q −1
−1 Q∗

|s|γ

)
, M ′2 = e−2iϕQ

( 1
|s|Q ε1
ε1 |s|Qε2

)
(B.12)

where

s = Q

√
1
γ

∣∣∣∣ γ − ε1ε2 − ε1

∣∣∣∣, (B.13)

and
Q2 = sign ((γ − ε1) (ε2 − ε1)) . (B.14)

Beginning with M1 we first calculate its Eigenvalues as

λ′1± = e2iϕQ∗
1
2

sQ+ 1
sQγ

±

√(
sQ− 1

sQγ

)2
+ 4

 (B.15)

= e2iϕ

2
√
γ |(ε2 − ε1) (γ − ε1)|

[
sign (γ − ε1) (γ + ε2 − 2ε1)±

√
(γ − ε2)2 + 4γ (ε2 − ε1) (γ − ε1)

]
(B.16)

= e2iϕ

2
√
s′

[
sign(γ − ε1)α0 ±

√
∆
]
. (B.17)

The definitions here are given as

s′ = γ |(ε2 − ε1) (γ − ε1)| , ∆ = (γ − ε2)2 + 4γ (ε2 − ε1) (γ − ε1) = (γ − ε2)2 + 4Q2s′, (B.18)

and

α0 = 1
2

(
s+ Q2

sγ

)
√
s′sign(γ − ε1) = (γ + ε2 − 2ε1) (B.19)

β0 = 1
2

(
s− Q2

sγ

)
√
s′sign(γ − ε1) = (γ − ε2) (B.20)

To find the corresponding eigenvectors one calculates the matrix

M ′1 − λ1±I = e2iϕ

2
√
s′

(
sign(γ − ε1)β0 ∓

√
∆ −Q∗

√
s′

−Q∗
√
s′ −sign(γ − ε1)β0 ∓

√
∆

)
(B.21)
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Eigenvectors

w′± =
(
−Q

[
sign(γ − ε1)β0 ±

√
∆
]

√
s′

)
(B.22)

Notice that

∆−β2
0 = 4Q2s′ =⇒ sign

[√
∆± sign(γ − ε1)β0

]
=
{
±sign (γ − ε2) sign(γ − ε1) if Q2 = −1

1 if Q2 = 1 .

(B.23)
When Q2 = −1 then either ε2 < ε1 and ε1 < γ which yields ε2 < γ. Or ε2 > ε1 and ε1 > γ, in
which case ε2 > γ. In either case we get (γ − ε1) (γ − ε2) > 0, which means

sign
[√

∆± β0
]

=
{
±1 if Q2 = −1
1 if Q2 = 1 = Q1∓1 when Q2 = −1. (B.24)

Now see that the eigenvectors are orthogonal and calculate their current norm

w′T+ w
′
− = Q2

[
β2

0 −∆ +Q2s′
]

= 0, (B.25)

w′T− w
′
− = Q2

[
β2

0 + ∆ +Q2s′ − 2sign(γ − ε1)β0
√

∆
]

= 2
√

∆Q2
[√

∆− sign(γ − ε1)β0
]

(B.26)

= 2
√

∆
∣∣∣√∆− sign(γ − ε1)β0

∣∣∣ , (B.27)

w′T+ w
′
+ = Q2

[
β2

0 + ∆ +Q2s′ + 2sign(γ − ε1)β0
√

∆
]

= 2
√

∆Q2
[√

∆ + sign(γ − ε1)β0
]

(B.28)

= 2
√

∆Q2
∣∣∣√∆ + sign(γ − ε1)β0

∣∣∣ . (B.29)

Appropriately normalizing the Eigenvectors gives us

w′± = Q
1±1

2√
2
√

∆

 ∓Q
2∓1
√∣∣∣√∆± sign(γ − ε1)β0

∣∣∣√∣∣∣√∆∓ sign(γ − ε1)β0
∣∣∣

 . (B.30)

The above representation is a bit convoluted, so here are the two vectors separately

w′+ = 1√
2
√

∆

 −Q
2
√∣∣∣sign(γ − ε1)β0 +

√
∆
∣∣∣

Q

√∣∣∣sign(γ − ε1)β0 −
√

∆
∣∣∣
 , w′− = 1√

2
√

∆

 Q3
√∣∣∣sign(γ − ε1)β0 −

√
∆
∣∣∣√∣∣∣sign(γ − ε1)β0 +

√
∆
∣∣∣
 .

(B.31)
At this point we have both Eigenvectors and Eigenvalues of the first matrix, so we could move

on to the second one. However, we can notice something about our choice here: It is not nicely
continuous in the parameter space. Both the Eigenvectors and Eigenvalues have discontinuities
even in their absolute values.
This seems not desirable and we can fix this by altering the choice of nomenclature. This is done
by choosing one Eigenvector left of the line given by ε1 = γ and the other Eigenvector on the
right. A sketch of this can be found in figure 12. Im mathematical language this is expressed as

wδ =
{

w′δ if sign (γ − ε1) = 1
w′−δ if sign (γ − ε1) = −1 . (B.32)
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Figure 12: Sketch of the absolute value and sign of the old and new Eigenvectors. The color indicates

the sign, blue for minus red for plus. The plus and minus sign give the absolute value of
√∣∣∣√∆± β0

∣∣∣
respectively. A shaded region indicates an i as prefactor. One can see that the absolute value of the new
Eigenvectors is continuous while the old one is not. On the border of the shaded region of the components
of the new vectors the absolute value becomes zero such that there is no abrupt transition between real
and purely imaginary.

One can then compute how these new Eigenvectors look (or simply piece it together via the
sketches)

wδ = 1√
2
√

∆

 −sign (ε2 − ε1) δQδ
√∣∣∣√∆ + δβ0

∣∣∣
Q−δ

√∣∣∣√∆− δβ0
∣∣∣.

 (B.33)

where
Qδ =

{
i if sign (γ − ε1) = −δ ∧ sign (ε2 − ε1) = δ
1 else , (B.34)

which means also

Q2
δ =

{
−1 if sign (γ − ε1) = −δ ∧ sign (ε2 − ε1) = δ
1 else =

{
δsign (γ − ε1) if Q2 = −1

1 else .

(B.35)
This trivially leads also to new Eigenvalues

λ1δ = e2iϕsign (γ − ε1)
2
√
γ |(ε2 − ε1) (γ − ε1)|

[
(γ + ε2 − 2ε1) + δ

√
(γ − ε2)2 + 4γ (ε2 − ε1) (γ − ε1)

]
. (B.36)
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There is now a new expression in the Eigenvectors of which we would like to know the sign

sign
[√

∆± (γ − ε2)
]

=
{
±sign (γ − ε2) if Q2 = −1

1 if Q2 = 1

=
{
−Q2

∓1 if Q2 = −1
1 if Q2 = 1 = Q2

∓1Q
2 = Q2

±1. (B.37)

Consider now the Eigenvalue to the second matrix M2

λ′2± = e−2iϕQ
1
2

ε2ŝQ+ 1
ŝQ
±

√(
ε2ŝQ−

1
ŝQ

)2
+ 4ε21

 (B.38)

= Q2e−2iϕ

2
√
s′

[
sign (γ − ε1) (2ε2γ − ε1 (ε2 + γ))± |ε1|

√
∆
]
. (B.39)

For finding Eigenvectors, calculate again the following matrix

M ′2 − λ′2±I = Q
e−2iϕ

2
√
S

(
−sign(γ − ε1)β0ε1 ∓ |ε1|

√
∆ ε1Q

∗√s′
ε1Q

∗√s′ sign(γ − ε1)β0ε1 ∓ |ε1|
√

∆

)
. (B.40)

Now we simply check the old Eigenvector w′± against this new matrix and see what the corre-
sponding Eigenvalue is

0 !=
(
−sign(γ − ε1)β0 ∓ sign (ε1)

√
∆ Q∗

√
s′

Q∗
√
s′ sign(γ − ε1)β0 ∓ sign (ε1)

√
∆

)(
−Q

[
sign(γ − ε1)β0 + d

√
∆
]

√
s′

)

=

 Q
[(

sign(γ − ε1)β0 + d
√

∆
) (

sign(γ − ε1)β0 ± sign (ε1)
√

∆
)

+Q2s′
]

√
s′
[
−sign(γ − ε1)β0 − d

√
∆ + sign(γ − ε1)β0 ∓ sign (ε1)

√
∆
] 

=
(
Q
[
∆ (1± d sign (ε1)) +

√
∆sign(γ − ε1)β0 (d± sign (ε1))

]
−
√
s′ [d± sign (ε1)]

√
∆

)
.

This holds for ∓sign (ε1) = d. This means the Eigenvalue corresponding to w′± is

λ′2± = Q2e−2iϕ

2
√
S

[
sign (γ − ε1) (2ε2γ − ε1 (ε2 + γ))∓ ε1

√
∆
]
. (B.41)

By the same logic as before, the Eigenvalue to the vector wδ is given by

λ2δ = e−2iϕsign (ε2 − ε1)
2
√
S

[
(2ε2γ − ε1 (ε2 + γ))− δε1

√
∆
]
. (B.42)

Summary In total now we have found (almost continuous) Eigenvectors and Eigenvalues.
Eigenvectors:

wδ = 1√
2
√

∆

 −sign (ε2 − ε1) δQδ
√∣∣∣√∆ + δβ0

∣∣∣
Q−δ

√∣∣∣√∆− δβ0
∣∣∣

 . (B.43)

Eigenvalues:

λ1δ = e2iϕsign (γ − ε1)
2
√
γ |(ε2 − ε1) (γ − ε1)|

[
(γ + ε2 − 2ε1) + δ

√
(γ − ε2)2 + 4γ (ε2 − ε1) (γ − ε1)

]
, (B.44)

λ2δ = e−2iϕsign (ε2 − ε1)
2
√
γ |(ε2 − ε1) (γ − ε1)|

[
(2ε2γ − ε1 (ε2 + γ))− δε1

√
∆
]
. (B.45)

50



B.3 Complex Scaling

We can now begin to write down the diagonalized Hamiltonian. With

W = (w+ w−) (B.46)

one obtains
W TM ′iW =

(
λ̃i+ 0
0 λ̃i−

)
. (B.47)

Defining new fields as(
φ̃+
φ̃−

)
= W T

(
θ̂′

û′

)
= W TS

(
θ̂
û

)
,

(
Π̃+
Π̃−

)
= W T

(
Π̂′θ
p̂′

)
= W TS−1

(
Π̂θ

p̂

)
,

(B.48)
yields a diagonal Hamiltonian

H = 1
2κn

2∑
±

[
λ̃1±Π̃2

± + λ̃2±
(
∂x̂φ̃±

)2
]
. (B.49)

Here is now where we deal with the imaginary terms we so far have simply carried along. To get
a better sense for the new fields we write down the transformation matrices once:

W TS =
√
κm

~2n

eiϕ√
2
√

∆

 −sign (ε2 − ε1)Q+1
4

√
1
γ

∣∣∣ γ−ε1ε2−ε1

∣∣∣√∣∣∣√∆ + β0
∣∣∣ Q∗+1

4

√
γ
∣∣∣ ε2−ε1γ−ε1

∣∣∣√∣∣∣√∆− β0
∣∣∣

sign (ε2 − ε1)Q−1
4

√
1
γ

∣∣∣ γ−ε1ε2−ε1

∣∣∣√∣∣∣√∆− β0
∣∣∣ Q∗−1

4

√
γ
∣∣∣ ε2−ε1γ−ε1

∣∣∣√∣∣∣√∆ + β0
∣∣∣


(B.50)

W TS−1 =

√
~2n

κm

e−iϕ√
2
√

∆

 −sign (ε2 − ε1)Q+1
4

√
γ
∣∣∣ ε2−ε1γ−ε1

∣∣∣√∣∣∣√∆ + β0
∣∣∣ Q−1

4

√
1
γ

∣∣∣ γ−ε1ε2−ε1

∣∣∣√∣∣∣√∆− β0
∣∣∣

sign (ε2 − ε1)Q−1
4

√
γ
∣∣∣ ε2−ε1γ−ε1

∣∣∣√∣∣∣√∆− β0
∣∣∣ Q+1

4

√
1
γ

∣∣∣ γ−ε1ε2−ε1

∣∣∣√∣∣∣√∆ + β0
∣∣∣


(B.51)
We notice that this Hamiltonian has imaginary fields for certain parameters. However, these
factors of i cancel out nicely since the Hamiltonian is quadratic. The imaginary units were really
only signs all along. It is therefore sensible to introduce another ”scaling” transformation

Q = e−iϕ
(
Q+1 0

0 Q−1

)
, (B.52)

such that with
Wφ = QW TS, WΠ = Q−1W TS−1, (B.53)

we obtain entirely real fields(
φ+
φ−

)
= Wφ

(
θ̂
û

)
,

(
Π+
Π−

)
= WΠ

(
Π̂θ

p̂

)
. (B.54)

Doing this makes the Eigenvalues real

λ1δ = Q2
δsign (γ − ε1)

2
√
γ |(ε2 − ε1) (γ − ε1)|

[
(γ + ε2 − 2ε1) + δ

√
∆
]
, (B.55)

λ2δ = Q2
δsign (ε2 − ε1)

2
√
γ |(ε2 − ε1) (γ − ε1)|

[
(2ε2γ − ε1 (ε2 + γ))− δε1

√
∆
]
. (B.56)

51



The final - now entirely real - Hamiltonian reads

H = 1
2κn

2∑
±

[
λ1±Π2

± + λ2± (∂x̂φ±)2
]
. (B.57)

We can see now that there is no need to worry about the complex scaling. In total there is an
entirely real canonical (see App. B.4) transformation that maps the original real Hamiltonian to
the new real and diagonal one. The intermittent complex fields are an artifact of the way the
transformation was constructed.

B.4 Full Transformation

We have our full transformation given by the two matrices

Wφ = QW TS, WΠ = Q−1W TS−1. (B.58)

Generally for a canonical transformation, we want to conserve the commutator. Say for instance
we have Π′i = UijΠj and φ′k = Pklφl. Then the commutator would read[

Π′i,φ′k
]

= UijPkl [Πj ,φl] = Uij(P T )jk
!= δik. (B.59)

This condition in matrix form is UP = I. In our case we calculate

WφW
T
Π = QW TS(S−1)TW (Q−1)T = I. (B.60)

The calculation is very simple since Q and S are symmetric and W is orthogonal. We thus see
that our transformation is canonical. Also it is nice to have

W−1
φ = W T

Π , W−1
Π = W T

φ . (B.61)

The full matrices are given by

Wφ =
√
κm

~2n

1√
2
√

∆

 −sign (ε2 − ε1)Q2
+1

4

√
1
γ

∣∣∣ γ−ε1ε2−ε1

∣∣∣√∣∣∣√∆ + β0
∣∣∣ 4

√
γ
∣∣∣ ε2−ε1γ−ε1

∣∣∣√∣∣∣√∆− β0
∣∣∣

sign (ε2 − ε1)Q2
−1

4

√
1
γ

∣∣∣ γ−ε1ε2−ε1

∣∣∣√∣∣∣√∆− β0
∣∣∣ 4

√
γ
∣∣∣ ε2−ε1γ−ε1

∣∣∣√∣∣∣√∆ + β0
∣∣∣
 ,

(B.62)

WΠ =

√
~2n

κm

1√
2
√

∆

 −sign (ε2 − ε1) 4

√
γ
∣∣∣ ε2−ε1γ−ε1

∣∣∣√∣∣∣√∆ + β0
∣∣∣ Q2

−1
4

√
1
γ

∣∣∣ γ−ε1ε2−ε1

∣∣∣√∣∣∣√∆− β0
∣∣∣

sign (ε2 − ε1) 4

√
γ
∣∣∣ ε2−ε1γ−ε1

∣∣∣√∣∣∣√∆− β0
∣∣∣ Q2

+1
4

√
1
γ

∣∣∣ γ−ε1ε2−ε1

∣∣∣√∣∣∣√∆ + β0
∣∣∣
 .

(B.63)

The transformation and its inverse are then(
φ+
φ−

)
= W̃φ

(
θ̂
û

)
,

(
Π+
Π−

)
= W̃Π

(
Π̂θ

p̂

)
, (B.64)(

θ̂
û

)
= W̃ T

Π

(
φ+
φ−

)
,

(
Π̂θ

p̂

)
= W̃ T

φ

(
Π+
Π−

)
. (B.65)

We can write down more specifically that

Π̂θ =
√
κm

~2n

∑
±

(−a±)Π±, û =

√
~2n

κm

∑
±
b±φ±, θ =

√
~2n

κm

∑
±
c±φ± (B.66)
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where

a± = ±sign(ε2 − ε1)Q2
±1

4

√
1
γ

∣∣∣∣ γ − ε1ε2 − ε1

∣∣∣∣
√√√√∣∣∣√∆± β0

∣∣∣
2
√

∆
(B.67)

b± = Q2
∓1

4

√
1
γ

∣∣∣∣ γ − ε1ε2 − ε1

∣∣∣∣
√√√√∣∣∣√∆∓ β0

∣∣∣
2
√

∆
(B.68)

c± = ∓sign (ε2 − ε1) 4

√
γ

∣∣∣∣ε2 − ε1γ − ε1

∣∣∣∣
√√√√∣∣∣√∆± β0

∣∣∣
2
√

∆
(B.69)

B.5 Expectation Values

Here we calculate all the expectation values that go into 〈ρρ′〉 where

ρ ≈ [n+ δn(x,t)]
[
1 +

∑
l=1

2 cos (2πl (θ + nx))
]

+ 2c1 cos (k0(x− u)) . (B.70)

Many of these expectation values are zero simply because
〈
φ2
±
〉

=∞ and 〈φ±〉 = 0:

〈cos (k0x− s0k0/nbφ)〉 = cos(k0x)e−
1
2 (s0k0/n)2〈(bφ)2〉 = 0 (B.71)

〈cos (2πlnx+ 2πls0cφ)〉 = cos(2πlnx)e−
1
2 (2πls0)2〈(cφ)2〉 = 0 (B.72)

〈δn/n〉 = 〈c∂x̂φ〉 = 0 (B.73)

〈
cos

(
k0x− s0

k0
n
bφ

)
cos

(
2πlnx′ − 2πls0cφ

′)〉 =
∑
±

cos
(
k0x± 2πlnx′

)
e
− 1

2 s
2
0

〈[
k0
n
bφ±2πlcφ′

]2〉

=
∑
ε

cos
(
k0x+ ε2πlnx′

)
e
− 1

2 s
2
0
∑
±

〈[
k0
n
b±φ±+ε2πlc±φ′±

]2〉
= 0 except if |k0/nb±| = |2πlc±|

(B.74)

This expectation value is also zero for the same reason, but it is harder to see

〈
c∂x̂φ eiεmφ′

〉
=
∑
±
c±

∫∫
dQ̂

4π2 k̂eiQ̂X̂
〈
φ± eiε

∑
±m±

∫∫
dQ̂′

4π2 eiQ̂′X̂′φ′±
〉

(B.75)

Consider only this expectation value. It is best calculated by〈
φ± eiε

∑
±m±

∫∫
dQ̂′

4π2 eiQ̂′X̂′φ′±
〉

= 1
Z

[
4π2 δ

δJφ±

]
Z[Jφ±,JΘ±]

∣∣∣∣∣ Jφ± = −iεm±e−iQ̂X̂′

JΘ± = 0

(B.76)

=
[
− 1
s0

(M±)22

] [
−iεm±e−iQ̂X̂′

]
exp

(
−1

2

∫∫
dQ̂

4π2

∑
±
m2
±

[
− 1
s0

(M±)22

])
(B.77)

= −iεm±e−iQ̂X̂′
〈
φ±(Q̂φ±(−̂Q)

〉
e−

1
2〈(mφ)2〉 = 0 (B.78)
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The expectation values that do not vanish are calculated as:〈
cos

(
k0x− s0

k0
n
bφ

)
cos

(
k0x
′ − s0

k0
n
bφ′

)〉
=
∑
±

cos
(
k0(x± x′)

)
e−

1
2 (s0 k0

n
)2〈[b(φ±φ′)]2〉

= cos
(
k0(x− x′)

)
e−

1
2 (s0 k0

n
)2〈[b(φ−φ′)]2〉 (B.79)

〈
cos (2πlnx+ 2πls0cφ) cos

(
2πlnx′ + 2πls0cφ

′)〉 =
∑
±

cos
(
2πln(x± x′)

)
e−

1
2 (2πls0)2〈[c(φ±φ′)]2〉

= cos
(
2πln(x− x′)

)
e−

1
2 (2πls0)2〈[c(φ−φ′)]2〉

(B.80)

〈
δnδn′/n2

〉
= ∂x̂∂x̂′

〈
(cφ)(cφ′)

〉
= s0

∑
±
K̂±c

2
±

∫∫
dq̂

2π
dk̂

2π
k̂2v̂±

q̂2 + v̂2
±k̂

2
ei(k̂∆x̂+q̂∆τ̂) (B.81)

= s0
∑
±

K̂±c
2
±

4π2v̂2
±

∫∫
dq̂dk̂′

k̂′2

q̂2 + k̂′2
cos

(
k̂′∆x̂/v̂±

)
cos (q̂∆τ̂) (B.82)

= s0
∑
±

K̂±c
2
±

4π2v̂2
±

∫∫
dadk̂′

|k̂′|
a2 + 1 cos

(
k̂′∆x̂/v̂±

)
cos

(
a|k̂′|∆τ̂

)
(B.83)

= s0
∑
±

K̂±c
2
±

4π2v̂2
±

∫
dk̂′|k̂′| cos

(
k̂′∆x̂/v̂±

) ∫
da
∑
ε

(
iε

2

)
(B.84)

×
cos

(
(a+ εi)|k̂′|∆τ̂

)
cosh(|k̂′|∆τ̂) + iε sin

(
(a+ εi)|k̂′|∆τ̂

)
sinh(|k̂′|∆τ̂)

a+ εi
(B.85)

= s0
∑
±

K̂±c
2
±

4πv̂2
±

∫
dk̂′|k̂′| cos

(
k̂′∆x̂/v̂±

) [
cosh(|k̂′|∆τ̂)− sinh(|k̂′|∆τ̂)

]
(B.86)

= s0
∑
±

K̂±c
2
±

4πv̂2
±

∫
dk̂′|k̂′| cos

(
k̂′∆x̂/v̂±

)
e−|k̂′||∆τ̂ | (B.87)

= s0
∑
±

K̂±c
2
±

4πv̂2
±

∫ ∞
0

dk̂′k̂′
∑
ε

ek̂′[−|∆τ̂ |−α+εi|∆x̂|/v̂±] (B.88)

= −s0
∑
±

K̂±c
2
±

4πv̂2
±
∂α

∫ ∞
0

dk̂′
∑
ε

ek̂′[−|∆τ̂ |−α+εi|∆x̂|/v̂±] (B.89)

= s0
∑
±

K̂±c
2
±

4πv̂2
±
∂α
∑
ε

1
− |∆τ̂ | − α+ εi |∆x̂| /v̂±

(B.90)

= s0
∑
±

K̂±c
2
±

2π ∂α
− |∆τ̂ | − α

v̂2
±(|∆τ̂ |+ α)2 + |∆x̂|2

(B.91)

= s0
∑
±

K̂±c
2
±

2π
v̂2
± (|∆τ̂ |+ α)2 − |∆x̂|2(
v̂2
±(|∆τ̂ |+ α)2 + |∆x̂|2

)2 (B.92)

B.6 Parameter Calculations

Critical Exponents Here we are interested in the expressions
a2
±

K̂±
, b2±K̂±, c2

±K̂±, (B.93)
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as well as their sums. We will see how these calculations work at the example of b2±K̂±, the others
are very similar and their results are also given here. We begin by writing down the definition

b2±K̂± = Q2
∓

2
√

∆

√
1
γ

∣∣∣∣ γ − ε1ε2 − ε1

∣∣∣∣ (√∆∓ (γ − ε2)
) ∣∣∣γ + ε2 − 2ε1 ±

√
∆
∣∣∣

2v̂±
√
γ |γ − ε1| |ε2 − ε1|

(B.94)

= 1√
∆v̂±

1
4γ(ε2 − ε1)

(√
∆∓ (γ − ε2)

) (
γ + ε2 − 2ε1 ±

√
∆
)
. (B.95)

The complicated part is the multiplication of the two brackets. This yields(√
∆∓ (γ − ε2)

) (
γ + ε2 − 2ε1 ±

√
∆
)

= ∓ [(γ − ε2)(γ − ε2 − 2ε1)−∆] +
√

∆ [2ε2 − 2ε1]
(B.96)

= 2
√

∆ [ε2 − ε1]∓ 2
[
ε1ε2 + γε2 − γε1 − ε22 − 2γ(ε2 − ε1)(γ − ε1)

]
(B.97)

= ±2(ε2 − ε1)
[
[ε2 − γ + 2γ(γ − ε1)]±

√
∆
]

(B.98)

= ±2(ε2 − ε1) [2γv̂± − 2γ(1− γ)] = ±4γ(ε2 − ε1) [v̂± − (1− γ)] . (B.99)

Inserting this result gives us the final expression

b2±K̂± = ± v̂
2
± − (1− γ)
v̂±
√

∆
. (B.100)

In a similar way we find the other two expressions

a2
±

K̂±
= ±γv

2
± −

(
ε2 − ε21

)
v±
√

∆
, c2

±K̂± = ±γv̂
2
± − ε2 (1− γ)
v̂±
√

∆
. (B.101)

Calculating the sum is straight forward

B =
∑
±
b2±K̂± =

∑
±

[
±
v̂2
± − (1− γ)
v̂±
√

∆

]
= 1√

∆v̂+v̂−
(v̂+v̂− + (1− γ)) (v̂+ − v̂−) (B.102)

= 1
√
γ (v̂+ + v̂−)

[
1
√
γ

+ 1− γ
√
γv̂+v̂−

]
= 1
√
γ (v̂+ + v̂−)

[
1
√
γ

+
√

1− γ
ε2 − ε21

]
. (B.103)

In the same way we can evaluate

C = 1
(v̂+ + v̂−)√γ

[
√
γ + ε2

√
1− γ
ε2 − ε21

]
, A = 1

(v̂+ + v̂−)√γ

√γ +
√
ε2 − ε21
1− γ

 . (B.104)

Equipotential lines Here we calculate the equipotential lines for A,B and C.

B: We begin with

B = 1
√
γ(v̂+ − v̂−)

[
1
√
γ

+
√

1− γ
ε2 − ε21

]
. (B.105)

A closer look at the expression in front of the brackets reveals

√
γ(v̂+ − v̂−) =

√
ε2 + γ − 2γε1 + 2

√
γ(1− γ)(ε1 − ε2) (B.106)

=
√

(ε2 − ε21) + γ(1− γ) + (γ − ε1)2 + 2
√
γ(1− γ)(ε1 − ε2). (B.107)
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Define now
a =

√
ε2 − ε21 +

√
γ(1− γ), b = ε1 − γ, (B.108)

where we have the condition a >
√
γ(1− γ). Then we see a convenient definition

√
γ(v̂+ − v̂−) =

√
a2 + b2 =: r (B.109)

and subsequently also define
a = r cos(ϕ), b = r sin(ϕ), (B.110)

where ϕ ∈ {−π/2,π/2} since a > 0. With this we obtain

B = 1
r

[
1
√
γ

+
√

1− γ
r cos(ϕ)−

√
γ(1− γ)

]
. (B.111)

Solving this equation for r gives

r = 1
√
γB

+
√
γ(1− γ)
cos(ϕ) . (B.112)

With this the condition

a = r cos(ϕ) = cos(ϕ)
√
γB

+
√
γ(1− γ) >

√
γ(1− γ) (B.113)

is fulfilled. Finally, by combining the results obtained so far, we obtain the equipotential lines

ε1 = γ + sin(ϕ)
√
γB

+
√
γ(1− γ) tan(ϕ), (B.114)

ε2 = ε21 + cos2(ϕ)
γB2 . (B.115)

C: The same approach also works for finding equipotential lines for

C = 1
√
γ(v̂+ − v̂−)

[
√
γ + ε2

√
1− γ
ε2 − ε21

]
. (B.116)

Using the same definitions we obtain

C = 1
r

[
√
γ +

((
r cos(ϕ)−

√
γ(1− γ)

)2
+ (r sin(ϕ) + γ)2

) √
1− γ

r cos(ϕ)−
√
γ(1− γ)

]
(B.117)

= 1
r

[
√
γ +

(
r2 + γ + 2r

[
γ sin(ϕ)−

√
γ(1− γ) cos(ϕ)

]) √
1− γ

r cos(ϕ)−
√
γ(1− γ)

]
(B.118)

Obtaining an equation for r is a bit more difficult here. We first multiply the equation by the
denominator

[rC −√γ]
[
r cos(ϕ)−

√
γ(1− γ)

]
=
√

1− γ
(
r2 + γ + 2r

[
γ sin(ϕ)−

√
γ(1− γ) cos(ϕ)

])
.

(B.119)
Here we see that one term cancels and we can the divide by r. This gives us the equation

[rC −√γ] cos(ϕ)− C
√
γ(1− γ) =

√
1− γ

(
r + 2

[
γ sin(ϕ)−

√
γ(1− γ) cos(ϕ)

])
, (B.120)
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which we can then solve for r

r
[
C cos(ϕ)−

√
1− γ

]
= 2γ

√
1− γ sin(ϕ) +√γ [1− 2(1− γ)] cos(ϕ) + C

√
γ(1− γ). (B.121)

We need to again check if a >
√
γ(1− γ). To do that we consider

a
[
C cos(ϕ)−

√
1− γ

]
= 2γ

√
1− γ sin(ϕ) cos(ϕ)−√γ [1− 2γ] cos2(ϕ) + C

√
γ(1− γ) cos(ϕ).

(B.122)
After moving some terms around we see that[
a−

√
γ(1− γ)

] [
C cos(ϕ)−

√
1− γ

]
= 2γ

√
1− γ sin(ϕ) cos(ϕ)−√γ [1− 2γ] cos2(ϕ) +√γ(1− γ)

(B.123)

= γ
√

1− γ sin(2ϕ)− 1
2
√
γ [1− 2γ] cos(2ϕ) + 1

2
√
γ

(B.124)

=
√
γ

2

[
1 + 2

√
γ(1− γ) sin(2ϕ)− [1− 2γ] cos(2ϕ)

]
.

(B.125)

At this point we can write this in a more compact manner

1 + 2
√
γ(1− γ) sin(2ϕ)− [1− 2γ] cos(2ϕ) = 1 + sin(2ϕ− ϑ) > 0, (B.126)

where
cos(ϑ) = 2

√
γ(1− γ), sin (ϑ) = 1− 2γ. (B.127)

We now know that we have[
a−

√
γ(1− γ)

] [
C cos(ϕ)−

√
1− γ

]
> 0, (B.128)

which leads to the condition
C cos(ϕ) >

√
1− γ. (B.129)

We define
T =

√
γ

2
1 + 2

√
γ(1− γ) sin(2ϕ)− [1− 2γ] cos(2ϕ)

C cos(ϕ)−
√

1− γ (B.130)

This leads us to the equation for the equipotential lines

ε1 = γ +
[
T +

√
γ(1− γ)

]
tan(ϕ), ε2 = ε21 + T 2, (B.131)

with ϕ ∈ [− arccos(
√

1− γ/C), arccos(
√

1− γ/C)].

A: The simplest of the three cases is

A =
∑ a2

±

K̂±
= 1

(v+ + v−)√γ

√γ +
√
ε2 − ε21
1− γ

 . (B.132)

We begin by multiplying the expression with the denominator

A
√

1− γ
√
ε2 + γ − 2ε1γ + 2

√
γ(1− γ)(ε2 − ε21) =

√
γ(1− γ) +

√
ε2 − ε21. (B.133)
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This expression we square and identify some terms on the left hand side to obtain

A2(1− γ)
[
(γ − ε1)2 +

[√
γ(1− γ) +

√
ε2 − ε21

]2
]

=
[√

γ(1− γ) +
√
ε2 − ε21

]2
. (B.134)

We can sort these terms and with the constraint 1−A2(1− γ) > 0 we can take the square root
to arrive at [√

γ(1− γ) +
√
ε2 − ε21

]√
1−A2(1− γ) = A

√
1− γ |γ − ε1| . (B.135)

Rearranging these terms we get the expression√
ε2 − ε21 = A

√
1− γ |γ − ε1|√

1−A2(1− γ)
−
√
γ(1− γ). (B.136)

From this we obtain the equipotential lines

ε2 = ε21 + (1− γ)
[

A |γ − ε1|√
1−A2(1− γ)

−√γ
]2

, (B.137)

with the conditions

1−A2(1− γ) > 0, |γ − ε1| >
√
γ/A2 − γ(1− γ). (B.138)

The second condition we can also rewrite as

A2 >
γ

(γ − ε1)2 + γ(1− γ) . (B.139)
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C Perturbations: Second Order

C.1 Impurity

Consider again the impurity perturbation

S ′ = g

∫∫
dx̂dτ̂ V (x̂)ρ(x̂,τ̂) = g

∫
dτ̂ n(0,τ̂)

[
1 +

∑
l

2 cos(2πlθ(0,τ̂))
]

+ 2 cos(k0u(0,τ̂)). (C.1)

The second order turns out to not be as trivial as the first. If we were to follow the same
procedure which gave the solution to the first order, we would run in to trouble when later
trying to identify terms during rescaling since the original action is two dimensional while the
perturbation has only one. To work around this problem, we will try to obtain an effective one
dimensional action for φ0±(τ) = φ±(0,τ).

We begin by splitting φ± into a symmetric φs± and antisymmetric φa± part. The (anti)symmetry
is with respect to position and as such

φa±(0,τ) = 0, φs±(0,τ) = φ0±(τ). (C.2)

Again, due to its form, the action then splits as

S0 = Sa + Ss. (C.3)

We can now again consider the term Zg/Z0, which simplifies to

Zg/Z0 = 1
Z0
Za

∫∫
Dφs± e

Ss
~ e

S′
~ , (C.4)

with
Ss = s0

∫∫
D
dx̂dτ̂

∑
±

1
K̂±

[ 1
v̂±

(∂τ̂φs±)2 + v̂± (∂x̂φs±)2
]
, (C.5)

and
D = {(x,τ)| x > 0; τ,x ∈ R}. (C.6)

The Lagrangian for this action we can directly read of as

Ls ∝
∑
±

1
K̂±

[ 1
v̂±

(∂τ̂φs±)2 + v̂± (∂x̂φs±)2
]
. (C.7)

This gives the Euler-Lagrange equations

0 = 1
v̂±
∂2
τ̂φs± + v̂±∂

2
x̂φs±. (C.8)

Substituting ŷ± = v̂±τ̂ this equation becomes

0 =
(
∂2
ŷ± + ∂2

x̂

)
φs± = ∆±φs±. (C.9)

The fundamental solution of the two dimensional Laplace operator is known to be

u(x̂,ŷ±,x̂′,ŷ′±) = − 1
2π ln (r±) , r± =

√
(x̂− x̂′)2 +

(
ŷ± − ŷ′±

)2
. (C.10)

Our boundary conditions in this case are

φs±(0,ŷ±) = φ0±(ŷ±), (C.11)
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as well as that φs± and its first derivatives vanish as either of its arguments tends to infinity.
This now means that for the greens function we need a fundamental solution which is zero for
x̂ = 0. This is achieved by

G = − 1
4π ln

((
x̂− x̂′

)2 +
(
ŷ± − ŷ′±

)2)+ 1
4π ln

((
x̂+ x̂′

)2 +
(
ŷ± − ŷ′±

)2)
. (C.12)

Then the solution is given by

φs±(x̂,ŷ±) =
∫
dŷ′±(∂x̂′G)(x̂,ŷ±,0,ŷ′±)φ0±(ŷ′±), (C.13)

where

(∂x̂′G)(x̂,ŷ±,0,ŷ′±) = 1
π

x̂

x̂2 +
(
ŷ± − ŷ′±

)2 = ∂x̂

[ 1
2π ln

(
x̂2 +

(
ŷ± − ŷ′±

)2)] = ∂x̂f. (C.14)

We also directly see that
lim
x̂→0

∂x̂f = δ(ŷ± − ŷ′±). (C.15)

We are now interested in∫∫
D±

dx̂dŷ± (∂x̂φs±)2 +
(
∂ŷ±φs±

)2 = −
∫∫

D±
dx̂dŷ±φs±∆±φs± −

∫
dŷ± [φs±∂x̂φs±]|x̂=0

= −
∫∫∫

dŷ±dŷ
′
±dŷ

′′
±(∂2

x̂f)(0,ŷ±,ŷ′′±)φ0±(ŷ′′±)δ(ŷ± − ŷ′′±)φ0±(ŷ′±)

= − 1
π

∫∫
dŷ±dŷ

′
±
φ0±(ŷ±)φ0±(ŷ′±)(

ŷ± − ŷ′±
)2 . (C.16)

Fourier transforming this yields

Se =
∑
±

s0

K̂±

[
− 1
π

∫∫
dτ̂dτ̂ ′

φ0±(τ̂)φ0±(τ̂ ′)
(τ̂ − τ̂ ′)2

]
(C.17)

=
∑
±

s0

K̂±

[
− 1
π

∫∫
dq̂

2π
dq̂′

2π

∫∫
dadb

1
a2 ei

a
2 (q̂−q̂′)eib(q̂+q̂′)φ0±(q̂)φ0±(q̂′)

]
(C.18)

=
∑
±

s0

K̂±

[
− 1
π

∫
dq̂

2π

∫
da

1
a2 eiaq̂φ0±φ

†
0±

]
=
∑
±

s0

K̂±

∫
dq̂

2π |q̂|φ0±φ
†
0± (C.19)

=
∑
±

1
2

∫
dq̂

2π
s0

K̂±
|q̂|φ0±φ

†
0± =

∑
±

1
2

∫
dq̂

2π η̂± |q̂|φ0±φ
†
0±, (C.20)

where
η̂± = 2 s0

K̂±
= 2m̂±v̂±. (C.21)

As before we see that to calculate correlation functions with this action we will need a high
frequency cutoff. This canbe done by introducing a mass term into the action. The action with
the cutoff then has the form ∑

±

1
2

∫
dq̂

2π
[
m̂±q̂

2 + η̂± |q̂|
]
φ0±φ

†
0±. (C.22)

This action now describes the sum of two dissipative, one dimensional systems with particles of
mass m̂ and friction coefficient η̂. Such systems were treated by Schmid[13] and Bulgadaev[14].
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For actual renormalization group calculations would like to know the new correlation functions.
Trivial now are 〈

φ0±(q̂)φ0±(q̂′)
〉

= 1
m̂±q̂2 + η̂± |q̂|

2πδ(q̂ + q̂′). (C.23)

Interesting are correlation functions like

1
2
〈[
φ0±(τ̂)− φ0±(τ̂ ′)

]2〉 =
∫
dq

2π
1− cos (q̂∆τ̂)
m̂±q2 + η̂± |q|

= 2
η̂±

∫ ∞
0

dq

2π
1− cos(qr)
q2 + q

, (C.24)

where
q = m̂±

η̂±
q̂, r = η̂±

m̂±
∆τ̂ . (C.25)

Now with some clever redistributing∫ ∞
0

dq
1− cos(qr)
q2 + q

=
∫ ∞

0
dq

[ 1
q2 + q

− cos(qr)
q

+ cos(qr)
q + 1

]
. (C.26)

One needs to be careful with transformations here, as one is toying with infinities. We see that∫ ∞
0

dq
1

q2 + q
=
∫ 1

0
dq

1
q
−
∫ 1

0
dq

1
q + 1 +

∫ ∞
1

dq
1

q2 + q
=
∫ 1

0
dq

1
q
. (C.27)

One last transformation is needed, and then we see by the definitions of cosine integrals that∫ 1

0
dq

1
q
−
∫ ∞

0
dq

cos(qr)
q

=
∫ 1

0
dq

1− cos(qr)
q

−
∫ ∞

1
dq

cos(qr)
q

(C.28)

=
∫ r

0
dq

1− cos(q)
q

−
∫ ∞
r

dq
cos(q)
q

= ln (r) + γ. (C.29)

with the Euler-Mascheroni constant γ. In total this yields

1
2
〈[
φ0±(τ̂)− φ0±(τ̂ ′)

]2〉 = 1
η̂±π

[
ln (r) + γ +

∫ ∞
0

dq
cos(qr)
q + 1

]
=
{ 1

η̂±π
[ln (r) + γ] r � 1

1
2η̂± r r � 1

(C.30)
Let us first consider

eg
∫

cos(dφ0) =
∑
n

1
n!

[
n∏
i

∫
dτ̂i

](
g

2

)n ∑
{εi=±1}

ei
∑

i
εidφ0(τ̂i). (C.31)

Taking the expectation value we see that only terms with even n survive as we need charge
neutrality ∑i εi = 0 for the expression not to become zero. Also, since the specific configuration of
{εi} does not matter as one can rearrange the integrals, we can choose one specific configuration.

〈
eg
∫

cos(dφ0)
〉

=
∑
n

1
(n!)2

(
g

2

)2n
[ 2n∏
i

∫
dτ̂i

]
e
− 1

2

〈
[∑i

εidφ0(τ̂i)]2
〉
. (C.32)

A closer look at the expectation value in the exponent reveals

−1
2

〈[∑
i

εidφ0(τ̂i)
]2〉

= 1
2
∑
i<j

εiεj
〈

[d(φ0(τ̂i)− φ0(τ̂j))]2
〉
, (C.33)
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since with charge neutrality we have(∑
εiAi

)2
=
∑
i,j

εiεjAiAj = 2
∑
i<j

εiεjAiAj +
∑
i

ε2iA
2
i = 2

∑
i<j

εiεjAiAj −
∑
i

εiA
2
i

∑
j 6=i

εj

= 2
∑
i<j

εiεjAiAj −
∑
i<j

εiεj
(
A2
i +A2

j

)
= −

∑
i<j

εiεj (Ai −Aj)2 .

We know these expectation values, when we consider the long range case this yields

1
2
∑
i<j

εiεj
∑
±

d2
±

η̂±π

[
ln
(
η̂±
m̂±
|τ̂i − τ̂j |

)
+ γ

]
. (C.34)

Separating this a bit further gives

1
2
∑
i<j

εiεj [ln (|τ̂i − τ̂j |)]
(∑
±

d±
η̂±π

)
+ 1

2
∑
i<j

εiεj
∑
±

d±
η̂±π

[
ln
(
η̂±
m̂±

)
+ γ

]
, (C.35)

where we nicely see the logarithmic dependence on τ̂i. After some restructuring we get
1
2
∑
i<j

εiεj
1
πη

ln
(
r′
)
. (C.36)

with
1
η

=
∑
±

d2
±
η̂±
, r′ = η

m
|τ̂i − τ̂j | , m = 1

eγη
∏
±
η̂
−
ηd2±
η̂±

± m̂

ηd2±
η̂±
± . (C.37)

In full this means again that

〈
eg
∫

cos(dφ0)
〉

=
∑
n

1
(n!)2

(
g

2

)2n
[ 2n∏
i

∫
dτ̂i

]
e

1
2
∑

i<j
εiεj

1
πη

ln(r′)
. (C.38)

This is the problem Bulgadaev treats in [14], where he obtains the renormalization flow equations

d
(
m
a

)
dl

= −m
a

+ 2
3πη (ga)2,

d(ga)
dl

=
(

1− 1
2πη

)
(ga)− 16

3 (ga)3, dl = da

a
, a(l = 0) = m

η
.

(C.39)
We can see that there exists a critical point η∗ = 1

2π which, since

1
2πη = 1

2π
∑
±

d2
±
η̂±

= 1
s0

∑
±

d2
±K̂±
4π , (C.40)

corresponds to the critical point we have already found in first order. In the case of 1/(2πη) >
1/(2πη∗) = 1 the behavior of the system is governed by dissipation. The results from [14] then
give the same logarithmic dependence in the correlation functions as before (with a short range
cutoff here) ∑

±
d2
±
〈
φ0±(τ̂)φ0±(τ̂ ′)

〉
∼ − 1

πη
ln
(∣∣τ̂ − τ̂ ′∣∣) . (C.41)

This expected as it is the case where our perturbation is irrelevant. The case of 1/(2πη) < 1 is
more interesting. There we then get correlation functions of the form∑

±
d2
±
〈
φ0±(τ̂)φ0±(τ̂ ′)

〉
∼ − 1

πη
[Si(τM) sin(τM)− Ci(τM) cos(τM)] , (C.42)
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where M is a constant related to the correlation length ξ ∼ (m/η)el∗ [14]. This correlation
oscillates while decreasing in a power-law fashion. An interesting thing is the regime of strong
coupling mg � 1. There an expansion in kink/antikink solutions [13] yields the same action
as before after a replacement 1

2πη → 2πη (and some other replacements, but that’s not that
important here). Thus we observe the same phase transition in the strong coupling case, but
with relevant and irrelevant regimes swapped.
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