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Abstract

Recently cold polar molecules trapped in optical lattices have been used to engineer strongly
correlated quantum phases. The high tunability of the dipolar interaction and the internal ro-
tational structure of polar molecules is suitable to realize field induced spin systems that can
be efficiently tuned to simulate important model systems of condensed matter physics. In this
diploma thesis we demonstrate the realization of spin–1/2 Heisenberg models and propose a
method for the simulation of the t–J model with strong exchange interactions. In the first part,
the spin–1/2 XXZ model in an optical two–dimensional square lattice is derived microscopically
using external static electric and microwave fields. The influence of the slowly decaying dipolar
1/r3 interaction between polar molecules on the ground state phase diagram at T = 0 is studied
by employing a spin wave analysis. In the second part of this work, an attempt to simulate the
t–J model with polar molecules is undertaken and there might be several perspectives of an
exact realization. As an outlook, a short discussion of using the results of this work to realize
ferro–electric liquids is given.
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1
Introduction

Since the discovery of high temperature superconductors by Karl Müller and Johannes Bed-
norz [1] in 1986 intensive research has been undertaken to understand the physical mechanism
causing the superconducting phase to appear. Unlike conventional superconductors the high
temperature superconductors do not exhibit an isotope effect that explains the coupling mecha-
nism of electrons via the exchange of virtual phonons, as has been worked out by Bardeen Cooper
and Schrieffer in their highly successful BCS theory [2]. It is assumed that the mechanism is of
purely electronical origin, for example antiferromagnetic exchange correlations. For this reason
spin models are intensively studied [3] which offer many interesting phenomena despite their
simple mathematical structure. Many known spin models possess topological phases that do not
fit into the Landau symmetry breaking scheme described by standard theory of phase transitions.
Topological order is not described by an local order parameter but a new set of quantum numbers
like ground state degeneracy and their topology. Critical spin liquids arise from frustration for
example the Heisenberg antiferromagnet on a triangular lattice (or other non bipartite lattices
like the Kagomé lattice). Ultracold atomic or molecular gases offers interesting possibilities to ex-
perimentally realize these strongly correlated quantum phases. In this work cold polar molecules
in optical lattices are used to engineer effective spin models which can be easily manipulated by
external fields. The strong electric dipole–dipole interactions tunable with external fields and the
rotational states that can be used to simulate internal degrees of freedom allow for simulations
of spin models in the strong coupling regime [4]. In particular the realization of the XXZ Model
and the t–J model describing strongly correlated electrons are investigated by trapping polar
molecules in an two dimensional optical lattice.

Unlike classical phase transitions, quantum phase transitions are not driven by thermal fluctua-
tions but they are driven by quantum fluctuations between different ground states at the absolute
zero. Different quantum phases can be accessed by varying a physical parameter of the system
in question. Interesting quantum phase transitions are the order–disorder transition where two
phases are separated by a quantum critical point (indicates a 2nd order phase transition). The
quantum critical fluctuations extend over the entire spatial and temporal domain and therefore
the quantum critical region can be reached at finite temperature. Prominent example is 4He un-
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2 Chapter 1. Introduction

der high pressure and low temperature that leads to a coexistence of supersolid and superfluid
phase. Supersolids have long range diagonal and off diagonal ordering combining the properties
of a superfluid (zero viscosity flow) and a spatial crystalline ordering.

Here we show the possibility to investigate quantum phase transitions with the help of polar
molecules in optical lattices. First an short introduction to describe molecules by a simple model
that approximates the behavior of molecules in their electronical and ro–vibrational ground state
is given followed by an more extensive discussion about a generic two level system. Next we need
to understand how to manipulate polar molecules by applying external electrical fields that cou-
ples to the internal charge distribution and concluding Chapter 2 by deriving the dipole–dipole
interaction operator for two polar molecules. In Chapter 3 the realization of the Heisenberg
model and various relatives thereof, like the XXZ model, are discussed extensively. After given a
short overview of the different Heisenberg–like models a detailed derivation of the XXZ Hamil-
tonian is given in terms of polar molecules in the rotating wave approximation. Applying a spin
wave analysis the phase diagram of the XXZ model on a two dimensional optical square lattice
with slowly decaying 1/r3 interaction is investigated and compared to the phase diagram of the
nearest neighbor XXZ model. In the second part the realization of the t–J model is determined
by using a different setup of coupled dc–Stark shifted rotational states. Following the calcu-
lations in Chapter 3 the t–J model Hamiltonian is derived and the explicit parameters for the
realization are calculated as stated in Chapter 4. Finally we conclude this work with a short
summary and an outlook addressing the questions what can and needs to be done to actually
realize ferro–electric liquids with the help of polar molecules in optical lattices.



2
Basic Concepts of Polar Molecules

2.1 Quantum Rigid Rotor

Polar molecules possess a much more complex spectrum than atomic systems. There exist dif-
ferent electronical-, vibrational-, and rotational excitations of the molecules which can also be
coupled to each other. If we only concentrate on rotational excitations the Hamiltonian of free
polar molecules corresponds to a rigid rotor

Hrot = BJ 2 (2.1)

where B is the rotational constant of the electronic–vibrational ground state (and can in general
be regarded to be proportional to the inverse of the inertia tensor ∝ I−1). J describes the total
internal angular momentum (divided by ~) with spherical harmonics Y J

M (θ, φ) as eigenstates to
J 2 and Jz denoted by |J, M〉. The spectrum of a rigid rotor is shown in Figure 2.1. The time
independent Schrödinger equation for the rigid rotor in spherical coordinates reads

Hrot |J M〉 = BJ 2 |J M〉 = BJ(J + 1) |J M〉 (2.2)

A very instructive introduction to angular momentum operators and their eigenspectrum in terms
of spherical harmonics can be found in [5].

2.1.1 Linear Rigid Rotor of a Diatomic Molecule

Considering a linear molecule, it is simple to give an explicit expressions for the rotational con-
stant B. The rotational energy of a linear diatomic molecule is

Erot =
~
2J(J + 1)

2I
(2.3)

where I is the moment of inertia and R the interatomic separation of two atoms with mass ma

and mass mb, see Figure 2.2. The interesting rotational axis is perpendicular to the connection

3



4 Chapter 2. Basic Concepts of Polar Molecules
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Figure 2.1 Rotational spectrum of a rigid rotor for J = 0, 1, 2.

line between the two atoms leading to

I = µR2 µ =
mamb

ma +mb
(2.4)

since the two–particle problem can be reduced to an one particle problem with reduced mass µ
rotating about the rotational axis of the diatomic molecule. By comparing equation (2.2) with
(2.3) the rotational constant B of the diatomic molecule can be written as

B =
~
2

2µR2
(2.5)

2.1.2 Selection Rules for Rotational Transitions

Excitations of a rigid rotor can occur through interactions with an external electrical field. The
molecule absorbs (or emits) photons with the resonant frequency, i.e. the energy difference be-
tween the ground state and the excited state. Typically, for pure rotational transition of molecules
this frequency lies in the microwave to far–infrared regime of the electromagnetic wave spectrum
(≈ 1 . . . 100GHz =̂ 300 . . . 0.3mm =̂ 4·10−6 . . . 4·10−4eV). In order to couple the electromagnetic
wave to the molecule, a permanent dipole moment must be present. This can be seen with the
help of a multipole expansion and the use of the Wigner–Eckart theorem for spherical tensor
operators (see Appendix A). The multipole expansion of the charge distribution of a molecule
can be expressed as

ρ(θ, φ) =
∞∑

J=0

J∑

M=−J

AJ
MY

J
M (θ, φ) (2.6)

The expansion coefficient AJ
M depends only on the expanded function. With the help of the

Wigner–Eckart theorem (A.13) we find the selection rule for the different multipole coefficients

• Monopole A0
0:

〈
J ′M ′∣∣A0

0

∣∣J M
〉
6= 0 for M ′ =M and J ′ = J (2.7)

• Dipole A1
−1, A

1
0, A

1
1:

〈
J ′M ′∣∣A1

q

∣∣J M
〉
6= 0 for M −M ′ = −1, 0, 1 and J ′ = J + 1 (2.8)
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Figure 2.2 Diatomic molecule with masses ma and mb separated by |R|.

• Quadrupole A2
−2, A

2
−1, A

2
0, A

2
1, A

2
2:

〈
J ′M ′∣∣A2

q

∣∣J M
〉

for M −M ′ = q and J ′ = J + 2, J + 1 (2.9)

where J ′ > J is assumed. The monopole term is proportional to the unit operator 1 and cannot

couple different rotational states. Therefore only the dipole vector operator d ∝ C
(1)
q (θ, φ)

(and all higher tensor operators) are able to couple excited rotational states to the ground state,

where C
(k)
q (θ, φ) describes unnormalized spherical harmonics defined in equation (A.11). In

the following only the dipole approximation will be employed because the electric dipole term is
dominating the transition between ground state and excited states (and electric dipole transitions
are much more likely to happen) than those of higher multipole terms.

2.2 Two Level Systems

Starting with a general discussion of a quantum mechanical two level system, we will derive
general properties and formulae which can be applied to precise problems later on. In Section
2.3 at first an external static electric fields will be applied to polar molecules generating a Stark–
shifted two level system. In a second step an external microwave field is additionally switched
on to couple two Stark–shifted rotational states of the molecule, e.g. |φnum

0 0 〉 ↔ |φnum
1 0 〉.

The most common description of a two level system is the Pauli representation of the su(2)–
algebra, i.e. mapping the two states onto a spin–1/2 system

|e〉 = |↑〉 =
(
1

0

)
|g〉 = |↓〉 =

(
0

1

)
(2.10)

where |g〉 describes the ground state and |e〉 the excited state of the two level system. The
basis state of the spin–1/2 system {|↑〉 , |↓〉} allow a particular matrix representation of the su(2)–
algebra extensively explained in Appendix G.3 and in various group theoretical (or quantum
mechanics) textbooks [6,7]. A two level system can be described by a simple Hamiltonian

H (0) = E↑ |↑〉 〈↑|+ E↓ |↓〉 〈↓| (2.11)
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E↑

E↓

E0 ~ω

Figure 2.3 Two level system with ground state energy E↓ = E0 − ~ω
2

and excited energy E↑ = E0 +
~ω
2 .

where E↑ and E↓ are the eigenenergies of H (0). Writing this Hamiltonian with the help of the
spin–1/2 raising and lowering operators represented by Pauli matrices σ defined in (G.7)

σ+ =
1

2
(σx + iσy) = |↑〉 〈↓| σ− =

1

2
(σx − iσy) = |↓〉 〈↑| σz = |↑〉 〈↑| − |↓〉 〈↓| (2.12)

gives rise to

H (0) =
1

2

(
E↑ − E↓

)

︸ ︷︷ ︸
~ω

σz +
1

2

(
E↑ + E↓

)

︸ ︷︷ ︸
E0

1 (2.13)

with E0 describing the centered energy and E↑−E↓ the transition energy. A general state of the
two level system |ψ〉 can be written as superposition

|ψ〉 = |↑〉 〈↑|ψ〉+ |↓〉 〈↓|ψ〉 = ψ↑ |↑〉+ ψ↓ |↓〉 =
(
ψ↑
ψ↓

)
(2.14)

The time evolution according to the full time dependent Schrödinger equation is given by the
unitary time evolution operator

U(t, t0) = T
[
e
− i

~

∫

t

t0
dt′ H (t′)

]
(2.15)

where T is the time ordering operator. For Hamilton operators that are not explicitly time
dependent, i.e. ∂H

∂t = 0, the unitary time evolution operator (2.15) can be simplified to

U(t, t0) = e−
i
~
(t−t0)H (2.16)

Acting with U(t, t0) on an arbitrary two level state |ψ〉 yields

|ψ(t)〉 = U(t, t0) |ψ(t0)〉

= e−
i
~
(t−t0)H

(0) |ψ(t0)〉

= e−
i
~
(t−t0)E↑ ψ↑(t0)︸ ︷︷ ︸
ψ↑(t)

|↑〉+ e−
i
~
(t−t0)E↓ ψ↓(t0)︸ ︷︷ ︸
ψ↓(t)

|↓〉 (2.17)



2.2. Two Level Systems 7

since |↑〉 and |↓〉 are eigenstates of H (0) or solutions to the time independent Schrödinger equa-
tion respectively. Preparing a two level system in the ground state |g〉 = |↓〉 at t0 = 0 it can be
shown that the system cannot leave its initially prepared state since the norm

∥∥ |ψ(0)〉
∥∥ =

∥∥ψ↓(0) |↓〉
∥∥ = |ψ↓(0)| = 1 (2.18)

is preserved under unitary transformations

∥∥ |ψ(t)〉
∥∥2 =

∥∥U(t, 0) |ψ(0)〉
∥∥2

= |〈U(t, 0)ψ(0)|U(t, 0)ψ(0)〉|2

=
∣∣〈ψ(0)

∣∣U(t, 0)†U(t, 0)
∣∣ψ(0)

〉∣∣2

= |ψ↓(0)|2 (2.19)

so that the system remains in the ground state for all times t. This is easily seen because the
probability of finding the system in a state |α〉 is

Pα(t) = |〈α|ψ(t)〉|2 (2.20)

and hence with the preparation of the system in the ground state |ψ(0)〉 = |↓〉 the probability of
the system being in |↓〉 is

P↓(t) = |〈↓|ψ(t)〉|2 = |〈↓|U(t, 0) |ψ(0)〉|2

= |〈↓|U(t, 0) |↓〉|2 =
∣∣∣
〈
↓
∣∣∣ e− i

~
tH (0)

∣∣∣↓
〉∣∣∣

2

= |〈↓|↓〉|2︸ ︷︷ ︸
= 1

∣∣∣ e− i
~
E↓t
∣∣∣
2

︸ ︷︷ ︸
= 1

= 1 (2.21)

and for the probability of the system being in |↑〉 we find

P↑(t) = |〈↑|ψ(t)〉|2

= |〈↑|U(t, 0) |↓〉|2 = |〈↑|↓〉|2︸ ︷︷ ︸
= 0

∣∣∣ e− i
~
E↓t
∣∣∣
2

(2.22)

as would be expected since the probability distribution must be normalized

dimH (0)∑

i=1

Pi(t) = 1 →֒ P↓(t) + P↑(t) = 1 (2.23)

In order to induce a “spin flip” i.e. to bring the system from its ground state to the excited state,
an external perturbation is needed.

H = H (0) +H ′ =


E↑ 0

0 E↓


+


 H ′

11 H ′
12

(H ′
12)

∗ H ′
22


 (2.24)
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The Hamiltonian H ′ describing the external perturbation can be divided in two diagonal ele-
ments and two off–diagonal elements. The diagonal elements are shifting the eigenenergies of
H (0) to E↓ + H ′

11 and E↑ + H ′
22 and therefore can be absorbed in the unperturbed Hamilto-

nian (2.11). Thus, the diagonal elements of H ′ can be set to zero. Due to the fact that the
Hamiltonian is a hermitian operator, the off–diagonal elements are complex conjugate to each
other and can be written in the polar representation of complex numbers leading to the matrix
representation

H =


 E↑ |H ′

12| e−i argH′
12

|H ′
12| e−i argH′

12 E↓


 (2.25)

The operator H can be diagonalized with the help of the formulae in Appendix E. Equation
(E.12) states that the eigenenergies of a 2× 2–matrix are

E± =
E↑ + E↓

2
±

√(
E↑ − E↓

2

)2

+ |H ′
12|

2

= E0 ±

√(
~ω

2

)2

+ |H ′
12|

2
(2.26)

Setting argH ′
12 = γ the corresponding eigenstates are

|+〉 = cos
ϕ

2
e−i γ2 |↑〉+ sin

ϕ

2
ei

γ
2 |↓〉

|−〉 = − sin
ϕ

2
e−i γ2 |↑〉+ cos

ϕ

2
ei

γ
2 |↓〉

(2.27)

where the “mixing” angle ϕ is given as

ϕ = arctan

(
2 |H ′

12|
E↑ − E↓

)
= arctan

(
2
|H ′

12|
~ω

)
(2.28)

The diagonalization of H can be seen as a two dimensional rotation in the space spanned by
{|↑〉 , |↓〉} with rotation angle ϕ/2. The time evolution of the two level system is given according
to equation (2.16) by

|ψ(t)〉± = U±(t, 0) |ψ(0)〉± (2.29)

The subscript ± indicates the basis in which the components of the state vector and the matrix
elements of the time evolution operator are represented. In order to calculate the probabilities
of finding a prepared system in one of the two distinct states after some time, the time evolution
must be expressed in the {|↑〉 , |↓〉} basis. Following equation (E.43) the time evolution can be
written as

|ψ(t)〉↑↓ = QU±(t, 0)Q
† |ψ(0)〉↑↓ = U↑↓ |ψ(0)〉↑↓ (2.30)

where Q is the transformation matrix that diagonalizes H . This can be seen by writing out the
transformation of H explicitly

U↑↓(t, 0) = e−
i
~
H↑↓t = e−

i
~
(QH±Q†)t

=
∞∑

k=0

(
− i

~

)k
(QH±Q†)ktk

k!



2.2. Two Level Systems 9

= 1+

(
− i

~

)
QH±Q

†t+

(
− i

~

)
QH±Q†QH±Q†

2
t2 + · · ·

· · ·+
(
− i

~

)l
QH±Q† · · ·H±1H± · · ·QH±Q†

l!
tl + · · ·

= Q

[ ∞∑

k=0

(
− i

~

)k H k
±
k!

tk

]
Q† = Q e−

i
~
H±tQ†

= QU±(t, 0)Q
† (2.31)

Thus the time evolution operator U↑↓(t, 0) in the {|↑〉 , |↓〉} representation reads

U↑↓ =


cos ϕ

2 e−i γ2 − sin ϕ
2 e−i γ2

sin ϕ
2 ei

γ
2 cos ϕ

2 ei
γ
2




 e−

i
~
E+t 0

0 e−
i
~
E−t




 cos ϕ

2 ei
γ
2 sin ϕ

2 e−i γ2

− sin ϕ
2 ei

γ
2 cos ϕ

2 e−i γ2




=


 cos2 ϕ

2 e−
i
~
E+t + sin2 ϕ

2 e−
i
~
E−t cos ϕ

2 sin ϕ
2 e−iγ

[
e−

i
~
E+t − e−

i
~
E−t

]

cos ϕ
2 sin ϕ

2 eiγ
[
e−

i
~
E+t − e−

i
~
E−t

]
sin2 ϕ

2 e−
i
~
E+t + cos2 ϕ

2 e−
i
~
E−t


 (2.32)

With the help of trigonometric identities

cos
ϕ

2
sin

ϕ

2
=

1

2
sinϕ cos2

ϕ

2
=

1

2

(
1 + cosϕ

)
sin2

ϕ

2
=

1

2

(
1− cosϕ

)
(2.33)

U↑↓ can eventually be written as

U↑↓ =
1

2

[(
e−

i
~
E+t + e−

i
~
E−t

)
+ cosϕ

(
e−

i
~
E+t − e−

i
~
E−t

)]
|↑〉 〈↑|

+
1

2

[
sinϕ eiγ

(
e−

i
~
E+t − e−

i
~
E−t

)]
|↑〉 〈↓|

+
1

2

[
sinϕ e−iγ

(
e−

i
~
E+t − e−

i
~
E−t

)]
|↓〉 〈↑|

+
1

2

[(
e−

i
~
E+t + e−

i
~
E−t

)
− cosϕ

(
e−

i
~
E+t − e−

i
~
E−t

)]
|↓〉 〈↓| (2.34)

In the following the subscript ↑↓ will be suppressed. Now, for a two level system prepared in
its ground state |ψ(0)〉 = |g〉 = |↓〉, one will observe oscillation between the ground and excited
state with frequency Ω that corresponds to the difference between the eigenenergies E+ − E−

∣∣ψ↓(t)
〉
= U(t, 0) |ψ(0)〉 = U |↓〉

=
1

2

[
sinϕ eiγ

(
e−

i
~
E+t − e−

i
~
E−t

)]
|↑〉

+
1

2

[(
e−

i
~
E+t + e−

i
~
E−t

)
− cosϕ

(
e−

i
~
E+t − e−

i
~
E−t

)]
|↓〉 (2.35)

As can be seen in equation (2.35) the two states are intermingled and cannot be separated
anymore. The probability of finding such a prepared system in the excited state is the absolute
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0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

t[ω]

P
↓↑

[

4
|H

′ 1
2
|2

(
~
Ω
)
2

]

Figure 2.4 Oscillations between the ground state and the excited state of the two level system.
The blue curve shows P↓↑ with |H′

12|/~ω = 1/2 and the red curve |H′
12|/~ω=1.

square of the projection onto |e〉 = |↑〉. In this case, we expect to have a time dependency of the
probability

P↓↑ =
∣∣〈↑
∣∣ψ↓(t)

〉∣∣2

=
1

4
sin2 ϕ

∣∣∣ e− i
~
E+t − e−

i
~
E−t

∣∣∣
2

=
1

4
sin2 ϕ

(
e

i
~
E+t − e

i
~
E−t

)(
e−

i
~
E+t − e−

i
~
E−t

)

=
1

4
sin2 ϕ

(
1− e−

i
~
(E+−E−)t − e

i
~
(E+−E−)t + 1

)

=
1

4
sin2 ϕ

[
2− 2 cos

(
E+ − E−

~
t

)]

= sin2 ϕ · sin2
(
E+ − E−

2~
t

)
(2.36)

Inserting ϕ from equation (2.28) and defining

~Ω = E+ − E− = 2

√(
E↑ − E↓

2

)2

+ |H ′
12|

2

→֒ ~Ω =

√
(~ω)2 + 4 |H ′

12|
2

(2.37)

the system will oscillate between excited and ground state as can be seen in Figure 2.4

P↓↑ =
|H ′

12|
2

(
E↑−E↓

2

)2
+ |H ′

12|
2
sin2

(
Ω

2
t

)
=

4 |H ′
12|

2

(~Ω)2
sin2

(
Ω

2
t

)
(2.38)

Analogously the same result can be derived for the reversed setup, starting form the excited
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state, thus P↓↑ = P↑↓. The unnormalized probability of staying in the same state can be calcu-
lated from the projection onto the initially prepared state

P↓↓ = P↑↑ =
∣∣〈↓
∣∣ψ↓(t)

〉∣∣2

=
1

4

∣∣∣
(
e−

i
~
E+t + e−

i
~
E−t

)
− cosϕ

(
e−

i
~
E+t − e−

i
~
E−t

)∣∣∣
2

=
1

2

[
1 + cos

(
E+ − E−

~
t

)
+ cos2 ϕ

(
1− cos

(
E+ − E−

~
t

))]

= cos2
(
Ω

2
t

)
+ cos2 ϕ · sin2

(
Ω

2
t

)

= cos2
(
Ω

2
t

)
+

(
E↑−E↓

2

)2

(
E↑−E↓

2

)2
+ |H ′

12|
2
sin2

(
Ω

2
t

)

= cos2
(
Ω

2
t

)
+
ω2

Ω2
sin2

(
Ω

2
t

)
(2.39)

In general the time evolution can be represented in the rotating basis {|+〉 , |−〉} or in the original
two level system basis {|↑〉 , |↓〉} where the two states are mixed

|ψ(t)〉 = ψ+(t) |+〉+ ψ−(t) |−〉

= e−
i
~
E+t ψ+(0) |+〉+ e−

i
~
E−t ψ−(0) |−〉

=
(
cos

ϕ

2
ei

γ
2 ψ↑(0) + sin

ϕ

2
e−i γ2 ψ↓(0)

)
e−

i
~
E+t |+〉

+
(
− sin

ϕ

2
ei

γ
2 ψ↑(0) + cos

ϕ

2
e−i γ2 ψ↓(0)

)
e−

i
~
E−t |−〉 (2.40)

where ψ↑↓(0) are the components of the initial two level state vector at t0 = 0 and ϕ is defined
in equation (2.28). In the {|↑〉 , |↓〉} basis |ψ(t)〉 can be written as

|ψ(t)〉 = e−
i
~
E0t

{[(
cos2

(
Ω

2
t

)
− i

ω

Ω
sin2

(
Ω

2
t

))
ψ↑(0)− 2i

|H ′
12|

~Ω
sin2

(
Ω

2
t

)
e−iγ ψ↓(0)

]
|↑〉

+

[
−2i |H

′
12|

~Ω
sin2

(
Ω

2
t

)
eiγ ψ↓(0) +

(
cos2

(
Ω

2
t

)
+ i

ω

Ω
sin2

(
Ω

2
t

))
ψ↓(0)

]
|↓〉
}

(2.41)

with E0 = 1
2 (E↑ +E↓) =

1
2 (E+ +E−), the transition frequency ω of the two level states and the

oscillation frequency Ω =
√

ω2+4/~2|H′
12|2 between the two states. The effect of the non–diagonal

element of the operator H ′ on the two level system is on the one hand the oscillation between
the two states for a system prepared only in one state (e.g. the ground state), and on the other
hand the additional symmetric energy shift that scales with the magnitude of |H ′

12|. This effect is
visualized in Figure 2.5, but without the effect that the diagonal elements of H ′ would shift E0 to
E0+

1
2 (H

′
11+H

′
22) and the transition energy ~ω to ~ω+H ′

11−H ′
22. In Table 2.1 the unperturbed

and the perturbed two level systems will be compared in a slightly different language namely
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H ′
12 = 0

E↑

E↓

E0

~ω

H ′
12 6= 0

E+

E−

~Ω

Figure 2.5 For H ′
12 = 0 there are two states with transition energy ~ω. Switching on the

perturbation (off–diagonal elements of H ′) H ′
12 6= 0 leads to an symmetric energy

shift (with respect to E0) and a new transition energy ~Ω.

using the Pauli representation of spin–1/2 systems. Note that in spin language the diagonalization
of H can be seen as a rotation of the coordinate system onto the arbitrary direction of σ, such
that the quantization axis in the new coordinates are along the z–axis.

* h · σ =


 hz hx − ihy

hx + ihy −hz


 with h =




ℜ(H′
12)

−ℑ(H′
12)

~ω
2
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Hamiltonian H = H (0) +H ′ H (0)

Eigenenergies
E+ = E0 +

~Ω
2 E↑ = E0 +

~ω
2

E− = E0 − ~Ω
2 E↓ = E0 − ~ω

2

Representation {|↓〉 , |↑〉} H = h · σ↑↓* + E01↑↓ H (0) = ~ω
2 σz ↑↓ + E01↑↓

Special case E0 = 0, γ = 0 H = ~ω
2 σz ↑↓ + |H ′

12|σx ↑↓ H (0) = ~ω
2 σz ↑↓

Representation {|+〉 , |−〉} H = ~Ω
2 σz ± + E01± —

Transition energy ~Ω =
√
(~ω)2 + 4 |H ′

12|
2

~ω

Table 2.1 Comparison between the two level system with |H ′
12| 6= 0

and without perturbation |H ′
12| = 0.

.

2.3 Polar Molecules in External Electric Fields

2.3.1 Dipole Approximation

The internal charge distribution of the molecule leads to an permanent dipole moment which is
describe by the dipole vector operator d. In the dipole–approximation this is the leading term
that is sensitive to an external electrical field. This can be derived from the classical electrostatic
energy of an external electrical field (represented by Φext) acting on a charge distribution ρ(r′)

Vρ =

∫

V

d3r
′
ρ(r′)Φext(r′) (2.42)

The potential Φ(r) can be expanded in a series expansion around r = 0

Φext(r) = Φ(0) + r · (∇Φ)
∣∣∣
0
+

1

2

(
r ⊗ r

)
:
(
∇⊗ (∇Φ)

)∣∣∣
0

= Φ(0)− r · E(0)− 1

2

(
r ⊗ r

)
:
(
∇⊗ E

)∣∣∣
0

(2.43)

This expansion up to second order is only accurate if the source of the potential at r = 0 is far
away from the charge distribution it is acting on. In this case the last term of the expansion
(2.43) can be rewritten in the following form using the fact that there are no sources. Hence
∇ · E = 0 and by applying the relation ∇ · E = 1 : (∇⊗ E) we find

−1

2

(
r ⊗ r

)
:
(
∇⊗ E

)∣∣∣
0
= −1

6

[
3
(
r ⊗ r) :

(
∇⊗ E

)
− r2∇ · E

]∣∣∣∣
0

= −1

6

(
3(r ⊗ r)− r21

)
:
(
∇⊗ E

)∣∣∣
0

(2.44)
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Reinserting the expansion (2.43) in the integral (2.42) gives rise to

Vρ =

∫

V

d3r
′
ρ(r′)

[
Φ(0)− r′ · E(0)− 1

6

(
(3
(
r′ ⊗ r′)− r′21

)
:
(
∇⊗ E

)∣∣∣
0

]

=

∫

V

d3r
′
ρ(r′)

︸ ︷︷ ︸
Q

Φ(0)−
∫

V

d3r
′
ρ(r′)r′

︸ ︷︷ ︸
d

·E(0)− 1

6

∫

V

d3r
′
ρ(r′)

(
3(r′ ⊗ r′)− r′21

)

︸ ︷︷ ︸
q

: (∇⊗ E)
∣∣
0

= QΦext(0)− d · Eext(0)− 1

6
q :
(
∇⊗ Eext

)∣∣∣
0

(2.45)

The Q–term is the monopole part, the d–term the dipole part and the q–term is the quadrupole
part of the total energy Vρ of the charge distribution. The monopole reacts directly to the external
electrical potential Φext, whereas the dipole is sensitive to the external electric field Eext and the
higher multipole terms are sensitive to spatial derivations of the external electric field. In the
following the dipole approximation is assumed since the spatial changes of the external electric
field are very small compared to the spatial extension of a typical molecule, e.g. compare the
wave length of microwaves ≈ 10−3m to the dimension of a molecule ≈ 10−9m. Polar molecules
are electrical neutral and therefore the integral over the charge distribution of the molecule will
vanish, leaving only the dipole term of equation (2.45)

Vρ ≈ −d · Eext (2.46)

Note that only the classical position is promoted to an operator – the position operator r – and
hence the dipole moment is also described by an operator whereas the external electric field is
still treated classically. Applying an external static electrical field Edc to a polar molecule leads
to the following Hamiltonian

H = Hrot +Hdc = BJ 2 − d · Edc (2.47)

In general this Hamiltonian cannot be solved directly, so for weak electrical fields Edc ≪ B/d
one can apply a time independent perturbation calculation. Before doing that we first want
to express the dipole operator d in spherical coordinates because then it is straightforward to
express d in the eigenbasis of J 2. The spherical components of the dipole operator in a spherical

basis {e−1, e0, e1} are proportional to (unnormalized) spherical harmonics C
(k)
q (θ, φ) with rank

k = 0. Thus we can write

dq = dC(1)
q (θ, φ) (2.48)

The components can be directly calculated via the projection

er · d =

1∑

q=−1

er · (eq ⊗ eq)d =

1∑

q=−1

(er · eq)︸ ︷︷ ︸
C(1)

q (θ, φ)

(eq · d)︸ ︷︷ ︸
dq

=

1∑

q=−1

C(1)
q (θ, φ)dq (2.49)



2.3. Polar Molecules in External Electric Fields 15

Calculating the unnormalized spherical harmonics C
(k)
q for k = 1 and q = −1, 0, 1 using the

position vector of a unit sphere

er =




cosφ sin θ

sinφ sin θ

cos θ


 (2.50)

and the spherical basis as defined in Appendix C, equation (C.12)

C
(1)
0 = e0 · er = ez · er = cos θ (2.51)

C
(1)
±1 = e±1 · er = ∓ 1√

2

(
ex ± iey

)
· er

= ∓ 1√
2

(
cosφ sin θ ± i sinφ sin θ

)
(2.52)

= ∓ 1√
2
e±iφ sin θ

The unnormalized spherical harmonicsC
(k)
q can be compared to the spherical harmonics Y J

M (θ, φ),
see Table A.1. Writing out the terms of equation (2.49)

er · d = C
(1)
−1 (θ, φ)d−1 + C

(1)
0 (θ, φ)d0C

(1)
1 (θ, φ)d1

=
1√
2
e−iφ sin θd−1 + cos θd0 −

1√
2
eiφ sin θd1

= cosφ sin θdx + sinφ sin θdy + cos θdz (2.53)

and comparing the coefficients give rise to the representation of the dipole operator in spherical
coordinates

cosφ sin θ : dx =
1√
2
d−1 −

1√
2
d1 = − 1√

2

(
d1 − d−1

)

sinφ sin θ : dy = − i√
2
d−1 −

i√
2
d1 = − i√

2

(
d1 + d−1

)
(2.54)

cos θ : dz = d0

A different definition of the components of the electric dipole operator is given in analogy to
raising and lowering operators of the angular momentum representation of the SU(2), namely
S+, Sz and S−. The projection onto er reads

er · d =

1∑

q=−1

(−1)qC(1)
q d−q = −C(1)

−1 (θ, φ)d+ + C
(1)
0 (θ, φ)d0 − C(1)

1 (θ, φ)d− (2.55)
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Comparing the coefficients on the left hand side and on the right hand side in analogy to equation
(2.54) leads to a slightly different representation

dx = − 1√
2

(
d+ − d−

)
d+ = − 1√

2

(
dx + idy

)
= −d−1

dy =
i√
2

(
d+ + d−

)
d0 = dz (2.56)

dz = d0 d− =
1√
2

(
dx − idy

)
= −d1

Note that the components of the dipole operator d defined in equation (C.17) and (2.56) are
antihermitian conjugate to each other, i.e.

d †
−1 =

1√
2

(
dx + idy

)†
=

1√
2

(
dx − idy

)
= −d1

d †
1 = − 1√

2

(
dx − idy

)†
= − 1√

2

(
dx + idy

)
= −d−1

d †
+ = − 1√

2

(
dx + idy

)†
= − 1√

2

(
dx − idy

)
= −d−

d †
− =

1√
2

(
dx − idy

)†
=

1√
2

(
dx + idy

)
= −d+

(2.57)

whereas the angular momentum raising and lowering operators are hermitian conjugate to each
other i.e. S± = Sx ± iSy. Equation (2.57) can be simplified to

d†q = (−1)qd−q d†−q = (−1)qdq (2.58)

2.3.2 Polar Molecules in Static Electric Fields

Now we want to calculate the effect of an external static electrical field Edc in e0–direction, using
the time independent perturbation theory as described in Appendix B and setting Hrot ≡ H 0 and
Hdc ≡ H 1

H = H 0 +H 1 = BJ 2 − d0Edc H 0 |J M〉 = BJ(J + 1) |J M〉 (2.59)

Zero order perturbations are the solution of the unperturbed Hamiltonian H 0

E
(0)
J M = BJ(J + 1)

∣∣∣φ(0)J M

〉
= |J M〉 (2.60)

First order perturbation in β ≡ dEdc/B are calculated using formula (B.4) and (B.5)

E
(1)
J M =

〈
J M

∣∣H 1
∣∣J M

〉
= −Edc

〈
J M

∣∣ d0
∣∣J M

〉
= 0 (2.61)

∣∣∣φ(1)J M

〉
= −Edc

〈
J − 1, M

∣∣ d0
∣∣J M

〉

E
(0)
J M − E

(0)
J−1M

|J − 1, M〉 − Edc

〈
J + 1, M

∣∣ d0
∣∣J M

〉

E
(0)
J M − E

(0)
J+1M

|J + 1, M〉

+ · · · (J ± 2, J ± 3, . . .︸ ︷︷ ︸
= 0

, do not couple to J , M)
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= − Edcd

B[J(J + 1)− (J − 1)J ]

√
(J −M)(J +M)

4J2 − 1
|J − 1, M〉

− Edcd

B[J(J + 1)− (J + 1)(J + 2)]

√
(J −M + 1)(J +M + 1)

4J(J + 2) + 3
|J + 1, M〉

= −Edcd

2BJ

√
J2 −M2

4J2 − 1
|J − 1, M〉 − Edcd

2B(−J − 1)

√
(J + 1)2 −M2

4(J + 1)2 − 1
|J + 1, M〉

= − β

2J

√
J2 −M2

4J2 − 1
|J − 1, M〉+ β

2(J + 1)

√
(J + 1)2 −M2

4(J + 1)2 − 1
|J + 1, M〉 (2.62)

Second order perturbation leads to the perturbed states, using equation (B.6) and (B.7)

E
(2)
J M =

〈
J M

∣∣∣H 1
∣∣∣φ(1)J M

〉

= −Edc

(
− Edc

2BJ

〈
J − 1, M

∣∣ d0
∣∣J M

〉) 〈
J M

∣∣ d0
∣∣J − 1, M

〉

− Edc

(
Edc

2B(J + 1)

〈
J + 1, M

∣∣ d0
∣∣J M

〉) 〈
J M

∣∣ d0
∣∣J + 1, M

〉

+ · · · (J ± 2, J ± 3, . . .︸ ︷︷ ︸
= 0

, do not couple to J , M)

= E2
dc

∣∣〈J − 1, M
∣∣ d0

∣∣J M
〉∣∣2

2BJ
− E2

dc

∣∣〈J + 1, M
∣∣ d0

∣∣J M
〉∣∣2

2B(J + 1)

=
E2

dcd
2

2BJ

J2 −M2

4J2 − 1
− E2

dcd
2

2B(J + 1)

(J + 1)−M2

4(J + 1)2 − 1

=
Bβ2

2

(
1− 3M2

J(J+1)

)

(2J − 1)(2J + 3)
(2.63)

Now the energy and the states of the perturbed Hamiltonian are calculated to the lowest order
of β ≡ dEdc/B

EJ M = E
(0)
J M + βE

(1)
J M + β2E

(2)
J M

= BJ(J + 1) +B
β2

2

(
1− 3M2

J(J+1)

)

(2J − 1)(2J + 3)
(2.64)

|φJ M 〉 =
∣∣∣φ(0)J M

〉
+ β

∣∣∣φ(1)J M

〉

= |J, M〉 − β

2J

√
J2 −M2

4J2 − 1
|J − 1, M〉+ β

2(J + 1)

√
(J + 1)2 −M2

4(J + 1)2 − 1
|J + 1, M〉 (2.65)
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Figure 2.6 Stark shifted states of polar molecules for J = 0, 1, 2 and M = −J, . . . , J .
For further details see [4]

The Stark shifted states – for a static electrical field in z–direction applied to the polar molecules
– are now used as basis states for the rotational Hamiltonian H = BJ 2 − d0Edc. Since the static
field is applied in z–direction, states with different quantum number M will not be mixed

E0 0 ≡ E↓ =
β2

2

(
−1

3

)
B = −β

2

6
B

E1 0 ≡ E↑ = 2B +B
β2

2

1

5
= 2B +

β2

10
B

(2.66)

|φ0 0〉 ≡ |↓〉 = |0, 0〉+
β

2

1√
3
|1, 0〉

|φ1 0〉 ≡ |↑〉 = |1, 0〉 −
β

2

1√
3
|0, 0〉+ β

2

1√
15
|2, 0〉

(2.67)

These equation can be used to calculate the ∆M = 0, ∆J = 1 transition with ∆E = E1 0−E0 0 =
~ω, for example. The M 6= 0 degeneration is not lifted by the stark shift since the electric field
vector changes sign under a change of chirality of the coordinate system or a simple spatial
inversion. This is true because E is a genuine vector field whereas the magnetic vector field B is
a axial vector field gaining an additional sign flip when inverted. Put it another way, the time-
reversal invariance of the external static electric field perturbs the rotational invariance but at
least a two–fold degeneracy must persist because the time reversal operator is antiunitary. Thus
the energy E1 1 and E1−1 are identical as well as the corresponding states |φ1 1〉 and |φ1−1〉

E1±1 = 2B − β2

2
B (2.68)

|φ1±1〉 = |1, ±1〉+
β

4

1√
5
|2, ±1〉 (2.69)

With the help of the Wigner–Eckart Theorem (A.13) it is very simple to calculate the matrix
elements of the dipole operator with respect to the J 2 eigenbasis. The dipole operator d in the
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Figure 2.7 Stark shifted energy levels of polar molecules for J = 0, 1
and M = −J, . . . , J dependent on the perturbation parameter β.

spherical basis {e0 ≡ ez, e±1 ≡ ∓(ex ± iey)} couples only states with ∆J = 1 and ∆M = q (see
Subsection 2.1.2 “Selection Rules”)

〈J M | d |J M〉 = 0 (2.70)

In the following we choose

〈J ± 1, M + q| d |J, M〉 =





. . . q = −1

. . . q = 0

. . . q = 1

(2.71)

where . . . indicates the expectation value of the corresponding component as the ordering of the
basis vectors. Then we find

〈1, −1| d |0, 0〉 =




d√
3

0

0


 〈1, 0| d |0, 0〉 =




0

d√
3

0


 〈1, 1| d |0, 0〉 =




0

0

d√
3


 (2.72)

〈2, −1| d |1, 0〉 =




d√
5

0

0


 〈2, 0| d |1, 0〉 =




0

2√
15
d

0


 〈2, 1| d |1, 0〉 =




0

0

d√
5


 (2.73)

For our ∆J = 1 and ∆M = 0 transition we only need to insert two matrix elements in order to
calculate the matrix elements of the Hamiltonian in the perturbed two–level system basis with
the states {|↑〉 , |↓〉}

d↑↑ ≡ 〈↑| d |↑〉 = −2β
2

1√
3
〈1, 0| d |0, 0〉︸ ︷︷ ︸

d√
3
e0

+2
β

2

1√
15
〈1, 0| d |2, 0〉︸ ︷︷ ︸

2d√
15

e0

=

(
− β√

3

d√
3
+

2β√
15

d√
15

)
e0
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=

(
−dβ

3
+

2dβ

15

)
e0 →֒ d↑↑0 = −dβ

5
(2.74)

d↑↓ ≡ 〈↑| d |↓〉 = 〈1, 0| d |0, 0〉︸ ︷︷ ︸
d√
3
e0

−β
2

4

1

3
〈1, 0| d |0, 0〉︸ ︷︷ ︸

d√
3
e0

=

(
d√
3
− dβ2

12
√
3

)
e0 →֒ d↑↓0 =

d√
3

(
1− β2

12

)
(2.75)

d↓↓ ≡ 〈↓| d |↓〉 = 2
β

2

1√
3
〈1, 0| d |0, 0〉︸ ︷︷ ︸

d√
3
e0

=
dβ

3
e0 →֒ d↓↓0 =

dβ

3
(2.76)

A more generalized discussion on the perturbation of the rigid rotor spectrum of polar molecules
can be found in [4].

Numerical Solution

Perturbation theory is only valid for small values of the perturbation parameter, i.e. β ≪ 1. A
solution for arbitrary large β can only be obtained numerically. Therefore a numerically diag-
onalization of the Hamiltonian in equation (2.47) is performed with the help of MATHEMATICA.
For further details on the MATHEMATICA code see Appendix H.1 and H.2. Since there is no in-
termix between states with different M quantum number, it is useful to diagonalize each set of
states for a fixed M . This leads to a breaking of the full symmetry, so that one must be cautious
not to include matrix elements that are vanishing for symmetry reasons e.g.

〈
φnum
0 0

∣∣ d1
∣∣φnum

1 0

〉
.

The dimension of the matrix representation of the Hamiltonian is dimH = 50, i.e. the highest
value for J is 50 and the error is of the order β/J2 = 10/502 ≈ 10−3. The numerically determined
eigenenergies Enum

J M are shown in Figure 2.8.

2.3.3 Polar Molecules in Microwave Fields

The coupling of a static electric field to the molecule leads only to a energy shift in the spectrum
of the molecule, the so called dc–Stark shift. In order to couple different rotational states an
external microwave field must be applied (see Subsection 2.1.2 “Selection Rules”). There the
Hamiltonian (2.47) needs to be extended with an additional term accounting for an external
microwave field Eac(t)

H (t) = Hrot +Hdc +Hac(t) = BJ 2 − d0Edc − d · Eac(t) (2.77)

The additional term couples the classical external field Eac(t) in the dipole approximation. The
equivalence of the dipole approximation to the minimal coupling p −→ p + e/cA can be shown
via an appropriate local gauge transformation

A −→ A +∇χ(r, t) Φ −→ Φ− ∂χ(r, t)

∂t
(2.78)



2.3. Polar Molecules in External Electric Fields 21

0 2 4 6 8 10

−6

−4

−2

0

2

4

6

8

β[B/D]

E
[B

]

E2 0

E1±1

E0 0

0 2 4 6 8 10

−6

−4

−2

0

2

4

6

8

β[B/D]

E
[B

]

E2 0

E2±1

E2±2

E1 0

E1±1

E0 0

Figure 2.8 Numerically calculated Stark shift of the three lowest energy levels and the lifting
of the M degeneracy.

The local gauge transformation χ(r, t) = −r · A(0, t) acting on the wave function ψ(r, t) gives
rise to the electric dipole interaction term Hac. Details about the connection between gauge
transformations, gauge invariance of physical quantities and interaction can be found in various
quantum optics books [8, 9, 10]. The applied microwave field is described as a electromagnetic
wave

Eac(r, t) =
1∑

q=−1

(eq · Eac)eq = Eac(r) e
−iωLt eq + (−1)qEac(r) e

iωLt e−q (2.79)

where we consider a single microwave field with polarization q and frequency ωL. For q = 0 the
microwave is linear polarized whereas q 6= 0 leads to circular polarization. The Hamiltonian Hac

takes the form

Hac(t) = −d · Eac = −dqEac e
−iωLt − (−1)qEac e

iωLt d−q (2.80)

The Hamiltonian (2.77) will be applied to a two level system consisting of two dc–Stark shifted
rotational states of the molecule, e.g. |φnum

0 0 〉 ↔ |φnum
1 0 〉. The corresponding time dependent

Schrödinger equation can only be solved analytical with the help of the rotating wave approxi-
mation (see Subsection 2.3.4 “Rotating Wave Approximation”). The resulting matrix represen-
tation of the Hamiltonian (2.77) in the rotating wave approximation can be diagonalized easily
and is used as standard description of polar molecules subject to external electrical fields in the
following Section 2.4 where interactions between two polar molecules will be considered.

2.3.4 Rotating Wave Approximation

Finally we want to determine the time evolution of polar molecules subject to both external fields
Edc and Eac. The solution of the time independent part of the Hamiltonian

H (0) = Hrot +Hdc (2.81)

is already determined in Section 2.3.2 analytically for small static electric fields and numerically
for nearly arbitrary large field strengths. Therefore we can assume that the time independent
part is diagonal in the basis {|φJ M 〉} or {|φnum

J M 〉}. Expanding the Hamiltonian H (0) in this basis,
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the solution to the time dependent full Hamiltonian containing the interaction with the external
microwave field can be found by solving the corresponding Schrödinger equation in this basis

i~
∂ |ψ(t)〉
∂t

= H (t) |ψ(t)〉 =
(
H (0) − d · Eac(t)

)
|ψ(t)〉 (2.82)

with the full Hamiltonian from equation (2.77). Expanding |ψ(t)〉 in the basis {|φJ M 〉} and
considering only the coupling of two Stark–shifted states leads to

|ψ(t)〉 = c↑ e
− i

~
E↑t |↑〉+ c↓ e

− i
~
E↓t |↓〉 (2.83)

Inserting |ψ(t)〉 in the Schrödinger equation (2.82) yields

i~
(
ċ↑ e

− i
~
E↑t |↑〉+ ċ↓ e

− i
~
E↓t |↓〉

)
=
(
dqEac e

−iωLt − (−1)qEac e
iωLt d−q

)
c↑ e

− i
~
E↑t |↑〉

+
(
dqEac e

−iωLt − (−1)qEac e
iωLt d−q

)
c↓ e

− i
~
E↓t |↓〉

(2.84)

Projecting out the coefficients c↑(t)

i~ċ↑ = −
(
c↑
〈
↑
∣∣ dq

∣∣↑
〉
e−

i
~
E↑t + c↓

〈
↑
∣∣ dq

∣∣↓
〉
e−

i
~
E↓t
)
Eac e

−iωLt e
i
~
E↑t

− (−1)q
(
c↑
〈
↑
∣∣ d−q

∣∣↑
〉
e−

i
~
E↑t + c↓

〈
↑
∣∣ d−q

∣∣↓
〉
e−

i
~
E↓t
)
Eac e

iωLt e
i
~
E↑t

= −
(
c↑
〈
↑
∣∣ dq

∣∣↑
〉
+ c↓

〈
↑
∣∣ dq

∣∣↓
〉
e

i
~
(E↑−E↓)t

)
Eac e

−iωLt

− (−1)q
(
c↑
〈
↑
∣∣ d−q

∣∣↑
〉
+ c↓

〈
↑
∣∣ d−q

∣∣↓
〉
e

i
~
(E↑−E↓)t

)
Eac e

−iωLt

→֒ ċ↑ =
i

~

(
c↑d

↑↑
q + c↓d

↑↓
q eiωt

)
Eac e

−iωLt + (−1)q i
~

(
c↑d

↑↑
−q + c↓d

↑↓
−q e

iωt
)
Eac e

iωLt (2.85)

and c↓(t) analogously, leads to

→֒ ċ↓ =
i

~

(
c↑d

↓↑
q e−iωt + c↓d

↓↓
q

)
Eac e

−iωLt + (−1)q i
~

(
c↑d

↓↑
−q e

−iωt + c↓d
↓↓
−q

)
Eac e

iωLt (2.86)

Equation (2.85) and (2.86) can be rewritten in a more convenient form

ċ↑ =
i

2

(
Ω↑↑

q e−iωLt +Ω↑↑
−q e

iωLt
)
c↑ +

i

2

(
Ω↑↓

q e−i∆t +Ω↑↓
−q e

i(ωL+ω)t
)
c↓ (2.87)

ċ↓ =
i

2

(
Ω↓↑

q e−i(ωL+ω)t +Ω↓↑
−q e

i∆t
)
c↑ +

i

2

(
Ω↓↓

q e−iωLt +Ω↓↓
−q e

iωLt
)
c↓ (2.88)

where ∆ = ωL − ω denotes the detuning of the external microwave field from the transition
frequency and Ωq denotes the Rabi frequency which is defined in terms of the dipole moments
as

Ωq =
2dqEac

~
Ω−q = (−1)q 2d−qEac

~
(2.89)
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The additional factor (−1)q is needed to satisfy the Condon–Shortley phase convention because
it is not included in the definition of the (unnormalized) spherical harmonics which is used for
spherical tensor operators. In order to apply the rotating wave approximation it is useful to
transform into the “rotating frame” of the microwave field via a rotating frame transformation
that can be described by

R = R Microwave
(
R Molecule

)−1

= e−iωL
σz
2 t eiω

σz
2 t = e−i(ωL−ω)σz

2 t

(G.14)
= cos

(
∆

2
t

)
1− i sin

(
∆

2
t

)
σz =


 e−i∆2 t 0

0 ei
∆
2 t


 (2.90)

Transforming the components of |ψ(t)〉 into the rotating frame is done with the inverse transfor-
mation R −1 yielding

c↑ = e−i∆2 t c̃↑ c↓ = ei
∆
2 t c̃↓ (2.91)

where “~” denotes the coefficients in the rotating frame. Inserting the transformed coefficients
into (2.87) gives rise to

˙̃c↑ e
−i∆2 t − i

∆

2
c̃↑ e

−i∆2 t =
i

2

(
Ω↑↑

q e−iωLt +Ω↑↑
−q e

iωLt
)
e−i∆2 t c̃↑

+
i

2

(
Ω↑↓

q e−i∆t +Ω↑↓
−q e

i(ωL+ω)t
)
ei

∆
2 t c̃↓

→֒ ˙̃c↑ =
i

2

(
∆+Ω↑↑

q e−iωLt +Ω↑↑
−q e

iωLt
)
c̃↑ +

i

2

(
Ω↑↓

q +Ω↑↓
−q e

i∆t ei(ωL+ω)t
)
c̃↓

(2.92)

and analogously equation (2.88) reads

˙̃c↓ =
i

2

(
Ω↓↑

q e−i∆t e−i(ωL+ω)t +Ω↓↑
−q

)
c̃↑ +

i

2

(
−∆+Ω↓↓

q e−iωLt +Ω↓↓
−q e

iωLt
)
c̃↓ (2.93)

A further simplification can be done by eliminating Ω↑↓
−q, Ω↓↑

−q, Ω↓↓
−q and Ω↑↑

−q. Since the matrix
elements of the dipole operator are real, it follows that

(
Ω↑↑

−q

)∗
∝ (−1)q

〈
↑
∣∣ d−q

∣∣↑
〉∗

= (−1)q
〈
↑
∣∣∣ d †

−q

∣∣∣↑
〉

(2.58)
= (−1)2q

〈
↑
∣∣ dq

∣∣↑
〉
∝ Ω↑↑

q (2.94)

(
Ω↓↑

−q

)∗
∝ (−1)q

〈
↓
∣∣ d−q

∣∣↑
〉∗

= (−1)q
〈
↑
∣∣∣ d †

−q

∣∣∣↓
〉

(2.58)
= (−1)2q

〈
↑
∣∣ dq

∣∣↓
〉
∝ Ω↑↓

q (2.95)

and analogously one finds Ω↓↓
−q = Ω↓↓

q and Ω↑↓
−q = Ω↓↑

q . Thus equation (2.92) and (2.93) can be
simplified to

˙̃c↑ =
i

2

(
∆+Ω↑↑

q e−iωLt +Ω↑↑
q eiωLt

)
c̃↑ +

i

2

(
Ω↑↓

q +Ω↓↑
q ei∆t ei(ωL+ω)t

)
c̃↓ (2.96)

˙̃c↓ =
i

2

(
Ω↓↑

q e−i∆t e−i(ωL+ω)t +Ω↑↓
q

)
c̃↑ +

i

2

(
−∆+Ω↓↓

q e−iωLt +Ω↓↓
q eiωLt

)
c̃↓ (2.97)
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Emission of a Emission & activation Absorption & deactivation Absorption of a

photon of the molecule of the molecule photon

eiωLt ei(ωL+ω)t e−i(ωL+ω)t e−iωLt

ei(∆+ω)t ei(∆+2ω)t e−i(∆+2ω)t e−i(∆+ω)t

Table 2.2 Expanding the time dependent terms of the wave function |ψ(t)〉 in a Fourier series
would lead to higher terms in the frequency ωL. The rotating wave approximation
leads to a vanishing of these terms, which is required for energy conservation. In the
second row it is shown that some of the processes are actually two–photon processes
that are very unlikely to happen. Further details on the RWA can be found in [8,11].

Now we are able to apply the rotating wave approximation. In this approximation we will neglect
all fast rotating terms, i.e. terms with exponential iωLt, i(ωL + ω)t and their complex conjugates.
These terms are rapidly oscillating and their contribution averages to zero on reasonable time
scales. Since we also employed the dipole approximation, that is the external microwave field
must be near resonance with the transition, those terms with exponential i(∆ + nω)t with n
being a integer, must vanish in order to keep the dipole approximation valid. Therefore, the
rotating wave approximation accounts for a time average of the expectation values and enforces
energy conservation. A more physical insight to this approximation is listed in Table 2.2. Thus
after applying the rotating wave approximation (in the following abbreviated with “RWA”) our
differential equation system can be written in the form of a Schrödinger equation

i~
∂

∂t


c̃↑
c̃↓


 = −~

2


 ∆ Ω↑↓

q

Ω↑↓
q −∆




c̃↑
c̃↓


 (2.98)

In spin–1/2 language the RWA–Hamilton can be represented in the following form

H RWA = −~∆

2
σz −

~Ω↑↓
q

2
σx + E↓1 (2.99)

The rotating wave approximation has eliminated the time dependency and therefore the Schröd-
inger equation (2.98) is easy to solve. In fact the solution has already been derived in 2.2.
Comparing the two Hamiltonians H RWA and H from equation (2.25) ignoring the global minus
sign

H =


 E↑ |H ′

12| e−i argH′
12

|H ′
12| e−i argH′

12 E↓


 ⇐⇒ H RWA =




~∆
2

~Ω↑↓
q

2
~Ω↑↓

q

2 −~∆
2


 (2.100)

leads to the replacements shown in Table 2.3. With the help of these replacements the solution
is given in the form of

c̃↑ =

[
cos

(
Ω

2

)
+ i

∆

Ω
sin

(
Ω

2

)]
c̃↑(0) + i

Ω↑↓
q

Ω
sin

(
Ω

2

)
c̃↓(0) (2.101)

c̃↓ = i
Ω↑↓

q

Ω
sin

(
Ω

2

)
c̃↑(0) +

[
cos

(
Ω

2

)
− i

∆

Ω
sin

(
Ω

2

)]
c̃↓(0) (2.102)
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Operator H H RWA

non–diagonalized
E0 =

E↑−E↓
2 E0 = 1

2

(
~∆
2 − ~∆

2

)
= 0

~ω = E↑ + E↓ ~ω = ~∆
2 −

(
−~∆

2

)
= ~∆

diagonalized
E± = E0 ± ~Ω

2 E± = ± ~Ω
2

~Ω =
√
(~ω)

2
+ 4 |H ′

12|
2

~Ω =

√
(~∆)

2
+ 4

(
~Ω↑↓

q

2

)2

Table 2.3 Eigenenergies of the diagonalized H RWA and generalized “Rabi” frequency are found
by comparison with the solution from (2.25) and by setting E↑↓ = ±~∆/2, |H ′

12| =
~Ω↑↓

q /2. Due to the fact that the dipole matrix elements are real γ is equal to zero.

The frequency Ω is called the generalized “Rabi” frequency and given according to Table 2.3 as

Ω =

√
∆2 +

(
Ω↑↓

q

)2
=

√
(ωL − ω)2 + 4/~2

(
Eac

〈
↑
∣∣ dq

∣∣↓
〉)2

(2.103)

where the expressions for the detuning ∆ and the Rabi frequency of the transition Ω↑↓
q are

inserted. The solution in the eigenbasis of

H RWA =
~

2


−Ω 0

0 −Ω


+ E↓1 (2.104)

is then given in the form of

|↑〉 = cos

[
1

2
arctan

(
Ω

∆

)]
|+〉+ sin

[
1

2
arctan

(
Ω

∆

)]
|−〉 (2.105)

|↓〉 = − sin

[
1

2
arctan

(
Ω

∆

)]
|+〉+ cos

[
1

2
arctan

(
Ω

∆

)]
|−〉 (2.106)

As has been pointed out in Section 2.2 the perturbation of the two level system leads to an energy
shift. In this case the shift is induced by the external microwave field Eac leading to an additional
Stark shift, the so called ac–Stark shift. With the help of the expressions in Table 2.3 the induced
ac–Stark shift can be calculated by subtracting the overall ground state energy of the system E↓

E± − E↓ = −~∆

2
± ~Ω

2
= −~∆

2
± ~∆

2

√√√√1 +

(
Ω↑↓

q

∆

)2

≈ −~∆

2
± ~∆

2


1 + 1

2

(
Ω↑↓

q

∆

)2

 = −~∆

2
± ~∆

2
+

~
(
Ω↑↓

q

)2

4∆
(2.107)

In the dipole approximation (external microwave field near resonance ∆≪ Ω↑↓
q ) the square root

can be approximated with the series expansion up to linear order, i.e.
√
1 + x ≈ 1+x/2. Inserting
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E[B]

E∗

E1 0

E1±1

0

E0 0

|φ1−1〉 |φ1 0〉

|φ1 1〉

|φ0 0〉

~Ω↑↓
q=−1

~Ω↑↓
q=0

~Ω↑↓
q=1

~∆−1

~∆0

~∆1

Figure 2.9 Coupling of the dc–Stark shifted states by the external microwave field with po-
larization q. Linear polarized microwaves with q = 0 couple states with ∆M = 0
whereas circular polarized microwaves can couple only states with ∆M 6= 0 (see
Subsection 2.1.2 “Selection Rules”). The energy EJ M and the states |φJ M 〉 can
be analytically determined via perturbation theory for small static fields or numer-
ically for arbitrary large field strength (see Subsection 2.3.2 “Polar Molecules in
Static Electric Fields”).

Ω↑↓
q = 2/~Eacd

↑↓
q we finally arrive at

E+ − E↓ =

(
Eacd

↑↓
q

)2

~∆
(2.108)

E− − E↓ = −~∆+

(
Eacd

↑↓
q

)2

~∆
(2.109)

The ac–Stark shift depends linear on the detuning ∆ and quadratic on the field strength of the
external microwave field Eac and the dipole moment of the polar molecule d↑↓q , respectively.

2.4 Interactions between Polar Molecules

2.4.1 Dipole–Dipole Interaction

The interaction between two polar molecules can be derived from the classical model of the
electrostatic potential

Φ(r) =

∫

V

d3 r′
ρ(r′)

|r − r′| (2.110)

For well separated molecules, we can expand 1
|r−r′| in r′ because the molecules are in their mutual

far field, fulfilling r ≫ r′

1

|r − r′| =
∞∑

k=0

1

k!

(
− r′ ·∇

)1
r

=
1

r
− r · r′

r3
+

r ⊗ r

2r5
:
(
3r′ ⊗ r′ − r′21

)
+ . . . (2.111)
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Inserting this series expansion into the electrostatic potential gives rise to the multipole expan-
sion

Φ(r) =
1

r

∫

V

d3 r′ρ(r′)

︸ ︷︷ ︸
Q

+
r

r3
·

∫

V

d3 r′r′ρ(r′)

︸ ︷︷ ︸
d

+
1

2

r ⊗ r

r5
:

∫

V

d3 r′
(
3r′ ⊗ r′ − r′21

)
ρ(r′)

︸ ︷︷ ︸
q

+ . . .

=
1

r
Q+

r

r3
· d +

1

2

r ⊗ r

r5
: q + . . . (2.112)

where the definitions of the monopole Q, the dipole d and the quadrupole q have been inserted.
Considering two molecules 1 and 2 separated by the distance R, their potential energy due to
their charge distribution is given by equation (2.45) as follows

V12(R) = Q1φ2(R) + d1 ·∇Φ2(R) +
1

2
q1 : ∇

(
∇Φ2(R)

)
+ . . . (2.113)

Since the two molecules are identical, there is no difference if we would have acted with the
electrostatic potential of molecule 1 on the charge distribution of molecule 2. In fact all terms
in (2.113) are symmetrical under a transposition of the subscripts 1 and 2. For a neutral polar
molecule, i.e. Q = 0 the leading term is the dipole term and because of the small spatial
extension of the molecules higher multipoles can be neglected. This is the well known dipole
approximation we have employed earlier. Thus for two polar molecules with permanent dipole
moment d the interaction is reduced to

V dd(R) = d1 ·∇Φ2(R) = d1 ·∇
(

r · d2

r3

)

= d1 ·

(
∇
(
R · d2

) 1

R3
+∇

(
1

R3

)
R · d2

)

= d1 ·

[
1

R3

( (
∇⊗ R

)
︸ ︷︷ ︸

= 1

d2 +
(
∇⊗ d2

)
︸ ︷︷ ︸

= 0

R
)
− 3R

R5

(
R · d2

)]

=
d1 · d2

R3
− 3

R5

(
d1 · R

)(
R · d2

)

→֒ V dd(R) =
d1 · d2 − 3

(
d1 · eR

)(
eR · d2

)

R3
(2.114)

The scalar product of two dipole operators can be calculated following equation (D.11)

d1 · d2 = (d⊗ 1)(1⊗ d) = dx ⊗ dx + dy ⊗ dy + dz ⊗ dz (2.115)

and can be written in terms of the spherical basis as

d1 · d2 =
1

2

(
d1 − d−1

)
⊗
(
d1 − d−1

)
− 1

2

(
d1 + d−1

)
⊗
(
d1 + d−1

)
+ d0 ⊗ d0

= d0 ⊗ d0 − d1 ⊗ d−1 − d−1 ⊗ d1 (2.116)
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The calculation of the second term (d1 · eR)(eR · d2) proceed in exactly the same way but the
calculation is a little bit lengthy and rather tedious. A better way is to represent V dd directly with
the help of the unnormalized spherical harmonics using equation (2.49) and a generalization
thereof for higher tensor operators. Since V dd is a operator acting on the direct product space
of two particles (or two polar molecules), it is actually a tensor operator of rank two and its
expansion in spherical coordinates is given by

V dd = − 1

R3

2∑

q=−2

C(2)
q (θ, φ)

[
d⊗ d

]2
q

(2.117)

Taking unnormalized spherical harmonics C
(2)
q from Table A.1 and inserting them into

V dd = − 1

R3

[
C

(2)
−2

(
d−1 ⊗ d−1

)
− C(2)

−1

(
d−1 ⊗ d0 + d0 ⊗ d−1

)

+ C
(2)
0

(
d1 ⊗ d−1 + d−1 ⊗ d1 + 2d0 ⊗ d0

)

− C(2)
1

(
d1 ⊗ d0 + d0 ⊗ d1

)
+ C

(2)
2

(
d1 ⊗ d1

)]
(2.118)

gives rise to

V dd = − 1

R3

{
(3 cos2 θ − 1)d0 ⊗ d0 +

3

2
sin2 θ

(
e2iφ d1 ⊗ d1 + d−1 ⊗ d−1

)

+ 3 cos θ sin θ
[
eiφ (d1 ⊗ d0 + d0 ⊗ d1)− e−iφ (d−1 ⊗ d0 + d0 ⊗ d−1)

]

+
1

2
(3 cos2 θ − 1)

(
d1 ⊗ d−1 + d−1 ⊗ d1

)}
(2.119)

where θ describes the polar angle of R with respect to the fixed Cartesian coordinate system and
φ the azimuthal angle, respectively. In Chapter 3 we will encounter a setup of polar molecules
in a two dimensional optical lattice, subject to an external static electric field in z–direction.
Therefore we can assume that θ = π/2, taking the xy–plane as our two dimensional plane where
the polar molecules – aligned along the z–axis – reside

V dd =
2d0 ⊗ d0 − (3 e2iφ d1 ⊗ d1 − d1 ⊗ d−1 − d−1 ⊗ d1 + 3 e−2iφ d−1 ⊗ d−1)

2r3
(2.120)

Here φ denotes the in–plane angle measured from the x–axis. Due to the external microwave
field, the polar molecules will rotate about a rotation axis in the xy–plane and therefore the
dipole moment can be considered to be aligned along the x–direction. Finally our two particle
interaction operator for this setup can be cast into

V dd =
d0 ⊗ d0 − 3

2 (d1 ⊗ d1 + d−1 ⊗ d−1) +
1
2 (d1 ⊗ d−1 + d−1 ⊗ d1)

r3
(2.121)

The optical square lattice described in Chapter 3 will be filled with
√
N ×

√
N polar molecules,

where N denotes the total number of molecules in the system. In general each molecule in the
optical lattice can interact with all other molecules. Therefore the two particle operator V dd will
be generalized to

V dd
ij =

di0dj0 − 3
2 (di1dj1 + di−1dj−1) +

1
2 (di1dj−1 + di−1dj1)

a3 |Ri − Rj |3
(2.122)
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Figure 2.10 Dipole–dipole interaction of two polar molecules. The projections eR · di define
the polar angle θi and the azimuthal angle φi with respect to the space fixed frame
centered at the molecules.

where a denotes the lattice spacing and Ri is an dimensionless vector pointing on the ith lattice
point.

2.4.2 Van–der–Waals Interaction

Without the external fields Edc and Eac the only interaction between two molecules in their
rotational ground state is the van–der–Waals interaction which is a combination of the Coulomb
interaction and quantum fluctuations. Suppose in one of the two molecules arises a dipole
moment due to the fluctuation in the charge distribution. This gives rise to an electric field
acting on the other molecule, according to equation (2.112) taking only the dipole term

E2 = −∇Φinduced
1 =

1

R3

(
3eR(eR · dinduced

1 )− dinduced
1

)
(2.123)

This electric field induces an dipole moment in the molecule 2

dinduced
2 = α2E2 (2.124)

where α denotes the polarizability tensor describing the linear response of the charge distribution
to an external electric field. This dipole in turn acts on molecule 1 leading to a polarization
induced dipole moment, so that we can write for the interaction

V vdW = −dinduced
1 · E1 = −dinduced

2 · E2 (2.125)

Since the two molecules are identical the interaction must be identical under a transposition of
the subscripts 1 and 2. Physically speaking, we cannot distinguish which of the fluctuation in
the charge distribution of the two molecules is starting the whole process. Finally for identical
molecules we end up with the fluctuating dipole–dipole interaction

V vdW = −dinduced
2 · E2

(2.124)
= −α2E2 · E2

(2.123)
= −9(eR · α1E1)(eR · α2E2) + . . .

R6
≈ −C6

R6
(2.126)

The two equations for molecule 1 and molecule 2 can be inserted iteratively with the leading
term being proportional to −1/R6 and for isotropic polarizability to the product of α1α2. The ac-
tual coefficient can be derived quantum mechanically with the help of second order perturbation
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theory. The results of such a calculation will be more accurate because using the charge den-
sity expressed in terms of electronic wave functions provides a much better charge distribution.
Additionally the perturbation of these wave functions up to second order respects the quantum
nature of the fluctuations.



3
Realization of Heisenberg Models

Starting this chapter with a very short introduction of the Heisenberg model and its relative
the XXZ model, we will then look in particular on the spin–1/2 XXZ model and its realization
with cold polar molecules in optical lattices. In Section 3.2 the spin–1/2 XXZ model is derived
microscopically with the help of the rotating wave approximation for polar molecules subject to
external electric fields. In a next step the dispersion relation of harmonic excitations above the
mean field ground state – the so called spin waves – are determined. The mean field ground
state – the simplest possible solution of this model – will be presented in Section 3.4 by applying
the mean field theory to determine the ground state in dependence of the tuning of the external
fields. Finally the mean field ground state and the spin wave analysis enables us to identify the
phase diagram of the spin–1/2 XXZ model.

3.1 Heisenberg Models of Quantum Magnets

The Heisenberg model is maybe the simplest model of magnetism but accounts for a wide range
of physical phenomena. For example it describes coupled electronic spins in metals and a possible
and mostly dominant coupling mechanism is the exchange interaction, i.e. an interplay of the
Pauli exclusion principle and the Coulomb repulsion. These purely electronic interactions are
much stronger than the magnetic interaction due to a magnetic dipole moment induced by the
electron spins. Considering only the coupling of nearest neighbor spins the Heisenberg model is
defined as

H = −
∑

〈i,j〉
JijSi · Sj −

∑

i

hi · Si (3.1)

where h is an external magnetic field. If the exchange integral Jij is positive the Heisenberg
model describes a ferromagnet, where all spins are aligned parallel. This can be achieved in a
first approximation by considering only the Coulomb interaction where the exchange integral
Jij is always positive. An antiferromagnet is Neél ordered that is an alternating sequence of
spins pointing up and down, such that all neighbors are antiparallel aligned. In practice the Jij
are often introduced as phenomenological parameters. Since we are not interested in the real

31
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physical mechanism of generating the coupling of spins we will set Jij = −J . In the following
section we will derive the coupling constants microscopically from the dipole–dipole interactions
of cold polar molecules in optical lattices.

There are several models connected with the Heisenberg model. First of all the Heisenberg
model can be treated classically, i.e. S = ∞ with a continuous spectrum of states. Quantum
mechanically there exists Heisenberg model for arbitrary spins describing 2S + 1 discrete states.
Especially the spin–1/2 model with two degrees of freedom are of interest in several fields of
physics. The Heisenberg model can be generalized to the spin–1/2 XXZ model

H XXZ =

N∑

i,j=1
i6=j

[
J⊥

(
SixSjx + SiySjy

)
+ JzSizSjz

]
−

N∑

i=1

hi · Si (3.2)

with two different coupling strengths, the in–plane coupling J⊥ and the in-axis coupling Jz along
the quantization axis, i.e. typically the z–axis. For strong in–plane interaction J⊥ ≫ Jz we can
neglect the SizSjz term. This model is called the XY model which favors a strong exchange
anisotropy. In contrast for strong in–axis interaction Jz ≫ J⊥ we will arrive at the Ising model.
Classically, all this models can be classified as n–vector models with n = 1 being the Ising model,
n = 2 being the XY model and finally n = 3 the Heisenberg model. Quantum mechanically we
cannot describe the spin by a classical vector since we have to deal with representatives of the
SU(2). In the following we will consider only the spin–1/2 Heisenberg models possessing the
SU(2) symmetry at the Heisenberg point Jz = J⊥. Further information about models to describe
(quantum) magnetism can be found in [12,13]

3.2 Realizing the Heisenberg Model with Polar Molecules

In order to realize the spin–1/2 XXZ model with cold polar molecules we take the following
approach. First a static electric field Edc is applied, creating a dipole moment and additionally
inducing a dc–Stark shift of the rotational spectrum. Next an additional external microwave field
with polarization q, field strength Eac and frequency ωL is irradiated to couple |φ0 0〉 and |φ1 0〉
of the dc–Stark shifted rotational spectrum. We will restrict ourselves only on near resonance
dipole transitions with very small detuning ∆. For the |φ0 0〉 ←→ |φ1 0〉 coupling, the microwave
field needs to be linear polarized, i.e. q = 0. The respective Hamiltonian is given in the rotating
wave approximation according to equation (2.99) as

H RWA = −~∆

2
σz −

~Ω↑↓
0

2
σx + E0 01 =


−

~∆
2 + E0 0 −~Ω↑↓

0

2

−~Ω↑↓
0

2
~∆
2 + E0 0


 (3.3)

where we take |↓〉 ≡ |φ0 0〉 as ground state and |↑〉 ≡ |φ1 0〉 as excited state. The Rabi frequency
of this transition can be written as

Ω↑↓
0 =

2Eac

〈
φ1 0

∣∣ d0
∣∣φ0 0

〉

~
(3.4)

In the language of the spin–1/2 XXZ model the Rabi frequency accounts for a transverse magnetic
field whereas the detuning ∆ can be seen as a static magnetic field, inducing magnetization. To
describe N molecules in a two dimensional

√
N ×

√
N–square lattice with lattice spacing a the
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E[B]

E∗

E↑

E1±1

0

E↓

|φ0 0〉 ≡ |↓〉

|φ1 0〉 ≡ |↑〉

~Ω↑↓
q=0

~∆

Figure 3.1 The spin–1/2 XXZ model is realized by weakly coupling |φ0 0〉 ←→ |φ1 0〉with a linear
polarized microwave field and a near resonant frequency detuned by ∆. In this way
a two level system with ground state |↓〉 and excited state |↑〉 is engineered.

Hamiltonian (3.3) can be generalized to a two particle operator H (2). Incorporating the dipole–
dipole interaction between polar molecules the operator describing two molecules can be cast
into

H (2) = H RWA
1 +H RWA

2 +V dd
ij (3.5)

where the dipole–dipole interaction (2.122) between two molecules

V dd
ij =

di0dj0 − 3
2 (di1dj1 + di−1dj−1) +

1
2 (di1dj−1 + di−1dj1)

a3 |Ri − Rj |3
(3.6)

is reduced to

V dd
ij =

di0dj0
a3 |Ri − Rj |3

(3.7)

for ∆M = 0 transitions. This is true because of the fact, that for symmetry reasons all matrix
elements of d±1 are vanishing, leaving only the interaction terms in z–direction. The Hamiltonian
for the two dimensional optical

√
N×
√
N–square lattice is the sum over all interactions between

molecules at each site, omitting the diverging self interaction

H =
1

2

N∑

i,j=1
i6=j

H (2)
ij =

1

2

{
N∑

i=1

Hi +
N∑

j=1

Hj +
N∑

i,j=1
i6=j

V dd
ij

}
(3.8)

Since the dipole–dipole interaction operator V dd
ij is a two particle operator we need to determine

the matrix representation of V dd
ij in the rotating wave approximation for two particle states, e.g.

the direct product |↑〉 ⊗ |↑〉, |↑〉 ⊗ |↓〉, |↓〉 ⊗ |↑〉 and |↓〉 ⊗ |↓〉. The derivation of the dipolar
interaction operator used projections onto the space fixed basis (see the definitions of θ and φ in
Figure 2.10), so that we cannot use the rotating frame transformation from equation (2.90). We
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need to define this rotation with respect to the space fixed frame instead




∣∣∣↑̃
〉

∣∣∣↓̃
〉



 = R Microwave

(
R Space–Fixed–Frame

)−1

︸ ︷︷ ︸
1




|↑〉
|↓〉



 =


 e−iωLt 0

0 eiωLt






|↑〉
|↓〉



 (3.9)

in the notation of Appendix C. The transformation for the single molecule basis states looks like
∣∣∣↑̃
〉
= e−iωLt |↑〉

∣∣∣↓̃
〉
= eiωLt |↓〉

(3.10)

and for two molecule states we find∣∣∣↑̃↑̃
〉
=
∣∣∣↑̃
〉
⊗
∣∣∣↑̃
〉
= e−iωLt |↑〉 ⊗ e−iωLt |↑〉 = e−2iωLt |↑〉 ⊗ |↑〉 = e−2iωLt |↑↑〉

∣∣∣↑̃↓̃
〉
= e−iωLt |↑〉 ⊗ eiωLt |↓〉 = |↑↓〉

∣∣∣↓̃↑̃
〉
= eiωLt |↓〉 ⊗ e−iωLt |↑〉 = |↓↑〉

∣∣∣↓̃↓̃
〉
= eiωLt |↓〉 ⊗ eiωLt |↓〉 = e2iωLt |↓↓〉

(3.11)

Calculating the matrix elements and applying the rotating wave approximation

〈
↑̃↑̃
∣∣∣V dd

∣∣∣↑̃↑̃
〉
=
〈
↑↑
∣∣∣V dd

∣∣∣↑↑
〉
=

1

R3

〈
↑
∣∣ d0

∣∣↑
〉 〈
↑
∣∣ d0

∣∣↑
〉
=

(
d↑↑0

)2

R3
= Ṽ dd

11

〈
↑̃↑̃
∣∣∣V dd

∣∣∣↑̃↓̃
〉
= e2iωLt

〈
↑↑
∣∣∣V dd

∣∣∣↑↓
〉
= Ṽ dd

12 ≈ 0

〈
↑̃↑̃
∣∣∣V dd

∣∣∣↓̃↑̃
〉
= e2iωLt

〈
↑↑
∣∣∣V dd

∣∣∣↓↑
〉
= Ṽ dd

13 ≈ 0

〈
↑̃↑̃
∣∣∣V dd

∣∣∣↓̃↓̃
〉
= e2iωLt e2iωLt

〈
↑↑
∣∣∣V dd

∣∣∣↓↓
〉
= Ṽ dd

14 ≈ 0

〈
↑̃↓̃
∣∣∣V dd

∣∣∣↓̃↑̃
〉
=
〈
↑↓
∣∣∣V dd

∣∣∣↑↓
〉
=

1

R3

〈
↑
∣∣ d0

∣∣↑
〉 〈
↓
∣∣ d0

∣∣↓
〉
=
d↑↑0 d

↓↓
0

R3
= Ṽ dd

22

〈
↑̃↓̃
∣∣∣V dd

∣∣∣↓̃↑̃
〉
=
〈
↑↓
∣∣∣V dd

∣∣∣↓↑
〉
=

1

R3

〈
↑
∣∣ d0

∣∣↓
〉 〈
↓
∣∣ d0

∣∣↑
〉
=
d↑↓0 d

↓↑
0

R3
= Ṽ dd

23

〈
↑̃↓̃
∣∣∣V dd

∣∣∣↓̃↓̃
〉
= e2iωLt

〈
↑↓
∣∣∣V dd

∣∣∣↓↓
〉
= Ṽ dd

24 ≈ 0

〈
↓̃↑̃
∣∣∣V dd

∣∣∣↓̃↑̃
〉
=
〈
↓↑
∣∣∣V dd

∣∣∣↓↑
〉
=

1

R3

〈
↓
∣∣ d0

∣∣↓
〉 〈
↑
∣∣ d0

∣∣↑
〉
=
d↑↑0 d

↓↓
0

R3
= Ṽ dd

33

〈
↓̃↑̃
∣∣∣V dd

∣∣∣↓̃↓̃
〉
= e2iωLt

〈
↓↑
∣∣∣V dd

∣∣∣↓↓
〉
= Ṽ dd

34 ≈ 0

〈
↓̃↓̃
∣∣∣V dd

∣∣∣↓̃↓̃
〉
=
〈
↓↓
∣∣∣V dd

∣∣∣↓↓
〉
=

1

R3

〈
↓
∣∣ d0

∣∣↓
〉 〈
↓
∣∣ d0

∣∣↓
〉
=

(
d↓↓0

)2

R3
= Ṽ dd

44

(3.12)
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leads to the following matrix representation of V dd

V dd =
1

R3




(
d↑↑0

)2
0 0 0

0 d↑↑0 d
↓↓
0

(
d↑↓0

)2
0

0
(
d↑↓0

)2
d↑↑0 d

↓↓
0 0

0 0 0
(
d↓↓0

)2




(3.13)

which can be generalized for the two dimensional square lattice. The total Hamiltonian H can
be expressed in different operator sets that can be represented in the two level basis{∣∣∣↑̃
〉
,
∣∣∣↓̃
〉
≡
(
1
0

)
,
(
0
1

)}

1 =


1 0

0 1


 σx =


0 1

1 0


 σy =


0 −i
i 0


 σz =


1 0

0 −1


 (3.14)

σ+ =
1

2
(σx + iσy) =


0 1

0 0


 σ− =

1

2
(σx − iσy) =


0 0

1 0


 (3.15)

P↑ =
1+ σz

2
=


1 0

0 0


 P↓ =

1− σz
2

=


0 0

0 1


 (3.16)

The corresponding two particle operators can be easily generated with the help of the tensor
product of matrices as can be seen in Appendix D equation (D.26) to (D.41). Describing the total
Hamiltonian in this set of operators

Hi +Hj = −~∆
(
Pi↑ + Pj↑ − 1

)
− ~Ω↑↓

0

2

(
σi+ + σi− + σj+ + σj−

)
+ 2E0 01 (3.17)

V dd
ij =

1

a3 |Ri − Rj |3
{(

d↑↑0

)2
Pi↑Pj↑ + d↑↑0 d

↓↓
0

(
Pi↑Pj↓ + Pi↓Pj↑

)

+
(
d↑↓0

)2 (
σi+σj− + σi−σj+

)
+
(
d↓↓0

)2
Pi↓Pj↓

}
(3.18)

Summing up the free sums yields

H =
1

2

N∑

i,j=1
i6=j

H (2)
ij =

N∑

i=1

Hi +
1

2

∑

i,j=1
i6=j

V dd
ij

= NE0 0 +
~∆

2
− ~∆

N∑

i=1

Pi↑ −
~Ω↑↓

0

2

N∑

i=1

(
σi+ + σi−

)
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+
1

2

N∑

i,j=1
i6=j





(
d↑↑0

)2

a3
Pi↑Pj↓

|Ri − Rj |3
+
d↑↑0 d

↓↓
0

a3
Pi↑Pj↓ + Pi↓Pj↑

|Ri − Rj |3

+

(
d↑↓0

)2

a3
σi+σj− + σi−σj+

|Ri − Rj |3
+

(
d↓↓0

)2

a3
Pi↓Pj↑

|Ri − Rj |3





(3.19)

The set of operators {σ+, σ−,P↑,P↓} can be converted to {σx, σy, σz,1} by

σ+ =
1

2

(
σx + iσy

)
P↑ =

1

2

(
1+ σz

)
1 = P↑ + P↓ σy = −i

(
σ+ − σ−

)
(3.20)

σ− =
1

2

(
σx − iσy

)
P↓ =

1

2

(
1+ σz

)
σx = σ+ + σ− σz = P↑ − P↓ (3.21)

By inserting this conversion into equation(3.17) and (3.18) the total Hamiltonian reads

H = −~Ω↑↓
0

4




N∑

i=1

σix +

N∑

j=1

σjx




︸ ︷︷ ︸

= 2

N∑

i=1

σix

−~∆

4




N∑

i=1

σiz +

N∑

j=1

σjz




︸ ︷︷ ︸

= 2

N∑

i=1

σiz

+E0 0

N∑

i=1

1i

︸ ︷︷ ︸
= N

+

(
d↑↑0 + d↓↓0

)2

8a3

N∑

i,j=1
i6=j

1i1j

|Ri − Rj |3

︸ ︷︷ ︸

N

RN∑

Rn 6=0

1Rn

|Rn|3

+

(
d↑↑0

)2
−
(
d↓↓0

)2

8a3

N∑

i,j=1
i6=j

σiz + σjz

|Ri − Rj |3

︸ ︷︷ ︸

2
N∑

i=1

σiz

RN∑

Rn 6=0

1

|Rn|3

+
N∑

i,j=1
i6=j





(
d↑↓0

)2

4a3
σixσjx + σiyσjy

|Ri − Rj |3
+

(
d↑↑0 − d↓↓0

)2

8a3
σizσjz

|Ri − Rj |3





(3.22)

Using the fact that the two dimensional square lattice is translational invariant, one particle
operator terms depending on one position can be rewritten in terms of the relative position
vector Rn = Ri − Rj ignoring the reference to an explicit point in the lattice. Thus the sum over
the second subscript can be carried out. In the following the summation over complete shells
containing all nth nearest neighbors will be denoted by

RN∑

Rn 6=0

−→
N∑

n=1

(3.23)

so that the notation will not be cluttered up needlessly. Inserting σ = 2/~S into (3.22) the total
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Hamiltonian can be cast into

H = NE0 0 +
N
(
d↑↑0 + d↓↓0

)2

8a3

N∑

i=1

1

|Ri|3

−
N∑

i=1




Ω↑↓

0 Six +


∆−

(
d↑↑0

)2
−
(
d↓↓0

)2

2~a3

N∑

n=1

1

|Rn|3


 Siz





+
N∑

i,j=1
i6=j





(
d↑↓0

)2

~2a3
SixSjx + SiySjy
|Ri − Rj |3

+

(
d↑↑0 − d↓↓0

)2

2~2a3
SizSjz
|Ri − Rj |3





(3.24)

and compared to the spin–1/2 XXZ model Hamiltonian with an external magnetic field h

H XXZ =

N∑

i,j=1
i6=j

(
J⊥

SixSjx + SiySjy
|Ri − Rj |3

+ Jz
SizSjz
|Ri − Rj |3

)
−

N∑

i=1

hi · Si (3.25)

This gives rise to the following relations connecting the dipole moments with the exchange
coupling constants

J⊥ = J sinϑ =

(
2

~

)2

(
d↑↓0

)2

4a3
=

(
d↑↓0

)2

~2a3
(3.26)

Jz = J cosϑ =

(
2

~

)2

(
d↑↑0 − d↓↓0

)2

8a3
=

(
d↑↑0 − d↓↓0

)2

2~2a3
(3.27)

and the relation for the external magnetic field

hi = Ω↑↓
0 ex +


∆−

(
d↑↑0

)2
−
(
d↓↓0

)2

2~a3

N∑

n=1

1

|Rn|3


 ez (3.28)

The magnetic field can be made homogeneous throughout the whole lattice because

N∑

n=1

1

|Rn|3
= gF (3.29)

will be explicitly calculated in Subsection 3.3.3, see for instance equation (3.99). The definition
and detailed explanation of the ferromagnetic lattice constant gF can be found in Section 3.3.
In the case of a homogeneous h–field, we can choose a global detuning ∆ in such a way that
hz is vanishing. Since we will employ a weak coupling of the two states, Ω↑↓

0 ≈ 0 which will
eventually be turned off, so that the transverse magnetic field is also vanishing, leading to h = 0.
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Figure 3.2 Left Panel: Induced dipole moments controlling the interaction strength. The d↑↑0
and d↓↓0 describes static interaction whereas the spin flip dipole moment d↑↓0 de-
scribes an exchange of photon between two molecules.
Right Panel: In–axis and in–plane coupling constants Jz and J⊥ in dependence of
the parameter β that can be tuned by the static external electric field Edc (dc–Stark
shift).

The global energy shift written in terms of gF

NE0 0 +
N
(
d↑↑0 + d↓↓0

)2

8a3

N∑

i=1

1i

|Ri|3
= N


E0 0 + gF

(
d↑↑0 + d↓↓0

)2

8a3


 (3.30)

can be scaled away as usual, since it gives no physical contribution. Finally we arrive at the
spin–1/2 XXZ model

H XXZ =

N∑

i,j=1
i6=j




(
d↑↓0

)2

~2a3︸ ︷︷ ︸
J⊥

SixSjx + SiySjy
|Ri − Rj |3

+

(
d↑↑0 − d↓↓0

)2

2~2a3︸ ︷︷ ︸
Jz

SizSjz
|Ri − Rj |3


 (3.31)

The first sum arises due to the dipole–dipole interaction between two polar molecules and its
first term describes an exchange of photons between two polar molecules which is linked to
a simultaneous spin flip of both spins. The second term of the dipole–dipole interaction part
describes the static interaction in z–direction due to the field induced dipole moments of the
ground state and the excited state. The spin–1/2 Heisenberg model can be realized for ϑ = π/4
leading to J⊥ = Jz. For the |φ0 0〉 ←→ |φ1 0〉 coupling, we can calculate the dipole moments

d↑↑0 , d↓↓0 and d↑↓0 by using the numerically determined eigensystem of J + β/dd . With the help of
the MATHEMATICA program H.4 the dipole moments and the coupling constants are determined
and plotted for the given setup. The possible values for the coupling constants J⊥ and Jz in
dependence on β = dEdc/B are shown in Figure 3.2. We see that for a vanishing static field, i.e.
β = 0 the field induced dipole moments of the static interaction are also vanishing. The angle of
the coupling constants ϑ can be calculated by

ϑ(β) = arctan

(
J⊥(β)

Jz(β)

)
(3.32)

For vanishing in–axis interaction Jz we can realize the antiferromagnetic XY model. The values
of ϑ ranges from π/2 to the minimal value ≈ 19.7◦ for β ≈ 5.24, as shown in Figure 3.3. For
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β ≈ 1.6876 we can reach the Heisenberg point and realize the antiferromagnetic Heisenberg
model for appropriate polar molecules in a two dimensional square lattice.

3.3 Spin Waves Excitations

Having derived the spin–1/2 XXZ model for polar molecules in an optical two dimensional square
lattice, we now look at excitation above the mean field ground state which will be discussed in
detail in the following Section 3.4. Here we will concentrate on non–interacting, i.e. linear har-
monic excitations, the so called spin waves, that can be described by bosonic operators obeying
the common commutator relations. A nice introduction to the theory of spin waves in general
can be found in [14]. Following [15] we first use the Holstein–Primakoff transformation and
linearize the resulting Hamiltonian which is then diagonalized by successive transformation in
Fourier space from which we determine the dispersion relation of the spin waves. This procedure
is carried out for the ferromagnetic as well as for the antiferromagnetic case. We introduce some
precursory calculations in order to handle the Fourier transformation of the dipolar interaction
which represents a crucial part in the understanding of the spin wave dispersion relation.

3.3.1 Fourier Transform of the 1/R3–Interaction

The Fourier transform of the interaction potential can be written in compact notation as

ǫ(k) =

RN∑

Rn 6=0

eik·Rn

|Rn|3
|Rn| = |Ri − Rj | (3.33)

The sum is running over all nth nearest neighbors as is described in (F.38) in detail. For small
values of k ≈ 0 the discrete Fourier transformation of 1/R3 can be approximated by the continuous
Fourier transform

ǫ(k) =

RN∑

Rn 6=0

eik·Rn

|Rn|3
≈

2π∫

φ=0

dφ

∞∫

r=rc

dr r
eik·r

r3
= − |k|+ C (3.34)
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where rc describes an appropriate short distance cut–off and C is an arbitrary integration con-
stant. For a more rigorous and precise treatment one needs to manipulate the above sum running
over all lattice points. With the help of the so called Ewald–summation [16] one can reach a fast
convergence. Rewriting the sum using the relation

∞∫

0

dλλν e−λ|Rn|2 =

∞∫

0

dλ′

|Rn|2

(
λ′

|Rn|2

)ν

e−λ′
=

∞∫

0

dλ′ e−λ′
λ′ν

︸ ︷︷ ︸
Γ(ν + 1)

1

|Rn|2+2ν =
Γ(ν + 1)

|Rn|2(ν+1)
(3.35)

and applying the substitution λ′ = λ |Rn|2 with the help of the so called Γ–function

Γ(ν + 1) =

∞∫

0

dλλν e−λ (3.36)

In the special case of |Rn|−3
, equation (3.35) can be cast into

1

|Rn|3
=

2√
π

∞∫

0

dλλ
1
2 e−λ|Rn|2 (3.37)

by setting 2(ν + 1) = 3 →֒ ν = 1
2 and using

Γ

(
3

2

)
= Γ

(
1 +

1

2

)
=

1

2
Γ

(
1

2

)
=

√
π

2
(3.38)

to solve equation (3.35) for |Rn|−3
. Now we are able to rewrite the sum (3.34) as

ǫ(k) =
2√
π

RN∑

Rn 6=0

∞∫

0

dλλ
1
2 e−λ|Rn|2 eik·Rn (3.39)

Splitting the sum at η into two parts

ǫ(k) =
2√
π

RN∑

Rn 6=0




η∫

0

+

∞∫

η



(
dλλ

1
2 e−λ|Rn|2

)
eik·Rn (3.40)

and applying the substitution λ′ = η
λ to the first integral gives rise to

η∫

0

dλλ
1
2 e−λ|Rn|2 = −

1∫

∞

dλ′
η

λ′2

( η
λ′

) 1
2

e−
η

λ′ |Rn|2

=

∞∫

1

dλ′
(
η3

λ′5

) 1
2

e−
η

λ′ |Rn|2

= η
3
2

∞∫

1

dλλ−
5
2 e−

η
λ
|Rn|2 (3.41)
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Applying a similar substitution λ′ = λ
η to the second integral yields

∞∫

η

dλλ
1
2 e−λ|Rn|2 = η

∞∫

1

dλ′ η
1
2λ′

1
2 e−ηλ′|Rn|2 = η

3
2

∞∫

1

dλλ
1
2 e−ηλ|Rn|2 (3.42)

Inserting both equations (3.41) and (3.42) in ǫ(k)

ǫ(k) =
2√
π

RN∑

Rn 6=0

η
3
2





∞∫

1

dλλ−
5
2 e−

η
λ
|Rn|2 +

∞∫

1

dλλ
1
2 e−ηλ|Rn|2



 eik·Rn (3.43)

Using the Poisson summation formula from Appendix F.4 for the first integral

RN∑

Rn

e−
η
λ
|Rn|2 eik·Rn =

π

a2
(
η
λ

)
∑

qi

e
−|qi+k|2

4( η
λ ) =

πλ

a2η

∑

qi

e−
λ
4η |qi+k|2 (3.44)

and considering that we must subtract the Rn=0 term because the Poisson summation formula
takes the sum over the whole lattice including the origin

RN∑

Rn 6=0

=

RN∑

Rn

−
RN∑

Rn=0

(3.45)

we finally find

ǫ(k) =
2
√
π

a2
η

1
2

∑

qi

∞∫

1

dλλ−
3
2 e−

λ
4η |qi+k|2 − 2√

π
η

3
2

∞∫

1

dλλ−
5
2 e−

η
λ
|0|2

︸ ︷︷ ︸
Rn=0 term

+
2√
π
η

3
2

RN∑

Rn 6=0

∞∫

1

dλλ
1
2 e−ηλ|Rn|2 eik·Rn (3.46)

Integrating equation (3.46) over λ yields

ǫ(k) =
∑

qi

{
4
√
π

a2
√
η e−

|qi+k|2
4η − 2π

a2
|qi + k|Errc

( |qi + k|
2
√
η

)}
− 4η

3
2

3
√
π

+

RN∑

Rn 6=0

{(
2

√
η

π

e−η|Rn|2

|Rn|2
+

Errc
(√
η |Rn|

)

|Rn|3

)
eik·Rn

}
(3.47)

with the complementary error function defined as

Errc(x) = 1− 2√
π

x∫

0

dt e−t2 (3.48)
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Figure 3.4 The first three shells to be summed over in direct space (see left panel) are
R1 = (1, 0)t, (0, 1)t, (−1, 0)t and (0,−1)t. In k–space (see right panel) the first shell
consists of (2π, 0)t, (0, 2π)t, (−2π, 0)t and (0,−2π)t. The second shell denoted with
red dots consist of four terms with |R2| =

√
2 and |q2| = 2

√
2π and the third shell

colored in blue with |R3| = 2 and |q3| = 4π. For further details see also Figure F.2
in Appendix F.5.2.

Additionally we introduce the function Aη(|Rn|) as the amplitude of the plane waves in the real
space summation

Aη(|Rn|) =
(
2

√
η

π

e−η|Rn|2

|Rn|2
+

Errc
(√
η |Rn|

)

|Rn|3

)
(3.49)

and the summands in k–space

Cη(|qi + k|) = 4
√
ηπ

a2
e−

|qi+k|2
4η − 2π

a2
|qi + k|Errc

( |qi + k|
2
√
η

)
(3.50)

leading to the simplification

ǫη(k) =
∑

qi

Cη(|qi + k|) +
RN∑

Rn 6=0

Aη(|Rn|) eik·Rn − 4η
3
2

3
√
π

(3.51)

In order to compare it to the continuous Fourier transform in equation (3.34) for k ≈ 0 we
expand ǫη(k) in k around zero. It suffices two look at the series expansion of Cη(|qi + k|) and
eik·Rn since Aη(|Rn|) does not depend on k

Cη(|qi + k|) = 4
√
πη

a2
− 2π |qi + k|

a2
+O(|qi + k|2)

eik·Rn = 1 + ik · Rn −
1

2
|k|2 |Rn|2 +O(|k|3)

(3.52)

Since we will sum over complete shells in real space each term with an odd number of Rn

involved, will cancel out. These are also the imaginary terms, so that the series expansion of
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η = 1 η = π

Shell |qi| |Rn| |qi| |Rn|

0th 7.08982 – 12.5664 –

1st 6.51665 · 10−5 2.28963 0.247377 0.394467

2nd 1.79156 · 10−9 0.369766 6.15741 · 10−3 8.0252 · 10−3

3rd 2.47869 · 10−19 0.0230059 6.27331 · 10−6 7.24227 · 10−6

Table 3.1 Numerical contributions to ǫ(0) are shown for η = 1 and η = π. As has been expected
from the analytical comparison of the exponential cut off functions, the numerical
values are nearly split symmetrical between the real space summands and the k–
space summands for η = π.

ǫη(k) remains real up to all orders as expected. Taking the limit k −→ 0, we see that ǫ(k)η
approaches zero linearly, leading to the same result as in (3.34).

What can we expect from the analytic expression of ǫη(k) in terms of the two sums over real
and reciprocal space? Mathematically we used the fact that the second integrand is cut off with
e−ηλ|Rn|2 which lead to a fast converging summation on the interval [1,∞) and the first integrand

initially leads to a very slow convergence because e−ηλ|Rn|2 does not cut off higher summands.
But with the help of the Poisson summation formula we can identify the first sum with the sum
of the Fourier transform and since Gaussian function invert their half width, we end up with an
fast converging integrand in the Fourier space. Physically one can realize that the summation in
real space over long wavelengths will lead to a fast convergence whereas for short wavelength
the sum in the reciprocal space is fast converging. The parameter η is now determining the scale
where to split the summation in long and in short wavelength. Analytically we can compare the
magnitude of the two cut off factors

e−
λ
4η |qi+k|2 (sum over reciprocal lattice) ←→ e−ηλ|Rn|2 (sum over real space) (3.53)

for the first shell in direct and reciprocal space as depicted in Figure 3.4. Thus for k = 0, |q1| = 2π
and |R1| = 1 we find

e−
λ
4η |2π|2 = e−λπ2

η = e−λπ (3.54)

and

e−ηλ|1|2 = e−λη = e−λπ (3.55)

are equal for η = π. Therefore we will expect that the contributions to the sum in direct and
reciprocal space will be of the same order of magnitude. For the second shell (|q2| = 2

√
2π and

|R2| =
√
2) we find for η = π that the two exponential functions are identical as well

e−
λ
4π 8π2

e−2πλ
= 1 (3.56)
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Figure 3.5 Left Panel: Fourier transform of the 1/R3–interaction ǫ(k) in the first Brillouin zone
Right Panel: Profile of the two dimensional Fourier transform along the x–axis,
showing ǫ(kx, 0).

Compared to taking η = 1 where the two exponential functions differ only by a factor of

e−2π2λ

e−2λ
= eπ

2

(3.57)

this factor is by e−π2 ≈ 2 · 10−4 smaller than the one with η = 1. In Table 3.1 the numerical
values of the first three shells – consisting of for summands in a two dimensional lattice – for
two different η are shown. Thus for η = π it suffices to take only terms up to the third shell,
i.e. |qi| = 0, 2π, 2

√
2π, 4π and |Rn| = 1,

√
2, 2. Note that we take the 0th shell in k–space and

therefore we have to take into account the correction of subtracting the R0 term

ǫη=π(k) =
2π

a

∑

qi

{
2 e−

|qi+k|2
4π − |qi + k|Errc

( |qi + k|
2
√
π

)}

+

Rn∑

Rn 6=0

{(
2
e−π|Rn|2

|Rn|2
+

Errc (
√
π |Rn|)

|Rn|3

)
eik·Rn

}
− 4π

3

=

q3∑

qi=0

Cπ(|qi + k|)
R3∑

Rn=1

Aπ(|Rn|)−
4π

3
(3.58)

⇒ ǫη=π(k) = Cπ(|0 + k|)

+ Cπ
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∣∣∣∣
)
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(∣∣∣∣
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2π

2π

)
+ k
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)
+ Cπ
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(−2π

2π

)
+ k

∣∣∣∣
)

+ Cπ

(∣∣∣∣
(−2π
−2π

)
+ k

∣∣∣∣
)
+ Cπ

(∣∣∣∣
(

2π

−2π

)
+ k

∣∣∣∣
)
+ Cπ

(∣∣∣∣
(
4π

0

)
+ k

∣∣∣∣
)
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Position #n ǫnum
π (k) ǫπ(k) |ǫnum

π − ǫπ|

100 8.977335157 5.63 · 10−2

k = 0 1000 9.027967657 9.033620744 5.65 · 10−3

10000 9.033056026 5.65 · 10−4

100 −0.9353221508 1.81 · 10−4

k ≈
(
π, 0
)t

1000 −0.9354607418 −0.9355033787 4.26 · 10−5

10000 −0.9354621405 4.12 · 10−5

100 −2.645886184 5.30 · 10−4

k ≈
(
π, π

)t
1000 −2.645886532 −2.646416184 5.30 · 10−4

10000 −2.645886532 5.30 · 10−4

Table 3.2 Comparison of the numerical solution ǫnum
π (k) obtained with the help of the MATH-

EMATICA program H.3 and the three shell summation approximation of ǫπ(k). For
k = 0 we actually need 10 000 summands in order to reach the accuracy of the three
shell summation approximation, whereas on the edges of the first Brillouin zone

k =
(
π, 0
)t

and k =
(
π, π

)t
only 100 summands suffices to reach the accuracy of

approximately 10−4.

+ Cπ

(∣∣∣∣
(

0

4π

)
+ k

∣∣∣∣
)
+ Cπ

(∣∣∣∣
(−4π

0

)
+ k

∣∣∣∣
)
+ Cπ

(∣∣∣∣
(

0

−4π

)
+ k

∣∣∣∣
)

+ 2A(1) (cos kx + cos ky) + 4A
(√

2
)
cos kx cos ky

+ 2A(2)
[
cos(2kx) + cos(2ky)

]
− 4π

3
(3.59)

The graph of ǫη=π(k) is shown in Figure 3.5 for the first Brillouin zone. A numerical solution is
generated with the help of the MATHEMATICA program H.3 by solving

ǫ(k) =

N∑

n6=0

e−ik·Rn

|Rn|3
≈

100∑

Rx=−100

100∑

Ry=−100

cos(kxRx + kyRy)√
(Rx)

2
+ (Ry)

2
3 (3.60)

Due to the summation over complete shells the exponential function can be rewritten as a pure
cos–function because in the series expansion of e−ik·Rn all terms with a product of odd numbers
of Rn will vanish

e−ik·Rn =

∞∑

l=0

(−ik · Rn)
l

l!
=

∞∑

l′=0

(−ik · Rn)
2l′+1

(2l′ + 1)!
︸ ︷︷ ︸

= 0

+

∞∑

l=0

(−ik · Rn)
2l

(2l)!
︸ ︷︷ ︸
= cos(k · Rn)

(3.61)

In Table 3.2 the solution of this program is compared to the analytical solution in the third shell
approximation given in equation (3.59). As one can see the error in the three shell approximation
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is of the order of 10−4 which is very impressive considering the fact that only 12 summands are
taken into account in each sum over direct and reciprocal space, respectively, whereas at the
edges of the first Brillouin zone at least 100 summands suffices and for the origin in k–space we
even need at least 10 000.

3.3.2 Ferromagnetic Spin Wave Excitations

Starting with the following spin–1/2 XXZ model

H =

N∑

i,j=1
i6=j

(
J⊥

SixSjx + SiySjy
|Ri − Rj |3

+ J ′
z

SizSjz
|Ri − Rj |3

)
(3.62)

with

J⊥ =
2
(
d↑↓0

)2

~2a3
Jz =

(
d↑↑0 − d↓↓0

)2

~2a3
(3.63)

the ferromagnetic case is described by J⊥ < 0 and Jz < 0 or the larger one of the two coupling
constants being negative, i.e. Jz < 0 and |Jz| > J⊥ > 0 or J⊥ < 0 and |J⊥| > Jz > 0. These cases
corresponds to ϑ in the range of [3π/4, 7π/4] and therefore in the mean field approximation one
finds parallel aligned spins at each lattice site pointing in the same direction. As we will see later
on (see Section 3.5 “Phase Diagram of the XXZ–Model”) this is only true for nearest neighbor
interactions, whereas in the case of slowly decaying interactions or long–range interactions, the
ferromagnetic domain is extended. Introducing the SU(2) raising and lowering operators

S+ = Sx + iSy Sx =
1

2

(
S+ + S−

)

S− = Sx − iSy Sy = − i

2

(
S+ − S−

) (3.64)

→֒ SixSjx + SiySjy =
1

2

(
Si+Sj− + Si−Sj+

)
(3.65)

(3.62) can be rewritten to

H F =
N∑

i,j=1
i6=j

(
J⊥
2

Si+Sj− + Si−Sj+
|Ri − Rj |3

+ Jz
SizSjz
|Ri − Rj |3

)
(3.66)

First we will only consider the case of a strong in–axis coupling, i.e. Jz < 0 and |Jz| > |J⊥|.
Following [15] we now perform a Holstein–Primakoff transformation

Si+ = ~

√
2Sϕ(ni)ai Si− = ~

√
2Sa†i ϕ(ni) Siz = ~(S − ni) (3.67)

where ϕ is a function of the ni = a†i ai operator which can be expanded for different S. For
S = 1/2 a rigorous solution is

ϕ(ni) = 1− ni (3.68)
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Since we are only interested in non–interaction spin waves we will make the approximation
ϕ(ni) ≈ 1. The ground state of the ferromagnet is described by an alignment of all spins in
z–direction:

{
|↑〉i1 , |↑〉i2 , . . . |↑〉iN

}
≡ |↑↑↑ . . . 〉 or

{
|↓〉i1 , |↓〉i2 , . . . |↓〉iN

}
≡ |↓↓↓ . . . 〉 (3.69)

The operator ni can be considered as a “spin deviation” operator from the ferromagnetic ordered
ground state and the total spin deviation can be defined as

ni = S − Siz
~

N =

N∑

i=1

ni = NS − 1

~

N∑

i=1

Siz (3.70)

Using the commutation relations of spin operators

[Siα, Sjβ ] = i~ǫαβγδijSjγ αβγ = x, y, z

→֒ [Siz, Sj±] = ±~δijSj± [Si+, Sj−] = 2~δijSjz

(3.71)

one can derive the bosonic commutation relations of ai and a†i
[
ai, a

†
j

]
= δij [ai, aj ] = 0 =

[
a†i , a

†
j

]
(3.72)

Thus ai and a†i can be considered as annihilation and creation operators of spin deviations, i.e.
harmonic excitations “above” the ferromagnetic ground state, e.g. S− |↑〉 = |↓〉. These low–lying
collective excitation can be thought of as bosonic quasi–particles. However this concept is only
well defined for spin waves which are spatial far apart and ideally non–interacting. Later on
we will work in the spin wave approximation given in (3.78) where we can safely assume the
magnon concept in analogy to phonons. Applying the Holstein–Primakoff transformation to the
Hamiltonian H F (3.66) and setting J ′ = ~

2J

H F =
N∑

i,j=1
i6=j

{
J⊥
2

~
22S

|Ri − Rj |3
(
ϕ(ni)aia

†
jϕ(nj) + a†i ϕ(ni)ϕ(nj)aj

)

+Jz
~
2

|Ri − Rj |3
(
S − ni

)(
S − nj

)
}

= SJ ′
⊥

N∑

i,j=1
i6=j

(
ϕ(ni)aia

†
jϕ(nj) + a†i ϕ(ni)ϕ(nj)aj

|Ri − Rj |3

)
+ J ′

z

N∑

i,j=1
i6=j

S2 − S
(
nj + ni

)
+ ninj

|Ri − Rj |3
(3.73)

Due to the translational invariance of the square lattice, the second term can be simplified by
summing over the free subscript respectively

gF
i =

N∑

j=1

1

|Ri − Rj |3
=

RN∑

Rn 6=0

1

|Rn|3
= gF (3.74)

gF
j =

N∑

i=1

1

|Ri − Rj |3
=

RN∑

Rn 6=0

1

|Rn|3
= gF (3.75)
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Using the above relation the second term of (3.73) can be cast into

J ′
z

(
S2

N∑

i=1

gF
i

︸ ︷︷ ︸
(3.75)
= NgF

−S
(

N∑

i=1

gF
i ni +

N∑

i=1

gF
jnj

)

︸ ︷︷ ︸
(3.75)
= 2gF

N∑

i=1

ni

+

N∑

i,j=1
i6=j

ninj
|Ri − Rj |3

)
(3.76)

we end up with

H F = SJ ′
⊥

N∑

i,j=1
i6=j

ϕ(ni)aia
†
jϕ(nj) + a†i ϕ(ni)ϕ(nj)aj

|Ri − Rj |3

+ J ′
z


S

2NgF − 2SgF
N∑

i=1

ni +
N∑

i,j=1
i6=j

ninj
|Ri − Rj |3


 (3.77)

Since we do not want to have interactions between the spin waves we will apply the following
approximation

ϕ(ni) ≈ 1 ninj ≈ 0 (3.78)

to equation (3.77) yielding

H FSW = SJ ′
⊥

N∑

i,j=1
i6=j

aia
†
j + a†i aj

|Ri − Rj |3
+ J ′

z

(
S2NgF − 2SgF

N∑

i=1

ni

)
(3.79)

By applying a unitary canonical transformation (a so called Bogoliubov transformation)

ai =
1√
2

(
Qi + iPi

)
a†i =

1√
2

(
Qi − iPi

)
(3.80)

ai and a†i can be written in terms of canonical conjugate operators Qi and Pi satisfying

[Qi,Pj ] = iδij Q †
i = Qi and P †

i = Pi (3.81)

Thus

aia
†
j + a†i aj =

1

2

(
Qi + iPi

)(
Qj − iPj

)
+

1

2

(
Qi − iPi

)(
Qj + iPj

)

=
1

2

[
QiQj + PiPj − i

(
QiPj − PiQj

)
+ QiQj + PiPj + i

(
QiPj − PiQj

)]

= QiQj + PiPj (3.82)
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and analogous

ni = a†i ai =
1

2

(
Qi − iPi

)(
Qi + iPi

)

=
1

2

[
Q 2

i + P 2
i + i

(
QiPi − PiQi

)
︸ ︷︷ ︸
[Qi,Pi]

(3.81)
= i1

]
=

1

2

[
Q 2

i + P 2
i − 1

]
(3.83)

Inserting equation (3.82) and (3.83) in the spin wave Hamiltonian (3.79) gives rise to

H FSW = SJ ′
⊥

N∑

i,j=1
i6=j

QiQj + PiPj

|Ri − Rj |3
+ J ′

z

(
S2NgF − SgF

N∑

i=1

(
Q 2

i + P 2
i

)
+ SgF

N∑

i=1

1

︸ ︷︷ ︸
= N

)

= NgFJ ′
zS(S + 1) + SJ ′

⊥

N∑

i,j=1
i6=j

QiQj + PiPj

|Ri − Rj |3
− J ′

zSg
F

N∑

i=1

(
Q 2

i + P 2
i

)
(3.84)

A Fourier transformation will diagonalize the Hamiltonian H FSW quadratic in the canonical oper-
ators Qi and Pi. The commutation relations for canonical conjugate operators must be preserved
under the Fourier transformation. This can be achieved by defining the Fourier transformation
in the following way

Qi =
1

N

∑

k

Qk e
ik·Ri Pi =

1

N

∑

k

Pk e
−ik·Ri (3.85)

Expressing the commutator in terms of the Fourier transforms

[Qi,Pj ] =
1

N

∑

k,k′

[Qk,Pk′ ] e
ik·Ri e−ik′·Rj =

1

N

∑

k, k′

δkk′ e
ik·Ri e−ik′·Rj

=
1

N

∑

k

eik·(Ri−Rj) = δ(Ri − Rj) = δij (3.86)

we find the expected commutation relations of canonical conjugated operators. A more detailed
discussion of the different variants of Fourier transformations and their physical applications
can be found in Appendix F. For Fourier transforms of hermitian operators there exists also a
symmetry in Fourier space

Qi = Q †
i =

1

N

∑

k

Q †
k e−ik·Ri

!
=

1

N

∑

k

Qk e
ik·Ri

⇒ Q †
k = Q−k = Qk (3.87)

Applying the Fourier transformation to the first sum of H FSW yields

N∑

i,j=1
i6=j

QiQj + PiPj

|Ri − Rj |3
=
∑

Ri,Rj

∑

k, k′, q

(
1

N
Qk e

ik·Ri
1

N
Qk′ e

ik′·Rj
1

N
V (q) eiq·(Ri−Rj)
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+
1

N2
PkPk′V (q) e−ik·Ri e−ik′·Rj eiq·(Ri−Rj)

)

=
∑

k, k′, q

(
QkQk′V (q)

∑

Ri

1

N
e−i(−k−q)·Ri

︸ ︷︷ ︸
δ(−k− q)

∑

Rj

1

N
e−i(−k′+q)·Rj

︸ ︷︷ ︸
δ(−k′ + q)

+ PkPk′V (q)δ(k− q)δ(k′ + q)

)

=
∑

k, k′

(
QkQk′V (k′)δ(−k− k′) + PkPk′V (−k′)δ(k + k′)

)

=
∑

k

(
QkQ−kV (−k) + PkP−kV (k)

)
(3.88)

Due to the time reversal symmetry of the dipole–dipole interaction, the Fourier transform V (k)
is symmetric and we can write V (k) = V (−k) = ǫ(k) where ǫ(k) is defined and calculated in
Subsection 3.3.1. Equation (3.88) can be simplified with the help of (3.87) to

N∑

i,j=1
i6=j

QiQj + PiPj

|Ri − Rj |3
=
∑

k

(
Q 2

k + P 2
k

)
ǫ(k) (3.89)

The second sum of H FSW can be Fourier transformed to

N∑

i=1

Q 2
i =

N∑

i=1

Q †
i Qi =

1

N

∑

k, k′

∑

Ri

QkQk′ e
−i(k−k′)·Ri

=
∑

k, k′

QkQk′δ(k− k′) =
∑

k

Q 2
k

→֒
N∑

i=1

(
Q 2

i + P 2
i

)
=
∑

k

(
Q 2

k + P 2
k

)
(3.90)

Putting everything together, the completely Fourier transformed spin wave Hamiltonian is given
as

H̃ FSW = NgFJ ′
zS(S + 1) + SJ ′

⊥
∑

k

ǫ(k)
(
Q 2

k + P 2
k

)
− J ′

zSg
F
∑

k

(
Q 2

k + P 2
k

)

= NgFJ ′
zS(S + 1)− gFJ ′

zS
∑

k

[(
1− J ′

⊥
J ′
z

ǫ(k)

gF

)
Q 2

k +

(
1− J ′

⊥
J ′
z

ǫ(k)

gF

)
P 2

k

]
(3.91)

This Hamiltonian can be compared to the harmonic oscillator

1

2m
P 2 +

mω2

2
Q 2 = ~ω

(
n +

1

2

)
(3.92)
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expressed in creation and annihilation operators

Q =

√
~

2mω

(
A† +A

)
P = i

√
~mω

2

(
A† −A

)
(3.93)

with the canonical commutation relation [Q ,P ] = i~1 and the occupation number operator

N = A†A . In order to compare the harmonic oscillator to H̃ FSW we need to rescale the operators
in equation (3.92) with 1/

√
~

1

m
P 2 +mω2Q 2 = ω(2n + 1) (3.94)

and we finally obtain

1

m
=

(
1− J ′

⊥
J ′
z

ǫ(k)

gF

)
mω2 =

(
1− J ′

⊥
J ′
z

ǫ(k)

gF

)
(3.95)

so that

1

m
mω2 = ω2 =

(
1− J ′

⊥
J ′
z

ǫ(k)

gF

)2

→֒ ω =

(
1− J ′

⊥
J ′
z

ǫ(k)

gF

)
(3.96)

We can split the spin wave Hamiltonian in a ground state energy part Ez
0F and a harmonic

excitation with dispersion relation ωz
F(k). The superscript z indicates that we derived the linear

spin waves starting from the ferromagnetic ordered state in z–direction.

H̃ FSW = Ez
0F +

∑

k

ωz
F(k)nk (3.97)

with

ωz
F(k) = 2S

(
J ′
⊥ǫ(k)− J ′

zg
F
)

= 2J ′S
(
sinϑǫ(k)− cosϑǫ(0)

)
(3.98)

where we have expressed J ′
⊥ and J ′

z in terms of the coupling constant angle ϑ. The ferromag-
netic lattice factor gF can be expressed with the help of the Fourier transform of the interaction
potential (3.34)

ǫ(k) =

RN∑

Rn 6=0

eik·Rn

|Rn|3
→֒ gF =

RN∑

Rn 6=0

ei0·Rn

|Rn|3
= ǫ(0) ≈ 9.0336 (3.99)

Furthermore the ground state energy can be simplified to

Ez
0F = NgFJ ′

zS(S + 1) +
1

2

∑

k

ωz
F(k) (3.100)

= NgFJ ′
zS(S + 1) + S

∑

k

(
J ′
⊥ǫ(k)− J ′

zg
F
)

(3.101)

= NgFJ ′
zS(S + 1) + F

−1
[
ǫ(k)

]
(0)−NgFJ ′

zS = NgFJ ′
zS

2 (3.102)
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Figure 3.6 Dispersion relation ωz
F for different ϑ = 1.2π, 1.25π, 1.3π in kx–direction

(left picture) and (kx, kx)
t–direction (right picture). The dispersion relation is be-

coming negative for ϑ > 5π/4 or |J ′
⊥| > |J ′

z| and J ′
⊥ < 0 indicating the instability of

the in–axis ground state.

The first sum corresponds to the inverse Fourier transformation evaluated at the real space point
R = 0. In order to define the Fourier transformation of the 1/R3 properly, the summand of R = 0

was omitted by setting it to zero in the first place and therefore the first sum is vanishing. In the
first Brillouin zone there exists precisely the same number of k vectors as there are unit cells in
the direct lattice and hence for a primitive lattice the number of k vectors in the first Brillouin
zone equals the number of particles in the real lattice. Additionally the summands in the sec-
ond sum are not depending on k and so it can be replace by the sum over all N molecules in
real space. For this reason the second sum yields just N , leading to the simplified ground state
energy stated in (3.102). Since J ′

z < 0, the ground state energy remains negative in the entire
ferromagnetic domain with spins aligned in z–direction, i.e. in the range of ϑ ∈ [≈ 3π/5, 5π/4].
In Section 3.5 we will look at the energy for different ground states and investigate the phase
transition between these ground states in detail.

The dispersion relation is positive in the range ≈ 3π/5 to 5π/4 of the angle ϑ, whereas a negative
dispersion relation indicates an instability. In fact for ϑ > 5π/4, the ferromagnetic ground state
|z–F〉 aligned in z–direction is destroyed by the strong in–plane coupling |J ′

⊥| > |J ′
z|. In this case

we need to start with an in–plane ferromagnetically ordered ground state, see Subsection 3.3.5.

Considering only nearest neighbor interaction one has to replace gF with the coordination num-
ber of the lattice z – e.g for a two dimensional square lattice z = 4. In this case the Fourier
transformation can be reduced to a one shell summation

ǫ(k)NN =
∑

ρ

eik·ρ

|ρ|3
= 2
(
cos kx + cos ky

)
(3.103)

where ρ points to the nearest neighbor of a lattice point. The spin wave Hamiltonian in this case
reads

H̃ FSW–NN = NzJ ′
zS

2 + 2S
∑

k

(
2J ′

⊥
(
cos kx + cos ky

)
− J ′

zznk

)
(3.104)

Intuitively it is clear, that the ground state energy of the slowly decaying 1/R3–interaction is
larger than the ground state energy of the the nearest neighbor interaction, because the 1/R3–
interaction leads to a higher number of interacting spins as in the nearest neighbor case. The
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Figure 3.7 Left Panel: Ferromagnetically ordered ground state.
Right Panel: Antiferromagnetically ordered ground state

ferromagnetic lattice factor gF can be considered as the number of spins that are interacting with
a spin on an individual lattice site, whereas for the nearest neighbor interaction this factor is just
the coordination number z < gF.

3.3.3 Antiferromagnetic Spin Waves

The antiferromagnetic spin–1/2 XXZ model is described by the Hamiltonian (3.66) but with pos-
itive coupling constants Jz > 0 and J⊥ > 0 or at least the larger one of the two coupling
constants being positive, i.e. Jz > |J⊥| > 0 and J⊥ > |Jz| > 0. As we will see later on, this is
only true for nearest neighbor interactions. For the slowly decaying 1/R3–interaction we noted in
the beginning of Subsection 3.3.2, that the ferromagnetic domain is extended and therefore the
antiferromagnetic domain must be reduced to a smaller range.

H AF =

N∑

i,j=1
i6=j

(
J⊥
2

Si+Sj− + Si−Sj+
|Ri − Rj |3

+ Jz
SizSjz
|Ri − Rj |3

)
(3.105)

In case of an in–axis antiferromagnet, we assume that the ground state is Neél ordered in the
z–direction, so that the two dimensional square lattice can be divided in two sublattices, one
with all spins pointing in +z–direction which we will call the •–sublattice and one with all spins
pointing in −z–direction which will called the ◦–sublattice. The Neél ordered ground state, as
illustrated in Figure 3.7 of the antiferromagnet is given as

{
|↑〉i1 , |↓〉i2 , . . . |↑〉iN

}
≡ |↑↓↑ . . . 〉 or

{
|↓〉i1 , |↑〉i2 , . . . |↓〉iN

}
≡ |↓↑↓ . . . 〉 (3.106)

These two ground states break the symmetry of the antiferromagnetic spin–1/2 XXZ model so we
will expect gaped dispersion relation. The •–sublattice possesses the ground state

{
|↑〉i1+ , |↑〉i2+ , . . . |↑〉iN+

}
(3.107)

whereas the ground state of the ◦–sublattice is given as

{
|↓〉i1− , |↓〉i2− , . . . |↓〉iN−

}
(3.108)
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The subscript “+” denotes indices running over the •–sublattice and “−” denotes indices of the
◦–sublattice, respectively. Therefore the sum in (3.105) can be replaced by

N∑

i,j=1
i6=j

=

N/2∑

i+=1




N∑

j=1


+

N/2∑

i−=1




N∑

j=1




=

N/2∑

i+=1




N/2∑

j+=1

+

N/2∑

j−=1


+

N/2∑

i−=1




N/2∑

j+=1

+

N/2∑

j−=1




=

N/2∑

i+,j+=1
i+ 6=j+

+

N/2∑

i+,j−=1

+

N/2∑

i−,j+=1

+

N/2∑

i−,j−=1
i− 6=j−

(3.109)

Now the Holstein–Primakoff transformation for the spin operators S+, S− and Sz must be ap-
plied to both sublattices

S+
i+

= ~

√
2Sϕ(ni+)ai+ S+

i− = ~

√
2Sb†i−ϕ(ni−)

S−
i+

= ~

√
2Sa†i+ϕ(ni+) S−

i− = ~

√
2Sϕ(ni−)bi−

Sz
i+ = ~(S − ni+) Sz

i− = ~(ni− − S)
(3.110)

For the •–sublattice with ground state |↑↑↑ . . . 〉 and excited state S−
i+
|↑〉 = |↓〉 we define the local

“spin deviation”

ni+ = S −
Sz
i+

~
= a†i+ai+ (3.111)

a†i+ and ai+ are creation and annihilation operators on the •–sublattice with

[
ai+ , a

†
j+

]
= δi+j+ (3.112)

[
a†i+ , a

†
j+

]
= 0 =

[
ai+ , aj+

]
(3.113)

The meaning of the operators on the ◦–sublattice with ground state |↓↓↓ . . . 〉 and excited state
S+
i− |↓〉 = |↑〉 are constructed in the same way. The local “spin deviation” reads

ni− = S +
Sz
i−

~
= b†

i−bi− (3.114)

b†
i− and bi− are creation and annihilation operators on the ◦–sublattice with

[
bi− , b

†
j−

]
= δi−j− (3.115)

[
b†
i− , b

†
j−

]
= 0 =

[
bi− , bj−

]
(3.116)
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Inserting the Holstein–Primakoff transformation (3.110) into the Hamiltonian (3.105) and split-
ting the total lattice into two sublattices (3.109) yields

H AF =

N/2∑

i+,j+=1
i+ 6=j+

{
J⊥
2

~
22S

∣∣Ri+ − Rj+

∣∣3
(
ϕ(ni+)ai+a

†
j+
ϕ(nj+) + a†i+ϕ(ni+)ϕ(nj+)aj+

)

+Jz
~
2

∣∣Ri+ − Rj+

∣∣3
[
(S − ni+)(S − nj+)

]}

+

N/2∑

i+,j−=1




J⊥
2

~
22S∣∣∣Ri+ − R3

j−

∣∣∣

(
ϕ(ni+)ai+ϕ(nj−)bj− + a†i+ϕ(ni+)b

†
j−ϕ(nj−)

)

+Jz
~
2

∣∣Ri+ − Rj+

∣∣3
[
(S − ni+)(nj− − S)

]}

+

N/2∑

i−,j+=1




J⊥
2

~
22S∣∣∣Ri+ − R3

j−

∣∣∣

(
b†
i−ϕ(ni−)a

†
j+
ϕ(nj+) + ϕ(ni−)bj−ϕ(nj+)aj+

)

+Jz
~
2

∣∣Ri+ − Rj+

∣∣3
[
(ni− − S)(S − nj+)

]}

+

N/2∑

i−,j−=1
i− 6=j−




J⊥
2

~
22S∣∣∣Ri+ − R3

j−

∣∣∣

(
b†
i−ϕ(ni−)ϕ(nj−)bj− + ϕ(ni−)bi−b

†
j−ϕ(nj−)

)

+Jz
~
2

∣∣Ri+ − Rj+

∣∣3
[
(ni− − S)(nj− − S)

]}
(3.117)

The Jz term can be further simplified due to the translational invariance of the •– and the ◦–
sublattice. We can define antiferromagnetic lattice factors in the same way as we did in the
ferromagnetic case. The division in •– and ◦–sublattices is shown in Figure 3.8. The sums

g+i+ =
∑

j+

1
∣∣Ri+ − Rj+

∣∣3 = g(++) g+j+ =
∑

i+

1
∣∣Ri+ − Rj+

∣∣3 = g(++) (3.118)

are both running over the •–sublattice because the summation index i and j can be swapped.
The four sums

g−i+ =
∑

j−

1
∣∣Ri+ − Rj−

∣∣3 = g(−+) g+i− =
∑

j+

1
∣∣Ri− − Rj+

∣∣3 = g(+−) (3.119)

g−j+ =
∑

i−

1
∣∣Ri− − Rj+

∣∣3 = g(−+) g+j− =
∑

i+

1
∣∣Ri+ − Rj−

∣∣3 = g(+−) (3.120)
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a

a √
2a

Figure 3.8 The Neél ordered ground state can be thought of as being composed of two ferro-
magnetically ordered sublattices • and ◦ with lattice spacing

√
2a.

start all on the •–sublattice and run over the ◦–sublattice and vice versa. So the four sums are
belonging to the same class and we can write g(−+) = g(+−) = g⊖ for the antiferromagnetic
lattice factor connecting different sublattices. The last two combinations

g−i− =
∑

j−

1
∣∣Ri− − Rj−

∣∣3 = g(−−) g+j− =
∑

i−

1
∣∣Ri− − Rj−

∣∣3 = g(−−) (3.121)

are identical to the factor g(++) since the ◦–sublattice is identical to the •–sublattice. Therefore
we can write for the sums over identical sublattices g(++) = g(−−) = g⊕. To compactify the
notation we can write for the sum over all lattice points on identical sublattices

∑
n⊕

with the

vector n⊕ connecting identical sublattice points and for the sum starting from one sublattice
running over the other sublattice

∑
n⊖

with the vector n⊖ connecting the starting point with the

other sublattice. Furthermore we define the complete antiferromagnetic lattice factor

g = g⊕ − g⊖ =
∑

n⊕

1
∣∣Rn⊕

∣∣3 −
∑

n⊖

1
∣∣Rn⊖

∣∣3 (3.122)

All terms depending on J ′
z = ~

2Jz can be simplified by summing over the respective free index

H AF = SJ ′
⊥(. . . ) + SJ ′

z


S

N

2
g⊕ − g⊕

N/2∑

j+=1

nj+ − g⊕
N/2∑

i+=1

ni+ +

N/2∑

i+,j+=1
i+ 6=j+

ni+nj+∣∣Ri+ − Rj+

∣∣3

− SN
2
g⊖ + g⊖

N/2∑

j−=1

nj− + g⊖
N/2∑

i+=1

ni+ −
N/2∑

i+,j−=1

ni+nj−∣∣Ri+ − Rj−

∣∣3

− SN
2
g⊖ + g⊖

N/2∑

j+=1

nj− + g⊖
N/2∑

i−=1

ni− −
N/2∑

i−,j+=1

ni−nj+∣∣Ri− − Rj+

∣∣3
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+S
N

2
g⊕ − g⊕

N/2∑

j−=1

nj− − g⊕
N/2∑

i−=1

ni− +

N/2∑

i−,j−=1
i− 6=j−

ni−nj−∣∣Ri− − Rj−

∣∣3




= SJ ′
⊥(. . . ) + SJ ′

z




N/2∑

i+,j+=1
i+ 6=j+

ni+nj+∣∣Ri+ − Rj+

∣∣3 − 2

N/2∑

i+,j−=1

ni+nj−∣∣Ri+ − Rj−

∣∣3 +

N/2∑

i−,j−=1
i− 6=j−

ni−nj−∣∣Ri− − Rj−

∣∣3




+ SJ ′
z

[
N(g⊕ − g⊖)− 2 (g⊕ − g⊖)︸ ︷︷ ︸

= g

N/2∑

i+=1

ni+ − 2(g⊕ − g⊖)
N/2∑

i−=1

ni−

]
(3.123)

Applying the spin–wave approximation ϕ(ni±) ≈ 1 and ni±nj± ≈ 0 to (3.123) gives rise to the
following antiferromagnetic spin wave Hamiltonian

H AFSW = 4SJ⊥




N/2∑

i+,j+=1
i+ 6=j+

ai+a
†
j+

+ a†i+aj+∣∣Ri+ − Rj+

∣∣3 +

N/2∑

i+ j−=1

ai+bj− + a†i+b
†
j−∣∣Ri+ − Rj−

∣∣3

+

N/2∑

i− j+=1

b†
i−a

†
j+

+ bi−aj+∣∣Ri− − Rj+

∣∣3 +

N/2∑

i−,j−=1
i− 6=j−

b†
i−bj− + bi−b

†
j−∣∣Ri− − Rj−

∣∣3




+ 4Jz


S2Ng − 2Sg




N
2∑

i+=1

ni+ +

N
2∑

i−=1

ni−




 (3.124)

As a next step we apply the unitary transformation

ai+ =
1√
2

(
Qi+ + iPi+

)
bi− =

1√
2

(
Ri+ + iSi+

)

a†i+ =
1√
2

(
Qi+ − iPi+

)
b†
i− =

1√
2

(
Ri+ − iSi+

) (3.125)

with the canonical conjugate, hermitian operators Qi+ , Pi+ and Ri− , Si− to H AFSW

ai+a
†
j+

+ a†i+aj+ =
1

2

(
Qi+ + iPi+

)(
Qj+ − iPj+

)
+

1

2

(
Qi+ − iPi+

)(
Qj+ + iPj+

)

=
1

2

[
Qi+Qj+ + Pi+Pj+ − i

(
Qi+Pj+ − Pi+Qj+

)

+ Qi+Qj+ + Pi+Pj+ + i
(
Qi+Pj+ − Pi+Qj+

)]

= Qi+Qj+ + Pi+Pj+ (3.126)
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In the same way, we find for the remaining three terms

ai+bj− + a†i+b
†
j− = Qi+Rj− − Pi+Sj−

b†
i−a

†
j+

+ bi−aj+ = Ri−Qj+ − Si−Pj+

b†
i−bj− + bi−b

†
j− = Ri−Rj− + Si−Sj−

(3.127)

For the ni+ and ni− operators we can write

ni+ = a†i+ai+ =
1

2

(
Qi+ − iPi+

)(
Qi+ + iPi+

)

=
1

2

[
Q 2

i+ + P 2
i+ + i

(
Qi+Pi+ − Pi+Qi+

)
︸ ︷︷ ︸[

Qi+ ,Pi+

]
= i1

]
=

1

2

(
Q 2

i+ + P 2
i+ − 1

)
(3.128)

ni− = b†
i−bi− =

1

2

(
Ri− − iSi−

)(
Ri− + iSi−

)

=
1

2

[
R 2

i− + S2
i− + i

(
Ri−Si− − Si−Ri−

)
︸ ︷︷ ︸[

Ri− , Si−
]
= i1

]
=

1

2

(
R 2

i− + S2
i− − 1

)
(3.129)

Inserting equation (3.126), (3.127), (3.128) and (3.129) into the Hamiltonian

H AFSW = SJ ′
⊥




N/2∑

i+,j+=1
i+ 6=j+

Qi+Qj+ + Pi+Pj+∣∣Ri+ − Rj+

∣∣3 +

N/2∑

i+,j−=1

Qi+Rj− − Pi+Sj−∣∣Ri+ − Rj−

∣∣3

+

N/2∑

i−,j+=1

Ri−Qj+ − Si−Pj+∣∣Ri− − Rj+

∣∣3 +

N/2∑

i−,j−=1
i− 6=j−

Ri−Rj− + Si−Sj−∣∣Ri− − Rj−

∣∣3




+ SJ ′
z

{
SNg + g

(
N/2∑

i+=1

1+

N/2∑

i−=1

1

︸ ︷︷ ︸
= N

)
− g




N/2∑

i+=1

(
Q 2

i+ + P 2
i+

)
+

N/2∑

i−=1

(
R 2

i− + S2
i−

)






= NgJ ′
zS(S + 1)

+ SJ ′
⊥




N/2∑

i+,j+=1
i+ 6=j+

Qi+Qj+ + Pi+Pj+∣∣Ri+ − Rj+

∣∣3 + 2

N/2∑

i+,j−=1

Qi+Rj− − Pi+Sj−∣∣Ri+ − Rj−

∣∣3

+

N/2∑

i−,j−=1
i− 6=j−

Ri−Rj− + Si−Sj−∣∣Ri− − Rj−

∣∣3


+ SJ ′

z




N/2∑

i+=1

(
Q 2

i+ + P 2
i+

)
+

N/2∑

i−=1

(
R 2

i− + S2
i−

)



(3.130)
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Now in the third step we Fourier transform equation (3.130). The Fourier transformation of the
canonical conjugate operators on their respective sublattice reads

Qi+ =
2

N

∑

k

Qk e
ik·Ri+ Pi+ =

2

N

∑

k

Pk e
−ik·Ri+

Ri− =
2

N

∑

k

Rk e
ik·Ri− Si− =

2

N

∑

k

Sk e
−ik·Ri−

(3.131)

In the antiferromagnetic case the Fourier transform of the interaction potential must be divided
in two classes V ⊕ and V ⊖

V ⊕(Ri± − Rj±) = V ⊕(Rn⊕)
(F.7)
=

(
2

N

)2∑

k

V ⊕(k) eik·(Ri±−Rj± ) =
4

N2

∑

k

V ⊕(k) eik·Rn⊕

(3.132)

V ⊖(Ri± − Rj∓) = V ⊖(Rn⊖)
(F.7)
=

(
2

N

)2∑

k

V ⊖(k) eik·(Ri±−Rj∓ ) =
4

N2

∑

k

V ⊖(k) eik·Rn⊖

(3.133)

where V ⊕ describes the interaction of molecules on the same sublattice and V ⊖ the interaction
of molecules on different sublattices. Following the Fourier transformation of the ferromagnetic
Hamiltonian, the solution for the sums over identical sublattices are already calculated in (3.88)

N/2∑

i+,j+=1
i+ 6=j+

Qi+Qj+ + Pi+Pj+∣∣Ri+ − Rj+

∣∣3 =
∑

k

(
Q 2

k + P 2
k

)
ǫ⊕(k) (3.134)

N/2∑

i−,j−=1
i− 6=j−

Ri−Rj− + Si−Sj−∣∣Ri− − Rj−

∣∣3 =
∑

k

(
R 2

k + S2
k

)
ǫ⊕(k) (3.135)

For the term involving operators on different sublattices we insert (3.131) and (3.133)

N/2∑

i+,j−=1

Qi+Rj− − Pi+Sj−∣∣Ri+ − Rj−

∣∣3 =
∑

Ri,Rj

∑

k, k′, q

(
4

N

)2 (
QkRk′V

⊖(q) eik·Ri+ eik
′
·Rj− eiq·(Ri+

−Rj− )

−PkSk′ e
−ik·Ri+ e−ik′·Rj− eiq·(Ri+

−Rj− )
)

=
∑

k, k′, q

(
QkRk′V

⊖(q)δ(−k− q)δ(−k′ + q)− PkSk′δ(k− q)δ(k′ + q)
)

=
∑

k

(
Qk R−k︸︷︷︸

= Rk

V ⊖(−k)− Pk S−k︸︷︷︸
= Sk

V ⊖(k)
)

=
∑

k

(
QkRk − PkSk

)
ǫ⊖(k) (3.136)
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The second part of the spin wave Hamiltonian contains only hermitian operators squared, i.e.
Q 2. The Fourier transformation is isometric in the Hilbert space and so the square of an hermitian
operator remains invariant, see for example equation (3.90)

N/2∑

i+=1

(
Q 2

i+ + P 2
i+

)
=
∑

k

(
Q 2

k + P 2
k

)
(3.137)

N/2∑

i−=1

(
R 2

i− + S2
i−

)
=
∑

k

(
R 2

k + S2
k

)
(3.138)

Now we can write the Fourier transform of the spin wave Hamiltonian H AFSW (3.130) as

H̃ AFSW = NgJ ′
zS(S + 1) + J ′

⊥S
∑

k

[ (
Q 2

k + P 2
k + R 2

k + S2
k

)
ǫ⊕(k) + 2 (QkRk − PkSk) ǫ

⊖(k)
]

− gJ ′
zS
∑

k

(
Q 2

k + P 2
k + R 2

k + S2
k

)
(3.139)

In contrast to the ferromagnetic calculation the Fourier transformation does not diagonalize the
Hamiltonian because of the mixed term QkRk − PkSk. In order to diagonalize




Qk

Pk

Rk

Sk




·




J ′
⊥Sǫ

⊕(k)− J ′
zSg 0 J ′

⊥Sǫ
⊖(k) 0

0 J ′
⊥Sǫ

⊕(k)− J ′
zSg 0 −J ′

⊥Sǫ
⊖(k)

J ′
⊥Sǫ

⊖(k) 0 J ′
⊥Sǫ

⊕(k)− J ′
zSg 0

0 −J ′
⊥Sǫ

⊖(k) 0 0







Qk

Pk

Rk

Sk




(3.140)
we need a second unitary canonical transformation

Qk =
1√
2

(
q1k + q2k

)
Pk =

1√
2

(
p1k + p2k

)

Rk =
1√
2

(
q1k − q2k

)
Sk =

1√
2

(
p1k − p2k

) (3.141)

with the canonical commutator relations
[
qik, pik

]
= iδij . Applying (3.141) to the Hamiltonian

H̃ AFSW we have to insert

Q 2
k + P 2

k + R 2
k + S2

k =
1

2

[(
q1k + q2k

)2
+
(
q1k − q2k

)2
+
(
p1k + p2k

)2
+
(
p1k − p2k

)2]

= q21k + q22k + p21k + p22k (3.142)

QkRk − PkSk =
1

2

[(
q1k + q2k

)(
q1k − q2k

)
−
(
p1k + p2k

)(
p1k − p2k

)]

=
1

2

(
q21k − q22k − p21k + p22k

)
(3.143)
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to get a completely diagonalized operator reading

H̃ AFSW = NgJ ′
zS(S + 1) + J ′

⊥S
∑

k

[
ǫ⊕(k)

(
q21k + q22k + p21k + p22k

)

+ ǫ⊖(k)
(
q21k − q22k − p21k + p22k

) ]
− gJ ′

zS
∑

k

(
q21k + q22k + p21k + p22k

)

= NgJ ′
zS(S + 1)− S

∑

k

{[
gJ ′

z − J ′
⊥

(
ǫ⊕(k) + ǫ⊖(k)︸ ︷︷ ︸

= ǫ(k)

)]
q21k

+

[
gJ ′

z − J ′
⊥

(
ǫ⊕(k)− ǫ⊖(k)︸ ︷︷ ︸

= ǫ′(k)

)]
p21k +

[
gJ ′

z − J ′
⊥

(
ǫ⊕(k)− ǫ⊖(k)︸ ︷︷ ︸

= ǫ′(k)

)]
q22k

+

[
gJ ′

z − J ′
⊥

(
ǫ⊕(k) + ǫ⊖(k)︸ ︷︷ ︸

= ǫ(k)

)]
p22k

}
(3.144)

Comparing with the harmonic oscillator (3.94)

1

mi
p2ik +miω

2
i q

2
ik = ωi (2nik + 1) (3.145)

we obtain
1

m1
= gJ ′

z − J ′
⊥ǫ

′(k) = m2ω
2
2

m1ω
2
1 = gJ ′

z − J ′
⊥ǫ(k) =

1

m2

→֒ 1

mi
miω

2
i = ω2

i =
(
gJ ′

z − J ′
⊥ǫ

′(k)
)(
gJ ′

z − J ′
⊥ǫ(k)

)
(3.146)

Rewriting the spin wave Hamiltonian into a “classical” ground state energy part, ignoring the
quantum fluctuation caused by the spin waves and two harmonic excitation gives rise to

H̃ AFSW = Ez
AF–class +

∑

k

ωz
AF(k)

[(
n1k +

1

2

)
+

(
n2k +

1

2

)]
(3.147)

with

Ez
AF–class = NgJ ′

zS(S + 1) (3.148)

ωz
AF(k) = 2S

√(
gJ ′

z − J ′
⊥ǫ

′(k)
)(
gJ ′

z − J ′
⊥ǫ(k)

)
(3.149)

In the in–axis antiferromagnet case we have found two excitation, yet they both possess the same
dispersion relation ωz

AF. In order to fully understand this result we should resolve how to express
g and ǫ′(k) in terms of the Fourier transform of the interaction potential ǫ(k). Calculating the
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a

a √
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Figure 3.9 Left Panel: The two sublattices are also square lattices with a lattice constant a
√
2.

Therefore we can rescale the sum over one of the sublattices by the factor
√
2 and

retrieving the summation over the complete lattice with the rescaled lattice con-
stant.
Right Panel: The red colored area denotes the first Brillouin zone of the total lat-
tice, whereas the yellow colored area indicates the first Brillouin zone of one of the
sublattices. Note that the vertices at (π, 0) and (0, π) are identical in both Brillouin
zones as well as paths starting from the origin running in (kx, 0) or (0, ky)–direction.

antiferromagnetic lattice factor directly with the help of a geometric observation as shown in
Figure 3.9 we find

g⊕ =
∑

n⊕

1
∣∣Rn⊕

∣∣3 =
1
√
2
3

∑

Rn

1

|Rn|3
(3.99)
=

1
√
2
3 ǫ(0) = 2−

3/2ǫ(0) (3.150)

and respectively

g⊖ =
∑

Rn

1

|Rn|3
−
∑

n⊕

1
∣∣Rn⊕

∣∣3 = ǫ(0)− 2−
3/2ǫ(0) =

(
1− 2−

3/2
)
ǫ(0) (3.151)

Combining equation (3.150) and (3.151) gives rise to

g = g⊕ − g⊖ = 2−
3/2ǫ(0)−

(
1− 2−

3/2
)
ǫ(0) =

(
1√
2
− 1

)
ǫ(0) (3.152)

On the other hand g can be determined with the help of a shift in k–space

g = g⊕ − g⊖ =
∑

n⊕

1
∣∣Rn⊕

∣∣3 −
∑

n⊖

1
∣∣Rn⊖

∣∣3

=
∑

n⊕

ei(
π

π)·Rn⊕
∣∣Rn⊕

∣∣3 +
∑

n⊖

ei(
π

π)·Rn⊖
∣∣Rn⊖

∣∣3

=
∑

Rn

ei(
π

π)·Rn

|Rn|3
= ǫ(π, π) ≈ −2.6464 (3.153)
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where we have used the fact that π(Rx + Ry)⊕ = (π · even number) and π(Rx + Ry)⊖ = (π ·
odd number) are generating the sign in the respective sum and that the sum over the •–sublattice
and the ◦–sublattice is identical to the sum over the complete lattice. This derivation can be
verified by checking the two factors involved in determining g, numerically

(
1√
2
− 1

)
ǫ(0)

!
= ǫ(π, π) →֒ ǫ(π, π)

ǫ(0)
=

(
1√
2
− 1

)
(3.154)

ǫ(π, π)

ǫ(0)
≈ −0.29295

(
1√
2
− 1

)
≈ −0.29289 (3.155)

In the same way we can calculate ǫ(k) = ǫ⊕(k) + ǫ⊖(k) and ǫ′(k) = ǫ⊕(k)− ǫ⊖(k)

ǫ⊕(k) + ǫ⊖(k) =
∑

n⊕

eik·Rn⊕
∣∣Rn⊕

∣∣3 +
∑

n⊖

eik·Rn⊖
∣∣Rn⊖

∣∣3 =
∑

Rn

eik·Rn

|Rn|3
= ǫ(k) (3.156)

ǫ⊕(k)− ǫ⊖(k) =
∑

n⊕

eik·Rn⊕
∣∣Rn⊕

∣∣3 −
∑

n⊖

eik·Rn⊖
∣∣Rn⊖

∣∣3

=
∑

n⊕

ei(
π

π)·Rn⊕︸ ︷︷ ︸
= 1

eik·Rn⊕
∣∣Rn⊕

∣∣3 +
∑

n⊖

ei(
π

π)·Rn⊖︸ ︷︷ ︸
= −1

ei(
π

π)·Rn⊖
∣∣Rn⊖

∣∣3

=
∑

Rn

ei(k+(
π

π))·Rn

|Rn|3
= ǫ


k +


π
π




 (3.157)

Hence we can rewrite the dispersion relation and the “classical” ground state energy in (3.149)
and (3.148), setting K = (π, π)t

Ez
AF–class = Nǫ(π, π)J ′

zS(S + 1) (3.158)

ωz
AF(k) = 2S

√(
J ′
zǫ
(
K
)
− J ′

⊥ǫ
(
k + K

)) (
J ′
zǫ
(
K
)
− J ′

⊥ǫ
(
k
))

= 2J ′S
√(

sinϑǫ
(
k + K

)
− cosϑǫ

(
K
)) (

sinϑǫ
(
k
)
− cosϑǫ

(
K
))

(3.159)

Note that g = ǫ(π, π) < 0 and so the “classical” ground state energy Ez
AF–class is also negative. The

complete quantum mechanical ground state energy is corrected by taking the quantum fluctua-
tions of the spin wave ground state with n1k = 0 and n2k = 0 into account

Ez
0AF = Nǫ(π, π)J ′

zS(S + 1) +
∑

k

ωz
AF(k)

= Nǫ(K)J ′
zS(S + 1) + 2ǫ(K)J ′

zS
∑

k

√(
1− J ′

⊥
J ′
z

ǫ(k + K)

ǫ(K)

)(
1− J ′

⊥
J ′
z

ǫ(k)

ǫ(K)

)

= Nǫ(K)J ′
zS

[
(S + 1) +

a2

2π2

∫
d2k

√(
1− J ′

⊥
J ′
z

ǫ(k + K)

ǫ(K)

)(
1− J ′

⊥
J ′
z

ǫ(k)

ǫ(K)

)]
(3.160)
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Figure 3.10 Left Panel: Dispersion relation ωz
AF for different ϑ = 0.2π, 0.25π, 0.3π in kx–

direction. The dispersion relation is becoming imaginary for ϑ > π/4 or J ′
⊥ > J ′

z

indicating the instability of the in–axis ground state.
Right Panel: The Dispersion relation ωz

AF in (kx, kx)
t–direction is actually π/2 pe-

riodic because the sublattices are rescaled square lattice with the factor
√
2. The

edge of the first Brillouin zone of these sublattices is crossed in (kx, kx)
t–direction

at (π/2, π/2), whereas in kx–direction both first Brilluoin zones match, e.g. see
Figure 3.9.

where we have used the relation between the sum over all k–vectors of the first Brillouin zone
and the integral in k–space as stated in equation (F.43). In Section 3.5 these quantum fluctuation
are used to determine the type of phase transition between different ground states.

The dispersion relation is real for all k in the first Brillouin zone for ϑ in the range [≈ −π/10, π/4].
For ϑ > π/4 the in–plane coupling will destroy the Neél ordered ground state aligned in z–
direction. Therefore in Subsection 3.3.6 we will determine the dispersion relation for harmonic
excitations above the in–plane Neél ordered ground state. Due to the splitting of the total lattice
in two sublattices there exists two identical dispersion relations and since the sublattices possess a
larger lattice spacing the first Brillouin zone of these lattices leads to a different periodic behavior.
In Figure 3.10 the dispersion relation in (kx, kx)

t–direction is only π/2 periodic because in this
direction the edge of the first Brillouin zone – as indicated in Figure 3.9 – is reached at (π/2, π/2).

Considering only nearest neighbor interaction, the antiferromagnetic spin wave Hamiltonian

H̃ AFSW is simplified drastically. The sums over identical sublattices

N/2∑

i+,j+=1
i+ 6=j+

−→ 0

N/2∑

i−,j−=1
i− 6=j−

−→ 0 (3.161)

can be set to zero since there are no nearest neighbor sites involved. This leads to vanishing
ǫ⊕(k) and g⊕ and to the replacements

g = −g⊖ = −z ǫ(k) = ǫ⊖(k) = ǫ(k)NN ǫ′(k) = −ǫ⊖(k) = −ǫ(k)NN (3.162)

The nearest neighbor interaction is given according to (3.103) as

ǫ(k)NN =
∑

ρ

eik·ρ

|ρ|3
= 2
(
cos kx + cos ky

)
(3.163)



3.3. Spin Waves Excitations 65

Putting everything together the nearest neighbor antiferromagnetic Hamiltonian H̃ AFSW–NN reads

H̃ AFSW–NN = −NzJ ′
zS(S + 1) + 2S

∑

k

√
(
zJ ′

z

)2 −
(
2J ′

⊥
(
cos kx + cos ky

))2(
nk +

1

2

)
(3.164)

Here we see that the coordination number z is larger than the absolute value of the antiferromag-
netic lattice constant, i.e. z > |g| indicating a “screening” of the interaction between a spin on a
particular lattice site and its neighboring spins, due to the fact that for long–range interactions
also parallel aligned spins on the same sublattice can interact with each other.

3.3.4 In–plane magnetically ordered XXZ Model

As we have seen in Subsection 3.3.2 and 3.3.3 the magnetically ordered ground state is not
stable for strong in–plane couplings |J⊥| > |Jz|. The linear harmonic excitations above the
magnetically ordered ground states aligned along the z–direction cannot be assumed to yield
reasonable results. In fact for the strong in–plane ferromagnetic ordering the dispersion relation
ωz

F(k) is becoming negative and for the Neél ordered ground state we even find an imaginary
dispersion relation ωz

AF(k). So for strong in–plane coupling |J⊥| > |Jz| we must assume a new
magnetically ordered ground state, i.e. aligned along the x–direction. Mathematically this can
be achieved by a spatial rotation of the spin–1/2 XXZ model Hamiltonian about the y–axis

Rα =




cosα 0 − sinα

0 1 0

sinα 0 cosα


 (3.165)

In order to create a magnetically ordered ground state in x–direction we have to rotate with the
angle of π/2 about the y–axis

|x–AF/F〉 = R −1
π/2 |z–AF/F〉




0 0 1

0 1 0

−1 0 0


 |z–AF/F〉 (3.166)

Since the Holstein–Primakoff transformation acts on the operators in the Hamiltonian we need
to transform the spin–1/2 XXZ–Hamiltonian (3.31)

H Z =
N∑

i,j=1
i6=j

(
J⊥

SixSjx + SiySjy
|Ri − Rj |3

+ Jz
SizSjz
|Ri − Rj |3

)

= J
N∑

i,j=1
i6=j

{
sinϑ

(
Si · Sj − SizSjz

|Ri − Rj |3

)
+ cosϑ

SizSjz
|Ri − Rj |3

}

= J
N∑

i,j=1
i6=j

{
sinϑ

Si · Sj

|Ri − Rj |3
+
(
cosϑ− sinϑ

) SizSjz
|Ri − Rj |3

}
(3.167)
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In the following we will denote the rotated operators with an x superscript.

H x = Rπ/2H
ZR −1

π/2 →֒ S = Rπ/2S
x and Sz = (−1)S x

x (3.168)

The scalar product of two vector operators is invariant under rotations, i.e. Sx
i · Sx

j = Si · Sj .
Inserting (3.168) into (3.167) we obtain

H x = J

N∑

i,j=1
i6=j

{
sinϑ

Sx
i · S

x
j

|Ri − Rj |3
+
(
cosϑ− sinϑ

) (−1)Sx
ix(−1)Sx

jx

|Ri − Rj |3

}

= J

N∑

i,j=1
i6=j

{
sinϑ

S x
iyS

x
jy + S x

izS
x
jz

|Ri − Rj |3
+ cosϑ

S x
ixS

x
jx

|Ri − Rj |3

}
(3.169)

As we can see the role of the operators Sx and Sz is interchanged, i.e. Sz −→ S x
x. From now on,

we will suppress the superscript x because it is clear that we will use this Hamiltonian to describe
magnetically ordered spin–1/2 systems with aligned spins in x–direction.

3.3.5 In–Plane Ferromagnetic Spin Waves

Starting from the spin–1/2 XXZ Hamiltonian in x–direction (3.169) we need to express Sx and Sy
in terms of the raising and lowering operators S+ and S−

Si+ = Six + iSiy Six =
1

2

(
Si+ + Si−

)

Si− = Six − iSiy Siy = − i

2

(
Si+ − Si−

) (3.170)

The ferromagnetic Hamiltonian is then cast into

H x–F =
N∑

i,j=1
i6=j

(
−J⊥

4

Si+Sj+ − Si+Sj− − Si−Sj+ + Si−Sj−
|Ri − Rj |3

+
Jz
4

Si+Sj+ + Si+Sj− + Si−Sj+ + Si−Sj−
|Ri − Rj |3

)
(3.171)

Following the calculation laid out in Subsection 3.3.2 and [15], we apply the Holstein–Primakoff
transformation (3.67)

Si+ = ~

√
2Sϕ(ni)ai Si− = ~

√
2Sa†i ϕ(ni) Siz = ~(S − ni) (3.172)

resulting in

H x–F =
J ′
⊥S

2

N∑

i,j=1
i6=j

(
−ϕ(ni)aiϕ(nj)aj + ϕ(ni)aia

†
jϕ(nj) + a†i ϕ(ni)ϕ(nj)aj − a†i ϕ(ni)a

†
jϕ(nj)

|Ri − Rj |3

)



3.3. Spin Waves Excitations 67

+
J ′
zS

2

N∑

i,j=1
i6=j

(
ϕ(ni)aiϕ(nj)aj + ϕ(ni)aia

†
jϕ(nj) + a†i ϕ(ni)ϕ(nj)aj + a†i ϕ(ni)a

†
jϕ(nj)

|Ri − Rj |3

)

+ J ′
⊥


S

2NgF − 2SgF
N∑

i=1

ni +
N∑

i,j=1
i6=j

ninj
|Ri − Rj |3


 (3.173)

Applying the spin wave approximation ϕ(ni) ≈ 1 and ninj ≈ 0 we find

H x–FSW = J ′
⊥S

(
SNgF − 2gF

N∑

i=1

ni

)

+
J ′
⊥S

2

N∑

i,j=1
i6=j

(
−aiaj + aia

†
j + a†i aj − a†i a

†
j

|Ri − Rj |3

)

+
J ′
zS

2

N∑

i,j=1
i6=j

(
aiaj + aia

†
j + a†i aj + a†i a

†
j

|Ri − Rj |3

)
(3.174)

As a next step we apply the unitary transformation (3.80)

ai =
1√
2

(
Qi + iPi

)
a†i =

1√
2

(
Qi − iPi

)
(3.175)

leading to

H x–FSW = NgFJ ′
⊥S(S + 1)− J ′

⊥Sg
F

N∑

i=1

(
Q 2

i + P 2
i

)

+ J ′
⊥S

N∑

i,j=1
i6=j

PiPj

|Ri − Rj |3
+ J ′

zS

N∑

i,j=1
i6=j

QiQj

|Ri − Rj |3
(3.176)

The Fourier transform of this Hamiltonian using (3.85) is given by

H̃ x–FSW = NgFJ ′
⊥S(S + 1)− J ′

⊥Sg
F

N∑

i=1

(
Q 2

k + P 2
k

)

+ J ′
⊥S
∑

k

P 2
k ǫ(k) + J ′

zS
∑

k

Q 2
k ǫ(k)

= NgFJ ′
⊥S(S + 1) +

∑

k

[
S
(
J ′
zǫ(k)− J ′

⊥g
F
)
Q 2

k + J ′
⊥S
(
ǫ(k)− gF

)
P 2

k

]
(3.177)

We can transform the diagonalized Fourier transform of H x–FSW onto a harmonic oscillator with

Q =

√
~

2mω

(
A† +A

)
P = i

√
~mω

2

(
A† −A

)
(3.178)
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Figure 3.11 In–plane dispersion relation ωx
F for different ϑ = 1.2π, 1.25π, 1.3π in kx–direction

(left picture) and (kx, kx)
t–direction (right picture). For ϑ < 5π/4 the in–plane

ground state is instable and the dispersion relation ωx
F is becoming imaginary.

and read of the ground state energy Ex
0F and the dispersion relation ωx

F(k)

ωx
F(k) = 2S

√
(J ′

zǫ(k)− J ′
⊥ǫ(0)) J

′
⊥ (ǫ(k)− ǫ(0))

= 2J ′S
√
sinϑ

(
ǫ(0)− ǫ(k)

)(
sinϑǫ(0)− cosϑǫ(k)

)
(3.179)

Ex
0F = NgFJ ′

⊥S(S + 1) +
1

2

∑

k

ωx
F(k)

= Nǫ(0)J ′
⊥S(S + 1) + ǫ(0)J ′

⊥S
∑

k

√(
1− ǫ(k)

ǫ(0)

)(
1− J ′

z

J ′
⊥

ǫ(k)

ǫ(0)

)

= Nǫ(0)J ′
⊥S

[
(S + 1) +

a2

4π2

∫
d2k

√(
1− ǫ(k)

ǫ(0)

)(
1− J ′

z

J ′
⊥

ǫ(k)

ǫ(0)

)]
(3.180)

The dispersion relation is real only in the range of ϑ given by [5π/4, 19π/10], where also the ground
state energy remains negative since J ′

⊥ < 0.

3.3.6 In–Plane Antiferromagnetic Spin Waves

Last but not least we will discuss rather shortly the solution for the spin wave Hamiltonian
starting from a Neél ordered ground state in x–direction. Since the steps of the calculation
are identical to those in the previous Subsections, especially Subsection 3.3.3, we will sum up
the results quickly. After splitting up the Hamiltonian in different sublattices (3.109) we apply a
Holstein–Primakoff transformation (3.110) and the linearized spin wave approximation, yielding

H x–AFSW = J ′
⊥S


SNg − 2Sg




N
2∑

i+=1

ni+ +

N
2∑

i−=1

ni−






+
J ′
⊥S

2

N∑

i+,j+=1
i+ 6=j+

(
−ai+aj+ + ai+a

†
j+

+ a†i+aj+ − a†i+a
†
j+∣∣Ri+ − Rj+

∣∣3

)
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Figure 3.12 Left Panel: Gapless in–plane dispersion relation ωx
AF1(k) in kx–direction.

Right Panel: Second gaped in–plane dispersion relation ωx
AF2(k) in kx–direction.

+
J ′
zS

2

N∑

i+,j+=1
i+ 6=j+

(
ai+aj+ + ai+a

†
j+

+ a†i+aj+ + a†i+a
†
j+∣∣Ri+ − Rj+

∣∣3

)

+
J ′
⊥S

2

N∑

i+,j−=1
i+ 6=j−

(
−ai+b†

j− + ai+bj− + a†i+b
†
j− − a†i+bj−∣∣Ri+ − Rj−

∣∣3

)

+
J ′
zS

2

N∑

i+,j−=1
i+ 6=j−

(
ai+b

†
j− + ai+bj− + a†i+b

†
j− + a†i+bj−∣∣Ri+ − Rj−

∣∣3

)

+
J ′
⊥S

2

N∑

i−,j+=1
i− 6=j+

(
−b†

i−aj+ + b†
i−a

†
j+

+ bi−aj+ − bi−a
†
j+∣∣Ri+ − Rj−

∣∣3

)

+
J ′
zS

2

N∑

i−,j+=1
i− 6=j+

(
b†
i−aj+ + b†

i−a
†
j+

+ bi−aj+ + bi−a
†
j+∣∣Ri+ − Rj−

∣∣3

)

+
J ′
⊥S

2

N∑

i−,j−=1
i− 6=j−

(
−b†

i−b
†
j− + b†

i−bj− + bi−b
†
j− − bi−bj−∣∣Ri− − Rj−

∣∣3

)

+
J ′
zS

2

N∑

i−,j−=1
i− 6=j−

(
b†
i−b

†
j− + bi−b

†
j− + bi−b

†
j− + bi−bj−∣∣Ri− − Rj−

∣∣3

)
(3.181)

Applying a unitary transformation (3.125) and Fourier transforming the spin wave Hamilto-
nian H x–AFSW we need to diagonalize the non–quadratic parts with the help of a second unitary
transformation (3.141)

H̃ x–AFSW = NgJ ′
⊥S(S + 1)S

∑

k

[
(
J ′
zǫ(k)− gJ ′

⊥
)
q21k +

(
J ′
zǫ

′(k)− gJ ′
⊥
)
q22k
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+ J ′
⊥
(
ǫ′(k)− g)p21k + J ′

⊥
(
ǫ(k)− g

)
p22k

]
(3.182)

Comparing with the harmonic oscillator (3.94) gives rise to the dispersion relation and the
ground state energy

Ex
0AF = Nǫ(K)J ′

⊥S

[
(S + 1) +

a2

2π2

∫
d2k

√(
1− ǫ(k + K)

ǫ(K)

)(
1− J ′

z

J ′
⊥

ǫ(k)

ǫ(K)

)]
(3.183)

ωx
AF1(k) = 2S

√
J ′
⊥

(
ǫ
(
K
)
− ǫ
(
k + K

))(
J ′
⊥ǫ
(
K
)
− J ′

zǫ
(
k
))

(3.184)

ωx
AF2(k) = 2S

√(
J ′
⊥ǫ
(
K
)
− J ′

zǫ
(
k + K

))
J ′
⊥

(
ǫ
(
K
)
− ǫ
(
k
))

(3.185)

Interestingly in the case of strong in–plane coupling J⊥ > J ′
z the two dispersion relation are not

identical, but they are describing the same physics since they are only shifted by an reciprocal
lattice vector G = (π, π)t of the first Brillouin zone of one of the sublattices. Due to the 2π
periodicity of ǫ(k) we find the following relation between the two dispersion relations ωx

AF1(k)
and ωx

AF2(k)

ωx
AF1


k +


π
π




 = ωx

AF2(k) ωx
AF2


k +


π
π




 = ωx

AF1(k) (3.186)

Therefore we can use one of the two dispersion relations, i.e. ωx
AF1(k) and generate the other via

shifting with G. Since the linearized spin wave excitations are low lying collective excitations we
deal in the quasi particle picture with bosonic particles called magnons that possess creation a†

and annihilation operators a. By drawing an analogy to phonons we see that the second mode
that is arising due to the two sublattices, corresponds to the optical mode of phonons, whereas
the first mode can be considered as acoustical mode. The introduction of the two sublattices •
and ◦ doubles the lattice constant of each sublattice and therefore the Brillouin zone of these
sublattices is reduced as shown in Figure 3.9. Since we have an underlying symmetry of the two
dimensional square lattice, we can shift the extended scheme back into the first Brillouin zone
with the help of an reciprocal lattice vector G (see Appendix F.5.2).
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Figure 3.13 There are two dispersion relation for the in–plane antiferromagnet ωx
AF1(k) and

ωx
AF2(k) in kx–direction (left picture). The second dispersion relation possesses

a finite energy gap for k = 0. In the right picture the dispersion relations in
(kx, kx)

t–direction are shown. Note that due to the rescaled sublattice constant
the first Brillouin zone in this direction is halved.

3.4 Mean Field Solution of the XXZ Model

The spin–1/2 XXZ model cannot be solved analytically, since we have to deal with correlated
two particle operators. One possibility to simplify the complicated two particle operators is to
apply the mean field approximation. In this approximation we consider only a single spin in the
background field generated by all other spins. Thus, we reduce the interaction problem of two
spins to non–interacting single spins in an magnetic field. This magnetic field must be calculated
self–consistently, i.e. to reproduce the right interaction between the spins in the system. Since we
replace all interaction between single spins by a mean field, we dot not have any fluctuations or
correlations between those spins and we can regard the mean field approximation as the zeroth
order of the Hamiltonian in the fluctuation. It is clear, that the mean field approximation will
only be good for systems with small fluctuations. This is true for long range interactions and for
high dimensionality of the system. The Ginzburg–Landau criterion states, that the upper critical
dimension is dc = 4. Only above dc mean field is still valid when approaching a critical point and
will not break down due to the critical fluctuation with diverging correlation length.

To apply the mean field approximation to H XXZ one needs to construct effective one particle
operators. Following the idea of expanding the fluctuation around the average or mean value,
we can introduce the new operators

δSi = Si − 〈Si〉 →֒ Si = 〈Si〉+ δSi (3.187)

where δSi defines the deviation from the expectation value of the spin operator. Rewriting the
interacting two spin operator Si · Sj with the help of the deviation gives rise to

Si · Sj =
(
〈Si〉+ δSi

)
·

(
〈Sj〉+ δSj

)

= 〈Si〉 · δSj + δSi · 〈Sj〉+ 〈Si〉 · 〈Sj〉+ δSi · δSj

= 〈Si〉 ·
(
Sj − 〈Sj〉

)
+ Si − 〈Si〉 · 〈Sj〉+ 〈Si〉 · 〈Sj〉+ δSi · δSj

= Si · 〈Sj〉+ 〈Si〉 · Sj − 〈Si〉 · 〈Sj〉+
(
Si − 〈Si〉

)
·

(
Sj − 〈Sj〉

)
(3.188)
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The first two terms have the correct structure of the product of a single spin with an averaged
background field. The third term can be considered as a mere energy shift, with no physical
contribution and finally the last term describes spin–spin correlation. In the mean field approxi-
mation we will replace the correlation term by its average and therefore neglect any correlations
between the spins

〈δSi · δSj〉 = 〈Si · Sj〉 − 〈Si〉 · 〈Sj〉 (3.189)

This term is also an additional energy shift and can be safely neglected. Applying the mean field
approximation, we end up with the following Hamiltonian

H Mean =

N∑

i=1

Hi = 2

N∑

i=1

[
J⊥
(
hix︸︷︷︸
〈Six〉

Six + hiy︸︷︷︸
〈Siy〉

Siy
)
+ Jz hiz︸︷︷︸

〈Siy〉
Siz

− J⊥
(
hix 〈Siy〉+ hiy 〈Siy〉

)
− Jzhiz 〈SiZ〉

]

≈
N∑

i=1

J⊥

[(
hixSix + hiySiy

)
+ JzhizSiz

]
(3.190)

The self–consistency condition determines the magnetic background field hi acting on the spin
occupying the ith lattice site. In the ferromagnetic case we assume the mean field ground state
consists of all spins aligned parallel in z–direction. Thus the magnetic field is given by

hF
i ≡ hF =

N∑

n6=0

〈Sn〉
|Rn|3

=
N∑

n6=0

〈↑↑↑ . . .| Sn |↑↑↑ . . . 〉
|Rn|3

= 〈S〉
N∑

n6=0

1

|Rn|3
= 〈S〉 gF (3.191)

where n = i − j and |Rn| = |Ri − Rj | due to the translational invariance of the lattice. Since
the components of the homogeneous magnetic field are all positive, the coupling constants Jz
and J⊥ must be negative to minimize the mean field energy as we would have been expected for
the ferromagnetic case. If we would have taken the other possible ferromagnetic ground state
|↓↓↓ . . . 〉, the components of hF would have turned out to be negative in agreement with the
expectation value of the single spin operators and the ferromagnetic coupling constants. The
mean field ground state energy can be calculated

〈
↑↑↑ . . .

∣∣H F
∣∣↑↑↑ . . .

〉
=

N∑

i,j=1
i6=j

(
J⊥
2

〈↑↑↑ . . .| Si+Sj− + Si−Sj+ |↑↑↑ . . . 〉
|Ri − Rj |3

+Jz
〈↑↑↑ . . .| SizSjz |↑↑↑ . . . 〉

|Ri − Rj |3

)

= Jz

N∑

i,j=1
i6=j

〈Sz〉 〈Sz〉
|Ri − Rj |3

= Jz 〈Sz〉2
N∑

i=1

N∑

j=1
j 6=i

1

|Ri − Rj |3

= Jz

(
~

2

)2

NgF = NgFJ ′
zS

2 = Ez
0F (3.192)
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Figure 3.14 The Neél ordered ground state is divided in two sublattices • and ◦. For the ground
state |↑↓↑ . . . 〉 the spins on the ◦–sublattice are pointing up.

and is in agreement with the result of the spin wave analysis with J ′
z = ~

2Jz and S2 = 1/4. In
fact the spin wave analysis delivered the functional dependency on ϑ of the mean field ground
state energy for free which we now have verified. The mean field energy of the other possible
ground state |↓↓↓ . . . 〉 is identical since 〈Sz〉2 is invariant under sign changes.

In the antiferromagnetic case, we start with an Neél ordered ground state |↑↓↑ . . . 〉. If we take
the spin on site i to be pointing up, all nearest neighbor spins must point down and the next
nearest neighbors in the second shell are again pointing up. This can be carried out for all higher
shells and we find that for the sum of i+ j = (an even number) the spins are pointing up and for
i+j = (an odd number) the spins are pointing down. In order to have a self–consistent solution,
the magnetic background field hAF

i acting on site i must be negative since the antiferromagnetic
coupling constants are positive

hAF
i = (−1)i

N∑

n6=0

〈Sn〉
|Rn|3

= (−1)i
N∑

n6=0

(−1)n

|Rn|3




|Sx|
|Sy|
|Sz|




= (−1)ig




|Sx|
|Sy|
|Sz|


 = (−1)i+1 |g|




|Sx|
|Sy|
|Sz|


 (3.193)

Calculating the mean field ground state energy

〈
↑↓↑ . . .

∣∣H AF
∣∣↑↓↑ . . .

〉
=

N∑

i,j=1
i6=j

(
J⊥
2

〈
↑↓↑ . . .

∣∣ Si+Sj− + Si−Sj+
∣∣↑↓↑ . . .

〉

|Ri − Rj |3

+Jz
〈↑↓↑ . . .| SizSjz |↑↓↑ . . . 〉

|Ri − Rj |3

)
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Magnetical
Mean Field Spin Wave

Ordering

ferro in–axis −NgF |J ′
z|S2 −NgF |J ′

z|S2

ferro in–plane −NgF |J ′
⊥|S2 −NgF |J ′

⊥|S
[
(S + 1) + a2

4π2

∫
d2k

√

(

1− ǫ(k)

gF

)

(

1− J′
z

J′
⊥

ǫ(k)

gF

)

]

antiferro in–axis −N |g| J ′
zS

2 −N |g| J ′
zS

[
(S + 1) + a2

2π2

∫
d2k

√

(

1−
J′
⊥

J′
z

ǫ(k+K)
g

)(

1−
J′
⊥

J′
z

ǫ(k)
g

)

]

antiferro in–plane −N |g| J ′
⊥S

2 −N |g| J ′
⊥S

[
(S + 1) + a2

2π2

∫
d2k

√

(1− ǫ(k+K)
g )

(

1− J′
z

J′
⊥

ǫ(k)
g

)

]

Table 3.3 Overview over the mean field and the spin wave ground state energy for the 1/R3–
interaction. Only for the in–axis ferromagnet both energies are identical. The mean
field energy for the nearest neighbor interaction can be found via replacing gF or |g|
with the coordination number z.

= Jz

N∑

i,j=1
i6=j

(−1)i |〈Sz〉| (−1)j |〈Sz〉|
|Ri − Rj |3

= Jz |〈Sz〉|2
N∑

i,j=1
i6=j

(−1)i+j

|Ri − Rj |3

= Jz 〈Sz〉2
N∑

i=1

N∑

n6=0

(−1)n

|Rn|3
= NgJ ′

zS
2 = Ez

AF–mean (3.194)

which is also in agreement with the “classical” ground state energy ignoring the quantum fluctu-
ations obtained in the spin wave analysis in Section 3.3. For the other possible antiferromagnetic
mean field ground state |↓↑↓ . . . 〉 we only have to shift the index i and j to i + 1 and j + 1.
Since (−1)2 = 1 the ground state energy is identical and the two different ground states are
degenerate.

In order to calculate the mean field energy of the in–plane magnetically ordered ground states we
can use the Hamiltonian define in Subsection 3.3.4. The Hamiltonian H x–F and H x–AF are con-
structed by interchanging Sx and Sz. Following the calculations presented in equation (3.194)
and (3.192) we see that we only have to interchange cosϑ by sinϑ or Jz by J⊥ to get Ex

F–mean

and Ex
AF–mean

Ex
F–mean = NgFJ ′

⊥S
2 Ex

AF–mean = NgJ ′
⊥S

2 (3.195)

The mean field ground state energies are compared to the spin wave ground state energies in
Table 3.3. There is an additional contribution in the spin wave ground state energy originating
from the quantum fluctuation, except for the in–axis ferromagnetic case where both energies
are identical. These corrections are numerically determined with the help of MATHEMATICA in
Section 3.5.

In general we can show that for a two dimensional square lattice the mean field energy can be



3.4. Mean Field Solution of the XXZ Model 75

written as

〈
MF
∣∣H

∣∣MF
〉
=
[
J⊥
(
〈Sx〉2 + 〈Sy〉2

)
+ Jz 〈Sz〉2

] N∑

i,j=1
i6=j

g(i− j)
|Ri − Rj |3

(3.196)

with the continuous function g ∈ [−1, 1] describing the relative orientation of two spins at i and
j and the constraint

N∑

n6=0

|g(n)|2 ≤ N (3.197)

since the sum over the g cannot exceed the number of particles in the lattice. Expressing the sum
with the help of the Poisson formula (F.23) from Appendix F.4 setting q = 0, we find

RN∑

Rn 6=0

g(n)

|Rn|3
=

1

a2

∑

k

g̃(k)ǫ(k) =
1

a2

(√
Na

2π

)2 ∫
d2k g̃(k)ǫ(k) (3.198)

and inserting this integral in the mean field energy gives rise to

〈
MF
∣∣H

∣∣MF
〉
= N

[
J⊥
(
〈Sx〉2 + 〈Sy〉2

)
+ Jz 〈Sz〉2

] ∫ d2k

(2π)2
g̃(k)ǫ(k) (3.199)

The constraint (3.197) can be written in terms of the Fourier transform g̃(k) as

N ≥
∑

n6=0

|g(n)|2 =
∑

k

|g̃(k)|2 ≤ N (3.200)

In order to find the extrema of the mean field energy, it suffices to search for the extrema of the
integrand g̃(k)ǫ(k). The integrand will be extremal if both factors are extremal. The extremal
value of g̃(k) which is in agreement with the constraint is

|g(n)|2 = 1 →֒
N∑

n6=0

|g(n)|2 = N (3.201)

|g̃(k)|2 = 1 →֒
∑

k

|g̃(k)|2 = N (3.202)

Thus the mean field ground state can only be a product state of spins aligned parallel or antipar-
allel, i.e. ferromagnetically or antiferromagnetically ordered. The extrema of ǫ(k) are at

kF = 0 →֒ ǫ(0) is local maxima with ǫ(0) > 0

kAF = 0 →֒ ǫ(π, π) is local minima with ǫ(π, π) < 0
(3.203)

and we see that the ferromagnetically ordered ground states are given by ǫ(0), and since the
integral is maximized the coupling constants must be negative in order to minimize the mean
field ground state energy. For positive coupling constants we need to minimize the integral which
is done by ǫ(π, π). As one can see in Figure 3.5 there are no more extrema of ǫ(k) and thus no
more possible mean field ground states. Looking at the four dispersion relations of the harmonic
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excitations about those four ground states we find a general form of the dispersion relation

ωz
q = 2J ′S

√(
sinϑǫ

(
k + q

)
− cosϑǫ

(
q
)) (

sinϑǫ
(
k
)
− cosϑǫ

(
q
))

(3.204)

ωx
q = 2J ′S

√
sinϑ

(
ǫ
(
q
)
− ǫ
(
k + q

))(
sinϑǫ

(
q
)
− cosϑǫ

(
k
))

(3.205)

In order to arrive at the ferromagnetic dispersion relation we need to “expand” about q = 0 and
for the antiferromagnetic dispersion relation about q = (π, π)t. In the same way we can define a
general from of the spin wave ground state energy given by

Ez
0q = Nǫ(q)J ′

zS


(S + 1) +

(
−1

2

)1− |q|√
2π a2

2π2

∫
d2k

√(
1− J ′

⊥
J ′
z

ǫ(k + q)

ǫ(q)

)(
1− J ′

⊥
J ′
z

ǫ(k)

ǫ(q)

)


(3.206)

Ex
0q = Nǫ(q)J ′

⊥S


(S + 1) +

(
1

2

)1− |q|√
2π a2

2π2

∫
d2k

√(
1− ǫ(k + q)

ǫ(q)

)(
1− J ′

z

J ′
⊥

ǫ(k)

ǫ(q)

)


(3.207)

3.5 Phase Diagram of the XXZ Model

In the previous two subsection we have determined the mean field ground state and the lin-
ear spin wave excitations about these ground states. Now we can use these results to identify
the different quantum phases and their type of phase transition, i.e. first order or discontinu-
ous and second order or continuous respectively. The phase transition between the mean field
(anti)ferromagnetic ground state aligned in z–direction and the mean field (anti)ferromagnetic
ground state aligned in x–direction can be found by looking at the mean field ground state energy
while varying the parameter ϑ

Ez
AF–MF(ϑ) = −JN |g| cosϑ Ex

AF–MF(ϑ) = −JN |g| sinϑ (3.208)

Ez
F–MF(ϑ) = JNgF cosϑ Ex

F–MF(ϑ) = JNgF sinϑ (3.209)

Since the ground state energy must be minimal the phase transition occurs at values of ϑ where
two energies of different ground states are identical. This allows us to find possible phase tran-
sitions as intersection of ground state energies. Beginning with the. . .

• in–axis antiferromagnet to in–plane antiferromagnet transition

Ez
AF–MF(ϑP1)

!
= Ex

AF–MF(ϑP1) →֒ JNg cosϑP1 = JNg sinϑP1

tanϑP1 = 1 →֒ ϑP1 = π/2 (3.210)

• in–plane antiferromagnet to in–axis ferromagnet transition

Ex
AF–MF(ϑP2)

!
= Ez

F–MF(ϑP2) →֒ JNg sinϑP2 = JNgF cosϑP2

tanϑP2 =
gF

g
=
ǫ(0)

ǫ(K)
→֒ ϑP2 ≈ 106.27◦ (3.211)
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Figure 3.15 The mean field energy of all four possible ground states are shown in dependence
of the parameter ϑ. There are four intersection points showing the critical angles
ϑc where quantum phase transitions occur.

• in–axis ferromagnet to in–plane ferromagnet

Ez
F–MF(ϑP3)

!
= Ex

F–MF(ϑP3) →֒ JNgF cosϑP3 = JNgF sinϑP3

tanϑP3 = 1 →֒ ϑP3 =
5π

4
(3.212)

• in–plane ferromagnet to in–axis antiferromagnet

Ex
F–MF(ϑP4)

!
= Ez

AF–MF(ϑP4) →֒ JNgF sinϑP4 = JNg cosϑP3

tanϑP4 =
g

gF
=
ǫ(K)

ǫ(0)
→֒ ϑP4 ≈ 343.73◦ =̂ −16.27◦ (3.213)

Compared to the phase transitions of the nearest neighbor interaction which occur symmetrically
at π/4, 3π/4, 5π/4 and 7π/4 the phase transition points between ferromagnetical and antiferromag-
netical order are shifted towards the antiferromagnetic phases. Intuitively, it is clear that a
long–range interaction favors the ferromagnetic ground state because in the antiferromagnetic
case the spins on identical sublattices are also interacting with each other. Since spins on such
sublattices are aligned parallel the antiferromagnetic ordering obtains an energy penalty that
must be compensated by the respective positive coupling constant.

With the help of the spin wave dispersion relation, we can probe the long range ordering of the
system and find indications about the type of the phase transition. If the dispersion relations at
the phase transition are identical over the entire k–space domain, we can expect a continuous or
second order phase transition since there will be no energy gap between the two excitations. This
is the case for the phase transitions between identical magnetical ordering, e.g. for ϑP1 = π/4 and
ϑP3 = 5π/4, although the excitations about the in–axis ground state shows an finite energy gap in
both cases. Since the transition takes place at the Heisenberg point, the SU(2) symmetry allows
a continuous transition that could be destroyed by explicitly breaking the SU(2) symmetry of the
Hamiltonian, e.g. by turning on an additional transverse magnetic field. Spontaneously break-
ing the continuous SU(2) symmetry leads to gapless excitations the so called Goldstone modes,
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Figure 3.16 Due to the symmetric mapping between different coupling constant regimes the
phase transitions of the nearest neighbor interaction is of 2nd order given by the
SU(2) symmetry of the Heisenberg point. The 1/R3–interaction favors ferromag-
netical ordered ground states that leads to an extension of the ferromagnetic do-
main. Independent of the interaction range the in–axis spin waves possess an
excitation gap in the long wave length limit. Note that the transitions between the
ferromagnetic and antiferromagnetic phases are only proposed to be of 1st order
and that at those points there might be another unidentified phase.

i.e. fluctuations among the degenerate ground states. The magnetically ordered ground states
posses a lower symmetry as the Hamiltonian, so we will expect gapless excitations. The deviation
from the z–axis leads to an non–negligible energy cost, since the long wave length excitations
are lowering the magnetization. Thus, we find gaped excitations in case of the in–axis ferromag-
netic and antiferromagnetic spin waves for the 1/R3–interaction as well as the nearest neighbor
interaction. The in–plane excitations are gapless since the rotational symmetry in the xy–plane
is not broken and spin flips can be performed continuously. Therefore the phase transitions at
ϑP2 and ϑP4 could be of first order with non–identical spin wave excitations that lead to an jump
in the long wave length energy.

Unfortunately, this simple mean field picture is not telling the whole truth about the real type of
the phase transitions, because the effects of quantum fluctuations are not taken into account. A
further complication arises from the fact, that at ϑP2 and ϑP4 the dispersion relation is becoming
negative or imaginary, respectively, i.e. the spin waves are breaking down exactly at the alleged
phase transitions. By looking at the quantum fluctuation, one finds the following corrections to
the mean field ground state energies (3.208) and (3.209) at ϑP4 = arctan ǫ(K)/ǫ(0)

Ex
0F(ϑP4) = Nǫ(0)J ′

⊥S

[
(S + 1) +

a2

4π2

∫
d2K

√(
1− ǫ(k)

ǫ(0)

)(
1− ǫ(k)

ǫ(K)

)

︸ ︷︷ ︸
≈ 0.85895 a2

]
(3.214)

Ez
0AF(ϑP4) = Nǫ(K)J ′

⊥S

[
(S + 1) +

a2

2π2

∫
d2K

√(
1− ǫ(k + K)

ǫ(0)

)(
1− ǫ(k)

ǫ(0)

)

︸ ︷︷ ︸
≈ 1.93833 a2

]
(3.215)
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where Jz/J⊥ = cotϑ and cot(arctanx) = x−1 has been used. Since the spin waves about the in–
plane ferromagnetic ground states are collapsing, we cannot enter the antiferromagnetic domain
with ϑ > ϑP4, although the ground state energy Ex

0F(ϑP4) is smaller than Ez
0AF(ϑP4). This gives

rise to the existence of an intermediate phase that is bounded by a first order phase transition to
the ferromagnetic domain and can be continuously transformed to the antiferromagnetic in–axis
phase, indicating a second order phase transition. In the same way the peculiarities of the phase
transition at ϑP2 = arctan ǫ(0)/ǫ(K) can be investigated, using the spin wave ground state energies
(3.206) and (3.207)

Etextz
0F (ϑP2) = Nǫ(0)J ′

zS (3.216)

Ex
0AF(ϑP2) = Nǫ(K)J ′

⊥S

[
(S + 1) +

a2

2π2

∫
d2K

√(
1− ǫ(k + K)

ǫ(K)

)(
1− ǫ(k)

ǫ(0)

)

︸ ︷︷ ︸
≈ 1.91089 a2

]
(3.217)

Additionally, we see that at the points ϑP1 = π/4 and ϑP3 = 5π/4 the spin wave ground state
energies are identical, because Jz = J⊥ and the spin wave dispersion relation is also identical.
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Magnetical Ordering Dispersion Relation ω(k)

ferro in–axis 2J ′S
(
sinϑǫ(k)− cosϑǫ(0)

)

ferro in–plane 2J ′S
√
sinϑ

(
ǫ(0)− ǫ(k)

)(
sinϑǫ(0)− cosϑǫ(k)

)

antiferro in–axis 2J ′S

√(
sinϑǫ

(
k + K

)
− cosϑǫ

(
K
))(

sinϑǫ
(
k
)
− cosϑǫ

(
K
))

antiferro in–plane

2J ′S

√
sinϑ

(
ǫ
(
K
)
− ǫ
(
k + K

))(
sinϑǫ

(
K
)
− cosϑǫ

(
k
))

2J ′S

√(
sinϑǫ

(
K
)
− cosϑǫ

(
k + K

))
sinϑ

(
ǫ
(
K
)
− ǫ
(
k
))

Magnetical Ordering Nearest Neighbor Dispersion Relation ω(k)

ferro in–axis 2S
(
2J ′

⊥(cos kx + cos ky)− J ′
zz
)

ferro in–plane 2S

√
J ′
⊥

(
z − 2

(
cos kx + cos ky

))(
J ′
⊥z − 2J ′

z

(
cos kx + cos ky

))

antiferro in–axis 2S

√
(J ′

zz)
2 −

(
2J ′

⊥
(
cos kx + cos ky

))2

antiferro in–plane

2S

√(
J ′
⊥z + 2J ′

z

(
cos kx + cos ky

))
J ′
⊥

(
z − 2

(
cos kx + cos ky

))

2S

√(
J ′
⊥z − 2J ′

z

(
cos kx + cos ky

))
J ′
⊥

(
z + 2

(
cos kx + cos ky

))

Table 3.4 Overview over the linear spin wave dispersion relations for the four different mean
field ground states. As comparison the nearest neighbor dispersion relations are
given in the lower part.



4
t–J Model

4.1 t–J Model for strongly correlated electrons

The t–J model is derived from the Hubbard model

H = −t
N∑

〈i,j〉σ

(
c†iσcjσ + ciσc

†
jσ

)
+ U

∑

i

ni↑ni↓ (4.1)

where t describes the hopping matrix element and U the Coulomb on–site repulsion of the elec-
trons. In the strong coupling regime t/U ≪ 1, we find for the limit of a Mott–Hubbard insulator,
i.e. if the particle numbers are conserved and there is only single occupancy of a lattice site, that
the t–J model can be written as

H = −t
∑

〈i,j〉σ

(
c†iσcjσ + ciσc

†
jσ

)
+ J

∑

i,j=1

(
Si · Sj −

1

4
ninj

)
(4.2)

by the mapping

σ −→ c†iασαβciβ (4.3)

where c†iα and ciα are projected fermionic creation and annihilation operators with non–fermionic
commutation relations [17]. Carrying out the mapping for the components of a spin–1/2 system
gives rise to

σix −→


c

†
i↑

c†i↓




0 1

1 0




ci↑
ci↓


 = c†i↑ci↓ + c†i↓ci↑

σiz −→


c

†
i↑

c†i↓




1 0

0 −1




ci↑
ci↓


 = c†i↑ci↑ − c†i↓ci↓ = ni↑ − ni↓

(4.4)
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E[B]

E2±1

E2 0

E1±1

E1 0

0 |↓〉
~Ω

(1)
+1

|h1〉
|↑〉

~Ω
(2)
+1

|h2〉

Figure 4.1 An attempt to realize the t–J model is given by the strong coupling of
|φ0 0〉 ←→ |φ1 1〉 and |φ1 0〉 ←→ |φ2 1〉 in order to obtain three independent tuning
parameters

4.2 Realizing the t–J Model with Polar Molecules

If we do not fill up all lattice points with molecules, that is we dope the lattice with holes, we
can allow the molecules to hop from one site to the nearest neighbor site. For strongly correlated
systems (e.g. non–Fermi liquids) this can be described by the t–J model. In order to realize the
t–J model we need three tuning parameters to satisfy the three conditions

hz = 0 J ′
⊥ − J ′

z = 0 4J1 + Jz = 0 (4.5)

Therefore we propose the following setup shown in Figure 4.1. We first couple the states
|φ1 0〉 ←→ |φ2 1〉 and |φ0 0〉 ←→ |φ1 1〉 strongly by irradiating two independent circular polar-
ized microwave fields with polarization q = 1 and frequency ωL1 and ωL2, respectively. In the
rotating wave approximation we can write the linear combination of the coupled states in the
following way

|+〉2 = cos
ϕ2

2
|φ2 1〉+ sin

ϕ2

2
|φ1 0〉 |−〉2 = − sin

ϕ2

2
|φ2 1〉+ cos

ϕ2

2
|φ1 0〉 (4.6)

|+〉1 = cos
ϕ1

2
|φ1 1〉+ sin

ϕ1

2
|φ0 0〉 |−〉1 = − sin

ϕ1

2
|φ1 1〉+ cos

ϕ1

2
|φ0 0〉 (4.7)

with

ϕ1 =
1

2
arctan

(
Ω

(1)
1

∆1

)
ϕ2 =

1

2
arctan

(
Ω

(2)
1

∆2

)

Ω
(1)
1 =

2
〈
φ1 1

∣∣ d1
∣∣φ1 0

〉
Eac

~
∆1 = ωL1 − ω1 (4.8)

Ω
(2)
1 =

2
〈
φ2 1

∣∣ d1
∣∣φ1 0

〉
Eac

~
∆2 = ωL2 − ω2

Now we weakly couple each of the ground states |−〉2 ≡ |e〉 and |−〉1 ≡ |g〉 of the strongly
coupled states

|e〉 = α2 |↑〉+ β2 e
iωL2t |h2〉

|g〉 = α1 |↓〉+ β1 e
iωL1t |h1〉

(4.9)
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by a third linear polarized microwave field with ωL

|g̃〉 = eiωLt |g〉 |ẽ〉 = e−iωLt |e〉 (4.10)

The coefficients αi and βi are given by

αi = cos

(
1

2
arctan

(
Ω

(i)
1

∆i

))
βi = − sin

(
1

2
arctan

(
Ω

(i)
1

∆i

))
(4.11)

Calculating the matrix elements of the dipole–dipole interaction operator (2.122)

V dd
ij =

d0 ⊗ d0 − 3
2 (d1 ⊗ d1 + d−1 ⊗ d−1) +

1
2 (d1 ⊗ d−1 + d−1 ⊗ d1)

a3 |Ri − Rj |3
(4.12)

we have to construct the two particle states

|ẽẽ〉 = e−2iωLt |ee〉 |ẽg̃〉 = |eg〉

|g̃g̃〉 = e2iωLt |gg〉 |g̃ẽ〉 = |ge〉
(4.13)

where

|ee〉 = α2
2 |↑↑〉+ α2β2 e

iωL2t
(
|↑ h2〉+ |h2 ↑〉

)
+ β2

2 e
2iωL2t |h2h2〉

|eg〉 = α1α2 |↑↓〉+ α2β1 e
iωL1t |↑ h1〉+ α1β2 e

iωL2t |h2 ↓〉+ β1β2 e
i(ωL1+ωL2)t |h2h1〉

|ge〉 = α1α2 |↓↑〉+ α1β2 e
iωL2t |↓ h2〉+ α2β1 e

iωL1t |h1 ↑〉+ β1β2 e
i(ωL1+ωL2)t |h1h2〉

|gg〉 = α2
1 |↓↓〉+ α1β1 e

iωL1t
(
|↓ h1〉+ |h1 ↓〉

)
+ β2

1 e
2iωL1t |h1h1〉

(4.14)

Due to the hermitian symmetry of the interaction operator V dd† = V dd and the dipole mo-
ments, we only have to calculate ten matrix elements. By applying the rotating wave approxi-
mation for the weak coupling, i.e. eiωLt ≈ 0 and e2iωLt ≈ 0 only five matrix elements are left,
see equation (3.12)

〈
ẽẽ
∣∣∣V dd

∣∣∣ẽẽ
〉
=
〈
ee
∣∣∣V dd

∣∣∣ee
〉
≈ α4

2

〈
↑↑
∣∣∣V dd

∣∣∣↑↑
〉
+ α2

2β
2
2

(〈
↑ h2

∣∣∣V dd
∣∣∣↑ h2

〉

+2
〈
↑ h2

∣∣∣V dd
∣∣∣h2 ↑

〉
+
〈
h2 ↑

∣∣∣V dd
∣∣∣h2 ↑

〉)

+ β4
2

〈
h2h2

∣∣∣V dd
∣∣∣h2h2

〉
(4.15)

〈
ẽg̃
∣∣∣V dd

∣∣∣ẽg̃
〉
=
〈
eg
∣∣∣V dd

∣∣∣eg
〉
≈ α2

1α
2
2

〈
↑↓
∣∣∣V dd

∣∣∣↑↓
〉
+ α2

2β
2
1

〈
↑ h1

∣∣∣V dd
∣∣∣↑ h1

〉

+ α2
1β

2
2

〈
h2 ↓

∣∣∣V dd
∣∣∣h2 ↓

〉
+ β2

1β
2
1

〈
h1h2

∣∣∣V dd
∣∣∣h1h2

〉
(4.16)

〈
ẽg̃
∣∣∣V dd

∣∣∣g̃ẽ
〉
=
〈
eg
∣∣∣V dd

∣∣∣ge
〉
≈ α2

1α
2
2

〈
↑↓
∣∣∣V dd

∣∣∣↓↑
〉
+ α2

2β
2
1

〈
↑ h1

∣∣∣V dd
∣∣∣h1 ↑

〉

+ α2
1β

2
2

〈
h2 ↓

∣∣∣V dd
∣∣∣↓ h2

〉
+ β2

1β
2
1

〈
h2h1

∣∣∣V dd
∣∣∣h1h2

〉
(4.17)
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〈
g̃ẽ
∣∣∣V dd

∣∣∣g̃ẽ
〉
=
〈
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∣∣∣V dd

∣∣∣ge
〉
≈ α2

1α
2
2

〈
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〉
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1β
2
2

〈
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〉

+ α2
2β

2
1

〈
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∣∣∣V dd
∣∣∣h1 ↑

〉
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1β
2
1

〈
h1h2

∣∣∣V dd
∣∣∣h1h2

〉
(4.18)

〈
ẽẽ
∣∣∣V dd

∣∣∣ẽẽ
〉
=
〈
ee
∣∣∣V dd

∣∣∣ee
〉
≈ α4

1

〈
↓↓
∣∣∣V dd

∣∣∣↓↓
〉
+ α2

1β
2
1

(〈
↓ h1

∣∣∣V dd
∣∣∣↓ h1

〉

+2
〈
↓ h1

∣∣∣V dd
∣∣∣h1 ↓

〉
+
〈
h1 ↓

∣∣∣V dd
∣∣∣h1 ↓

〉)

+ β4
1

〈
h1h1

∣∣∣V dd
∣∣∣h1h1

〉
(4.19)

whereas all other matrix elements are vanishing in the rotating wave approximation. Now the
matrix elements of the dipole operator d must be calculated. Therefore we define the following
operator

D = a3 |Ri − Rj |3V dd (4.20)

and evaluate the five matrix elements using the symmetries stated in equation (2.57), especially
d−1 = −d †

1 to eliminate d−1 and that d0 only couple states with ∆M = 0 while d1 only couples
states with ∆M = 1

D̃ee = 〈ee|D |ee〉 = α4
2

(
d↑↑0

)2
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2β
2
2

[
2d↑↑0 d

22
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2
2d

↑↑
0 d

↓↓
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2β
2
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2
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0
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(
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)2
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2
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[
2d↓↓0 d
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(
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1

(
d110
)2

D̃eg ge = 〈eg|D |ge〉 = α2
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2
2

(
d↑↓0

)2
− 1
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[
α2
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2
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(
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(4.21)

where

d↑↑0 =
〈
↑
∣∣ d0

∣∣↑
〉

d220 =
〈
h2
∣∣ d0

∣∣h2
〉

d↑↓0 =
〈
↑
∣∣ d0

∣∣↓
〉

d120 =
〈
h1
∣∣ d0

∣∣h2
〉

(4.22)

d↓↓0 =
〈
↓
∣∣ d0

∣∣↓
〉

d110 =
〈
h1
∣∣ d0

∣∣h1
〉

and

d2↑1 =
〈
h2
∣∣ d1

∣∣↑
〉

d1↓1 =
〈
h1
∣∣ d1

∣∣↓
〉

(4.23)

Due to the above mentioned symmetries the matrix element of D̃ge and D̃eg are identical, so that
only four independent matrix elements remain. With the help of equation (3.17) and (3.18) the
general form of the Hamiltonian in spin language is given as

H̃ij = H̃i + H̃j +V dd
ij

= 2E0 01−
~∆

2

(
σiz + σjz

)
− ~Ω↑↓

0

2

(
σix + σjx

)
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+
1

4

(
D̃ee + 2D̃eg + D̃gg

)
1i1j

a3 |Ri − Rj |3
+

1

2
D̃eg geσixσjx + σiyσjy

a3 |Ri − Rj |3

+
1

4

(
D̃ee − D̃gg

) σiz + σjz

a3 |Ri − Rj |3
+

1

4

(
D̃ee − 2D̃eg + D̃gg

) σizσjz

a3 |Ri − Rj |3
(4.24)

The total interaction Hamiltonian on a two dimensional square lattice can then be cast into

Hint =
1

2

N∑

i,j=1
i6=j

H̃ij =
N∑

i=1

H̃i +
1

2

N∑
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V dd
ij

= NE0 0 −
~

2
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(
∆σiz +Ω↑↓

0 σix

)
+
D̃ee − D̃gg

2a3

N∑

i=1

σiz

N∑

n6=0

1

|Rn|3

N∑

i,j=1
i6=j

(
D̃eg ge

~2a3
SixSjx + SiySjy
|Ri − Rj |3

+
D̃ee − 2D̃eg + D̃gg

2~2a3
SizSjz
|Ri − Rj |3

+
D̃ee + 2D̃eg + D̃gg

8a3
ninj

|Ri − Rj |3

)
(4.25)

Up to now, there are four parameters α1, β1, α2 and β2 but since the states must be normalized
two of the four parameters are not independent. Therefore we can choose

α1 = cos

(
1

2
arctan

(
Ω

(1)
1

∆1

))
β1 = −

√
1− α2

1

α2 = cos

(
1

2
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(
Ω

(2)
1
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))
β2 = −

√
1− α2

2

(4.26)

In order to evaluate the range of the two independent parameters α1 and α2, we can look at the

two limiting cases ∆i −→ 0 and Ω
(i)
1 −→ 0

lim
∆→0

arctan

(
Ω

(i)
1

∆i

)
=
π

2
lim

Ω
(i)
1 →0

arctan

(
Ω

(i)
1

∆i

)
= 0 (4.27)

and find for the range of the parameters

αi ∈
[

1√
2
, 1

]
βi ∈

[
0,

1√
2

]
(4.28)

If we insert the two limiting cases in the definition of our linear combination of the coupled
states, equation (4.9), we see that in the case of vanishing detuning both states of the linear
combination, e.g. |↑〉 and |h2〉, are equally contributing, whereas in the case of vanishing cou-
pling only the states |↑〉 and |↓〉 are left (which is exactly the setup for the realization of the XXZ
model). Using the projected fermionic mapping (4.4) the total interaction Hamiltonian Hint can
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Figure 4.2 The conditions hz = 0 and 4J1 + Jz = 0 are fulfilled for the values of β given by
the above curves. In the left figure the curve for D̃gg(α1(β)) = 0 fixes α1(β) and the
curve in the right figure shows D̃ee(α2(β)) = 0 which fixes α2(β).

be recast

Hint = NE0 0 −
~

2

N∑

i=1

[
Ω↑↓

0

(
c†i↑ci↓ + c†i↓ci↑

)
+∆

(
ni↑ − ni↓

)]
+ gF D̃

ee − D̃gg

4a3

N∑

i=1

(
ni↑ − ni↓

)

+

N∑

i,j=1
i6=j

(
D̃eg ge

~2a3
SixSjx + SiySjy
|Ri − Rj |3

+
D̃ee − 2D̃eg + D̃gg

2~2a3
SizSjz
|Ri − Rj |3

+
D̃ee + 2D̃eg + D̃gg

8a3
ninj

|Ri − Rj |3

)
(4.29)

Ignoring the physically irrelevant energy shift and setting the detuning of the weak coupling
∆ to zero, the effective interaction Hamiltonian can be written in terms of the three coupling
constants J⊥, Jz and J1

J⊥ =
D̃eg ge

~2a3
Jz =

D̃ee − 2D̃eg + D̃gg

2~2a3
J1 =

D̃ee + 2D̃eg + D̃gg

8a3
(4.30)

and compared to the exchange interaction part of the t–J model

J

N∑

i,j=1
i6=j

(
Si · Sj

|Ri − Rj |3
− 1

4

ninj
|Ri − Rj |3

)
(4.31)

The following conditions must be fulfilled, so that equation (4.29) and (4.31) match

hz = 0 →֒ D̃ee − D̃gg = 0 (4.32a)

J⊥ − Jz = 0 →֒ 2D̃eg ge − D̃ee + 2D̃eg − D̃gg = 0 (4.32b)

4J1 + Jz = 0 →֒ D̃ee + D̃gg = 0 (4.32c)
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Figure 4.3 Plot of the last condition J⊥ − Jz = 0 that cannot be fulfilled for the given range of
the parameter α since we cannot go to higher values of β = 1.37.

Condition (4.32a) and (4.32c) can only be fulfilled for D̃ee = 0 and D̃gg = 0. Reinserting these
expressions in (4.32b) yields

D̃eg ge + D̃eg = 0 (4.33)

Since we have three independently tunable parameter, α1 which corresponds to the adjusted field
strength Eac1 and frequency ωL1 of the applied microwave field coupling |φ0 0〉 −→ |φ1 1〉 and α2

corresponding to the Eac2 and ωL2, coupling |φ1 0〉 −→ |φ2 1〉. The third parameter corresponds to
the field strength of the applied static field Edc. We see that the two composite dipole moments
D̃ee and D̃gg are only dependent on the applied microwave field of the respective coupling.
Therefore we can determine α1(β) from D̃gg(α1(β)) = 0 and α2(β) from D̃ee(α2(β)) = 0 and
insert the values into equation (4.33). Finally the parameter β will be fixed by

D̃eg ge
(
β, α1(β), α2(β)

)
+ D̃eg

(
β, α1(β), α2(β)

)
= 0 (4.34)

In Figure 4.2 the composite dipole moments are shown. As one can see in Figure 4.3 it is not
possible with this setup to fulfill all conditions because inside the range [1/

√
2, 1] of the parameter

α1(β) where D̃gg(α1(β)) = 0 is zero, there is no combination of β that fulfills the condition
(4.34). The minimum of D̃eg ge + D̃eg describes the smallest deviation of Jz from J⊥ or vice versa
and is approximately given by 0.0738 at β = 1.37 where α1 = 1/

√
2 or ∆1 = 0. Unfortunately

this minimum leads to a ratio of J⊥/Jz ≈ 2.58 and therefore cannot be considered as a small
anisotropy. Since this attempt to realize the t–J model fails, one could try to couple an additional
state to the ground state |φ0 0〉, for example |φ1−1〉.
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5
Summary & Conclusion

In this work the possibility of realizing quantum simulators by using cold polar molecules trapped
in optical lattices has been studied. It has been shown how to simulate spin models via the strong
electric dipole–dipole interaction that can be tuned by external static fields to engineer desired
spin interactions. Using the rotational excitation spectrum of polar molecules, at least three
spin models, the antiferromagnetic XY model, the XXZ model and the Heisenberg model can be
realized. The implications of the slowly decaying 1/r3–interaction on the phase diagram of the
general XXZ model has been investigated and the physical distinctions to a short–ranged nearest
neighbor interaction have been worked out by employing a spin wave analysis. The magnetically
ordered ground states of the XXZ model in dependence on the external static field are determined
and their respective mean field ground states are calculated. In the second part the possibility
to realize the t–J model of strongly correlated electrons is studied and an attempt for a concrete
realization have been made. However, for an exact realization the setup has to be refined further,
which is beyond the scope of this work, but could be done with little effort in a subsequent study.

Another interesting topic is the creation of ferroelectrics by coupling all four low–lying rotational
states, that can yield interesting new physics. In this case one needs to couple all four states,
the ground state of the dc–Stark shifted rotational spectrum and the first three excited states.
This setup could then be used to create a liquid with a spontaneous electrical dipole moment,
as has already be done with ferroelectric liquid crystals. The novelty of this setup would be to
incorporate the advantages of using cold polar molecules as has been explained in the previous
sections, to control and simulate such a ferroelectric liquid. As a starting point for a further study,
the calculations presented in this work could be used.
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A
Spherical Tensor Operators

A.1 Clebsch–Gordan Coefficients

The Clebsch–Gordan coefficients are defined as a basis change from the product basis of two
angular momenta to a common coupled momentum basis. Let |j1m1〉 and |j2m2〉 be the angular
momentum of the first and the second particle, respectively. Then

|j1m1〉 ⊗ |j2m2〉 ≡ |j1m1, j2m2〉 (A.1)

defines the product basis of the two particle Hilbert space. Another possible basis of the two
particle Hilbert space describes the total angular momentum J of two coupled angular momenta
with the corresponding state |J M〉. The total angular momentum is given by the sum of the two
coupled angular momenta

J = j1 + j2 Jz = j1z + j2z (A.2)

Since only J 2 and Jz are commuting and therefore share a common eigenbasis with eigenstates
|J M〉, the total angular momentum must be squared

J 2 = j 21 + j 22 + 2j1 · j2 (A.3)

and therefore we see why two coupled angular momenta do not add but must be treated more
complicated. The product state in equation (A.1) is no eigenstate of the total angular momentum
operator. The change of basis from the product states to the total angular momentum eigenstates
can be represented by an unitary transformation, since the product basis {|j1m1, j2m2〉} is
complete

|j1 j2, J M〉 =
j2∑

m1=−j1

j2∑

m2=−j2

|j1m1, j2m2〉 〈j1m1, j2m2|j1 j2, J M〉 (A.4)

The expansion coefficients of the coupled angular momentum state are called Clebsch–Gordan
coefficients and can be chosen to be real. This is the Conden–Shortley phase convention that
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rank “polarization” Unnormalized Spherical Harmonics C
(k)
q Spherical Harmonics Y

(k)
q

k = 0 q = 0 1
√

1
4π

k = 1
q = 0 cosϑ

√
3
4π cosϑ

q = ±1 ∓ 1√
2
e±iϕ sinϑ ∓

√
3
8π sinϑ e±iϕ

k = 2

q = 0 1
2

(
3 cos2 ϑ− 1

) √
5

16π

(
3 cos2 ϑ− 1

)

q = ±1 ∓
√

3
2 cosϑ sinϑ e

±iϕ ∓
√

15
8π cosϑ sinϑ e±iϕ

q = ±2 1
2

√
3
2 sin

2 ϑ e±2iϕ
√

15
32π sin2 ϑ e±2iϕ

Table A.1 List of the k = 0, 1, 2 unnormalized spherical harmonics C
(k)
q

and normalized spherical harmonics Y
(k)
q as defined in equation (A.11).

includes a factor (−1)m in the associated Legendre functions (A.10) or in the definition of the
spherical harmonics (A.12). The new states couple j1 and j2 to the total angular momentum
state J = |j1 − j2| , . . . , j1 + j2 with M = m1 +m2(=̂ −J, . . . , J).

Analytic representations of the Clebsch–Gordan coefficients exist, but they are somewhat lengthy,
so we will not state it here but they can be found in [18]. Solutions with m < 0 are calculated
using the relation

〈j1m1, j2m2|j1 j2, J M〉 = (−1)J−j1−j2 〈j1 −m1, j2 −m2|j1 j2, J M〉 (A.5)

A.2 Wigner–Eckart Theorem

Now we have seen how to construct arbitrary representations of the angular momentum operator
by coupling the appropriate angular momentum operators. In general every tensor operator can
be build up with the help of the tensor product

Ti1,i2,...,in =

n=dimV⊗

j=1

Tij (A.6)

that possess the same transformation rules as vectors under rotation

T ′
i1,i2,...,in =

3∑

j1,j2,...,jn=1

R (1)
i1j1

R (1)
i2j2
· · ·R (1)

injn
Tj1,j2,...,jn (A.7)

But in order to construct a tensor operator behaving like an angular momentum operator we
need to do the same trick as in deriving the Clebsch–Gordan coefficients, that is to use the
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transformation behavior of coupled angular momentum. Employing irreducible spherical tensor
operators of rank k that can be related to (unnormalized) spherical harmonics in the following
way

T (k)
q ∝ C(k)

q (θ, φ) (A.8)

ensures that their behavior under rotations is identical to the corresponding angular momentum
of “length” k.

T (k)
q′ =

k∑

q=−k

R (k)
q′q T

(k)
q (A.9)

The unnormalized spherical harmonics are defined in terms of the associated Legendre functions
P ℓ
m(x) that solves the generalized Legendre’s differential equation. There exists various recursive

formulae to calculate the Legendre polynomials to specific orders ℓ, e.g. defined with the help of
Rodrigues’ formula

P ℓ
m(x) =

(−1)m
2ℓℓ!

(1− x2)m/2 dℓ+m

dxℓ+m
(x2 − 1)ℓ (A.10)

The unnormalized spherical harmonics can be written as

Cℓ
m(θ, φ) =

√
(ℓ−m)!

(ℓ+m)!
P ℓ
m(cos θ) eimφ (A.11)

and finally normalized by integrating Cℓ
m(θ, φ) over the whole three dimensional space which

gives rise to

Y ℓ
m(θ, φ) =

√
(2ℓ+ 1)

4π
Cℓ

m(cos θ) (A.12)

The Wigner–Eckart theorem is useful to calculate the matrix elements of spherical tensor oper-
ators in the angular momentum basis {|j m〉}. It states that the matrix elements of spherical
tensor operators of rank k are equal to the coupling of k to the angular momentum, while the
components q of the spherical tensor operator affect m

〈
J ′M ′

∣∣∣ T (k)
q

∣∣∣J M
〉
= 〈J M, k q|J k, J ′M ′〉

〈
J ′∣∣∣∣ T (k)

∣∣∣∣J
〉

√
2J ′ + 1

(A.13)

〈
J ′∣∣∣∣ T (k)

∣∣∣∣J
〉

is called the reduced matrix element and (maybe surprisingly) is independent
of M . This allows a very quick and simple calculation of the matrix elements. Because of the
Clebsch–Gordan coefficients the matrix elements are zero unless q and k satisfies

q =M −M ′ |J − J ′| ≤ k ≤ J + J ′ (A.14)

For irreducible spherical tensor operators there exists a nice formula to calculate the reduced
matrix element

〈
J ′
∣∣∣
∣∣∣ T (k)

∣∣∣
∣∣∣J
〉
= (−1)J ′√

(2J ′ + 1)(2J + 1)


J

′ k J

0 0 0




︸ ︷︷ ︸
Wigner–3j–Symbol

(A.15)
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The Wigner–3j–Symbol can be related to the Clebsch–Gordan coefficients with the help of Racah’s
formula


 j1 j2 J

m1 m2 −M


 ≡ (−1)j1−j2+M

√
2J + 1

〈j1m1, j2m2|j1 j2, J M〉 (A.16)

and conversely the Clebsch–Gordan coefficients can be calculated from equation (A.16)



B
Time Independent Perturbation Theory

Suppose one encounters a system which can be split in a known and solved Hamiltonian H 0 and
a small deviation H ′ which perturbs this known solution. Then it is easy to find solutions to the
complete system using the time independent perturbation theory

H = H (0) +H ′ H (0)
∣∣∣E(0)

i

〉
= E

(0)
i

∣∣∣E(0)
i

〉
(B.1)

H solves the unperturbed system with eigenstates
∣∣∣E(0)

i

〉
and eigenenergies E

(0)
i . The pertur-

bation is considered to be small, so one can expand the perturbation in a series of unperturbed
terms, with a perturbation factor β ≪ 1.

E = E(0) + βE(1) + β2E(2) + · · · (B.2)

|E〉 =
∣∣∣E(0)

〉
+ β

∣∣∣E(1)
〉
+ β2

∣∣∣E(2)
〉
+ · · · (B.3)

The 1st order corrections to the unperturbed solutions are

• p = 1 :

E
(0)
i =

〈
E

(0)
i

∣∣∣H ′
∣∣∣E(0)

i

〉
(B.4)

∣∣∣E(1)
i

〉
=
∑

j 6=i

〈
E

(0)
j

∣∣∣H ′
∣∣∣E(0)

i

〉

E
(0)
i − E(0)

j

∣∣∣E(0)
j

〉
(B.5)

The 2nd order corrections to the unperturbed solutions are

• p = 2 :

E
(2)
i =

〈
E

(0)
i

∣∣∣H ′
∣∣∣E(1)

i

〉
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(B.5)
=
∑

j 6=i

〈
E

(0)
i

∣∣∣H ′
∣∣∣E(0)

j

〉〈
E

(0)
j

∣∣∣H ′
∣∣∣E(0)

i

〉

E
(0)
i − E(0)

j

=
∑

j 6=i

∣∣∣
〈
E

(0)
j

∣∣∣H ′
∣∣∣E(0)

i

〉∣∣∣
2

E
(0)
i − E(0)

j

(B.6)

∣∣∣E(2)
i

〉
=
∑

j 6=i

〈
E

(0)
j

∣∣∣H ′
∣∣∣E(1)

i

〉

E
(0)
i − E(0)

j

∣∣∣E(0)
j

〉
− E(1)

i

∑

j 6=i

〈
E

(0)
j

∣∣∣E(1)
i

〉

E
(0)
i − E(0)

j

∣∣∣E(0)
j

〉

(B.5)
=
∑

j 6=i

∑

k 6=i

〈
E

(0)
j

∣∣∣H ′
∣∣∣E(0)

k

〉〈
E

(0)
k

∣∣∣H ′
∣∣∣E(0)

i

〉

(
E

(0)
i − E(0)

j

)(
E

(0)
i − E(0)

k

)
∣∣∣E(0)

j

〉

− E(1)
i

∑

j 6=i

∑

k 6=i

〈
E

(0)
j

∣∣∣E(0)
k

〉〈
E

(0)
k

∣∣∣H ′
∣∣∣E(0)

i

〉

(
E

(0)
i − E(0)

j

)(
E

(0)
i − E(0)

k

)
∣∣∣E(0)

j

〉

(B.4)
=
∑

j 6=i

∑

k 6=i





〈
E

(0)
j

∣∣∣H ′
∣∣∣E(0)

k

〉〈
E

(0)
k

∣∣∣H ′
∣∣∣E(0)

i

〉

(
E

(0)
i − E(0)

j

)(
E

(0)
i − E(0)

k

)

−
〈
E

(0)
i

∣∣∣H ′
∣∣∣E(0)

i

〉
〈
E

(0)
j

∣∣∣E(0)
k

〉〈
E

(0)
k

∣∣∣H ′
∣∣∣E(0)

i

〉

(
E

(0)
i − E(0)

j

)(
E

(0)
i − E(0)

k

)



 (B.7)

In general the pth order corrections to unperturbed solutions

E
(p)
i =

〈
E

(0)
i

∣∣∣H ′
∣∣∣E(p−1)

i

〉
(B.8)

∣∣∣E(p)
i

〉
=
∑

j 6=i

〈
E

(0)
j

∣∣∣H ′
∣∣∣E(p−1)

i

〉

E
(0)
i − E(0)

j

∣∣∣E(0)
j

〉
−

p∑

q=1

E
(q)
i

∑

j 6=i

〈
E

(0)
j

∣∣∣E(p−q)
i

〉

E
(0)
i − E(0)

j

∣∣∣E(0)
j

〉
(B.9)

can be calculated recursively from order (p − 1) to order p. Notice that for non–degenerate

eigenstates and orthonormal eigenbasis of H (0),
〈
E

(0)
j

∣∣∣E(0)
i

〉
= 0 for all j 6= i. In this case the

sum over q runs only from 1 to (p− 1).



C
Transformation of Vector–Components in

Different Base

An orthonormal basis {ei}i=1,...,dim E can be expressed via a matrix, with the absolute value of the
determinant equal to one, that contains all basis vectors in its columns. If there exists a different
basis {fi}i=1,...,dimF (for the same vector space dim E ≡ dimF) then the linear mapping between
the two bases can be expressed as follows

F = T E (C.1)

F =





f1

f2

f3




≡ (f1|f2|f3) = T (e1|e2|e3) = T





e1

e2

e3





= T E (C.2)

where the mapping T is understood as a simple matrix multiplication on the matrix (e1|e2|e3).

fj =
dim E∑

j

Tjiej (C.3)

Here Tij are the components of the matrix representing the linear mapping between the two
bases. For equal dimensionality the matrix T is quadratic and there exists an inverse T−1 which
maps the basis {fi}i=1,...,dimF on the basis {ei}i=1,...,dim E .

ej =

dimF∑

j

(T−1)jifj (C.4)

Using (C.1), the matrix T and its inverse T−1 can be express via the matrices E and F

T = FE−1 = FE† T−1 = EF−1 = EF † (C.5)

97



98 Appendix C. Coordinate Transformations

since the bases are orthonormal one has unitary matrices E and F and hence T will also be
unitary T−1 = T †, where T † ≡ (T ∗)t = (T t)∗ denotes the hermitian conjugate.

Vectors are invariant under basis transformations but their components with respect to the basis
vectors (projections onto the basis vectors) are transformed as well.

v = E vE
!
= F vF

(C.1)→֒ E vE = TE vF (C.6)

If the components with respect to the basis {ei}i=1,...,dim E are known, the components with
respect to the basis {fi}i=1,...,dimF are then

vE = E−1TE vF (C.7)

Furthermore, if one chooses canonical (cartesian) coordinates with basis vectors

e1 =




1

0

0

...




e2 =




0

1

0

...




. . . ej =




...

j

...




. . . edim E =




...

0

0

1




(C.8)

such that E = 1. The components of the arbitrary vector v are transformed with the inverse
transformation T−1 = T †. A change of basis form {ei}i=1,...,dim E to {fi}i=1,...,dimF via T trans-
forms the components of a vector with T−1.

F = TE = T vF = T−1vE (C.9)

The transformation rules for linear mappings between vectors of the vector space can be deduced
from these transformation rules. Let A be a mapping v on w with the corresponding matrix A

A : vE −→ wE (C.10)

then

AEvE = wE

AETvF = TwF

T−1AET︸ ︷︷ ︸
AF

vF = wF

→֒ AF = T−1AET (C.11)
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Usually we adopt a more sloppy notation where we suppress the subscripts referring to the basis.
Pictorially one can depict this fact in a commutative diagram*.

v
A−−−−→ w

T −1

y
xT

ṽ −−−−→
Ã

w̃

v
A−−−−→ w

T −1

y
yT −1

ṽ −−−−→
Ã

w̃

A = T −1AT T −1A = AT −1

Example: Spherical Basis for Vector Operators

Suppose we want to transform vectors (or vector operators) from cartesian coordinates to spheri-
cal coordinates, which are convenient for spherical tensor operators that operates on the angular
momentum eigenbasis. The spherical coordinates are defined as

e−1 =
1√
2

(
ex − iey

)
e0 = ez e1 = − 1√

2

(
ex + iey

)
(C.12)

and conversely

ex =
1√
2

(
e−1 − e1

)
ez = e0 ey =

i√
2

(
e1 + e−1

)
(C.13)

This can be written as a matrix multiplication in the sense of equation (C.3).




e−1

e0

e1





=
1√
2




1 0 −1
−i 0 −i
0
√
2 0




︸ ︷︷ ︸
T





ex

ey

ez





(C.14)

and conversely





ex

ey

ez





=
1√
2




1 i 0

0 0
√
2

−1 i 0




︸ ︷︷ ︸
T−1 = T †





e−1

e0

e1





(C.15)

Now if we transform let’s say, the electric dipole operator d, then the components reads in spher-
ical coordinates




d−1

d0

d1


 =

1√
2




1 i 0

0 0
√
2

−1 i 0







dx

dy

dz


 (C.16)

* It is called commutative diagram because the mapping A commutes with the transformation T
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or equivalently

d−1 =
1√
2

(
dx + idy

)
d0 = dz d1 = − 1√

2

(
dx − idy

)
(C.17)

and

dx = − 1√
2

(
d1 − d−1

)
dz = d0dy = − i√

2

(
d1 + d−1

)
(C.18)



D
Operators in Product Spaces

Operators acting in two different vector spaces V1 and V2 can act on a combined vector space
V = V1 ⊗ V2 that is build up from the two vector spaces via the so called tensor product

A = A ⊗ 1V2 (D.1)

B = 1V1 ⊗ B (D.2)

Since A is acting only on V1, there must be an identity operator acting on V2. In the same way
the two bases of the vector spaces are build up as tensor products of the single vector space basis.

∣∣v1
〉
⊗
∣∣v2
〉
=
∣∣v1 v2

〉
(D.3)

〈
v1
∣∣⊗
〈
v2
∣∣ =

〈
v1 v2

∣∣ (D.4)

This leads to the action of A and B on the product space vectors

〈
v1 v2

∣∣A
∣∣w1 w2

〉
=
(〈
v1
∣∣⊗
〈
v2
∣∣) (A ⊗ 1V2)

(∣∣w1
〉
⊗
∣∣w2
〉)

=
〈
v1
∣∣A

∣∣w1
〉 〈
v2
∣∣ 1V2

∣∣w2
〉

=
〈
v1
∣∣A

∣∣w1
〉 〈
v2
∣∣w2
〉

(D.5)

and in the same way it can be defined for operator B

〈
v1 v2

∣∣ B
∣∣w1 w2

〉
=
(〈
v1
∣∣⊗
〈
v2
∣∣) (1V1 ⊗ B)

(∣∣w1
〉
⊗
∣∣w2
〉)

=
〈
v1
∣∣ 1V1

∣∣w1
〉 〈
v2
∣∣ B

∣∣w2
〉

=
〈
v1
∣∣w1
〉 〈
v2
∣∣ B

∣∣w2
〉

(D.6)
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The composition of two operators can then be written as

A1B2 = (A ⊗ 1)(1⊗ B) = A ⊗ B (D.7)

where the superscript denotes the action of the operator with respect to its vector space on
which the action of the operator is defined. If there is a tensor product sign present, then one
can deduce from the ordering of the factors on which space the operator is acting. The last
equality in (D.7) holds because

〈
v1 v2

∣∣A1B2
∣∣w1 w2

〉 !
=
〈
v1
∣∣A

∣∣w1
〉 〈
v2
∣∣ B

∣∣w2
〉

(D.7)
=
(〈
v1
∣∣⊗
〈
v2
∣∣) (A ⊗ 1)(1⊗A)

(∣∣w1
〉
⊗
∣∣w2
〉)

=
(〈
v1
∣∣⊗
〈
v2
∣∣) (A⊗B)

(∣∣w1
〉
⊗
∣∣w2
〉)

(D.8)

Following equation (D.7) one can easily define the action of a scalar product of a vector operator

d1
· e2 =

∑

i

d 1
i e

2
i =

∑

i

(di ⊗ 1)(1⊗ ei) (D.7)
=
∑

i

(di ⊗ ei) (D.9)

For a three–dimensional vector operator in cartesian coordinates the scalar product (D.9) can be
written in the following form

d1
· e2 = (d⊗ 1)(1⊗ e) = dx ⊗ ex + dy ⊗ ey + dz ⊗ ez (D.10)

This is easily generalized to scalar products of two vector operators

d1
· d2 = (d⊗ 1) · (1⊗ d) =

∑

i

d1i d
2
i =

∑

i

(di ⊗ 1)(1⊗ di) (D.7)
=
∑

i

(di ⊗ di) (D.11)

Representations of operators in product spaces are determined by the coordinate representation
of the tensor product of operators. Assume operator A acts on V and operator B acts on W,
respectively. The basis vectors of V is denoted by {vi}i=1,...,dimV and the basis of W is denoted
by {wj}j=1,...,dimW then the basis of the product space V ⊗W is denoted by

vi ⊗wj = (vik wjl)k=1,...,dimV; l=1,...,dimW (D.12)

Then the linear map from one vector x ∈ V ⊗W to another vector y ∈ V ⊗W can be written in
coordinates as

y = (A ⊗ B)x =
∑

i j

(A ⊗ B)xij(vi ⊗wj)

=
∑

i j

(Avi)⊗ (Bwj)xij

=
∑

i j r s

(vrAri ⊗wsBsj)xij

=
∑

i j r s

(AriBsjxij)vr ⊗ws
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→֒ yrs = AriBsjxij = Crisjxij with C = A ⊗ B (D.13)

If one chooses canonical basis vectors (i.e. in cartesian coordinates)

e1 ⊗ e2 =




1

0

0

0




e1 ⊗ e2 =




0

1

0

0




e2 ⊗ e1 =




0

0

1

0




e2 ⊗ e2 =




0

0

0

1




(D.14)

this leads to the following “multiplication” rule for the tensor product of two operators in this
canonical basis




y11

y12

y21

y22




=




A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22







x11

x12

x21

x22




→֒ y =


A11B A12B

A21B A22B




︸ ︷︷ ︸
A⊗B

x (D.15)

Example: Two–Level Spin System

The usage of the symbol |↑〉 indicates the ground state of the two–level system and the symbol
|↓〉 the excited state, respectively. Then the product space basis is made up of the following basis
states

|↑ ↑〉 = |↑〉 ⊗ |↑〉 =




1

0

0

0




|↑ ↓〉 = |↑〉 ⊗ |↓〉 =




0

1

0

0




|↓ ↑〉 = |↓〉 ⊗ |↑〉 =




0

0

1

0




|↓ ↓〉 = |↓〉 ⊗ |↓〉 =




0

0

0

1




(D.16)
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The components of a state in this two–level system basis are found in an expansion of the state
in terms of the basis states

|Ψ〉 =




Ψ↑↑

Ψ↑↓

Ψ↓↑

Ψ↓↓




= |↑ ↑〉 〈↑ ↑|Ψ〉+ |↑ ↓〉 〈↑ ↓|Ψ〉+ |↓ ↑〉 〈↓ ↑|Ψ〉+ |↓ ↓〉 〈↓ ↓|Ψ〉 (D.17)

It is customary to define “spin operators” build up from Pauli matrices

σx =


0 1

1 0


 σy =


0 −i
i 0


 σz =


1 0

0 −1


 (D.18)

σ+ =
1

2

(
σx + iσy

)
=


0 1

0 0


 σ− =

1

2

(
σx − iσy

)
=


0 0

1 0


 (D.19)

In the two–level system product space, the raising operator σ+, the lowering operator σ− and
the σz–operator are constructed via the tensor product as shown before

σ1
+ = σ+ ⊗ 1 =




0
1 0

0 1

0 0


 σ2

+ = 1⊗ σ+ =




0 1

0 0
0

0
0 1

0 0




(D.20)

σ1
− = σ− ⊗ 1 =




0 0

1 0

0 1
0




σ2
− = 1⊗ σ− =




0 0

1 0
0

0
0 0

1 0




(D.21)

The projectors on the two basis states of the two–level system are build via the σz–operator

P↑ =
1+ σz

2
=


1 0

0 0


 P↓ =

1− σz
2

=


0 0

0 1


 (D.22)

P 1
↑ =

1+ σz
2

⊗ 1 =




1 0

0 1
0

0 0


 P 2

↑ = 1⊗ 1+ σz
2

=




1 0

0 0
0

0
1 0

0 0




(D.23)
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P 1
↓ =

1− σz
2

⊗ 1 =




0 0

0
1 0

0 1




P 2
↓ = 1⊗ 1− σz

2
=




0 0

0 1
0

0
0 0

0 1




(D.24)

An arbitrary operator in this two–level basis can then be written using the spin operators and the
projectors stated in (D.20)–(D.24)

A = 1A1 =
∑

i j

|i〉 〈i| A |j〉 〈j| =
∑

i j

Aij |i〉 〈j| (D.25)

→֒ A11 |↑↑〉 〈↑↑| = A11 P
1
↑P

2
↑ = A11

(
1+ σz

2
⊗ 1

)(
1⊗ 1+ σz

2

)

= A11

(
1+ σz

2

)
⊗
(
1+ σz

2

)
= A11


1 0

0 0


⊗


1 0

0 0




= A11




1 0

0 0
0

0 0


 (D.26)

A12 |↑↑〉 〈↑↓| = A12 P
1
↑ σ

2
+ = A12


1 0

0 0


⊗


0 1

0 0


 = A12




0 1

0 0
0

0 0


 (D.27)

A13 |↑↑〉 〈↓↑| = A13 σ
1
+P

2
↑ = A13


0 1

0 0


⊗


1 0

0 0


 = A13




0
1 0

0 0

0 0


 (D.28)

A14 |↑↑〉 〈↓↓| = A14 σ
1
+σ

2
+ = A14


0 1

0 0


⊗


0 1

0 0


 = A14




0
0 1

0 0

0 0


 (D.29)

A21 |↑↓〉 〈↑↑| = A21 P
1
↑ σ

2
− = A21


1 0

0 0


⊗


0 0

1 0


 = A21




0 0

1 0
0

0 0


 (D.30)
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A22 |↑↓〉 〈↑↓| = A22 P
1
↑P

2
↓ = A22


1 0

0 0


⊗


0 0

0 1


 = A22




0 0

0 1
0

0 0


 (D.31)

A23 |↑↓〉 〈↓↑| = A23 σ
1
+σ

2
− = A23


0 1

0 0


⊗


0 0

1 0


 = A23




0
0 0

1 0

0 0


 (D.32)

A24 |↑↓〉 〈↓↓| = A24 σ
1
+P

2
↑ = A24


0 0

0 1


⊗


0 1

0 0


 = A24




0
0 0

0 1

0 0


 (D.33)

A31 |↓↑〉 〈↑↑| = A31 σ
1
−P

2
↑ = A31


0 0

1 0


⊗


1 0

0 0


 = A31




0 0

1 0

0 0
0




(D.34)

A32 |↓↑〉 〈↑↓| = A32 σ
1
−σ

2
+ = A32


0 0

1 0


⊗


0 1

0 0


 = A32




0 0

0 1

0 0
0




(D.35)

A33 |↓↑〉 〈↓↑| = A33 P
1
↓P

2
↑ = A33


0 0

0 1


⊗


1 0

0 0


 = A33




0 0

0
1 0

0 0




(D.36)

A34 |↓↑〉 〈↓↓| = A34 P
1
↓ σ

2
+ = A34


0 0

0 1


⊗


0 1

0 0


 = A34




0 0

0
0 1

0 0




(D.37)

A41 |↓↓〉 〈↑↑| = A41 σ
1
−σ

2
− = A41


0 0

1 0


⊗


0 0

1 0


 = A41




0 0

0 0

1 0
0




(D.38)
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A42 |↓↓〉 〈↑↓| = A42 σ
1
−P

2
↓ = A42


0 0

1 0


⊗


0 0

0 1


 = A42




0 0

0 0

0 1
0




(D.39)

A43 |↓↓〉 〈↓↑| = A43 P
1
↓ σ

2
− = A43


0 0

0 1


⊗


0 0

1 0


 = A43




0 0

0
0 0

1 0




(D.40)

A44 |↓↓〉 〈↓↓| = A44 P
1
↓P

2
↓ = A44


0 0

0 1


⊗


0 0

0 1


 = A44




0 0

0
0 0

0 1




(D.41)
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E
General Solution of a Two–Level System

Two level systems can easily be mapped onto a spin system with two degrees of freedom, namely
spin–up |↑〉 and spin–down |↓〉. If we consider a hermitian operator H = H † there exists a
unitary transformation that diagonalizes the representation of H . It is useful to separate the
diagonal elements from the non–diagonal element and write

H = H +H ′ =


H11 0

0 H22


+


 0 H ′

12

(H ′
12)

∗ 0


 (E.1)

Calculating the eigenvalues with the help of the eigenvalue equation

H v = Ev

(H − E1)v = 0 ∀ v ∈ C
2 : v 6= 0

→֒ det(H − E1) = 0 (E.2)

leads to

det(H − E1) = E2 −
(
H11 +H22

)
︸ ︷︷ ︸

trH

E +
(
H11H22 −H ′

12(H
′
12)

∗)
︸ ︷︷ ︸

detH

= 0 (E.3)

Solving equation (E.3) for E yields

E± =
H11 +H22

2
±

√(
H11 −H22

2

)2

+ |H ′
12|

2
(E.4)
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In order to find the eigenvectors and the unitary transformation we need to split H in a different
way

H =



1

2

(
H11 +H22

)
0

0
1

2

(
H11 +H22

)


+



1

2

(
H11 −H22

)
H ′

12

(H ′
12)

∗ −1

2

(
H11 −H22

)




=
1

2

(
trH

)
1+

1

2

(
H11 −H22

)
H (E.5)

whereas H = H† is defined as

H =




1
2H ′

12

H11 −H22
2(H ′

12)
∗

H11 −H22
−1


 (E.6)

The matrix H commutes with the matrix H

[H,H] = HH−HH

=
1

2

(
trH

)
1H+

1

2

(
H11 −H22

)
H2 − 1

2

(
trH

)
H1− 1

2

(
H11 −H22

)
H2

= 0 (E.7)

and therefore there exists a common eigenbasis denoted by {|+〉 , |−〉} Now we have two eigen-
value equations

H |±〉 = E± |±〉 H |±〉 = ǫ± |±〉 (E.8)

→֒ det(H − E1) = 0 det(H− ǫ1) = 0 (E.9)

with the two eigenvalues satisfying the following relation

H |±〉 = 1

2

(
trH

)
|±〉+ 1

2

(
H11 −H22

)
ǫ± |±〉 = E± |±〉

→֒ E± =
1

2

(
H11 +H22

)
+

1

2

(
H11 −H22

)
ǫ± (E.10)

We can determine the eigenvalues ǫ± of H in a straightforward calculation

det(H− ǫ1) = (−1− ǫ)(1− ǫ)− 4 |H ′
12|

2

(H11 −H22)2

= −1 + ǫ− ǫ+ ǫ2 − 4 |H ′
12|

2

(H11 −H22)2

= 0

→֒ ǫ± = ±1

2

√√√√4

(
1 +

4 |H ′
12|

2

(H11 −H22)2

)
= ±

√√√√1 +

(
2 |H ′

12|
2

(H11 −H22)2

)
(E.11)
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and see that these solutions for ǫ± satisfies equation (E.10) together with equation (E.4)

E± =
1

2

(
H11 +H22

)
+

1

2

(
H11 −H22

)
ǫ±

=
(H11 +H22)

2
± (H11 −H22)

2

√

1 +

(
2

H11 −H22

)2

|H ′
12|

2

=
H11 +H22

2
±

√(
H11 −H22

2

)2

+ |H ′
12|

2
(E.12)

After rewriting H ′
12 = |H ′

12| e−iγ it is possible to define a “mixing” angle ϕ, such that

tanϕ =
2 |H ′

12|
H11 −H22

(E.13)

since a unitary transformation can be considered as a complex rotation. Now equation (E.6) can
be written as

H =


 1 tanϕ e−iγ

tanϕ eiγ −1


 (E.14)

and the eigenvalue equation (E.9) reads

−(1 + ǫ)(1− ǫ)− tan2 ϕ = 0

→֒ ǫ± = ±
√
1 + tan2 ϕ = ± secϕ (E.15)

which can be easily verified with sec(arctanx) =
√
1 + x2 and compared to equation (E.12).

Now we are able to calculate the eigenvectors that diagonalize H. Expanding the eigenbasis in
{|+〉 , |−〉} with respect to the two level system basis {|↑〉 , |↓〉} one obtains the components of
the eigenvectors

|+〉 = |↑〉 〈↑|+〉︸ ︷︷ ︸
v1

+ |↓〉 〈↓|+〉︸ ︷︷ ︸
v2

= v1 |↑〉+ v2 |↓〉 (E.16)

|−〉 = |↑〉 〈↑|−〉︸ ︷︷ ︸
w1

+ |↓〉 〈↓|−〉︸ ︷︷ ︸
w2

= w1 |↑〉+ w2 |↓〉 (E.17)

Then equation (E.8) for the eigenvalue ǫ+ = secϕ reads


 1 tanϕ e−iγ

tanϕ eiγ −1




v1
v2


 = secϕ


v1
v2


 (E.18)

Since detH = 0 we can express v1(v2) by solving the first equation of the linear equation system

v1 + tanϕ e−iγ v2 = secϕv1

(1− secϕ)v1 + tanϕ e−iγ v2 = 0
∣∣ · cosϕ
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(cosϕ− 1)v1 + sinϕ e−iγ v2 = 0

→֒ v1 =
sinϕ

1− cosϕ
e−iγ v2 (E.19)

Using trigonometric identities 1− cosϕ = 2 sin2 ϕ/2 and sinϕ = 2 sin ϕ/2 cos ϕ/2 we obtain

v1 =
2 sin ϕ

2 cos ϕ
2

2 sin2 ϕ
2

e−iγ v2 = cot
ϕ

2
e−iγ v2 (E.20)

Symmetrizing this expression by multiplying with sin ϕ/2 eiγ/2 yields

sin
ϕ

2
ei

γ
2 v1 = cos

ϕ

2
e−i γ2 v2 (E.21)

The representation matrix of the unitary transformation must consists of normalized column
vectors, so we have to impose the normalization condition

v2 = 1 →֒ v∗ · v = 1 →֒ v∗1v1 + v∗2v2 = |v1|2 + |v2|2 = 1 (E.22)

that leads to a reasonable solution

v1 = cos
ϕ

2
e−i γ2 and v2 = sin

ϕ

2
ei

γ
2 (E.23)

which fulfills the normalization condition (E.22) and the eigenvalue equation (E.18)

v1 = cot
ϕ

2
e−iγ v2 = cot

ϕ

2
e−iγ sin

ϕ

2
ei

γ
2 = cos

ϕ

2
e−i γ2 (E.24)

|v1|2 + |v2|2 =
∣∣∣cos ϕ

2
e−i γ2

∣∣∣
2

+
∣∣∣sin ϕ

2
ei

γ
2

∣∣∣
2

= cos2
(ϕ
2

)
+ sin2

(ϕ
2

)
= 1 (E.25)

The eigenvector to the eigenvalue ǫ+ = secϕ is

|+〉 = cos
ϕ

2
e−i γ2 |↑〉+ sin

ϕ

2
ei

γ
2 |↓〉 ϕ = arctan

(
2 |H ′

12|
H11 −H22

)
(E.26)

where ϕ is defined by inverting equation (E.13).

Now calculating the second eigenvector to the eigenvalue ǫ− = − secϕ is carried out analogously

 1 tanϕ e−iγ

tanϕ eiγ −1




w1

w2


 = − secϕ


w1

w2


 (E.27)

Taking the first equation of (E.27)

w1 + tanϕ e−iγ w2 = − secϕw1

(1 + secϕ)w1 + tanϕ e−iγ w2 = 0
∣∣ · cosϕ

(cosϕ+ 1)w1 + sinϕ e−iγ w2 = 0

→֒ w1 = − sinϕ

1 + cosϕ
e−iγ w2 (E.28)
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Using trigonometric identities 1 + cosϕ = 2 cos2 ϕ/2 and sinϕ = 2 sin ϕ/2 cos ϕ/2 we obtain

w1 = −2 sin ϕ
2 cos ϕ

2

2 cos2 ϕ
2

e−iγ w2 = − tan
ϕ

2
e−iγ w2 (E.29)

Symmetrizing this expression by multiplying with cos ϕ/2 eiγ/2 yields

cos
ϕ

2
ei

γ
2 w1 = − sin

ϕ

2
e−i γ2 w2 (E.30)

Imposing the normalization condition (E.22) gives rise to the solution

w1 = − sin
ϕ

2
e−i γ2 and w2 = cos

ϕ

2
ei

γ
2 (E.31)

which can be expressed in terms of the {|↑〉 , |↓〉} basis

|−〉 = − sin
ϕ

2
e−i γ2 |↑〉+ cos

ϕ

2
ei

γ
2 |↓〉 (E.32)

For a unitary transformation the column vectors of the representation matrix must be mutual
orthogonal (this is expected for the eigenvectors of an hermitian operator as well)

〈+|−〉 = v∗ · w = − cos
ϕ

2
ei

γ
2 sin

ϕ

2
e−i γ2 + sin

ϕ

2
e−i γ2 cos

ϕ

2
ei

γ
2

= − cos
ϕ

2
sin

ϕ

2
+ sin

ϕ

2
cos

ϕ

2
= 0 (E.33)

The eigenvector representation of |+〉 and |−〉 can be inverted in order to represent the initial
vectors |↑〉 and |↓〉 in the new eigenbasis {|+〉 , |−〉}

|↑〉 = cos
ϕ

2
ei

γ
2 |+〉 − sin

ϕ

2
ei

γ
2 |−〉 (E.34)

|↓〉 = sin
ϕ

2
e−i γ2 |+〉+ cos

ϕ

2
e−i γ2 |−〉 (E.35)

Summary: Unitary Transformation of Operators and Basis States

The unitary transformation of the basis {|↑〉 , |↓〉} to the eigenbasis of an operator {|+〉 , |−〉} can
be expressed in the notation of Appendix C, equation (C.2).




|+〉
|−〉



 = Q




|↑〉
|↓〉



 =




|↑〉 〈↑|+〉+ |↓〉 〈↓|+〉
|↑〉 〈↑|−〉+ |↓〉 〈↓|−〉



 =





|↑〉
v1︷ ︸︸ ︷
〈↑|+〉+ |↓〉

v2︷ ︸︸ ︷
〈↓|+〉

|↑〉 〈↑|−〉︸ ︷︷ ︸
w1

+ |↓〉 〈↓|−〉︸ ︷︷ ︸
w2





→֒ Q =


v1 w1

v2 w2


 =


〈↑|+〉 〈↑|−〉
〈↓|+〉 〈↓|−〉


 (E.36)
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|+〉

|−〉

|↑〉|↓〉

ϕ/2

Figure E.1 Rotation of the basis vectors caused by the unitary transformation Q

In our case the transformation matrix Q looks like




|+〉
|−〉



 = Q




|↑〉
|↓〉



 =


cos ϕ

2 e−i γ2 − sin ϕ
2 e−i γ2

sin ϕ
2 ei

γ
2 cos ϕ

2 ei
γ
2






|↑〉
|↓〉



 (E.37)

which can be considered as a rotation with the angle ϕ/2 combined with an phase or U(1)–
rotation with the angle γ/2 as shown in Figure E.1. The components of a state vector transforms
with the inverse transformation matrix Q−1 ≡ Q† which is the adjoint of the transformation
matrix for unitary transformations. For a state vector |ψ〉 represented in the basis {|↑〉 , |↓〉} the
transformed components read

|ψ〉 = ψ+ |+〉+ ψ− |−〉
(E.37)
= ψ+ (Q11 |↑〉+Q21 |↓〉) + ψ− (Q12 |↑〉+Q22 |↓〉)

= ψ↑ |↑〉+ ψ↓ |↓〉 (E.38)

As one can see the components of the state vector are transformed with the inverse transforma-
tion matrix

→֒ ψ↑ = Q11ψ+ +Q12ψ− ψ↓ = Q21ψ+ +Q22ψ− (E.39)

ψ+ = Q∗
11ψ↑ +Q∗

21ψ↓ ψ− = Q∗
12ψ↑ +Q∗

22ψ↓ (E.40)

Written in matrix–vector notation equation (E.39) and (E.40) yields

|ψ〉↑↓ =


ψ↑

ψ↓


 = Q |ψ〉± =


Q11 Q12

Q21 Q22




ψ+

ψ−


 (E.41)

|ψ〉± =


ψ+

ψ−


 = Q† |ψ〉↑↓ =


Q

∗
11 Q∗

21

Q∗
12 Q∗

22




ψ↑

ψ↓


 (E.42)
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Equivalently one can directly adopt the formula from equation (C.11) in Appendix C to find the
unitary transformations of operators

A± = Q−1A↑↓Q = Q†A↑↓Q (E.43)
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F
Fourier Transformation

F.1 One–Dimensional Discrete Fourier Transformation

The discrete Fourier transform in one dimension is defined as the following summation over
(one–dimensional) lattice points xi, while the summation in the Fourier transformed lattice runs
over yj =

2π
N j with j = 1, . . . , N

fi = f(xi) =
1

N

N∑

j=1

f̃(yj) e
iyjxi =

1

N

N∑

j=1

f̃j e
iyjxi (F.1)

f̃j = f̃(yi) =

N∑

i=1

f(xi) e
−iyjxi =

N∑

i=1

fi e
−iyjxi (F.2)

Equation (F.2) is the inverse Fourier transformation which can be easily seen by inserting and
using the Fourier representation of the delta distribution

1

N

N∑

j=1

1 · eiyjxi = δ(xi)
N∑

i=1

1

N
e−iyjxi = δ̃(yj) (F.3)

N∑

i=1

δ(xi) e
−iyjxi = 1

1

N

N∑

j=1

δ̃(yj) e
iyjxi =

1

N
* (F.4)

into equation (F.1)

f(xi) =
1

N

N∑

j=1

f̃(yj) e
iyjxi =

1

N

N∑

j=1

N∑

k=1

f(xk) e
−iyjxk eiyjxi

=

N∑

k=1

f(xk)
1

N

N∑

j=1

eiyj(xi−xk) =

N∑

k=1

f(xk)δ(xi − xk) = f(xi) (F.5)

* δ(xi) = 1/N and δ̃(yj) = 1
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and analogous for the Fourier transform

f̃(yj) =

N∑

i=1

f(xi) e
−iyjxi =

1

N

N∑

i=1

N∑

k=1

f̃(yk) e
iykxi e−iyjxi

=

N∑

k=1

f̃(yk)
1

N

N∑

i=1

e−i(yj−yk)xi =

N∑

k=1

f̃(yk)δ(yj − yk) = f̃(yj) (F.6)

F.2 d–Dimensional Discrete Fourier Transformation

Now the generalization from the one–dimensional Fourier transformation to d dimensions is
quite simple. Instead of a one–dimensional lattice, there is d–dimensional lattice with d–dimen-
sional lattice vectors r = (r1, . . . , rd)

t, as well as a d–dimensional reciprocal lattice with reciprocal
lattice vectors k = 2π( k1

N1
, . . . , kd

Nd
)t

f(r) =
1

N1

N1∑

k1=1

f̃(k) ei
2π
N1

k1r1 × · · · × 1

Nd

Nd∑

kd=1

f̃(k) e
i 2π
Nd

kdrd

=

d∏

i=1

[
1

Ni

Ni∑

ki=1

f̃(k) ei
2π
N1

kiri

]
=

1

N

∑

k

f̃(k) eik·r (F.7)

The formal notation denotes the sum over k as the d–fold sum over each vector component and
N =

∏d
i Ni. The inverse Fourier transformation can be cast into

f̃(k) =
∑

r

f(r) e−ik·r (F.8)

All properties of the one–dimensional Fourier transform are also valid in d dimensions, especially
the representation of the delta distribution

∑

k

eik·r =

d∏

i=1

Niδ(r)
∑

r

e−ik·r =

d∏

i=1

Niδ̃(k) (F.9)

or in the special case of a hypercubic lattice Ni = N

∑

k

eik·r = N
d
δ(r)

∑

r

e−ik·r = N
d
δ̃(k) (F.10)

F.3 Continuous Fourier Transformation

The discrete Fourier transformation can also be generalized to a continuous Fourier transforma-
tion via replacing the discrete sum with an Riemann sum that can be cast into an integral

f(x) =

∞∫

−∞

dy

2π
f̃(y) eiyx (F.11)
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f̃(y) =

∞∫

−∞

dx f(x) e−iyx (F.12)

In d dimensions the continuous Fourier transformation (and its inverse) reads

f(r) =

∞∫

−∞

(
dk

2π

)d

f̃(k) eik·r (F.13)

f̃(k) =

∞∫

−∞

ddr f(r) e−ik·r (F.14)

Note that the factor 1
2π can be shifted to the Fourier space or the real space measure or even

split into a symmetric form (e.g. dr/
√
2π and dk/

√
2π). The important thing is that the product of

f and f̃ is normalized to 1
2π . The convention that is used here will be as follows: For functions

the factor 1
2π is always under the Fourier space measure whereas for operators it will be split

symmetrically between both measures

a(r) =

∞∫

−∞

(
dk√
2π

)d

ã(k) eik·r

(
compare a(r) =

1√
N

∑

k

ã(k) eik·r

)
(F.15)

ã(k) =

∞∫

−∞

(
dr√
2π

)d

a(r) e−ik·r

(
compare ã(k) =

1√
N

∑

r

a(r) e−ik·r

)
(F.16)

In the continuous Fourier transformation there exists also a representation of the delta distribu-
tion

δ(r − r′) =

∞∫

−∞

(
dk

2π

)d

eik·(r−r′) δ̃(k− k′) =

∞∫

−∞

(
dr

2π

)d

e−i(k−k′)·r (F.17)

Equation (F.17) can be easily derived using the definition of the delta distribution

δ̃(k) =

∞∫

−∞

ddr δ(r) e−ik·r = e0 = 1

δ(r) =

∞∫

−∞

(
dk

2π

)d

δ̃(k) eik·r =
e0

(2π)d
=

1

(2π)d
(F.18)

and reinserting equation (F.18) into the definition of the Fourier Transformation yields

δ(r) =

∞∫

−∞

(
dk

2π

)d

δ̃(k)︸︷︷︸
= 1

eik·r =

∞∫

−∞

(
dk

2π

)d

eik·r
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δ̃(k) =

∞∫

−∞

ddr δ(r)︸︷︷︸
=

1

(2π)d

e−ik·r =

∞∫

−∞

(
dr

2π

)d

e−ik·r (F.19)

F.4 Poisson Summation Formula

For periodic function f with period T one can find a periodic extension of f and its (continuous)
Fourier transform f̃ (see Section F.3). In this case the general Poisson summation formula

∑

n∈Z

f(t+ nT ) e−i(2πν)nT =
1

T

∑

k∈Z

f̃

(
2πν +

2πk

T

)
ei2πνt+i2πk t

T (F.20)

holds with additional parameters t and ν. This formula can be easily generalized to d dimensions
via introducing the following d dimensional vectors

Rn = Tn = T




n1
...

nd


 k =

2π

T




k1
...

kd


 q = 2πν ∈ R

d t ∈ R
d (F.21)

Notice that the integers in k actually mean k = 2π
T (k1, . . . , kd)

t with ki ∈ Z, which is an useful
simplification for physical applications. For a d dimensional periodic function f with period T in
all directions one obtains

∑

n∈Zd

f(t + nT ) e−i2πν·nT =

d∏

i=1

[(
1

T

)∑

ki∈Z

f̃(2πν + k) ei2πν·t ei
2π
T

kiti

]

=

(
1

T

)d ∑

k∈Zd

f̃(2πν + k) ei2πν·t+ik·t

→֒
∑

Rn∈Zd

f(t + Rn) e
−iq·Rn =

1

T d

∑

k∈Zd

f̃(q + k) ei(q+k)·t (F.22)

For t = 0 and T = a with a the lattice spacing of a d–dimensional hypercube, k can be considered
as the lattice vector of the reciprocal hypercubic lattice. Then an useful special case of equation
(F.22) gives rise to

∑

Rn∈Zd

f(Rn) e
−iq·Rn =

1

ad

∑

k∈Zd

f̃(q + k) (F.23)

This special formula can be interpreted as an identity of a discrete Fourier transformation relating
real and Fourier space to one another and hence discrete Fourier transform (or Fourier series) to
the continuous Fourier transform of a function.
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F.5 Physical Application of Fourier Transformations

F.5.1 d = 3 dimensional Fourier Series (discrete in k–space)

The physical picture of the d–dimensional Fourier series is a transformation between comple-
mentary physical quantities like time t and energy E or position r and momentum k (in units
~ = 1). In the following, using physical notation we will suppress the “~” on top of the function
symbols and distinguish function and its Fourier transform just by looking at the argument indi-
cating in which space the function resides. For quantum mechanical operators we can define the
following series expansion (in plane waves eik·r )

a†k =
1√
V

∫

V

dr eik·r a(r)† ak =
1√
V

∫

V

dr e−ik·r a(r) (F.24)

a†k and ak are the coefficient of the different plane waves, building up the total wave packet that
corresponds to the creation operator a(r)† (or annihilation operator) that creates a particle at
position r

a(r)† =
1√
V

∑

k

e−ik·r a†k a(r) =
1√
V

∑

k

eik·r ak (F.25)

whereas for general function f(r) the Fourier series expansion is defined asymmetrically

f(r) =
∑

k

eik·r fk fk =
1

V

∫

V

d3r e−ik·r f(r) (F.26)

Since (F.26) is an integration over the entire real space V , the factor 1
V gives the right normal-

ization.

F.5.2 d = 3 dimensional discrete Fourier transformation

A second application is the transformation of a periodic function f(r + R) = f(r) defined only
on discrete lattice points in real space with lattice vector R. We assume for simplicity a cubic
lattice with lattice constant a. A Fourier transformation to the k–space with the reciprocal lattice
defined by the basis vectors

bi =
2π

VE

1

2

3∑

j,k=1

ǫijkaj × ak with VE =

3∑

i,j,k=1

ǫijkaiajak = det (a1|a2|a3) (F.27)

gives the Fourier transform which is defined with the help of the reciprocal lattice vector G. VE
denotes the volume of the primitive cell (spanned by the basis vectors ai) and is equal to a3 in
the cubic case. The volume of the complete system is the volume of the unit cell times the total
number of lattice points, since the primitive unit cell just contains one lattice point.

V = NVE = VE

3∏

i=1

N = N
3
VE = N

3
a3 (F.28)

The lattice spacing of the (also cubic) reciprocal lattice is then 2π
a . There exists the following

identity between R and G
eiG·R = 1 (F.29)
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(a) 1st Brillouin zone for d = 2 (b) 4th Brillouin zone for d = 2

Figure F.1 The nth Brillouin zone consist of all points in k–space that crosses n− 1 Bragg lines

because the product of the lattice vector R with the reciprocal lattice vector G is

G · R =

3∑

i=1

GiRiai · bi = π

3∑

i,j,k=1

GiRi

ǫijkai · (aj × ak)

VE
= 2π

3∑

i=1

GiRi

︸ ︷︷ ︸
∈ Z

(F.30)

The discrete Fourier transform of a periodic function f(r + R) = f(r) is then given by

f(r) =
∑

G∈RL

fG eiG·r (F.31)

Using the plane wave basis to expand the operators, only the wave vectors of the so called first
Brillouin zone are needed. The first Brillouin zone is defined as all wave vectors k of the recipro-
cal lattice that are closer to G = 0 than to all other reciprocal vectors G 6= 0. In Figure F.1a the 1st

Brillouin zone is shown in red, whereas the solid line indicates the Bragg lines (intersecting the
line segment connecting the (nearest) neighbors at a right angle). Now operators and functions
can be expanded with respect to the discrete sum over all wave vectors in the first Brillouin zone

f(r = aR) =
1

(Na)3︸ ︷︷ ︸
= V

∑

K∈1.BZ

ei
K
a
·aR f

(
K

a

)
(F.32)

f

(
k =

K

a

)
=
∑

R

e−i K
a
·aR f(aR) (F.33)

Here V denotes the real space volume of the cubic lattice (with lengths of the sides Na). The
vector R = (R1, R2, R3)

t and the vector K = 2π/N(K1,K2,K3)
t given by the discrete Fourier

transformation defined in equation (F.7) are multiplied by a length scale, which is the lattice
spacing, the physical distance between two lattice points. In order to leave the (general) scalar
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a

a

r 1

2
3

4

Figure F.2 Left Panel: Real space lattice with lattice spacing a.
Right Panel: The four next nearest neighbors R1, R2, R3, R4

product

K · R = 2π

3∑

i=1

Ki

Ni
Ri (F.34)

in the exponent of the e –function in the definition of the discrete Fourier transformation invari-
ant, the k–space must scale with the dimension (length)−1

K · R = k · r with k =
K

a
=

2π

Na
(K1,K2,K3)

t and r = aR = a(R1, R2, R3)
t (F.35)

where r denotes the position vector in the real space lattice and k the vector pointing on points
of the reciprocal lattice in the first Brillouin zone. Thus, the sum

∑
K is running over ki =

−N/2, . . . ,N/2. Now functions and operators can be Fourier transformed in the following way

a(R) =
1

N
3/2

∑

K

eiK·R a(K) a(K) =
1

N
3/2

∑

R

e−iK·R a(R) (F.36)

f(R) =
1

N
3

∑

K

eiK·R f(K) f(K) =
∑

R

e−iK·R f(R) (F.37)

Sometimes it is useful to rewrite these equation in terms of new summation variables, just count-
ing the number of neighbors from the starting point. Then the real space sum over R can be
replaced by one single sum

∑

R

−→
∑

Rn

≡ sum over all nth nearest neighbor Ri = −
N

2
, . . . ,

N

2
−→ n = 1, . . . N (F.38)

where |R1| = 1 denotes the nearest neighbor, |R2| =
√
2 denotes the next nearest neighbor and

so on as depicted in Figure F.2. In the following we will not distinguish between K and k and by
writing

∑

k∈1.BZ

. . . ≡
N/2∑

k1=−N/2

N/2∑

k2=−N/2

N/2∑

k3=−N/2

. . . (F.39)
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we assume the sum over the first Brillouin zone. Finally we have

a(Rn) =
1

N
3/2

∑

k∈1.BZ

eik·Rn a(k) a(k) =
1

N
3/2

∑

Rn

e−ik·Rn a(Rn) (F.40)

f(Rn) =
1

N
3

∑

k∈1.BZ

eik·Rn f(k) f(k) =
∑

Rn

e−ik·Rn f(Rn) (F.41)

F.5.3 d = 3 dimensional Fourier Series (discrete in real space)

If one considers the continuum limit of the problem in equation (F.41) then we have to replace
the sum over the first Brillouin zone with an integral over the whole k–space volume V.

∑

k∈1.BZ

. . . −→ 1

V

∫

V

d3k . . . =

(
Na

2π

)3 ∫

V

d3k . . . (F.42)

or in general for a d–dimensional lattice

∑

k∈1.BZ

. . . −→
[∏d

i=1(Niai)

(2π)d

]∫

V

d3k . . . (F.43)

or in the special case of a d–dimensional hypercubic lattice, respectively

∑

k∈1.BZ

. . . −→
(
Na

2π

)d ∫

V

d3k . . . (F.44)

The volume of the real space V can be converted to the k–space volume V as follows

V =
(2π)d

V V =
(2π)d

V
(F.45)

F.5.4 Translational Invariant Systems

Consider a isotropic periodic hypercubic lattice such that, it is translational invariant. All phys-
ical observables must obey the invariance under the translational symmetry operation. Thus,
all physical quantities are function of differences of lattice vectors only, since any point of the
hypercubic lattice can be chosen as a reference point. Especially two point functions depending
on two different position r and r′ can only depend on their difference r − r′

f(r, r′) = f(r − r′) (F.46)

The Fourier transform of such a function will then have special symmetry properties

f(r, r′) =

∞∫

−∞

(
dk

2π

)d(
dk’

2π

)d

F (k, k′) eik·r eik
′
·r

=

∞∫

−∞

(
dk

2π

)d(
dk’

2π

)d

F (k, k′) ei(r−r′)·k ei(k+k′)·r′ (F.47)
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Since the function cannot explicitly depend on r′, the factor ei(k+k′)·r′ must be a constant, which
leads to the following condition for the reciprocal vectors k, k′ and the Fourier transform

k = −k′ ⇒ F (k, k′) ∝ δ(k− k′) (F.48)

By comparison with the Fourier transform of f(r − r′)

f(r − r′) =

∞∫

−∞

(
dk

2π

)d

f̃(k) eik·(r−r′) (F.49)

one finds the following relation between the two Fourier transforms

F (k, k′) = (2π)dδ(k− k′)f̃(k) (F.50)

Therefore the Fourier transform of a translational invariant function can always described by a
single wave vector k.
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G
Pauli Representation of the Lie Group SU(2)

G.1 General Properties of the Special Unitary Group SU(n)

The special unitary group SU(n) = {A ∈ (n × n)–matrices |A†A = 1, detA = 1} is a subgroup
of the unitary group, which consists of all unitary n × n–matrices. It is a real matrix group of
dimension n2 − 1 because there exists the constraint that detA = 1, reducing the number of
independent matrix elements by one. The corresponding Lie algebra su(n) is constructed with
regard to the tangential space to the identity element 1 of the group. With the help of the
exponential map each Lie algebra element can be mapped onto a Lie group element

f : su(n) −→ SU(n)

su(n) ∋ ga 7−→ eiga = g ∈ SU(n)
(G.1)

The elements of the Lie algebra su(n) are real, traceless and antihermitian matrices. The Lie
group elements can be generated using infinitesimal generators Ta which can be represented as
traceless hermitian matrices

trTa = 0 T †
a = Ta (G.2)

There exists a fundamental representation where the generators can be represented as follows

TaTb =
1

2n
δab1+

1

2

n2−1∑

c=1

(ifabc + dabc)Tc (G.3)

The structure constants fabc are totally antisymmetric and describe the commuting part of the
generators, whereas dabc is totally symmetric and describe the anticommutating part

[Ta, Tb] = i

n2−1∑

c=1

fabcTc (G.4)
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{Ta, Tb} =
1

n
δab1+

n2−1∑

c=1

dabcTc (G.5)

Additionally one can define the so called adjoint representation where the generators are repre-
sented by matrices with the structure constants fabc as elements

(Ta)jk = −ifajk (G.6)

G.2 Properties of SU(2)

The Lie group SU(2) consists of all unitary (2× 2)–matrices with unit determinant. In the funda-
mental representation the n2 − 1 = 3 infinitesimal generators of the SU(2) can be represented
as Pauli matrices

1

2
σ1 =

1

2


0 1

1 0


 1

2
σ2 =

1

2


0 −i
i 0


 1

2
σ3 =

1

2


1 0

0 −1


 (G.7)

From the matrix product relation

(
1

2
σa

)(
1

2
σb

)
=

1

4
δab1+

1

2

3∑

c=1

iεabc

(
1

2
σc

)
→֒ σaσb = δab1+

3∑

c=1

iεabcσc (G.8)

one can immediately read off fabc = εabc and dabc = 0 which leads to

[σa, σb] = 2iεabcσc (G.9)

{σa, σb} = 2δab1 (G.10)

The group elements of the Lie groups can be described by n2 − 1 = 3 continuous parameters
which can be written as a three dimensional vector n = ϕn0 and the infinitesimal generators in
terms of Pauli matrices as 1

2σ

ei
∑

a αaTa = e
i
2 n·σ = ei

ϕ
2 n0

·σ

=
∞∑

k=0

(iϕ2 n0
· σ)k

k!

=

∞∑

k=0

(iϕ2 n0
· σ)2k

2k!
+

∞∑

k=0

(iϕ2 n0
· σ)2k+1

(2k + 1)!

=

∞∑

k=0

(i2)k(ϕ2 n0
· σ)2k

2k!
+

∞∑

k=0

i(i2)k(ϕ2 n0
· σ)2k+1

(2k + 1)!

=
∞∑

k=0

(−1)k(ϕ2 )2k(n0
· σ)2k

(2k)!
+ i

∞∑

k=0

(−1)k(ϕ2 )2k+1(n0
· σ)2k+1

(2k + 1)!
(G.11)
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After splitting the sum into an odd and an even part and using the following relations

(n0
· σ)2k =

[
(n0

· σ)(n0
· σ)

]k
=
[
(n01σ1)

2 + (n02σ2)
2 + (n03σ3)

2 + n01n
0
2(σ1σ2 + σ2σ1)

+ n01n
0
3(σ1σ3 + σ3σ1) + n02n

0
3(σ2σ3 + σ3σ2)

]k

=
([

(n01)
2 + (n02)

2 + (n03)
2
]
1

)k
= 1 (G.12)

(n0
· σ)2k+1 = (n0

· σ)2k(n0
· σ) = 1(n0

· σ) = (n0
· σ) (G.13)

equation (G.11) can be simplified

→֒ ei
ϕ
2 n0

·σ =
∞∑

k=0

(−1)k(ϕ2 )2k
(2k)!

1+ i(n0
· σ)

∞∑

k=0

(−1)k(ϕ2 )2k+1

(2k + 1)!

= cos
(ϕ
2

)
1+ i(n0

· σ) sin
(ϕ
2

)
(G.14)

The absolute value of the vector |n| = ϕ can be identified with the rotation angle and the
direction unit vector n0 as the rotation axis in three dimensional space. The SU(2) describes
a rotation with an rotational angle of 4π to complete the circle. The reason for this lies in the
fact that the Lie algebra su(2) is isomorphic to the Lie algebra so(3) (which means that the
generators of SU(2) are infinitesimal rotations in three dimensional space) but the Lie group
SU(2) is the double covering group of the Lie group SO(3). This leads to a homomorphic two–
to–one mapping from SU(2) to SO(3) and to the fact that a rotation about 2π gives the original
state multiplied by (−1) (setting ϕ = 2π in equation (G.14) gives −1). With the help of the
tensor product representations of higher spin systems can be constructed, e.g.

2⊗ 2 = 3⊕ 1 (G.15)

where the numbers represent the (2S − 1)–dimensional representation of the SU(2). The 3–
dimensional representation is the adjoint representation whereas the 1 denotes the trivial repre-
sentation of SU(2).

G.3 Physical Application of SU(2)

The fundamental representation using the Pauli matrices can be used to describe spin–1/2 par-
ticles like electrons or two state systems with only to different quantum states or degrees of
freedom (e.g. the lowest two states of a multi–state system that can be excited). Defining the
following two state basis

{|↑〉 , |↓〉} ≡






1

0


 ,


0

1





 (G.16)

the spin–1/2 operators are defined as S = ~

2σ

Sx =
~

2


0 1

1 0


 Sy =

~

2


0 −i
i 0


 Sz =

~

2


1 0

0 −1


 (G.17)
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Additionally, we can define creation and annihilation operators. If we label the ground state as
|↓〉 and the excited state as |↑〉 then S+ is a creation operator that “creates” the excited state
|↑〉 (and destroys the ground state |↓〉) whereas S− “destroys” the excited state (and creates the
ground state)

S+ = Sx + iSy = ~


0 1

0 0


 S− = Sx − iSy = ~


0 0

1 0


 (G.18)

These operators can be written directly in the basis (G.16) as

S+ = ~ |↑〉 〈↓| S− = ~ |↓〉 〈↑| Sz =
~

2

(
|↑〉 〈↑| − |↓〉 〈↓|

)
(G.19)

The operators S+ = S †
− and S− = S †

+ obey the following commutator relations

[Sz, S±] = ±~S± [S+, S−] = 2~Sz (G.20)

which can be derived from equation (G.9).



H
Documentation of Mathematica Programs

H.1 Numerical-Diagonalization.nb

The eigenbasis of the Hamiltonian

H = BJ 2 − d0Edc
H
B

= J 2 − dEdc

B

d0
d

(H.1)

is determined by numerically diagonalize H with MATHEMATICA and the help of the build–in
function Eigensystem. The matrix representation in the spherical tensor basis of H is generated
with

RME[ J_ , j_ , k_ ] := (−1)^(J ) Sqrt [(2 J + 1) (2 j + 1)]

10 ThreeJSymbol [{ J , 0} ,{k , 0} ,{ j , 0}]/ Sqrt [2 J + 1]

WET[ J_ , M_, k_ , q_ , j_ , m_] := ClebschGordan [{ j , m} , {k , q } , {J , M}]

12 RME[ J , j , k ]

where the self–defined functions WET defines the Wigner–Eckart theorem for spherical tensor

operators T (k)
q which consists of the Clebsch–Gordan–Coefficients and the reduced matrix ele-

ment, the self–defined function RME. The Wigner–Eckart theorem is now used to calculate the
matrix representation of the z–component of the dipole operator d0 via

d[ J_ , M_, j_ , m_, q_ ] := WET[ J + M, M, 1 , q , j + m, m]

14 d0[ J_ , M_, j_ , m_] := d[ J , M, j , m, 0]

d0m0 = Table [d0[ J , 0 , j , 0] , {J , 0 , n} , { j , 0 , n } ] ;

16 d0m1 = Table [d0[ J , 1 , j , 1] , {J , 0 , n} , { j , 0 , n } ] ;

d0m2 = Table [d0[ J , 2 , j , 2] , {J , 0 , n} , { j , 0 , n } ] ;
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Hm0=En[J]-βd0m0

Hm1=En[J+1]-βd0m1

Hm2=En[J+2]-βd0m2

d0m0

d0m0

d0m1

d0m2

ev1m0

ev2m0

ev3m0

ev1m1ev1m1

ev2m1ev2m1

ev1m2ev1m2

en1m0

en2m0

en3m0

en1m1en1m1

en2m1en2m1

en1m2en1m2

Figure H.1 Numerically determined eigenstates and eigenvalues of H for |M | = 0, 1, 2

where the function d[J_, M_, j_, m_, q_] defines the dipole operator in spherical coordinates,
d0[J_, M_,j_, m_] the z–component of d and d0mi for i = 0, 1, 2 are the matrix representation of
the dipole operators coupling |J = i, |M | = i〉. We are using the modulus of M since the matrix
representations for the operators for −M are identical and therefore the degeneracy between
the M 6= 0 states is not lifted by applying a static electric field Edc in z–direction. In the spherical
tensor basis the J 2 operator is diagonal and possesses the eigenvalues J(J + 1). Thus the rotor
term in the Hamiltonian H can be described by the rotor–energy function

18 En[ J_ , M_] := ( J + M) ( J + M + 1)

where we start for |M | = 1, 2 at J = 1, 2 since |M | 6= 0 states are only defined for J 6= 0
states. Now we are ready to calculate the matrix representation of H for each value of M in the
spherical tensor basis with the help of

Hm0[\[ Beta ] _ ] := Table [En[ J , 0] KroneckerDelta [ J , j ] − \[ Beta ]

20 d0[ J , 0 , j , 0] , {J , 0 , n} , { j , 0 , n}]

Hm1[\[ Beta ] _ ] := Table [En[ J , 1] KroneckerDelta [ J , j ] − \[ Beta ]

22 d0[ J , 1 , j , 1] , {J , 0 , n} , { j , 0 , n}]

Hm2[\[ Beta ] _ ] := Table [En[ J , 2] KroneckerDelta [ J , j ] − \[ Beta ]

24 d0[ J , 2 , j , 2] , {J , 0 , n} , { j , 0 , n}]
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For each \[Beta] running from 0 to 10 in steps of 0.01 (see Mathematica Code H.1, lines 2 − 7)
the eigensystem of the Hamiltonian matrix Hm0[\[Beta]_] is calculated and then stored in the
table eigm0[\[Beta]_]. The table is indexed by an index running from 1 to imax+1 = 1001. This
procedure is carried out for each |M | = 0, 1, 2.

eigm0=Table [ Eigensystem [Hm0[\[ Beta ] ] ] , { \ [ Beta ] , s t a r t , end , d i } ] ;

26 Export [ " /home/ s t e f f e n /working/mathematica / data / Eigensystem0 .m" , eigm0 ] ;

eigm1=Table [ Eigensystem [Hm1[\[ Beta ] ] ] , { \ [ Beta ] , s t a r t , end , d i } ] ;

28 Export [ " /home/ s t e f f e n /working/mathematica / data / Eigensystem1 .m" , eigm1 ] ;

eigm2=Table [ Eigensystem [Hm2[\[ Beta ] ] ] , { \ [ Beta ] , s t a r t , end , d i } ] ;

30 Export [ " /home/ s t e f f e n /working/mathematica / data / Eigensystem2 .m" , eigm2 ] ;

The eigensystems of each set of states for |M | = 0, 1, 2 (as seen in Figure H.1) are exported in
an external file named “Eigensytem0.m”, “Eigensytem1.m” and “Eigensytem2.m”, respectively.
Because of the separated diagonalization for different |M | the symmetry properties of the eigen-
states for each set of states are lost and hence one should be cautious calculating matrix elements
for operators that now may have no meaning anymore, like

〈
φnum
0 0

∣∣ d1
∣∣φnum

1 0

〉
.

Mathematica Code H.1 Numerical–Diagonalization.nb

( ∗ P a r a m e t e r s ( n= d i m e n s i o n o f H a m i l t i o n i a n , d i = d i s c r e t i z a t i o n l e n g t h ) ∗ )

2 n=50;

imax=1000;

4 s t a r t =0.;

end=10.;

6 di=(end−s t a r t ) / imax

0.01

8 ( ∗ D e f i n e R e d u c e d M a t r i x E l e m e n t : ∗ )

RME[ J_ , j_ , k_]:=(−1) (̂J ) Sqrt [(2 J+1)(2 j +1)]ThreeJSymbol [{ J ,0} , { k ,0} , { j ,0}]/

Sqrt [2 J+1]

10 ( ∗ D e f i n e W i g n e r − E c k a r t T h e o r e m : ∗ )

WET[ J_ ,M_, k_ , q_ , j_ ,m_]:=ClebschGordan [{ j ,m} ,{k , q } ,{ J ,M}]RME[ J , j , k ]

12 ( ∗ D e f i n e D i p o l e O p e r a t o r ( i n u n i t s o f d ) ∗ )

d[ J_ ,M_, j_ ,m_, q_]:=WET[ J+M,M,1 , q , j+m,m]

14 d0[ J_ ,M_, j_ ,m_]:=d[ J ,M, j ,m,0]

d0m0=Table [d0[ J ,0 , j , 0 ] , { J , 0 , n} ,{ j , 0 , n } ] ;

16 d0m1=Table [d0[ J ,1 , j , 1 ] , { J , 0 , n} ,{ j , 0 , n } ] ;

d0m2=Table [d0[ J ,2 , j , 2 ] , { J , 0 , n} ,{ j , 0 , n } ] ;

18 ( ∗ D e f i n e H a m l i t o n i a n H=B J ^2−d . E i n | J , M> B a s i s ( i n u n i t s o f B w i t h \ [ B e t a ]= d E

/ B ) ∗ )
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En[ J_ ,M_]:=( J+M) ( J+M+1)

20 Hm0[\[ Beta ] _]:=Table [En[ J ,0 ] KroneckerDelta [ J , j ]−\[Beta ] d0[ J ,0 , j , 0 ] , { J , 0 , n} ,{

j , 0 , n}]

Hm1[\[ Beta ] _]:=Table [En[ J ,1 ] KroneckerDelta [ J , j ]−\[Beta ] d0[ J ,1 , j , 1 ] , { J , 0 , n} ,{

j , 0 , n}]

22 Hm2[\[ Beta ] _]:=Table [En[ J ,2 ] KroneckerDelta [ J , j ]−\[Beta ] d0[ J ,2 , j , 2 ] , { J , 0 , n} ,{

j , 0 , n}]

( ∗ E i g e n s y s t e m o f t h e H a m i l t o n i a n ∗ )

24 eigm0=Table [ Eigensystem [Hm0[\[ Beta ] ] ] , { \ [ Beta ] , s t a r t , end , d i } ] ;

Export [ " /home/ s t e f f e n /working/mathematica / data / Eigensystem0 .m" , eigm0 ] ;

26 eigm1=Table [ Eigensystem [Hm1[\[ Beta ] ] ] , { \ [ Beta ] , s t a r t , end , d i } ] ;

Export [ " /home/ s t e f f e n /working/mathematica / data / Eigensystem1 .m" , eigm1 ] ;

28 eigm2=Table [ Eigensystem [Hm2[\[ Beta ] ] ] , { \ [ Beta ] , s t a r t , end , d i } ] ;

Export [ " /home/ s t e f f e n /working/mathematica / data / Eigensystem2 .m" , eigm2 ] ;

H.2 Energy-Stark-Shift.nb

After importing the eigensystems from the files “Eigensytem0.m”, “Eigensytem1.m” and “Eigen-
sytem2.m” with the same parameters as the tables containing the eigensystems of the Hamilto-
nian were exported (H.1) (compare Mathematica Code H.1 with Mathematica Code H.2). The
build-in functions Ordering and Part are employed in order to sort each set of eigenstates and
eigenenergies in ascending order and to extract the first three eigenstates and eigenenergies.
The function en1m0, en2m0,. . . and ev1m0, ev2m0,. . . are plotted for each \[Beta]= 0, . . . , 10 in
discrete steps di.

Mathematica Code H.2 Energy–Stark–Shift.nb

( ∗ P a r a m e t e r s ( n= d i m e n s i o n o f H a m i l t i o n i a n , d i = d i s c r e t i z a t i o n l e n g t h ) ∗ )

2 n=50;

imax=1000;

4 s t a r t =0.;

end=10.;

6 di=(end−s t a r t ) / imax

0.01

8 ( ∗ I m p o r t E i g e n s y s t e m o f H=B J ^2−d . E ( f o r m = 0 , 1 , 2 ) ∗ )

eigm0=Import [ " /home/ s t e f f e n /working/mathematica / data / Eigensystem0 .m" ] ;

10 eigm1=Import [ " /home/ s t e f f e n /working/mathematica / data / Eigensystem1 .m" ] ;

eigm2=Import [ " /home/ s t e f f e n /working/mathematica / data / Eigensystem2 .m" ] ;
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12 ( ∗ E n e r g i e s & E i g e n v e c t o r s o f t h e g r o u n d s t a t e a n d t h e t w o f i r s t e x c i t e d

s t a t e s ( w i t h t h e i n d e x i r u n n i n g f o r m 0 t o \ [ B e t a ] / d i ) ∗ )

orderm0 [ i _ ]:=Ordering [ Part [ Part [eigm0 , i ] ,1] ,3]

14 en1m0[ i _ ]:= Part [ Part [ Part [eigm0 , i ] ,1 ] , F i r s t [ orderm0 [ i ] ] ]

en2m0[ i _ ]:= Part [ Part [ Part [eigm0 , i ] ,1 ] , Part [ orderm0 [ i ] ,2] ]

16 en3m0[ i _ ]:= Part [ Part [ Part [eigm0 , i ] ,1 ] , Part [ orderm0 [ i ] ,3] ]

ev1m0[ i _ ]:= Part [ Part [ Part [eigm0 , i ] ,2 ] , F i r s t [ orderm0 [ i ] ] ]

18 ev2m0[ i _ ]:= Part [ Part [ Part [eigm0 , i ] ,2 ] , Part [ orderm0 [ i ] ,2] ]

ev3m0[ i _ ]:= Part [ Part [ Part [eigm0 , i ] ,2 ] , Part [ orderm0 [ i ] ,3] ]

20 orderm1 [ i _ ]:=Ordering [ Part [ Part [eigm1 , i ] ,1] ,3]

en1m1[ i _ ]:= Part [ Part [ Part [eigm1 , i ] ,1 ] , F i r s t [ orderm1 [ i ] ] ]

22 en2m1[ i _ ]:= Part [ Part [ Part [eigm1 , i ] ,1 ] , Part [ orderm1 [ i ] ,2] ]

en3m1[ i _ ]:= Part [ Part [ Part [eigm1 , i ] ,1 ] , Part [ orderm1 [ i ] ,3] ]

24 ev1m1[ i _ ]:= Part [ Part [ Part [eigm1 , i ] ,2 ] , F i r s t [ orderm1 [ i ] ] ]

ev2m1[ i _ ]:= Part [ Part [ Part [eigm1 , i ] ,2 ] , Part [ orderm1 [ i ] ,2] ]

26 ev3m1[ i _ ]:= Part [ Part [ Part [eigm1 , i ] ,2 ] , Part [ orderm1 [ i ] ,3] ]

orderm2 [ i _ ]:=Ordering [ Part [ Part [eigm2 , i ] ,1] ,3]

28 en1m2[ i _ ]:= Part [ Part [ Part [eigm2 , i ] ,1 ] , F i r s t [ orderm2 [ i ] ] ]

en2m2[ i _ ]:= Part [ Part [ Part [eigm2 , i ] ,1 ] , Part [ orderm2 [ i ] ,2] ]

30 en3m2[ i _ ]:= Part [ Part [ Part [eigm2 , i ] ,1 ] , Part [ orderm2 [ i ] ,3] ]

ev1m2[ i _ ]:= Part [ Part [ Part [eigm2 , i ] ,2 ] , F i r s t [ orderm2 [ i ] ] ]

32 ev2m2[ i _ ]:= Part [ Part [ Part [eigm2 , i ] ,2 ] , Part [ orderm2 [ i ] ,2] ]

ev3m2[ i _ ]:= Part [ Part [ Part [eigm2 , i ] ,2 ] , Part [ orderm2 [ i ] ,3] ]

34 ( ∗ C a l c u l a t i o n

P l o t s o f e n e r g y l e v e l s f o r m=0 a n d J = 0 , 1 , 2 ∗ )

36 L i s t L i n e P l o t [{ Table [{( i −1)∗di+s t a r t , en1m0[ i ]} ,{ i , 1 , imax+1}] ,Table [{( i −1)∗di+

s t a r t , en2m0[ i ]} ,{ i , 1 , imax+1}] ,Table [{( i −1)∗di+s t a r t , en3m0[ i ]} ,{ i , 1 , imax

+1}]} ,PlotRange−>Full , PlotSty le−>{D i r e c t i v e [ Blue , Thickness [ .005]] ,

D i r e c t i v e [Red , Thickness [ .005]] , D i r e c t i v e [ Purple , Thickness [ .005]]} ,

FrameStyle−> Thickness [ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>" Caption " ,

Frame−>True , Axes−>False ]

( ∗ P l o t s o f e n e r g y l e v e l s f o r |m| = 0 , 1 , 2 a n d J = 0 , 1 , 2 ∗ )

38 L i s t L i n e P l o t [{ Table [{( i −1)∗di+s t a r t , en1m0[ i ]} ,{ i , 1 , imax+1}] ,Table [{( i −1)∗di+

s t a r t , en2m0[ i ]} ,{ i , 1 , imax+1}] ,Table [{( i −1)∗di+s t a r t , en1m1[ i ]} ,{ i , 1 , imax

+1}] ,Table [{( i −1)∗di+s t a r t , en3m0[ i ]} ,{ i , 1 , imax+1}] ,Table [{( i −1)∗di+s t a r t ,

en2m1[ i ]} ,{ i , 1 , imax+1}] ,Table [{( i −1)∗di+s t a r t , en1m2[ i ]} ,{ i , 1 , imax+1}]} ,
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PlotRange−>Full , PlotSty le−>{D i r e c t i v e [ Blue , Thickness [ .005]] , D i r e c t i v e [Red

, Thickness [ .005]] , D i r e c t i v e [ Darker [Red ] , Thickness [ .005]] , D i r e c t i v e [ Purple

, Thickness [ .005]] , D i r e c t i v e [ Darker [ Purple ] , Thickness [ .005]] , D i r e c t i v e [

Darker [ Darker [ Purple ] ] , Thickness [ .005]]} , FrameStyle−> Thickness [ .005] ,

FrameLabel−>{" x " , " y " } , PlotLabel−>" Caption " ,Frame−>True , Axes−>False ]

H.3 Fourier-Transform-Interaction.nb

Calculation of ǫ(k) directly in real space via the sum given as

ǫ(k) ≈
100∑

Rx=−100

100∑

Ry=−100

e−i(kxRx+kyRy)

√
(Rx)

2
+ (Ry)

2
3 ≈

100∑

Rx=−100

100∑

Ry=−100

cos(kxRx + kyRy)√
(Rx)

2
+ (Ry)

2
3 (H.2)

The cancellation of all imaginary terms of the exponential function is explicitly verified numeri-
cally by comparison of the two sums over f1[i_ , j_ ,kx_,ky_] and f2[i_ , j_ ,kx_,ky_] in Mathematica
Code H.3. The If–condition in line 2 and 3 of Mathematica Code H.3 ensures that the origin
is omitted. The results of this program are checked against the analytical expression (3.58) as
shown in Table 3.2.

Mathematica Code H.3 Fourier–Transform–Interaction.nb

( ∗ D e f i n i n g t h e s u m m a n d f u n c t i o n , l e a v i n g o u t t h e o r i g i n ∗ )

2 f1 [ i_ , j_ , kx_ , ky_]:= I f [ i==0&&j ==0,Exp[ I ( kx i+ky j ) ]/( i 2̂+j^2)^(3/2) ,0]

f2 [ i_ , j_ , kx_ , ky_]:= I f [ i==0&&j ==0,Cos[ kx i+ky j ]/( i 2̂+j^2)^(3/2) ,0]

4 F1[ kx_ , ky_]:=Sum[ f1 [ i , j , kx , ky ] ,{ i ,−100 ,100} ,{ j ,−100 ,100}];

F2[ kx_ , ky_]:=Sum[ f2 [ i , j , kx , ky ] ,{ i ,−100 ,100} ,{ j ,−100 ,100}];

6 ( ∗ C r e a t e s u m s f o r a l l k x , i n [ −3 \ [ P i ] , 3 \ [ P i ] ] a n d e x p o r t a s C S V t a b l e ∗ )

disp1=Table [{ kx , F1[kx ,0 ]} , { kx ,−3\[ Pi ] ,3\[ Pi ] , . 1 } ]

8 Export [ " / user /home/ people / s t e f f e n /mathematica / data / disp1 . dat " , disp1 , "CSV" ]

disp2=Table [{ kx , F2[kx ,0 ]} , { kx ,−3\[ Pi ] ,3\[ Pi ] , . 1 } ]

10 Export [ " / user /home/ people / s t e f f e n /mathematica / data / disp2 . dat " , disp2 , "CSV" ]

( ∗ C r e a t e s u m s f o r a l l k x a n d k y i n [ −3 \ [ P i ] , 3 \ [ P i ] ] a n d e x p o r t a s C S V t a b l e ∗ )

12 disp13D=Table [{ kx , ky , F1[kx , ky ]} ,{ kx ,−3\[ Pi ] ,3\[ Pi ] , . 1 } , { ky ,−3\[ Pi ] ,3\[ Pi

] , . 1 } ]

Export [ " / user /home/ people / s t e f f e n /mathematica / data /disp13D . dat " , disp13D , "CSV"

]

14 disp23D=Table [{ kx , ky , F2[kx , ky ]} ,{ kx ,−3\[ Pi ] ,3\[ Pi ] , . 1 } , { ky ,−3\[ Pi ] ,3\[ Pi

] , . 1 } ]
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Export [ " / user /home/ people / s t e f f e n /mathematica / data /disp23D . dat " , disp23D , "CSV"

]

16 ( ∗ 2 D a n d 3 D p l o t s o f t h e F o u r i e r t r a n s f o r m ∗ )

L i s t P l o t [ disp1 , PlotRange−>Full , AxesLabel−>{" x " , " y " } , PlotLabel−>" Caption " ]

18 L i s t P l o t [ disp2 , PlotRange−>Full , AxesLabel−>{" x " , " y " } , PlotLabel−>" Caption " ]

ListPlot3D [ disp13D , PlotRange−>Full , ColorFunction−>" Aquamarine " , AxesLabel−>{" x

" , " y " , " z " } , PlotLabel−>" Caption " ]

20 ListPlot3D [ disp23D , PlotRange−>Full , ColorFunction−>" Aquamarine " , AxesLabel−>{" x

" , " y " , " z " } , PlotLabel−>" Caption " ]

H.4 Dipole-Moments-Coupling-Constants.nb

The calculation of the dipole moments coupling different states of the Stark–shifted spectrum
is carried out by the program Mathematica Code H.4. The eigensystem of the operator (H.1)
is imported and determined as is stated in Mathematica Code H.2 lines 2 − 33. The dipole
operators d−1 and d1 are generated by the functions dminus1[J_,M_,j_,m_]:=d[J,M,j,m,−1] and
dplus1[J_,M_,j_,m_]:=d[J,M,j,m,1]. If one prints out the corresponding matrices, one finds that
these operators are antihermitian conjugate to each other and that they possess only diagonal
entries and entries on the second off–diagonal. Therefore only scalar products involving the
physically coupled eigenvectors are physically correct, for example

d0m0 |φJ 0〉 ←→ |φJ+1 0〉

d0m1 |φJ 1〉 ←→ |φJ+1 1〉

d0m2 |φJ 2〉 ←→ |φJ+1 2〉

dminus1m0m1 |φJ 0〉 ←→ |φJ+1 1〉

dplus1m0m1 |φJ+11〉 ←→ |φJ 0〉

dminus1m1m2 |φJ 1〉 ←→ |φJ+1 2〉

dplus1m1m2 |φJ+11〉 ←→ |φJ 2〉

as is also shown in Figure H.2. After generation of the matrices, we calculate the dipole moments
and coupling constants (see lines 67 − 77 of Mathematica Code H.4) and finally make the plots
that appear in Figure 3.2.

Mathematica Code H.4 Dipole–Moments–Coupling–Constants.nb

50 ( ∗ D e f i n e R e d u c e d M a t r i x E l e m e n t : ∗ )

RME[ J_ , j_ , k_]:=(−1) (̂J ) Sqrt [(2 J+1)(2 j +1)]ThreeJSymbol [{ J ,0} , { k ,0} , { j ,0}]/

Sqrt [2 J+1]
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dminus1m0m1

dminus1m1m2

dplus1m0m1

dplus1m1m2

ev1m0

ev2m0

ev3m0

ev1m1ev1m1

ev2m1ev2m1
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en2m0
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Figure H.2 Coupling of Stark–shifted states and their corresponding dipole moments. The
matrices of dminus1[J_,M_,j_,m_] and dplus1[J_,M_,j_,m_] are used to determine the
dipole moments of the coupled states indicated by the dashed lines.

52 ( ∗ D e f i n e W i g n e r − E c k a r t T h e o r e m : ∗ )

WET[ J_ ,M_, k_ , q_ , j_ ,m_]:=ClebschGordan [{ j ,m} ,{k , q } ,{ J ,M}]RME[ J , j , k ]

54 ( ∗ D e f i n e D i p o l e O p e r a t o r ( i n u n i t s o f d ) f o r m = 0 , 1 , 2 ∗ )

d[ J_ ,M_, j_ ,m_, q_]:=WET[ J+M,M,1 , q , j+m,m]

56 dminus1 [ J_ ,M_, j_ ,m_]:=d[ J ,M, j ,m,−1]

d0[ J_ ,M_, j_ ,m_]:=d[ J ,M, j ,m,0]

58 dplus1 [ J_ ,M_, j_ ,m_]:=d[ J ,M, j ,m,1]

d0m0=Table [d0[ J ,0 , j , 0 ] , { J , 0 , n} ,{ j , 0 , n } ] ;

60 d0m1=Table [d0[ J ,1 , j , 1 ] , { J , 0 , n} ,{ j , 0 , n } ] ;

d0m2=Table [d0[ J ,2 , j , 2 ] , { J , 0 , n} ,{ j , 0 , n } ] ;

62 dminus1m0m1=Table [ dminus1 [ J ,0 , j , 1 ] , { J , 0 , n} ,{ j , 0 , n } ] ;

dplus1m0m1=Table [ dplus1 [ J ,1 , j , 0 ] , { J , 0 , n} ,{ j , 0 , n } ] ;

64 dminusm1m2=Table [ dminus1 [ J ,1 , j , 2 ] , { J , 0 , n} ,{ j , 0 , n } ] ;

dplusm1m2=Table [ dplus1 [ J ,2 , j , 1 ] , { J , 0 , n} ,{ j , 0 , n } ] ;

66 ( ∗ C a l c u l a t e d i p o l e o p e r a t o r m a t r i x e l e m e n t s ( f o r c o u p l i n g s o f | 0 , 0 > −> | 1 , 0 >

a n d | 1 , 0 > −> | 2 , 0 > o r \ [ C a p i t a l D e l t a ] m=0) ∗ )

d0dd0[ i _ ]:=ev1m0[ i ] . d0m0 . ev1m0[ i ]

68 d0pd0[ i _ ]:=ev1m0[ i ] . d0m0 . ev2m0[ i ]
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d0pp0[ i _ ]:=ev2m0[ i ] . d0m0 . ev2m0[ i ]

70 d0pd1[ i _ ]:=ev2m0[ i ] . d0m0 . ev3m0[ i ]

d0pp1[ i _ ]:=ev3m0[ i ] . d0m0 . ev3m0[ i ]

72 ( ∗ D e f i n e c o u p l i n g c o n s t a n t S u b s c r i p t [ J , z ] ( i n u n i t s o f d ^2/ a^3 ) ( f o r

c o u p l i n g s o f | 0 , 0 > −> | 1 , 0 > a n d | 1 , 0 > −> | 2 , 0 > o r m=0) ∗ )

Jz1 [ i _ ]:=.25( d0pp0[ i ]−d0dd0[ i ]) 2̂

74 Jz2 [ i _ ]:=.25( d0pp1[ i ]−d0pp0[ i ]) 2̂

( ∗ D e f i n e c o u p l i n g c o n s t a n t S u b s c r i p t [ J , \ [ U p T e e ] ] ( i n u n i t s o f d ^2/ a^3 ) ( f o r

c o u p l i n g s o f | 0 , 0 > −> | 1 , 0 > a n d | 1 , 0 > −> | 2 , 0 > o r m=0) ∗ )

76 Jp1 [ i _ ]:=.5( d0pd0[ i ]) 2̂

Jp2 [ i _ ]:=.5( d0pd1[ i ]) 2̂

78 ( ∗ A n g l e o f " M o d e l C i r c l e " ( f o r c o u p l i n g s o f | 0 , 0 > −> | 1 , 0 > a n d | 1 , 0 > −> | 2 , 0 >

o r m=0) ∗ )

\[ Theta ]1[ i _ ]:=ArcTan [ Jp1 [ i ]/ Jz1 [ i ] ]/\[ Pi ]∗180

80 \[ Theta ]2[ i _ ]:=ArcTan [ Jp2 [ i ]/ Jz2 [ i ] ]/\[ Pi ]∗180

( ∗ P l o t s o f d i p o l e o p e r a t o r m a t r i x e l e m e n t s S u b s c r i p t [ d , 0 ] ^ ( \ [ U p A r r o w ] \ [

U p A r r o w ] ) S u b s c r i p t [ d , 0 ] ^ ( \ [ D o w n A r r o w ] \ [ D o w n A r r o w ] ) S u b s c r i p t [ d , 0 ] ^ ( \ [

U p A r r o w ] \ [ D o w n A r r o w ] ) ( \ [ C a p i t a l D e l t a ] M=0 t r a n s i s t i o n s ) f o r J = 0 , 1 , 2 ∗ )

82 L i s t L i n e P l o t [{ Table [{( i −1)∗di+s t a r t , d0dd0[ i ]} ,{ i , 1 , imax+1}] ,Table [{( i −1)∗di+

s t a r t , d0pd0[ i ]} ,{ i , 1 , imax+1}] ,Table [{( i −1)∗di+s t a r t , d0pp0[ i ]} ,{ i , 1 , imax

+1}]} ,PlotRange−>Full , PlotSty le−>{D i r e c t i v e [ Blue , Thickness [ .005]] ,

D i r e c t i v e [Red , Thickness [ .005]] , D i r e c t i v e [ Purple , Thickness [ .005]]} ,

FrameStyle−> Thickness [ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>" Caption " ,

Frame−>True , Axes−>False ]

L i s t L i n e P l o t [{ Table [{( i −1)∗di+s t a r t , d0dd0[ i ]} ,{ i , 1 , imax+1}] ,Table [{( i −1)∗di+

s t a r t , Abs[d0pd0[ i ] ]} , { i , 1 , imax+1}] ,Table [{( i −1)∗di+s t a r t , d0pp0[ i ]} ,{ i , 1 ,

imax+1}]} ,PlotRange−>Full , PlotSty le−>{D i r e c t i v e [ Blue , Thickness [ .005]] ,

D i r e c t i v e [Red , Thickness [ .005]] , D i r e c t i v e [ Purple , Thickness [ .005]]} ,

FrameStyle−> Thickness [ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>" Caption " ,

Frame−>True , Axes−>False ]

84 L i s t L i n e P l o t [{ Table [{( i −1)∗di+s t a r t , d0pd1[ i ]} ,{ i , 1 , imax+1}] ,Table [{( i −1)∗di+

s t a r t , d0pp1[ i ]} ,{ i , 1 , imax+1}]} ,PlotRange−>Full , PlotSty le−>{D i r e c t i v e [ Blue

, Thickness [ .005]] , D i r e c t i v e [Red , Thickness [ .005]]} , FrameStyle−> Thickness

[ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>" Caption " ,Frame−>True , Axes−>False

]

L i s t L i n e P l o t [{ Table [{( i −1)∗di+s t a r t , Abs[d0pd1[ i ] ]} , { i , 1 , imax+1}] ,Table [{( i −1)
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∗di+s t a r t , d0pp1[ i ]} ,{ i , 1 , imax+1}]} ,PlotRange−>Full , PlotSty le−>{D i r e c t i v e [

Blue , Thickness [ .005]] , D i r e c t i v e [Red , Thickness [ .005]]} , FrameStyle−>

Thickness [ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>" Caption " ,Frame−>True ,

Axes−>False ]

86 P l o t s of coupl ing cons tan t s Subscript [ J , z ]and Subscript [ J , \[UpTee ]] f o r

|0,0> −> |1,0>

L i s t L i n e P l o t [{ Table [{( i −1)∗di+s t a r t , Jz1 [ i ]} ,{ i , 1 , imax+1}] ,Table [{( i −1)∗di+

s t a r t , Jp1 [ i ]} ,{ i , 1 , imax+1}]} ,PlotRange−>Full , PlotSty le−>{D i r e c t i v e [ Blue ,

Thickness [ .005]] , D i r e c t i v e [Red , Thickness [ .005]]} , FrameStyle−> Thickness

[ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>" Caption " ,Frame−>True , Axes−>False

]

88 P l o t s of coupl ing cons tan t s Subscript [ J , z ]and Subscript [ J , \[UpTee ]] f o r

|1,0> −> |2,0>

L i s t L i n e P l o t [{ Table [{( i −1)∗di+s t a r t , Jz2 [ i ]} ,{ i , 1 , imax+1}] ,Table [{( i −1)∗di+

s t a r t , Jp2 [ i ]} ,{ i , 1 , imax+1}]} ,PlotRange−>Full , PlotSty le−>{D i r e c t i v e [ Blue ,

Thickness [ .005]] , D i r e c t i v e [Red , Thickness [ .005]]} , FrameStyle−> Thickness

[ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>" Caption " ,Frame−>True , Axes−>False

]

90 P l o t s of angle \[ Theta ] f o r coup l ings of |0,0> −> |1,0>

L i s t L i n e P l o t [ Table [{( i −1)∗di+s t a r t , \ [ Theta ]1[ i ]} ,{ i , 1 , imax+1}] ,PlotRange−>

Full , PlotSty le−>D i r e c t i v e [ Blue , Thickness [ .005]] , FrameStyle−> Thickness

[ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>" Caption " ,Frame−>True , Axes−>False

]

92 P l o t s of angle \[ Theta ] f o r coup l ings of |1,0> −> |2,0>

L i s t L i n e P l o t [ Table [{( i −1)∗di+s t a r t , \ [ Theta ]2[ i ]} ,{ i , 1 , imax+1}] ,PlotRange−>

Full , PlotSty le−>D i r e c t i v e [ Blue , Thickness [ .005]] , FrameStyle−> Thickness

[ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>" Caption " ,Frame−>True , Axes−>False

]

94 Comparison between numerical d ipo le matr ix elements and p e r t u r b a t i v e

s o l u t i o n s ( f o r |0,0> −> |1,0>)

L i s t L i n e P l o t [{ Table [{( i −1)∗di+s t a r t , d0dd0[ i ]} ,{ i ,1 ,10+1}] ,

96 Table [{( i −1)∗di+s t a r t , 1 . / 3 i } ,{ i ,1 ,11}] , Table [{( i −1)∗di+s t a r t , d0pd0[ i ]} ,{ i

,1 ,10+1}] ,

Table [{( i −1)∗di+s t a r t , 1 . / Sqrt [3] i } ,{ i ,1 ,11}] ,

98 Table [{( i −1)∗di+s t a r t , d0pp0[ i ]} ,{ i ,1 ,10+1}] ,

Table [{( i −1)∗di+s t a r t ,−1./5 i } ,{ i ,1 ,11}]} , PlotRange−>Full , PlotSty le−>{
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D i r e c t i v e [ Blue , Thickness [ .005]] , D i r e c t i v e [ Darker [ Blue ] , Thickness [ .005]] ,

D i r e c t i v e [Red , Thickness [ .005]] , D i r e c t i v e [ Darker [Red ] , Thickness [ .005]] ,

D i r e c t i v e [ Purple , Thickness [ .005]] , D i r e c t i v e [ Darker [ Purple ] , Thickness

[ .005]]} , FrameStyle−> Thickness [ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>"

Caption " ,Frame−>True , Axes−>False ]

H.5 t-J-Model-Roots.nb

In order to determine the values of the parameter α1, α2 and β, we have to solve the three
conditions D̃ee = 0, D̃gg = 0 and D̃eg ge = −D̃eg which is done in Mathematica Code H.5. First the
four composite dipole moments are defined (lines 78−81) and the roots of the equations D̃ee = 0
and D̃gg = 0 are calculated with the help of the build–in function FindRoot that determines the
root of a function. After fixing the two parameters α1 and α2, the parameter β is given by the
intersection point of the two curves plotted in line 104 and 105.

Mathematica Code H.5 t–J–Model–Roots.nb

( ∗ D e f i n e m a t r i x e l e m e n t s o f S u b s c r i p t [ V , d d ] : S u b s c r i p t [ D , e e ] , S u b s c r i p t [ D ,

g g ] , S u b s c r i p t [ D , e g ] , S u b s c r i p t [ D , e g , g e ] ∗ )

78 Dee[ i_ , \ [ Phi ]_ , \ [ Alpha ]1_ , \ [ Alpha ]2_]:=\[ Alpha]2^4 (d0pp[ i ]) 2̂ +\[Alpha]2^2

(1−\[Alpha]2^2)(2d0pp[ i ]d022[ i ]−(dplus12p [ i ])^2)+(1−\[Alpha]2^2)̂ 2 (d022[

i ]) 2̂

Deg[ i_ , \ [ Phi ]_ , \ [ Alpha ]1_ , \ [ Alpha ]2_]:=\[ Alpha]1^2 \[ Alpha]2^2 (d0pp[ i ]d0dd[ i

])+\[Alpha]1^2 (1−\[Alpha]2^2)(d0dd[ i ]d022[ i ])+\[Alpha]2^2 (1−\[Alpha

]1^2)(d0pp[ i ]d011[ i ])+(1−\[Alpha]2^2)(1−\[Alpha]1^2)(d011[ i ]d022[ i ])

80 Dgg[ i_ , \ [ Phi ]_ , \ [ Alpha ]1_ , \ [ Alpha ]2_]:=\[ Alpha]1^4 (d0dd[ i ])^2+\[Alpha]1^2

(1−\[Alpha]1^2)(2d0dd[ i ]d011[ i ]−(dplus11d [ i ])^2)+(1−\[Alpha]1^2)̂ 2 (d011[

i ]) 2̂

Degge[ i_ , \ [ Phi ]_ , \ [ Alpha ]1_ , \ [ Alpha ]2_]:=\[ Alpha]1^2 \[ Alpha]2^2 (d0pd[ i ])

^2+(1−\[Alpha]2^2)(1−\[Alpha]1^2) (d012[ i ]) 2̂

82 ( ∗ D e f i n e c o u p l i n g c o n s t a n t S u b s c r i p t [ J , 1 ] , S u b s c r i p t [ J , z ] , S u b s c r i p t [ J , \ [

U p T e e ] ] ( i n u n i t s o f d ^2/ a^3 ) a n d S u b s c r i p t [ h , z ] ∗ )

hz [ i_ , \ [ Phi ]_ , \ [ Alpha ]1_ , \ [ Alpha ]2_ ]:=.5( Dee[ i , \ [ Phi ] , \ [ Alpha ]1 ,\[ Alpha]2]−
Dgg[ i , \ [ Phi ] , \ [ Alpha ]1 ,\[ Alpha ]2])

84 Jp [ i_ , \ [ Phi ]_ , \ [ Alpha ]1_ , \ [ Alpha ]2_ ]:=2. Degge[ i , \ [ Phi ] , \ [ Alpha ]1 ,\[ Alpha ]2]

Jz [ i_ , \ [ Phi ]_ , \ [ Alpha ]1_ , \ [ Alpha ]2_]:=Dee[ i , \ [ Phi ] , \ [ Alpha ]1 ,\[ Alpha]2]−2Deg[

i , \ [ Phi ] , \ [ Alpha ]1 ,\[ Alpha]2]+Dgg[ i , \ [ Phi ] , \ [ Alpha ]1 ,\[ Alpha ]2]
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86 J1 [ i_ , \ [ Phi ]_ , \ [ Alpha ]1_ , \ [ Alpha ]2_]:=Dee[ i , \ [ Phi ] , \ [ Alpha ]1 ,\[ Alpha]2]+2Deg[

i , \ [ Phi ] , \ [ Alpha ]1 ,\[ Alpha]2]+Dgg[ i , \ [ Phi ] , \ [ Alpha ]1 ,\[ Alpha ]2]

( ∗ C o n d i t i o n S u b s c r i p t [ D , e e ]=0 −> S u b s c r i p t [ \ [ A l p h a ] , 2 ] ( \ [ B e t a ] ) ∗ )

88 root \[ Alpha]21=Table [\[ Alpha ]2/ . FindRoot [Dee[ i , 0 ,0 , \ [ Alpha ]2] ,{\[ Alpha ]2 ,1 ./

Sqrt [2]}] ,{ i , 1 , imax+1}];

root \[ Alpha]22=Table [\[ Alpha ]2/ . FindRoot [Dee[ i , 0 ,0 , \ [ Alpha ]2] ,{\[ Alpha

]2 , .85}] , { i , 1 , imax+1}];

90 root \[ Alpha]23=Table [\[ Alpha ]2/ . FindRoot [Dee[ i , 0 ,0 , \ [ Alpha ]2] ,{\[ Alpha

]2 ,1 . } ] , { i , 1 , imax+1}];

L i s t L i n e P l o t [ Table [{( i −1)∗di+s t a r t , Part [ root \[ Alpha ]21 , i ]} ,{ i , 1 , imax+1}] ,

PlotRange−>{1.05 ,.65} , PlotSty le−>D i r e c t i v e [ Blue , Thickness [ .005]] ,

FrameStyle−> Thickness [ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>" Caption " ,

Frame−>True , Axes−>False ]

92 L i s t L i n e P l o t [ Table [{( i −1)∗di+s t a r t , Part [ root \[ Alpha ]22 , i ]} ,{ i , 1 , imax+1}] ,

PlotRange−>Full , PlotSty le−>D i r e c t i v e [ Blue , Thickness [ .005]] , FrameStyle−>

Thickness [ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>" Caption " ,Frame−>True ,

Axes−>False ]

L i s t L i n e P l o t [ Table [{( i −1)∗di+s t a r t , Part [ root \[ Alpha ]23 , i ]} ,{ i , 1 , imax+1}] ,

PlotRange−>Full , PlotSty le−>D i r e c t i v e [ Blue , Thickness [ .005]] , FrameStyle−>

Thickness [ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>" Caption " ,Frame−>True ,

Axes−>False ]

94 L i s t L i n e P l o t [ Table [{Tan[2ArcCos [ Part [ root \[ Alpha ]22 , i ] ] ] , ( i −1)∗di+s t a r t } ,{ i

, 1 , imax+1}] ,PlotRange −>{{0 ,.5} ,{0 ,6}} , PlotSty le−>D i r e c t i v e [ Blue , Thickness

[ .005]] , FrameStyle−> Thickness [ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>"

Caption " ,Frame−>True , Axes−>False ]

( ∗ C o n d i t i o n S u b s c r i p t [ D , g g ]=0 −> S u b s c r i p t [ \ [ A l p h a ] , 1 ] ( \ [ B e t a ] ) ∗ )

96 root \[ Alpha]11=Table [\[ Alpha ]1/ . FindRoot [Dgg[ i , 0 , \ [ Alpha ]1 ,0] ,{\[ Alpha ]1 ,1 ./

Sqrt [2]}] ,{ i , 1 , imax+1}];

root \[ Alpha]12=Table [\[ Alpha ]1/ . FindRoot [Dgg[ i , 0 , \ [ Alpha ]1 ,0] ,{\[ Alpha

]1 , .85}] , { i , 1 , imax+1}];

98 root \[ Alpha]13=Table [\[ Alpha ]1/ . FindRoot [Dgg[ i , 0 , \ [ Alpha ]1 ,0] ,{\[ Alpha

]1 ,1 . } ] , { i , 1 , imax+1}];

L i s t L i n e P l o t [ Table [{( i −1)∗di+s t a r t , Part [ root \[ Alpha ]11 , i ]} ,{ i , 1 , imax+1}] ,

PlotRange−>Full , PlotSty le−>D i r e c t i v e [ Blue , Thickness [ .005]] , FrameStyle−>

Thickness [ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>" Caption " ,Frame−>True ,

Axes−>False ]
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100 L i s t L i n e P l o t [ Table [{( i −1)∗di+s t a r t , Part [ root \[ Alpha ]12 , i ]} ,{ i , 1 , imax+1}] ,

PlotRange−>{1.05 ,.65} , PlotSty le−>D i r e c t i v e [ Blue , Thickness [ .005]] ,

FrameStyle−> Thickness [ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>" Caption " ,

Frame−>True , Axes−>False ]

L i s t L i n e P l o t [ Table [{( i −1)∗di+s t a r t , Part [ root \[ Alpha ]13 , i ]} ,{ i , 1 , imax+1}] ,

PlotRange−>{1.05 ,.65} , PlotSty le−>D i r e c t i v e [ Blue , Thickness [ .005]] ,

FrameStyle−> Thickness [ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>" Caption " ,

Frame−>True , Axes−>False ]

102 L i s t L i n e P l o t [ Table [{Tan[2ArcCos [ Part [ root \[ Alpha ]12 , i ] ] ] , ( i −1)∗di+s t a r t } ,{ i

, 1 , imax+1}] ,PlotRange−>{{0 ,4} ,{0 ,6}} , PlotSty le−>D i r e c t i v e [ Blue , Thickness

[ .005]] , FrameStyle−> Thickness [ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>"

Caption " ,Frame−>True , Axes−>False ]

( ∗ C o n d i t i o n S u b s c r i p t [ D , e g , g e ]=− S u b s c r i p t [ D , e g ] −> \ [ B e t a ] ∗ )

104 L i s t L i n e P l o t [ Table [{( i −1)∗di+s t a r t , Degge[ i , 0 , Part [ root \[ Alpha ]12 , i ] , Part [ root

\[ Alpha ]22 , i ]]+Deg[ i , 0 , Part [ root \[ Alpha ]12 , i ] , Part [ root \[ Alpha ]22 , i ] ]} , { i

, 1 , imax+1}] ,PlotRange−>Full , PlotSty le−>D i r e c t i v e [Red , Thickness [ .005]] ,

FrameStyle−> Thickness [ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>" Caption " ,

Frame−>True , Axes−>False ]

L i s t L i n e P l o t [{ Table [{( i −1)∗di+s t a r t , Degge[ i , 0 , Part [ root \[ Alpha ]12 , i ] , Part [

root \[ Alpha ]23 , i ] ]} , { i , 1 , imax+1}] ,Table [{( i −1)∗di+s t a r t ,−Deg[ i , 0 , Part [

root \[ Alpha ]12 , i ] , Part [ root \[ Alpha ]23 , i ] ]} , { i , 1 , imax+1}]} ,PlotRange−>Full

, PlotSty le−>{D i r e c t i v e [ Blue , Thickness [ .005]] , D i r e c t i v e [Red , Thickness

[ .005]]} , FrameStyle−> Thickness [ .005] , FrameLabel−>{" x " , " y " } , PlotLabel−>"

Caption " ,Frame−>True , Axes−>False ]
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