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Abstract

In this thesis we study collective e�ects in cold and ultracold atomic ensembles
where the atoms interact via the long-range and anisotropic dipole-dipole inter-
action. These systems have gained a lot of interest both experimentally as well
as theoretically over the past years thanks to the increasing experimental control
and ability to manipulate these systems for example using external electric and
magnetic �elds.

The �rst and main part of this thesis deals with collective e�ects of light-matter
interactions in Rydberg superatoms. It is by now a well-known fact that systems in
which many emitters are coupled to a common radiation �eld show collective and
cooperative behavior. A Rydberg superatom, which consists of many thousands of
individual emitters and is converted into a single, macroscopic two-level system
by the Rydberg blockade, represents a particularly interesting system for studying
the interaction of light and matter. This thesis focusses on the in�uence of the
resonant dipole-dipole interaction, which is mediated by propagating photons, on
the microscopic, internal dynamics of such a Rydberg superatom.

The interaction of a single photon with an individual two-level system is the
textbook example of quantum electrodynamics and has interesting applications for
quantum information processing. Achieving strong coupling in such a system has
so far, however, required con�nement of the light �eld inside resonators or wave-
guides. In Chapter 3, we discuss the experimental realization of strong coherent
coupling between a single Rydberg superatom, consisting of thousands of atoms
and turned into a single two-level system using the Rydberg blockade mechanism,
and a propagating light pulse containing only a few photons. Using a microscopic
description of the system, we show that there is strong and directional emission
back in the propagating laser mode and that the system can be modelled as a two-
level system with collectively enhanced coupling to a one-dimensional continuum
of modes. We discuss the physics of such a system in terms of a master equation
and derive a dynamical phase diagram featuring intrinsically damped Rabi oscilla-
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tions as a consequence of the collectively enhanced emission. The strong coupling
in combination with the nonlinearity of the Rydberg superatom also allows for
the observation of two- and non-trivial three-photon correlations imprinted onto
initially uncorrelated photons. We �nd good quantitative agreement between the
theory and the experiment by phenomenologically extending the two-level model
to a three-level model that also accounts for potential dephasing into dark states
due to internal dynamics of the superatom.

For a better understanding of the internal dynamics of the superatom, we stu-
dy a single collective excitation in a cold ensemble of atoms coupled to a one-
dimensional waveguide. The coupling between the matter and the light �eld gives
rise to collective phenomena such as superradiant states with an enhanced ini-
tial decay rate, but also to the coherent exchange of the excitation between the
atoms. In Chapter 4, we �rst focus on the coherent exchange interaction and �nd
a remarkable universal dynamics for increasing atom numbers exhibiting sever-
al revivals. While this phenomenon provides a limit on the intrinsic dephasing for
such a collective excitation, a setup is presented where the universal dynamics can
be explored.

In addition to the coherent exchange interaction, in Chapter 5 we include the
correlated spontaneous emission. We �nd that the competition between the two
phenomena provides a characteristic dynamics for the decay of the collective ex-
citation and exhibits an algebraic behavior, instead of the expected standard ex-
ponential one, for a large number of atoms. The analysis is �rst performed for a
chiral waveguide where the problem can be solved analytically. We demonstrate
that, remarkably, a bidirectional waveguide exhibits the same behavior for a large
number of atoms and, therefore, it is possible to experimentally access character-
istic properties of a chiral waveguide also within a bidirectional waveguide.

In Chapter 6 we discuss experimentally observed collective e�ects in the decay
dynamics of a Rydberg superatom strongly coupled to a propagating light pulse.
Instead of observing a constant decay rate determined by the collective coupling
strength to the driving �eld, one �nds that the enhanced emission of the single
stored photon into the forward direction of the coupled optical mode depends on
the dynamics of the superatom before the decay. Based on the �ndings of Chap-
ters 4 and 5, we motivate an extension of the previously used three-level model of
the Rydberg superatom by including an additional subradiant state to which the
collectively excited state can coherently couple. We �nd that this extended model
of the superatom well reproduces the observed decay rates providing evidence for
the in�uence of resonant dipole-dipole interactions on the decay dynamics of the
superatom.

The second part of this thesis deals with quantum e�ects in dipolar Bose gases.
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Recent experiments with ultracold lanthanide atoms which are characterized by
a large magnetic moment have revealed the crucial importance of beyond-mean-
�eld corrections in understanding the dynamics of the gas. After a brief review of
interactions in ultracold dipolar Bose gases and a brief discussion of how to calcu-
late beyond-mean-�eld corrections in Chapter 7, we study in Chapter 8 how the
presence of an external optical lattice modi�es the structure of those corrections.
We �nd that deep in the super�uid regime the equation of state is well described
by introducing an anisotropic e�ective mass. However, for a deep lattice we �nd
terms with anomalous density dependence which do not arise in free space. For
a one-dimensional lattice, the relative orientation of the dipole axis with respect
to the lattice plays an important role and the beyond-mean-�eld corrections can
either be enhanced or suppressed.
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Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit kollektiven E�ekten in kalten
und ultrakalten Atomgasen mit langreichweitiger und anisotroper Dipol-Dipol-
Wechselwirkung. Aufgrund der zunehmenden experimentellen Kontrolle über die-
se Systeme und der Möglichkeit sie zum Beispiel mithilfe externer elektrischer und
magnetischer Felder zu manipulieren, haben solche Systeme in den letzten Jahren
sowohl von experimenteller als auch theoretischer Seite großes Interesse gefun-
den.

Der erste und größte Teil dieser Arbeit untersucht kollektive E�ekte der Licht-
Materie-Wechselwirkung in Rydberg-Superatomen. Es ist mittlerweile allgemein be-
kannt, dass Systeme, bei denen viele Emitter an ein gemeinsames Strahlungsfeld
gekoppelt sind, ein kollektives und kooperatives Verhalten zeigen. Ein besonders
interessantes System zur Untersuchung der Wechselwirkung von Licht und Ma-
terie stellt ein Rydberg-Superatom dar, das aus vielen tausend einzelnen Emit-
tern besteht und durch die Rydberg-Blockade in ein einziges, makroskopisches
Zwei-Niveau-System umgewandelt wird. Diese Arbeit konzentriert sich auf den
Ein�uss der resonanten Dipol-Dipol-Wechselwirkung, die durch sich ausbreitende
Photonen vermittelt wird, auf die mikroskopische, innere Dynamik eines solchen
Rydberg-Superatoms.

Die Wechselwirkung eines einzelnen Photons mit einem einzelnen Zwei-Niveau-
System ist das Lehrbuchbeispiel der Quantenelektrodynamik und hat interessante
Anwendungen für die Quanteninformationsverarbeitung. Um eine starke Kopp-
lung in einem solchen System zu erreichen, war es jedoch bisher notwendig das
Lichtfeld in Resonatoren oder Wellenleitern einzusperren. In Kapitel 3 diskutie-
ren wir daher zunächst die experimentelle Realisierung einer starken kohären-
ten Kopplung zwischen einem einzelnen Rydberg-Superatom, das aus Tausenden
von Atomen besteht und mit Hilfe des Rydberg-Blockade-Mechanismus in ein
einzelnes Zwei-Niveau-System umgewandelt wurde, und einem propagierenden
Laserpuls, der nur wenige Photonen enthält. Unter Verwendung einer mikrosko-
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pischen Beschreibung des Setups zeigen wir, dass es eine starke und gerichtete
Emission zurück in die propagierende Lasermode gibt, und das System als Zwei-
Niveau-System mit kollektiv verstärkter Kopplung an ein eindimensionales Mo-
denkontinuum beschrieben werden kann. Wir diskutieren die Physik eines solchen
Systems in Form einer Mastergleichung und leiten ein dynamisches Phasendia-
gramm mit intrinsisch gedämpften Rabi-Oszillationen als Folge der kollektiv ver-
stärkten Emission her. Die starke Kopplung in Kombination mit der Nichtlinearität
des Rydberg-Superatoms ermöglicht auch die Beobachtung von Zwei- und nicht-
trivialen Drei-Photonen-Korrelationen, die in die zunächst unkorrelierte Photonen
induziert werden. Wir �nden eine gute quantitative Übereinstimmung zwischen
Theorie und Experiment, indem wir das Zwei-Niveau-Modell phänomenologisch
auf ein Drei-Niveau-Modell erweitern, um auch die potenzielle Dephasierung in
Zustände, die nicht mehr an das Lichtfeld koppeln, aufgrund der internen Dyna-
mik des Superatoms zu berücksichtigen.

Um die innere Dynamik des Superatoms besser zu verstehen, untersuchen wir
eine einzelne kollektive Anregung in einem kalten Ensemble von Atomen, die an
einen eindimensionalen Wellenleiter gekoppelt sind. Die Kopplung zwischen den
Atomen und dem Lichtfeld führt zu kollektiven Phänomenen wie superradianten
Zuständen mit erhöhter Zerfallsrate, aber auch zum kohärenten Austausch einer
Anregung zwischen den Atomen. In Kapitel 4 konzentrieren wir uns zunächst auf
die kohärente Austauschwechselwirkung und �nden eine bemerkenswerte uni-
verselle Dynamik für größer werdende Atomzahlen, in der die Besetzung der kol-
lektiven Anregung immer wieder aufs Neue auftritt. Während dieses Phänomen
die intrinsische Dephasierung für eine solche kollektive Anregung begrenzt, wird
ein experimentelles Setup vorgestellt, mit dem die universelle Dynamik erforscht
werden kann.

Neben der kohärenten Austauschwechselwirkung beziehen wir in Kapitel 5 die
korrelierte spontane Emission mit ein. Wir �nden, dass das Zusammenspiel zwi-
schen beiden Phänomenen eine charakteristische Dynamik für das Abklingen der
Anregungen liefert und bemerkenswerterweise ein algebraisches Verhalten anstel-
le des erwarteten exponentiellen Verhaltens für eine große Anzahl von Atomen
zeigt. Die Analyse wird zunächst für einen chiralen Wellenleiter durchgeführt, für
den das Problem analytisch gelöst werden kann. Wir zeigen, dass interessanter-
weise ein bidirektionaler Wellenleiter das gleiche Verhalten für eine große Anzahl
von Atomen zeigt und es daher möglich ist, experimentell auf charakteristische Ei-
genschaften eines chiralen Wellenleiters auch mithilfe eines bidirektionalen Wel-
lenleiters zuzugreifen.

In Kapitel 6 diskutieren wir experimentell beobachtete kollektive E�ekte in der
Zerfallsdynamik eines Rydberg-Superatoms, das stark an einen propagierenden
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Laserpuls gekoppelt ist. Anstatt eine konstante Zerfallsrate zu beobachten, die
durch die kollektive Kopplungsstärke zum Lichtfeld, das das Superatom treibt, be-
stimmt wird, stellt man fest, dass die verstärkte Emission des einzelnen gespei-
cherten Photons zurück in die gekoppelten optischen Mode von der Dynamik des
Superatoms vor dem Zerfall abhängt. Basierend auf den Erkenntnissen der Kapi-
tel 4 und 5 motivieren wir eine Erweiterung des bisher verwendeten Drei-Niveau-
Modells des Rydberg-Superatoms um einen zusätzlichen subradianten Zustand, an
den der kollektiv angeregte Zustand kohärent koppeln kann. Wir stellen fest, dass
dieses erweiterte Modell des Superatoms die beobachteten Zerfallsraten sehr gut
reproduziert, was den Ein�uss resonanter Dipol-Dipol-Wechselwirkungen auf die
Zerfallsdynamik des Superatoms belegt.

Der zweite Teil dieser Arbeit behandelt Quantene�ekte in dipolaren Bose-Gasen.
Vor kurzem durchgeführte Experimente mit ultrakalten Atomen aus der Gruppe
der Lanthanoiden, die durch ein großes magnetisches Dipolmoment charakteri-
siert sind, haben die wesentliche Bedeutung von Korrekturen zur Molekularfeld-
näherung ("beyond-mean-�eld corrections") für das Verständnis der Dynamik ei-
nes solchen Gases aufgedeckt. In Kapitel 8 untersuchen wir daher wie ein exter-
nes optisches Gitter die Struktur dieser Korrekturen verändert. Wir zeigen, dass
die Zustandsgleichung des Gases tief im supra�uiden Parameterbereich gut durch
eine anisotrope e�ektive Masse beschrieben wird. Für ein tiefes Gitter �nden wir
jedoch zusätzlich Terme mit einer Dichteabhängigkeit, die von der im freien Raum
abweicht. Für ein eindimensionales Gitter spielt die relative Ausrichtung der Di-
polachse und des Gitters eine wichtige Rolle und kann die Korrekturen zur Mole-
kularfeldnäherung entweder verstärken oder abschwächen.
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Introduction

The interaction of light and matter is essential for many processes in nature. It
allows human beings and animals to see and plants to harvest energy by means
of photosynthesis. Many modern applications such as imaging, spectroscopy, and
optical information processing would be impossible without understanding the
fundamental processes that happen when light interacts with matter.

Classically, the interaction of light and matter can be understood by treating the
emitters as oscillating dipoles which radiate energy in the form of electromagnetic
waves [1]. The emitted radiation can induce oscillations of other dipoles nearby
giving rise to induced dynamical dipole-dipole interactions. On the quantum level,
emitters are often modelled as two-level systems where the dipole is realized by
the dipole moment of the transition between both levels. If all emitters are the
same, the frequency of the emitted light from one emitter matches the resonance
frequency of another which is why these interactions are also referred to as reso-
nant dipole-dipole interactions; such interactions are interesting for two reasons:
First, they are long-range, enabling one emitter to interact with many other emit-
ters at the same time. Second, they include both a dispersive as well as a dissipative
component where the �rst comes from the driving of one dipole by the radiation
of another and the latter derives from the fact that the radiation of one dipole can
simply dissipate into free space [2]. A more thorough discussion of the micro-
scopic origin of resonant dipole-dipole interactions is presented in Chapter 1 and
2.

Moreover, resonant dipole-dipole interactions can change the optical properties
of an ensemble of emitters. In a seminal paper, Dicke showed that emitters that
are spaced much closer than their resonance wavelength do not radiate indepen-
dently but show cooperative behaviour as they are coupled to a common radiation
�eld [3]. The radiation properties of one emitter then strongly depend on the state
of others nearby as a consequence of the resonant dipole-dipole interactions be-
tween them. This cooperative behavior in dense gases leads to huge level shifts
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and correlated spontaneous emission. While the level shifts were identi�ed to lead
to the saturation of the refractive index of dense gases and solids [4], the corre-
lated spontaneous emission gives rise to the phenomenon of superradiance [3, 5].
Superradiance describes a strongly enhanced emission from a dense ensemble of
atoms due to self-stimulated emission. If all emitters are excited, the emitted in-
tensity scales quadratically with the number of emitters (instead of linearly, as
in the case of independent emission). In addition also the emission rate varies
throughout the emission process and scales quadratically if half of the ensemble is
excited [5]. Superradiant properties, including cooperative level shifts, have been
observed in a broad range of physical systems ranging from ensembles of nuclei [6]
over cold atoms [7–10], ions [11], solid-state systems [12, 13] to more arti�cial and
hybrid light-matter systems like superconducting qubits [14], and atoms coupled
to nanophotonic structures [15].

While superradiance was originally discussed in the limit where the emitters are
spaced much closer than the resonance wavelength, collective behaviour also ap-
pears in extended ensembles. In this regime, a strongly enhanced and even highly
directional emission of photons from the ensemble due to constructive interference
is achieved for so-called "timed" Dicke states [16] where the phase information of
the incoming photon is stored in a collective excitation of the ensemble. In contrast
to small ensembles con�ned within the resonance wavelength, where superradi-
ance is also studied in the multi-excitation case, the theoretical study of superradi-
ance in extended ensembles has so far been mostly limited to the single-excitation
limit [16–24], with a few exceptions [25–27], coining the term single-photon super-
radiance [18]. While many aspects of superradiance - such as the quadratic scaling
of the emitted intensity or the strongly directional emission of radiation - can be
understood classically in terms of dipoles oscillating in phase (in analogy to phased
antenna arrays), a quantum-mechanical treatment of the light-matter interaction
is necessary for a full understanding of superradiant phenomena [28].

Intimately related to the phenomenon of superradiance is subradiance which
describes inhibited spontaneous emission due to destructive interference. Just as
superradiance, subradiance has gained a lot of theoretical interest throughout the
years [5, 25, 29–34] but remained elusive in experiments as subradiant states cou-
ple only weakly to the electromagnetic �eld. Most experiments in this direction
focussed on two emitters in molecular [35–37] and ion [38] systems and subra-
diance was only recently observed in atomic ensembles [39–42]. From a practi-
cal point of view, subradiant states are appealing for photon storage [43–45] and
quantum computation [46] as they are less prone to spontaneous emission, and it
was predicted that subradiant states of ordered atomic arrays can lead to a drastic
improvement in photon storage �delities [25].
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Collective and cooperative phenomena are common to various systems and in-
terfacing light with atomic ensembles has been shown to �nd many useful appli-
cations [47]. Ensembles of Rydberg atoms, however, provide a particularly inter-
esting systen to harness the collective response of an atomic ensemble interact-
ing with light inspiring the �eld of Rydberg quantum optics [48–50]. The strong
van der Waals interaction between Rydberg atoms leads to the phenomenon of
dipole- or Rydberg blockade which was �rst discussed in the context of quantum
information processing [51, 52]. Because of the Rydberg blockade only a sin-
gle excitation can be present within a certain volume rendering the optical re-
sponse to incoming photons nonlinear. Using electromagnetically-induced trans-
parency [53], the strong interactions between the Rydberg atoms can be mapped
onto the photons [54, 55] realizing cooperative optical nonlinearities [56] and an
e�ective photon-photon interaction [57–60]. Applications of Rydberg-mediated
photon-photon interactions include a single-photon switch [61] or -transistor [62,
63], and the realization of quantum gates [64, 65].

Particularly interesting is the concept of a Rydberg superatom where all con-
stituents of the ensemble are con�ned within the blockaded volume and a single
photon is su�cient to saturate the medium realizing the most nonlinear response
possible [66]. The whole ensemble then behaves similar to a two-level system with
collectively enhanced coupling strength which gives rise to collectively enhanced
many-body Rabi oscillations [67]. Since the collective excitation of the ensemble
encodes the phase information of the incoming light �eld, there is a strongly direc-
tional emission of the excitation in the direction of the propagating photons. The
strong coupling of a Rydberg superatom to propagating photons and the resulting
forward emission are discussed in Chapter 3 of this thesis. The emitted photons
can be analyzed and two- as well as three-body correlations between the photons
are observed as a consequence of the e�ective photon-photon interaction mediated
by the Rydberg superatom. The strongly directional emission in combination with
the blockade also enables, for example, the realization of a single-photon source
in a cold ensemble [68] as well as in a room-temperature vapor cell [69] where a
four-wave mixing scheme is employed to �rst store and subsequently trigger the
release of the collective excitation in the forward direction.

Even though the description of the Rydberg superatom as a two-level atom pro-
vides a good intuition, the superatom still has an internal structure as it is com-
posed of many emitters that can interact via the resonant dipole-dipole interac-
tion mediated by the propagating light �eld. In Chapter 6 the in�uence of such
collective e�ects on the decay dynamics of a Rydberg superatom due to the reso-
nant dipole-dipole interaction is discussed. In setups where the in�uence of reso-
nant dipole-dipole interactions is obscured by incoherent e�ects (such as inhomo-
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geneous level shifts due to, for example, atomic motion), single-photon subtrac-
tors [70–72] can be realized where the dephasing leads to an irreversible transfer
of the collective excitation to states decoupled from the light �eld.

Complementary to disordered ensembles of atoms in free space, over the past
years there has also been a rapidly growing interest in the light-matter interac-
tion of low-dimensional and engineered atomic structures [73–77]. The advent of
techniques such as optical lattices [78] and optical tweezers [79–81] has enabled
the realization of periodic arrangements of atoms in one, two, and even three di-
mensions. The control of the positions of the atoms allows for a �ne-tuning of the
optical response of the atomic ensemble [82, 83] with impressive results such as a
mirror built from a single layer of atoms [84] which can be functionalized using
the Rydberg blockade to create highly entangled photonic states [85]. In addition
to periodic arrangements of atoms, the experimental progress in the fabrication of
nanostructures and optical nano�bers has paved the way to the new paradigm of
waveguide quantum electrodynamics where quantum emitters, modelled as two-
level systems, are strongly coupled to a one-dimensional continuum of guided
modes [66, 86–88]. A brief introduction to waveguide quantum electrodynamics
is given in Chapter 1. Waveguide quantum electrodynamics is conveniently real-
ized using atoms coupled to the evanescent �eld of an optical nano�ber [89–91]
or a photonic crystal waveguide [15, 92], quantum dots coupled to photonic nano-
structures [93, 94] and superconducting qubits coupled to transmission lines [95].
Recently it was also proposed to realize waveguide quantum electrodynamics with
the guided modes of an ordered atomic array [27]. One-dimensional photonic
structures and nano�bers o�er the possibility to go beyond the long-range reso-
nant dipole-dipole interactions and to realize even in�nite-range interactions me-
diated by photons that are tightly con�ned in two directions but can propagate
along the third one [90, 96]. In addition, other types of interactions can be de-
signed by tailoring the environment using, for example, photonic crystals to realize
the study of tunable and controlled quantum-many-body systems [97]. These sys-
tems allow for the study of strongly correlated photon transport [98–100] and the
physics of low-dimensional dissipative systems [101], and facilitate the creation of
nonclassical states of light [102–104].

The subwavelength con�nement of light in nanophotonic structures like pho-
tonic waveguides and nano�bers further opens the possibility to realize exotic chi-
ral interactions between the emitters [105]. In such structures the direction of
propagation of light is linked to the polarization of the transition dipole moment
of the emitter such that the interaction between the atoms and photons becomes
nonreciprocal [106, 107]. In extreme cases, absorption and emission of photons be-
come even unidirectional. This special type of interaction allows for the implemen-
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tation of cascaded quantum systems [108, 109] where the photons are sent from
one emitter to the next without information back�ow and can function as a tool for
deterministic transfer of quantum information between distant qubits [110]. Other
applications include the more robust generation of atom-atom entanglement [101,
111], the optical single-shot read out of the spin state of a single electron in a
quantum dot [112], and the implementation of scalable quantum networks [113].
In this thesis, collective e�ects of chiral and nonchiral light-matter interactions in
one-dimensional waveguides are studied in Chapters 4 and 5. The results of these
chapters also improve the understanding of the internal dynamics present in the
Rydberg superatom discussed in Chapter 6. The experimental setup of a Rydberg
superatom strongly coupled to a propagating laser mode discussed in Chapters 3
and 6 further o�ers the possibility to realize chiral interactions between a chain
of multiple Rydberg superatoms as a consequence of the directional emission of
photons [72].
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1
Basic Concepts

1.1. Rydberg Atoms

Over the last decades Rydberg atoms have developed into a well-established plat-
form to realize strongly interacting and well-controllable systems in the atomic,
molecular, and optical physics community. While research initially focussed on
spectroscopic and collisional properties of Rydberg atoms [114–116], the huge po-
tential of Rydberg atoms in the emerging �eld of quantum information processing
was realized already two decades ago [51, 52]. In more recent years, the ability to
experimentally control and manipulate Rydberg atoms with ever-increasing pre-
cision opened the path to high-�delity quantum simulation of large ensembles of
interacting Rydberg atoms [117–121].

In this section, we give a brief overview of the general physics of Rydberg atoms
with special focus on their interaction properties. For more details regarding the-
oretical description and experimental work, we refer the reader to the excellent
reviews by Löw [122] and Sa�man [123] and the book by Gallagher [124].

1.1.1. General Properties

Rydberg atoms are atoms excited to an electronic state with principal quantum
number n� 1 close to the ionization threshold. The large quantum number leads
to exaggerated properties concerning lifetime as well as interactions between each
other and with external �elds. This makes them prime candidates for many exper-
iments in atomic, molecular and optical physics. In the case of only a single excited
electron, a Rydberg atom behaves similar to a hydrogen atom and its energy spec-
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trum is well described by

Enlj = − hcR∗

(n− δnlj)2
, (1.1)

where R∗ is the element-speci�c Rydberg constant and δnlj is the so-called quan-
tum defect which accounts for the �ne structure and the charge distribution of the
remaining electrons and the nucleus. The quantum defects decrease with increas-
ing l as the orbitals become more circular and the electron becomes less sensitive
to the in�uence of the non-hydrogenic core. In analogy to the hydrogen atom,
the quantum number n and the quantum defect are combined into a renormalized,
noninteger quantum number n∗ = n − δnlj which also determines the scaling
properties of Rydberg atoms.

As the valence electron in Rydberg atoms is highly excited and the orbital ra-
dius scales as r ∼ (n∗)2, Rydberg atoms can extend over micrometer scales. An
immediate consequence of being in a highly excited electronic state is the long ra-
diative lifetime of Rydberg atoms. The dominant contribution to the spontaneous
emission is given by transition to low-lying states where the transition dipole mo-
ment scales as (n∗)−3/2. The radiative lifetime of high-lying Rydberg states scales
as (n∗)3 and can become on the order of hundred microseconds for principal quan-
tum numbers used in current experiments with cold gases. In room temperature
Rydberg gases, however, the lifetime is limited by blackbody radiation for n ≥ 40
and scales as (n∗)2 [124] being, for example, 42.3µs at 300 K for the 43S state in
rubidium [122].

In contrast to the small transition dipole moments from Rydberg states to the
ground states due to the small spatial overlap, adjacent Rydberg levels can have
enormous transition dipole moments orders of magnitude larger than permanent
electric dipole moments in polar molecules. The transition from 43P3/2 to 43S1/2

in Rb, for example, has a transition dipole moment of 1069 ea0 [122] corresponding
to 2741 D compared to HCN having a permanent electric dipole of 3 D [125]. Large
induced dipole moments in Rydberg atoms also result in an enhanced response to
DC and AC electric �eld with huge polarizabilities scaling as (n∗)7.

1.1.2. Coherent Excitation
In many experimental setups, Rydberg states are excited using a two-photon tran-
sition from the ground state |g〉, which for 87Rb is usually one of the hyper�ne
states from the 5S1/2 manifold, via an intermediate state |e〉 (out of the 5P3/2 hy-
per�ne manifold) to the Rydberg state |r〉 which can either be an S-state or a
D-state. Compared to the direct excitation of a Rydberg P -state using a direct
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1.1. Rydberg Atoms

a) b)

Fig. 1.1.: a) Two-photon transition from ground state |g〉 via intermediate state |e〉 with
Rabi frequency 2Ωe to Rydberg state |r〉 with Rabi frequency 2Ωr . The intermediate state
is far detuned, |∆e| � Ωr, Ωe and the two-photon detuning δ is small. b) E�ective two-
level system after adiabatic elimination. The ground state and Rydberg state are coupled
by the e�ective coupling strength Ω and the Rydberg state acquires an additional decay
from the intermediate state.

transition in the UV-range, the two-photon transition takes advantage of the large
dipole moment of the D2-line in alkali atoms and the availability of high power
lasers for larger wavelengths leading to an increased Rabi frequency on the tran-
sition from |e〉 to |r〉. To avoid the spontaneous decay from the intermediate state,
the coupling from the ground state to the intermediate state is far o�-resonant.
The intermediate state can then be adiabatically eliminated from the dynamics as
will be shown in the following. A rigorous treatment of adiabatic elimination in a
similar setup is given in [126].

The Hamiltonian of the system shown in Fig. 1.1a) in the rotating frame of the
coupling lasers and in the rotating-wave approximation is given by

H = ~

 0 Ωe 0
Ωe −∆e Ωr

0 Ωr δ

 , (1.2)

where 2Ωe and 2Ωr are the Rabi frequencies for the lower transition from |g〉 to |e〉
and the upper transition from |e〉 to |r〉, respectively. For simplicity, we assume all
coupling strengths to be real. The laser for the lower transition is assumed to be
red-detuned with −∆e < 0 and the two-photon detuning is δ. In a �rst step, we
neglect the spontaneous decay from the intermediate state and the Rydberg state.
The time evolution for the state |Ψ(t)〉 = cg(t) |g〉 + ce(t) |e〉 + cr(t) |r〉 is given
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by the coupled di�erential equations

i∂tcg(t) = Ωece(t) , (1.3)
i∂tce(t) = −∆ece(t) + Ωecg(t) + Ωrcr(t) , (1.4)
i∂tcr(t) = δcr(t) + Ωrce(t) . (1.5)

If the laser �elds are su�ciently far detuned from the intermediate state, ∆e �
Ωe, Ωr, and the two-photon detuning δ is small, there is a separation of time scales
into fast dynamics given by ∆e and slow dynamics given by Ωe, Ωr and δ. The fast
dynamics of the intermediate state correspond to high-frequency oscillations with
small amplitude compared to slow oscillations for the ground state and Rydberg
state. The intermediate state can then be eliminated from the dynamics setting
∂tce(t) = 0. As a result, the system behaves as a two-level system with equations
of motion

i∂tcg(t) = ∆AC,ecg(t) + Ωcr(t) , (1.6)
i∂tcr(t) = (∆AC,r + δ)cr(t) + Ωcg(t) , (1.7)

where Ω = ΩeΩr/∆e is the e�ective coupling strength between the ground state
and the Rydberg state (see Fig. 1.1b)) and ∆AC, i = Ω2

i /∆e are AC Stark shifts which
are typically small and can often be neglected.

So far, the lifetimes of the intermediate state and the Rydberg state have been
neglected. While the latter is usually large compared to other time scales in the sys-
tem, the lifetime 1/Γe of the intermediate state cannot be neglected. Even though
the population in the intermediate state is small, it contributes to the spontaneous
emission from the Rydberg state due to the coupling by Ωr. The admixture of the
intermediate state to the Rydberg state can be calculated within �rst-order pertur-
bation theory for ∆e � Ωe, Ωr and gives |r′〉 ≈ |r〉+ Ωr

∆e
|e〉. As a consequence, the

e�ective decay rate of the Rydberg state due to the admixture of the intermediate
state is

Γ = Γr +

(
Ωr

∆e

)2

Γe , (1.8)

where the �rst term is the spontaneous decay rate from the Rydberg state and
the second term gives the decay rate due to the admixture of the intermediate
state and is also referred to as Raman decay. Due to the long Rydberg lifetimes
of a several hundred microseconds, the Raman decay often provides the dominant
contribution to spontaneous emission.
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1.1. Rydberg Atoms

1.1.3. Interactions
One of the prominent properties of Rydberg atoms is their strong and tunable
interaction with each other. In the following, we will elaborate on this.

As Rydberg atoms are many-electron systems, their interaction properties are in
principle very complicated to calculate. One huge simpli�cation arises when the
separation |r| between two Rydberg atoms is much larger than the LeRoy radius
[127] given by rLR ∼ (n∗)2a0, where a0 is the Bohr radius. In this case, the atomic
wave functions of the two atoms do not overlap and the precise form of the charge
distribution as well as their statistics can be neglected. The interaction is then
calculated considering the electrostatic interaction between two localized charge
distributions using a multipole expansion [1]. The leading term in this expansion
is the dipole-dipole interaction1

VDDI(r) =
d1 · d2 − 3(d1 · r̂)(d2 · r̂)

|r|3
, (1.9)

where d1,2 are the dipole moments of the two Rydberg atoms. Upon canonical
quantization, the dipole moments in Eq. (1.9) are replaced by dipole operators pro-
portional to the position operator. It is important to note that Rydberg atoms do
not possess a permanent dipole moment due to the parity of the wave functions
unless a strong external electric �eld is applied and mixes the wave functions. The
dipole-dipole interaction is thus realized by transition dipole moments and the
Rydberg atoms interact via the exchange of virtual photons (see also Section 1.3).

The interaction between two atoms in generic Rydberg states |r〉 = |nljm〉
and |r′〉 = |n′l′j′m′〉 is best understood considering a toy model including only
the asymptotic pair states |rr′〉 and |r′′r′′′〉, where |r′′〉 and |r′′′〉 are other Rydberg
states close in energy. In real systems, the two-channel model is too simpli�ed and
the correct calculation of Rydberg interaction potentials requires more levels, in
particular in the presence of large electric or magnetic �elds or small interatomic
separations where several states strongly mix [128]. The restriction to only a few
states, however, is possible as the dipole-dipole interaction limits the coupling to
energetically close two-atom states for two reasons: First, the energy di�erence
between those states is small and thus less suppressed than transitions to states
far away in energy. Second, the transition dipole moments of states with simi-
lar principal quantum numbers are the largest and transition dipole moments are
strongly suppressed for states with largely di�erent principal quantum numbers.

In the two-channel model, the coupling between the pair states |rr′〉 and |r′′r′′′〉
1Throughout this part of the thesis, we use Gauss units. The dipole-dipole interaction in SI units

is obtained by multiplying with 1/4πε0.
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due to the dipolar interaction leads to the Hamiltonian of the form

H =

(
∆F VDDI

VDDI 0

)
, (1.10)

where ∆F = Er′′ + Er′′′ − Er − Er′ is the energy defect which is also often
referred to as Förster defect [129]. The dipole-dipole interaction takes the form
VDDI(r) = C3/|r|3 where C3 includes the matrix element of the dipole operators
in the numerator of Eq. (1.9). It contains the strength of the transition dipole mo-
ments and implies selection rules for dipole-allowed transitions [128]. Note that in
general C3 is complex but here is assumed to be real for simplicity. The eigenen-
ergies of the Hamiltonian are given by2

V±(r) =
∆F

2
± sign(∆F)

√
∆2

F

4
+ (VDDI(r))2 . (1.11)

One can now distinguish the following cases: If the energy defect ∆F is much
larger than the dipole-dipole interaction, for example for large separation between
the atoms, the atoms interact via the van der Waals interaction potential

VvdW(r) = − C2
3

∆F|r|6
= − C6

|r|6
, (1.12)

where C6 is the interaction strength whose sign depends on the sign of the energy
defect ∆F. The 1/|r|6 dependence arises from a second-order process via the in-
termediate pair state |r′′r′′′〉. This type of interaction is dominant in real systems
when the two atoms are either in the same Rydberg state |r〉 = |r′〉, which is the
case for the experimental setups discussed in this thesis, or if both states are not
directly coupled via a dipole-allowed transition. The interaction between Rydberg
atoms in the same S-state is almost isotropic but the angular dependence reminis-
cent of the dipole-dipole interaction has to be taken into account for states with
nonzero orbital angular momentum, for example P - or D-states [130].

In the opposite limit where the dipole-dipole interaction dominates if the atoms
are very close (|∆F| � VDDI(r)) or if the energy defect vanishes, the interaction
potential reduces to the dipole-dipole interaction

V±(r) = ± C3

|r|3
. (1.13)

2Note that this expression is only correct if ∆F 6= 0 and the eigenvalues for ∆F = 0 read V±(r) =
±VDDI(r).

32



1.2. Rydberg Superatom

The energy defect can be tuned by means of external electric �elds inducing DC
Stark shifts [131, 132] and magnetic �elds [133] to bring pair states into resonance.
By this, the character of the interaction can be changed from a van der Waals type
of interaction to a dipolar interaction very similar to Feshbach resonances [134]
between ground state atoms, where the scattering length can be tuned by magnetic
�elds. Förster resonances, where ∆F = 0, are also discussed in the context of light-
harvesting complexes where they underly the non-radiative energy transfer [135–
137]. The crossover between the dipolar and the van der Waals interaction takes
place at a distance rc = |C3/∆F|1/3.

A special case occurs when the initial states are dipole-coupled, for example
|r〉 =

∣∣nS1/2

〉
and |r′〉 =

∣∣nP3/2

〉
, such that the pair state |rr′〉 is resonant with

|r′r〉. Then, one has resonant dipolar exchange interactions in the MHz regime for
energetically close states which leads to an excitation hopping over large distances
(see also Section 1.3).

The van der Waals interaction (1.12) and the (resonant) dipole-dipole interac-
tion (1.13) are characterized by the coe�cients C6 and C3, respectively. The co-
e�cient C3 scales as (n∗)4 with the principal quantum number whereas the van
der Waals coe�cient C6 even scales as (n∗)11. Typical interaction strengths at
a distance of a few micrometers are on the order of a few ten to hundred MHz.
These energies are several orders of magnitude larger than the magnetic dipole-
dipole interactions or van der Waals interactions for ground state atoms making
them suitable candidates to realize strong coherent interactions in combination
with their long lifetimes [123].

1.2. Rydberg Superatom
One of the most striking consequences of the huge interactions between Rydberg
atoms is the realization of strongly correlated quantum gases leading to the notion
of a Rydberg superatom which is at the center of this thesis. In the following, we
will outline the basic ingredients behind this concept and what makes Rydberg
superatoms so interesting for applications in quantum optics.

1.2.1. Rydberg Blockade
The most important ingredient for Rydberg superatoms is the Rydberg blockade
[51, 52] which arises due to the strong interactions between two Rydberg atoms
as discussed in Section 1.1.3. As a consequence of the strong mutual interaction
between to Rydberg atoms, the excitation of a second or further atoms within a cer-
tain distance from the �rst Rydberg atom is shifted out of resonance and therefore
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Fig. 1.2.: Sketch of the Rydberg blockade. The strong van der Waals interaction shifts the
second excitation out of resonance such that for r < rB only one atom can be excited. The
blockade radius rB depends on the coe�cient C6 and the excitation linewidth Γex which
is typically dominated by the laser linewidth Ω.

blocked (see Figure 1.2). The blockade radius rB depends both on the coe�cient
C6 of the interaction as well as the excitation linewidth Γex. If one is in the ’frozen
gas’ regime where Doppler shifts can be neglected, the excitation linewidth is usu-
ally dominated by the power broadening of the excitation laser and is given by the
Rabi frequency Ω. As soon as the interaction energy shift surpasses this linewidth,
the excitation of the second Rydberg atom is out of resonance giving the condition
for the blockade radius3

C6

r6
B

!
= ~Ω , (1.14)

which can lead to blockade radii on the order of micrometers for highly-excited
Rydberg states [71]. The Rydberg blockade mechanism has been exploited to re-
alize atomic two-qubit gates [138–140] and for entanglement generation [141].

It is worth pointing out that the Rydberg blockade is a special case of the more
general concept of photon blockade, where the absorption of a second photon is
suppressed or even blocked due to a nonlinearity in the excitation spectrum. Here,
the position-dependent shift provides this nonlinearity. Other examples include
photon blockade in cavities [142] and dense samples [143]. In the �rst example the
resonance is shifted due to the coupling of cavity photons with an atom giving rise
to hybridized eigenstates of the Jaynes-Cummings model. In the latter example, the
nonlinearity is a consequence of the position-dependent shift induced by resonant
dipole-dipole interactions between singly-excited states.

3For the sake of clarity, we use a repulsive van der Waals potential (C6 > 0). The de�nition of
the blockade radius for a Rydberg gas interacting via the dipolar potential C3/r

3 is analogous.
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1.2. Rydberg Superatom

b)a)

Fig. 1.3.: a) Level structure of the Rydberg superatom. The ground state |G〉 is coupled to
the (collective) bright state |W 〉 with Rabi frequency 2

√
NΩ. The N − 1 dark states are

not coupled to the light �eld. b) Collectively enhanced Rabi oscillations for the Rydberg
superatom (blue) compared to the Rabi oscillations of a single atom (orange).

1.2.2. Collective States
When applied to atomic ensembles, the Rydberg blockade leads to the creation
of Rydberg superatoms where a large number of atoms collectively share a sin-
gle Rydberg excitation. In order to illustrate this concept, we consider N atoms
con�ned to a volume which is smaller than the blockaded volume. As a conse-
quence of the blockade mechanism, all but the singly-excited states are shifted
out of resonance and the Hilbert space of the system reduces to the ground state
|G〉 = |g1, . . . , gN〉 and the excited states |j〉 = |g1, . . . , rj, . . . , gN〉.

If the ensemble is illuminated by a plane wave of the form eikr, the dynamics of
the system can be reduced to the ground state |G〉 and the bright state, which the
light �eld excites, given by

|W 〉 =
1√
N

N∑
j=1

eikrj |g1, . . . , rj, . . . , gN〉 . (1.15)

This state is also referred to as a "timed" Dicke state as it contains the information
at which time the state |j〉 has been excited [16]. The Hamiltonian of the ensemble
interacting with the light �eld then reduces to an e�ective two-level system of the
form

H =
√
NΩ (|G〉〈W |+ |W 〉〈G|) , (1.16)

where the coupling strength is collectively enhanced by the square root of the
number of atoms in the ensemble (see Figure 1.3). In addition, there are N − 1
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states |Dj〉 orthogonal to the bright state which are insensitive to the light �eld
and are called dark states. The collectively enhanced coupling strength implies a
collectively enhanced and strongly directed emission of the bright state. The dark
states show no directed emission and remain subradiant.

At this point it is important to mention that the plane wave can only be used for
pedagogical reasons as it is unphysical in real setups. First, a plane wave extends
over the whole space and thus barely interacts with the ensemble. Second, even if
one uses the plane wave as an incoming mode, one cannot get the correct collec-
tively enhanced emission as the ensemble cannot emit into plane wave. Including
a physical mode u(r), e.g. a Gaussian beam mode, will be part of Chapter 3 where
the interaction of a Rydberg superatom with a propagating light mode is studied.

If, however, both the radial as well as the longitudinal variation of the mode
function are negligible compared to the length scale of the ensemble, the ampli-
tudes for each atom are the same and the bright state corresponds the well-known
symmetric Dicke state

|W 〉 =
1√
N

N∑
j=1

|g1, . . . , rj, . . . , gN〉 . (1.17)

The collective enhancement of the coupling to the light �eld and the cooperative
behaviour of the atoms in a Rydberg superatom was �rst observed by a density-
dependent increase in the excitation rate [144] and nonlinear scaling with density
of the optical response [56]. The associated acceleration of coherent dynamics
and the characteristic

√
N scaling of the Rabi frequency were also experimentally

veri�ed [67, 145].

1.2.3. Applications of Rydberg Superatoms
The combination of strong light-matter coupling with full blockade of an ensem-
ble in Rydberg superatoms opens the possibility to manipulate light on the single-
photon level. Applications that have been demonstrated so far include the on-
demand generation [67, 69] and the deterministic absorption [71] of single pho-
tons.

The principle of a single-photon source based on a Rydberg superatom was �rst
demonstrated in [67] using a dense and small ensemble of cold rubidium atoms.
The single-photon creation is facilitated by a four-wave mixing scheme where the
Rydberg state is excited by a two-photon transition and then stored as a collective
superposition inside the ensemble. When the photon is retrieved by coupling the
Rydberg state to an intermediate state, the mode information stored in the excita-
tion triggers a collective spontaneous emission process on the transition from the
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intermediate state to the ground state with enhanced emission rate into the same
mode as the stored photon.

The generation of only a single photon during this process strongly depends
on the ensemble being fully blockaded. This is shown by measuring the intensity
correlations at zero time delay g(2)(0) for the outgoing light as a function of the
e�ective principle quantum number n∗ of the Rydberg level. In the experimental
setup realized in [67] the ensemble becomes fully blockaded as n∗ increases lim-
iting the number of storable photons to one. Consequently, g(2)(0) decreases to a
value close to zero for n∗ > 90 establishing high-quality single-photon statistics.

More recently, a single-photon source based on the same principle was demon-
strated in a room-temperature atomic vapor [69], dramatically reducing the com-
plexity of this approach. In the experiment, the vapor was contained in a wedge-
shaped glass micro cell which could be translated perpendicular to the excitation
beam thereby varying the longitudinal thickness of the atomic ensemble. Upon
reducing the size of the cloud, single-photon statistics were demonstrated. Due to
the higher temperatures and associated line broadening, the room-temperature ap-
proach requires much higher intensities for the excitation lasers resulting in Rabi
frequencies on the order of GHz compared to those in the MHz regime for cold
gases.

Instead of creating a single photon on demand, taking advantage of Rydberg
superatoms as saturable absorbers can be used to deterministically remove single
photons from a light �eld [70, 71]. This enables applications including but not
limited to the realization of number-resolved photon detection or the creation of
non-classical states of light for quantum-enhanced metrology [146].

Operating a Rydberg superatom as a single-photon absorber relies on engineer-
ing fast dephasing of the bright state |W 〉 into subradiant dark states |Dj〉. As this
process is irreversible, the absorbed photon is converted into a stationary Ryd-
berg excitation preventing stimulated emission caused by the propagating light
mode. As a consequence, the photon statistics of incoming coherent �elds will
be altered. The photon statistics of the incoming coherent �eld follows a Poisson
distribution while the mean number of photons for the outgoing �eld is reduced
by one whereas the width of the distribution remains unchanged. This results in
super-Poissonian statistics of the outgoing light �eld, visible in the appearance of
bunching features in the intensity correlations.

It is important to note that the deterministic subtraction of a photon is drastically
di�erent than applying the photon annihilation operator a, where the amplitude
for removing a photon depends on the photon number which leaves a coherent
state invariant. The photon subtraction, however, removes a photon independent
of the photon number. Very recently, the capability to extend the single-photon
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absorber scheme to multiple superatoms in a cascaded setup was demonstrated
experimentally [72].

1.3. Resonant Dipole-Dipole Interactions

One of the main themes of this thesis is the resonant dipole-dipole interaction
between emitters. In this section, we will brie�y discuss the microscopic origin
and form of this interaction and also comment on the connection with (resonant)
dipole-dipole interactions in Rydberg ensembles as discussed in Section 1.1.3. A
more detailed derivation of the resonant dipole-dipole interaction will be given in
Chapter 2 in the context of a one-dimensional waveguide, which is conceptually
similar to the three-dimensional case considered in this section.

The microscopic origin of the resonant dipole-dipole interaction is most easily
understood by considering an ensemble of identical two-level atoms with internal
states |g〉 and |e〉 dipole-coupled to the vacuum modes of the electromagnetic �eld.
This system is described by the Hamiltonian, using the rotating-wave approxima-
tion and within the rotating frame,

H =
∑
µ

∫
d3q

(2π)3
~ωqa

†
qµaqµ +

∑
j

[
σ−j d · E†(rj) + d · E(rj)σ

+
j

]
. (1.18)

Here, the �rst term corresponds to the quantized free electromagnetic �eld de-
scribed by the creation and annihilation operators a†qµ and aqµ, respectively, with
polarizations µ. The photons have the dispersion relation ωq = c|q| − ω0. The
second term describes the light-matter coupling of the transition |g〉 − |e〉 with
resonance requency ω0 = ck = 2πc/λ, σ− = |g〉〈e|, and the transition dipole mo-
ment d = dd̂, which is assumed to be real for simplicity. The electric �eld operator
in three dimensions reads

E(r) =
∑
µ

∫
d3q

(2π)3
cµqaqµe

iqr , (1.19)

with cµq = i
√
ωq2π~ εµq, where εµq is the polarization vector of the mode with

momentum q and polarization µ.
If one is only interested in the dynamics of the emitters, one can integrate out

the photonic degrees of freedom and, when neglecting retardation e�ects, arrives
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at a master equation for the reduced density matrix of the atoms [2]

∂tρ(t) = − i
~

[
1

2

∑
j 6=l

~V (rj − rl)σ
+
j σ
−
l , ρ(t)

]

+
∑
j,l

F (rj − rl)

(
σ−l ρ(t)σ+

j −
1

2

{
σ+
j σ
−
l , ρ(t)

})
(1.20)

with the nonradiative (coherent) and radiative (dissipative) part, respectively,

V (r) =
3Γ

2

[
−cos(η)

η
(1− ξ2) + (1− 3ξ2)

(
cos(η)

η3
+

sin(η)

η2

)]
, (1.21)

F (r) =
3Γ

2

[
sin(η)

η
(1− ξ2) + (1− 3ξ2)

(
cos(η)

η2
− sin(η)

η3

)]
. (1.22)

Here, Γ = 4k3d2/3~ is the single-atom spontaneous decay rate in free space4, η =
k|r| and ξ = d̂·r̂ denotes the relative orientation of the dipole moment with respect
to the distance vector of two atoms. Note that the case rj = rl is excluded for the
coherent part in Eq. (1.20) as this would give rise to a Lamb shift which is already
included in the resonance frequency of the atoms. In the dissipative part, rj = rl
corresponds to the single-atom spontaneous decay rate. The position-dependent
terms V (rj − rl)σ

+
j σ
−
l and F (rj − rl)σ

+
j σ
−
l are responsible for the long-range,

anisotropic coherent exchange of excitations and correlated spontaneous emission,
respectively. The latter are responsible for phenomena like superradiance where
cooperative spontaneous emission occurs for dense ensembles with η � 1 for all
atoms [3].

It is interesting to note that combining the non-radiative part (1.21) and radiative
part (1.22) as G(r) = −V (r) + iF (r), one obtains the classical Green’s function of
an oscillating dipole projected onto the dipole moment.5 The equivalence to the
classical case is a consequence of the Maxwell equations being also valid for the
quantized electromagnetic �eld.

It is important to distinguish two limits determined by the parameter η = k|r|.
The near-�eld behaviour is characterized by η � 1. This occurs if the atoms are
much closer than the wavelength of the resonant transition. Then the dissipative
part approaches the constant Γ while the non-radiative part diverges as 1/η3 and

4We used Gaussian units in the derivation above. In SI units the decay rate is the more familiar
Γ = k3d2/3π~ε0.

5The minus sign in front of V depends on the de�nition of the coherent exchange amplitudes in
the Hamiltonian.
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Fig. 1.4.: Radial dependence of the resonant dipole-dipole interaction. a) Radia-
tive/dissipative part for perpendicular (orange dashed) and parallel (blue solid) orienta-
tion of the dipole moment to the relative position of the dipoles. The correlated decay
approaches a constant for close atoms in both cases and decays as sin(kr)/kr for perpen-
dicular orientation and cos(kr)/(kr)2 for parallel orientation. b) Nonradiative part for
perpendicular (orange dashed) and parallel (blue solid) orientation of the dipole moment
to the relative position of the dipoles. At short distances the coherent interaction diverges
as 1/(kr)3 and reduces to the static form of the dipole-dipole interaction. At large separa-
tions, it scales as cos(kr)/kr for perpendicular orientation and sin(kr)/(kr)2 for parallel
orientation. Note that the curve for the parallel alignment is multiplied by −1 for better
comparison.
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becomes dominant. The resonant dipole-dipole interaction reduces to the form of
the static dipole-dipole interaction6

V (r) =
d2

|r|3
(

1− 3(d̂ · r̂)2
)

(1.23)

between the two transition dipole moments d1 = d2 = d. Note that, however,
the resonant dipole-dipole interaction still is an exchange interaction while the
static dipole-dipole has the form of a density-density interaction. The near-�eld
regime is also important for Rydberg atoms where the interaction between transi-
tion dipole moments is based on transition frequencies in the microwave regime
such that the near-�eld behaviour is dominant for typical experiments with con-
�ned ensembles.

In the far �eld, where η � 1, corresponding to atoms many wavelengths apart
or extended ensembles, both the dissipative part and the non-radiative part be-
come relevant and the behaviour is given by sin(η)/η and cos(η)/η, respectively,
with an additional geometric factor depending on the relative orientation between
the dipole moment and the vector r between the dipoles. The full dipole-dipole in-
teraction takes the form∼ eiη/η which has the same form as a spherical wave. The
full dependence of V (r) and F (r) on η for parallel and perpendicular orientation
of the dipole moment with respect to the relative distance between the emitters is
shown in Fig. 1.4.

1.4. Waveguide �antum Electrodynamics
In this section, we brie�y discuss the main properties and features of low-dimen-
sional waveguide systems giving rise to the new paradigm of waveguide quantum
electrodynamics where atom-like quantum emitters are coupled to the electro-
magnetic �eld of a one-dimensional waveguide. Particular emphasis will be put
on the appearance of nonreciprocal and chiral light-matter interactions, which
we will make use of for parts of this thesis. Commonly used implementation of
waveguide systems are optical nano�bers and photonic crystal waveguides, and
superconducting qubits coupled to transmission lines operating in the microwave
regime. A more detailed overview for optical nano�bers is given in [147] and
in [94] for photonic nanostructures such as photonic crystal waveguides. An ex-
tensive review of superconducting qubits coupled to transmission lines is given
in [148].

6In order to obtain the dipole-dipole interaction in SI units, one has to multiply the expression by
1/4πε0.
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Waveguides are characterized by a set of guided modes that propagate with very
low losses along a one-dimensional channel. One way to realize guided modes in
optical nano�bers is by tightly con�ning light along two directions, while allow-
ing it to freely propagate along the third one. Optical nano�bers have a tapered
structure such that the light can be e�ciently coupled into the nano�ber but is
still mode-matched to the thinned part. A second approach is to use structures
such as photonic crystals, where the guided modes along one direction are the
consequence of band gaps opening in the other direction because of periodic mod-
ulations of the structure or the refractive index [149]. Waveguide quantum electro-
dynamics in those systems is then realized by coupling to atoms via the evanescent
�eld of the guided modes. Another possibility is, instead of using real atoms, to use
arti�cial atoms composed of quantum dots or superconducting qubits which are
then coupled to photonic structures or to the continuum of an open transmission
line realized by a microwave LC circuit, respectively.

Important parameters in all waveguide quantum electrodynamics implemen-
tations are the emission rate into the guided modes of the waveguide Γ1D and
the emission rate into free space Γ. These parameters constitute the two �gures
of merit: The emission probability into the waveguide given by Γ1D/(Γ1D + Γ),
also called β-factor, and the optical depth OD = NΓ1D/Γ, which includes the
number of emitters N coupled to the waveguide. While the β-factor accounts for
the e�ciency of the coupling to the waveguide modes for a single atom, the op-
tical depth is the determining quantity for collective e�ects such as super- and
subradiance to be observed. Setups with atoms coupled to optical nano�bers and
photonic crystal waveguides only o�er coupling e�ciencies on the order of a few
to a few ten percent [90–92] whereas solid-state implementations using quantum
dots and superconducting qubits achieve couplings which are one or two orders
of magnitude larger owing to the larger transition dipole moment of the arti�cial
atoms [93, 95]. On the other hand, current solid-state implementations of wave-
guide quantum electrodynamics have only been realized with around ten super-
conducting qubits [150, 151], while for atom-based setups with optical nano�bers
a few hundred to thousand atoms have been trapped [89] enabling the observation
of strongly correlated photon transport through the waveguide [100].

In contrast to free space setups, where the amplitude of the electromagnetic
�eld decays with distance, one-dimensional or quasi-one-dimensional system have
�elds propagating with almost nondecaying amplitude along the waveguide axis.
This leads to in�nite-ranged7 resonant dipole-dipole interactions which have been

7Strictly speaking, in�nite-ranged interactions are only possible for purely one-dimensional sys-
tems. In a broader sense, in�nite-ranged here means that all atoms of an ensemble are inter-
acting with the same strength albeit with di�erent phase factors.
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observed experimentally for atoms trapped close to optical nano�bers [90] but also
in optical cavities, where self-organization due to in�nite-ranged interactions was
observed in a quantum degenerate Bose gas [152]. For purely one-dimensional sys-
tems, the exchange interaction strengths and correlated emission rates in Eq. (1.20)
take the form

V1D(z) = Γ1D sin(k|z|) , (1.24)
F1D(z) = 2Γ1D cos(k|z|) , (1.25)

respectively, where 2Γ1D is the emission rate of a single atom into the waveguide.
In addition, there is an uncorrelated decay into nonguided modes. Note that the
detailed derivation of the dynamics of a one-dimensional system is presented in
Chapter 2.

Another interesting prospect of low-dimensional arti�cial photonic structures
is to realize non-Markovian dynamics in photonic crystal waveguides [153, 154].
In these systems, a band gap opens around a certain frequency and changes the
dispersion relation around the band gap strongly reducing the group velocity of
the photons close to the edge of the band gap [155, 156]. Then, non-Markovian
e�ects can appear either due to the deviation from the linear dispersion relation
or due to the stronger in�uence of retardation e�ects coming from the slowed
down propagation velocity of the photons mediating the interaction. Examples of
non-Markovian e�ects include the appearance of atom-photon bound states [157,
158], deviations from the exponential decay of an excitation [159], and super-
superradiant behavior beyond the collective enhancement of the emission due to
time-delayed feedback [160, 161]

1.4.1. Chiral Light-Ma�er Interactions
A very intriguing feature of quasi-one-dimensional systems where the light is
strongly con�ned in the transversal direction is the appearance of nonreciprocal or
chiral light-matter interactions. This is a consequence of a spin-momentum lock-
ing of light which we will brie�y discuss in the following. A very good account on
the physics of chiral light-matter interactions is given in [105] while the angular
momentum of light and spin-momentum locking are discussed in depth in [107].
In the remainder of this section, we will closely follow the arguments presented in
those works.

In order to understand nonreciprocal or chiral light-matter interaction, we con-
sider a focused light beam propagating along the z-axis inside a waveguide. The
electric �eld is given by E±(r, t) = (E±(r)e−i(ωt∓kz) + c.c)/2, where E± is the
�eld amplitude, k = 2π/λ is the wave vector and ω the angular frequency. The
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positive and negative signs denote the direction of propagation of the �eld along
the z-axis. Assuming no charges inside the waveguide, we can apply Gauss’ law
∇ · E± = 0 and get

∂xEx±(r) + ∂yEy±(r) + ∂zEz±(r)± ikEz± = 0 . (1.26)

If the �eld amplitude E is slowly varying along the z-direction, we can set
∂zEz±(r) ≈ 0 and obtain an expression for the longitudinal component of the �eld
amplitude

Ez±(r) = ∓ i
k

(
∂xEx±(r) + ∂yEy±(r)

)
. (1.27)

Consequently, there is a longitudinal component of the electric �eld if there is a
strong gradient in the transverse direction of the electric �eld which happens if
the light �eld is strongly focused or is con�ned within the order of a wavelength
λ as, for example, in photonic nanostructures. At the same time, the electric �eld
becomes elliptically polarized as a consequence of the phase factor in front. Even
more important, however, is that the direction of polarization depends on the direc-
tion of propagation as indicated by the∓ sign in front of Eq. (1.27). Note that a lon-
gitudinal component of the electric �eld also appears for evanescent waves [107]
to which atoms close to optical waveguides or nano�bers are coupled.

In order to illustrate the appearance of spin-momentum locking, we consider
the electric �eld component of the spin angular momentum density [107, 162]

Sel =
1

16πω
Im (E∗ × E) . (1.28)

Note that there is an analogous de�nition for the magnetic �eld which gives rise
to the magnetic �eld component of the spin angular momentum density. The com-
bination of both contributions gives the (total) spin angular momentum of light S.
The spin angular momentum density of light is an intrinsic property of the elec-
tromagnetic �eld and has to be considered as an independent dynamical property
of the �eld which is related to the polarization degrees of freedom. Other indepen-
dent dynamical properties include the energy density of the �eld, the momentum
density, and the helicity density [107].

Because the electric �eld acquires a longitudinal component, the spin angular
momentum density has a non-zero transversal component whose sign depends on
the direction of propagation of the light mode. This link between the direction
of propagation and the sign of the transverse spin is known as spin-momentum
locking and is a consequence of time-reversal symmetry of Maxwell’s equations
[163].
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The spin-momentum locking directly leads to nonreciprocal couplings to con-
�ned propagating light �elds as can be seen by the following arguments. Consid-
ering modes propagating into the positive and negative z-direction in a waveg-
uide, the emission rates into the respective modes are given by Γ± ∝ |d∗ · E±|2
with the complex transition dipole moment d and �eld amplitudes E±. From the
time-reversal symmetry of Maxwell’s equation it follows that E+ = E∗−. If the
transverse component of the spin angular momentum is nonzero, the �elds can-
not be real and E− 6= E+ implying that Γ− 6= Γ+. Thus, the absorption from and
emission into a propagating mode depends on the direction of propagation of this
mode and the light-matter interaction becomes nonreciprocal.

In the extreme case, one of the rates vanishes, for example Γ− = 0, and the light-
matter interaction becomes unidirectional or chiral. This can be achieved if the
polarization of the light �eld is circular at the position of the emitters and opposite
directions of propagation have orthogonal circular polarization. One way to realize
this, for example, is to place atoms in the evanescent �eld at certain positions close
to a nano�ber [106]. Matching the polarization of the atomic transition to which
the light �eld couples with the polarization of the light �eld, the atom can only emit
into or absorb light from one direction but not the other. It is important to note
that the chirality of the light-matter interaction is only a consequence of the spin-
momentum locking. The waveguide can still support modes propagating in both
directions. Nonreciprocal and chiral light-matter interactions have been realized,
for example, in solid-state systems by coupling quantum dots to a photonic crystal
waveguide [164] and with atoms trapped close to an optical nano�ber [106], where
in both systems a directionality of around 90% was observed.
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2
Microscopic Description of
Light-Ma�er Interaction: Master
Equation and Input-Output
Formalism

In this chapter, we discuss the microscopic description of light-matter interaction
in ensembles of two-level atoms. By integrating out the photonic degrees of free-
dom we end up with an e�ective description of the matter degrees of freedom in
terms of a master equation. This master equation is characterized by the propaga-
tor of the electric �eld which depends on the particular setup at hand and we will
discuss di�erent cases. To illustrate an application of the derived model, we dis-
cuss the propagation of a light pulse through an atomic medium under conditions
of electromagnetically induced transparency.

2.1. Master Equation
We consider a system of N noninteracting two-level atoms at positions rj , where
each atom has a ground state |g〉 and an excited state |e〉 which are separated by
the energy ~ω0 = ~ck as shown in Figure 2.1a). The Hamiltonian describing the
system in the rotating-wave approximation1 and within the rotating frame of the

1Since we are mostly interested in optical setups, where the transition frequency is on the order
of a few hundred THz and coupling constant γ is in the MHz regime, this approximation is well
satis�ed for our purposes.
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Fig. 2.1.: a) Two-level atoms coupled to a one-dimensional waveguide. The waveguide
supports (in general) left- and right-propagating modes and the atoms can emit (absorb)
photons into (from) both modes with single-atom coupling strength √γ. b) E�ective sys-
tem after the elimination of the waveguide photons. The atoms interact via an (in�nite-
ranged) exchange interaction Jjl and have a correlated decay Γjl.

atoms takes the form

H = H0 − ~
√
γ

N∑
j=1

[
E+(rj)σ

−
j + σ+

j E−(rj)
]
. (2.1)

The �rst term,H0, characterizes the free evolution of the electromagnetic �eld and
depends on the geometry of the system. The second part describes the coupling of
the atoms to the electromagnetic �eld with coupling strength √γ and the raising
(lowering) operators σ+ = |e〉〈g| (σ− = |g〉〈e|) for the atomic transition, respec-
tively. The operator E− (E+) denotes the positive (negative) frequency component
of the electromagnetic �eld operator, respectively. Note that the scalar product of
the polarization with the dipole transition moment is included in the de�nition of
E±.

The electric �eld at any time t can be decomposed into the �eld radiated by spon-
taneous emission of the atoms and the free �eld which accounts for the quantized
�eld of the incoming photons and reads [2, 96, 105, 165–169]

E−(r, t) = E−0 (r, t) +
√
γ

N∑
j=1

G(r, rj, ω0)σ−j (t) . (2.2)

In this expression, G(r, rj, ω0) is the propagator of the electric �eld whose precise
form is determined by H0 and we will show explicit forms for di�erent setups in
Section 2.2. The relation in Eq. (2.2) is peculiar in the sense that the propagator is
local in time, which is only correct if the dispersion relation of the photons around
the resonance frequency is linear for all relevant modes within the bandwidth of
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the system and if retardation e�ects due to the propagation of photons through
the ensemble can be neglected. These approximations are usually well satis�ed in
quantum optical experiments with (cold) atoms on which we focus in this thesis.
The approximations will be reviewed and discussed in more detail in the following
section where we explicitly calculate the propagator for one-dimensional setups.

The expression of the electric �eld operator, Eq. (2.2), then serves as the starting
point to derive the master equation that describes the dynamics of the atoms alone.
This derivation has been performed for a general setup in three dimensions [2] as
well as for one-dimensional chiral and nonchiral waveguides [96, 105, 165–169].
For the sake of completeness, we will review this derivation here.

For an arbitrary operatorO that acts only on the atomic degrees of freedom, the
Heisenberg equation of motion reads

∂tO(t) = −i√γ
N∑
j=1

E+(rj, t)[σ
−
j (t), O(t)] + [σ+

j (t), O(t)]E−(rj, t)

= −i√γ
N∑
j=1

E+
0 (rj, t)[σ

−
j (t), O(t)] + [σ+

j (t), O(t)]E−0 (rj, t)

− iγ
N∑

j,l=1

G∗(rj, rl, ω0)σ+
l (t)[σ−j (t), O(t)]

+G(rj, rl, ω0)[σ+
j (t), O(t)]σ−l (t) . (2.3)

Note that here E±0 describes the free evolution of the incoming �eld and does not
depend on any emitter operators. If we only consider coherent input �elds such as
a laser �eld, this contribution can be added to H0 as a classical driving �eld using
the Mollow transformation [170]. Consequently, we will ignore this contribution
in the following.

Next, we use that ∂t〈O(t)〉 = tr(∂tO(t)R(0)) = tr(O∂tR(t)), where R(t) is the
density matrix of the full system including photonic and atomic degrees of free-
dom. We assume the system to be in the initial state R(0) = |0〉〈0| ⊗ ρ(0), where
|0〉 denotes the photonic vacuum and ρ(0) is the initial density matrix of the atomic
subsystem2. Furthermore, we are only concerned with atomic operators and can
thus write tr(R(t)O) = trS(ρ(t)O) where the trace in the second expression only

2Note that we can safely assume the photon �eld to be in the vacuum initially as we have already
separated the contribution coming from the incoming �eld given by E0 for a coherent input.
Equivalently, we can assume the photon �eld to be in a coherent state with �eld amplitude
〈E0〉 initially. In general, a non-coherent input can be included using the corresponding initial
photonic state.
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runs over the atomic degrees of freedom. It then follows

∂t〈O(t)〉 = trS(O∂tρ(t))

= −iγ
N∑

j,l=1

G∗(rj, rl, ω0)trS(σ+
l [σ−j , O]ρ(t))

+G(rj, rl, ω0)trS([σ+
j , O]σ−l ρ(t))

= −iγ
N∑

j,l=1

G∗(rj, rl, ω0)trS
[
O(ρ(t)σ+

l σ
−
j − σ−j ρ(t)σ+

l )
]

+G(rj, rl, ω0)trS
[
O(σ−l ρ(t)σ+

j − σ+
j σ
−
l ρ(t))

]
. (2.4)

Since the operator O is arbitrary, we can infer the equation of motion for the
density matrix ρ, which reads

∂tρ(t) = −iγ
N∑

j,l=1

G∗(rj, rl, ω0)(ρ(t)σ+
l σ
−
j − σ−j ρ(t)σ+

l )

+G(rj, rl, ω0)(σ−l ρ(t)σ+
j − σ+

j σ
−
l ρ(t))

= − i
~

[
~

N∑
j,l=1

Jjlσ
+
j σ
−
l , ρ(t)

]

+
N∑

j,l=1

Γjl

(
σ−l ρ(t)σ+

j −
1

2
{σ+

j σ
−
l , ρ(t)}

)
. (2.5)

The �rst term describes the coherent interaction induced by the virtual exchange
of photons between the atoms, while the second term accounts for the correlated
spontaneous emission (see Figure 2.1b)). The exchange interaction strengths and
decay rates are related to the propagator via

Jjl = −γG
∗(rl, rj, ω0) +G(rj, rl, ω0)

2
, (2.6)

Γjl = iγ(G∗(rl, rj, ω0)−G(rj, rl, ω0)) . (2.7)

Here, the term Jjj accounts for a single-atom Lamb shift and is usually dropped as
the Lamb shift is already included in the resonance frequency of a single emitter.
In turn, Γjj gives the single-emitter decay rate. Note that the above expressions
are general and do not assume any symmetry of the photon propagator. This be-
comes crucial when one considers a one-dimensional chiral waveguide where the
propagator is not symmetric under the exchange of two atoms.

50



2.2. Propagator of the Electromagnetic Field

2.2. Propagator of the Electromagnetic Field
In the previous section we have derived the general master equation that describes
the dynamics of an ensemble of atoms which is coupled to a continuum of photonic
modes. In this section we specify the nature of the photonic modes and focus on
one-dimensional systems which are of interest for the remainder of this thesis.
Of particular interest will be the di�erence between bidirectional and chiral one-
dimensional waveguides. While the former supports modes that can propagate in
both directions, the latter breaks time-reversal symmetry and the symmetry under
exchange of two atoms which leads to the interesting phenomena at the core of
this thesis.

For simplicity, we assume the atoms to be at positions rj = (xj, 0, 0)T along the
waveguide which extends in x-direction and consider the coupling strengths of all
atoms to be equal.

2.2.1. One-Dimensional Chiral Waveguide
In the following, we outline the derivation of the propagator of the photon �eld for
a one-dimensional waveguide focussing �rst on the chiral setup and then extend-
ing this to the bidirectional case. The Hamiltonian for the photons in the rotating
frame of the atoms for the chiral waveguide reads

H0 =

∫ k+qc

k−qc

dq

2π
~ωqa†qaq , (2.8)

where ωq = c|q|−ω0 is the dispersion relation for the photons which is assumed to
be linear around the resonance frequency ω0 of the atoms. The range of momenta
for which the dispersion relation is linear is characterized by the cuto� momentum
qc. The bosonic operators a†q (aq) describe the creation (annihilation) of a photon
with momentum q. The electric �eld operator takes the form

E−(x) = i
√
c

∫ k+qc

k−qc

dq

2π
aqe

iqx . (2.9)

In order to derive the propagator of the photon �eld, we start with the time evo-
lution of the electric �eld which is obtained by formally integrating the Heisenberg
equation of motion

∂taq(t) =
i

~
[H, aq(t)] = −iωqaq(t) +

√
γ c

N∑
j=1

e−iqxjσ−j (t) (2.10)
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which gives

aq(t) = e−iωqtaq(0) +
√
γ c

N∑
j=1

∫ t

0

ds e−iqxje−iωq(t−s)σ−j (s) . (2.11)

Plugging this expression back into the mode expansion of the electric �eld, Eq. (2.9),
results in

E−(x, t) = E−0 (x, t) + ic
√
γ

N∑
j=1

∫ k+qc

k−qc

dq

2π

∫ t

0

ds e−iωq(t−s)+iq(x−xj)σ−j (s) ,

(2.12)

where E−0 (x, t) = i
√
c
∫ k+qc
k−qc

dq
2π
aq(0)e−iωqt+iqx is the noninteracting component of

the electric �eld. Since the dispersion relation is linear, we can easily convert the
integration over the momentum to an integration over the frequency using ω = cq
and ωc = cqc such that we can simplify the second term in Eq. (2.12) to

ic
√
γ

N∑
j=1

∫ k+qc

k−qc

dq

2π
eiq(x−xj)

∫ t

0

ds e−iωq(t−s)σ−j (s)

= i
√
γ

N∑
j=1

eiω0(x−xj)/c
∫ ω0+ωc

ω0−ωc

dω

2π

∫ t

0

ds e−i(ω−ω0)[t−s−(x−xj)/c]σ−j (s)

= i
√
γ

N∑
j=1

eiω0(x−xj)/c
∫ t

0

ds
sin [ωc(t− s− (x− xj)/c)]
π(t− s− (x− xj)/c)

σ−j (s) . (2.13)

In order to simplify the last expression, we assume that the atomic operators
σ−j only slowly vary on a time scale 1/Nγ with Nγ � ωc � ω0. The main
contribution to the integral then comes from values around s = t − (x − xj)/c
as long as x ≥ xj and we can approximate the integration over time as θ(x −
xj)σ

−
j (t − (x − xj)/c), where θ(x) is the Heaviside function with θ(x > 0) = 1,

θ(x < 0) = 0 and θ(0) = 1/2. This approximation is known as narrow-bandwidth
approximation (or Weisskopf-Wigner approximation [171]) and is closely connected
to the Markov approximation [172]. It relies on a continuum of modes and a linear
spectrum and allows to replace the frequency integration by a δ-function at the
retarded time t− (x− xj)/c as long as x ≥ xj . The latter condition is reminiscent
of the chirality of the system.

The electric �eld then takes the form

E−(x, t) = E−0 (x, t) + i
√
γ

N∑
j=1

θ(x− xj)eik(x−xj)σ−j (t− (x− xj)/c) . (2.14)
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Note that this expression still includes retardation e�ects. These can be neglected
if the time scale for a photon to propagate through the ensemble of atoms is
much smaller than the time scale on which the atomic operators evolve, that is
L/c � 1/Nγ, where L is the width of the system. For typical quantum optical
setups with coupling strengths on the order of a few MHz and atom numbers of
a few thousands to ten thousands, this corresponds to a maximum width on the
order of a few millimeters to centimeters. This is well beyond the length scales of
micrometers of those systems we are interested in.

Neglecting retardation e�ects, we can approximate σ−j (t− (x−xj)/c) ≈ σ−j (t)
and the expression for the electric �eld becomes local in time, that is

E−(x, t) = E−0 (x, t) + i
√
γ

N∑
j=1

θ(x− xj)eik(x−xj)σ−j (t) . (2.15)

Comparing this with Eq. (2.2), we can infer the propagator for a one-dimensional
chiral waveguide which reads

Gchiral(x, xj, ω0) = iθ(x− xj)eik(x−xj) = iθ(x− xj)eiω0(x−xj)/c . (2.16)

It is important to note that this propagator is not symmetric under the exchange of
two atoms, that isGchiral(xj, xl) 6= Gchiral(xl, xj) and the coherent exchange terms
and decay rates read

Jjl =
γ

2i
sign(xj − xl)eik(xj−xl) , (2.17)

Γjl = γeik(xj−xl) , (2.18)

where sign(x ≶ 0) = ∓1 and Γjj = γ is the single-atom decay rate.

2.2.2. One-Dimensional Bidirectional Waveguide
In contrast to the chiral waveguide where the atoms are only coupled to modes
propagating into one direction, that is for example only modes having positive
momentum, we turn to the situation where the atoms are coupled to modes having
both positive and negative momenta. In this case, the Hamiltonian that describes
the waveguide photons reads

H0 =

∫ k+qc

k−qc

dq

2π
~ωqa†qaq +

∫ −k+qc

−k−qc

dq

2π
~ωqa†qaq , (2.19)
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where the �rst term is the same as in the chiral case and the second one accounts
for modes propagating with negative momentum. Analogously, the electric �eld
operator is

E−(x) = i
√
c

(∫ k+qc

k−qc

dq

2π
+

∫ −k+qc

−k−qc

dq

2π

)
eiqxaq . (2.20)

Similar to the chiral waveguide, the Heisenberg equation of motion for the pho-
tonic operator aq can be formally integrated and plugged into the expression for
the electric �eld, Eq. (2.20). The interacting part of the electric �eld then has the
form

ic
√
γ

N∑
j=1

(∫ k+qc

k−qc
+

∫ −k+qc

−k−qc

)
dq

2π
eiq(x−xj)

∫ t

0

ds e−iωq(t−s)σ−j (s)

= i
√
γ

N∑
j=1

∑
λ=±

∫ ω0+ωc

ω0−ωc

dω

2π
eiλω(x−xj)/c

∫ t

0

ds e−i(ω−ω0)(t−s)σ−j (s) . (2.21)

Here, the sum over λ = ± accounts for the fact that we now couple to two di�erent
modes. Performing the narrow-bandwidth approximation as well as neglecting
retardation e�ects, we arrive at

i
√
γ

N∑
j=1

∑
λ=±

∫ ω0+ωc

ω0−ωc

dω

2π
eiλω(x−xj)/c

∫ t

0

ds e−i(ω−ω0)(t−s)σ−j (s)

≈ i
√
γ

N∑
j=1

∑
λ=±

θ(λ(x− xj))eiλk(x−xj)σ−j (t)

= i
√
γ

N∑
j=1

eik|x−xj |σ−j (t) . (2.22)

From the last expression, we obtain the propagator of the photon �eld for a bidi-
rectional waveguide, which is

G(x, xj, ω0) = ieiω0|x−xj |/c = ieik|x−xj | . (2.23)
In contrast to the propagator in the chiral case, this propagator is symmetric under
the exchange of two atoms, that is G(xj, xl) = G(xl, xj). The coherent exchange
terms and decay rates are, respectively,

Jjl = γ sin(k|xj − xl|) , (2.24)
Γjl = 2γ cos(k|xj − xl|) . (2.25)

The single-atom decay rate Γjj = 2γ is twice as large as for the chiral waveguide
as the atom can now emit a photon in the forward and backward direction.
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2.3. Propagation through an EIT Medium
As an application of the theoretical foundations we have laid in the previous sec-
tion, we turn to the propagation of a light pulse through an atomic medium under
conditions of electromagnetically induced transparency (EIT) [53]. In such a setup,
the dissipative response of a two-level system to incoming light is changed to being
absorptive by strongly coupling the excited state |e〉 to another metastable state
|r〉 by means of an additional classical light �eld on two-photon resonance.

Typically, the single-photon propagation is studied by means of the Maxwell-
Bloch equations in the paraxial equation [57, 173] where the atomic medium is
assumed to be homogeneous and the photons propagate as so-called dark state
polaritons through the ensemble. In the following, we present an alternative way
to describe the single-photon propagation which uses the master equation (2.5)
to calculate the dynamics of the individual atoms and the input-output relation
(2.2) to reconstruct the outgoing electric �eld. We want to point out that a similar
treatment using the same method is given in [174] where the propagation is solved
numerically and higher input intensities are treated using matrix product states.
Here, we only consider a single excitation and solve the propagation analytically
for a setup which can be modelled as atoms coupled to a chiral waveguide.

2.3.1. Setup

In order to microscopically describe the propagation of a light pulse through an
EIT medium, we consider an ensemble of N three-level atoms with ground state
|g〉, an intermediate state |e〉, and a metastable state |r〉 (see Fig. 2.2a)). The state
|g〉 is coupled to |e〉 by a weak, quantized propagating light �eld. For simplicity, we
assume that the light �eld, which propagates along the z-direction, is characterized
by a single transverse mode of transverse width ξ, which is much larger than the
resonance wavelength λ of the |g〉-|e〉 transition but much smaller than the radial
size of the medium L⊥ (see Fig. 2.2b)). The transition between the intermediate
state |e〉 and the metastable state |r〉 is driven by a classical light �eld with Rabi
frequency 2Ω and detuning δ. The coupling laser is assumed to be homogenous
over the whole ensemble both in radial as well as in longitudinal direction and the
two-photon transition from |g〉 to |r〉 is resonant.

Even though the system is three-dimensional, one can go over to a one-dimen-
sional description if the longitudinal extent of the medium is much larger than
the transverse size of the light mode, that is L � ξ. In this scenario, the �eld
emitted by the atoms has mostly wave vectors which point along the direction of
propagation of the incoming light �eld and the radiated �eld only varies along the
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Fig. 2.2.: a) EIT setup in ladder scheme. A weak (quantized) probe �eld E0 couples to
the transition between the ground state |g〉 and the intermediate state |e〉 with single-
atom coupling strength √γ. A strong coupling laser drives the transition from |e〉 to a
metastable state |r〉with Rabi frequency 2Ω and detuning δ. The intermediate state decays
with a rate Γ. b) Three-dimensional setup for the propagation. The incoming probe �eld
is characterized by a single transverse mode of size ξ. If the transverse mode size is much
smaller than the radial extent L⊥ of the medium and also much smaller than its length L,
the system can be treated as being one-dimensional. The coupling laser is assumed to be
homogenous over the whole ensemble both in radial as well as in longitudinal direction.
c) Propagation through the EIT medium in the one-dimensional approximation and slow
light. The incoming coherent state with temporal mode f(t) propagates through a one-
dimensional chiral system withN atoms of lengthL. Due to the coupling to the metastable
state the group velocity inside the medium is reduced, vg � c, and the outgoing photon
�eld is delayed by τ = L/vg . For long pulses, the propagation is lossless and the temporal
shape is preserved.
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longitudinal axis if the number of atoms is large enough [5] 3. Emission into other
modes can then be neglected with respect to the collective emission in the forward
(and backward direction) and might well be treated as a spontaneous single-atom
decay rate Γ accounting for uncorrelated emission into other directions. Note that
this is only an approximation and it has been shown that keeping the correlated
emission into other modes can lead to interesting physical e�ects [25]. While this
reasoning still allows emission in the backward direction as well, we emphasize
that backscattering is strongly suppressed for a smooth distribution of the atoms.
This can be intuitively understood by the fact that the incoming �eld imprints a
phase eikz on the atoms, while a backscattered �eld has the phase e−ikz . If the
characteristic size of the ensemble is on a scale L � λ, then the backscattered
�eld is strongly suppressed in L/λ.

2.3.2. Model and Master Equation

In the one-dimensional approximation, the Hamiltonian within the rotating frame
of the atoms4 is given by

H1D =

∫ k+qc

k−qc

dq

2π
~ωqa†qag −

√
γ

N∑
j=1

[
E+(zj)σ

−
j + σ+

j E−(zj)
]

+
N∑
j=1

~δσ+
j σ
−
j +

N∑
j=1

~Ω(σ+
j τ
−
j + τ+

j σ
−
j ) . (2.26)

The �rst term represents the photonic �eld propagating from left to right, the
second term accounts for the coupling to the quantized light �eld, the third term is
the atomic Hamiltonian, and the last term gives the coupling of the intermediate
state to the metastable state |r〉. The transition from |g〉 to |e〉 is described by the
operator σ+ = |e〉〈g| and the transition from |e〉 to |r〉 by τ+ = |r〉〈e|. Note
that unlike other approaches, we still retain the granularity of the system in the
direction of propagation and do not assume a homogeneous distribution along this
direction.

Similar to the previous sections, we can integrate out the quantized light �eld

3The important quantity in this context is the Fresnel number F = πξ2/Lλ which in fact should
be on the order of one to treat the problem as being one-dimensional [5].

4And of course within the rotating-wave approximation and the dipole approximation.
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which leads to the master equation for the atoms

∂tρ(t) =− i

~
[H, ρ(t)] + γ

N∑
j,l=1

eik(zj−zl)
(
σ−l ρ(t)σ+

j −
1

2
{σ+

j σ
−
l , ρ(t)}

)

+ Γ
N∑
j=1

(
σ−j ρ(t)σ+

j −
1

2
{σ+

j σ
−
j , ρ(t)}

)
, (2.27)

where H = Hdrive +Hchiral +Hsys is the Hamiltonian of the system with

Hdrive = ~
√
γ

N∑
j=1

(
f(t)eikzjσ+

j + f ∗(t)e−ikzjσ−j
)
, (2.28)

Hchiral =
N∑

j,l=1

~γ
2i

sign(zj − zl)eik(zj−zl)σ+
j σ
−
l , (2.29)

Hsys =
N∑
j=1

(
~δσ−j σ

+
j + ~Ω(σ+

j τ
−
j + τ+

j σ
−
j )
)
. (2.30)

The Hamiltonian Hdrive describes the driving due to the incoming propagating co-
herent light �eld with spatio-temporal mode 〈E0(z, t)〉 = f(t)eikz , the Hamiltonian
Hchiral accounts for the photon-mediated chiral interactions between the atoms and
Hsys describes the pure system Hamiltonian taking into account the detuning from
the intermediate state and the coupling between |e〉 and |r〉. The second term in
Eq. (2.27) gives the correlated emission into the forward direction and the last term
accounts for residual decay of the intermediate state in other directions which we
assume is the same for all the atoms and that emission into other directions than
the forward direction is uncorrelated.

2.3.3. Collective Operators and Equations of Motion

The master equation can be slightly simpli�ed by introducing the collective op-
erators S+ = 1/

√
N
∑

j e
ikzjσ+

j and T+ = 1/
√
N
∑

j e
ikzjτ+

j . Then, the incom-
ing �eld couples to the collective excitation S+ |g1, · · · , gN〉 with collectively en-
hanced coupling strength

√
Nγ =

√
κ described by the Hamiltonian

Hdrive = ~
√
κ(f(t)S+ + f ∗(t)S−) . (2.31)
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In addition, the emission into the forward direction is collectively enhanced and
described by

γ
N∑

j,l=1

eik(zj−zl)
(
σ−l ρ(t)σ+

j −
1

2
{σ+

j σ
−
l , ρ(t)}

)
= κ

(
S−ρ(t)S+

− 1

2
{S+S−, ρ(t)}

)
.

(2.32)

The outgoing electric �eld can be calculated using the input-output relation (2.2)
and reads

E−(z > zN , t) = f(t− z/c)− i
√
κS−(t− z/c) . (2.33)

Introducing the collective operators

S±α =
1√
N

N∑
j=1

e∓i
παj
N e±ikzjσ±j (2.34)

where α is an odd number with −N ≤ α < N , one can write the Hamiltonian
that mediates the chiral atom-atom interactions as

Hchiral =
~γ
2

∑
α

cot
( πα

2N

)
S+
α S
−
α . (2.35)

The collective operator S− can be expressed in terms of S−α as S− =
∑

α aαS
−
α

with aα = 2/[N(e−iπα/N−1)] and similarly forS+. The properties of the operators
S±α and the diagonalization of the Hamiltonian will be discussed in more detail in
Chapter 4 of this thesis.

Using an analogous de�nition for the operators Tα, the coherent part of the
master equation then takes the form

H =
∑
α

(
S+
α

T+
α

)T (
Eα + ~δ ~Ω

~Ω 0

)(
S−α
T−α

)
+~
√
κ(f(t)S+ + f ∗(t)S−) , (2.36)

with Eα = ~γ
2

cot( πα
2N

).
As we are only interested in weak input �elds, we work in the low-excitation

regime, where the collective operators S±α and T±α can be treated as bosonic with
the commutation relations [S−α , S

+
β ] ≈ δαβ and [T−α , T

+
β ] ≈ δαβ , respectively. This

approximation neglects the fact that every atom can only carry one excitation and
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introduces errors on the order of 1/N . For the sake of clarity, we make the re-
placement S− → S and S+ → S† for all collective operators and similarly for
T whenever we use the bosonic approximation. The equations of motion for the
collective (bosonic) operators read

∂tSα(t) = −i(Eα/~ + ∆)Sα(t)− iΩTα − i
√
κf(t)a∗α −

κ

2
a∗αS(t) , (2.37)

∂tTα(t) = −iΩSα(t) , (2.38)

where ∆ = δ− iΓ/2 is a complex detuning that also accounts for the uncorrelated
single-atom decay. Going over to frequency space, we get T̃ (ω) = Ω

ω
S̃(ω) leading

to

ωS̃α(ω) =

(
Eα
~

+ ∆ +
Ω2

ω

)
S̃α(ω) + a∗α

(√
κf̃(ω)− iκ

2
S̃(ω)

)
. (2.39)

Solving this equation for S̃α(ω) and plugging the result into S̃ =
∑

α aαS̃α results
in

S̃(ω) =
∑
α

|aα|2
√
κf̃(ω)− iκ

2
S̃(ω)

ω − (Eα/~ + ∆ + Ω2/ω)
. (2.40)

This equation only depends on the collective operator S̃(ω) and is solved by

S̃(ω) =
1

κ

√
κf̃(ω)µ(ω)

1 + iµ(ω)
2

(2.41)

with µ(ω) = κ
∑

α |aα|2/(ω − (Eα/~ + ∆ + Ω2/ω)). This result can now be used
to directly relate the outgoing photon �eld to the incoming one using Eq. (2.33)
and gives

Ẽ−(z > zN , ω) =
1− iµ(ω)

2

1 + iµ(ω)
2

f̃(ω)ei
z
c
ω . (2.42)

The physical interpretation of Eq. (2.42) is that the prefactor in front of the in-
coming �eld f̃(ω) plays the role of a transmission coe�cient which reduces to a
phase factor if Γ = 0 and includes absorption of photons for Γ 6= 0. Going to the
limit where N →∞, the analytic form of µ(ω) is

µ(ω) ≈ κ
∑
α

4

π2α2

1

ω − ( κ
πα

+ ∆ + Ω2

ω
)

= 2 tan

(
κ/2

ω −∆− Ω2

ω

)
. (2.43)
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Plugging this back into Eq. (2.42) and using 1−i tan(1/2x)
1+i tan(1/2x)

= e−i/x leads to

Ẽ−(z > zN , ω) = exp

(
i

κ ω

(∆− ω)ω + Ω2

)
f̃(ω)ei

z
c
ω . (2.44)

The above formula encodes all information for the propagation of the light pulse
through the medium in the limit of weak intensity where the medium is far below
saturation and the bosonic approximation is valid. It was already derived in the
context of photons propagating through a Rydberg medium under conditions of
electromagnetically induced transparency by approximating the medium as being
continuous [57]. We want to stress that this assumption was not necessary here
and Eq. (2.42) gives the result when retaining the granularity of the system. It
is, however, important to note that in the derivation of Eq. (2.44) we used that
N → ∞ in order to arrive at the continuum limit. This in turn means that also
κ → ∞ which is unphysical when compared to real media that always have a
�nite number of particles. The relevant quantity for the linear optical response
is the (resonant) optical depth OD in the absence of the coupling laser Ω. For
the setup discussed here, it is given by OD = 2κ/Γ = 2Nγ/Γ and is assumed
to be �nite such that we have to keep κ = Nγ constant when going over to the
continuum limit.

The approach discussed above in principle o�ers the possibility to include back-
scattering in the one-dimensional channel, which is neglected in the standard ap-
proach considering a continuous medium. To this end, the coherent exchange
interactions and correlated emission rates of a bidirectional waveguide given in
Eqs. (2.24) and (2.25), respectively, have to be used in Eq. (2.27). This, however, is
beyond the scope of this thesis.

2.3.4. Slow Light
In the low-energy regime where ω � Ω, |∆|, κ, meaning only slowly varying
pulses, the phase factor in Eq. (2.44) can be simpli�ed leading to

Ẽ−(L, ω) ≈ eiωτ f̃(ω) (2.45)

with τ = κ/Ω2 + L/c. This results in an outgoing �eld delayed by τ after trans-
forming back into the time domain (see Fig. 2.2c)). Due to the coupling to the
metastable state |r〉, the group velocity of the light inside the medium is

vg =
L

τ
=

Ω2

g2 + Ω2
c (2.46)

61



Chapter 2. Microscopic Description of Light-Matter Interaction

with g2 = cκ/L = cnγ and the density n = N/L. If the density of the medium is
su�ciently high, the collective coupling strength g can become much larger than
Ω and vg � c.

This phenomenon is known as slow light and has been demonstrated experi-
mentally by slowing down light to a few metres per second in an optically thick
medium [175]. Using a time-dependent coupling laser with Ω(t), it is also possible
to stop the light, store it in the medium and release it on demand [176].

The physical picture behind slow light is that inside the medium, the photons
propagate as dark-state polaritons [173] (or in the slow-light regime also called
slow-light polaritons). They are quasiparticles having both a photonic as well as
a matter component whose relative contribution depends on the ratio Ω/g where
Ω � g corresponds to a more photon-like polariton and in the opposite limit
Ω� g the matter part is dominant. As long as the spectral width of the incoming
probe �eld is much narrower than the EIT linewidth given by ΓEIT = Ω2/|δ−iΓ/2|,
the dispersion relation of the polaritons is linear with ωq = vgq and they propagate
through the medium without losses and without disturbing the pulse shape.
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3
Free-Space �antum
Electrodynamics with a Single
Rydberg Superatom

This chapter deals with the strong coupling of a single emitter to a propagating
light mode. The experimental implementation of the strong coupling is realized
by means of a so-called Rydberg superatom and the microscopic description of
this system is based on the theory discussed in Chapter 2. One consequence of the
strong coupling is the observation of two- and three-body correlations of outgoing
photons which is discussed in the second part of this chapter.

In order to present a coherent story, we will also review relevant experimental
details which are discussed in more depth in Refs. [177] and [178].

3.1. Introduction
The interaction between a single emitter and individual photons is a fundamen-
tal process in nature [179] which underlies many phenomena such as vision and
photosynthesis as well as applications including imaging, spectroscopy or optical
information processing and communication. In the strong coupling limit, where
the coherent interaction between a single photon and an individual emitter exceeds
all decoherence and loss rates, a single emitter can serve as an interface between
stationary and �ying qubits, a central building block for future quantum networks
[180, 181]. Such a quantum optical node is able to mediate e�ective photon-photon
interactions enabling deterministic all-optical quantum gates [182–184].
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One groundbreaking scheme to achieve strong coupling is the use of electro-
magnetic cavities, where the photons are trapped within the �nite volume of a
high-�nesse resonator. The physics of these systems is captured by the seminal
Jaynes-Cummings model [185], which has been experimentally realized and ex-
tensively studied in atomic cavity quantum electrodynamics (QED) [186] and more
recently in circuit QED systems combining on-chip microwave resonators with
superconducting two-level systems [187, 188]. Achieving a strong interaction be-
tween propagating photons and a single emitter opens the possibility to realize
novel quantum-optical devices where atoms process photonic qubits on the �y
and facilitate the preparation of nonclassical states of light [167]. However, mode
matching between the input �eld and the dipolar emission pattern of the quantum
emitter in free space is challenging and has so far limited the achievable coupling
strength [189–191]. Waveguide QED systems seek to overcome this limitation by
transversely con�ning the propagating electromagnetic mode coupled to one or
more emitters [94, 106, 192–196].

Another approach to achieve strong coupling is to use atomic ensembles and
in this chapter we discuss the theoretical and experimental realization of coher-
ent coupling between a propagating few-photon optical �eld and a single Rydberg
superatom in free space. By exploiting the Rydberg blockade e�ect in an atomic
ensemble [52, 67, 197, 198], which allows at most a single excitation shared among
all N constituents, ten thousands of individual ultracold atoms are transformed
into a single e�ective two-level quantum system. The collective nature of this ex-
citation enhances the coupling of the light �eld to the superatom by a factor of√
N compared to the single-atom coupling strength and guarantees an enhanced

directed emission in the forward direction [16, 52]. The resulting large coupling
enables the driving of Rabi oscillations of the single superatom with a few-photon
probe pulse and the observation of the e�ects of the coherent emitter-photon inter-
action on the photon-photon correlations of the outgoing �eld for the �rst time.
We show that our system is well described by the theory of a single quantum
emitter strongly coupled to a one-dimensional quantized light mode and that the
light-matter coupling that is achieved in the experimental setup in free space is
competitive to state-of-the-art optical waveguide QED systems [94, 195, 196].

3.2. Setup

The single Rydberg superatom is experimentally implemented by focusing a weak
probe �eld together with a strong counterpropagating control �eld onto an opti-
cally trapped ensemble of ultracold 87Rb atoms (see Fig. 3.1). The few-photon co-
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SPCMs

(a)

control

probe

(b) (c)

Fig. 3.1.: Sketch of the experimental setup and level scheme. (a) An ensemble of N atoms
is laser-cooled and con�ned within the blockade volume using an optical dipole trap. The
light that interacts with the atoms is detected by single-photon counting modules (SPCM).
Using beam splitters, the setup is also capable of measuring two- and three-photon corre-
lations. (b) For a single atom, the ground state |g〉 is coupled to the Rydberg state |r〉 via a
few-photon probe �eld (red) and a strong control �eld (blue). Their Rabi frequencies are
g0

√
Rin and Ω, respectively, where g0 is the single-atom coupling constant for the probe

�eld andRin is the photon rate. (c) The Rydberg blockade turns the whole ensemble into
an e�ective two-level system with ground state |G〉 and collectively excited state |W 〉. In
addition to the spontaneous Raman decay Γ, the collective state |W 〉 can dephase into the
manifold of dark states, {|Di〉}N−1

i=1 . Figure taken and adapted from [178]

herent probe pulse couples the ground state |g〉 =
∣∣S1/2, F = 2, mF = 2

〉
to the

intermediate state |e〉 = |P3/2, F = 3, mF = 3〉 with a Rabi frequency g0

√
Rin,

where g0 is the single-atom-single-photon coupling constant, determined by the
geometry of the setup, andRin is the photon rate of the incoming probe �eld. The
control �eld couples the intermediate state |e〉 and the metastable Rydberg state
|r〉 =

∣∣111S1/2, mJ = 1/2
〉

with Rabi frequency Ω. Using a large intermediate-
state detuning ∆ which is much larger than the inverse lifetime of the intermedi-
ate state Γe and the Rabi freqeuency Ω, the intermediate state can be adiabatically
eliminated. Setting the two-photon detuning δ to Raman resonance, the dynamics
for each atom simpli�es to those of a resonantly coupled two-level system be-
tween |g〉 and |r〉 with an e�ective Rabi frequency g0

√
RinΩ/2∆. In the e�ective

two-level system, the decay of the Rydberg state is dominated by the spontaneous
Raman decay via the intermediate state |e〉 with rate Γ = Ω2/(2∆)2Γe.

The strong interaction between the Rydberg atoms results in a blockade vol-
ume which only supports a single excitation [52, 67, 197, 198]. Reducing both the
transverse probe beam diameter and the longitudinal extent of the atomic cloud
to values smaller than the radius of the blockaded volume results in a collective
coupling of all N atoms within this volume to the propagating light mode. In the
experimental setup described above, a few ten thousand atoms are con�ned within
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this volume. In this case, theN -body ground state |G〉 = |g1, . . . , gN〉 couples only
to one many-body excited state

|W 〉 =
1√
N

N∑
j=1

eikxj |j〉 , (3.1)

where |j〉 = |g1, . . . , rj, . . . , gN〉 is the state with the jth atom in the Rydberg state
and all others in |g〉, k is the sum of the wave vectors of the probe and control �eld,
and rj denotes the position of the jth atom. Thus, the ensemble ofN atoms acts as
a single two-level superatom coupled to a probe light with the collective coupling
gcol =

√
Ng0Ω/(2∆). In addition to the ground state |G〉 and the singly-excited

state |W 〉, there are N − 1 so-called dark states {|Di〉 , i = 1, N − 1} which also
carry a single excitation but are orthogonal to |W 〉 and do therefore not couple
to the light �eld. It has been shown that the exchange of virtual photons between
atoms provides a coupling between |W 〉 and the dark states [2, 20, 199, 200], which
can alter the decay rate of the state |W 〉 [201, 202]. This will also be discussed in
more detail in Chapters 4 and 5. In addition to that, inhomogeneous dephasing
acting on individual atoms can irreversibly drive the ensemble from |W 〉 into the
manifold of dark states {|Di〉 , i = 1, N−1}, which enables the system to function
as a single-photon absorber [70, 71].

3.3. Theoretical Description
In this section, we present the theoretical description of the experimental setup
based on a microscopic model and show that the interaction of the Rydberg su-
peratom with a propagating light mode results in a collectively enhanced decay
into the same mode. This enables treating the light-matter interaction as a one-
dimensional problem.

We start with a microscopic setup as realized in the experiment, where a large
number of atomsN is harmonically trapped. The density distribution of the ground-
state atoms is given by a Gaussian pro�le with widths σz along the direction of the
incoming light �eld and σr in the transverse direction with peak density n0. As
discussed above, each individual atom is well described by a two-level atom with
ground state |g〉 and the excited Rydberg state |r〉 with an optical transition fre-
quency ω = 2πc/λ and the wavelength λ.

In the following, we describe the two states of the atoms by the bosonic �eld
operators ψ†g(r) for the ground state and ψ†r(r) for the Rydberg state, respectively.
In terms of these operators, the ground state density is de�ned as the expectation
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value

n(r) = 〈ψ†g(r)ψg(r)〉 = n0e
−z2/2σ2

ze−(x2+y2)/2σ2
r . (3.2)

It is important to stress that for a thermal gas above quantum degeneracy the statis-
tics of the operator ψ†g(r) are irrelevant, but the correlations exhibit the fundamen-
tal property

〈ψ†g(r)ψg(r)ψ†g(r′)ψg(r′)〉 = g(2)(r, r′)n(r)n(r′) + n(r)δ(r− r′) (3.3)

with the two-body correlation function g(2)(r, r′). In the present system, the atoms
are randomly distributed within the trap and no correlations appear on length
scales comparable to the wavelength λ, i.e., g2 = 1. Next, we introduce the opera-
tors S+(r) = ψ†r(r)ψg(r) creating a Rydberg excitation from the ground state and
S−(r) = ψ†g(r)ψr(r) for a transition from the Rydberg state to the ground state.
These operators satisfy the commutation relation

[S−(r), S+(r′)] =
(
ψ†g(r)ψg(r)− ψ†r(r)ψr(r)

)
δ(r− r′). (3.4)

Then, the Hamiltonian describing the coupling between the light and the atomic
ensemble within the rotating frame and using the rotating-wave approximation
reduces to

H =
∑
µ

∫
d3q

(2π)3
~ωqa

†
qµaqµ + g

∫
d3r
[
S−(r)E†(r) + E (r)S+(r)

]
, (3.5)

where the �rst term describes the quantized electromagnetic �eld with creation
and annihilation operators a†qµ and aqµ, respectively, for a photon with momentum
q and polarization µ. The photons have the dispersion relation ωq = c|q| − ω.
The second term describes the light-matter coupling where g is the dipole matrix
element for the optical transition. In the following, we assume a polarization p
of the dipole transition along the x-direction. The electric �eld operator in three
dimensions takes the form

E(r) =
∑
µ

∫
d3q

(2π)3
cµq aqµ e

iqr , (3.6)

where cµq = i
√
ωq2π~ p · εµq accounts for the normalization and the in�uence

of the polarization εµq. The incoming electric �eld is characterized by a Gaussian
beam propagating along the z-direction with width w0 and polarization parallel to
p. The precise mode function is denoted as u(r) and gives rise to the transverse
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mode areaA = πw2
0/2. This incoming �eld then couples coherently to theW -state

of the superatom

|W 〉 =
1√
N

∫
d3r u(r) S+(r)|G〉 (3.7)

with the ground state |G〉 =
√

1/N !
∏N

i=1 ψ
†
g(ri) |0〉 of the many-body system.

Here, N denotes the relevant number of particles overlapping with the incoming
mode of the photonic state, i.e.,

N =

∫
d3r|u(r)|2〈G|ψ†g(r)ψg(r)|G〉. (3.8)

In general, this quantity varies within each shot of the experiment as the positions
of the atoms are randomly distributed. However, its �uctuations are suppressed by
∆N/N̄ ∼ 1/

√
N̄ and can be safely ignored for 104 particles participating in the

superatom. Here, N̄ is the mean of the contributing atom number after averaging
over many realizations. In the experimentally relevant regime with λ � w0, σz
and w0 � σr, one gets

N̄ =

∫
d3r|u(r)|2n(r) =

(2π)3/2

4
w2

0σzn0 = (2π)1/2σzA n0 . (3.9)

In order to understand the collective enhancement of the decay of the superatom
state |W 〉, we determine its decay rate within Fermi’s Golden Rule. The averaged
decay rate into a photonic mode q with polarization µ takes the form

Γ̄q,µ =
2πg2

~2
δ(ω−c|q|) |cµq|2

∫
d3r′ d3reiq(r−r′)

〈
ψ†g(r)ψg(r)ψ

†
g(r
′)ψg(r′)

N

〉
× u∗(r′)u(r)

=
2πg2

~2
δ(ω−c|q|) |cµq|2

[
1 +

1

N̄

∣∣∣∣∫ d3re−iqru(r)n(r)

∣∣∣∣2 +O
(

∆N

N̄

)]
(3.10)

and ω denotes the optical frequency of the transition. The �rst term in the square
brackets gives rise to the standard spontaneous decay rate Γ = 4g2ω3/3~c3 for
a single atom. We therefore conclude that the superatom exhibits an incoherent
decay process into an arbitrary photon mode q giving rise to the conventional
spontaneous decay rate. In turn, the second term characterizes the possibility for
collective enhancement of the decay into a speci�c mode. In the experimental

68



3.3. Theoretical Description

parameter regime with w(σz) < σr, however, this collective decay only provides a
signi�cant contribution for modes in the forward direction with an opening angle

sin2 θ .
λ2

π2w2
0

. (3.11)

These angles are, however, on the same order as the angular spread of the incoming
Gaussian beam. Moreover, the backscattering is suppressed by exp(−8π2σ2

z/λ
2).

Thus, it is possible to restrict the analysis to modes that predominantly prop-
agate into the forward direction with momentum k, still allowing for residual
propagation into angles comparable to those in Eq. (3.11). This corresponds to
the paraxial approximation of wave propagation and one can calculate the spon-
taneous emission of the superatom state into the forward propagating Gaussian
beam with mode u(r) and polarization εµ = p which gives

κ =
2πg2

~2

∫
dk

2π
δ(ω−ck)

|cµk |2

A

[
1 +

1

N̄

∣∣∣∣∫ dr|u(r)|2n(r)

∣∣∣∣2
]

=
2π(N̄ + 1)g2

A

ω

~c
.

(3.12)

Here, A = πw2
0/2 denotes the transverse mode volume of the Gaussian beam and

in the following discussion we can well approximate N̄ + 1 ≈ N̄ . For a transverse
width of the atomic density distribution σr . w0, scattering into higher Gaus-
sian modes is possible and the determination of the decay rates into these modes
can straightforwardly be derived within Fermi’s Golden Rule (see Appendix 3.A).
These terms describe the fact that a narrow atomic medium in free space acts as a
lens for the incoming photons.

We conclude from this analysis that the superatom state |W 〉 collectively cou-
ples to a one-dimensional channel of forward propagating modes. The latter are
described by the Gaussian beam of the incoming probe �eld, and the collective
coupling strength takes the form

gcol = 2
√
κ =

√
8πN̄g2ω

A~c
=

√
3N̄ Γ λ2

2πA
. (3.13)

This coupling strength and the associated emission rate κ account for two e�ects:
The �rst is the enhancement by a factor N̄ due to the collective behavior of the
superatom. The second is the scattering probability ∼ λ2/A well known from the
scattering of a focussed beam o� a single atom. Here, the scattering cross section
of a single atom is proportional to the square of its resonance wavelength and the
incoming beam realizes an e�ective mode area A.
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For the narrow bandwidth pulses used in the experiment, the variation in mo-
mentum of the electric �eld is small and one can safely ignore any changes in
the transverse wave function of the Gaussian beam. Furthermore, the incoherent
spontaneous emission into the transverse channels as well as backscattering is well
accounted for by the single atom decay rate Γ.

3.4. Master Equation
As shown in the previous section, the Rydberg superatom predominantly emits
back into the probe �eld mode and we can describe the dynamics of the system in
terms of the Hamiltonian of a single two-level system coupled to a quantized light
�eld in one dimension1

H =

∫
dk

2π
~ck a†kak +

~gcol

2

(
E†(0)σGW + E(0)σ†GW

)
, (3.14)

where ak and a†k are photon annihilation and creation operators, E(x) =
√
c

2π∫
eikxak dk is the electric �eld operator measured in

√
photons/time and σαβ =

|α〉〈β|. Since the probe photons irreversibly leave after a single pass through the
system, we can solve and trace out the time-dependence of the photonic part (see
Appendix 3.B). For a coherent input state, we obtain a master equation for the
atomic density matrix [166, 167]

∂tρ(t) =− i

~
[H0(t), ρ(t)] + κD [σGW] ρ(t), (3.15)

where the Hamiltonian

H0(t) = ~
√
κ
(
α∗(t)σGW + α(t)σ†GW

)
, (3.16)

accounts for the driving by the coherent probe beam with �eld amplitude α(t) and
collective coupling strength

√
κ. The coherent �eld amplitude α(t) is related to

the time-dependent mean photon rate by |α(t)|2 = Rin(t). The dissipative terms
are described by the Lindblad dissipatorD[σ]ρ = σρσ†− (σ†σρ+ρσ†σ)/2 and the
emission rate κ = g2

col/4 of the two-level system into the strongly coupled mode.
1Note that to connect the two-level model derived from the microscopic model in Section 3.3 with

the experiment, one must consider the adiabatic elimination of the intermediate state. In this
case, the e�ective coupling strength is geff

col = gcolΩ/2∆. For simplicity, further theoretical
analysis will only make use of gcol = 2

√
κ and use κ as a free parameter which later will be �t

to the experimental results.
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In addition to this intrinsic decay channel which is derived from the Hamiltonian
in Eq. (3.14), we phenomenologically add the spontaneous Rydberg atom decay
rate Γ of the excited state and the dephasing rate γD of the superatom state |W 〉
into the manifold of dark states |D〉. The resulting master equation then reads

∂tρ(t) = − i
~

[H0(t), ρ(t)] + (κ+ Γ)D [σGW] ρ(t)

+ γDD [σDW] ρ(t) + ΓD [σGD] ρ(t) . (3.17)

The Rydberg population is given by ρWW + ρDD, while the outgoing electric
�eld is

E(t) = α(t)− i
√
κσGW(t) . (3.18)

As a consequence, the equal-time expectation values for the electric �eld opera-
tor reduce to the determination of equal-time correlations of the operator σ†GW(t)
which are obtained from the numerical solution of Eq. (3.17). In particular, the
expectation value of the photon �ux at retarded time s = t− x/c is given by

〈E†(s)E(s)〉 = |α(s)|2 + κ〈σ†GW(s)σGW(s)〉

− i
√
κ
[
α∗(s)〈σGW(s)〉 − α(s)〈σ†GW(s)〉

]
. (3.19)

The �rst term on the right-hand side of this expression is the noninteracting com-
ponent of the intensity, the second part corresponds to the signal coming from
the collective emission of the state |W 〉 into the propagating mode, and the last
term accounts for the interferences between the propagating light mode and the
dynamics of the superatom.

The intensity calculated using Eqs. (3.19) and (3.17) can now be �tted to the
experimental data which is shown in Fig. 3.2 as solid lines and results in the pa-
rameters κ = 0.428µs−1, Γ = 0.069µs−1, and γD = 1.397µs−1. The agreement
between theory and experiment is very good over the whole range of input photon
rates based on a single set of parameters. This clearly shows that the single-emitter
model is capable of reproducing the observed damped Rabi oscillations which can
be understood on a microscopic level.

For a single atom in free space, the coupling to a photon quanti�ed by κ is nat-
urally bounded by the spontaneous decay rate Γ of the bare atom in the case of
perfect mode matching [203]. For a superatom both the coupling gcol ∼

√
κ and

the decay κ into a speci�c mode are increased solely through the collective en-
hancement of the atom-light interaction and the collective spontaneous emission
without any con�nement of the propagating light. Consequently, the superatom
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Fig. 3.2.: Time evolution of the photon signal and the Rydberg population. (a,b) Time
traces of the outgoing photon rate (blue points) and Rydberg population (orange points)
for input pulses (dashed gray line) with peak photon ratesRin = 12.4µs−1 (a) andRin =
2.6µs−1 (b), corresponding to a mean number N̄ph of 71.6 and 15.1 photons in the pulse.
The Rabi oscillation of the single superatom is visible both in the Rydberg state population
and the modulation of the outgoing probe light. (c) Di�erence signal ∆R(t) between the
incoming and the outgoing probe light for di�erent input photon rates Rin. Each time
trace is vertically shifted by the corresponding Rin. Dashed lines indicate the expected
positions of the Rabi oscillation peaks based on the �tted parameters, showing the scaling
of the Rabi period with 1/

√
N̄ph. Solid lines in all panels are �ts to the data with the

theoretical model described in the text using only a single set of �t parameters for all time
traces. Error bars in all panels are SEM and are smaller than the data points. Figure taken
and adapted from [177].
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spontaneously emits into the forward direction of the strongly coupled mode with
probability2 β = κ/(κ+ Γ) = 0.86, while loss of photons due to scattering out of
the propagating mode with rate Γ is minimal as shown in Section 3.3. The main
source of decoherence in the experimental setup is the superatom dephasing γD,
which is expected to be dominated by the thermal motion of the atoms and could
be reduced by further cooling the atoms. However, a coherent virtual exchange of
photons can also provide an additional coherent dynamics of the superatom [2, 20,
199, 200], which will be discussed in more detail in Chapter 4. Given the excellent
agreement between the experimental data and the theoretical model, we conclude
that in the present experimental regime, the potential in�uence of this coherent
term is well accounted for by the phenomenological dephasing rate γD.

3.5. Dynamical Phase Diagram
After having derived the master equation (3.17) and the input-output relation (3.18)
that describe the dynamics of the system, we discuss the implications for the
physics.

3.5.1. Analytical Solution of the Master Equation
In order to get more insight into the physics of the free-space setup, we analytically
solve Eq. (3.17) for a constant driving �eld α(t) = α in the absence of spontaneous
decay Γ and internal dephasing γD. Note that for simplicity we take α to be real.
For a two-level system, the density matrix can be written as

ρ =

(
ρGG ρGW

ρWG ρWW

)
(3.20)

and the resulting equations of motion for its components ρij read

∂tρGG = i
√
κα(ρWG − ρGW) + κρWW , (3.21)

∂tρGW = i
√
κα(ρWW − ρGG)− κ

2
ρGW , (3.22)

∂tρWG = −i
√
κα(ρWW − ρGG)− κ

2
ρWG , (3.23)

∂tρWW = −i
√
κα(ρWG − ρGW)− κρWW . (3.24)

2Note that the de�nition here does not include the nonradiative contribution coming from the
dephasing γD. Including this contribution leads to β′ = κ/(κ+ Γ + γD) = 0.26.
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One can reduce the set of four equations to two by �rst introducing

ρx = ρGW + ρWG , (3.25)
ρy = i(ρGW − ρWG) (3.26)

and replacing ρGG = 1− ρWW since the trace of ρ is preserved. Then, Eqs. (3.21)-
(3.24) reduce to

∂tρx = −κρx , (3.27)

∂tρy = −κ
2
ρy − 4

√
καρWW + 2

√
κα , (3.28)

∂tρWW = −
√
καρy − κρWW . (3.29)

The �rst equation is independent of the other two and can be solved directly. Since
we assume that there are no initial coherences between the light �eld and the atom,
we get

ρx(t) = ρx(0)e−κt/2 = 0. (3.30)

The remaining two equations can be cast into the form

∂t

(
ρy
ρWW

)
=

(
−κ/2 −4

√
κα

−
√
κα −κ

)(
ρy
ρWW

)
+

(
2
√
κα

0

)
. (3.31)

The homogeneous part of this di�erential equation is solved by diagonalizing the
coupling matrix which has eigenvalues

µ± = −3

4
κ± i

√
4α2κ−

(κ
4

)2

= −3

4
κ± iΩeff , (3.32)

where Ωeff is an e�ective Rabi frequency.
The probability to be in the collective state |W 〉 is given by

ρWW(t) =
4κα2

κ2 + 8κα2

[
1−

(
cos(Ωefft) +

3κ

4Ωeff

sin(Ωefft)

)
e−3κt/4

]
. (3.33)

3.5.2. Di�erent Coupling Regimes
As can already be seen from Eqs. (3.32) and (3.33), the system behaves qualitatively
di�erent depending on the parameters α and κ. To illustrate this point, we show
in Fig. 3.3 the visibility of Rabi oscillations, de�ned as

max0≤t≤τ [ρWW(t)]− ρss
WW , (3.34)
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Fig. 3.3.: Dynamical phase diagram of a driven atom in free space. (a) Visibility of Rabi os-
cillations, de�ned as max0≤t≤τ [ρWW(t)]−ρss

WW of an ideal (Γ = γD = 0) atom driven by a
propagating �eld. For large coupling strengths (λ� 1), the system becomes overdamped
and a minimal number of photons is required to observe Rabi oscillations and increases
with coupling strength. For λ� 1, a large number of photons is required to drive the sys-
tem with a π pulse, de�ning a crossover (dashed line) between the weak driving regime and
the regime where intrinsically damped Rabi oscillations can be observed. The experiment
operates at λ = 2.2 such that Rabi oscillations are visible even for low photon numbers.
(b) Examples of the time evolution of the Rydberg population (ρWW + ρDD) for the points
indicated in (a). Figure taken and adapted from [177].

for a constant pulse of length τ as a function of the dimensionless coupling param-
eter λ = κτ and the mean number of photons in the pulse N̄ph = α2τ . In Eq. (3.34)
ρss

WW denotes the steady state value of the bright state population for an in�nitely
long pulse. It is important to note that in contrast to cavity QED, in free-space
and waveguide QED an increase in the coupling gcol necessarily increases the de-
cay rate κ resulting in an intrinsic damping in these systems preventing prefect
transfer of a photonic qubit to a matter qubit within a �nite time [203–205].

For λ � 1, the atom decays very quickly and photons exhibit correlations on
a time scale 1/κ. This results in an overdamped regime, where the system settles
to a nonzero probability to �nd the superatom in its excited state without under-
going Rabi oscillations. This can also be inferred from Eq. (3.32) noting that for
α2 < κ/64 the e�ective Rabi frequency becomes imaginary and we are in the
overdamped regime of a damped harmonic oscillator. This condition can be recast
in the form N̄ph < λ/64 which gives a critical photon number N̄ c

ph = λ/64 for the
transition into the overdamped regime.

In the opposite limit, λ � 1, the interaction between photons and the atoms
is very weak and there are no correlations. Thus, a minimum number of photons
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is required to drive a π pulse which de�nes a crossover (dashed line in Fig. 3.3)
between the regime of Rabi oscillations and the weak driving regime where the ex-
citation probability remains below its steady-state value during the pulse duration
τ . The crossover line can be determined by the condition

Ωeffτ = π (3.35)

in analogy to the π pulse in an ideal two-level system. In the limit λ � 1, the
critical photon number for the crossover is

N̄ c,weak
ph =

π2

4λ
. (3.36)

In between those regions, there is a regime where intrinsically damped Rabi oscil-
lations occur.

Including the Dark State Subspace

Due to inhomogeneous dephasing, the |W 〉 state eventually decays into the dark
state manifold. This decay is modelled by introducing a dummy state |D〉 which
represents the dark state manifold and is populated from the |W 〉 state with a rate
γD. If we neglect the Raman decay, that is Γ = 0, the dark state dephasing can
be included as an additional decay channel in the calculation above. The e�ective
Rabi frequency then takes the form

Ω̃eff =

√
4α2κ−

(
κ+ γD

4

)2

. (3.37)

The inclusion of the dark state manifold by |D〉 in�uences the dynamical phase
diagram in Fig. 3.3 in the following way: The critical photon number for the over-
damped regime does not decrease linearly with λ but rather exhibits a minimum
since now

N̄ c
ph =

(λ+ γ̄D)2

64λ
(3.38)

with γ̄D = γDτ . For λ→ 0 this increases as

N̄ c
ph ≈

γ̄2
D

64λ
+
γ̄D

32
. (3.39)

In the limit λ� 1, the critical photon number again increases linearly with λ but
is shifted by a constant towards larger N̄ph and reads

N̄ c
ph ≈

λ

64
+
γ̄D

32
. (3.40)
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The critical photon number for the crossover from the weak driving regime to
the regime of damped Rabi oscillations also exhibits a shift towards larger photon
numbers and, for λ� 1, reads

N̄ c,weak
ph ≈ π2 + γ̄2

D

64λ
+
γ̄D

32
. (3.41)

Due to the modi�ed scaling of the critical line of the overdamped regime, the weak
drive regime occupies less space in the phase diagram and eventually vanishes for
large dephasing rates.

3.6. Two- and Three Photon Correlation Functions
A central concept for quantifying the e�ective photon-photon interaction medi-
ated by the Rydberg superatom is to study the intensity correlations imprinted by
the interaction onto the initially uncorrelated photons in terms of n-body correla-
tion functions

g(n)(s1, . . . , sn) =
〈E†(s1) · · ·E†(sn)E(sn) · · ·E(s1)〉∏n

i=1〈E†(si)E(si)〉
. (3.42)

Here, the operators E†(s) and E(s) describe the creation and annihilation, re-
spectively, of a photon at time s and are in our system given by Eq. (3.18). The
evaluation of n-body correlation functions, in contrast to the intensity expectation
value, requires the determination of correlations of the operator σ†GW(t) at di�er-
ent times. Within the theoretical model described above any multi-time correlation
function for a coherent input pulse is conveniently calculated using the quantum
regression theorem [172, 206] while alternative approaches using Keldysh formal-
ism have also been developed [207].

It is a remarkable property of a single atom coupled to a single photonic mode
that these expectation values can be determined by the quantum regression theo-
rem without involving any additional approximations. While in general the quan-
tum regression theorem relies on the Born approximation quenching the correla-
tions between the bath and the system, here, the emitted photons never interact
with the superatom again which is exactly the requirement of the quantum regres-
sion theorem [166]. For more details on the derivation of the quantum regression
theorem see Appendix 3.C.

3.6.1. Two-Photon Correlations
Figure 3.4 compares the results for the two-photon correlation function obtained
from the numerical solution of Eq. (3.18) in combination with the quantum regres-
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sion theorem (panels 3.4(c) and 3.4(d)) with the correlation functions measured in
the experiment (panels 3.4(a) and 3.4(b)) for two di�erent incoming photon rates
Rin = 12.4µs−1 ((a), (c)) and Rin = 2.5µs−1 ((b),(d)). The parameters used for
the theoretical calculations are based on the �ts of the measured intensity given
by κ = 0.428µs−1, Γ = 0.069µs−1, and γD = 1.397µs−1.

The theory results are in excellent agreement with the experimental data, in-
cluding correlations beyond the duration of the pulse. These originate from col-
lective spontaneous emission of single photons after the input pulse has left the
sample which can only occur if the superatom is in state |W 〉 at the end of the
driving pulse. The observed correlations indicate that photons separated by up to
5µs become entangled [208] because of the e�ective photon-photon interaction
mediated by the single superatom. This can be understood considering two in-
coming photons: The �rst photon passing the atom results in a superposition of
the photon either being absorbed and the superatom excited or the photon having
passed the superatom without exciting it [20]. The second photon following has
now restricted options depending on whether the �rst photon has been absorbed
or not and the superatom state is already occupied, that is the second photon can
only be absorbed if the �rst one was not. This results in a spatial entanglement
between the two photons mediated by their subsequent interaction with a single
two-level system.

3.6.2. Three-Photon Correlations
A natural extension to studying two-photon correlations is to study the interac-
tion between three photons using three-photon correlations g(3) [209–211]. To
visualize these correlations, it is convenient to transform to Jacobi coordinates

R =
s1 + s2 + s3√

3
, (3.43)

η =
s1 − s2√

2
, (3.44)

ζ =

√
2

3

(
s1 + s2

2
− s3

)
, (3.45)

where R is to be interpreted as center-of-mass coordinate, while η and ζ play the
role of relative coordinates between two photons and a pair of two photons and a
third one, respectively.

Since the experiment naturally uses pulses of �nite length, the correlation func-
tion is not stationary and thus depends on the center-of-mass value R as well as
on the relative coordinates η and ζ . In Fig. 3.5 we show the third-order correlation
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(a)

(c)

(e)

(b)

(d)

(f)

Fig. 3.4.: Two-photon correlation functions of the outgoing probe �eld. (a,b) Measured
two-photon correlations g(2)(t1, t2) for probe pulses with Rin = 12.4µs−1 and Rin =
2.5µs−1. (c,d) Corresponding calculated two-photon correlation function using the values
κ, Γ, and γD obtained by �tting the time traces in Fig. 3.2. (e,f,) Measured (dotted line) and
simulated (solid line) ∆Rin together with scaled input pulses (dashed gray) for reference.
Figure taken and adapted from [177].
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(a) (b)

Fig. 3.5.: Cut through the (a) experimentally measured and (b) calculated third-order cor-
relation function g(3)(s1, s2, s3) along the relative Jacobi coordinates η and ζ . Both cuts
are averaged over the center-of-mass coordinate range Rrange =

√
3× (2.5 . . . 3.5)µs−1.

The photon rate of the probe �eld is Rin = 6.7µs−1 and the parameters for the theoret-
ical calculations are κ = 0.55µs−1, Γ = 0.14µs−1, γD = 1.49µs−1. Note the di�erent
scalings of the colorbars and that the contrast of the experimentally observed correlations
is reduced due to �nite detection e�ciency (for more details, see [178].) Figure taken and
adapted from [178].

function g(3)(η, ζ) for an input rate Rin = 6.7µs−1. It is averaged over the time
range Rrange =

√
3× (2.5 . . . 3.5)µs for the experimental data (panel (a)) and the

theoretical calculations based on the single-emitter model in Eq. (3.17) (panel (b)).
The average over R is necessary for the experiment to extract a signi�cant signal
from the few-photon data for a realistic number of repetitions of the experiment.
The theoretical third-order correlations are calculated based on the parameters ex-
tracted from �ts to the intensity (κ = 0.55µs−1, Γ = 0.14µs−1, γD = 1.49µs−1)3

and very well reproduce the bunching and antibunching features.
Since any two-body correlation will also induce a signal in the three-body corre-

lation function, a natural approach is to subtract these contributions via the cumu-
lant expansion to identify genuine three-body correlations. This approach leads
to the connected three-body correlation function

g(3)
c (s1, s2, s3) = 2 + g(3)(s1, s2, s3)−

∑
i<j

g(2)(si, sj) . (3.46)

3The �ts to the intensity were obtained based on a di�erent data set compared to the two-photon
correlations.
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(a)

(d)

(b) (c)

(f)(e)

Fig. 3.6.: Connected part of the three-photon correlation function g(3)
c in the relative Ja-

cobi coordinates η and ζ . Panels (a)-(c) show the experimental results and panels (d)-
(f) the corresponding theoretical calculations. The photon rates are (from left to right)
Rin = 3.4µs−1, Rin = 6.7µs−1, and Rin = 15.2µs−1. The parameters for the theoreti-
cal calculations are the same as in Fig. 3.5. Figure taken and adapted from [178].

Note that g(3)
c vanishes if one photon is separated from the other two. In ad-

diton, the connected three-body correlation function for any classical Gaussian
state of photons is zero. Figure 3.6 shows cuts g(3)

c (η, ζ) through the calculated
connected three-photon correlation function for three di�erent photon input rates
Rin = 3.4µs−1, Rin = 6.7µs−1, and Rin = 15.2µs−1 averaged over Rrange. The
theoretical calculations based on the single-emitter model, shown in Figs. 3.6(d)-(f),
well reproduce the observed structure in the measured data shown in Figs. 3.6(a)-
(c). Even for low photon numbers, the connected part of g(3) shows a clear signal of
three-photon correlations with three-photon bunching at small distances, accom-
panied by an antibunching at intermediate separations, following another ring of
bunching. This sequence of bunching and antibunching features increases with in-
creasing photon number. Note that g(3) for a translationally invariant system has a
sixfold symmetry in Jacobi coordinates which is reduced to a threefold symmetry
in our case due to the �nite length of the incoming probe pulse.

Microscopic Theory of Three-Body Correlations

The very good agreement between the experimental data and the theoretical cal-
culations suggests that the single-emitter model very well captures the physics of
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the interaction of the superatom with the propagating light �eld and the e�ec-
tive photon-photon interaction mediated by the superatom. Nevertheless, it is not
straightforward to understand the microscopic origin of the three-body correla-
tions within this model. It turns out that the idealized model given by the Hamil-
tonian in Eq. (3.14), where both the dephasing and the spontaneous Raman decay
are neglected, allows for an analytical solution in terms of the Bethe ansatz [212,
213]. In the following, we will brie�y outline the most important results coming
from that idealized model in order to give a more conclusive picture, whereas more
details, in particular on the analytical calculations, can be found in [213].

Studying the eigenstates of Eq. (3.14), it turns out that the exact eigenstates for
three photons can be characterized as a three-photon bound state, a combination
of a two-photon bound state with an additional scattering photon, and �nally pure
scattering states. The three-photon bound state in particular provides a nontrivial
contribution to the connected part of the correlation function. For three photons
in an incoming state of the form ψ

(3)
in = ψ(s1)ψ(s2)ψ(s3) with a single photon

mode ψ with width τ and κτ � 1, the outgoing wave function in the center of the
pulse reduces to (for s1 ≥ s2 ≥ s3)

ψ
(3)
out = 1 + 12e−κ(s1−s3)/2 − 4

(
e−κ(s1−s2)/2 + e−κ(s2−s3)/2

)
. (3.47)

The contribution of the three-body bound state to the three-photon correlation
function can be inferred from the decomposition ψ(3)

out = 4e−κ(s1−s3) + ψsc, where
the �rst term describes the three-photon bound state and ψsc accounts for the con-
tributions of the scattering states and the two-photon bound state. Since ψsc = 1
for s1 = s2 = s3, the three-body bound state provides the dominant contribution
to the three-photon bunching in the center of the pulse but contributions of the re-
maining states are still signi�cant. Thus, based on this microscopic understanding
of the three-photon correlations, the three-photon bunching signal cannot purely
attributed to a three-photon bound state in contrast to recent observations on Ryd-
berg polaritons [211].

3.7. Conclusion and Outlook
Concluding, the experimental measurements demonstrate the realization of strong
light-matter coupling in free space through collective enhancement of the coupling
strength without any con�ning structures for the propagating light mode. The tun-
able dephasing of the superatom into dark states creates additional functionality
beyond the conventional two-level system [70, 71]. The strong coupling further-
more enables the observation of two- and three-body correlations imprinted by
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the Rydberg superatom on initially uncorrelated photons.
These �ndings are very well captured by an e�ective three-level model of a sin-

gle atom which includes the collectively enhanced coupling to the collective bright
state as well as a phenomenological dephasing to uncoupled dark states. The ef-
fective model is based on a microscopic analysis of the full three-dimensional ge-
ometry and shows that for the experimental parameters a simpler e�ective one-
dimensional model can be employed. Since the enhanced coupling implies an en-
hanced emission rate, the observed Rabi oscillations are intrinsically damped and
there is very good agreement between a numerical solution of the master equation
and the measurements.

The realization of strong coupling and the observation of three-body correla-
tions imprinted by a single two-level system shed light on the fundamental pro-
cesses of absorption and emission at the quantum level and highlight the poten-
tial for experimentally realizing strongly correlated photonic many-body systems
in quantum nonlinear optical systems [184]. The directionality of the superatom
emission can in addition be used to implement a cascaded quantum system for
dissipative entanglement generation [101, 105] and to build quantum optical net-
works [180, 181].
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Appendix

3.A. Sca�ering into Higher Modes
In this section, we provide some details for the derivation of Eq. (3.12) and give esti-
mates for the scattering into higher-order Gaussian modes and the corresponding
decay rates.

Based on the analysis of decay rates into photonic modes with momentum q us-
ing Fermi’s Golden Rule in Eq. (3.10), we identi�ed modes with positive momentum
k and small angles θ � λ/πw0 as the dominant contributions to the scattering.
Consequently, it is possible to restrict the further analysis only to those modes,
which corresponds to the paraxial approximation for wave propagation.

For simplicity, we only consider scalar �elds u(r) which obey the Helmholtz
equation4[

∇2 + k2
]
u(r) = 0 , (3.48)

where k = 2π/λ is the wave number. In order to perform the paraxial approxima-
tion, we make the ansatz u(r) = ũ(r)eikz , where ũ(r) is a slowly varying function
in the coordinates x, y, and z and the fast oscillation along the direction of propa-
gation z is given by eikz . Assuming that |∂2

z ũ| � |k∂zũ| , |∂2
xũ|, |∂2

y ũ|, we arrive at
the paraxial wave equation

(∂2
x + ∂2

y + 2ik)ũ(r) = 0 . (3.49)

The solutions to this di�erential equation are given by the Fresnel di�raction in-
tegral or (in closed form) by Gaussian beams or paraxial modes ũn(r) with n ≥
0 [214]. The lowest mode with n = 0 corresponds to the incoming Gaussian
beam considered in our theoretical analysis. Examples of Gaussian modes are

4Note that this is only an approximation as Gauss’ law ∇ · E = 0 can also introduce �eld com-
ponents in other directions.
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the Laguerre-Gauss modes in cylindrical coordinates which are parametrized by
a beam waist w0 and a focal point z0 which we take to be zero for simplicity. We
will not give the full expression for the Laguerre-Gauss modes here, but they can
be found in [214]. Gaussian modes obey the orthogonality condition∫

d2ρ ũ∗n(ρ, z)ũm(ρ, z) = Aδnm , (3.50)

where A = πw2
0/2 is the e�ective mode area of the beam.

Only considering the paraxial modes, we can rewrite the electric �eld operator
as

E(r) =
∑
n

∫
dk

2π
i
√
ωk2π~

ũn(r)eikz√
A

ank . (3.51)

As a consequence, we can also split the total decay rate of the ensemble into

Γtot =
∑
n

Γn + Γ′ , (3.52)

where Γn denotes the decay rate into the paraxial mode ũn and Γ′ accounts for
the decay into all remaining modes of the solid angle 4π which are not captured
by the paraxial modes. The decay rates into the paraxial modes can be calculated
using Fermi’s Golden Rule as

Γn =
2πg2

~

∫
dk

2π
δ(~ω − ~ck)

2π~ωk
A

1

N̄

∣∣∣∣∫ d3r n(r)ũ∗n(r)u(r)

∣∣∣∣2
=

2πg2ω

~Ac

∣∣∣∣ 1√
N̄

∫
d3r n(r)ũ∗n(r)u(r)

∣∣∣∣2 , (3.53)

where u(r) = u0(r) is the Gaussian mode of the incoming beam. The prefactor in
Eq. (3.53) corresponds to κ/N̄ , while the integral gives the probability of scattering
into higher Gaussian modes. If the density is smooth over the region where the
mode functions are nonvanishing, these transitions are strongly suppressed and
the scattering into those modes as well as the remaining solid angle is then well
accounted for by a phenomenological incoherent decay rate Γ. If, however, the
beam size is larger than the atomic density distribution, transitions into higher
modes are possible and lensing e�ects can occur. The reduction to an e�ective
one-dimensional model then breaks down.
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3.B. Derivation of the Master Equation
We start with the Hamiltonian Eq. (3.14), which describes the coherent coupling of
the superatom to the optical mode of the incoming laser �eld. The derivation of the
master equation closely follows the methods described in standard textbooks [172],
and recent publications on atom-light coupling in one-dimensional waveguides
[166, 167] (see also Chapter 2). The �rst step is to derive the Heisenberg equation
of motion for the photonic �eld operators

∂tak(t) = − i
~

[ak, H] = −ickak(t)− i
√
κc σGW(t) (3.54)

with σGW = |G〉〈W | and the coupling strength
√
κ = gcol/2. This equation can

be formally integrated which leads to a connection between the outgoing electric
�eld and the operator σGW, which describes the coherences in the superatom,

ak(t) = e−ick(t−t0)ak(t0)− i
√
κce−ick(t−t0)

∫ t

t0

ds eick(s−t0)σGW(s) . (3.55)

Here, t0 denotes the initial time with the condition that the incoming photon �eld
has not yet reached the superatom. Without loss of generality we set t0 = 0. Then,
the electric �eld operator reduces to

E(x, t) = Ē(ct− x)− i
√
κc

∫ t

0

ds

∫
dk

2π
e−ick(t−s)+ikxσGW(s)

= Ē(ct− x)− i
√
κσGW(t− x/c)θ(x)θ(ct− x) ,

(3.56)

where Ē denotes the noninteracting electric �eld operator and θ(x) is the Heavi-
side function with the de�nition that θ(0) = 1/2. For an incoming coherent state,
the noninteracting electric �eld Ē(ct) can be replaced by the amplitude of the
coherent �eld α(t) ≡ 〈Ē(ct)〉, which characterizes the incoming photon rate by
|α(t)|2 = Rin. Alternatively, it would be possible to apply the well-established
Mollow transformation [170] leading to the same �nal result for the master equa-
tion.

For an arbitary operator A acting on the superatom alone, its Heisenberg equa-
tion of motion reduces to

∂tA(t) =− i
√
κ
[
A(t), σ†GW(t)

]
α(t)− κ

2

[
A(t), σ†GW(t)

]
σGW(t)

− i
√
κα∗(t) [A(t), σGW(t)] +

κ

2
σ†GW(t) [A(t), σGW(t)] .

(3.57)
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The right-hand side can be split into a coherent part given by

− i
√
κ
[
A(t), σ†GW(t)

]
α(t)− i

√
κα∗(t) [A(t), σGW(t)] = − i

~
[A(t), H0(t)]

(3.58)

with the Hamiltonian H0(t) in Eq. (3.16) while the remaining terms describe the
spontaneous emission into the photonic mode.

Using the relation ∂t〈A〉 = tr (A∂tρ(t)) with the reduced density matrix for
the atomic system alone ρ(t), the dissipative part reduces to the well-established
Lindblad form

κD[σGW]ρ(t) = κ

(
σGWρ(t)σ†GW(t)− 1

2
{σ†GWσGW(t), ρ(t)}

)
. (3.59)

This term describes the enhanced spontaneous emission into the forward direction
due to the collective character of the superatom. In addition, the superatom can
also decay into transverse photonic modes, which is still determined by the stan-
dard single atom spontaneous emission rate Γ. Finally, we can add the dephasing
into the dark states {|Di〉}N−1

i=1 as well as the decay by spontaneous emission of
these dark states. The analysis is independent of the speci�c dark state the system
dephases into and therefore we can account for the dephasing by losses into a sin-
gle dark state |D〉 with a phenomenological dephasing rate γD. The microscopic
mechanisms for the dephasing are Doppler shifts of the atoms, as well as inho-
mogeneous shifts of the Rydberg state level, and residual interactions between the
individual atoms by resonant exchange interactions [2, 20, 167, 174, 199].

3.C. �antum Regression Theorem
In this appendix, we brie�y review the quantum regression theorem which was
�rst introduced by Lax [206] and show how it can be used to calculate multi-time
correlation functions which appear in the calculation of second- and third-order
correlation functions as mentioned in Section 3.6. We will closely follow [172]
where we refer to for more details.

Single-time expectation values for a system operator A evaluated at some time
t are given by

〈A(t)〉 = trS(Aρ(t)) , (3.60)

where ρ(t) is the reduced density matrix of the system alone. The time evolution
of ρ is given by the master equation

∂tρ(t) = L(t)ρ(t) (3.61)
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with some Lindblad (super-)operator L that may depend on time. Formally, the
solution of Eq. (3.61) is given by

ρ(t) = T exp

 t∫
t0

dt′ L(t′)

 ρ(t0) ≡ V(t, t0)ρ(t0) (3.62)

for some initial ρ(t0). In this expression, T denotes the time-ordering operator
and V(t, t0) is the time evolution operator of the density matrix and satis�es the
equation of motion

∂tV(t, t0) = L(t)V(t, t0) (3.63)

with the initial condition V(t0, t0) = 1. It follows from Eq. (3.63) that V(t, t0)
ful�lls the semigroup property

V(t, t′)V(t′, t0) = V(t, t0) . (3.64)

Multi-time correlation functions of two system operators A and B evaluated at
times t+ τ and t with τ > 0 are given by

〈A(t+ τ)B(t)〉 = tr(A(t+ τ)B(t)R(t0)) (3.65)

with tr() being the trace over the full system, that is system and bath, and R(t0)
being the density matrix of the full system at some time t0. This expression can be
rewritten in the Schrödinger picture as

〈A(t+ τ)B(t)〉 = tr
(
U †(t+ τ, t0)AU(t+ τ, t0)U †(t, t0)BU(t, t0)R(t0)

)
= tr

(
AU(t+ τ, t)BR(t)U †(t+ τ, t)

)
= trS

(
A trB

(
U(t+ τ, t)R(t)U †(t+ τ, t)

))
. (3.66)

where R(t) = U(t, t0)R(t0)U †(t, t0) and U(t, t0) is the time evolution operator
for the dynamics of the full system. The �nal result is very appealing since we are
now dealing with the expectation value of the operator A for a state with some
generalized density operator BR(t) that is time evolved up to some time t + τ .
Note that BR is not a real density operator since, for example, the trace may not
be equal to one in general. Nevertheless, the operator

X(τ, t) = U(t+ τ)BR(t)U †(t+ τ, t) , (3.67)

as a function of τ obeys the same equation of motion as the density matrix R

i~∂tX(τ, t) = [H,X(τ, t)] , (3.68)
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where H is the Hamiltonian of the full system.
Using both the Markov approximation as well as the Born approximation5, that

is R(t) = ρ(t) ⊗ ρB with ρB being the density matrix of the bath, one can show
that XS(τ, t) = trB (X(τ, t)) = Bρ(t) follows the same dynamics as ρ(t), that is

XS(τ, t) = V(t+ τ)X(t, t) . (3.69)

The multi-time correlation function can then be calculated as

〈A(t+ τ)B(t)〉 = trS (AV(t+ τ, t) [Bρ(t)]) . (3.70)

Note that V(t + τ, t) is a super-operator that acts on the space of operators and
therefore the order of the operators matters and V directly acts on Bρ.

In the same manner it is possible to derive multi-time correlation functions for
more than two operators and more than two times. For our purposes, we are in-
terested in correlators with four operators at two times and six operators at three
times. For these cases, the general formulae read (for t0 ≤ t1 ≤ t2)

〈A(t0)B(t1)C(t1)D(t0)〉 = trS (BCV(t1, t)[Dρ(t0)A]) , (3.71)
〈A(t0)B(t1)C(t2)D(t2)E(t1)F (t0)〉 = trS(CDV(t2, t1)[EV(t1, t0)[Fρ(t0)A]B]).

(3.72)

5Not performing the Born approximation leads to corrections in the master equation that depend
on the di�erence R− ρ(t)⊗ ρB [215].

90



4
Emergent Universal Dynamics for
an Atomic Cloud Coupled to a
One-Dimensional Optical
Waveguide

In this chapter, we study the in�uence of the virtual exchange of photons on the
properties of a single collective excitation, focusing on a setup described by an
ensemble of atoms coupled to a one-dimensional wave guide. In Chapter 2 we
have seen that the time evolution of the collectively excited state is governed by
two competing terms: �rst, the spontaneous and strongly directed emission into
the wave guide, and second an intrinsic coherent exchange interaction. We �nd
that the coherent part gives rise to a universal dynamics of the collective excitation
for increasing particle numbers and exhibits several revivals until it eventually
saturates at a universal value. While this phenomenon provides an intrinsic limit
on the dephasing in a superatom, we also present a setup where this universal
dynamics can be explored. This chapter is based on Ref. [216].

4.1. Introduction
The collective interaction between an ensemble of emitters and photons is at the
heart of many fascinating phenomena in quantum optics [3, 5]. For a single coher-
ent excitation of such an ensemble, the direction as well as the rate of spontaneous
emission are strongly modi�ed and can either be enhanced or suppressed, which
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has been experimentally observed recently [39, 67]. For these e�ects to be ob-
servable, it is crucial that the coherence between the atoms within the ensemble
is maintained. While the in�uence of thermal motion of the atoms has been in-
vestigated [217], an ensemble of atoms with a single excitation also exhibits an
interaction induced by virtual exchange of photons [2], which might provide an
intrinsic dephasing inherent to any ensemble of emitters. In this chapter, we study
within a microscopic analysis whether there is a fundamental limit on this intrinsic
dephasing.

Signatures of the coherent interaction by virtual exchange of photons in an en-
semble of atoms with several excitations have been discussed in terms of a col-
lective Lamb shift [2, 218], and have been observed in various physical systems
ranging from an ensemble of nuclei [6] over solid-state systems [12, 13] to ions
[11] and atoms [8, 9]. On the theoretical side, recent research has focused on the
understanding of transmission of photons and the appearance of correlations in
one-dimensional wave guides [15, 90, 105, 166–168], as well as the appearance of
superradiance and a collective Lamb shift in the single-excitation manifold [16, 18,
20, 21, 25, 219]. In order to guarantee a single excitation in an ensemble of scatter-
ers, the notion of superatom has emerged as a powerful concept, where a strong
interaction between the excited states suppresses multiple excitations in the en-
semble and is conveniently realized with Rydberg atoms [51, 52, 68, 118, 123, 145,
177, 220].

4.2. Setup and Hamiltonian

In our setup, each atom is well described by a two-level system with the ground
state |g〉 and an excited state |e〉, see Fig. 4.1. The optical transition frequency
between the two states is given by ω0 = 2πc/λ with the wavelength λ and the
corresponding wave vector k = 2π/λ. In the following, we describe the two states
of an atom at position x by the bosonic �eld operators ψg(x) and ψe(x) for the
ground and excited state, respectively. Then, the initial state with all N atoms in
the ground state takes the form |G〉 =

√
1/N !

∏N
i=1 ψ

†
g(xi) |0〉. The atomic posi-

tions xi are randomly distributed with a distribution function giving rise to the av-
eraged atomic ground state density n(x) =

〈
〈G|ψ†g(x)ψg(x)|G〉

〉
dis

; here, 〈· · · 〉dis
denotes the ensemble average over many experimental realizations. Furthermore,
we introduce the operators S+(x) = ψ†e(x)ψg(x) creating an excitation from the
ground state to the excited state and S−(x) = ψ†g(x)ψe(x) for a transition from the
excited state to the ground state. These operators satisfy the commutation relation
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Fig. 4.1.: (a) Two-level atoms coupled to a one-dimensional wave guide with left- and
right-moving modes. (b) After integrating out the photonic degrees of freedom, the sys-
tem exhibits spontaneous emission and an in�nite-ranged exchange interaction between
the atoms. (c) In the presence of a blockade mechanism, the superatom state |W 〉 is collec-
tively coupled to the ground state with coupling strength

√
Nγ giving rise to an enhanced

spontaneous emission Nγ into the forward direction, while the coherent exchange inter-
action leads to a coupling between this bright state and the manifold of dark states.

[S+(x), S−(y)] = δ(x− y) [n̂g(x)− n̂e(x)] (4.1)

with n̂ν(x) = ψ†ν(x)ψν(x) for ν ∈ {g, e}. Then, the microscopic Hamiltonian
describing the coupling of the atoms to a one-dimensional waveguide within the
rotating-wave approximation takes the form

H =

∫
dq

2π
~ωqa†qaq + ~ω0

∫
dxψ†e(x)ψe(x)

− ~
√
γ

∫
dx
[
E†(x)S−(x) + S+(x)E(x)

]
, (4.2)

where √γ characterizes the e�ective mode coupling giving rise to the rate γ for
spontaneous emission of a left- or right-moving photon into the waveguide [15,
90, 105, 166–168]. Furthermore, the electric �eld operator within the waveguide
reduces to

E†(x) = −i
√
c

∫
dq

2π
a†qe
−iqx . (4.3)

The bosonic operators a†q account for the creation of a waveguide photon with
momentum q, while ωq = c|q| denotes the dispersion relation for the relevant
photon modes.
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Starting from the microscopic Hamiltonian (4.2) and integrating out the electric
�eld, the e�ective dynamics for the atoms alone is governed by a master equation
[2, 167] and takes the form

∂tρ = − i
~

[Hs, ρ] +DF[ρ] +DB[ρ] . (4.4)

The �rst term describes a coherent interaction between the atoms by the exchange
of virtual photons,

Hs = ~γ
∫
dx dy sin(k|x− y|)S+(x)S−(y) . (4.5)

The term DF (DB) describes the spontaneous emission of a photon in the forward
(backward) propagating mode, respectively.

In the following, the main analysis focuses on the superatom state

|W 〉 =
1√
N

∫
dx eikxS+(x) |G〉 (4.6)

which couples to the incoming light �eld with the collectively enhanced coupling
strength

√
Nγ. In addition, there are N − 1 “dark” states

|Dn〉 =

∫
dxDn(x)S+(x) |G〉 (4.7)

with the wave functionsDn(x) de�ned by the orthogonality conditions 〈W |Dn〉 =
0 and 〈Dm|Dn〉 = δnm.

4.3. Coherent Dynamics
First, we study the coherent dynamics of the state |W 〉 under the Hamiltonian Hs

alone. This Hamilton gives rise to a coupling between |W 〉 and the dark states
|Dn〉. Therefore, the quantity of interest is the probability P (t) to stay in the su-
peratom state |W 〉 under the coherent time evolution after averaging over many
experimental realizations, i.e., P (t) =

〈
| 〈W | e− i

~Hst |W 〉 |2
〉
dis

. This probability
can be evaluated numerically using exact diagonalization and averaging over dif-
ferent disorder realizations and is shown in Fig. 4.2. Remarkably, the dynamics
features robust revivals on the characteristic time scale τ = π/Nγ, which only
damp out on the slower time scale τdp =

√
Nτ . Therefore, for increasing parti-

cle number the amount of observable coherent oscillations increases. Finally, P (t)
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Fig. 4.2.: Time evolution of the state |W 〉 under the Hamiltonian Hs for (a) N = 100, (b)
N = 500, (c) N = 1000 and (d) N = 5000 particles after averaging over 105 realiza-
tions with a Gaussian distribution and kσ = 100. The gray curve indicates the universal
dynamics given by Eq. (4.11).

saturates at a �nite value ∼ 1/6 for long times t � τdp. Note that in Fig. 4.2 we
chose a Gaussian density distribution n(x) = N exp(−x2/σ2)/

√
πσ2. However,

the above observations are independent of the atomic density pro�le as long as the
atomic cloud is smooth on distances comparable to the optical wavelength λ.

In the following, we provide an analytical analysis of this universal dynamics
for the superatom state |W 〉. It turns out to be convenient to split the Hamiltonian
Hs = HF + HB into two parts, where HF (HB) describes the virtual exchange of
forward (backward) propagating photons, respectively. The part describing the
interaction between the atoms due to forward propagating photons is given by

HF =
~γ
2i

∫
dx dy sign(x− y) eik(x−y)S+(x)S−(y) , (4.8)

and the backward-propagating part reads

HB = −~γ
2i

∫
dx dy sign(x− y) e−ik(x−y)S+(x)S−(y) . (4.9)

These Hamiltonians are exactly solvable individually (see Appendix 4.A) and the
spectrum takes the form Eα = ~γ

2
cot
(
απ
2N

)
with α an odd integer and −N ≤ α <
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N . Furthermore, the eigenstates are

|α, F〉 =
1√
N

∫
dx eikxS+(x) exp

(
−iπα

N
F (x)

)
|G〉 (4.10)

with the operator F (x) =
∫ x
−∞ dz n̂g(z) counting the number of ground state

atoms on the left of position x; similar for |α,B〉.
For a large atom number N � 1, only states with |α| � N have signi�cant

overlap with the superatom state with |W 〉 =
∑

α 2i/(πα) |α, F〉 and the energies
reduce to Eα = N~γ/πα. As a result, the probability to remain in the bright state
given only the forward-propagating part of the Hamiltonian is given by [χ(t/τ)]2

with τ = π/Nγ and

χ(s) =
8

π2

∞∑
n=0

1

(1 + 2n)2
cos

(
s

1 + 2n

)
. (4.11)

It is this universal function whichP (t) approaches for increasing number of atoms,
see Fig. 4.2. In order to understand this observation, there are two important points
to notice: First, only those states |α, F〉 with small values of |α| have a signi�cant
overlap with |W 〉. In addition, these states dominate the fast dynamical behavior
with the characteristic energy scale E1 = ~γN/π. It is therefore su�cient to
restrict the analysis to low values of |α|. Second, the states |α, F〉 with low values
of |α| become exact eigenstates of the full Hamiltonian Hs with energy Eα in the
limit of a large particle number N →∞ and a smooth atomic density distribution
with σ � λ. Then, the universal dynamics P (t) = [χ(t/τ)]2 is the asymptotic
dynamical behavior for large particle numbers. Note that the precise condition of
low values of α reduces to |α| < σ/λ as will be shown below.

4.3.1. Emergent Universal Dynamics
Here, we prove the statement that the states |α, F/B〉with low values of α become
exact eigenstates in the limit N → ∞ and λ/σ → 0. More details on the calcula-
tions can be found in Appendix 4.C. First, we analyze the wave function overlap be-
tween eigenstates ofHF and the eigenstates ofHB, i.e., hαβ = 〈β,B|HB|α, F〉/E1 =
〈β,B|α, F〉/β, and the matrix element δα = 〈α, F|HB|α, F〉/E1. These dimension-
less parameters take the form

hαβ =
1

β

∫
dx

N
e2ikx 〈G| n̂g(x)e−i

π(α+β)
N

F (x) |G〉 , (4.12)

δα =

∫
dx dy

2iN2
sign(x− y) e2ik(x−y) 〈G| n̂g(x)n̂g(y)e−i

πα
N

(F (x)−F (y)) |G〉 .

(4.13)
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In the limit N → ∞, we can replace the atomic density operator by its averaged
expectation value n(x) as the �uctuations in the density vanish with 1/

√
N . Then,

the overlaps in hαβ reduce to the Fourier transform of a smoothly varying function.
Therefore, the overlap between states with low numbers of α, β, i.e., 2|k| � π|α+
β|/σ, vanishes for λ/σ → 0; here, σ denotes the characteristic size of the atomic
cloud in general. For example, it vanishes exponentially for a Gaussian density
distribution, while for a stepwise atomic distribution it vanishes as (λ/σ)2. On the
other hand, overlaps with |β| & σ/λ are suppressed by the factor 1/β in Eq. (4.12).
Similarly, the expression for δα reduces to δα = c0

λ
σ

+ c1α
λ2

σ2 + O((λ/σ)3) with
dimensionless parameters c0 and c1 of order one, which only depend on the atomic
density distribution n(x). The �rst term is an irrelevant shift in energy, while the
second correction again vanishes as (λ/σ)2. In conclusion, we have demonstrated
that the eigenstates |α, F〉 with energy Eα become exact eigenstates of the full
Hamiltonian Hs for |α| < σ/λ in the limit N →∞ and λ/σ → 0.

Next, we analyze the leading correction due to a �nite number of particles N
in the regime λ � σ. The main in�uence are deviations from the mean density
distribution n(x) due to the random distribution of the particles within each ex-
perimental realization which leads to �uctuations of hαβ and δα. We illustrate this
behavior for the overlap wα = 〈α,B|α, F〉. The important quantity is the vari-
ance of these �uctuations, i.e., ∆wα =

√
〈|wα|2〉dis − 〈|wα|〉2dis. Using the general

relation

〈n̂g(x)n̂g(y)〉dis =
N − 1

N
n(x)n(y) + n(x)δ(x− y) (4.14)

valid for a thermal gas on distances studied in the present setup, the full distribu-
tion function for |wα|2 can be derived (see Appendix 4.C). In the limit kσ � π|α|
it follows an exponential distribution with mean 1/N such that the leading con-
tribution to the �uctuations takes the form ∆wα = 1/

√
N .

The last step to understand the behavior of P (t) is to derive the leading correc-
tion to the energies Eα using perturbation theory in the small parameter wα,

E±α
Eα

= 1± |wα| with |α,±〉 =
1√
2

(
|α, F〉 ± eiφα |α,B〉

)
and wα = |wα|eiφα . Therefore, the relevant energies of the Hamiltonian Hs �uc-
tuate within each experimental realization with a variance ∆Eα = Eα/

√
N giv-

ing rise to a characteristic dephasing rate τdp = π/
√
Nγ. This observation al-

lows us to derive the leading dynamical behavior P (t) for the superatom states
|W 〉 by performing the average over many di�erent experimental realizations us-
ing the knowledge on the distribution function of |wα|2 (for more details see Ap-
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pendix 4.D),

P (t) =

{
8

π2

∑
n≥0

2

(2n+ 1)2
cos

(
t/τ

2n+ 1

)[
1− 2f

(
t

2τdp(2n+ 1)

)]}2

− 16

π4

∑
n≥0

{
2

(2n+ 1)4

([
1− 2f

(
t

2τdp(2n+ 1)

)]2

−
[
1− f

(
t

τdp(2n+ 1)

)])}
(4.15)

with f(x) = xD(x) and the Dawson functionD(x) = e−x
2 ∫ x

0
dt et

2 with the limit
f(x → ∞) = 1/2. The �rst term in Eq. (4.15) is a modi�cation of the universal
function Eq. (4.11) which now includes damping on a time scale τdp. For long times
t� τdp, the dynamics saturates at

P (t) −−−→
t�τdp

∞∑
n=0

(
2

π(2n+ 1)

)4

=
1

6
. (4.16)

In Fig. 4.3, we compare the numerically calculated P (t) for N = 1000 averaged
over 105 realizations with a Gaussian density distribution with kσ = 100 and P (t)
given in Eq. (4.15), and �nd excellent agreement.

4.4. Dissipative Dynamics
Finally, we analyze the dissipative dynamics. The collective enhancement of the
coupling between the forward-propagating waveguide mode and the |W 〉 state
also implies an enhanced spontaneous emission rate ΓF = Nγ into the forward di-
rection. By contrast, the spontaneous emission ΓB into the backward-propagating
mode depends on the details of the atomic distribution within each experimental
realization and is given by

ΓB =
γ

N

∫
dx dy e2ik(x−y) 〈G| n̂g(x)n̂g(y) |G〉 . (4.17)

Its average value can be obtained using Eq. (4.30) and as a result, we get

Γ̄B = γ(N − 1)
|n2k|2

N2
+ γ , (4.18)

where n2k is the Fourier transform of the density distribution n(x). For a smooth
density distribution with variations large compared to the optical wavelength λ,
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Fig. 4.3.: Comparison between the numerically and analytically calculated time evolu-
tion of |W 〉 under Hs. Blue (dashed) curve: Numerically calculated time evolution for
N = 1000 particles averaged over 105 realizations with a Gaussian distribution and
kσ = 100. Orange (solid) curve: Analytical prediction for λ/σ � 1 and large N . (Inset:)
Zoomed image of the dynamics for better comparison between numerically and analyti-
cally calculated time evolution. Note that there is hardly any visible di�erence.

this contribution is strongly suppressed. Considering, for example, a Gaussian
distribution n(x) = Ne−x

2/2σ2
/
√

2πσ2 with width σ, we get n2k/N = e−8π2σ2/λ2

which is exponentially suppressed for λ � σ. Thus, the back scattering is not
enhanced and is dominated by the incoherent contribution γ.

4.5. Experimental Implementation
It is important to point out that the characteristic time scales for the revivals in the
coherent dynamics and the dissipative part are of the same order. On one hand, we
conclude that the coherent part always provides an intrinsic contribution to the
dephasing of a superatom state. On the other hand, it is important to disentangle
the dissipative dynamics and the coherent part for the experimental observation
of the revivals. This goal can be achieved by quenching the spontaneous emission
by tailoring the waveguide.

This approach is described in the following for an experimentally realistic setup.
Such a setup exhibits, in addition to the coupling to the waveguide, naturally also
a spontaneous emission into free space with rate γ0. As a �rst requirement, this
decay must be comparable or smaller than the decay into the wave guide, i.e.,
γ & γ0, which can be achieved in current experimental setups [15, 89]. Then, the

99



Chapter 4. Emergent Universal Dynamics

coherent dynamics as well as the dephasing are collectively enhanced and appear
on a time scale much faster than residual losses, Nγ �

√
Nγ � γ0. Second,

the initial preparation of the setup in the superatom state |W 〉 is achieved using
a π pulse with a time scale fast compared to the characteristic dynamics τ . As
the Rabi frequency is also collectively enhanced, this condition reduces to Ω �
γ
√
N with Ω the single atom Rabi frequency. To reveal the e�ect of the coherent

dynamics, we propose an experimental setup where the atoms are coupled to a one-
dimensional photonic crystal or Bragg grating such that the emission process is
strongly suppressed due to the opening of a band gap whereas the virtual photons
mediating the exchange interaction can still propagate outside the photonic band
gap. To satisfy this condition, the size of the photonic band gap ∆ is required to be
in the range ΓF � ∆ � 2πc/σ, where σ is the characteristic size of the system.
The lower bound results from the fact that the emitted photon has a Lorentzian
spectrum. The upper bound derives from the condition that the virtual photons
should be able to propagate with a linear dispersion such that the initial form of
the exchange Hamiltonian is una�ected.

For typical quantum optics experiments the system size is in the micrometer
regime which relates to a mode spacing of the virtual photons of a few THz. In
addition, the decay into the waveguide is typically in the range of MHz providing
the enhanced decay rate ΓF = Nγ in the lower GHz regime for N ∼ 104 atoms.
This requires the width of the gap to be of the size of a few ten to hundred GHz.
Such gratings have been produced for example in germanosilicate optical �bers
[221] and speci�cally designed for quantum optics experiments [222].

4.6. Conclusion
In conclusion, we demonstrated that the nonequilibrium dynamics of a quantum
many-body system consisting of atoms coupled to a one-dimensional waveguide
can exhibit a highly nontrivial universal dynamics characterized by revivals and
eventually a saturation on 1/6. This observation is independent of the averaged
atomic distribution n(x) and becomes more pronounced for increasing particle
number. In the present analysis, we chose a �xed number of atoms within each
experimental realization. However, it is straightforward to derive that for a Pois-
son distributed number of atoms, the only modi�cation in the dynamics is the
enhancement of the dephasing rate by a factor

√
2, while the revivals and the sat-

uration remain una�ected. One expects that similar phenomena can also appear in
free space for two-level systems strongly coupled to a single highly focused light
mode.
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Appendix

4.A. Spectrum and Eigenstates
In this section, we show that the eigenenergies of the forward-propagating part
HF of the exchange Hamiltonian are given by

Eα =
~γ
2

cot
( πα

2N

)
(4.19)

with an odd integer −N ≤ α < N and that the eigenstates are given by

|α, F〉 =
1√
N

∫
dx eikxS+(x) exp

(
−iπα

N
F (x)

)
|G〉 (4.20)

with F (x) =
∫ x
−∞ dz n̂g(z). To do so we apply the Hamiltonia HF onto the state

(4.20) and recall the de�nition of the state |G〉 = 1/
√
N !
∏

i ψ
†
g(xi) |0〉 and the op-

erators S+(x) = ψ†e(x)ψg(x) and S−(x) = ψ†g(x)ψe(x). We then rewrite Eq. (4.20)
as

|α, F〉 =
1√
N

N∑
n=1

eikxnS+(xn)e−i
παn
N |G〉 , (4.21)

and the Hamiltonian as

HF =
~γ
2i

N∑
n=1

N∑
l=1

sign(xn − xl)eik(xn−xl)S+(xn)S−(xl) . (4.22)

Note that in the following, we always assume the positions of the atoms to be
ordered, that is x1 ≤ x2 ≤ . . . ≤ xN . Using that S−(xn)S+(xl) |G〉 = δnl |G〉, we
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get

HF |α, F〉 =
~γ

2i
√
N

N∑
n,l,m=1

eikxme−i
παm
N sign(xn − xl)eik(xn−xl)

× S+(xn)S−(xl)S
+(xm) |G〉

=
~γ

2i
√
N

N∑
n,l=1

eikxne−i
παl
N sign(xn − xl)S+(xn) |G〉

=
~γ

2i
√
N

N∑
n=1

eikxn

(
n−1∑
l=1

e−i
παl
N −

N∑
l=n+1

e−i
παl
N

)
S+(xn) |G〉

=
~γ

2i
√
N

N∑
n=1

eikxnS+(xn) |G〉 e
−iπαn

N (1 + e−i
πα
N )− e−iπαN (1 + e−iπα)

e−i
πα
N − 1

.

(4.23)
From the last line, it is clear that if α is an odd integer, the second term in the

numerator vanishes and |α, F〉 is indeed an eigenstate of HF. The corresponding
eigenvalue is then

Eα =
~γ
2i

e−i
πα
N + 1

e−i
πα
N − 1

=
~γ
2

cot
( πα

2N

)
. (4.24)

From Eq. (4.24) it is also clear that α is limited to −N ≤ α < N due to the
periodicity of the eigenvalues.

For the left-moving partHB = −~γ
2i

∑
n,l sign(xn−xl)e−ik(xn−xl)S+(xn)S−(xl),

we make the ansatz

|α,B〉 =
1√
N

N∑
n=1

e−ikxnS+(xn)ei
παn
N |G〉 . (4.25)

The proof that this state is an eigenstate of HB follows along the same lines as
above and the eigenvalue is also given by Eα = ~γ cot(πα/2N)/2.

4.B. Universal Dynamics
In order to derive the universal dynamics given by Eq. (4.11), we consider the
Hamiltonian HF with its eigenstates |α, F〉 and -energies Eα only. Using that α
is an odd integer, the overlap with |W 〉 is given by

〈W |α, F〉 =
1

N

N∑
j=1

e−iπαj/N = − 2

N

e−iπα

eiπα/N − 1
≈ − 2i

πα
. (4.26)
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The time evolution P (t) in the limit N →∞ can then be calculated as

P (t) =

∣∣∣∣∣∑
α

e−iEαt| 〈W |α, F〉 |2
∣∣∣∣∣
2

≈

∣∣∣∣∣∑
α

e−i
γNt
πα

(
2

πα

)2
∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑
j=0

(
2

π(2j + 1)

)2

cos

(
γNt

π(2j + 1)

)∣∣∣∣∣
2

, (4.27)

which is the universal function given in Eq. (4.11) describing the dynamics in the
presence of only forward scattering. The time scale of the dynamics is given by
τ = π/Nγ.

4.C. Perturbation Theory
As mentioned in Section 4.3.1, we de�ne two dimensionless variables

hαβ =
〈β,B|α, F〉

β
=

1

Nβ

∫
dx e2ikx 〈G| n̂g(x)e−i

π(α+β)
N

F (x) |G〉 , (4.28)

δα =
〈α, F|HB |α, F〉

E1

= − 1

2iN2

∫
dx dy e2ik(x−y)sign(x− y)

× 〈G| n̂g(x)n̂g(y)e−i
2πα
N

(F (x)−F (y)) |G〉 . (4.29)

Since the positions of the atoms are randomly distributed in each experimental
realization, the ground state density distribution n̂g(x) and consequently the vari-
ables hαβ and δα will �uctuate. In the following, we will calculate the leading
order behavior of the mean values and the �uctuations of these variables in the
limits kσ → ∞ and N → ∞. To this end, we split the density distribution as
n̂g(x) = n(x) + δn̂g(x) where n(x) = 〈n̂g(x)〉dis is the mean density distribution
and thus 〈δn̂g(x)〉dis = 0. Further, we will make use of

〈n̂g(x)n̂g(y)〉dis = g(2)(x, y)n(x)n(y) + δ(x− y)n(x) (4.30)

with the two-body correlation function g(2)(x, y). Since the atoms are uncorrelated
on distances comparable to the optical wavelength λ, we have g(2) = 1− 1/N for
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a �xed atom number N . Similarly, we get

〈δn̂g(x)δn̂g(y)〉dis = (g(2)(x, y)− 1)n(x)n(y) + δ(x− y)n(x)

= −n(x)n(y)

N
+ δ(x− y)n(x) (4.31)

for the correlations in the �uctuations of the density. Equations (4.30) and (4.31)
will be used in the following to simplify the variables hαβ and δα given in Eqs. (4.28)
and (4.29), respectively.

4.C.1. Mean Values
We start by calculating the mean value of hαβ . Therefore, we note that we can
write

hαβ =
1

Nβ

∫
dx e2ikx

〈
n̂g(x)e−i

π(α+β)
N

∫ x
−∞ dz n̂g(z)

〉
dis

=
1

Nβ

∫
dx e2ikx

(
iN

π(α + β)

)
∂x

〈
e−i

π(α+β)
N

∫ x
−∞ dz n̂g(z)

〉
dis
, (4.32)

where we assume that n̂g(−∞) = 0. Using n̂g(x) = n(x)+δn̂g(x), we can rewrite

〈
e−i

π(α+β)
N

∫ x
−∞ dz n̂g(z)

〉
dis

= e−i
π(α+β)
N

N(x)

∞∑
m=0

(iπ(α + β))m

Nmm!

×
m∏
i=1

[∫
dziθ(x− zi)

]
〈δn̂g(z1) · · · δn̂g(zm)〉dis ,

(4.33)

where we de�ned N(x) =
∫ x
−∞ dz n(z) and θ(x) is the Heaviside function. The

correlator can now be evaluated using Isserlis’ theorem (in quantum �eld theory
also known as Wick’s theorem) which states that eachm-point correlator of a nor-
mally distributed variable with zero mean can be written as a sum over a product
of all possible combinations of two-point correlators for even m. Since the total
number of terms in the sum is given by (m− 1)!! = (2n− 1)!! = (2n)!/(2nn!), we
can write

∞∑
n=0

(iπ(α + β))2n

N2n2nn!

[∫ x

−∞
dz1 dz2 〈δn̂g(z1)δn̂g(z2)〉

]n
= e

− 1
2(π(α+β)N )

2
(
N(x)−N(x)2

N

)
.

(4.34)
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Such that �nally we have

hαβ =
1

Nβ

∫
dx e2ikx

(
iN

π(α + β)

)
∂xe
−iπ(α+β)

N
N(x)− 1

2(π(α+β)N )
2
(
N(x)−N(x)2

N

)
.

(4.35)
Performing the derivative, we �nally get

hαβ =
1

Nβ

∫
dx e2ikxn(x)

[
1− iπ(α + β)

2N

(
1− 2N(x)

N

)]
× e

−iπ(α+β)
N

N(x)− 1
2(π(α+β)N )

2
(
N(x)−N(x)2

N

)
. (4.36)

This expression is now simply the Fourier transform of a (in principle very com-
plicated) function. If however n(x) and N(x) are smooth functions and 2kσ �
π|α + β|, the mean value hαβ is strongly suppressed. As an example, we con-
sider a Gaussian distribution of the particles with n(x) = N/

√
2πσ2e−x

2/2σ2 and
N(x) = N/2(1 + erf(x/

√
2σ)), where erf(x) is the error function. Focusing on

the limit N →∞ (where we can safely neglect terms of order 1/N ) we get

hαβ =
1

β

∫
dx e2ikx e

−x2/2σ2

√
2πσ2

e−i
π(α+β)

2
(1+erf(x/

√
2σ)) , (4.37)

which vanishes exponentially in the limit 2kσ � π|α+β|. On the other hand, for
|β| > σ/λ, this value is suppressed by the factor 1/β.

For the mean value of δα, we write

δα = − 1

2iN2

∫
dx dy e2ik(x−y)sign(x− y)

N2

(2πα)2

× ∂x∂y
〈
e−i

2πα
N

∫
dz n̂g(z)(θ(x−z)−θ(y−z))

〉
dis

= − 1

2iN2

∫
dx dy e2ik(x−y)sign(x− y)

N2

(2πα)2

× ∂x∂ye−i
2πα
N

(N(x)−N(y))e−
1
2( 2πα

N )
2
[
∫
dz(θ(x−z)−θ(y−z))2n(z)− 1

N
(N(x)−N(y))2] .

(4.38)
Since we are again only interested in the limitN →∞, the expression reduces to

δα ≈ −
1

2i

∫
dx dy e2ik(x−y)sign(x− y)

n(x)n(y)

N2
e−i

2πα
N

(N(x)−N(y))

= −
∫ ∞
−∞

dx

∫ x

−∞
dy sin [2k(x− y)− 2πα(N(x)−N(y))/N ]

n(x)n(y)

N2
,

(4.39)
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where we assumed that n(−x) = n(x) and consequently N(−x) = N − N(x).
Given a characteristic length σ of the atomic distribution and the condition kσ �
π|α|, we may neglect the second term in the phase of the sine and write

δα ≈ −
∫ ∞
−∞

dx

∫ x

−∞
dy sin [2k(x− y)]

n(x)n(y)

N2
. (4.40)

In the following, we will estimate the value of this integral and derive the be-
havior in leading order for kσ � 1. Since we are only interested in realistic
density distributions, we may estimate the integral by an exponential distribution
f(x) ∼ e−x

2/2σ2 which we make broad and large enough such that f(x) > n(x)
for all x. Note that the width of the exponential distribution is assumed to be
some multiple of the width of the original distribution. Then, the integral can be
calculated analytically as∫ ∞
−∞

dx dy sin [2k(x− y)]
n(x)n(y)

N2
<

∞∫
−∞

dx

x∫
−∞

dy sin [2k(x− y)]
e−(x2+y2)/2σ2

2πσ2

=

∞∫
0

dR
e−R

2/2

√
2π

∞∫
0

dr sin(
√

2kσr)
e−r

2/2

√
2π

=
√

2D(kσ) ∼ 1√
2 kσ

, (4.41)

where D(x) = e−x
2 ∫ x

0
dt et

2 is the Dawson function with the asymptotic expan-
sion for x→∞

D(x) =
∞∑
n=0

(2n− 1)!!

2n+1x2n+1
=

1

2x
+O(x−3) . (4.42)

Thus, the leading order behavior of δα in the limit N → ∞ and kσ � π|α| is
bounded by

δα ∼ −
1√
2 kσ

(4.43)

and consequently vanishes in the limit kσ →∞.

4.C.2. Fluctuations
Distribution of |wα|2

Here, we prove that in the limit kσ � π|α|, X = |wα|2 follows an exponential
distribution p(X) = λe−λX with mean X̄ = 1/λ. The exponential distribution
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can be characterized by its moments X̄n = n!/λn. The n-th moment of |wα|2 is
given by

|wα|2n =
1

N2n

∫
dx1 · · · dx2n e

−2ik(x1−x2) · · · e−2ik(x2n−1−x2n)

×
〈
n̂g(x1) · · · n̂g(x2n)e−i

πα
N

(F (x1)−F (x2)+···+F (x2n−1)−F (x2n))
〉

dis

=
1

N2n

∫
dx1 · · · dx2n e

−2ik(x1−x2) · · · e−2ik(x2n−1−x2n)

×
∞∑
m=0

(−iπα)m

Nmm!

∫
dz1 · · · dzmh(x, z1) · · ·h(x, zm)

× 〈n̂g(x1) · · · n̂g(x2n)n̂g(z1) · · · n̂g(zm)〉dis , (4.44)

where we de�ned h(x, z) = θ(x1−z)−θ(x2−z)+ · · ·+θ(x2n−1−z)−θ(x2n−z).
In the next step, we express the density operator using n̂g(x) = n(x) + δn̂g(x)
in order to apply Isserlis’ theorem. Further, we point out that whenever we pair
operators with variables x and z, some phase factor eikx remains and this term is
strongly suppressed in the limit kσ � π|α|. Thus, the only contribution with no
phase factors comes from the terms where only x variables are paired, that is

|wα|2n =
1

N2n

∫
dx1 · · · dx2n e

−2ik(x1−x2) · · · e−2ik(x2n−1−x2n)

× e−i
πα
N

[N(x1)−N(x2)+···N(x2n−1)−N(x2n)]

× 〈δn̂g(x1) · · · δn̂g(x2n)〉dis . (4.45)

In this expression, only those terms where odd indices are paired with even ones
do not have a phase factor. For 2n indices, there are in total n! possibilities for this
kind of pairing and we are left with

|wα|2n =
n!

N2n

∫
dx1 · · · dxn n(x1) · · ·n(xn) =

n!

N2n

(∫
dxn(x)

)n
=

n!

Nn
,

(4.46)

which shows that indeed |wα|2 follows an exponential distribution with mean
|wα|2 = 1/N . Consequently, the variance of the complex variable wα is given
by

(∆wα)2 = 〈|wα|2〉dis − 〈|wα|〉2dis =
1

N
. (4.47)
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Fluctuations in δα

In a next step, we calculate the �uctuations in the variable δα. Since this variable
is real, the variance is given by

(∆δα)2 = 〈δ2
α〉dis − 〈δα〉2dis , (4.48)

where

〈δ2
α〉dis = − 1

4N4

∫
dx dy dx′ dy′ sign(x− y)sign(x′ − y′)e2ik(x−y)e2ik(x′−y′)

×
〈
n̂g(x)n̂g(y)n̂g(x

′)n̂g(y
′)e−i

πα
N

(F (x)−F (y)+F (x′)−F (y′))
〉

dis
.

(4.49)

Similar to the previous case where we studied the �uctuations of w, the only non-
vanishing contribution after applying Isserlis’ theorem in the limit kσ � π|α|
comes from the term with the pairing

〈δn̂g(x)δn̂g(y
′)〉dis〈δn̂g(y)δn̂g(x

′)〉dis =

(
δ(x− y)n(x)− 1

N
n(x)n(y′)

)
×
(
δ(y − x′)n(y)− 1

N
n(y)n(x′)

)
.

(4.50)

From these four terms, only the term δ(x − y′)δ(y − x′)n(x)n(y) survives in the
limit of interest and we are left with

〈δ2
α〉dis = − 1

4N4

∫
dx dy sign(x− y)sign(y − x)n(x)n(y)

=
1

4N4

(∫
dxn(x)

)2

=
1

4N2
. (4.51)

Thus, the �uctuations of δα are given by

(∆δα)2 ∼ 1

N2
(4.52)

and hence vanish faster than those of wα.

4.C.3. Spectrum in Perturbation Theory
As shown in Appendix 4.C.2, the states |α, F〉 and |α,B〉 have vanishing overlap
in the limit kσ � π|α| on average while the �uctuations of this quantity behave
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as 1/N in the limit N → ∞. Further, we know that the matrix element δα also
vanishes on average while having �uctuations on the order of 1/N2. In the deriva-
tion of the universal dynamics in Section 4.C, we have shown that the dominant
contribution comes from those states with small values of α where the overlap to
the state |W 〉 is large. Hence, we restrict our analysis to those values of α and aim
at calculating the eigenenergies and -states of the full Hamiltonian in perturbation
theory to derive an analytic formula for P (t) in the presence of disorder.

For the perturbation theory, we assume that the unperturbed basis is given by
|α, F/B〉 and the perturbation is given by both HF and HB. This can be justi�ed
by noting that, for example, the matrix element δα vanishes on average and has
only small �uctuations for small |α| and large N . The same applies for the matrix
element 〈α,B|HF |α,B〉 and all o�-diagonal elements. Since we are only inter-
ested in leading order e�ects in N , we apply degenerate perturbation theory in
the subspace {|α, F〉 , |α,B〉} for �xed α. Note, however, that these states are not
orthogonal in general but only on average with �uctuations on the order of 1/N
such that we have to orthogonalize this subspace arti�cially using

|ψ1〉 = |α, F〉 (4.53)

|ψ2〉 =
1√

1− |wα|2
(|α,B〉 − w∗α |α, F〉) . (4.54)

In order to simplify the calculations, we neglect δα since its �uctuations are much
smaller than those ofwα. The corresponding Hamiltonian in the subspace spanned
by |ψ1〉 and |ψ2〉 then reads

H = Eα

 1 w∗α√
1−|wα|2

wα√
1−|wα|2

1−3|wα|2
1−|wα|2

 . (4.55)

Its eigenvalues are given by

E± =
Eα

1− |wα|2
(
1− 2|wα|2 ± |wα|

)
≈ Eα(1± |wα|) (4.56)

to leading order in wα. The corresponding eigenstates are to leading order in wα
given by

|α,+〉 =
1√
2

(
|ψ1〉+

w∗α
|wα|

|ψ2〉
)
≈ 1√

2

[(
1− w∗α

2

|wα|

)
|α, F〉+

w∗α
|wα|

|α,B〉
]
,

(4.57)

|α,−〉 =
1√
2

(
|ψ1〉 −

w∗α
|wα|

|ψ2〉
)
≈ 1√

2

[(
1 +

w∗α
2

|wα|

)
|α, F〉 − w∗α

|wα|
|α,B〉

]
.

(4.58)
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In conclusion, the degenerate eigenenergies Eα split to �rst order in wα with the
splitting

∆Eα
Eα

= 2|wα| ∼
dα√
N

(4.59)

where dα is of order unity and depends on each single realization of the experi-
ment. These �uctuating energies then set a time scale for the dephasing

τdp ∼
~

∆Eα
∼ 1√

Nγ
. (4.60)

In terms of the time scale τ−1 ∼ Nγ given by the universal dynamics, we have

τdp ∼
√
Nτ (4.61)

such that relative to τ , τdp even grows with the particle number and the universal
dynamics persists for longer times.

4.D. Analytic Expression of P (t) in the Large-N
limit

Using the results calculated in Appendices 4.C.2 and 4.C.3, we are now able to
derive analytically an approximate expression for P (t) in the limit of large N and
kσ � 1. We start by writing

P (t) =
∣∣∣〈W | e− i

~Ht |W 〉
∣∣∣2

≈

∣∣∣∣∣∑
α

e−i
Eα
~ t(1+|wα|) |〈W |α,+〉|2 + e−i

Eα
~ t(1−|wα|) |〈W |α,−〉|2

∣∣∣∣∣
2

=

∣∣∣∣∣∑
α

e−i
Eα
~ t
(
e−i

Eα|wα|
~ t |〈W |α,+〉|2 + ei

Eα|wα|
~ t |〈W |α,−〉|2

)∣∣∣∣∣
2

=
∑
α 6=β

e−i
Eα
~ tei

Eβ
~ t
(
e−i

Eα|wα|
~ t| 〈W |α,+〉 |2 + ei

Eα|wα|
~ t |〈W |α,−〉|2

)
×
(
e−i

Eβ |wβ |
~ t |〈W |β,+〉|2 + ei

Eβ |wβ |
~ t |〈W |β,−〉|2

)
+
∑
α

∣∣∣e−iEα|wα|~ t |〈W |α,+〉|2 + ei
Eα|wα|

~ t |〈W |α,−〉|2
∣∣∣2

= (A) + (B) (4.62)
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where (A) contains the sum where α 6= β and (B) contains the sum with α = β.
The overlap of the eigenstates |α,±〉 with |W 〉 is given by

| 〈W |α,±〉 |2 =
1

2

[(
2

πα

)2

+ |〈W |ψ2〉|2 ∓
2

πα

(
e−iφα 〈W |ψ2〉+ eiφα 〈ψ2|W 〉

)]
,

(4.63)

where we set wα = |wα|eiφα . Further, we have

〈W |ψ2〉 = 〈W |α,B〉+ |wα|e−iφα
2

πα
(4.64)

and

|〈W |ψ2〉|2 = |〈W |α,B〉|2 + |wα|2
(

2

πα

)2

+
2

πα
2|wα| cos(φα) . (4.65)

The overlap of the state |W 〉 and the state |α,B〉 is given by

〈W |α,B〉 =
1

N

∫
dx e−2ikx 〈G| n̂g(x)ei

πα
N
F (x) |G〉 (4.66)

and has the same distribution as w∗α in the limits we are interested in. Thus, to
leading order in wα, we can write

|〈W |α,±〉|2 =
1

2

{(
2

πα

)2

+
2

πα
|wα|

[
2 cos(φα)∓

(
1 +

2

πα

)
2 cos(2φα)

]}
.

(4.67)

Let us now focus on the second term in Eq. (4.62), where the sum runs only over
α. We can write

(B) =
∑
α

|〈W |α,+〉|4 + |〈W |α,−〉|4

+ 2 |〈W |α,+〉|2 |〈W |α,−〉|2 cos

(
2Eα|wα|

~
t

)
. (4.68)

Next, we insert the result obtained in Eq. (4.67) and neglect all terms of order w2
α.

For the linear terms, we point out that they are all accompanied by a factor cos(φα)
or cos(2φα). One can verify numerically that the complex random variable wα fol-
lows a Gaussian distribution which is spherically symmetric such that |wα| and φα
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are independent random variables. The random phase φα is uniformly distributed
in the interval [−π, π] and hence the cosine terms vanish after averaging over dif-
ferent realizations. Thus, we are left with

Eq. (4.68) =
16

4π4

∑
α

2

α4

(
1 + cos

(
2Eα|wα|

~
t

))
. (4.69)

In addition, the averaging over |wα| can be carried out by noting that |wα|2 follows
an exponential distribution with mean 1/N such that

Eq. (4.69) =
16

2π4

∑
α

1

α4

∫ ∞
0

d|wα|2Ne−N |wα|
2

[
1 + cos

(
2Eα

√
|wα|2

~
t

)]

=
16

π4

∑
α

1

α4

1−
EαtD

(
Eαt
~
√
N

)
~
√
N

 , (4.70)

with the Dawson function D(x) as de�ned below Eq. (4.41).
In a similar way, we can treat the �rst term in Eq. (4.62) which leads to

(A) =
16

π4

∑
α 6=β

e−i
Eα
~ tei

Eβ
~ t 1

α2

1

β2

1−
EαtD

(
Eαt

2~
√
N

)
~
√
N

1−
EβtD

(
Eβt

2~
√
N

)
~
√
N

 .

(4.71)

Since E−α = −Eα, we can restrict the sum over positive α and then replace α =
2n + 1 where n = 0, 1, 2, . . . Note that now we let the sum run over in�nitely
many integers even though we only have a �nite number of states for �niteN . The
contributions from large n give only small contributions such that we can safely
neglect them. Further, we introduce τ = π/Nγ such that �nally the disorder-
averaged dynamics of the state |W 〉 is given by

P (t) =
16

π4

∑
n 6=m≥0

2

(2n+ 1)2

2

(2m+ 1)2
cos

(
t/τ

2n+ 1

)
cos

(
t/τ

2m+ 1

)

×

1−
t/τdp D

(
t/2τdp
2n+1

)
2n+ 1

1−
t/τdp D

(
t/2τdp
2m+1

)
2m+ 1


− 16

π4

∑
n

2

(2n+ 1)4


1−

t/τdp D
(
t/2τdp
2n+1

)
2n+ 1

2

−

1−
t/τdpD

(
t/τdp
2n+1

)
2n+ 1


.

(4.72)
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4.D. Analytic Expression of P (t) in the Large-N limit

In this expression, the �rst term is reminiscent of the universal dynamics showing
oscillatory behavior which then is damped out on a time scale τdp =

√
Nτ , while

for times t� τdp, the last term reduces to

16

π4

∑
n

2

(2n+ 1)4

1−
t/τdpD

(
t/τdp
2n+1

)
2n+ 1

 → 16

π4

∞∑
n=0

1

(2n+ 1)4
=

1

6
(4.73)

which gives the universal saturation value di�erent from zero.
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5
Decay Dynamics of a Collective
Excitation

In this chapter, we extend the �ndings of Chapter 4 and study the in�uence of
the coherent exchange of photons in an ensemble on the decay dynamics of a
single collective excitation. In particular, we focus on one-dimensional systems
and distinguish between chiral and bidirectional waveguides. We �nd that, for a
chiral waveguide, the probability of having a collective excitation decays with an
algebraic power law instead of the conventional exponential decay. Remarkably,
this characteristic algebraic behavior remains present even for the bidirectional
waveguide in the limit of large particle number and extended sample size. This
observation suggests that some characteristic properties of chiral waveguides are
also experimentally accessible in bidirectional waveguides. This chapter is based
on Ref. [223].

5.1. Introduction
Coupling light to an ensemble of emitters is one of the paradigmatic models in
quantum optics and gives rise to interesting collective and cooperative e�ects
[224]. The most prominent example is superradiance [3, 5] where ensembles of
many excited emitters emit at higher intensities if they are excited collectively
rather than independently. Superradiance and other cooperative e�ects have been
observed in a broad spectrum of physical systems ranging from ensembles of nu-
clei [6] over cold atoms [8–10], ions [11], solid-state systems [12, 13] to more arti�-
cial and hybrid light-matter systems like superconducting qubits [14, 225] or atoms
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coupled to nanophotonic structures [194]. Intimately connected to the appearance
of superradiant properties of an ensemble is the existence of subradiant states with
a strongly quenched emission. These subradiant states �nd potential applications,
for example, in photon storage [25] or quantum computing [46]. However, inter-
esting phenomena appear even in a very weakly excited system with only a single
excitation coherently shared among all emitters [16, 18, 19, 21–24]. Due to the
collective light-matter coupling, for example, the emission rate from the sample
is still enhanced compared to an independent emission and scales linearly with
the number of emitters. Here, we study the emission dynamics of a single coher-
ent excitation in a superradiant state from an ensemble of emitters coupled to a
one-dimensional waveguide.

The in�uence of collective e�ects is two-fold. On one hand, the coupling of the
ensemble to an external light �eld is collectively enhanced which can be used to
strongly couple a propagating light pulse to an ensemble of many atoms in order
to drive Rabi oscillations with only a few photons [177]. This collective coupling
also leads to a strongly enhanced emission rate and the emission becomes highly
directional [16, 39, 226]. On the other hand, coherent interactions mediated by
the exchange of virtual photons between the emitters were shown to give rise to
a collective Lamb shift [2, 23], universal internal dynamics of the ensemble [216]
but also strongly in�uence the decay dynamics of single photon superradiance
in three dimensions [19, 21, 227]. Moreover, coherent interactions can be used to
create quantum antennas [228], cavities built from only two atoms [165] or mirrors
built from a single layer of atoms [75, 83, 84]. Recently, the e�cient coupling of
atoms to nanophotonic structures in low dimensions [89] has enabled the study
of almost perfectly one-dimensional systems that show in�nite-range interactions
[90] but also exotic chiral, coherent light-matter interactions which depend on the
polarisation of the incoming light [105]. Such waveguides have a high potential to
generate nonclassical states of light [99, 102, 104].

5.2. Setup and Model

Similar to Chapter 4 we consider a system of N noninteracting two-level atoms
at positions xj where each atom has a ground state |g〉 and an excited state |e〉
separated by the transition frequency ω0 = ck (see Fig. 5.1). The atoms are coupled
to a one-dimensional waveguide and the coupling is described within the rotating
frame and applying the rotating-wave approximation. The Hamiltonian takes the
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(a)

(b)

Fig. 5.1.: (a) Two-level atoms coupled to a one-dimensional waveguide. The waveguide
supports (in general) left- and right-propagating modes and the atoms can emit (absorb)
photons into (from) both modes. (b) E�ective system after the elimination of the waveg-
uide photons. The atoms interact via an (in�nite-ranged) exchange interaction Jjl and
have a correlated decay Γjl.

form

H =

∫
dq

2π
~ωqa†aaq − ~

√
γ

N∑
j=1

[
E−(xj)σ

+
j + E+(xj)σ

−
j

]
. (5.1)

The �rst term describes the photons in the waveguide with linear dispersion ωq =
c|q| − ω0 around the resonance frequency and annihilation (creation) operators
a

(†)
q of photons with momentum q. The second term accounts for the coupling

of the atoms to the electromagnetic �eld with strength √γ. Here, σ+
j = |e〉〈g|j

and σ−j = |g〉〈e|j are the raising and lowering operators for the atomic transition,
respectively. The positive frequency component of the electric �eld operator E−
is given by

E−(x) = i
√
c

∫
dq

2π
aqe

iqx , (5.2)

and analogously for the negative frequency component E+. Note that the scalar
product of the polarization with the transition dipole moment is already included
in the de�nition of E±.

As discussed in Chapter 2, the photonic degrees of freedom can be integrated
out leaving us with an e�ective description of the dynamics of the atoms in terms
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of a master equation of the form

∂tρ(t) = − i
~

[∑
j,l

~Jjlσ+
j σ
−
l , ρ(t)

]
+
∑
j,l

Γjl

(
σ−l ρ(t)σ+

j −
1

2

{
σ+
j σ
−
l , ρ(t)

})
.

(5.3)

The �rst term accounts for the coherent exchange interaction mediated by virtual
photons and the second one gives rise to correlated spontaneous emission. In gen-
eral, Jjl and Γjl are related to the propagator of the electromagnetic �eld (2.7). The
term Jjj accounts for a Lamb shift and is usually dropped as it is already included in
the resonance frequency of a single emitter, while Γjj describes the single-emitter
decay rate.

In this chapter, we focus on chiral and bidirectional waveguides. For a chiral
waveguide, where the atoms only couple to modes with either positive or negative
momentum, the coherent exchange terms and decay rates read

Jjl =
γ

2i
sign(xj − xl)eik(xj−xl) , (5.4)

Γjl = γeik(xj−xl) , (5.5)

respectively, where the single-atom decay rate is Γjj = γ. Here, sign(x− y) = ∓1
if x ≶ y and sign(x− y) = 0 if x = y.

For the bidirectional waveguide, where the atoms couple to both forward- and
backward-propagating modes, the coherent exchange terms and decay rates are
given by

Jjl = γ sin(k|xj − xl|) , (5.6)
Γjl = 2γ cos(k|xj − xl|) , (5.7)

respectively, with the single-atom decay rate Γjj = 2γ. Note that the single-atom
decay rate is twice as large for the bidirectional waveguide as the photon can be
emitted into the forward- and the backward-propagating modes.

5.3. Two-Atom Solution
As an illustrative example that already contains the important physics, we review
the case of only two atoms, which has also been studied extensively in previous
works [229, 230]. Consider the generic master equation for a system of only two
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identical atoms at positions x1 and x2 given by

∂tρ = −i
[
J12σ

+
1 σ
−
2 + J∗12σ

+
2 σ
−
1 , ρ
]

+ Γ

(
D[σ−1 ]ρ+D[σ−2 ]ρ

+ F12

(
σ−2 ρσ

+
1 −

1

2
{σ+

1 σ
−
2 , ρ}

)
+ F ∗12

(
σ−1 ρσ

+
2 −

1

2
{σ+

2 σ
−
1 , ρ}

))
,

(5.8)

where J12 ∈ C is the coherent coupling between the atoms, D[σ−]ρ = σ−ρσ+ −
{σ+σ−, ρ}/2 is the Lindblad dissipator and Γ is the single-atom emission rate into
the waveguide. In a chiral waveguide there is only a coupling to the forward prop-
agating modes and the single-atom emission rate is Γ = γ, whereas for a bidi-
rectional waveguide, the atom can emit into forward- and backward-propagating
modes and the emission rate is Γ = 2γ (see Fig. 5.2(a)).

The dimensionless factor F12 ∈ C is a measure for the correlated decay of both
atoms in terms of Γ. If F12 = 0, the atoms decay independently of each other
with the single-atom decay rate Γ. If F12 is di�erent from zero, the decay rates are
modi�ed in general and in the single-excitation subspace, there is one superradiant
state which decays faster than Γ and one subradiant state which decays slower
than Γ. The super- and subradiant states read

|±〉 =
1√
2

(
σ+

1 ± e−iφσ+
2

)
|G〉 ≡ 1√

2
S†± |G〉 (5.9)

where φ = arg(F12) and |G〉 is the ground state of the atomic system where all
atoms are in their respective ground state. The corresponding decay rates are
Γ± = Γ(1± |F12|). Note that the decay rates depend on the distance between the
emitters.

While the super- and subradiant states provide an elegant way to describe the
decay dynamics of a single excitation, for actual experiments another type of state
is of importance. Assume that in a one-dimensional setup the system is excited by
means of a plane wave eikx. In the single-excitation sector the light �eld couples
to the so-called bright state

|W 〉 =
1√
2

(σ+
1 + e−ik(x1−x2)σ+

2 ) |G〉 ≡ 1√
2
S†W |G〉 . (5.10)

The orthogonal state

|D〉 =
1√
2

(σ+
1 − e−ik(x1−x2)σ+

2 ) |G〉 ≡ 1√
2
S†D |G〉 (5.11)
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Fig. 5.2.: Setup for two atoms coupled to a one-dimensional waveguide. (a) In a chiral setup
(left) the atom can only emit into the forward-propagating mode with rate γ, while in the
bidirectional setup (right) the atoms can emit into forward- and backward-propagating
mode with rate γ for each mode. (b) For a chiral waveguide, the subradiant and superradi-
ant states correspond to the bright and dark state, respectively. The bright and dark state
are coupled and the bright state decays with a collectively enhanced decay rate Γ+ = 2Γ
and the single-atom emission rate Γ = γ. Initially, the system is prepared in the bright
state. (c) In the bidirectional case, when the atoms are on average very close to each other
compared to the wavelength, there is no coupling and the bright (dark) state corresponds
to the superradiant (subradiant) state. A system that is initially prepared in the bright state
decays with the collectively enhanced decay rate 2Γ, where the single-atom decay rate is
Γ = 2γ. (d) In the case where the interatomic distance is on average much greater than the
wavelength, the superradiant and subradiant state are shifted with respect to each other
(depending on the distance between the atoms) and emit with rates Γ+ and Γ−, respec-
tively. Since the bright state is now a superposition of the super- and subradiant state,
these two states are coupled by the initial condition.

is called the dark state and is decoupled from the incoming light �eld. It is im-
portant to note that while the bright and dark state look similar to the super- and
subradiant state de�ned in Eq. (5.9), they coincide only in very special cases as we
will show in the following.

5.3.1. Bidirectional Waveguide
First, we focus on the bidirectional waveguide for which Γ = 2γ, F12 = cos(k|x1−
x2|) and J12 = Γ

2
sin(k|x1 − x2|) ∈ R, which can be inferred by comparing

Eqs. (5.6), (5.7) and (5.8). The resulting master equation for this system reads

∂tρ = −i
[
J12(S†+S+ − S†−S−), ρ

]
+ Γ+D[S+]ρ+ Γ−D[S−]ρ . (5.12)
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Note that the dynamics for the super- and subradiant states completely decou-
ple, and both states are shifted by J12 with respect to each other. This situation
is qualitatively similar to a system of two atoms coupled to the electromagnetic
continuum in free space as the parameters J12 and F12 are real and depend on the
relative distance between the atoms. The precise form of the coupling parame-
ter and decay rates, however, are much more complicated and also depend on the
relative orientation of the two atoms.

The dynamics of the system of two atoms can be calculated analytically for
arbitrary positions of the atoms and by de�ning the elements of the density matrix
ραβ = 〈α| ρ |β〉. The populations of the bright state and dark state for a system
initially prepared in the bright state are given by

ρWW (t) = e−Γt

∣∣∣∣cosh

(
Γt

2
eik|x1−x2|

)
− cos(k (x1 − x2)) sinh

(
Γt

2
eik|x1−x2|

)∣∣∣∣2 ,
(5.13)

ρDD(t) = e−Γt sin2(k|x1 − x2|)
∣∣∣∣sinh

(
Γt

2
eik|x1−x2|

)∣∣∣∣2 . (5.14)

For short distances, k|x1 − x2| � 1, one can approximate F12 ≈ 1 and J12 ≈ 0
resulting in Γ+ = 2Γ and Γ− = 0. In addition, the bright and dark state coincide
with the super- and subradiant state, respectively (see Fig. 5.2(c)). In this scenario,
the bright state decays exponentially with an enhanced decay rate 2Γ known as
single-photon superradiance which was already studied by Dicke [3]. The same
holds when we go to the experimentally more relevant case where the positions of
the atoms might �uctuate for di�erent realizations of the experiment. Assuming
that the atoms are distributed according to a density distribution with characteris-
tic length scale σ, single-photon superradiance is also present if kσ � 1, that is if
the atoms are much closer than a wavelength. This can be also seen from Eq. (5.13)
which reduces to ρWW (t) ≈ e−2Γt in these cases.

In the opposite limit where the extent of the ensemble is much larger than the
wavelength, that is kσ � 1, the behaviour for small times Γt� 1 after averaging
over the atomic distribution1 is

ρWW (t) ≈ 1− 3

2
Γt+O((Γt)2) ≈ e−

3
2

Γt , (5.15)

ρDD(t) ≈ 1

8
(Γt)2 +O((Γt)3) . (5.16)

1Note that in the limit kσ →∞, the precise form of the distribution does not matter for the �nal
result. Di�erent distributions only give rise to di�erent corrections for �nite kσ. A Gaussian
distribution, for example, leads to exponential corrections in kσ, while a uniform distribution
with width σ gives rise to corrections ∼ 1/(kσ)2.
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Fig. 5.3.:Time evolution of the population of the bright state (blue solid line), the dark state
(orange dashed line) and the total population of excited states (green dash-dotted line) for
N = 2 atoms coupled to a bidirectional waveguide in the limit kσ � 1. The gray dotted
line shows an exponential decay with a collectively enhanced decay rate NΓ = 2Nγ
expected in single-photon superradiance which appears for kσ � 1. (Inset): The inset
shows the time evolution on a logarithmic scale. For small times NΓt � 1, the decay
can be approximated as 1 − 3

2NΓt ≈ e−
3
2
NΓt. For long times NΓt � 1, the populations

decay much slower compared to an exponential decay with collectively enhanced decay
rate NΓ. The numerical calculations were performed for kσ = 1000 and the positions of
the atoms varied according to a Gaussian density distribution with mean 0 and variance
σ2. The plot shows the average overM = 1000 realizations and convergence with respect
to M was checked.

Thus, the bright state initially does not decay with a collectively enhanced rate 2Γ,
but slightly slower due to the additional decay channel in the backward direction.
The full, numerical solution for the time evolution of the bright state, the dark
state and the overall population ρWW + ρDD of the excited states is shown in
Fig. 5.3 alongside with the time evolution for the superradiant case. It can be seen
that for longer times, Γt � 1 the population of the bright state together with the
overall population of the excited states decay much slower than expected from a
superradiant sample due to the in�uence of the dipole-dipole interactions.

5.3.2. Chiral Waveguide
Next, we study a chiral waveguide, where each atom only couples to the forward
propagating modes of the waveguide and the emission of each atom is directional
with rate Γ = γ. The measure of the collective decay is F12 = eik(x1−x2) and
carries the phase the photon picks up when propagating from one atom to the
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other. The exchange coupling parameter reads J12 = Γ
2i

sign(x1−x2)eik(x1−x2) and
is in general complex. Like the correlated decay term, the exchange coupling also
carries the phase of the photon due to propagation while the sign term comes from
the chiral coupling.

For the chiral system, the de�nition of the bright (dark) state |W 〉 (|D〉) coin-
cides with the de�nition of the superradiant (subradiant) state |+〉 (|−〉), see also
Fig. 5.2(b). As a matter of fact, neither the precise positions of the atoms nor their
relative distance matter for the physics but only their ordering with respect to each
other. This is due to the cascaded nature of the system, where the atoms can only
emit into the forward direction, which coincides with the direction of propaga-
tion of the incoming plane wave. This can also be seen by rede�nition of the spin
operators to include the propagation phase, i.e., e−ik(x1−x2)σ+

2 → σ+
2 . The master

equation (5.8) for the chiral system expressed in terms of super- and subradiant
operators reads

∂tρ = −i
[
i
Γ

4
(S†+S− − S

†
−S+), ρ

]
+ Γ+D[S+]ρ

= −i
[
i
Γ

4
(S†WSD − S

†
DSW ), ρ

]
+ Γ+D[SW ]ρ , (5.17)

where Γ+ = 2Γ = 2γ and Γ− = 0. This means that the super- and subradiant
states in this case are perfectly superradiant and subradiant, respectively. In ad-
dition, we have assumed x1 < x2 for simplicity. In contrast to the bidirectional
case, the master equation does not decouple into super- and subradiant states but
coherently couples them due to the chiral coupling (see also Fig. 5.2). Preparing
the system in the bright state (which is equivalent to the superradiant state), the
bright state can either decay with enhanced rate Γ+ = 2Γ or couple to the dark
(subradiant) state that does not decay at all. Since the coupling is a coherent pro-
cess, the system will decay with Γ+ in linear order. For later times, the probability
to remain in the bright state will no longer follow an exponential decay with en-
hanced decay rate Γ+ but should �rst decay faster due to an additional channel to
the dark state with a subsequent revival due to coupling back from the dark state.
The time evolution for the population of the bright and dark state of a system
initially prepared in the bright state reads

ρWW (t) =
1

4
e−Γt(Γt− 2)2 , (5.18)

ρDD(t) =
1

4
e−Γt(Γt)2 (5.19)

and is shown in Fig. 5.4. As discussed before, for short times, Γt � 1, the bright
state decays as ρWW (t) ≈ 1 − 2Γt ≈ e−2Γt, while it vanishes for Γt = 2, has a
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Fig. 5.4.: Time evolution of the population of the bright state (blue solid line), the dark
state (orange dashed line) and the total population of the excited states (green dash-dotted
line) for N = 2 atoms coupled to a chiral waveguide. The gray dotted line shows an
exponential decay with collectively enhanced decay rate NΓ. (Inset): The inset shows a
logarithmic plot of the time evolution of the populations. For NΓt � 1, the decay of the
bright state population is slowed down due to the coupling to the dark state.

revival shortly after and then decays again. The rapid decrease of the population of
the bright state after some initial time must not be confused with the spontaneous
emission of a photon but rather with the transfer of the excitation into the dark
state. This can also be seen by looking at the corresponding population of the dark
state and the probability to �nd an excitation in the system, given by ρWW + ρDD.
At Γt = 2, all population that has not yet decayed is transferred to the dark state.
For longer times, the decay is not exponential with a collectively enhanced decay
rate but rather slows down due to the coupling of the bright, superradiant state to
the dark, subradiant one.

5.4. N Atoms Coupled to a One-Dimensional
Waveguide

After having shown that including the coherent exchange interaction into the dy-
namics of a two-emitter system can alter the characteristics of the decay dynamics
of a single collective excitation, we proceed to a more complex situation where an
arbitrary number N of emitters are coupled to a one-dimensional waveguide. At
�rst glance, it is not obvious that we can expect similar dynamics as in the case of
only two emitters as we are dealing with many dark states that are also coupled to
each other leaving the possibility of an ordinary exponential decay albeit with a
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modi�ed decay rate. In the following, we show both numerically and analytically
that this is not the case but instead there are oscillations in the population of the
bright state with an overall algebraic decay. First, we discuss the case of a chiral
coupling, meaning that the photons emitted from the atoms into the waveguide
can only propagate in one direction (for example from left to right). Owing to the
chiral coupling, it is possible to derive an analytical expression for the population
of the bright state. In a second step, we include the emission into the other direc-
tion and show that, for an extended sample of atoms, the dynamics reduces to that
of a chiral waveguide.

5.4.1. Chiral Waveguide
Since for a chiral setup the atoms can only emit into one direction (say to the right),
they form a cascaded open quantum system [108, 109]. The corresponding master
equation reads [105, 167, 231]

∂tρ =− i

~

[
~γ
2i

∑
j,l

sign(xj − xl)eik(xj−xl)σ+
j σ
−
l , ρ

]

+ γ
∑
j,l

eik(xj−xl)
(
σ−l ρσ

+
j −

1

2

{
σ+
j σ
−
l , ρ
})

, (5.20)

where sign(x− y) = ∓1 if x ≶ y and sign(x− y) = 0 if x = y. Again, the speci�c
positions xi of the atoms do not in�uence the dynamics as the phase factors could
be absorbed into the de�nition of the operators σ±i .

Since we are only interested in the dynamics of a single excitation, the time evo-
lution of the system is well described by the e�ective non-Hermitian Hamiltonian

He� =
~γ
2i

∑
j,l

(sign(xj − xl) + 1) eik(xj−xl)σ+
j σ
−
l (5.21)

which includes both the coherent exchange coupling and the collective chiral de-
cay. This description is possible since we do not have any external driving and
do not assume initial coherences between the single-excitation subspace and the
ground state. In what follows, we focus on the modi�cation of the collectively
enhanced decay of the state

|W 〉 =
1√
N

∑
j

eikxjσ+
j |G〉 (5.22)
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due to the chiral coupling; we consider the quantity

PW (t) = | 〈W | e−iHe�t/~ |W 〉 |2 , (5.23)

which is identical to the population of the state |W 〉. The time evolution of the
|W 〉 state can be calculated analytically for the chiral case and the solution reads
(see Appendix 5.A for more details)

PW (t) =
1

N2
e−γt

[
L

(1)
N−1(γt)

]2

, (5.24)

where L(n)
m (x) is the generalized Laguerre polynomial. The decay dynamics of the

state |W 〉 is shown in Fig. 5.5.
For short times γt � 1, one expects the coherent exchange to play no role

such that the decay is completely determined by the collective decay given byNγ.
Indeed, for short times Nγt� 1, we �nd

PW (t� 1/Nγ) ≈ 1−Nγt+O((Nγt)2) ≈ e−Nγt . (5.25)

Equation (5.24) can also be simpli�ed in the limit N →∞, and we obtain

PW (t) =

[
J1(2
√
κt)
]2

κt
(5.26)

where Jn(x) is the Bessel function of the �rst kind and κ = Nγ with κ �xed for
N →∞. In the limitN →∞, the initial decay for short times is given by κ, while
for long times κt� 1, we �nd a characteristic algebraic behavior

PW (κt� 1) =
1

π(κt)3/2
cos2

(
2
√
κt− 3π

4

)
. (5.27)

Interestingly, there is no exponential decay for long times but rather an algebraic
one with (κt)−3/2. This is also shown in the inset of Fig. 5.5. For �nite N the
algebraic decay is present on intermediate timescales κt� 1. However, the decay
of individual atoms eventually becomes the dominant contribution, which happens
on timescales κt � N2. This is in stark contrast to the collectively enhanced
exponential decay one encounters in single-photon superradiance.

The slowing down of the emission from the bright state can be understood as
follows: Also for many atoms, the single-excitation subspace can be divided into a
superradiant state and subradiant states. The interaction mediated by photon ex-
change via the waveguide couples the bright superradiant state to the other sub-
radiant states. Therefore, these subradiant states become populated during the
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Fig. 5.5.: Decay dynamics of a single collective excitation of a system of N atoms coupled
to a chiral waveguide in the limit N → ∞. The collective excitation initially decays
exponentially with decay rate κ while for long times the decay is algebraic with (κt)−3/2

which is shown in the inset. The dashed line shows the long-time behavior. Note that the
dynamics looks qualitatively the same for �nite N and N � 1.

time evolution, and the excitation is less likely to decay if it is “protected” in these
subradiant states. This mechanism then provides the slowing down of the decay
dynamics.

We want to point out that in the limit of N → ∞, the rotating-wave approxi-
mation breaks down and neglecting retardation e�ects is also no longer justi�ed.
As a physically meaningful limit, we require always κ = Nγ � ω0. Typical ex-
periments with ultracold atoms, for example, involve about 103 to 104 atoms with
coupling constant γ in the MHz regime and optical transition frequencies in the
THz regime. The above condition is thus well satis�ed.

5.4.2. Bidirectional Waveguide: Large and Small Samples

While we have shown above that the dynamics of a single collective excitation in a
one-dimensional chiral waveguide undergoes interesting dynamics, we now turn
to the case where the waveguide is bidirectional but the positions of the atoms
�uctuate with each realization. It turns out that in the limit where the distribution
of the positions of the atoms is smooth compared to the wavelength, one recovers
the dynamics of a chiral waveguide. In contrast, the case of an ensemble that is
con�ned within a wavelength shows single-photon superradiance with a collec-
tively enhanced exponential decay of the collective excitation.

First, we consider the case where the atoms are randomly distributed along the
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Fig. 5.6.: The blue line shows the time evolution of the bright state in the case of a bidi-
rectional coupling and a normal distribution of the atoms with zero mean and variance
σ2 with kσ = 1000 for N = 100 atoms and averaged over M = 100 realizations. The
gray dashed line shows the corresponding time evolution for the chiral case for the same
number of particles. The light gray curves in the background show trajectories for single
realizations.

waveguide with a characteristic length scale σ, which is much larger than the
wavelength of the atomic transition, that is kσ � 1. The time evolution of the
bright state for N = 100 atoms can be determined numerically and is shown in
Fig. 5.6. For concreteness, we use a Gaussian density distribution with width σ and
kσ = 1000, the result is averaged over 100 realizations. Interestingly, the dynamics
in the bidirectional case are qualitatively similar to the chiral case after averaging
over the position of the atoms. Even for single realizations of the system the time
evolution of the bidirectional case resembles the dynamics of the chiral system in
terms of algebraic decay and period of the oscillations.

To understand this observation, we can go to the continuum limit for N →∞,
and introduce again the e�ective Hamiltonian

He� = −iγ
∫
dx dy exp(ik|x− y|)Ψ†(x)Ψ(y) (5.28)

with the �eld creation and annihilation operators Ψ†(x) and Ψ(x), respectively.
Their commutation relations are [Ψ(x),Ψ†(y)] = δ(x− y). The time evolution of
the state

|ψ(t)〉 =
1√
N

∫
dxψ(x, t)Ψ†(x) |G〉 (5.29)
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with the initial condition ψ(x, 0) = eikx is then given by the e�ective Schrödinger
equation

∂tψ(x, t) = −γ
∫
dy exp(ik|x− y|)ψ(y, t)n(y) , (5.30)

where n(y) is the density distribution of the atoms with
∫
dxn(x) = N and a

characteristic width σ. In the limit kσ → ∞ and assuming that the atoms are
uniformly distributed in the interval [0, σ], this equation can be solved using the
Laplace transform with respect to both t and x. The solution for ψ(x, t) is given
by (for more details see Appendix 5.B)

ψ(x, t) = eikxJ0

(
2
√
κtx/σ

)
. (5.31)

The population of the bright state is then given by

PW (t) =

∣∣∣∣∫ 1

0

dx J0

(
2
√
κtx
)∣∣∣∣2 =

[
J1(2
√
κt)
]2

κt
. (5.32)

Note that this result is actually independent of the precise density distribution as
long as kσ � 1 and we have only chosen a uniform distribution to simplify the
calculations. Consequently, in the limit N →∞ and kσ � 1, the dynamics of the
bright state exactly reduces to the chiral case given by Eq. (5.26). The same result
has already been found in [227, 232], where the authors studied a similar system
in three dimensions treating the atoms as point-like emitters and neglecting any
polarization e�ects by taking only the scalar photon propagator. Further, their
decay rate is increased by a factor of 2 as they consider an initial excitation of
forward- and backward-propagating modes.

The second regime of interested is obtained if we assume that the width of the
distribution of the positions is much smaller than the wavelength, i.e., kσ � 1.
Then, all atoms are con�ned within one wavelength; in this limit also k|xj−xl| �
1 for all j and l. Thus, we might expand the sine and cosine term in Eqs. (5.6) and
(5.7) leading to Jjl ≈ 0 and Γjl ≈ 2γ, respectively. Clearly, there is no coupling
to the dark states while the bright state decays exponentially with a collectively
enhanced decay rate 2Nγ. The factor of 2 appears because of the bidirectional
coupling to the forward and backward-propagating modes. This limit corresponds
to the situation Dicke considered originally where the particles are close to each
other and single-photon superradiance is restored. This result can also be derived
analytically noting that in the limit kσ � 1, the e�ective Schrödinger equation
(5.30) reduces to

∂tψ(x, t) = −γ
∫
dy n(y)ψ(y, t) , (5.33)
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with the same initial condition. As ψ(x, t) varies only slowly within the range of
σ, the di�erential equation is solved by the function ψ(x, t) = ψ(x, 0)e−κt. Then,
the population of the bright state is given by

PW (t) =

∣∣∣∣ 1

N

∫
dxn(x)e−κt

∣∣∣∣2 = e−2κt , (5.34)

with the collectively enhanced decay rate κ = Nγ.

5.5. Conclusion
In this chapter, we have studied the dynamics of a single collective excitation of
N two-level atoms in�uenced by photon-mediated coherent interactions. While
one expects a collectively enhanced spontaneous decay if all the atoms are close
together (as predicted by Dicke in his seminal work [3]), we demonstrated within
an analytical approach for a one-dimensional waveguide that the general long-
time behavior is signi�cantly modi�ed due to the coherent exchange of virtual
photons. Especially for large numbers of particles this exchange gives rise to a
characteristic algebraic behavior ∼ 1/(κt)3/2. The slowed down decay can be ex-
plained by the additional coupling of the superradiant bright state to subradiant
states with di�erent, but slower decay rates. While this result is rigorous for a chi-
ral waveguide, we demonstrated that this behavior also emerges in a bidirectional
waveguide if the atoms are randomly distributed on a length scale larger than the
optical wavelength of the transition. This opens up the possibility to study the pe-
culiar in�uence of the virtual exchange of photons in systems without requiring
a strictly chiral coupling which can be implemented much more easily. Examples
of potential applications include, but are not limited to, atoms coupled to optical
nano�bers or waveguides [89, 92, 106], quantum dots coupled to photonic crystal
waveguides or nanostructures [94, 233], vacancy centers in crystals [195], super-
conducting qubits [95, 192, 234] and also molecular chains [235]. Even though we
focused our analysis on a purely one-dimensional system, we expect similar be-
havior to also appear in three-dimensional setups in free space where the atoms
are coupled to a single focused light mode. Our observations are thus relevant
for a broad range of systems with collective excitations as for example quantum
memories. In particular, it is of fundamental importance for understanding Ryd-
berg superatoms in free space which have recently attracted a lot of experimental
attention [177] (see also Chapter 3). We expect that the in�uence of this coherent
exchange interaction is also relevant for the experimental observation of an oscil-
latory behavior of the decay rate of such Rydberg superatoms [226, 236], which
we also discuss in Chapter 6 in more detail.
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Appendix

5.A. Analytical Solution for PW (t) for N Atoms
In this section, we present the derivation of Eq. (5.24) using the e�ective (non-
Hermitian) Hamiltonian

He� =
~γ
2i

∑
j,l

(sign(xj − xl) + 1) eik(xj−xl)σ+
j σ
−
l . (5.35)

Even though the emitter system is described by a master equation, in the absence
of driving and assuming the system is initially prepared in the bright state |W 〉 =

1√
N

∑
j e

ikxjσ+
j |G〉, it is possible to describe the time evolution of |W 〉 with the

e�ective Hamiltonian above.
To simplify the calculations, we absorb all phases into the operators, that is

σ+
j → e−ikxjσ+

j and similarly for σ−j . The e�ective Hamiltonian can then be writ-
ten as

He� =
~γ
2i

∑
j,l

(sign(xj − xl) + 1) σ+
j σ
−
l . (5.36)

Note that this transformation is not useful in the case of a bidirectional system and
re�ects the fact that for a chiral system only the order of the emitters is important
but not their relative distance. In the following, we will assume that xj < xl if
j < l.

In the basis {|j〉 = σ+
j |G〉 , j = 1, . . . , N}, we can represent the Hamiltonian

in Eq. (5.36) as the sum of the N ×N identity matrix I and a nilpotent matrix MN

for which (MN)n = 0, n ≥ N :

He� = −i~γ
2

(I + 2MN) , (5.37)
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where MN is a strictly lower triangular matrix whose nonzero entries are all 1.
The time evolution of the bright state is then given by

|ψ(t)〉 = e−iHe�t/~ |W 〉 = e−
γt
2
I

N−1∑
n=0

(−γt)n

n!
(MN)n |W 〉 . (5.38)

The probability to remain in the bright state as a function of time can be written
as

PW (t) = e−γt

∣∣∣∣∣
N−1∑
n=0

(−γt)n

n!
〈W | (MN)n |W 〉

∣∣∣∣∣
2

. (5.39)

In the basis given above, |W 〉 is represented by the vector

|W 〉 =
1√
N

1
...
1

 (5.40)

such that the matrix element 〈W | (MN)n |W 〉 can be calculated as

〈W | (MN)n |W 〉 =
∑

j1<j2<···<jn+1

1

N

=
1

N

N(N − 1) · · · (N − n)

(n+ 1)!

=
1

N

(
N

n+ 1

)
=

1

N

(
N

N − (n+ 1)

)
. (5.41)

Finally, the time evolution of the occupation of the bright state reads

PW (t) = | 〈W | e−iHe�t/~ |W 〉 |2

=

∣∣∣∣∣
N−1∑
n=0

(−γt)n

n!

1

N

(
N

N − (n+ 1)

)∣∣∣∣∣
2

e−γt

=

[
1

N
L

(1)
N−1(γt)

]2

e−γt (5.42)

where L(α)
n (x) is the generalized Laguerre polynomial.

In the limit N →∞, one can approximate the Laguerre polynomial by a Bessel
function as

L
(α)
N (x) ≈

√
Nα

Jα(2
√
Nx)√
xα

e
x
2 (5.43)
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such that

PW (t) =
1

N2
e−γt

[
L

(1)
N−1(γt)

]2

≈ [J1(2
√
κt)]2

κt
, (5.44)

with κ = Nγ �xed. For long times κt� 1, the asymptotic behaviour of the Bessel
function leads to

PW (κt� 1) =
1

π(κt)3/2
cos2

(
2
√
κt− 3π

4

)
, (5.45)

which gives the characteristic algebraic behaviour ∼ (κt)−3/2.

5.B. Continuum Limit in the Bidirectional Case
Here, we show that the time evolution of the bright state in the bidirectional
waveguide reduces to the time evolution in the chiral case in the limit where
N → ∞ and kσ → ∞. In contrast to the numerical calculations mentioned in
Section 5.4.2 where we used a Gaussian density distribution, here we assume the
atoms to be uniformly distributed in an interval [0, σ] along the waveguide such
that the analytical calculations simplify. The �nal result, however, does not depend
on the details of the distribution as long as kσ � 1.

In the limit N → ∞ and σ �nite, we can go over to the continuum limit by
keeping κ = Nγ �xed. The e�ective Hamiltonian in this case reads

H = −iγ
∫
dx dy exp(ik|x− y|)Ψ†(x)Ψ(y) (5.46)

with the �eld creation and annihilation operators Ψ†(x) and Ψ(x), respectively.
The have the commutation relations [Ψ(x),Ψ†(y)] = δ(x − y). The initial bright
state is given by

|W 〉 =
1√
N

∫
dx eikxΨ†(x) |G〉 . (5.47)

In order to calculate the time evolution for the state

|ψ(t)〉 =
1√
N

∫
dxψ(x, t)Ψ†(x) |G〉 , (5.48)

we have to solve the e�ective Schrödinger equation

i∂tψ(x, t) = −iκ
σ

∫ σ

0

dy exp(ik|x− y|)ψ(y, t) . (5.49)
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In the following, we rescale all lengths by σ and introduce the dimensionless
quantity q = kσ. Further, we rescale all times by the collective rate κ, such that
t → τ/κ with dimensionless τ . Then, the dimensionless Schrödinger equation
reads

∂τψ(x, τ) = −
∫ 1

0

dy exp(iq|x− y|)ψ(y, τ) (5.50)

with the initial condition ψ(x, 0) = eikx.
To solve this di�erential equation, we �rst perform a Laplace transform from

the variable τ to the variable s,

s ψ̂(x, s)− ψ(x, 0) = −
∫ 1

0

dy eiq|x−y|ψ̂(y, s)

= −
∫ x

0

dy eiq(x−y)ψ̂(y, s)−
∫ 1

x

dy e−iq(x−y)ψ̂(y, s)

= −
∫ x

0

dy eiq(x−y)ψ̂(y, s) +

∫ x

0

dy e−iq(x−y)ψ̂(y, s)

−
∫ 1

0

dy e−iq(x−y)ψ̂(y, s) . (5.51)

As we want to get rid of fast oscillating terms in the end, we make the ansatz
ψ̂(x, s) = eiqxφ̂(x, s), where φ̂(x, s) is assumed to be a slowly varying function of
x. It then follows

s φ̂(x, s)− 1 = −
∫ x

0

dy φ̂(y, s) +

∫ x

0

dy e−2iq(x−y)φ̂(y, s)

− e−2iqx

∫ 1

0

dy e2iqyφ̂(y, s) . (5.52)

The last integral in this expression vanishes in the limit q → ∞ and we can drop
it in the following. Next, we perform a Laplace transform from the variable x to u
which leads to

s
ˆ̂
φ(u, s)− 1

u
= −

ˆ̂
φ(u, s)

u
+

ˆ̂
φ(u, s)

u+ 2iq
, (5.53)

where we have made use of the convolution theorem for the Laplace transform.
The integral equation is then reduced to an algebraic one whose solution reads

ˆ̂
φ(u, s) =

u+ 2iq

su2 + 2iq(1 + su)
. (5.54)
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Now we can take the limit q →∞ and are left with

ˆ̂
φ(u, s) ≈ 1

su+ 1
. (5.55)

The inverse Laplace transform of this expression back to the variables x and τ is
given by

φ(x, τ) = J0(2
√
xτ) (5.56)

with the Bessel function of the �rst kind J0(x). Thus, the full solution for the
wavefunction reads

ψ(x, τ) = eiqxJ0(2
√
xτ) . (5.57)

The time evolution of the bright state is thus given by

PW (t) =

∣∣∣∣∫ 1

0

dx J0(2
√
xτ)

∣∣∣∣2 =

∣∣∣∣J1(2
√
τ)√

τ

∣∣∣∣2 =

[
J1(2
√
κt)
]2

κt
, (5.58)

where J1(x) is the Bessel function of the �rst kind. This is the same result as in
the chiral case in the limit N →∞.

The probability of �nding an excitation in the system at time t is given by

P (t) =

∫ 1

0

dx
[
J0(2
√
xτ)
]2

=
[
J0(2
√
κt)
]2

+
[
J1(2
√
κt)
]2

(5.59)

and is shown in Fig. 5.7 as the green solid line. The initial dynamics resembles the
exponential decay for the state |W 〉with rate κ, while the long-time behaviour for
κt � 1 is again algebraic albeit with an even slower decay ∼ 1/κt compared to
the 1/(κt)3/2 scaling for the collective excitation. This comes from the fact that
the probability P (t) also includes the dark states to which the initial collective
excitation is non-radiatively transferred.
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Fig. 5.7.: The green solid line shows the probability P (t) to have an excitation in a bidirec-
tional waveguide with initial state |W 〉 given by Eq. (5.59). Initially, the excitation decays
exponentially in agreement with the result obtained for the decay of the collective exci-
tation. In the long time limit, the probability decays algebraically with 1/κt. The blue
dashed line shows the contribution coming from J0(2

√
κt)2 and the orange dotted line

the contribution from J1(2
√
κt)2. The inset shows the same function for longer times

with a log scale on the y-axis.
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6
Observation of Collective Decay
Dynamics of a Single Rydberg
Superatom

In this chapter, we discuss the observation of collective decay dynamics of a single
Rydberg superatom [236]. The experimental setup is similar to the one in Chap-
ter 3 but now the intensity of the light emitted after the pulse has ended is studied
in more detail and with higher accuracy. The experimental results show that the
decay rate of the outgoing intensity changes depending on the internal state of
the Rydberg superatom at the end of the pulse. This is a consequence of the inter-
nal dynamics due to the resonant dipole-dipole interaction between the individual
atoms. This e�ect can be modelled by adding an additional state to the e�ective
three-level model in Chapter 3 to which the bright state can coherently couple.

In the following, the focus will be on the theoretical contributions but relevant
experimental details are also discussed in view of a more coherent story. More
details on the experiment can be found in [236].

6.1. Introduction
The collective interaction between an ensemble of emitters and photons is a fun-
damental topic of quantum optics, which has been extensively studied for over
60 years [3]. Collective enhancement of the emission, known as superradiance,
has been observed in a variety of physical systems ranging from atoms [5] and
ions [38] over molecules [35], arti�cial atoms coupled to microwave waveguides
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[192], and solid-state systems [12, 13], to ensembles of nuclei [6]. Suppression of
emission is more elusive because excitation �elds typically do not couple to sub-
radiant states, and was only recently observed for ensembles of more than two
emitters [39, 40]. Here, we investigate the collective emission of a single photon
from a Rydberg superatom [67] and show that the experimentally observed decay
rate depends on the initial state preparation by a few-photon driving �eld [177].
This e�ect can be attributed to a coherent population redistribution between col-
lective super- and subradiant states due to coherent excitation exchange between
the individual emitters inside the superatom [216, 226] (see also Chapters 4 and 5).

It is already known that a collectively excited ensemble features modi�cations
to the rate and spatial distribution of its spontaneous emission [217, 237–239], and
coherent exchange of photons between individual emitters in an ensemble results
in a collective Lamb shift [2, 6, 11, 18, 202, 218, 240]. These phenomena can be
understood in a semi-classical approach as dipole-dipole interaction between in-
dividual emitters [75, 83, 169, 226, 241–243], or quantum-mechanically by treating
the emitters as an interacting spin ensemble coupled to an optical mode [167, 174,
216, 244]. The latter approach has been used to study the propagation of quantized
light in one-dimensional waveguides, while the semi-classical approach enables
investigation of large, weakly driven ensembles in two or three dimensions. In the
single-excitation sector and as long as saturation of the medium can be neglected,
the two approaches lead to equivalent results [227, 245]. There has recently been
strong interest in structured emitter arrays for tailoring optical properties with
unprecedented control [75, 83, 85, 246], for example exploiting subradiance to en-
hance photon storage �delities [25, 247]. Striking experimental demonstrations of
this concept are realizations of highly re�ective monolayers with ultracold atoms
in optical lattices [84] and solid state systems [248, 249].

6.2. Experimental Setup and Observation
In the experimental setup, an ensemble of ultracold 87Rb atoms is optically trapped
and con�ned such that the excitation volume created by the two counterpropagat-
ing lasers is smaller than the blockade volume (see Fig. 6.1)1. Each atom is driven
by a probe �eld with variable photon rateRp which couples the ground state |g〉 =∣∣5S1/2, F = 2, mF = 2

〉
to the intermediate state |e〉 =

∣∣5P1/2, F = 3, mF = 3
〉

with Rabi frequency g0

√
Rp, where g0 is the single-photon-single-atom coupling

strength. A strong control �eld with Rabi frequency Ωc then couples the interme-
1The experimental setup is similar to the one presented in Chapter 3 but will be presented again

for the sake of completeness and clarity.
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Fig. 6.1.: (a) Sketch of the experimental implementation and (b) single-atom level scheme
to create a single Rydberg superatom. (c) Probe pulses of di�erent duration measured on
single-photon counters with (solid circles) and without atoms (dashed lines). The solid
lines show the solution to the master equation for the model system shown in Fig. 6.3.
The shaded areas indicate the parts of the pulses our analysis focuses on. (d) Logarithmic
plot of the di�erence between the signal with and without atoms detected after the driving
pulse has ended for di�erent pulse lengths. The time t = 0 where the probe �eld is turned
o� is extracted from �ts to the probe pulse measured without atoms. The dashed lines are
�ts to the data points as described in the text. The gray area shows the level below which
the data are excluded from the �ts. The error-bars are standard error of the mean. Figure
taken and adapted from [236].

diate state to the Rydberg state |r〉 = |111S1/2, J = 1/2, mJ = 1/2〉. For large
detuning ∆ � Γe,Ω, the intermediate state |e〉 can be adiabatically eliminated
turning each atom into a two-level system given by |g〉 and |r〉 with e�ective Rabi
frequency Ω =

√
Rpg0Ωc/(2∆) and Raman decay Γ = Γe (Ωc/2∆)2.

Due to the Rydberg blockade, the whole ensemble can only support a single
excitation and its dynamics can be explained in terms of a two-level superatom
with ground state |G〉 = |g1, . . . , gN〉 and a single excited bright state |W 〉 =

1√
N

∑N
j=1 |g1, . . . , rj, . . . , gN〉 with N ∼ 5000 atoms overlapping with the probe

beam in the experiment. The microscopic description of the bright state in terms
of the atomic distribution and the mode wave function was discussed in Chapter 3.

139



Chapter 6. Observation of Collective Decay Dynamics of a Single Rydberg Superatom

The ground state and the bright state are coupled by the collectively enhanced Rabi
frequency Ωcol = 2

√
κRp, where

√
κ =

√
Ng0Ωc/(4∆) is the collective single-

photon coupling.
In order to study the decay dynamics, the superatom is �rst driven by a Tukey-

shaped probe pulse of varying length and the light emitted into the forward direc-
tion is then measured with very high accuracy after extinguishing the probe pulse
on a time scale shorter than the enhanced emission rate κ, while the control �eld
remains on. Analyzing the photon statistics of the forward-emitted light after the
driving pulse, one obtains for the background-corrected second-order correlation
function g(2)(τ = 0) < 0.1 con�rming that the superatom emits one photon at
maximum. The presence of a single excitation in the superatom is further con-
�rmed by measuring the ion-counting statistics of the �eld-ionized ensemble at
the end of the probe pulse.

Figure 6.1(d) shows the experimentally observed probe light after the probe
pulse has been turned o� for four di�erent pulse lengths (shown in Fig. 6.1(c)).
Clearly, the exponential decay shows di�erent decay rates depending on how long
the superatom has been driven and thus on the internal state of the superatom at
the end of the pulse.

The dependence of the decay rate on the parameters of the superatom is system-
atically studied by repeating the experiment with varying probe pulse lengths for
a range of di�erent parameter sets, changing the single-photon coupling strength
κ and the probe photon rateRp. The photon decay rate is quanti�ed assuming an
initial exponential decay and �tting the measured photon rates with I0e

−γt to ex-
tract both the photon �ux I0 (measured in photons/µs emitted back into the probe
mode) and the decay rate in forward emission γ. The exponential �t takes into
account data points up to 1.5µs after the pulse ends or up to the �rst datapoint
below the threshold where the uncertainty becomes similar to the absolute value
(see [236] for more details). The area used for �tting is illustrated by the shaded
region in Fig. 6.1(c).

Figure 6.2 shows the observed decay rates as a function of the pulse length for
three di�erent values of the intermediate-state detuning and a probe photon rate
Rp = 15.0µs−1. Changing ∆ varies both the coupling strength κ between the
ground state |G〉 and the bright state |W 〉 as well as the Raman decay Γ as κ,Γ ∼
1/∆2. The initial amplitudes in Fig. 6.2 re�ect the collective Rabi oscillations of
the superatom during the probe pulse and become slower for increasing ∆, as Ω ∼
1/∆. The initial amplitude of the forward emission also decreases over time due to
spontaneous Raman decay and dephasing of the collective state. More surprisingly,
the decay rates (shown in Fig. 6.2(a)-(c)) depend on the probe pulse length and
oscillate out of phase with the oscillations of the initial amplitude. The overall
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Fig. 6.2.: (a,b,c,d) Observed decay rates and (e,f,g,h) initial amplitudes as a function of
pulse length extracted from exponential �ts to data as shown in Fig. 6.1 (c,d) for di�erent
values of the single-photon coupling strength κ and photon rateRp. For �gures (a,b,c,e,f,g)
Rp = 15.0 µs−1, and for (d,h) Rp = 6.7 µs−1. In addition to experimental data (dark
circles), we show the theoretical results of the extented superatom model discussed in the
text and shown in Fig. 6.3 (light diamonds), as well as the constant decay rate of the simple
superatom model without internal coherent dynamics (dashed lines). The errorbars shown
on the rates are one standard deviation con�dence interval of the exponential �ts to the
data. Figure taken and adapted from [236].

magnitude of the decay rates decreases with higher ∆, which is expected as a
higher ∆ leads to a reduction of κ and Γ. In the limit of long pulses, the decay
rate approaches a constant value since the superatom reaches a steady state due
to dephasing.

The e�ect of changing Ω is investigated in Fig. 6.2(d,h), with a �xed ∆ = 2π ×
100MHz but a lower photon rate,Rp = 6.7µs−1. The reduction of the photon rate
leads to a slower oscillation of the decay rate and the initial amplitude while the
range of decay rates remains the same. This set of parameters is comparable (in
terms of Ω) to the parameters used in Fig. 6.2(b,f) such that the oscillation periods
in both cases are similar. Since, however, the coupling strength and the Raman
decay are larger, the values of the decay rate increase.

Summarizing, the experimental data convincingly shows that the initial decay
rate of the light emitted in the forward direction depends on the internal state
of the superatom at the end of the probe pulse. The initial state is in general a
superposition of the bright state and subradiant states. The oscillatory behaviour
of the decay rates with the pulse length indicates that the internal dynamics are
based on a coherent process.
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6.3. E�ective Model with Coherent Coupling
In the following we will discuss how the experimental observations can be ex-
plained in terms of a microscopic theory. First, it is important to note that the
varying decay rate of the probe light after turning o� the pulse cannot be ex-
plained by a fully incoherent dynamics of the superatom. In this case the decay
rate would be constant and would be given by the sum of the collective emission
rate κ, the Raman decay rate Γ, and a dephasing rate γD indicated by the dashed
lines in Fig. 6.2. It is thus necessary to include an additional coherent coupling
which is provided by the resonant dipole-dipole interaction between the atoms.

As was shown in Chapter 2, the internal dynamics of the Rydberg superatom
can be microscopically described in terms of atoms coupled to a one-dimensional
chiral waveguide whose dynamics are described in terms of the master equation

∂tρ = − i
~

[H0(t) +Hdip, ρ] + (κ+ Γ)D[σGW]ρ , (6.1)

where D[σ]ρ = σρσ† − {σ†σ, ρ}/2 and σGW = |G〉〈W |. The coherent dynamics
is given by the driving Hamiltonian

H0(t) = 2~
√
κRp(σGW + σ†GW) , (6.2)

where Rp is the (time-dependent) photon rate of the probe �eld. The resonant
dipole-dipole interaction is given by the Hamiltonian

Hdip =
~κ

2iN

∑
j,l

sign(xj − xl)σ†GjσGl , (6.3)

where |l〉 = |g1, . . . , rl, . . . , gN〉. This Hamiltonian can be diagonalized analyti-
cally (see Chapter 4) and the bright state can be expressed in terms of only a few
of these eigenstates, that is |W 〉 ≈

∑
α 2i/(πα) |α〉, where |α〉 is the eigenstate of

Hdip and −N ≤ α < N is an odd integer.
Likewise, one can introduce a di�erent set of operators [17, 250]

S†m =
1√
N

N−1∑
j=0

ei
2πm
N

jσ†Gj , (6.4)

where −N/2 ≤ m < N/2 is an integer. The states |ψm〉 = S†m |G〉 are orthonor-
mal with 〈ψm|ψn〉 = δmn and build a basis of the single-excitation subspace. The
bright state in this basis is |W 〉 = |ψ0〉 while the dark states are build from states
with m 6= 0. It is important to note that this set of states is only one way to
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characterize the dark states but one that will prove useful in what follows. The
Hamiltonian (6.3) can be expressed in terms of the operators given in Eq. (6.4) as

Hdip = − ~κ
2N

∑
m6=0

cot
(πm
N

)
S†mSm +

~κ
2N

∑
m6=0

[
i+ cot

(πm
N

)]
S†0Sm + h.c. .

(6.5)

The �rst term accounts for level shifts of the dark states and the second term de-
scribes a coupling of the bright state to the dark states. Note that in contrast to the
states |α〉 introduced in Chapter 4, the Hamiltonian does not take a diagonal form
but describes a coupling of the bright state to the dark states which themselves are
not coupled to each other (see Fig. 6.3(a)). This allows to identify those dark states
to which the bright state couples most strongly. The level shifts, for example, are
strongest for small m/N and are given by ~δm ≈ −~κ/2πm while they vanish
for |m| ∼ N/2 and N � 1. On the other hand, the couplings between the bright
and the dark states are also strongest for small m/N and read ~κm ≈ ~κ/2πm
and reduce to i~κ/2N for |m| ∼ N/2. In the limit N � 1, these couplings are
negligible compared to those for m� N . Numerically solving the time evolution
of an initial excitation in |W 〉 with the Hamiltonian (6.5) also con�rms that only
those dark states with small m acquire a signi�cant population.

This result suggests that we can extend the e�ective model used in Chapter 3
to account for internal coherent dynamics by coherently coupling the bright state
|W 〉 to one of the dark states, called |C〉, which then again can dephase into the
manifold of weakly coupled dark states, represented by |D〉, with rate γD [70] (see
also Fig. 6.3(b)). The full master equation of the e�ective four-level model then
reads

∂tρ = − i
~

[H0(t) +HC , ρ] + (κ+ Γ)D[σGW]ρ+ γDD[σDW]ρ+ γDD[σDC]ρ

+ ΓD[σGC]ρ+ ΓD[σGD]ρ

≡ L(t)ρ , (6.6)

withHC = ~η(σ†CW +σCW). Here, η denotes the coupling between the bright state
|W 〉 and the coherent dark state |C〉 and from the above analysis one estimates that
η is on the order of κ. For the extended e�ective model, however, it is left as a free
parameter, which will serve as a �t parameter when comparing the results of our
model to the experimental data.

Before directly comparing with the experiment, we discuss how a variable decay
rate arises within the extended model. To this end, we consider the system to be
driven by a constant pulse α for some time τ . After the pulse has ended, the time
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Fig. 6.3.: (a) Level scheme of the ground state and the single-excitation subspace for the
internal dynamics of the Rydberg superatom. The probe �eld couples the collective ground
state |G〉 to the collective bright state |W 〉with an e�ective coupling strength

√
κRp. The

bright state decays into the forward direction with rate κ and into other modes with rate Γ.
The resonant dipole-dipole interaction couples the bright state to the dark states which are
subradiant and decay with single-atom decay rate Γ. (b) E�ective four-level model includ-
ing internal coherent dynamics of the superatom. The bright state |W 〉 dephases with rate
γD into a dark state |D〉 which does not couple to the light. In addition, |W 〉 coherently
couples to a single subradiant state |C〉. This new subradiant state also dephases to |D〉.
All excited states decay via Raman decay Γ to the ground state. (c) Collective emission
into the forward direction after the driving pulse has ended as predicted by this model for
di�erent pulse length calculated for the same parameters as found for the data shown in
Fig. 6.1(c, d). The emission into forward direction shows clear signs of nonexponential de-
cay for longer times. (Inset) Initial emission after the driving pulse for short times shows
exponential behavior with varying decay rate but already deviates from pure exponential
decay for intermediate times.
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evolution is given by Eq. (6.6) with H0(t) = 0. Linearizing the time evolution, one
can de�ne an instantaneous decay rate via

ρ(τ + dt)− ρ(τ)

dt
= Lρ(τ) . (6.7)

The decay rate of the intensity is obtained by projecting this equation onto the state
|W 〉 to get the component ρWW which is directly proportional to the intensity after
the pulse. Thus, one has

ρWW(τ + dt)− ρWW(τ)

dt
= 〈W | Lρ(τ) |W 〉

= −(γD + Γ + κ)ρWW(τ)− iη(ρCW(τ)− ρWC(τ)) .
(6.8)

This can be brought into a more convenient form given by

ρWW(τ + dt) = ρWW(τ)

[
1−

(
γD + Γ + κ+ iη

ρCW(τ)− ρWC(τ)

ρWW(τ)

)
dt

]
= ρWW(τ)(1− γeffdt) , (6.9)

where γeff is the e�ective decay rate in the presence of the coherent coupling right
after the pulse ends. The e�ective decay rate depends on the coherence between
the bright state and the coherently coupled dark state and therefore on the internal
state of the superatom at the end of the driving pulse.

In general, this can be calculated numerically by solving the full master equation
during the driving and then obtaining the values for ρCW(τ), ρWC(τ), and ρWW(τ).
However, we might also obtain analytical results and discuss the e�ective decay
rate in the case where the system is �rst driven to steady state and then the driving
is turned o�. The initial e�ective decay rate then reads

γss
eff = γD + Γ + κ+

4η2(κ+ 2(Γ + γD))

(γD + Γ)(κ+ 2(Γ + γD)) + 4κRp

(6.10)

and is larger than the sum of the individual decay or dephasing rates. This comes
from the fact that the bright state can also transfer population into the dark state
which results in a population loss that can be accounted for as an increased decay
rate.

The result given in Eq. (6.9) is only valid for short times when the dynamics
is approximately exponential. In Chapter 5, we have already seen that the bright
state features interesting nonexponential decay dynamics. This can also be seen
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when solving the master equation numerically and is shown in Fig. 6.3c) for the
experimental parameters used in Fig. 6.1. The forward emission becomes nonex-
ponential and features a drop and revival which are more pronounced for shorter
pulses. This can be understood as shelving the excitation in the coherently cou-
pled dark state |C〉, where the excitation is protected from forward emission. This
observation is in agreement with recent predictions [226]. The reduction of this
drop for longer pulses is a result of the dynamics becoming dominated by dephas-
ing which also prevents the occurence of a second drop. This striking example of
collective decay dynamics can, however, not be directly observed in the experiment
as the predicted drop in the emission occurs at photon rates which are well below
the noise level in the experiment as indicated in Fig. 6.1d). The inset in Fig. 6.3c)
shows the dynamics at short times where the dynamics are approximately expo-
nential but already start to deviate from a purely exponential behavior. The gray
dashed lines indicate the e�ective decay rate calculated using Eq. (6.9).

6.4. Comparison with Experimental Data

To compare the predictions of the theoretical model given in Eq. (6.6) for the ini-
tial amplitude and the decay rate with the experimental data, the model including
the driving term is �tted to the data. In this procedure, the Raman decay Γ is de-
termined from experimental parameters and γD is assumed to be the same value
for all datasets. Furthermore, the scaling κ ∼ 1/∆ is taken into account. More
details on the �tting procedure can be found in [236]. For completeness the �tted
parameters are shown in Table 6.1.

The predicted decay rates from the theoretical model are then obtained by �tting
an exponential decay after the end of the probe pulse. While the nonexponential
decay predicted by the model makes this �tting impossible for long times, the ini-
tial decay up to 1.5µs after the probe pulse is turned o� is reasonably well approx-
imated by an exponential decay. The exponential �ts are shown in Fig. 6.3(c) and
the predicted decay rates and initial amplitudes are shown in Fig. 6.2 and agree very
well with the experimental data. It is important to point out that the analytical ex-
pression Eq. (6.9) leads to smaller values for the decay rate than the one obtained
from the �tting. This comes from the nonexponential decay which results in a
larger decay rate when �tting the exponential up to longer times. The �gure also
shows the expected constant decay rate in the absence of the coherent exchange
(η = 0) which is indicated by the gray dashed line in each plot. This con�rms
that the coherent coupling is crucial in explaining the experimental observations.
Note that this model is an extension to the one successfully used in [177, 178] (see
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Rp (µs−1) ∆/2π (µs−1) κ (µs−1) Γ (µs−1) γD (µs−1) η (µs−1) In Figures
15.0 100 0.46 0.15 0.85 (1.34) 0.31 6.1, 6.2(a,e), 6.3
15.0 125 0.32 0.10 0.85 (1.26) 0.32 6.2(b,f)
15.0 150 0.21 0.064 0.85 (1.18) 0.31 6.2(c,g)
6.7 100 0.47 0.15 0.85 (1.33) 0.34 6.2(d,h)

Table 6.1.: Parameter sets from �tting the theoretical model in Eq. (6.6) to the experimental
data. The values for γD given in the brackets are the values obtained from �tting the
experimental data to the theoretical model with η = 0.

also Chapter 3) to explain photon correlations mediated by the superatom and in
the study of single-photon absorption [70, 71], where the coherent coupling was
not included in the model. These observations are still captured by the extended
model as the correction coming from the coherent exchange only plays a minor
role during the driving of the pulse for the photon rates considered in those ex-
periments. However, the e�ects of the coherent exchange become more visible
for lower photon rates as well as for the coherent population shelving during the
emission process after the pulse ends. Finally, the four-level model used above can
also be validated by simulating an idealized one-dimensional chiral system which
predicts a coherent exchange coupling strength η on the order of κ in agreement
with the �t parameters extracted from the experimental data [236, 251].

6.5. Summary and Outlook
In summary, the experimentally observed nontrivial collective emission dynamics
of a Rydberg superatom are attributed to coherent exchange interactions between
individual atoms and a simple e�ective model including a single coherently cou-
pled subradiant state well reproduces the experimental observations. The experi-
mental and theoretical work is complementary to recent investigations of weakly
excited ensembles [226, 239, 240] and structured emitter arrays [84, 248, 249], but
adds a new component through the saturation of the ensemble by a single pho-
ton because of the Rydberg blockade, which imposes further challenges for a full
theoretical treatment. While the theoretical model is motivated by comparison
to simulations of an idealized waveguide system and captures the core aspects
of the system, a full understanding of the coherent and incoherent dynamics in
a thermal atomic ensemble will ultimately require a full microscopic model. The
observations presented here are of immediate consequence for the study and appli-
cation of Rydberg superatoms and other collective quantum emitters, for example
in cascaded emitter systems in waveguide-like geometries, where the internal dy-
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namics will signi�cantly alter the behaviour of the full ensemble [216, 223] (see
also Chapters 4 and 5). More generally, these dynamics become relevant when-
ever collective excitations are created or probed on timescales comparable to the
coherent photon exchange rates, e.g. in quantum simulation or photon memories.
It will be relevant to study to what extent such internal interaction dynamics im-
pose a fundamental limit on applications of collective excitations for single photon
sources and quantum gates. At the same time, a better understanding of these dy-
namics enables precise collective state engineering, for example to e�ciently store
photons in subradiant collective states [252].
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Introduction

The experimental realization of Bose-Einstein condensation in dilute atomic gases
in 1995 [253–255] marked the beginning of a new era of atomic, molecular and
optical (AMO) physics and earned Cornell, Wieman and Ketterle the 2001 Nobel
Prize in Physics. With the ability of controlling and manipulating this state of
matter, an experimental platform became available to study quantum phenomena
such as matter-wave interference [256], super�uidity and the appearance of vor-
tices [257], and quantum phase transitions like the super�uid-to-Mott-insulator
transition [258].

Due to the diluteness of the atomic gases involved and the ultracold temper-
atures in the nanokelvin range, the interaction between the particles can be de-
scribed in terms of an e�ective contact interaction characterized by the s-wave
scattering length which replaces the real, short-range interatomic potential. The
strength of the interaction is nowadays routinely controlled by means of Feshbach
resonance [134]. Dilute gases of weakly interacting cold bosons at ultracold tem-
peratures are commonly described in terms of a mean-�eld theory by the Gross-
Pitaevskii equation [259, 260].

In recent years, the tremendous experimental progress has added a new com-
ponent to the ever-growing �eld of interacting Bose-Einstein condensates: the
dipolar Bose-Einstein condensate. After its �rst experimental realization in an ul-
tracold gas of chromium atoms in the group of Tilman Pfau in Stuttgart [261],
Bose-Einstein condensates with even stronger dipolar interaction have been cre-
ated with dysprosium [262] and erbium [263]. Compared to chromium which has
a magnetic moment of 6µB, erbium has a magentic moment of 7µB

2. Due to their
electron con�guration the bosonic isotopes of dysprosium have a magnetic mo-
ment of 10µB making it the most magnetic element available3. The presence of
long-range and anisotropic interactions can strongly a�ect the properties of the

2We always refer to the bosonic isotopes of the elements.
3The fermionic isotopes of Dysprosium have the largest magnetic moment overall [262].
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gas and brings a number of interesting e�ects and possible applications [125, 264].
The partly attractive nature of the interaction, for example, can lead the gas to
collapse [265], which can be experimentally controlled by tuning the strength of
the short-range repulsion relative to the dipolar interaction. Chapter 7 of this the-
sis will give a more detailed discussion of the interaction properties of ultracold
dipolar Bose gases.

Despite the success in describing ultracold gases within mean-�eld theory for
many years, the progress in experimental techniques such as trapping, cooling
and imaging made it possible to observe beyond-mean-�eld e�ects such as the de-
pletion of the condensate [266], corrections to the excitation spectrum [267, 268],
and the ground state energy [269]. One of the striking e�ects due to quantum
�uctuations was discovered in the formation of stable dense droplets for a dipo-
lar gas close to its stability boundary [270] which triggered a huge interest in
this �eld [271–275]. While mean-�eld theory predicts a collapse of the gas due
to the dipolar interaction, the leading beyond-mean-�eld corrections induce an
e�ective many-body repulsion which stabilizes the gas [276]. These corrections
are known as Lee-Huang-Yang (LHY) corrections for contact interactions [277–
279] and have also been calculated for dipolar interactions [280]. Even though
the beyond-mean-�eld e�ects in dilute and weakly interacting gases are typically
small, �ne-tuning the relative strength of dipolar and contact interaction strength
leads to a cancellation of the mean-�eld contributions making the LHY corrections
become dominant [281]. This stabilization mechanism has also been observed in
two-component Bose gases [282]. Recently, the behaviour of the beyond-mean-
�eld corrections in the case of a dimensional crossover from three to low dimen-
sions has been studied for contact [283, 284] and dipolar [285] interactions. An
introduction into the calculation of beyond-mean-�eld corrections will be given
in Chapter 7.

Moreover, a con�ned strongly dipolar gas can exhibit a roton-maxon excitation
spectrum [286, 287] similar to that proposed for liquid Helium [288]. This excita-
tion spectrum has also been experimentally observed [289]. Increasing the rela-
tive contribution of dipolar interactions, the gas undergoes a roton instability and
fragments into arrays of droplets [290]. In a series of experiments [290–292] it was
shown that di�erent droplets also exhibit phase coherence realizing a long-sought
state of matter, the supersolid. It combines the super�uid properties associated
with the spontaneous breaking of the continuous global U(1) phase symmetry
with the density modulation induced by spontaneously breaking the translational
invariance (see also [293] for a recent review on dipolar supersolids).

While the breaking of translational invariance in the dipolar supersolids is in-
duced by intrinsic interactions, it can also be broken by an external periodic po-
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tential. Optical lattices o�er a versatile platform for manipulation and control of
ultracold gases [294, 295] as they allow for creating a perfectly periodic potential
for the atoms with tunable depth and geometry. This, for example, enabled the
realization of the Bose-Hubbard model [296] and the demonstration of the quan-
tum phase transition between the super�uid and Mott insulator phase [258]. By
virtue of the long-range and anisotropic nature of their interaction, dipoles con-
�ned to optical lattices defy a description in terms of the standard Bose-Hubbard
model [297, 298]. Extended Bose-Hubbard models have been realized experimen-
tally [299] and it has been shown theoretically that they feature rich physics in-
cluding the realization of exotic quantum phases such as supersolid, striped, and
checkerboard phases in the strongly correlated limit [297, 300, 301].

In the super�uid limit, on the other hand, it was shown that the presence of
an external periodic potential can increase beyond-mean-�eld e�ects in contact-
interacting Bose gases [302]. In this work, the authors studied a BEC in a tight
two-dimensional periodic potential forming a two-dimensional array of weakly
coupled tubes. They showed that the resulting frequency shift due to beyond-
mean-�eld e�ects in the lowest compressional mode along the axis of the tubes
becomes large enough to be measured experimentally. For a trapped dipolar gas,
it was shown that superimposing a one-dimensional lattice can lead to a stabilizing
e�ect on the mean-�eld level [303]. This e�ect strongly depends on the intersite
coupling coming from the long-range dipolar interactions, which is also expected
to enhance the roton character in the excitation spectrum [304, 305] in�uencing
the properties of interaction- and lattice-induced supersolids.

Chapter 8 thus studies the in�uence of an optical lattice on the beyond-mean-
�eld corrections for a dipolar Bose gas. In particular, it will address the question
whether and how one can control the strength of quantum �uctuations in this
setup.
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7
Basic Concepts

In this chapter, we brie�y review important concepts for our study of dipolar Bose-
Einstein condensates. First, we discuss how the interaction of ultracold Bose gases
can be described in terms of an e�ective contact interaction and how magnetic
atoms or polar molecules interact via the dipole-dipole interaction. Second, we
present how beyond-mean-�eld corrections due to quantum �uctuations can be
calculated.

Note that there are excellent reviews on the physics of dipolar Bose gases by
Lahaye et al. [125] and the theory of dipolar gases by Baranov et al. [264], by
which this chapter is inspired.

7.1. Short- and Long-Range Interactions in
Ultracold Bose Gases

Even though Bose-Einstein condensation is a purely quantum-statistical phenom-
enon and does not rely on interactions between the particles, real-life systems
almost always posses some interaction between its constituents. In Bose-Einstein
condensates these interactions are responsible for phenomena such as super�uid-
ity and are of importance when dealing with strongly correlated systems [295].

In the following, we are only concerned with ultracold and very dilute gases
with temperatures in the micro- to nanokelvin regime and densities on the order
of 1014 − 1015 cm−3. Due to this diluteness, the interaction is governed by two-
body interactions whereas interactions involving more particles are suppressed.
Typically, this interatomic interaction potential is very complicated at short dis-
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tances but falls o� as the van der Waals interaction with r−6 at longer distances.
As the gas is cooled down to ultracold temperatures, the low-energy scattering
properties of short-ranged interaction potentials are universally characterized by
the s-wave scattering length as. It is common to approximate the interaction in
this limit by an isotropic contact potential of the form

V (r) = gδ(r) , (7.1)

where m is the mass of the particles and g is the interaction strength which is
determined to reproduce the correct scattering length as. For the δ-potential this
can only be achieved within the �rst Born approximation since all higher contri-
butions diverge. While this form of the interaction potential simpli�es calcula-
tions, it has to be taken with care, especially when calculating e�ects beyond the
mean-�eld level (see Section 7.2). A way to properly take into account the full scat-
tering problem beyond the �rst Born approximation is to use the pseudopotential
V (r) = gδ(r)∂rr, where g = 4π~2as/m to all orders in the Born series.

While the scattering length, and therefore g, can be both positive or negative
indicating repulsive or attractive interactions, respectively, we only deal with as >
0 in order to prevent a collapse of the gas. Note, however, that the character of the
interaction can be experimentally controlled by tuning the scattering length by
means of Feshbach resonances [134]. It is also important to note that the Fourier
transform of the pseudopotential is given by the constant g and thus couples all
momenta.

Dipolar gases, which, for example, consist of magnetic atoms or polar molecules,
interact in addition via the static dipole-dipole interaction

Vdd(r) =
Cdd
4π

(e1 · e2)r2 − 3(e1 · r)(e2 · r)
r5

, (7.2)

where Cdd is the coupling constant and is µ0µ
2 for particles having a permanent

magnetic dipole moment µ (e.g. magnetic atoms) with µ0 being the permeability
of the vacuum and d2/ε0 for particles having a permanent electric dipole moment
d (e.g. heteronuclear molecules) with ε0 being the permittivity of the vacuum.
The vectors e1,2 give the unit vectors for the orientation of the respective dipole
moments and r is the relative distance of both particles (see also Fig. 7.1a)). In
the following, we will only deal with polarized dipolar gases where the dipole
moments are aligned by some external �eld (see Fig. 7.1b)). In this case, Eq. (7.2)
takes the simpler form

Vdd(r) =
Cdd
4π

1− 3 cos2 θ

r3
, (7.3)
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Fig. 7.1.: Sketch of the dipole-dipole interaction. a) Non-polarized dipoles interacting with
each other at a relative distance r and dipole moments d. b) Polarized dipoles interacting
with each other. The interaction is now characterized by the relative distance r and the
angle θ between the polarization axis and the direction of r. c) Angular dependence of the
dipole-dipole interaction for polarized dipoles. The interaction is attractive in a head-to-
tail con�guration (blue area) and repulsive if they are side by side (red area). The dashed
line indicates the "magic angle" θ∗ ≈ 54.7◦ for which the interaction vanishes. Figure
adapted from [125].

where r = |r| is the relative distance between the dipoles and θ is the angle be-
tween the relative position r and the polarization axes of the dipoles. It is important
to note that while the contact interaction, Eq. (7.1), is either attractive or repulsive
depending on the sign of the s-wave scattering length as, the dipole-dipole inter-
action in Eq. (7.3) has both attractive and repulsive character depending on the
orientation of the dipoles (see Fig. 7.1c)). If the dipoles are in a head-to-tail con-
�guration, where θ = 0, the dipole-dipole interaction becomes attractive while it
is repulsive for dipoles sitting side by side, that is θ = π/2. Interestingly, placing
the dipoles at an angle θ∗ = arccos(1/

√
3) ≈ 54.7◦, the dipole-dipole interaction

vanishes. Note that while the strength and sign of the dipole-dipole interaction
are �xed by the magnitude and orientation of the dipoles, it is possible to tune
both parameters using a combination of dc and ac electric �eld for electric dipoles
[125].

In contrast to the isotropic and short-range character of the interaction be-
tween particles having no dipole moment, the dipole-dipole interaction is both
anisotropic and long-range. Since the dipole-dipole interaction is anisotropic, the
angular momentum is not conserved during the scattering. In the case of polarized
gases, however, the projection of the angular momentum on the polarization axis
is still a good quantum number. In addition, the long-range character of the dipole-
dipole interaction leads to a contribution of all partial waves to the scattering at
low energies and the phase shifts behave as δl ∼ k for l > 0 and small k. Thus,
it is not possible to replace it by a pure contact interaction potential. In fact, the
coupling between di�erent scattering channels introduces a contribution to the s-
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wave scattering and therefore also modi�es the short-range part of the interaction
potential, Eq. (7.1). This leads to the appearance of so-called "shape" resonances
[306–308]. For the scope of this thesis, we always consider setups where these
resonances do not play any role.

The interatomic interaction pseudopotential of two dipolar particles at ultracold
temperatures can thus be written as [309–312]

V (r) =
4π~2as(Cdd)

m
δ(r) +

Cdd
4π

1− 3 cos2 θ

r3
. (7.4)

Note that the strength of the contact interaction now also depends on the cou-
pling strength of the dipole-dipole interaction and thus on the magnitude of the
respective dipole moments. As we only deal with systems where the dipole mo-
ments are �xed, we will drop the dependence on the dipole moments and always
refer to the s-wave scattering length in the presence of the dipole moment of the
respective particle.

Similar to the scattering length as in the case of short-range interactions, the
strength of the dipole-dipole interaction can be characterized by the dipolar length1

add =
mCdd
12π~2

. (7.5)

The behaviour of a dilute dipolar Bose gas at ultracold temperatures is then
described in terms of the parameter

εdd =
add
as

(7.6)

which gives the relative strength of the dipole-dipole interaction compared to the
strength of the contact interaction. For εdd < 1, the gas is dominated by the
isotropic short-range interaction while for εdd & 1, the interaction is dominated
by the anisotropic, long-range interaction. Note, however, that a homogeneous
dipolar Bose-Einstein condensate in three dimensions is unstable for εdd ≥ 1
[125]. The commonly used atomic species 87Rb, with magnetic moment of 1µB ,
has εdd = 0.007 [313] and can be considered a BEC with pure contact interactions.
In turn, for 52Cr, with µ = 6µB , one has εdd = 0.16 [314] and the recently used
lanthanide atoms 164Dy and 166Er have εdd ≈ 1.3 [270, 315] and εdd = 0.97 [272] at
the background scattering length, respectively. Note that polar molecules, which

1The dipolar length can be obtained by equating the strength of the dipole-dipole interaction at
a length add, Cdd/4πa

3
dd with the energy of a particle in a box in three dimensions of the same

length, 3~2/ma2
dd.
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have a permanent electric dipole, can have values of εdd which can be one or two
orders of magnitude larger than those of magnetic atoms [125]2.

7.2. Beyond-Mean-Field Corrections in Dilute
Bose Gases

The ground state energy of an ultracold Bose gas below the condensation thresh-
old interacting via short-range interactions in three dimensions is usually well
described by the mean-�eld energy density

EMF
0

V
=

2π~2asn
2

m
, (7.7)

where n = N/V is the density of the gas. The same expression also holds for
a gas that interacts via the long-range and anisotropic dipole-dipole interaction
in three dimensions since the angular contribution vanishes when averaging over
all angles. Note, however, that for a gas that is con�ned by an external trapping
potential for example, the dipole-dipole interaction also contributes to the mean-
�eld energy [125], which we will also see in Chapter 8 where the external potential
is an optical lattice.

Even though the mean-�eld treatment of a Bose gas below condensation thresh-
old allows for the succesful description in terms of the Gross-Pitaevskii equation
explaining dynamical properties of trapped and rotating gases [316], it assumes
that all particles occupy the state of lowest energy. In the presence of interac-
tions, even at zero temperatures, quantum �uctuations drive particles to occupy
higher-energy states that leads to corrections to the ground state energy. The im-
portant parameter here is the so-called "gas parameter" na3

s . In three dimensions,
the corrections can then be derived perturbatively if na3

s � 1 indicating the dilute
limit.

7.2.1. Bogoliubov Method
A very common way to calculate the beyond-mean-�eld corrections is to use the
Bogoliubov method [317] which we will brie�y outline for the case of short-range
interactions in the following. More details can for example be found in [318]. Con-
sider a dilute gas of bosons with mass m at T = 0 and density n = N/V , where

2It is, however, important to mention that the precise background scattering lengths of those
molecules are not known yet and values of εdd are only rough estimates [125].
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N is the number of particles and V is the volume. Using the interaction potential
in Eq. (7.1), the Hamiltonian of the system in momentum space is

H =
∑
k

εka
†
kak +

g

2V

∑
k+k′=q+q′

a†qa
†
q′ak′ak (7.8)

where εk = ~2k2/2m is the dispersion relation of a free particle and the operator
a

(†)
k describes the annihilation (creation) of a particle with momentum k. At zero

temperature, the particles of a noninteracting Bose gas in free space would all oc-
cupy the lowest momentum state k = 0, which one calls the condensate mode. In
a dilute gas of interacting particles, however, the ground state only di�ers slightly
from that of an ideal gas and modes withk 6= 0 will only be occupied by some small
amount of particles. The Bogoliubov approximation now consists of replacing all
operators of the mode k = 0 with the c-number

√
N0 of particles in this mode. In

addition to that, all interaction terms involving more than two particles in modes
with k 6= 0 are neglected since they are of lower order in N0. The Hamiltonian
then reduces to

H =
gn

2
V +

1

2

∑
k 6=0

[
(εk + gn) (a†−ka−k + a†kak) + gn(a†ka

†
−k + aka−k)

]
, (7.9)

where we used that the total number of particles in the system can be written as
N = N0 + 1

2

∑
k 6=0(a†kak+a†−ka−k). Since the Hamiltonian in Eq. (7.9) is quadratic

in the operators a and a†, one can use a Bogoliubov-Valatin transformation to
diagonalize it and bring it to the form

H =
gn

2
V +

1

2

∑
k 6=0

(Ek − εk − gn) +
∑
k 6=0

Ekα
†
kαk . (7.10)

In this expression, the �rst term is the mean �eld energy in Eq. (7.7), while the last
term gives the elementary excitations of the Bose gas in the presence of interac-
tions. They are now described by the operators α(†)

k and the excitation spectrum
is given by the famous Bogoliubov excitation spectrum

Ek =
√
εk (εk + 2gn) , (7.11)

which for small momenta is phonon-like, that is Ek ∼ |k| and goes over to the
energy of a free particle at large momenta, Ek ∼ k2.

The second term in Eq. (7.10) gives the correction to the mean-�eld energy in
the presence of interaction-induced quantum �uctuations but diverges for large
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momenta as
∑

k k
−2. This problem arises since the energy corrections cannot be

expanded in powers of g but instead the gas parameter na3
s has to be small. As

already discussed above, the relation g = 4π~2as/m for the potential in Eq. (7.1)
is only exact in the �rst Born approximation and has to be corrected for the cal-
culation of the beyond-mean-�eld corrections by including the second-order Born
approximation as

g − g2

V

∑
k 6=0

1

2εk
=

4π~2as
m

. (7.12)

Note that the second term in this expression shows the same divergence as the
energy correction in Eq. (7.10).

Expressing g in terms of as in Eq. (7.10), one arrives at the expression for the
ground state energy

E0

V
=

2π~2asn

m
+

1

2V

∑
k 6=0

(
Ek − εk −

4π~2as
m

n+

(
4π~2as
m

)2
n2

2εk

)
. (7.13)

Evaluating the sum in the limit V →∞, one gets

E0

V
=

2π~2as
m

n2

(
1 +

128

15
√
π

√
na3

s

)
(7.14)

with the small expansion parameter
√
na3

s � 1. It is important to note that at this
point, the interaction strength g drops out of the problem and the only relevant
property is that the gas is dilute. The beyond-mean-�eld corrections where �rst
derived by Lee, Huang, and Yang in 1957 using the pseudopotential method [277].
The approach outlined above can also be generalized to pseudopotentials with
Fourier components Vk, where one has

E0

V
=
V0n

2

2
+

1

2V

∑
k6=0

(
Ek − εk − Vkn+

(Vkn)2

2εk

)
. (7.15)

This is for example the case for the dipolar pseudopotential in Eq. (7.4) whose
Fourier transform is calculated in Appendix 7.A. The derivation of the beyond-
mean-�eld energy for the dipolar pseudopotential is performed in the next section
using a di�erent method but we want to point out that it was �rst calculated using
the Bogoliubov method by Lima and Pelster [280].
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7.2.2. Field-Theoretic Method
While the Bogoliubov approach is very convenient for calculations, it su�ers from
arti�cially removing the divergence in the correction to the ground state energy
which occurs due to the improper handling of the interaction potential. A very
elegant way around this problem was introduced by Beliaev [279] and Hugenholtz
and Pines [278], which relies on including the full scattering problem in the dilute
limit and allows for the self-consistent, perturbative calculation of corrections to
the ground state energy. In the following, we will outline this approach for the
case of a short-ranged interaction potential closely following the derivations of
Hugenholtz and Pines [278] and Beliaev [279], where more details can be found.
In the end, we will discuss how the result can be extended to dipolar interactions.

For the �eld-theoretic method, we start with the task to �nd the ground state of
a dilute Bose gas of N interacting particles with mass m in a volume V described
by the Hamiltonian

H = − ~2

2m

∫
d3rΨ†(r)∇2Ψ(r) +

1

2

∫
d3r d3r′Ψ†(r)Ψ†(r′)V (r− r′)Ψ(r′)Ψ(r)

= H0 +Hint , (7.16)

where Ψ(†)(r) are the �eld operators describing particles at position r and have
commutation relations

[
Ψ(r),Ψ†(r′)

]
= δ(r − r′). The particles interact via the

potential V (r−r′) which at this point is arbitrary but later is assumed to be either
short-ranged or of dipolar nature. Similar to the Bogoliubov method, we assume
that the number of particles in the ground state of the noninteracting system is
very large and we may separate the contributions from the condensate mode and
all the other modes as

Ψ(r) =
√
n0 + ψ(r) . (7.17)

Here, the �rst term describes the condensate mode with density n0 = N0/V and
ψ(r) is the �eld operator for particles not in the condensate, that is those with
momentum k 6= 0. After the Bogoliubov prescription, Eq. (7.17), the Hamiltonian
is a function of n0,H(n0), and since it no longer preserves the number of particles,
one has to impose the additional condition that

N = N0 +

∫
d3r 〈φ0|ψ†(r)ψ(r) |φ0〉 = N0 +N ′ (7.18)

with the ground state of the interacting system |φ0〉. An alternative formulation of
the problem is then not to look for the ground state of this Hamiltonian with the
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condition of particle number conservation but instead to look for the same ground
state of the grand-canonical Hamiltonian

H ′ = H(n0)− µN ′ (7.19)

without any additional condition. The parameter µ is the chemical potential of
the system and plays the role of a Lagrange multiplier. It is �xed by the condition
that for �xed density n = N/V , one has n′(n0, µ) = n − n0. The ground state
density is determined by the condition dE0/dN0 = 0. The chemical potential is
also directly related to the ground state energy by the important relation

d

dn

(
E0

V

)
= µ . (7.20)

At this point it is important to mention that the condensate mode has been
removed from the initial problem of calculating the ground state energy of the
Hamiltonian in Eq. (7.16). The new problem now consists of calculating the ground
state of a new Hamiltonian

H ′ =

∫
d3r ψ†(r)

(
−~2∇2

2m
− µ

)
ψ(r)+Hint(n0) = H0(n0)+Hint(n0) (7.21)

where µ plays the role of an external potential andHint(n0) includes all interaction
terms where the �eld operator Ψ has been replaced according to Eq. (7.17). This
problem can now be tackled with standard methods from quantum �eld theory.

In the �eld-theoretic treatment of the problem, the central quantity is the one-
particle Green’s function of the Hamiltonian H ′

G(r− r′, t− t′) = i 〈φ0| T ψ(r, t)ψ∗(r′, t′) |φ0〉 . (7.22)

It is important to note that this Green’s function only describes particles which
are not in the condensate, which has been eliminated from the problem. As we
consider particles in free space without any position-dependent potential, we have
translational invariance in space and momentum still is a good quantum number
such that we de�ne the Green’s function in energy-momentum space as

G(k, ε) =

∫
d3r

∫
dt ei(εt−k·r)G(r, t) (7.23)

It is then possible to relate the ground state energy directly to the Green’s function
by

E0

V
− nµ

2
=

i

2π

∫
d3k

(2π)3

∫
C
dε

(ε+ εk)

2
G(k, ε) , (7.24)

163



Chapter 7. Basic Concepts

where the countour C goes along the real axis from −∞ to +∞ and is closed in
the upper-half plane to preserve causality. Note that this constitutes a di�erential
equation where the derivative in the form of µ enters on both sides of the equation.
In the dilute limit, it is possible to derive corrections perturbatively using lower
orders of µ on the right-hand side to calculate a certain order of G(k, ε) and E0.
The crucial step in calculating the ground state energy is now to calculate the
Green’s function to a given order.

Using diagrammatic techniques, one can derive a closed form for the Green’s
function G(k, ε), which is given by

G(k, ε) =
ε+ εk − µ+ Σ11

k (−ε)[
ε− ~Σ11

k (ε)−~Σ11
k (−ε)

2

]2

−
[
εk − µ+

~Σ11
k (ε)+~Σ11

k (−ε)
2

]2

+ |~Σ02
k (ε)|2

.

(7.25)

In this expression, ~Σ11
k (ε) is the self-energy due to the scattering of a particle with

momentum k o� the condensate and ~Σ02
k (ε) denotes the self-energy coming from

the scattering of two particles in the condensate resulting in two particles out of
the condensate with opposite momenta.

In the dilute regime, the self-energies can be calculated perturbatively in orders
of the ground state density n0. Within this treatment, the repeated scattering of
particles is taken into account to all orders in the interaction strength. To lowest
order in the density, it is su�cient to keep the repeated scattering of two particles,
so-called ladder diagrams in the language of quantum �eld theory, and the self-
energies are directly proportional to the scattering amplitude

f(k′,k) =

∫
d3r V (r)e−ik

′·rψk(r) , (7.26)

where ψk(r) is the solution to the Lippman-Schwinger equation of a particle scat-
tering o� the potential V (r) with incoming momentum k. The self-energies to
�rst order read

~Σ02
k (ε) = n0f(0,k) , (7.27)

~Σ11
k (ε) = 2n0

f(k/2,k/2) + f(−k/2,k/2)

2
. (7.28)

Note that while f(k/2,k/2) and f(−k/2,k/2) account for forward and backward
scattering of a particle, respectively, the scattering amplitude f(0,k) describes a
process which is forbidden for two particles in vacuum. This is reminiscent of
the fact that the self-energy ~Σ02

k accounts for the scattering of two particles in
the condensate, which we eliminated in the problem, into two particles out of the
condensate.
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First Order: Mean-Field Energy

In the lowest order in the density, we need the zeroth-order Green’s function,
which is the one of a free particle, that is G(0)(k, ε) = 1/(ε − εk + iδ), since
both the chemical potential and the self-energies vanish to zeroth order. On the
other hand, we need the �rst-order chemical potential for the left-hand side of
Eq. (7.24). The chemical potential is given by the Hugenholtz-Pines relation µ =
~Σ11

0 (0) − ~Σ02
0 (0) which in fact is exact to all order in perturbation theory. To

�rst order, one has µ(1) = n0f(0, 0) ≡ n0f0. As the Green’s function G(0)(k, ε)
has no poles in the upper-half plane, the right hand side of Eq. (7.24) vanishes and
we are left with the mean-�eld energy

E
(1)
0

V
=
n0nf0

2
=

2π~2as
m

n2 , (7.29)

where we used f0 = 4π~2as/m for short-ranged potentials characterized by the
s-wave scattering as and replaced n0 by n which is correct to this order.

Second Order: Beyond-Mean-Field Corrections

In order to calculate the second order in the energy, which gives the beyond-mean-
�eld corrections, we need the �rst-order Green’s function, which involves both the
�rst-order chemical potential already calculated in the previous paragraph as well
as the �rst-order self-energies calculated in Eqs. (7.27) and (7.28). The Green’s
function then reads

G(1)(k, ε) =
ε+ εk − n0f0

ε2 + E2
k + iδ

, (7.30)

whereE2
k = (εk−n0f0 +~Σ11

k )2−|~Σ02
k |

2 is the generalized Bogoliubov excitation
spectrum and δ > 0 is used to shift the poles correctly. Using the Green’s function
to �rst order, the integral over ε in Eq. (7.24) can be performed and leads to

E
(2)
0

V
− nµ(2)

2
=

1

2

∫
d3k

(2π)3

(εk + n0f0 − Ek)(εk − Ek)

2Ek

. (7.31)

The integration of the momentum on the right-hand side can be performed once
the momentum dependence of the scattering amplitudes is known which depends
on the interaction potential at hand. For simplicity, we restrict ourselves to short-
ranged potentials with small momentum transfers and later generalize this to the
long-ranged dipolar interactions. For momenta small compared to the character-
istic size of the interaction, that is kas < 1, one can approximate the scatter-
ing amplitudes in Eqs. (7.27) and (7.28) as being constant with their value at zero
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momentum, that is f(0,k) ≈ f(0, 0) = f0 and similarly for f(k/2,k/2) and
f(−k/2,k/2). The excitation spectrum then reduces to Eq. (7.11) and the integral
in Eq. (7.31) can be calculated leading to

E
(2)
0

V
− nµ(2)

2
= −

√
2

15π2
(n0f0)5/2

(
2m

~2

)3/2

. (7.32)

In the last expression, we can replace n0 by n as corrections will only contribute
to higher-order corrections to the ground state energy. Recalling that the chemical
potential is related to the energy density by µ = d(E0/V )

dn
, we then have to solve

a di�erential equation in n. The homogeneous part of this di�erential equation is
solved by an energy density which is proportional to n2 which is the same order
as the mean-�eld energy we have already calculated in Eq. (7.7). The correction to
the mean-�eld energy provided by Eq. (7.31) then reads

E
(2)
0

V
= −n2

∫ n

0

dy
2f(y)

y3
(7.33)

with f(n) = −
√

2
15π2 (nf0)5/2

(
2m
~2
)3/2. The lower boundary of the integral derives

from the constraint that for weak interactions, the mean-�eld result provides the
dominant contribution. In three dimensions, a Bose gas is weakly interacting in
the dilute regime, given by the condition na3

s � 1, and the contribution from
the beyond-mean-�eld energy has to vanish faster than n2 in the limit n → 0.
The integral can be solved analytically and the ground state energy after setting
f0 = 4π~2/m reads

E0

V
=

2π~2as
m

n2

(
1 +

128

15
√
π

√
na3

s

)
(7.34)

which is the same result that was obtained in Eq. (7.14) using the Bogoliubov
method. Note that even though both the Bogoliubov approach and the �eld-theoretic
approach by Hugenholtz and Pines and Beliaev give the same result, the �eld-theo-
retic method o�ers the advantage of circumventing unphysical divergences aris-
ing due to a necessary renormalization of the scattering length which occurs in the
Bogoliubov method [319]. Using the �eld-theoretic approach it is also possible to
calculate higher-order corrections to the ground state energy and the next-order
term has the form (na3

s) ln(na3
s) [278].

Dipolar Interaction

In contrast to short-ranged interactions, which are well characterized by the s-
wave scattering length as at low energies and where the scattering amplitude can
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be approximated as being constant, the long-range character does not necessarily
allow for such a simpli�cation. However, it turns out that for low energies and
away from shape resonances, the scattering amplitude of dipolar particles is well
approximated by the Fourier transform of the pseudopotential Eq. (7.4) [309–311,
320] given by

Vk =
4π~2as
m

+ Cdd

(
cos2 α− 1

3

)
, (7.35)

where α is the angle between the polarization axis and k. The calculation of the
Fourier transform is presented in Appendix 7.A. Note that for k → 0 there is a
discontinuity in the second part depending on which direction we take the limit
from . Calculating the value V0 directly, one obtains V0 = 4π~2as/m which we
will use in the following.

The corresponding self-energies to �rst order can then be written as

~Σ02
k = n0Vk , (7.36)

~Σ11
k = n0(V0 + Vk) . (7.37)

The evaluation of the integral in Eq. (7.31) then follows along the same lines as
above and solving the remaining di�erential equation, we get

E0

V
=

2π~2as
m

n2

(
1 +

128

15
√
π

√
na3

sF (εdd)

)
, (7.38)

where F (εdd) = 1
2

∫ 1

−1
du (1 + εdd(3u

2 − 1))5/2 accounts for the in�uence of the
dipole-dipole interaction and F (0) = 1 in the absence of the dipole-dipole interac-
tion. It is interesting to note that the contribution from the dipolar part is merely
a factor which depends only on the parameter εdd and does not introduce an addi-
tional density dependence. This comes from the fact that the Fourier transform of
the dipole-dipole interaction only depends on the angle between k and the dipole
moment but not on |k| itself. Another peculiarity of this additional factor is that
it becomes complex for εdd > 1 which is reminiscent of the stability properties of
the dipolar Bose gas. The theory itself can no longer be applied in this case as the
original assumption of a stable ground state is no longer satis�ed. The beyond-
mean-�eld correction to the ground state energy of a dipolar Bose gas was �rst
calculated by Lima and Pelster in [280] using the Bogoliubov method.
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Appendix

7.A. Fourier Transform of the Dipole-Dipole
Interaction

In this appendix, we calculate the Fourier transform of the dipole-dipole interac-
tion in Eq. (7.3) in three dimensions. For the derivation we closely follow [125].

Formally, the Fourier transform is given by

Ṽdd(k) =
Cdd
4π

∫
d3r e−ikr

1− 3(z/|r|)2

|r|3
. (7.39)

This expression is simpli�ed by transforming to spherical coordinates (r, θ, φ) and
aligning the polar axis along the direction of k. The dipole moment is assumed to
be in the y = 0 plane and makes an angle α with k. The Fourier transform then
reads

Ṽdd(k) =
Cdd
4π

∫
dr dθ dφ sin θe−ikr cos θ 1− 3(sinα sin θ cosφ+ cosα cosφ)2

r

=
Cdd
4π

∫ ∞
rc

dr

r

∫ π

0

dθ sin θe−ikr cos θπ(3 cos2 α− 1)(1− 3cos2θ)

= Cdd(1− 3 cos2 α)

∫ ∞
rc

dr

(
sin(kr)

(kr)2
+

3 cos(kr)

(kr)3
− 3 sin(kr)

(kr)4

)
= Cdd(1− 3 cos2 α)

krc cos(krc)− sin(krc)

(krc)3
. (7.40)

In the second line, we have introduced the cuto� rc at small distances in order to
avoid divergences. As our result should not include the cuto�, we can now let rc
go to zero and obtain

Ṽdd(k) =
Cdd
3

(3 cos2 α− 1) . (7.41)
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Note that the Fourier transform does not depend on the magnitude of k but only
on its orientation with respect to the polarization axis, that is the axis along which
the dipole is oriented.
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8
Beyond Mean-Field Corrections
for Dipolar Bosons in an Optical
La�ice

In this chapter, we study the in�uence of an optical lattice on the beyond-mean-
�eld (LHY) corrections for a dipolar Bose gas. In particular, we investigate whether
and how one can control the strength of the quantum �uctuations in a suitable
way. In Section 8.1, we �rst consider the case of a deep three-dimensional cubic
lattice. In this setup, we calculate the LHY correction to the ground state energy
of an interacting Bose gas for contact (on-site) interactions, as well as for dipolar
density-density interactions neglecting the interaction-induced tunneling e�ects.
In the limit of a large healing length, an e�ective mass emerges and we also cal-
culate the corrections that arise for larger interaction strengths. After that, in Sec-
tion 8.2, we turn to the case of a weak one-dimensional lattice and show that by
manipulating the orientation of the lattice with respect to the dipole orientation
axis it is possible to control and tune the magnitude of the LHY corrections. This
chapter is based on Ref. [321].
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Chapter 8. Beyond Mean-Field Corrections for Dipolar Bosons in an Optical Lattice

Fig. 8.1.: Schematic illustration of the deep optical lattice. The dipoles are trapped in a
deep three-dimensional optical lattice with lattice spacing l, but are in the weakly inter-
acting regime and remain super�uid.

8.1. Deep Optical La�ice
We start our considerations with the general many-body Hamiltonian of an inter-
acting Bose gas at zero temperature in second quantized form,

H =

∫
d3rΨ†(r)

(
−~2∇2

2m
+ U(r)

)
Ψ(r)

+
1

2

∫
d3r

∫
d3r′Ψ†(r)Ψ†(r′)V (r− r′)Ψ(r′)Ψ(r) . (8.1)

In this Hamiltonian, U(r) describes an external potential, e.g. a trapping potential
or an optical lattice, while V (r) describes the interaction potential. For dipolar
particles which are polarized along one direction, the interaction potential can be
represented in terms of a pseudopotential [310]

V (r) = g0δ(r) +
Cdd
4π

1− 3 cos2 θ

r3
, (8.2)

where θ is the angle between the direction of the polarization of the dipoles and
their relative position. The �rst term of this pseudopotential accounts for the s-
wave interactions which result from the short-ranged van der Waals interactions
but contains also the contribution of the dipolar part of the potential. The second
part stands for the higher partial waves, which are dominated by the long-range
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8.1. Deep Optical Lattice

and anisotropic dipolar interaction. The coupling constant g0 is related to the s-
wave scattering length as via g0 = 4π~2as/m. The dipolar coupling constantCdd is
µ0µ

2 for particles having a magnetic dipole moment withµ0 being the permeability
of the vacuum, and d2/ε0 for particles having an electric dipole moment d with ε0
being the permittivity of the vacuum. In free space, the relative strength of the
contact and the dipolar interaction is determined by the dimensionless parameter
ε0
dd = add/as with the so-called dipolar length add = mCdd/12π~2.

Now, we consider the particles to be trapped in a deep three-dimensional simple
cubic optical lattice described by the trapping potential U(r) = UL

∑
i sin

2(qLri),
where i ∈ {x, y, z}, UL is the lattice depth and qL = 2π/λ is the lattice vector
with λ being the laser wavelength and the lattice period is given by l = λ/2. The
typical energy scale of a particle in a lattice is the recoil energy ER = ~2q2

L/2m
and the strength of the lattice can be characterized by the dimensionless parameter
s = UL/ER. In the case of a deep lattice, we have s � 1. In this regime, one can
assume that only the lowest Bloch band is occupied (in practice this is a good
approximation already for s ∼ 10 [295]) and we can rewrite the �eld operators
Ψ(r) and Ψ†(r) in terms of the Wannier functions w(r− ri) localized around the
lattice site i at position ri

Ψ(r) =
∑
i

w(r− ri)ai (8.3)

with the bosonic annihilation operator ai at lattice site i. The annihilation op-
erators in real and quasi-momentum space are connected via a discrete Fourier
transform

ai =
1√
NL

∑
k∈K

ake
−ikri , (8.4)

where NL denotes the number of lattice sites and the summation over k is re-
stricted to the �rst Brillouin zone K . Using these transformations, the single-
particle term of the Hamiltonian becomes diagonal and the total Hamiltonian can
be written as

H =
∑
k

εka
†
kak +

1

2

∑
i,j,l,m

Vijlma
†
ia
†
jalam . (8.5)

The dispersion relation of a particle in a deep lattice is given by

εk = −2t

( ∑
i=x,y,z

cos(kil)− 3

)
, (8.6)
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where the hopping amplitude t is related to the lattice depth UL, the recoil energy
ER and the lattice spacing l [296]. Note that the zero of energy is shifted such that
ε0 = 0. In the interaction part of Eq. (8.5), the matrix elements Vijlm are given in
terms of the Wannier functions

Vijlm =

∫
d3r

∫
d3r′w∗(r− ri)w

∗(r′ − rj)V (r− r′)w(r′ − rl)w(r− rm) .

(8.7)

For deep lattices, the Wannier functions are well localized and the contribution
due to the contact interaction is only signi�cant if i = j = l = m, such that we
may write

V contact
ij = δij g0

∫
d3r |w(r)|4 ≡ gδij . (8.8)

Approximating the Wannier function at a given lattice site by the ground state
wavefunction of an harmonic oscillator, g can be calculated explicitly as [296]

g = g0
(2π)3/2

l3
s3/4 . (8.9)

For the dipolar part, we replace the Wannier functions by δ-functions,

w∗(r− ri)w(r− rm) ≈ δimδ(r− ri) . (8.10)

The matrix elements now only depend on sites i and j and are given by

Vij = gδij +
Cdd
4π

1− 3 cos2 θij
|ri − rj|3

, (8.11)

with θij being the angle between sites i and j. Note that the on-site contribution
from the dipolar part is zero for an isotropic con�nement at each lattice site. The
Hamiltonian in Eq. (8.5) then reduces to

H =
∑
k

εka
†
kak +

1

2

∑
i,j

Vijninj . (8.12)

Taking into account the spatial structure of the Wannier states and computing the
matrix elements in Eq. (8.7) explicitly gives rise to additional processes such as
density-assisted and correlated tunneling [322, 323]. These processes are strongly
suppressed for deep lattices due to the exponential decay of the Wannier functions,
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8.1. Deep Optical Lattice

but can lead to additional corrections for moderate lattice depths. The role of these
terms is discussed in Appendix 8.A.2.

For what follows, we also need to transform the interaction part of Eq. (8.5) into
momentum space which requires the discrete Fourier transform of the interaction
potential and might be written as

V (k) ≡ Vk = g

(
1 + εdd

3

4π

∑
j

eikrj
1− 3 cos2 θj
|j|3

)
, (8.13)

where the parameter εdd is renormalized by the lattice and related to its free space
variant by

εdd =
ε0
dd

l3
∫
d3r |w(r)|4

=
ε0
dd

(2π)3/2s3/4
. (8.14)

The last result was obtained using Eq. (8.9). The exact form of Vk can be obtained
analytically under our approximations (see Appendix 8.A.1) and leads to notice-
able di�erences with respect to the free space Fourier transform in which Vk only
depends on the angle between k and the direction of the polarization of the dipoles
but not on the magnitude of k.

8.1.1. Beyond-Mean-Field Corrections
In order to calculate the beyond-mean-�eld energy corrections, we restrict our-
selves to the case where the system is in the super�uid phase and the mean-�eld
approach correctly describes its properties. The correction to the mean-�eld en-
ergy is then given by [278]

E
(2)
0

V
− 1

2
nµ(2) =

1

2

∫
K

d3k

(2π)3

(εk + nVk − Ek)(εk − Ek)

2Ek

, (8.15)

where V = NLl
3 is the volume of the system, n = N/V the density, and µ(2)

denotes the second-order correction to the chemical potential, which is related to
the energy by µ = d(E/V )/dn. The Bogoliubov dispersion relation Ek is given
by Ek =

√
εk(εk + 2nVk) with the noninteracting single-particle dispersion εk

in Eq. (8.6) and the (discrete) Fourier transform of the dipolar potential Vk. We
note that as the integration is restricted to the �rst Brillouin zone, the result is in
principle always convergent and no renormalization is needed. We will now study
the structure of the correction for di�erent cases, starting for simplicity with the
contact interactions.
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Contact Interaction

For a purely contact interacting Bose gas, we have Vk = g and thus no momentum
dependence of the interaction potential. In order to simplify the integral on the
right-hand side of Eq. (8.15) and to make it dimensionless, we introduce the e�ec-
tive mass m∗ = ~2/(2tl2) and the healing length ξ2 = ~2/(2m∗ng). We further
introduce the dimensionless parameter α = ξ2/l2 = t/ng, which parametrizes
the relative strength of the interaction. Staying in the super�uid phase requires
α � 1. Using the substitution kil = uil/ξ = ui/

√
α, the integral in Eq. (8.15)

reduces to

1

2
ng

1

l3α3/2

∫ π
√
α

−π√α

d3u

(2π)3

(εu + 1− Eu)(εu − Eu)

2Eu

(8.16)

with εu = −2α
(∑

i=x,y,z cos(ui/
√
α)− 3

)
and Eu =

√
εu(εu + 2). The prefac-

tor ng/(α3/2l3) in front of the integral can equivalently be written as

ng

l3α3/2
=

(ng)5/2(2m∗)3/2

~3
. (8.17)

This is, up to a constant numerical factor, exactly the form of the LHY correction
in the absence of the optical lattice such that its e�ects are contained solely in the
integral

I(α) =
1

2

∫ π/
√
α

−π/√α

d3u

(2π)3

(εu + 1− Eu)(εu − Eu)

2Eu

. (8.18)

In the limit α → ∞, which corresponds to free space, the integral I(α) can be
calculated analytically and approaches the constant I(α → ∞) = −1/15

√
2π2

such that

E
(2)
0

V
− 1

2
nµ(2) =

(ng)5/2(2m∗)3/2

~3

(
− 1

15
√

2π2

)
. (8.19)

Solving the di�erential equation with the initial condition E(2)
0 (n = 0) = 0 en-

suring the correct mean-�eld result, one recovers the well-known free space LHY
term

E
(2)
0

V
=

8

15π2

(m∗)3/2(ng)5/2

~3
(8.20)
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with an e�ective mass accounting for the underlying lattice structure. For �nite α,
one can compute the integral numerically and the result is shown in Fig. 8.2. As ex-
pected, there are corrections to the free space value at �nite αwhich introduces an
additional density dependence to the right hand side of Eq. (8.15). We discuss this
additional density dependence and its in�uence on the beyond-mean-�eld energy
corrections below

Dipolar Interaction

We now turn to the case of dipolar interactions. It is interesting to study both the
di�erences which arise with respect to the contact interaction case as well as the
e�ect of the lattice on the dipolar gas. In order to achieve better understanding
of the role of the lattice, we �rst approximate the lattice Fourier transform of the
dipolar interaction which is derived in Appendix 8.A.1 by the free space Fourier
transform

V free
dd (k) = gεdd

(
3

k2
z

k2
x + k2

y + k2
z

− 1

)
, (8.21)

which only depends on the angle between k and the direction of polarization of
the dipoles (which is assumed to be the z-axis). The integral I(α) can only be cal-
culated numerically for �nite α and the results for di�erent values of εdd are shown
in Fig. 8.2. The asymptotic value for α → ∞ can again be calculated analytically
and reads

I(α→∞) = − 1

15
√

2π2
F (εdd) (8.22)

with F (εdd) = 1
2

∫ 1

−1
du (1+εdd(3u

2−1))5/2 accounting for the anisotropic nature
of the dipolar interaction (see also [280]). In the absence of dipolar interactions, it
reduces to F (0) = 1. In the case of �nite α, the integral I(α) leads to corrections
qualitatively similar as in the case of contact interaction, while their magnitude
increases with increasing εdd.

The e�ect of the dipolar interaction is even more enhanced when taking the full
lattice Fourier transform of the dipolar interaction as derived in Sec. 8.A.1. Forα→
∞, I(α) also approaches the free space result and is equivalent to taking the free
space Fourier transform in Eq. (8.21), whereas the deviations with respect to the
case of contact interaction are more prominent for �nite α. This can be understood
by comparing the lattice Fourier transform and the free space Fourier transform
as shown in Fig. 8.3. In contrast to free space, the lattice Fourier transform of the
dipolar potential also depends on the absolute value of the momentum. For large

177



Chapter 8. Beyond Mean-Field Corrections for Dipolar Bosons in an Optical Lattice

610 100 1000 104 105 10
- 1.06
- 1.04
- 1.02
- 1.00
- 0.98
- 0.96 (a)

- 1.00

10 100 1000 104 105 106- 1.25

- 1.20

- 1.15

- 1.10

- 1.05 (b)

10 100 1000 104 105 106- 1.6

- 1.5

- 1.4

- 1.3

- 1.2
(c)

10 100 1000 104 105 106
- 2.0

- 1.9

- 1.8

- 1.7

- 1.6

- 1.5
(d)

Fig. 8.2.: I(α) coe�cient for full (orange solid line) lattice dipolar interaction compared
with the free space one (blue dashed line) for several di�erent values of (a) εdd = 0.0, (b)
εdd = 0.3, (c) εdd = 0.5 and (d) εdd = 0.7. For the contact interaction (a), there is no
di�erence between both cases as the interaction potential is constant in momentum space.

values of α, the integral in Eq. (8.15) only gives a contribution near k = 0 where
there is little di�erence between both cases, while for decreasing values of α, the
integral also probes higher momenta where the lattice enhances the e�ect of the
dipolar potential.

General Structure of the Energy Correction

In the previous sections, we have seen that in the presence of a deep lattice, correc-
tions to the usual free space behavior arise. These corrections lead to a modi�ed
scaling in the density which is discussed in this section. In order to do so, we
rewrite Eq. (8.15) expressing the energy density E(2)

0 /V in terms of t/l3, that is
E

(2)
0 /V = (t/l3)e

(2)
0 . Substituting n → t/αg and noting that d

dn
= −(α2t/g) d

dα
,

we end up with the dimensionless di�erential equation

e
(2)
0 +

1

2
α
de

(2)
0

dα
= α−5/2I(α) = − F (εdd)

15
√

2π2
α−5/2(1 + f(α)) ≡ P (α) . (8.23)

Note that in this expression, all contributions reminiscent of the free space result
are written explicitly and the function f(α) provides all the corrections coming
from the lattice and f(α → ∞) = 0. The di�erential equation can formally be
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-1
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1

2

Fig. 8.3.: Comparison between free space (orange solid line) and lattice (blue dashed line)
dipolar Fourier transform plotted over the �rst Brillouin zone.

solved and using the initial condition e(2)
0 (∞) = 0 such that we obtain the correct

mean-�eld result, the solution reads

e
(2)
0 = − 1

α−2

∫ ∞
α

dy 2P (y)y . (8.24)

This is the particular solution of Eq. (8.23), while the homogeneous solution would
only a�ect the mean-�eld energy in which we are not interested right now. From
another point of view, one can also solve Eq. (8.15) with an inhomogeneity G(n)
which leads to the solution

E
(2)
0

V
= −n2

∫ n

0

dy
2G(y)

y3
. (8.25)

Substituting α = t/ng and expressing the energy density in terms of t/l3 leads to
the solution of Eq. (8.24). For the rest of the discussion, we return to the dimen-
sionless form of the solution given in Eq. (8.24). In the presence of the lattice1,
we can split the inhomogeneous term on the right hand side of the di�erential
equation into one part containing the free space result and one part containing
the corrections arising from the lattice,

P (α) = P0(α) + ∆P (α) = − F (εdd)

15
√

2π2
α−5/2(1 + f(α)) . (8.26)

1The following discussion is essentially more general provided that there exists a dimensionless
parameter such that the inhomogeneity has the same scaling as in free space in some limit of
this parameter.
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The �rst term gives rise to the standard result in free space e(2)
0 = 4F (εdd)

15
√

2π2 α
−5/2

which leads to the beyond-mean-�eld correction

E
(2)
0

V
=

4F (εdd)

15
√

2π2

(2m∗)3/2(ng)5/2

~3
. (8.27)

For the second part, we see from Fig. 8.2 that we can describe the corrections due
to the lattice by a function f(α) = cα−γ for α � 1. The parameters c and γ will
in general depend on the relative dipolar interaction strength εdd and will later be
determined by �tting the expression to the numerically calculated I(α). Note that
γ > 0 as f(α→∞) = 0. Thus, the energy correction due to the second part reads

∆e
(2)
0 =

F (εdd)

15
√

2π2

2c

α3

∫ ∞
α

dy y−3/2−γ =
4F (εdd)

15
√

2π2

c

1 + 2γ
α−5/2−γ . (8.28)

Finally, the complete beyond-mean-�eld energy correction reads

E
(2)
0

V
=

8

15π2

(m∗)3/2(ng)5/2

~3
F (εdd)

(
1 +

c

1 + 2γ

(ng
t

)γ)
. (8.29)

Since γ > 0, the correction to the beyond-mean-�eld correction to the ground state
energy due to the lattice increases with increasing density. In the limit t � ng,
Eq. (8.29) reduces to the free space result with a renormalized mass as discussed
before. For the present setup of a three-dimensional simple cubic lattice, we de-
termine the coe�cients c and γ by �tting to the results obtained using numerical
integration. For the scaling coe�cients, we get γ ≈ 1/2 independent of εdd and
valid also for contact interactions, whereas the coe�cient c ranges from c ≈ 0.3
for εdd = 0 to c ≈ 0.76 for εdd = 0.7.

8.2. Weak One-Dimensional La�ice
Up to now, we have considered a three-dimensional optical lattice. However, an
additional intriguing possibility is to restrict the lattice to one dimension and play
with the relative orientation of the dipoles and the wave vector of the lattice. In
this section, we demonstrate that this generates additional corrections to the usual
beyond-mean-�eld corrections that can be enhanced or diminished depending on
the relative orientation between the lattice and the dipoles. The basic assumption
of our analysis is that the lattice is weak and can be treated as a perturbation to
the free space case and we do not restrict ourselves to the lowest Bloch band.

180



8.2. Weak One-Dimensional Lattice

Fig. 8.4.: Schematic illustration of particles in a weak one-dimensional optical lattice with
lattice spacing l. The dipoles are only very weakly trapped along one dimension.

8.2.1. Model

The one-dimensional lattice potential is given as

U(r) = UL sin2(qLr) , (8.30)

where, as before, qL = π/l is the lattice vector and l is the lattice period (see also
Fig. 8.4). The orientation of the lattice relative to the dipole axis, which we assume
to be parallel to the z-axis, can be varied by varying the direction of the lattice
vector qL. In the presence of this lattice, the eigenfunctions of the noninteracting
problem are given in terms of a product of plane waves (in those directions where
no lattice is present) and Bloch functions (in the direction of the lattice),

ψk(r) = eik⊥rφk‖(r‖) . (8.31)

In this basis, the single-particle part of the Hamiltonian is diagonal with H0 =∑
k εka

†
kak, where εk = ~2k2

⊥/2m + ε̃k. The components of k that are parallel to
the lattice are restricted to the �rst Brillouin zone, k ∈ [−π/l, π/l]. In general, the
lattice dispersion ε̃k cannot be written down in closed form for arbitrary lattice
depth while for weak lattices there are approximations (see Appendix 8.B). As for
the deep lattice, we introduce the recoil energy ER = ~2q2

L/2m and the dimen-
sionless lattice depth s = UL/ER which for a weak lattice is assumed to be much
smaller than one, that is s� 1.
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8.2.2. Contact Interaction
We proceed as in the previous section and start with the contact interaction where
the interaction part of the Hamiltonian takes the form

Hint =
g

2V

∑
k,k′,q

a†k+qa
†
k′−qakak′ . (8.32)

We now apply the Bogoliubov theory following e.g. [318], which leads to the ex-
citation spectrum

Ek =
√
εk(εk + 2ng) (8.33)

as well as the beyond-mean-�eld contributions to the ground state energy per vol-
ume

∆E0

V
=

1

2V

∑
k

(Ek − (εk + ng)) . (8.34)

Since the lattice is assumed to be weak, the dispersion εk will only have small de-
viations from the dispersion in free space such that we can split the result into a
term corresponding to the free space result, the well-known LHY term, and one
additional term which includes all the corrections to it. The free space result di-
verges which can be cured by a proper renormalization of the coupling constant g
(see e.g. [318]). We focus here on the remaining corrections to the LHY term due
to the lattice which can be expressed as

∆Es
0

V
=

1

2

∫
d3k

(2π)3
(Es

k − E0
k − (εsk − ε0k)) , (8.35)

where Es
k (εsk) and E0

k (ε0k) denote the Bogoliubov excitation spectrum (single-
particle dispersion) in the presence of the lattice and in free space, respectively.

Similarily to the case of a deep lattice, we introduce a dimensionless quantity

β2 =
ER
ng

= π2 ξ
2

l2
= π2α (8.36)

which compares the healing length ξ with the optical lattice period l.
As we are only interested in a weak lattice, we calculate the beyond-mean-�eld

corrections due to the lattice given in Eq. (8.35) to leading order in s, for which
analytical results can be obtained (see Appendix 8.B for further details). The gen-
eral dependence of the beyond-mean-�eld corrections on the parameter β in the
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Fig. 8.5.: (Blue solid): General dependence of the beyond-mean-�eld correction to the
energy on the parameter β. (Green dotted): Asymptotic behaviour for β → 0. (Orange
dashed): Asymptotic behaviour for β →∞.

case of a contact-interacting Bose gas is shown in Fig. 8.5 (blue/solid line) and also
includes the leading behaviour in the limits β � 1 (green/dash-dotted line) and
β � 1 (orange/dashed line) which are discussed below.

In the limit of β → 0, which corresponds to l/ξ � 1, the leading behaviour of
Eq. 8.96 is given by

∆E2
0

V
=
ELHY

V
s2β2 5

256
→ 0 (8.37)

with the usual LHY correction

ELHY

V
=

8

15π2

m3/2(ng)5/2

~3
. (8.38)

The vanishing in�uence of the lattice in this case is intuitively clear as the limit
l/ξ � 1 indeed should correspond to free space.

In the opposite limit, β → ∞ (l/ξ � 1), the correction instead approaches a
constant and reads

∆Es
0

V
=
ELHY

V

s2

64
. (8.39)

Combing this with the mean-�eld energy, the ground state energy per volume is
given by

E0

V
=

(
n2g

2
+
ELHY

V

)(
1 +

s2

64

)
. (8.40)
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Both the mean-�eld term and the beyond-mean-�eld term are enhanced by the
presence of the lattice in the same way in the leading order. The correction to the
mean-�eld term comes from the correction to the k = 0 mode due to the coupling
to modes with k = ±qL in the presence of the lattice.

Interestingly, this result can also be obtained when assuming that the bosons
are in free space but acquire an anisotropic e�ective mass along the direction of
the lattice (say in z-direction) with mz = m/(1− s2/32) = m/γ2 to leading order
in s. This immediately leads to

ELHY → γ−1ELHY ≈
(

1 +
s2

64

)
ELHY . (8.41)

Figure 8.5 shows that the asymptotic value for β � 1 is already approached for β
on the order of 10. This suggests that describing the system as a free space gas with
an e�ective anisotropic mass should be adequate already at values of β on the order
of 10 which corresponds to ξ ≈ 3l. Typically, the lattice period is on the order of a
few hundred nanometers while the healing length is on the order of micrometers
for standard cold atom experiments [295] such that this approximation can be used
in typical experiments.

8.2.3. Dipolar Interactions
After having discussed the case of a contact-interacting gas, we turn to the case
where the particles interact via dipolar interactions given by the interaction po-
tential

Vdd(r) = gεdd
1− 3 cos2 θ

r3
, (8.42)

where θ is the angle between the direction of the dipole moment, which is assumed
to be parallel to the z-axis and the relative position of the two particles given by r.
As we are only concerned about the leading-order corrections for small values of
s, we can consistently neglect the weak lattice e�ect on the interaction potential
and use the free space formula

Vk = g

(
1 + εdd

(
3

k2
z

k2
x + k2

y + k2
z

− 1

))
≡ gṼk . (8.43)

In contrast to the contact-interacting case, the integrals cannot be solved analyt-
ically for arbitrary β. However, the previous analysis suggested to view the limit
β → ∞, or equivalently l/ξ � 1, as nothing else but a gas in free space with
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an anisotropic e�ective mass. In the following, we make use of this simpli�cation
and derive the corrections due to the weak lattice potential along an arbitrary di-
rection. In the end, we discuss two special limits when the lattice is parallel and
perpendicular to the polarization axis of the dipoles.

Since the dipole potential is invariant under rotation around the z-axis, the �nal
results can only depend on the angle η between the direction of the polarization
of the dipoles, which is assumed to be the z-axis, and the lattice vector qL. For
simplicity, we choose the lattice wave vector to be in the yz-plane. Introducing
the e�ective mass meff = m/γ2 with γ2 = 1− s2/32, the dispersion relation reads

εk =
~2

2m

(
k2
x + (ky cos η + kz sin η)2 + γ2(kz cos η − ky sin η)2

)
. (8.44)

The correction to the ground state energy can now be calculated according to
Eq. (8.15) with the di�erence that we integrate over the whole momentum space
and use Eqs. (8.44) and (8.43) for the single-particle dispersion and interaction po-
tential, respectively. The integrals are most conveniently performed in spherical
coordinates and the beyond-mean-�eld corrections for a dipolar Bose gas in the
presence of a weak one-dimensional lattice read (see Appendix 8.B for details)

E
(2)
0

V
=

8

15π2

(ng)5/2m3/2

~3

{
F (εdd) +

s2

64

[
F (εdd) +

1

2
(3 cos2 η − 1)H(εdd)

]}
(8.45)

with F (εdd) = 1
2

∫ 1

−1
du (1+εdd(3u

2−1))5/2 andH(εdd) = 1
2

∫ 1

−1
du (1+εdd(3u

2−
1))5/2(3u2 − 1).

The energy correction thus has the following form: The �rst term inside the
curly brackets is the usual LHY correction in the case of a dipolar gas in free
space [280]. The second term accounts for the in�uence of the lattice and has
two parts. The �rst term is isotropic, has the same structure as in free space and
can be explained by an e�ective mass in one direction. The other part propor-
tional to H(εdd) is clearly anisotropic in the sense that it depends on the orien-
tation of the lattice with respect to the dipoles. In Fig. 8.6, we plot the function
F (εdd)+1/2(3 cos2 η−1)H(εdd) for di�erent values of the tilting angle η between
lattice wave vector and polarization of the dipoles. When the lattice is oriented
parallel to the dipoles (η = 0, blue/solid line), the corrections are enhanced and
monotonically increase with increasing εdd. In this setup, the dipoles are directed
by the trapping potential to arrange in a side-by-side con�guration so that the �uc-
tuations have mainly repulsive character. On the other hand, when the lattice is
orientated perpendicular to the dipoles (η = π/2, red/dotted line), the correction
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Fig. 8.6.: Leading-order correction to the beyond-mean-�eld contribution of the ground
state energy as a function of the relative dipole interaction strength εdd for di�erent tilting
angles η between the polarization axis of the dipoles and the wave vector of the lattice.
The angle η = 0 (blue solid line) corresponds to the case where the lattice wave vector
is parallel to the dipoles, the angle η = π/2 (red dotted line) corresponds to the case
where the lattice is applied perpendicular to the dipoles. At η = arccos(1/

√
3) ≈ 54.7 ◦,

the anisotropic correction vanishes and only the isotropic correction contributes (green
dashed line).

�rst decreases for small εdd, reaches a minimum and �nally increases for larger εdd.
In contrast to the parallel orientation, the dipoles are now dragged to the head-tail
con�guration such that the attractive character of the �uctuations is enhanced. In
this case, the correction is also much smaller than in the case where the lattice is
oriented parallel to the dipoles. At the ’magic angle’ η = arccos(1/

√
3) ≈ 54.7 ◦,

the anisotropic correction vanishes and only the isotropic correction contributes
(green/dashed line).

8.2.4. Mean-Field Terms
In the above discussion, we have so far neglected the contributions coming from
the mean �eld terms which also have an isotropic and anisotropic part where the
latter comes from the orientation of the lattice relative to the dipoles. The mean
�eld terms can be written as

EMF

V
=

1

2
n2g +

s2

64

(
n2g

2
(1 + εdd(3 cos2 η − 1))

)
. (8.46)
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The �rst term is the usual contribution from the chemical potential in free space
in the absence of any lattice. The second part is the leading-order correction to the
mean �eld energy in the presence of a weak lattice and provides an anisotropic
correction. The anisotropic correction has the same functional dependence on the
angle between the lattice wave vector and the polarization axis of the dipoles but,
apart from the di�erent scaling in the density, a di�erent functional dependence
on the relative dipole interaction strength εdd. While the mean �eld term goes
linearly with εdd for all values, the function H(εdd) ≈ 2εdd + 6/7ε2

dd is linear only
for small values of εdd.

8.3. Conclusions
In this chapter, we studied the e�ects of an optical lattice on the beyond-mean-
�eld corrections for a dipolar Bose gas with emphasis on the ability to control and
manipulate the strength of these corrections with respect to the depth and the ori-
entation of the lattice. In the case of a deep three-dimensional lattice, the presence
of the lattice introduces a nontrivial density dependence of the beyond-mean-�eld
terms whose form is independent of the strength of the dipolar interaction but
whose strength can be enhanced by increasing the dipolar interaction strength.
For a weak one-dimensional lattice, we �nd that the strength of the beyond-mean-
�eld corrections can be controlled by manipulating the relative orientation of the
lattice and the dipole axis. In view of the current experiments on dipolar quan-
tum droplets, we would like to point out that our results of the study of the deep
optical lattice are not directly applicable to these droplets due to the missing can-
cellation of the mean-�eld contributions. However, our results for the weak one-
dimensional case might be of importance for future experiments with droplets in
weak lattices.
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Appendix

8.A. Dipolar Interactions in a Deep La�ice

8.A.1. La�ice Fourier Transform
In this section, we present the calculation of the discrete Fourier transform of the
dipolar potential as given in Eq. (8.13). The calculation is based on the analogous
one performed in two dimensions [324] extended to three dimensions. Note that
in this section, we denote the summation over lattice sites by

∑
R and measure all

lengths and momenta in terms of the lattice spacing and the inverse lattice spacing,
respectively.

The lattice Fourier transformation of the dipolar interaction can be written as

Vdd(k) = g εdd
3

4π

∑
R6=0

R2 − 3z2

R5
eikR , (8.47)

which we may rewrite as

Vdd(k) = g εdd
3

4π

(
χ3(k) + 3

∂2

∂k2
z

χ5(k)

)
, (8.48)

with

χn(k) =
∑
R6=0

1

Rn
eikR . (8.49)

Note that in three dimensions, both χ3(k) as well as ∂2

∂k2z
χ5(k) are divergent for

k→ 0. However, as will be shown, the sum of both contributions leads to a �nite
result which is nonanalytic for k→ 0.
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Calculation of χn

In order to calculate χn, we note the following identity

1

Rn
=

1

Γ(n/2)

∞∫
0

du e−uR
2

u
n
2
−1, n > 0 , (8.50)

where Γ(m) denotes the Gamma function. In the end, we will be interested in
n = 3 and n = 5. Using the above identity and splitting the integral into regions
from 0 to η and η to∞, we arrive at

∑
R6=0

1

Rn
eikR =

1

Γ(n/2)

∑
R6=0

 η∫
0

+

∞∫
η

 du e−uR
2

u
n
2
−1eikR

=
ηn/2

Γ(n/2)

∑
R6=0

 ∞∫
1

du e−
ηR2

u u−
n
2
−1 +

∞∫
1

du e−ηuR
2

u
n
2
−1

 eikR .

(8.51)

In the second step, we have rescaled u by η/u for the �rst integral and by ηu in the
second one. The parameter η is the so-called Ewald parameter and determines the
boundary between the summation in real space and the summation in the momen-
tum space. In the end, this parameter should be chosen such that convergence is
achieved rapidly for both sums. However, the result is independent of the choice
of η.

Next, we use Poisson’s summation formula to turn the sum of the �rst part in
Eq. (8.51) into a sum in momentum space. In d dimensions, Poisson’s summation
formula applied to our case reads

∑
R6=0

e−aR
2

eikR =
∑
R

e−aR
2

eikR − 1 =
πd/2

ad/2

∑
q

e−
|q+k|2

4a − 1 . (8.52)
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With a = η/u and d = 3, we arrive at

χn(k) =
ηn/2

Γ(n/2)

π3/2

η3/2

∑
q

∞∫
1

du u−
n
2

+ 1
2 e−

u
4η
|q+k|2 − 2

n

+
∑
R6=0

∞∫
1

du e−ηuR
2

u
n
2
−1eikR


=

ηn/2

Γ(n/2)

(
π3/2

η3/2

∑
q

En−1
2

(
|q + k|2

4η

)
− 2

n
+
∑
R6=0

E 2−n
2

(πR2)eikR

)
(8.53)

with the exponential integral function

Em(x) =

∞∫
1

e−xt

tm
. (8.54)

Setting n = 3 and choosing η = π, we get

χ3(k) = 2π

(∑
q

E1

(
|q + k|2

4π

)
− 2

3
+
∑
R6=0

E−1/2(πR2)eikR

)
. (8.55)

Note that the functionE1(x) diverges logarithmically for x→∞. This is expected
as the sum

∑
R6=0 1/R3 diverges logarithmically in three dimensions.

Calculation of the Anisotropic Part

Now we turn to the anisotropic part given by ∂2

∂k2z
χ5(k). For η = π and n = 5, we

get

χ5(k) =
4π2

3

(∑
q

E2

(
|q + k|2

4π

)
− 2

5
+
∑
R6=0

E−3/2(πR2)eikR

)
. (8.56)

Di�erentiating the last term twice with respect to kz , we obtain

∂2

∂k2
z

∑
R6=0

E−3/2(πR2)eikR = −
∑
R6=0

z2E−3/2(πR2)eikR . (8.57)
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For the �rst term, we note the relation

E ′n(x) = −En−1(x) (8.58)

and thus have
∂2

∂k2
z

∑
q

E2

(
|q + k|2

4π

)
=
∑
q

E0

(
|q + k|2

4π

)
(kz + qz)

2

4π2
− E1

(
|q + k|2

4π

)
1

2π
.

(8.59)
Finally, we end up with

∂2

∂k2
z

χ5(k) =
4π2

3

(∑
q

E0

(
|q + k|2

4π

)
(kz + qz)

2

4π2

−E1

(
|q + k|2

4π

)
1

2π
−
∑
R6=0

z2E−3/2(πR2)eikR

)
. (8.60)

In this expression, we again encounter the diverging part E1(x) with exactly the
prefactor needed in order to cancel the contribution from the isotropic 1/R3 part.

Combining everything and using the explicit form of E0(x) = e−x/x, the �nal
result reads

Vdd(k) = g εdd

((
3e−

k2

4π
k2
z

k2
− 1

)
+

3

2

∑
R6=0

E−1/2(πR2)

−2πz2E−3/2(πR2)eikR + 3
∑
q 6=0

e−
|q+k|2

4π
(kz + qz)

2

|k + q|2

)
. (8.61)

The �rst part exactly reproduces the continuous Fourier transform of Vdd(k) in the
limit k→ 0, while the second part, including the sums, vanishes in this limit as is
shown in the next paragraph. Note in addition that this expression can be evalu-
ated numerically very e�ciently since the summations converge very quickly. For
numerical purposes, it is useful to replace q = 2πR in the second summation such
that convergence is achieved using only a few lattice sites.

In Figures 8.7 and 8.8, the angular dependence of Eq. (8.61) is plotted for di�erent
values of k and one can see that in contrast to the free space result, the Fourier
transform also depends on the absolute value ofk. The corrections to the free space
Fourier transform become even more apparent when plotting both functions over
the �rst Brillouin zone of a simple cubic lattice along paths of high symmetry as
shown in Fig. 8.3. Around k = 0, there is little di�erence between both functions,
whereas for �nite momenta, deviations become clearly visible since the anisotropic
structure of the lattice is probed.
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8.A. Dipolar Interactions in a Deep Lattice

Fig. 8.7.: Angular dependence of the lattice Fourier transform Vk for kl = 0 (blue solid),
which corresponds to the result in free space, kl = π/4 (orange dashed), kl = π/2 (green
dotted), and kl = π (red dash-dotted).

Fig. 8.8.: Polar plot of Vdd(k, θ, φ = 0) for kl ∈ [0, π]. The boundary circle corresponds to
kl = π while the inner circles correspond to kl = π/4, π/2, 3π/4 (from innermost circle
towards to edge).
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Continuous Limit k→ 0 and Nonanalytic Behaviour
In the long wavelength limit k → 0, the �rst term in Eq. (8.61) reduces to the
continuous Fourier transform Vdd(k) = g εdd(3 cos2 θ − 1), where θ is the angle
between k and the z-axis, which is assumed to be the axis along which the dipoles
are polarized.

The other terms in Eq. (8.61) for k→ 0 read

3

2

∑
R6=0

(
E−1/2(πR2)− 2πz2E−3/2(πR2)

)
+ 3

∑
q 6=0

e−
q2

4π
q2
z

q2

=
3

2

∑
R6=0

(
E−1/2(πR2)− 2πz2E−3/2(πR2)

)
+ 3π

∑
R6=0

z2E0(πR2) , (8.62)

where we replaced q = 2πR. In order to simplify this expression further, we make
use of the recurrence relation

E0(x) = Em(x) +
m

x
Em+1(x) . (8.63)

Choosing m = 3/2, we get

3

2

∑
R6=0

E−1/2(πR2)

(
1− 3

z2

R2

)
= 0 (8.64)

due to the symmetry of the lattice. Thus, we end up with

Vdd(k→ 0) = g εdd

(
3
k2
z

k2
− 1

)
= g εdd

(
3 cos2 θ − 1

)
. (8.65)

This is exactly the same result as in free space and is nonanalytic for k→ 0.

8.A.2. Role of the Next-Order Terms
For the analysis of the beyond-mean-�eld terms in Section 8.1, we only included
the density-density interactions. However, dipolar interaction gives rise to terms
like density-induced tunneling or pair hopping. Including the interaction-induced
nearest-neighbour couplings results in [298, 322, 323]

H = −t
∑
〈i,j〉

b†ibj +
U

2

∑
i

ni(ni − 1) +
V

2

∑
〈i,j〉

ninj

− T
∑
〈i,j〉

b†i (ni + nj)bj +
P

2

∑
〈i,j〉

b†i
2
b2
j . (8.66)
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Transforming this to the quasi-momentum space, one obtains

H =
∑
k

εkb
†
kbk +

1

NL

∑
k,k′,q,q′

δk−k′+q−q′,Kmf(q,q′,k′)b†kb
†
qbk′bq′ (8.67)

with

f(q,q′,k′) =
U

2
+
V

2

∑
δ

e−iδ(q−q′) − T
∑
δ

(
eiδq

′
+ e−iδ(q−q′−k′)

)
+
P

2

∑
δ

eiδ(k′+q′). (8.68)

Here, the sums over δ are performed over nearest neighbors only. This Hamilto-
nian has the same structure as the one without additional terms but with mod-
i�ed e�ective interaction f(q,q′,k′). We can thus perform the Bogoliubov ap-
proximation, assuming the presence of the condensate at zero momentum and
replacing b0 →

√
N0, where N0 is the number of particles in the condensate

with N = N0 + 1
2

∑′
p b
†
pbp + b†−pb−p and the prime denotes omitting the zero-

momentum mode. For the case of a three-dimensional cubic lattice this gives

H =
N2

NL

f(0, 0, 0) +
1

2

∑′

p

{[
εp − 2

N

NL

f(0, 0, 0) +
N

NL

(
f(p,p, 0)

+ f(p, 0,p) + f(0,p, 0) + f(0, 0,p)
)](

b†pbp + b†−pb−p
)

+ 2
N

NL

(
f(0,−p,p)bpb−p + f(−p, 0, 0)b†pb

†
−p

)}
. (8.69)

The relevant values for a cubic lattice in three dimensions are

f(0, 0, 0) =
U

2
+ 3V − 12T + 3P , (8.70)

f(p,p, 0) =
U

2
+ 3V − T (2cp + 6) + Pcp , (8.71)

f(p, 0,p) =
U

2
+ V cp − 12T + Pcp , (8.72)

f(0, 0,p) =
U

2
+ 3V − T (2cp + 6) + Pcp , (8.73)

f(0,p, 0) =
U

2
+ V cp − 4Tcp + Pcp , (8.74)

f(0,−p,p) =
U

2
+ V cp − T (2cp + 6) + 3P , (8.75)

f(−p, 0, 0) =
U

2
+ V cp − T (2cp + 6) + 3P . (8.76)
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Here, we de�ned
∑

δ e
iδp ≡ cp and c−p = cp for a cubic lattice.

Now we perform the Bogoliubov transformation and arrive at the formula for
the ground state energy

E0 = EMF +
∑′

p

(Ep − αp) . (8.77)

with

Ep ≡
√
α2
p − β2

p (8.78)

and

αp = cp(−2t− 8nT + 4nP + 2nV ) + 6t+ nU − 6nP , (8.79)
βp = nU + 2ncp(V − 2T )− 12nT + 6nP . (8.80)

De�ning

Ũp = U − 12T + 6P + 2cp(V − 2T ) , (8.81)
ε̃p = −2(t+ 2nT − nP )(cp − 3) , (8.82)

the Bogoliubov spectrum takes the form

Ep =

√
ε̃p(ε̃p + nŨp) (8.83)

similar to the standard Bose-Hubbard model, where ε̃p = −2t(cp−3) and Ũp = U .
One can also see that the spectrum is gapless and linear for small momenta

Ep =

√
2t̃Ũ0|p| (8.84)

with the renormalized hopping amplitude t̃ = t + 2nT − nP which is now den-
sity dependent. The sound velocity is given by c =

√
2t̃Ũ0. The renormalized

hopping amplitude also renormalizes the e�ective mass which is now given by
meff = ~2/2l2t̃. We see that the modi�cations resulting from additional terms do
not fundamentally change the properties of the super�uid. In our case the lat-
tice is assumed to be deep and the role of tunnelling terms in the interaction is
perturbative.
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8.B. Dispersion in the Presence of a Weak Optical
La�ice

In this section, we �rst state some important results from the physics of a single
particle with mass m in the presence of a weak optical lattice. We restrict our
discussion to the case of a one-dimensional lattice along the z-axis of the form

UL(z) = U sin2(qLz) =
U

2
(1 + cos(2qLz)) , (8.85)

where qL = π/l is the lattice vector and l is the lattice period. The energy scale of
the lattice is given by the recoil energy ER = ~2q2

L/2m. The full spectrum of the
resulting single-particle Hamiltonian can be obtained by diagonalization which is
in general only possible numerically. However, since we are interested only in
weak lattices with s = U/ER � 1, we can calculate the spectrum analytically
using perturbation theory in the parameter s. In second order, the correction to
the free space energy is given by

εsk = ε0k−K +
∑
K′

|UK′−K |2

ε0k−K − ε0k−K′
+O(U3) , (8.86)

where K is a vector of the reciprocal lattice, K = 2nqL with integer n, the free
space dispersion ε0k = ~2k2/2m and the Fourier transform of the lattice potential,
UK = U/2(δK,2qL+δK,−2qL). Note that we omit the constant shiftU/2 which leads
to a shift in the chemical potential and in the end, we choose the dispersion such
that εsk=0 = 0. Setting k = zqL, z ∈ [−1, 1], we can write

εsz = ER

[
(z − 2n)2 +

s2

16

(
1

(z − 2n)2 − (z − 2(n+ 1))2

+
1

(z − 2n)2 − (z − 2(n− 1))2

)]
+O(s3) , (8.87)

where n denotes the index of the Bloch band.
Note that Eq. (8.86) only holds for nondegenerate energies away from the edges

and the center of the Brillouin zone and in a region of energies where |ε0k−K −
ε0k−K′| � UK . Close to the edges of the Brillouin zone, k = ±qL, energies are
degenerate and nondegenerate perturbation theory cannot be applied. The dis-
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persion relation in this case reads

εsk =
ε0k − ε0k−K

2
±

√(
ε0k − ε0k−K

2

)2

+
|UK |2

4
(8.88)

= ER

z2 − (z − 2n)2

2
±

√(
z2 − (z − 2n)2

2

)2

+
s2

4

 . (8.89)

The above results suggest a splitting into a degenerate and nondegenerate re-
gion for the lowest two bands where the border of both regions is determined by
the condition ε0k−K− ε0k−K′ = UK leading to z = 1−s/8. In the following, we will
assume that z is positive but not restricted to values smaller than 1 as indicated
above. Thus, the integration has to be split into three regions. The two nondegen-
erate regions are from z = 0 to z = 1 − s/8 and from z = 1 + s/8 to z = ∞ 2.
The degenerate region extends from z = 1− s/8 to z = 1 + s/8.

8.B.1. Contribution from the Degenerate Region

Here, we argue that the contribution from the degenerate region will not con-
tribute in leading order in s. In order to see that, we expand Eq. (8.89) for z2− (z−
2n)2 � s2 which leads to

εsk =
ER
2

[
(z2 + (z − 2)2)− s

8
− 16(z − 1)2

s

]
(8.90)

for 1− s/8 ≤ z ≤ 1, and

εsk =
ER
2

[
(z2 + (z − 2)2) +

s

8
+

16(z − 1)2

s

]
(8.91)

for 1 ≤ z ≤ 1 + s/8.
One can now show that the contribution to the integral in Eq. (8.95) coming

from the degenerate region is of order s3. Next, we show that the leading-order
corrections are indeed of order s2 and come exclusively from the nondegenerate
region.

2Note that to leading order we only consider a splitting between the lowest and the second lowest
Bloch band at k = ±qL (z = ±1) while all other splittings are ignored.
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8.B.2. Contributions from the Nondegenerate Region
For the nondegenerate region which ranges from z = 0 to z = 1 − s/8 and from
z = 1 + s/8 to z =∞, we have to consider an integral of the form

I(s) =

∫ 1−s/8

0

dz h(z, s) +

∫ ∞
1+s/8

dz h(z, s) , (8.92)

where h(z, 0) = 0. For small s, we can expand the integral

I(s) ≈ I(0) + s ∂sI(s)|s=0 +
1

2
s2 ∂2

sI(s)|s=0 . (8.93)

The constant term I(0) as well as the linear term vanish due to the structure of
h(z, s). The quadratic term, using again that h(z, 0) = 0, yields

∂2
sI(s)|s=0 = P.V.

∫ ∞
0

dz ∂2
sh(z, s)|s=0 , (8.94)

where P.V. denotes the Cauchy principal value. When evaluating the integral, di-
vergences will arise in the vicinity of z = 1 since the nondegenerate approach is
no longer valid. However, the divergences for z > 1 and z < 1 will cancel each
other.

8.B.3. Beyond-Mean-Field Corrections in a Weak La�ice
Contact Interaction

In a next step, we present the details on how to calculate the beyond-mean-�eld
corrections for a contact-interacting gas in a weak lattice. For this purpose, we
consider Eq. (8.35) and, in what follows, we set ε̃k = ERf(kl), where f(kl) is a
dimensionless function of the quasi-momentum along the direction of the lattice.
Using this form of the lattice dispersion and changing to dimensionless variables
k⊥ξ = u and kl = z, we can transform Eq. (8.35) into

∆Es
0

V
=

4π(2m)3/2(ng)5/2

2(2π)3~3

∞∫
0

du u

∞∫
0

dz
√

(u2 + β2f(z/β))(u2 + β2f(z/β) + 2)

−
√

(u2 + z2)(u2 + z2 + 2)−
(
β2f(z/β)− z2

)
. (8.95)

The factor in front of the integral is proportional to the usual LHY term, that is
m3/2(ng)5/2/~3, while the remaining part accounts for the in�uence of the lattice.

199



Chapter 8. Beyond Mean-Field Corrections for Dipolar Bosons in an Optical Lattice

As we are now interested in a weak lattice, we calculate the integrals in leading or-
der in s. It turns out that the leading order is proportional to s2 and the corrections
read

∆Es
0

V
=

(2m)3/2(ng)5/2

2(2π)3~3

πs2β2

96

[
2
√

2(2 + 3β2)

+ 3β2
√

2 + β2
(

ln(2β2)− 2 ln(2 +
√

2
√

2 + β2)
) ]

=
ELHY

V

s2

64

5β2

32

[
8 + 12β2 + 3β2

√
4 + 2β2

×
(

ln(2β2)− 2 ln(2 +
√

4 + 2β2)
)]

. (8.96)

Since we are also interested in the limit β →∞ and claim that this corresponds
to essentially having an e�ective mass in the direction of the lattice, we look for an
expansion of Eq. (8.95) for β →∞ or, to be more rigorous, for z � β. The function
f in the integrand plays the role of our lattice dispersion. For small arguments, we
can expand Eq. (8.87) around z = 0 for the lowest band, n = 0:

εsk = ER

[
z2 +

s2

16

(
1

z2 − (z − 2)2
+

1

z2 − (z + 2)2

)]
≈ ER

[
− s

2

32
+

(
1− s2

32

)
z2

]
. (8.97)

The �rst term is just the constant shift that will be subtracted by an additional
chemical potential. The second term gives the leading behaviour and corresponds
to having an e�ective mass in the z-direction, mz = m/(1− s2/32).

Dipolar Interaction

In this part, we present the details of the derivation of Eq. (8.45). First, we express
the dispersion relation for an anisotropic e�ective mass in spherical coordinates,
that is

εk =
~2k2

2m
(cos2 θ sin2 η + sin2 θ(cos2 φ+ γ2 sin2 η sin2 φ)

+ cos2 η(γ2 cos2 θ + sin2 φ sin2 θ) + (γ2 − 1) cos η sin η sinφ sin 2θ)

=
~2k2

2m
f(θ, φ, γ, η) . (8.98)
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The correction to the ground state energy can now be calculated using Eq. (8.15)
according to which

E
(2)
0

V
− 1

2
nµ(2) =

1

2(2π)3

∫ ∞
0

dk k2

∫
dΩ

(
~2k2
2m

f + nVk − Ek
)(

~2k2
2m

f − Ek
)

2Ek
,

(8.99)

whereEk =
√
εk(εk + 2nVk) is the Bogoliubov spectrum and

∫
dΩ =

∫ π
0
dθ sin θ×∫ 2π

0
dφ denotes the integration over the solid angle .

The integral on the right-hand side can be simpli�ed and made dimensionless
by pulling out the factor ng and using the healing length ξ2 = ~2/2mng. Making
the substitution (kξ)2f = x2 and performing the integral over k leads to

1

16π3

ng

ξ3

(
−2
√

2

15

)∫
dΩ

Ṽ 5/2

f 3/2
. (8.100)

The remaining integrals cannot be solved analytically in general. However, we are
only interested in the lowest-order corrections which are due to the lattice such
that we can expand the function under the integral to the lowest order in s, which
leads to

1

16π3

ng

ξ3

(
−2
√

2

15

)∫
dΩ Ṽ 5/2

(
1 +

3s2

64
(cos η cos θ − sin η sinφ sin θ)2

)
.

(8.101)
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Ausführliche Zusammenfassung in
deutscher Sprache

Kollektive E�ekte der Licht-Materie-Wechsel-
wirkung in Rydberg-Superatomen

Die Wechselwirkung von Licht und Materie ist eine wichtige Grundlage für viele
Vorgänge in der Natur. Durch sie können Menschen und Tiere sehen und P�an-
zen durch Photosynthese Energie gewinnen. Auch viele Anwendungen in unserer
modernen Welt wie bildgebende Verfahren in der Medizin, spektroskopische Ver-
fahren in verschiedensten Bereichen der Forschung, aber auch Anwendungen in
der optischen Informationsverarbeitung wären ohne ein Verständnis der funda-
mentalen Prozesse der Licht-Materie-Wechselwirkung nicht möglich.

Aus Sicht der klassischen Physik kann diese Wechselwirkung verstanden wer-
den, indem die Emitter als oszillierende Dipole behandelt werden, die Energie in
der Form elektromagnetischer Wellen aussenden [1]. Die ausgesendete Strahlung
kann wiederum andere Dipole in der Nähe anregen und so eine dynamische Dipol-
Dipol-Wechselwirkung induzieren. Auf der quantenmechanischen Ebene werden
die Emitter oft als Zwei-Niveau-Systeme modelliert, in denen der Dipol durch das
Übergangsdipolmoment zwischen beiden Niveaus gegeben ist. Haben alle Emit-
ter die gleiche Resonanfrequenz, ist das ausgestrahlte Licht eines Emitters reso-
nant mit anderen Emittern, weshalb diese Wechselwirkungen auch als resonante
Dipol-Dipol-Wechselwirkungen bezeichnet werden. Diese Wechselwirkungen sind
aus zwei Gründen interessant: Zum einen sind sie langreichweitig, wodurch ein
Emitter mit vielen anderen gleichzeitig wechselwirken kann. Zum anderen haben
sie sowohl eine dispersive als auch eine dissipative Komponente. Die dispersive
Komponente entsteht durch das Treiben eines Dipols durch das ausgesendete Licht
eines anderen und die dissipative Komponente rührt von der Tatsache her, dass ein
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einzelner Dipol in den freien Raum abstrahlen kann [2].
Darüber hinaus können resonante Dipol-Dipol-Wechselwirkungen die opti-

schen Eigenschaften eines Ensembles von Emittern verändern. In einer wegwei-
senden Arbeit zeigte Dicke, dass Emitter, deren Abstand kleiner ist als ihre Reso-
nanzwellenlänge, nicht unabhängig strahlen, sondern kooperatives Verhalten zei-
gen, da sie an ein gemeinsames Strahlungsfeld gekoppelt sind [3]. Die Strahlungs-
eigenschaften eines Emitters hängen dann aufgrund der resonanten Dipol-Dipol-
Wechselwirkungen stark vom Zustand anderer in der Nähe ab. Dieses kooperative
Verhalten in dichten Gasen führt zu enormen Verschiebungen der Energieniveaus
und korrelierter spontaner Emission. Während die Verschiebungen der Energie-
niveaus eine Sättigung des Brechungsindex in dichten Gasen und Festkörpern zur
Folge hat [4], führt die korrelierte spontane Emission zum Phänomen der Super-
radianz [3, 5]. Superradianz beschreibt eine stark verstärkte Emission aus einem
dichten Ensemble von Atomen aufgrund von selbststimulierter Emission. Sind alle
Emitter angeregt, skaliert die emittierte Intensität quadratisch mit der Anzahl der
Emitter (statt linear wie bei unabhängiger Emission). Außerdem variiert auch die
Emissionsrate während des Emissionsprozesses und skaliert quadratisch, wenn die
Hälfte des Ensembles angeregt ist [5]. Superradiante Eigenschaften, einschließlich
der Verschiebung der Energieniveaus aufgrund kooperativer E�ekte, wurden in ei-
nem breiten Spektrum physikalischer Systeme beobachtet, die von Ensembles von
Kernen [6] über kalte Atome [7–10], Ionen [11] und Festkörpersysteme [12, 13]
bis hin zu künstlichen und hybriden Licht-Materie-Systemen wie supraleitenden
Qubits [14] und an nanophotonische Strukturen gekoppelte Atome [15] reichen.

Während Superradianz ursprünglich für dichte Ensembles diskutiert wurde, de-
ren Ausdehnung kleiner ist als die Resonanzwellenlänge, tritt auch in Ensembles
mit größeren Längenskalen kollektives Verhalten auf. In diesem Regime wird ei-
ne stark verstärkte und sogar stark direktionale Emission von Photonen aus dem
Ensemble durch konstruktive Interferenz für Zustände erreicht, in denen die Pha-
seninformation des einfallenden Photons in einer kollektiven Anregung des En-
semble gespeichert ist. Diese werden daher auch als „timed“ Dicke-Zustände3 [16]
bezeichnet. Im Gegensatz zu dichten und nicht ausgedehnten Ensembles, bei denen
Superradianz auch im Falle mehrerer Anregungen untersucht wurde, beschränkte
sich die theoretische Untersuchung der Superradianz in ausgedehnten Ensembles,
mit wenigen Ausnahmen [25–27], bisher meist auf eine einzelne Anregung [16–
24], was den Begri� Einzel-Photonen-Superradianz [18] geprägt hat. Obwohl viele
Aspekte der Superradianz - wie die quadratische Skalierung der emittierten In-
tensität oder die stark direktionale Emission von Strahlung - klassisch als in Pha-

3An dieser Stelle wird der englische Begri� verwendet, da eine gri�ge deutsche Übersetzung nur
schwer zu �nden ist.
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se schwingende Dipole (analog zu phasenkohärenten Antennen-Arrays) verstan-
den werden können, ist eine quantenmechanische Behandlung der Licht-Materie-
Wechselwirkung für ein vollständiges Verständnis superradianter Phänomene not-
wendig [28].

Eng verbunden mit dem Phänomen der Superradianz ist die Subradianz, die ei-
ne unterdrückte spontane Emission aufgrund destruktiver Interferenz beschreibt.
Genauso wie die Superradianz hat die Subradianz im Laufe der Jahre viel Auf-
merksamkeit im Rahmen von theoretischen Betrachtungen erhalten [5, 25, 29–34].
Durch die nur schwache Kopplung von subradianten Zuständen an das elektroma-
gnetische Feld entzog sie sich jedoch lange Zeit der experimentellen Beobachtung.
Die meisten Experimente in dieser Richtung konzentrierten sich auf zwei Emitter
in Molekül- [35–37] und Ionensystemen [38] und Subradianz wurde erst kürzlich
in atomaren Ensembles beobachtet [39–42]. Aus praktischer Sicht sind subradi-
ante Zustände attraktiv für die Photonenspeicherung [43–45] und den Einsatz in
Quantencomputern [46], da sie weniger anfällig für spontane Emission sind, und
es wurde vorhergesagt, dass subradiante Zustände in geordneten Systemen von
Atomen zu einer drastischen Verbesserung der Speicherung von Photonen führen
können [25].

Kollektive und kooperative Phänomene treten in verschiedenen Systemen auf
und es wurde gezeigt, dass die Kopplung von Licht mit atomaren Ensembles viele
nützliche Anwendungen hat [47]. Ensembles aus Rydberg-Atomen bieten jedoch
ein besonders interessantes System, um die kollektive Antwort eines mit Licht
wechselwirkenden atomaren Ensembles zu nutzen, was das Gebiet der Rydberg-
Quantenoptik [48–50] inspiriert hat. Die starke Van-der-Waals-Wechselwirkung
zwischen Rydberg-Atomen führt zu dem Phänomen der Dipol- oder Rydberg-Blo-
ckade, welche erstmals im Kontext der Quanteninformationsverarbeitung disku-
tiert wurde [51, 52]. Aufgrund der Rydberg-Blockade kann innerhalb eines be-
stimmten Volumens nur eine einzige Anregung vorhanden sein, wodurch die
optische Antwort auf einfallende Photonen nichtlinear wird. Mithilfe von elek-
tromagnetisch induzierter Transparenz [53] können die starken Wechselwirkun-
gen zwischen den Rydberg-Atomen auf die Photonen [54, 55] abgebildet werden,
wodurch kooperative optische Nichtlinearitäten [56] und eine e�ektive Photon-
Photon-Wechselwirkung realisiert werden [57–60]. Anwendungen von Photon-
Photonen-Wechselwirkungen, die durch Rydberg-Atome vermittelt werden, sind
Einzelphotonenschalter [61] oder -transistoren [62, 63] sowie die Realisierung von
Quantengattern [64, 65].

Besonders interessant ist das Konzept eines Rydberg-Superatoms, bei dem al-
le Bestandteile des Ensembles innerhalb des blockierten Volumens eingeschlos-
sen sind und ein einzelnes Photon ausreicht, um das Medium zu sättigen und die

233



Ausführliche Zusammenfassung in deutscher Sprache

größtmögliche nichtlineare Antwort zu erzielen [66]. Das gesamte Ensemble ver-
hält sich dann ähnlich einem Zwei-Niveau-System mit kollektiv erhöhter Kopp-
lungsstärke, das kollektiv verstärkte Vielteilchen-Rabi-Oszillationen [67] hervor-
ruft. Da die Phaseninformation des einfallenden Lichts in die kollektive Anre-
gung des Ensembles übertragen wird, erfolgt eine stark gerichtete Emission der
Anregung in Richtung der sich ausbreitenden Photonen. Die starke Kopplung ei-
nes Rydberg-Superatoms an die propagierende Mode eines Lasers und die dar-
aus resultierende Vorwärtsemission werden in Kapitel 3 dieser Arbeit diskutiert.
Die emittierten Photonen können analysiert und als Folge der e�ektiven Photon-
Photon-Wechselwirkung, die durch das Rydberg-Superatom vermittelt wird, so-
wohl Zwei- als auch Drei-Photonen-Korrelationen beobachtet werden. Die stark
gerichtete Emission in Kombination mit der Blockade ermöglicht beispielsweise
die Realisierung einer Einzelphotonenquelle in einem kalten Ensemble [68] sowie
in einer Dampfzelle bei Raumtemperatur [69], wobei eine Vier-Wellen-Mischung
(„four-wave mixing“) verwendet wird, um die Emission der kollektiven Anregung
zuerst im Medium zu speichern und anschließend über den kollektiven Emissions-
prozess wieder abzurufen.

Obwohl die Beschreibung des Rydberg-Superatoms als Atom mit zwei Ener-
gieniveaus eine gute Intuition vermittelt, hat das Superatom immer noch eine in-
nere Struktur, da es aus vielen Emittern besteht, die über die resonante Dipol-
Dipol-Wechselwirkung, die durch das sich ausbreitende Lichtfeld vermittelt wird,
wechselwirken können. In Kapitel 6 wird der Ein�uss solcher kollektiver E�ek-
te auf die Zerfallsdynamik eines Rydberg-Superatoms aufgrund der resonanten
Dipol-Dipol-Wechselwirkung diskutiert. In Fällen, in denen der Ein�uss resonan-
ter Dipol-Dipol-Wechselwirkungen durch inkohärente E�ekte verschleiert wird
(wie zum Beispiel einer Dephasierung aufgrund der thermischen Bewegung der
Atome), können einzelne Photonen durch einen irreversiblen Transfer der kollek-
tiven Anregung in Zustände, die nicht mehr an das Lichtfeld koppeln, determinis-
tisch aus dem Lichtpuls entfernt werden [70–72].

Ergänzend zu ungeordneten Ensembles im freien Raum hat in den letzten Jahren
auch das Interesse an der Licht-Materie-Wechselwirkung in niedrigdimensionalen
und synthetischen Atomstrukturen rasch zugenommen [73–77]. Die Entwicklung
von experimentellen Techniken wie optischen Gittern [78] und optischen Pinzet-
ten [79–81] hat die Realisierung periodischer Atomanordnungen in einer, zwei
und sogar drei Dimensionen ermöglicht. Die Kontrolle der Positionen der Atome
ermöglicht eine Feinabstimmung der optischen Antwort des Ensembles [82, 83],
was zu beeindruckenden Ergebnissen wie einem Spiegel, der aus einer einzigen
Atomschicht aufgebaut ist [84], führt und mithilfe der Rydberg-Blockade zur Er-
zeugung stark verschränkter photonischer Zustände [85] verwendet werden kann.

234



Ausführliche Zusammenfassung in deutscher Sprache

Neben periodischen Anordnungen von Atomen hat der experimentelle Fortschritt
bei der Herstellung von Nanostrukturen und optischen Nanofasern den Weg zum
Paradigma der Wellenleiter-Quantenelektrodynamik geebnet, bei dem Quantene-
mitter, modelliert als Zwei-Niveau-Systeme, stark an ein eindimensionales Konti-
nuum geführter Moden gekoppelt sind [66, 86–88]. Eine kurze Einführung in die
Wellenleiter-Quantenelektrodynamik wird in Kapitel 1 gegeben. Die Wellenleiter-
Quantenelektrodynamik wird unter anderem durch Atome realisiert, die an das
evaneszente Feld einer optischen Nanofaser [89–91] oder eines photonischen Kris-
tallwellenleiters [15, 92] gekoppelt sind sowie durch an photonische Nanostruk-
turen gekoppelte Quantenpunkte [93, 94] und an die Transmissionlinie eines Mi-
krowellenresonators gekoppelte supraleitende Qubits [95]. Kürzlich wurde auch
vorgeschlagen, die Wellenleiter-Quantenelektrodynamik mit den geführten Mo-
den eines geordneten Atomarrays zu realisieren [27].

Eindimensionale photonische Strukturen und Nanofasern bieten die Möglich-
keit, nicht nur langreichweitige, sondern sogar Wechselwirkungen mit unendlicher
Reichweite zu realisieren, die durch Photonen vermittelt werden, die sich nur ent-
lang einer Raumdimension ausbreiten können [90, 96]. Darüber hinaus können
andere Arten von Wechselwirkungen konstruiert werden, indem, beispielsweise
unter Verwendung photonischer Kristalle, die Umgebung, in der sich die Photo-
nen bewegen, angepasst wird, wodurch die Untersuchung durchstimmbarer und
kontrollierter Quanten-Vielteilchensysteme realisert wird [97]. Diese Systeme er-
möglichen zum Beispiel die Untersuchung des stark korrelierten Photonentrans-
ports [98–100] und der Physik niedrigdimensionaler dissipativer Systeme [101]
und ermöglichen die Erzeugung nichtklassischer Lichtzustände [102–104].

Die Eingrenzung des Lichts in nanophotonischen Strukturen wie photonischen
Wellenleitern und Nanofasern auf Längenskalen unterhalb der Wellenlänge er-
ö�net zudem die Möglichkeit, exotische chirale Wechselwirkungen zwischen den
Emittern zu realisieren [105]. In einer solchen Struktur ist die Ausbreitungsrich-
tung des Lichts mit der Polarisation des Übergangsdipolmoments des Emitters ver-
knüpft, so dass die Wechselwirkung zwischen den Atomen und Photonen nichtre-
ziprok wird [106, 107]. Im Extremfall werden Absorption und Emission von Pho-
tonen sogar unidirektional. Diese besondere Art der Wechselwirkung ermöglicht
die Implementierung von kaskadierten Quantensystemen [108, 109], bei denen die
Photonen ohne Rück�uss von Information von einem Emitter zum nächsten ge-
sendet werden und als Vermittler für die deterministische Übertragung von Quan-
teninformation zwischen entfernten Qubits fungieren können [110]. Weitere An-
wendungen sind die robustere Erzeugung einer Atom-Atom-Verschränkung [101,
111], das optische Auslesen des Spinzustands eines einzelnen Elektrons in einem
Quantenpunkt in nur einer Messung [112] und die Implementierung skalierbarer
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Quantennetzwerke [113]. In dieser Arbeit werden in den Kapiteln 4 und 5 kollek-
tive E�ekte durch chirale und nicht-chirale Licht-Materie-Wechselwirkungen in
eindimensionalen Wellenleitern untersucht. Die Ergebnisse dieser Kapitel verbes-
sern auch das Verständnis der internen Dynamik des Rydberg-Superatoms, die in
Kapitel 6 diskutiert wird. Das in Kapiteln 3 und 6 vorgestellte Rydberg-Superatom,
das an eine propagierende Lasermode gekoppelt ist, bietet darüber hinaus ebenfalls
die Möglichkeit durch die stark direktionale Emission chirale Wechselwirkungen
zwischen mehreren Superatomen zu realisieren [72].

Im Folgenden werden die einzelnen Kapitel vorgestellt und auf ihren Inhalt ein-
gegangen. Kapitel 1 führt zunächst die wichtigsten Konzepte, wie Rydberg-Atome
und ihre Wechselwirkung, das Rydberg-Superatom und resonante Dipol-Dipol-
Wechselwirkungen ein, die für das Verständnis dieser Arbeit relevant sind. Dar-
über hinaus wird eine kurze Einführung in die Wellenleiter-Quantenelektrodyna-
mik und chirale Licht-Materie-Wechselwirkungen gegeben, die im Rahmen von
Modellsystemen in dieser Arbeit verwendet werden.

In Kapitel 2 werden dann die theoretischen Grundlagen für die Beschreibung der
mikroskopischen Wechselwirkung zwischen Licht und Materie gelegt. Dies führt
auf ein e�ektives Spin-Model für die einzelnen Atome, das sich durch Ausintegrie-
ren der Freiheitsgrade des elektromagnetischen Feldes erhalten lässt. Durch die
Kopplung an ein gemeinsames Feld verhalten sich die Atome nicht mehr unabhän-
gig, sondern es kommt zu einer korrelierten spontanen Emission von Photonen.
Zudem tritt eine Austauschwechselwirkung zwischen den Atomen auf, die durch
das elektromagnetische Feld vermittelt wird. Im Rahmen dieser Dissertation wer-
den Modellsysteme betrachtet, in denen die Atome an eine einzelne propagieren-
de Mode eines Lasers gekoppelt sind, die sich analog zu einem eindimensionalen
Wellenleiter verhält. Insbesondere werden chirale und nicht-chirale Wellenleiter
diskutiert und es wird auf die Unterschiede der Wechselwirkungen eingegangen.
Um eine Anwendung des hergeleiteten Spin-Modells zu illustrieren, wird die Licht-
ausbreitung in einem Ensemble von Drei-Niveau-Atomen mit elektromagnetisch
induzierter Transparenz diskutiert und die Verbindung mit bisherigen Kontinu-
umsmodellen hergestellt.

Als experimentell relevantes System wird in Kapitel 3 dann das Rydberg-Super-
atom betrachtet, das an ein propagierendes Lichtfeld gekoppelt ist. Das Experi-
ment wurde von der Gruppe von Sebastian Ho�erberth an der Universität Stutt-
gart und der Syddansk Universitet in Odense, Dänemark, durchgeführt. Aufgrund
des kollektiven Charakters der Anregung im Superatom und der resultierenden
verstärkten Emission in die anregende Lasermode ist die Kopplung des Systems
an die Lasermode im Vergleich zu einem einzelnen Atom extrem verstärkt. Das
System lässt sich dann auf ein einzelnes e�ektives Zwei-Niveau-System in einem
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eindimensionalen Wellenleiter reduzieren und kann nach dem Ausintegrieren des
elektromagnetischen Feldes durch die Mastergleichung eines Atoms mit verstärk-
ter Kopplung an das Lichtfeld sowie der daraus resultierenden verstärkten Emis-
sion von Photonen beschrieben werden. Die Dynamik des Systems ist durch die
Anzahl der einfallenden Photonen und die kollektive Kopplung sowie die daraus
resultierende verstärkte Emission charakterisert. Dies führt zu einem dynamischen
Phasendiagramm mit drei verschiedenen Phasen. Ist die Anzahl der einfallenden
Photonen, die das System treiben, sowie die Kopplung an das Lichtfeld für eine
gegebene Pulslänge zu klein, be�ndet sich das System in einem schwach getriebe-
nen Zustand. Ist hingegen die Kopplung und damit die Emission zu stark, geht das
System in einen überdämpften Zustand über. Zwischen diesen beiden Bereichen
gibt es einen Parameterbereich, in dem intrinsisch gedämpfte Rabi-Oszillationen
beobachtet werden können. Dies steht im starken Kontrast zu Systemen, in denen
Atome in optischen Resonatoren gehalten werden und die Kopplung sowie die
Emission dadurch unabhängig voneinander verändert werden können. Die e�ek-
tive Wechselwirkung zwischen den Photonen, die durch das Superatom vermittelt
wird, kann durch Zwei- und Drei-Photonen-Korrelationen quanti�ziert werden
und es wird gezeigt, dass nicht-triviale Drei-Photonen-Korrelationen auftreten.
Da das Superatom auch eine interne Dynamik hat, ist es notwendig, das Zwei-
Niveau-Modell phänomenologisch um einen dritten Zustand zu erweitern, an den
die kollektive Anregung dissipativ koppeln kann. Dadurch lässt sich eine sehr gute
Übereinstimmung zwischen den theoretischen Berechnungen und den experimen-
tellen Beobachtungen herstellen.

Die interne Dynamik wird in Kapitel 4 näher untersucht, das sich mit E�ekten
beschäftigt, die durch die kohärente Austauschwechselwirkung zwischen den ein-
zelnen Atomen des Superatoms aufgrund der resonante Dipol-Dipol-Wechselwir-
kung entstehen. Dafür wird die Dynamik eines kollektiv angeregten Zustandes in
einem Ensemble von Atomen, die an einen eindimensionalen Wellenleiter gekop-
pelt sind, in Gegenwart der Austauschwechselwirkung betrachtet. Es wird analy-
tisch gezeigt, dass diese für einen chiralen Wellenleiter, in dem Photonen nur in
eine Richtung propagieren können, universell ist und keine Dephasierung auftritt.
Mithilfe einer Störungstheorie kann auch der Ein�uss von Rückstreuung verstan-
den werden. Die Dynamik wird dann von der Zeitskala der kohärenten und uni-
versellen Dynamik eines chiralen Wellenleiters sowie der Zeitskala der Dephasie-
rung aufgrund der Rückstreuung und der zufälligen Positionen der Emitter bein-
�usst. Da beide Zeitskalen unterschiedlich von der Anzahl der Atome im System
abhängen, tritt die universelle Dynamik für eine größer werdende Zahl an Ato-
men immer stärker hervor. Darüber hinaus kann gezeigt werden, dass sich die de-
phasierte kollektive Anregung nicht auf alle Emitter gleichmäßig verteilt und die
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Wahrscheinlichkeit in der ursprünglichen Anregung zu sein auf einen konstanten,
nichtverschwindenden Wert abfällt, der unabhängig von der Zahl der Atome im
System ist. Die analytischen Ergebnisse zeigen eine sehr gute Übereinstimmung
mit einer numerischen Simulation der Dynamik. Diese Beobachtungen setzen da-
mit eine fundamentale Grenze für die Dephasierung in solch einem System.

In Kapitel 5 wird dann die Zerfallsdynamik einer kollektiven Anregung genauer
untersucht, wobei nun das Hauptaugenmerk auf dem Zusammenspiel zwischen
der, im vorherigen Kapitel diskutierten, kohärenten Austauschwechselwirkung
und der korrelierten spontanen Emission liegt. Die dissipative Dynamik eines
strahlenden Ensembles kann durch superradiante und subradiante Zustände be-
schrieben werden, die eine verstärkte beziehungsweise reduzierte Zerfallsrate ha-
ben. Die kohärente Dynamik wiederum sorgt für eine Kopplung zwischen beiden
Arten von Zuständen. Dieser Mechanismus wird zuerst anhand des einfachen
Beispiels von nur zwei Atomen illustriert und anschließend auf eine beliebige An-
zahl erweitert. Für einen chiralen Wellenleiter gibt es nur einen superradianten
Zustand, der der kollektiven Anregung entspricht, die von einem einfallenden
Lichtfeld erzeugt wird. Alle anderen Zustände sind perfekt subradiant und zerfal-
len nicht. Interessanterweise zeigt sich nun, dass die kollektive Anregung zwar
zu Beginn mit der zu erwartenden kollektiv verstärkten Rate exponentiell zer-
fällt, durch die Kopplung an subradiante Zustände jedoch eine Verlangsamung
des Zerfalls einsetzt und in einen algebraischen Zerfall übergeht. Dieses Verhal-
ten lässt sich auf einen bidirektionalen Wellenleiter und zufällige Positionen der
Atome verallgemeinern. Außerdem wird analytisch, unter der Verwendung eines
Kontinuumsmodells, gezeigt, dass sich im Falle von vielen Atomen ein bidirek-
tionaler und ein chiraler Wellenleiter für die untersuchte kollektive Anregung
gleich verhalten, was die experimentelle Beobachtung von chiralen E�ekten auch
in bidirektionalen Wellenleitern ermöglicht.

Abschließend spannt Kapitel 6 wieder den Bogen zum Rydberg-Superatom, wo-
bei nun die experimentelle und theoretische Untersuchung der Zerfallsdynamik
der kollektiven Anregung im Superatom im Vordergrund steht. Dafür wird das
Licht, das vom Superatom ausgetrahlt wird, nachdem es für eine gewisse Zeit
durch einen Laserpuls angeregt wurde, mit hoher Genauigkeit untersucht. Anstatt
einer konstante Zerfallsrate, die durch die kollektive Kopplung an die Lasermode
und andere, unabhängige dissipative Prozesse gegeben ist, lässt sich eine varia-
ble Zerfallsrate beobachten, die von der Dynamik des Superatoms vor dem Zerfall
abhängt. Diese zustandsabhängige Zerfallsrate kann durch den Ein�uss der reso-
nanten Dipol-Dipol-Wechselwirkung erklärt werden. Zu diesem Zweck wird das
Drei-Niveau-Modell zur Beschreibung des Rydberg-Superatoms aus Kapitel 3 um
einen Zustand, der kohärent an die kollektive Anregung gekoppelt ist, erweitert,
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was durch die Ergebnisse aus den Kapiteln 4 und 5 motiviert werden kann. Eine
Analyse der Mastergleichung zeigt, dass die Zerfallsrate am Ende eines einfallen-
den Pulses vom internen Zustand des Superatoms abhängt und eine numerische
Berechnung der vollen Dynamik liefert eine sehr gute Übereinstimmung zwischen
Theorie und Experiment.

�antene�ekte in dipolaren Bose-Gasen

Die experimentelle Beobachtung der Bose-Einstein-Kondensation in verdünnten
Atomgasen im Jahr 1995 [253–255] markierte den Anfang einer neuen Zeitrech-
nung der Atom-, Molekül- und optischen (AMO) Physik und brachte Eric Cor-
nell, Carl Wieman und Wolfang Ketterle 2001 den Nobelpreis in Physik ein. Durch
die Möglichkeit diesen Materiezustand zu kontrollieren wurde eine experimen-
telle Plattform verfügbar, um Phänomene wie die Interferenz von Materiewel-
len [256], Supra�uidität und das Auftreten von Vortices [257], sowie Quanten-
Phasenübergänge wie den Übergang von einem Supra�uid zu einem Mott-Isola-
tor [258] zu untersuchen.

Aufgrund der geringen Dichte der Gase sowie der extrem kalten Temperaturen
im Nanokelvin-Bereich kann die Wechselwirkung zwischen den Teilchen durch
eine e�ektive Kontaktwechselwirkung beschrieben werden, die das echte, kurz-
reichweitige Wechselwirkungspotential zwischen den Atomen ersetzt und durch
die s-Wellenstreulänge charakterisiert ist. Die Stärke der Wechselwirkung kann
heutzutage in Experimenten routinemäßig durch Feshbach-Resonanzen kontrol-
liert und verändert werden [134]. Die kalten, verdünnten und schwach wechsel-
wirkenden Bose-Gase werden für gewöhnlich durch eine Molekularfeldnäherung
und die Gross-Pitaevskii-Gleichung beschrieben [259, 260].

In den letzten Jahren hat der enorme experimentelle Fortschritt eine neue Kom-
ponente zum immer weiter wachsenden Forschungsfeld der wechselwirkenden
Bose-Einstein-Kondensate hinzugefügt: die dipolaren Bose-Einstein-Kondensate.
Nach der ersten experimentellen Realisierung in einem ultrakalten Gas aus Chrom-
Atomen durch die Gruppe von Tilman Pfau an der Universität Stuttgart [261] wur-
den auch Bose-Einstein-Kondensate mit stärkerer dipolarer Wechselwirkung in
Dysprosium- [262] und Erbium-Atomen [263] erzeugt. Im Vergleich zu Chrom, das
ein magnetisches Moment von 6µB besitzt, hat Erbium ein magnetisches Moment
von 7µB. Die bosonischen Isotope von Dysprosium haben aufgrund ihrer Elektro-
nenkon�guration mit 10µB das stärkste magnetische Moment aller bosonischen
Isotope der Elemente. Das Vorhandensein von langreichweitigen und anisotropen
Wechselwirkungen kann die Eigenschaften des Gases stark beein�ussen und führt
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zu einer Vielzahl an interessanten E�ekten und möglichen Anwendungen [125,
264]. So kann beispielsweise die Stabilität eines dipolaren Gases durch die expe-
rimentelle Kontrolle des Verhältnisses zwischen der rein repulsiven Kontakt- und
der teilweise attraktiven dipolaren Wechselwirkung beein�usst werden [265].

Trotz der erfolgreichen Beschreibung ultrakalter Gase durch die Molekularfeld-
näherung machten es experimentelle Fortschritte im Bereich der Atomfallen, der
Kühlung von Atomen und der Bildgebung möglich, E�ekte zu beobachten, die
sich der Beschreibung durch die Molekularfeldnährung entziehen. Solche „beyond-
mean-�eld“-E�ekte4 (BMF-E�ekte) sind zum Beispiel die Verringerung der Anzahl
von Teilchen im Kondensat durch Anregung in höhere Moden aufgrund von Quan-
ten�uktuationen [266] und Korrekturen zum Anregungsspektrum [267, 268] so-
wie der Grundzustandsenergie [269]. Einer der bemerkenswertesten E�ekte der
Quanten�uktuationen, der darüber hinaus ein großes Interesse an diesem For-
schungsfeld in Gang gesetzt hat [271–275], war die Beobachtung von stabilen
Quantentröpfchen in einem dipolaren Gas nahe an der Instabilität [270]. Wäh-
rend die Molekularfeldnäherung einen Kollaps des Gases durch die dipolare Wech-
selwirkung vorhersagt, haben die führenden Korrekturen zur Molekularfeldnä-
herung eine e�ektive repulsive Wechselwirkung zur Folge, die das Gas stabili-
siert [276]. Diese Korrekturen sind auch als Lee-Huang-Yang-Korrekturen (LHY-
Korrekturen) für Kontaktwechselwirkungen bekannt [277–279] und wurden eben-
falls für eine dipolare Wechselwirkung berechnet [280]. Obwohl die BMF-E�ekte
in schwach wechselwirkenden Gasen typischerweise klein sind, kann eine Fein-
abstimmung zwischen dipolarer und Kontaktwechselwirkung zu einer Aufhebung
der Beiträge der Molekularfeldnäherung führen, so dass die LHY-Korrekturen do-
minieren [281]. Dieser Mechanismus zur Stabilisierung wurde ebenfalls in zwei-
komponentigen Bose-Gasen beobachtet [282]. Vor kurzem wurde das Verhalten
der BMF-Korrekturen für den Fall des Übergangs von drei Raumdimensionen auf
eine Raumdimension für Kontakt- [283, 284] und dipolare [285] Wechselwirkun-
gen untersucht.

Darüber hinaus kann ein in einer Falle eingesperrtes stark dipolares Gas ein
Roton-Maxon-Spektrum zeigen [286, 287], das ähnlich zu dem ist, welches für �üs-
siges Helium vorgeschlagen wurde [288]. Dieses Anregungsspektrum wurde eben-
falls experimentell beobachtet [289]. Eine Erhöhung des relativen Beitrags der di-
polaren Wechselwirkung führt zu einer Roton-Instabilität, wodurch sich das Gas in
mehrere Quantentröpfchen aufteilt [290]. In einer Reihe von Experimenten [290–
292] wurde gezeigt, dass die verschiedenen Quantentröpfchen zueinander phasen-

4Dieser Ausdruck lässt sich am besten mit „E�ekte, die über die Beschreibung durch die Moleku-
larfeldnäherung hinausgehen“ übersetzen. Der Einfachheit halber wird jedoch im Folgenden
ausschließlich der englische Begri� beziehungsweise die Abkürzung BMF-E�ekte verwendet.
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kohärent sind, wodurch sich der lange gesuchte suprasolide Materiezustand reali-
sieren ließ. Dieser Zustand kombiniert die supra�uiden Eigenschaften, die mit der
spontanen Brechung der globalen U(1)-Phasensymmetrie einhergehen, mit der
Dichtemodulation durch die spontane Brechung der Translationssymmetrie.

Während die Brechung der kontinuierlichen Translationsinvarianz in einem di-
polaren Supersolid durch die intrinisische Wechselwirkung hervorgerufen wird,
kann sie ebenso durch ein externes periodisches Potentiale erreicht werden. Op-
tische Gitter im Allgemeinen bieten durch die Möglichkeit perfekt periodische
Potential für Atome mit einer veränderlichen Gittertiefe und Geometrie zu er-
zeugen eine vielseitige Plattform zur Manipulation und Kontrolle ultrakalter Ga-
se [294, 295]. Das führte beispielsweise zur Implementierung des Bose-Hubbard-
Modells [296] und der Beobachtung des Quantenphasenübergangs eines Supra-
�uids zu einem Mott-Isolator [258]. Durch ihre langreichweitige und anisotrope
Wechselwirkung entziehen sich Dipole, die in einem optischen Gitter gefangen
sind, jedoch der Beschreibung durch das übliche Bose-Hubbard-Modell [297, 298].
Um diese Wechselwirkungen erweiterte Modelle wurden experimentell implemen-
tiert [299] und es wurde vorhergesagt, dass diese zu vielseitigen physikalischen
E�ekten wie der Realisierung exotischer Quantenphasen für stark korrelierte Sys-
teme führen [297, 300, 301].

Demgegenüber wurde im Grenzfall eines Supra�uids gezeigt, dass das Vorhan-
densein eines externen periodischen Potentials die BMF-E�ekte in Bose-Gasen mit
Kontaktwechselwirkung verstärken kann [302]. Ebenfalls wurde gezeigt, dass ein
überlagertes eindimensionales Gitter auf dem Level der Molekularfeldnäherung
einen stabilisierenden E�ekt auf ein gefangenes dipolares Gas hat [303]. Dieser Ef-
fekt hängt stark von der Kopplung zwischen den Gitterplätzen aufgrund der lang-
reichweitigen Dipol-Dipol-Wechselwirkung ab. Es wird auch vermutet, dass diese
Kopplung den Roton-Charakter im Anregungsspektrums verstärkt [304, 305] und
so die Eigenschaften von suprasoliden Zuständen beein�usst.

Der zweite Teil dieser Arbeit untersucht daher den Ein�uss eines optischen Git-
ters auf die BMF-Korrekturen in einem dipolaren Bose-Gas. Insbesondere geht es
um die Frage, ob und wie die Quanten�uktuationen in solch einem Setup kon-
trolliert werden können. Dafür werden in Kapitel 7 zunächst die Grundlagen der
Wechselwirkung von dipolaren Bose-Gasen diskutiert. Ebenfalls werden zwei Me-
thoden zur Berechnung der BMF-Korrekturen vorgestellt: Zum einen eine von Bo-
goliubov [317] entwickelte Methode, in der das Streuproblem zweier Teilchen stö-
rungstheoretisch mithilfe der Born-Näherung gelöst wird. Obwohl sich diese Me-
thode sehr gut eignet, um BMF-Korrekturen zu berechnen, ist bei der Behandlung
des Streuproblems zweier Bosonen Vorsicht geboten, um unphysikalische Diver-
genzen zu verhindern. Zum anderen wird eine feldtheoretische Methode vorge-
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stellt, die unter anderem von Beliaev [279] und Hugenholtz und Pines [278] ent-
wickelt wurde. Im Gegensatz zur Bogoliubov-Methode wird hier das Streuproblem
mithilfe eines diagrammatischen Ansatzes für ein verdünntes Gas exakt gelöst. Die
BMF-Korrekturen können selbstkonsistent mit einer Di�erentialgleichung berech-
net werden.

In Kapitel 8 wird dann ein polarisiertes, dipolares Bose-Gas in einem dreidimen-
sionalen, tiefen optischen Gitter betrachtet, für das die BMF-Korrekturen ausge-
rechnet werden. Es wird gezeigt, dass das Gitter die Quanten�uktuationen ver-
stärkt und eine nichttriviale Abhängigkeit von der Dichte des Gases auftritt, die
über die bisher bekannte Abhängigkeit der Korrekturen zur Molekularfeldnähe-
rung hinausgeht. Ergänzend dazu wird der Fall eines schwachen eindimensionalen
Gitters untersucht. Die Orientierung des Gitters im Vergleich zur Polarisation der
Dipole kann hierbei variiert werden und so die Dipole wahlweise in eine Kon�gu-
ration bringen, in der sich die Pole hauptsächlich Kopf an Fuß oder Seite an Seite
be�nden. Während im ersten Fall die Quanten�uktuationen aufgrund der vorwie-
gend attraktiven Wechselwirkung abgeschwächt werden, sind sie im zweiten Fall
verstärkt. Beide Fälle lassen sich durch eine anisotrope e�ektive Masse der Teil-
chen entlang des Gitters beschreiben.
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