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Abstract
This thesis studies quantum simulations with Rydberg atoms. The idea of

quantum simulations is to use a well-controllable quantum system to simulate
another quantum system. Quantum simulations aim at prospectively solving
challenging simulation problems that cannot be handled efficiently by classi-
cal computers, such as exploring highly entangled many-body ground states
and dynamics. We focus on so-called analog quantum simulations that imple-
ment the system to be simulated directly and avoid the overhead of universal
gate-based approaches. The class of implementable systems depends on the
characteristics of the underlying platform. In general, platforms for quantum
simulations must be reliable and well-controllable. Moreover, interactions must
be fast in comparison to the decoherence time. Platforms that fulfill these
requirements are, for example, superconducting qubits and trapped ions. An-
other approach is to use neutral atoms in optical tweezers. The atoms can
be made interact by exciting them to the Rydberg state, i.e., an electronic
state with a high principal quantum number, and harnessing the strong dipolar
interactions between Rydberg atoms. Rapid developments over the last decade
made it possible to use this approach to simulate various spin Hamiltonians
on arbitrary two- and three-dimensional lattices, even in regimes beyond an
exact numerical treatment. The research covered in this thesis contributed to
this progress by providing theory support for the experimental realization of
quantum simulations.

The focus of this thesis is two-fold. First, we address the calculation of Ryd-
berg interaction potentials and their dependence on experimental parameters.
Second, we use our insights about Rydberg interactions and show how accurate
quantum simulations with Rydberg atoms can be applied to study various
quantum spin models. Specifically, we demonstrate how different topological
phases can be investigated. The latter was conducted in close collaboration
with the experimental group of Antoine Browaeys in Paris. In a side project,
we collaborated with the group of Andrew Daley in Glasgow and with Gregory
Bentsen on a proposal for realizing a fast scrambling spin model with Rydberg
atoms. In the following, we give an overview of the chapters of this thesis.

• In Chapter 1, we provide an introduction to the field of quantum simula-
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tions and the Rydberg platform. We outline the current state of research,
describe present challenges, and locate our work within the field.

• In Chapter 2, we discuss the theoretical foundations of our research. We
provide background information about quantum simulators and discuss
their applications. Afterward, we describe the Rydberg platform in detail.
Since in this thesis, quantum simulations are mainly applied to study
topological phases, we also provide a primer on topological phases.

• In Chapter 3, we review the non-perturbative calculation of Rydberg
interaction potentials. The chapter is based on our tutorial on this topic [1].
The realization of quantum simulations requires a precise understanding of
the Rydberg interaction beyond a perturbative description and a detailed
knowledge about the dependence of the interaction on experimental
parameters. Such an understanding is also required for applications in
quantum information science, for example, for engineering two- and multi-
qubit quantum gates. We have released our software pairinteraction for
calculating Rydberg interaction potentials as open-source, see https://
pairinteraction.github.io.

• In Chapter 4, we make use of our software to find suitable experimental
parameters for mapping electronic states of a Rydberg atom to spin states.
This mapping is necessary for quantum simulations of spin Hamiltonians
with Rydberg atoms. For accurate simulations, experimental parameters
must be tuned in a way that prevents the Rydberg interaction to couple the
Rydberg states, which are mapped to spin states, to unwanted Rydberg
states. Using the quantum simulation of anisotropic Ising magnets as an
example [2, 3], we analyze which experimental parameters are suitable.
The group of Antoine Browaeys has performed experiments that confirm
our predictions. Together with the previous chapter, this chapter forms a
basis for various quantum simulations of spin models.

• In Chapter 5, we discuss the quantum simulation of a symmetry-protected
topological phase of interacting bosons in a one-dimensional lattice. The
discussion is based on a joint theoretical and experimental project with the
group of Antoine Browaeys [3, 4]. The setup uses atoms that are trapped
in an array of optical tweezers and are excited into Rydberg states, giving
rise to hard-core bosons with an effective hopping by dipolar exchange
interaction. We show that the adiabatically prepared ground state of
the system has the characteristic features [5] of a symmetry-protected
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topological phase, like a robust ground state degeneracy attributed to
protected edge states. The experimental results of our collaborators are
in perfect agreement with our theoretical studies.

• In Chapter 6, we study non-trivial complex hopping amplitudes of Ryd-
berg excitations and the resulting chiral motion in a minimal setup of
three lattice sites that has been experimentally realized by the group of
Antoine Browaeys [6, 7]. The complex hopping amplitudes can simulate
effective magnetic fields in the Rydberg platform. They emerge from the
intrinsic spin-orbit coupling of dipolar exchange interaction in combina-
tion with time-reversal symmetry breaking by a homogeneous external
magnetic field. The resulting Peierls phase of the hopping amplitude
between two sites depends on the geometry and the presence of an exci-
tation on the third site. We compare our theoretical description of the
setup with the experimental results, achieving an excellent agreement.

• In Chapter 7, we make a proposal for the quantum simulation of a
fractional Chern insulator with Rydberg atoms. It is based on the interplay
between the non-trivial topology of a band structure and interactions
between particles. The topologically non-trivial band structure results
from an effective magnetic field that can be realized as described in the
previous chapter. The interaction between particles emerges from the
hard-core constraint of Rydberg excitations. We obtain a robust nearly
two-fold ground state degeneracy on a torus and a many-body Chern
number of one for realistic experimental parameters. We show how an
experiment could probe the fractional character of excitations.

• In Chapter 8, we present a side project where we collaborated with the
group of Andrew Daley and with Gregory Bentsen [8]. We discuss a pro-
posal to implement a deterministic fast scrambler, illustrating the variety
of models that can be implemented using Rydberg interactions. Fast
scramblers are quantum systems that produce many-body entanglement
on a timescale that grows logarithmically with the system size N . We
show that a fast scrambler can be realized with a one-dimensional array
of neutral atoms, using O(log N) shuffling and parallel gate operations,
where controlled-Z gates are performed using Rydberg interactions. We
analyze the information scrambling in a realistic setup, taking into account
decoherence. Our protocol can be harnessed to produce highly entangled
states on noisy hardware, where a fast generation of entanglement is
crucial to limit effects of decoherence.
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Zusammenfassung
Diese Doktorarbeit behandelt Quantensimulationen mit Rydberg-Atomen.

Unter dem Begriff Quantensimulation versteht man die Idee, gut kontrollierbare
quantenmechanische Systeme zur Simulation von anderen quantenmechani-
schen Systemen zu verwenden. Quantensimulationen werden entwickelt, um
herausfordernde Simulationsprobleme lösen zu können, die von klassischen Com-
putern nicht effizient lösbar sind. Hierzu gehören zum Beispiel die Erforschung
von Grundzuständen hoch verschränkter, quantenmechanischer Vielteilchen-
Systeme und deren Dynamik. Wir konzentrieren uns auf sogenannte analoge
Quantensimulationen, welche zu simulierende Systeme direkt und mit einem ge-
ringeren Ressourcenbedarf implementieren als universelle, gatterbasierte Syste-
me. Die Klasse der implementierbaren Systeme hängt von den Eigenschaften der
Plattform ab, die dem Simulator zugrunde liegt. Quantensimulatoren benötigen
zuverlässige und gut zu kontrollierende Plattformen, bei denen die Wechselwir-
kung auf signifikant schnelleren Zeitskalen abläuft als die Dekohärenz. Diese
Bedingungen werden zum Beispiel von Plattformen mit supraleitenden Qubits
und gefangenen Ionen erfüllt. Ein anderer Ansatz ist es, neutrale Atome zu
verwenden. Die Wechselwirkung zwischen den Atomen lässt sich realisieren,
indem man sie in den Rydberg-Zustand anregt, also in einen elektronischen
Zustand mit hoher Hauptquantenzahl, und die starke dipolare Wechselwir-
kung zwischen Rydberg-Atomen ausnutzt. Der rasante Fortschritt im letzten
Jahrzehnt hat es möglich gemacht, mit diesem Ansatz Spin-Hamiltonians auf
beliebigen zwei- und dreidimensionalen Gittern zu simulieren, sogar in Re-
gimen, in denen exakte numerische Simulationen nicht mehr durchführbar
sind. Die in dieser Doktorarbeit behandelte Forschung hat hierzu beigetragen,
in dem sie theoretischen Grundlagen für die experimentelle Realisierung von
Quantensimulationen geliefert hat.

Diese Doktorarbeit hat zwei Schwerpunkte. Zunächst beschäftigen wir uns
mit der genauen Berechnung der Wechselwirkung zwischen Rydberg-Atomen
und ihrer Abhängigkeit von experimentellen Parametern. Danach verwenden
wir diese Erkenntnisse, um zu zeigen, wie mit Rydberg-Quantensimulationen
verschiedene Spinmodelle studiert werden können. Insbesondere untersuchen
wir die Realisierung unterschiedlicher topologischer Phasen. Diese Forschung ist
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in enger Zusammenarbeit mit der Experimentalgruppe von Antoine Browaeys
in Paris erfolgt. Als Nebenprojekt haben wir mit der Gruppe von Andrew
Daley in Glasgow und mit Gregory Bentsen an einem Proposal zur Realisierung
schneller Scrambler gearbeitet. Im Folgenden wird ein kurzer Überblick über
die Kapitel der Doktorarbeit gegeben.

• In Kapitel 1 geben wir eine Übersicht über Quantensimulatoren und die
Rydberg-Plattform. Wir diskutieren den Stand der Technik, beschrei-
ben aktuelle Herausforderungen und ordnen die Doktorarbeit in das
Forschungsfeld ein.

• In Kapitel 2 behandeln wir die theoretischen Grundlagen der Arbeit.
Wir geben einen Überblick über Quantensimulatoren und ihre Anwen-
dung. Danach wird die Rydberg-Plattform im Detail beschrieben. Da
wir uns hauptsächlich mit Quantensimulationen von topologischen Pha-
sen beschäftigen, geben wir am Ende des Kapitels eine Übersicht über
topologische Phasen.

• In Kapitel 3 geben wir eine Einführung in die nicht perturbative Berech-
nung von Wechselwirkungspotentialen zwischen zwei Rydberg-Atomen.
Das Kapitel basiert auf unserem Tutorial zu diesem Thema [1]. Die Rea-
lisierung von Quantensimulationen erfordert ein genaues Verständnis der
Rydberg-Wechselwirkung und deren Abhängigkeit von experimentellen
Parametern. Dieses Verständnis wird auch für Anwendungen im Bereich
der Quanteninformatik benötigt, zum Beispiel um Zwei- und Multi-Qubit-
Gatter mithilfe der Wechselwirkung zu realisieren. Wir haben die Open-
Source-Software pairinteraction zur Berechnung der Wechselwirkungs-
potentiale entwickelt, siehe https://pairinteraction.github.io.

• In Kapitel 4 verwenden wir die Software, um experimentelle Parameter zu
finden, die es ermöglichen, elektronische Zustände eines Rydberg-Atoms
auf Spinzustände abzubilden. Diese Abbildung wird für Quantensimula-
tionen von Spin-Hamiltonians benötigt. Für akkurate Simulationen ist es
wichtig, dass die experimentellen Parameter so eingestellt werden, dass
die auf die Spinzustände abgebildeten Zustände des Rydberg-Atoms nicht
an weitere Zustände koppeln. Am Beispiel der Quantensimulation von
anisotropen Ising-Magneten [2, 3], analysieren wir, welche experimentellen
Parameter geeignet sind. Die Gruppe von Antoine Browaeys hat Experi-
mente durchgeführt, die unsere Vorhersagen bestätigen. Zusammen mit
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dem vorherigen Kapitel, legt dieses Kapitel eine Grundlage für verschiede-
ne Quantensimulationen von Spinmodellen, die wir in den nachfolgenden
Kapiteln beschreiben.

• In Kapitel 5 besprechen wir die Quantensimulation einer durch Sym-
metrie geschützten topologischen Phase aus wechselwirkenden Bosonen
in einem eindimensionalen Gitter. Das Kapitel basiert auf einem ge-
meinsamen Projekt mit der Experimentalgruppe von Antoine Browaeys
[3, 4]. Das experimentelle Setup benutzt Atome, die in einem Array
aus optischen Pinzetten gefangen und in Rydberg-Zustände angeregt
sind. Mit den Rydberg-Zuständen simuliert das Experiment sogenannte
Hard-Core-Bosonen mit einem effektiven Hüpfen aufgrund der dipolaren
Austauschwechselwirkung. Wir zeigen, dass der adiabatisch präparierte
Grundzustand die charakteristischen Eigenschaften [5] einer durch Sym-
metrie geschützten topologischen Phase aufweist, wie zum Beispiel ei-
ne robuste Grundzustandsentartung, die auf geschützte Randzustände
zurückgeführt werden kann. Die experimentellen Ergebnisse sind in sehr
guter Übereinstimmung mit unseren theoretischen Studien.

• In Kapitel 6 analysieren wir die nicht trivialen komplexen Hüpfamplituden
von Rydberg-Anregungen und die daraus entstehende chirale Bewegung
in einem Minimalsystem mit drei Gitterplätzen. Dieses System wurde
von der Gruppe von Antoine Browaeys realisiert [6, 7]. Die komplexen
Hüpfamplituden können verwendet werden, um effektive Magnetfelder
zu simulieren. Sie entstehen aus der Kombination von intrinsischer Spin-
Orbit-Kopplung der dipolaren Austauschwechselwirkung und gebrochener
Zeitumkehrsymmetrie. Im Experiment wird die Symmetrie durch ein
homogenes, externes Magnetfeld gebrochen. Der Wert der resultierenden
Peierls-Phase der Hüpfamplituden zwischen zwei Gitterplätzen hängt
von der Geometrie und dem Vorhandensein einer weiteren Anregung auf
dem verbleibenden Gitterplatz ab. Wir vergleichen unsere theoretische
Beschreibung des Setups mit experimentellen Ergebnissen und erreichen
eine hervorragende Übereinstimmung.

• In Kapitel 7 präsentieren wir ein Proposal, wie ein fraktionaler Chern-
Isolator mit Rydberg-Atomen realisiert werden kann. Die vorgeschlagene
Realisierung basiert auf einem Zusammenspiel der nicht trivialen To-
pologie der Bandstruktur und der Wechselwirkung zwischen Teilchen.
Die nicht triviale Topologie resultiert aus einem effektiven Magnetfeld,
das wie im vorherigen Kapitel beschrieben realisiert werden kann. Die
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Wechselwirkung zwischen den Teilchen kommt dadurch zustande, dass
sich an einem Gitterplatz nur eine einzige Rydberg-Anregung befinden
kann. Wir erhalten für realistische, experimentelle Parameter eine robus-
te zweifache Quasientartung des Grundzustandes auf einem Torus und
eine Vielteilchen-Chern-Zahl von eins. Wir zeigen, wie der fraktionale
Charakter von Anregungen experimentell detektiert werden kann.

• In Kapitel 8 stellen wir ein Nebenprojekt vor, an dem wir in Kooperation
mit der Gruppe von Andrew Daley und mit Gregory Bentsen mitgewirkt
haben [8]. Dieses Nebenprojekt illustriert, dass sich neben topologischen
System auch vollkommen andere Systeme mit Rydberg-Wechselwirkung
realisieren lassen: Wir machen einen Vorschlag, wie ein deterministischer,
schneller Scrambler implementiert werden kann. Schnelle Scrambler sind
Quantensysteme, die eine Vielteilchen-Verschränkung auf einer Zeitskala
aufbauen, die logarithmisch mit der Systemgröße N wächst. Wir zeigen,
dass sich ein schneller Scrambler mit einem eindimensionalen Array
neutraler Atome unter Verwendung von O(log N) Verschiebeoperationen
und parallelen Gatteroperationen realisieren lässt. Die hierbei verwendeten
CZ-Gatter basieren auf der Rydberg-Wechselwirkung. Wir analysieren
das Scrambling von Information in einem realistischen Setup, bei dem
wir Dekoheränz berücksichtigen. Unser Protokoll kann zur Erzeugung
hochverschränkter Zustände auf Systemen mit geringer Rauschresistenz
verwendet werden, bei denen eine schnelle Erzeugung von Verschränkung
wichtig ist, um Dekoheränz zu beschränken.
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Browaeys, and H. P. Büchler, “Topologically protected edge states in
small Rydberg systems”, Quantum Science and Technology 3, 044001
(2018)

• C. Tresp, P. Bienias, S. Weber, H. Gorniaczyk, I. Mirgorodskiy, H. P.
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1
Introduction

The simulation of quantum many-body systems with classical computers is
very challenging [9, 10]. The difficulty is that the number of coefficients required
to describe a quantum system scales exponentially with the number of its
constituents. This scaling leads to exponentially large memory requirements and
exponentially long processing times. In practice, storing all the coefficients of a
quantum state of 50 spin-1/2 particles would already require several petabytes
of memory. Admittedly, approximative methods can simulate some quantum
many-body systems classically by storing quantum states in compressed formats,
such as tensor networks [11]. However, it is widely believed that classical
systems cannot simulate highly entangled quantum systems efficiently [12]. In
addition, it is sometimes hard to assess the range of validity of approximative
methods. In 1981, Richard Feynman proposed as a solution to use a quantum
– not a classical – simulator for simulating quantum systems [9]. The core
of a quantum simulator is a well-controllable and accessible quantum system
which can be initialized to a well-defined quantum state that evolves under a
specifiable Hamiltonian in time [13–15]. The prime application of a quantum
simulator is to study ground states and the dynamics of quantum many-body
systems. In addition, quantum simulators are investigated as tools for solving
classical optimization problems [16, 17]. Moreover, quantum simulators are
of interest for benchmarking future quantum computers. They can also be
applied to benchmark and refine numerical methods that treat quantum systems
approximately [18]. For more details on possible applications, see Section 2.1.

One distinguishes between digital quantum simulators that use gate opera-
tions to simulate a quantum system, analog quantum simulators that implement
the Hamiltonian of a system directly, and hybrids of the two. This thesis focuses
on the analog approach (except for Chapter 8). One advantage of analog quan-
tum simulations is that they are presumably more robust against imperfections
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than digital ones as long as error correction is unavailable. For example, let
us suppose that we perform an analog simulation of a quantum phase that
occurs in nature. In this case, the phase will presumably be robust against
perturbations of a small fraction of lattice sites because these imperfections
exist in many natural materials as well [10]. In addition, analog simulations
avoid the overhead of their digital counterparts. For digital simulations, time
evolution operators must be approximated by sequences of gate operations
according to the so-called Trotter decomposition [14]. There, increasing the
precision of a quantum simulation requires increasing the number of gate op-
erations. Yet, a vast number of gate operations is hardly feasible with the
current noisy intermediate-scale quantum (NISQ) digital devices [19]. This
could change in the future if capable fault-tolerant digital devices become
available. However, until then, the reign of analog quantum simulators may
persist. In particular, while quantum supremacy has been demonstrated with
gate-based quantum computers [20], analog quantum simulators are promising
candidates for establishing practical quantum advantage. Some of the most
recent analog quantum simulations already operate in regimes that are beyond
an exact numerical treatment because the number of constituents is too large.
The reproduction of these quantum simulations on classical computers requires
extensive calculations with approximative algorithms, such as tensor network
or quantum Monte Carlo methods [21–28]. An ongoing challenge is the de-
velopment of an analog quantum simulator that simulates a highly entangled
system which such a high precision that approximative classical algorithms can
no longer compete.

This challenge is complicated by the fact that analog quantum simulators
cannot simulate arbitrary systems; instead, the class of Hamiltonians that are
implementable by an analog quantum simulator depends on the details of the
underlying experimental platform. However, there are many exciting models
among the implementable Hamiltonians, such as Hubbard models, Ising-like
models, and some other spin models [14, 15]. In addition, analog simulators are
well suited to study universal features that are robust against perturbations [19].
Then, it might be acceptable to add additional terms to the Hamiltonian to
make it implementable on a specific platform. Moreover, recent research shows
that a variational quantum simulation scheme can widen the class of simulatable
Hamiltonians. Within this scheme, an analog quantum simulator is applied to
prepare and probe highly entangled variational trial states [29].

Platforms for quantum simulations must comprise a quantum system that
has many degrees of freedom, and that can be initialized in a known quantum
state. In addition, one must be able to perform measurements on the system,
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and it must prospectively be possible to engineer Hamiltonians that cannot
be efficiently simulated classically [10]. The latter implies that interactions
must be fast in comparison to the decoherence time [30]. Different platforms
fulfill these criteria, as shown in the review [15], each one having its own
advantages and disadvantages. Before discussing the Rydberg platform in the
next paragraph, we would like to give a brief overview of alternative platforms.
Prominent examples are superconducting circuits [31, 32], linear ion traps [33,
34], and neutral atoms in optical lattices [35–37]. Superconducting circuits and
trapped ions can be controlled precisely and are applied for analog quantum
simulations, mainly of spin Hamiltonians, as well as digital quantum simulations.
However, at the time of writing, these platforms only support the simulation of
several tens of spins. It is a key challenge to scale these platforms up. Going
beyond several tens of spins in ion traps requires demanding techniques such
as shuttling around ions [38, 39]. By contrast, neutral atoms in optical lattices
offer thousands of particles, albeit with less control over the particles than
superconducting circuits or trapped ions. This platform was used for first
analog quantum simulation in 2002 [40] and has been developed further since
then. It allows for the native realization of fermions and bosons by using
fermionic or bosonic atomic species. The platform is typically applied for
analog quantum simulations of Hubbard models, being rather limited in the
implementable lattice geometries and Hamiltonians. Cooling in optical lattices
is a current challenge that is tackled by entropy redistribution [37].

In this thesis, we focus on the Rydberg platform [41]. While the Rydberg
platform can take different forms, we limit ourselves to analog quantum simu-
lations that use arrays of optical tweezers loaded with neutral atoms, which
can be made interact by exciting them to Rydberg states. This approach is
relatively new yet promising [42, 43].

The optical tweezers can be arranged in arbitrary one-, two-, and three-
dimensional arrays [44–47]. Atoms from a laser-cooled atomic gas are loaded
randomly into the tweezers; light-assisted collisions ensure that each tweezer
is either empty or occupied with exactly one atom. Since 2016, the randomly
loaded tweezers can be spatially rearranged into new arrays with almost unit
filling [44–46]. By following this protocol, arbitrary geometries are viable with
above two hundred atoms at the time of writing [24, 25].

The neutral atoms can be made interact by exciting them into Rydberg
states. These are states where the outermost electron is excited to a high
principal quantum number n [48–50]. As a result, the electron is less bound
to the core, increasing the interaction between atoms and with fields. In fact,
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the van der Waals interaction [51–54] scales as n11 and the dipolar exchange
interaction [55] as n4, typically reaching interaction strengths V/h ≳ 1 MHz for
n = 60 at an interatomic distance of 10 µm (with Planck’s constant h) [42, 56].
The radiative lifetime increases as n3, reaching 100 µs at room temperature for
the states considered within this thesis1. Thus, one can operate in a coherent
regime where the interaction is much stronger than decoherence. Note that in
many current experiments, the runtime is not yet limited by the lifetime but
instead by the movement of the Rydberg atoms. This is because the utilized
optical tweezers trap ground state atoms only. This issue is addressed, for
example, by the development of so-called magic traps2 [59].

Different kinds of spin Hamiltonians are realizable with the Rydberg platform.
The general idea is to map electronic states of the atoms to spin states. To
make this mapping accurate and control the interaction between the atoms,
external electric and magnetic fields, light shifts, and dressing techniques can
be applied. Together with the ability to realize arbitrary arrays, these tools
allow for implementing various Hamiltonians in a well-controllable manner.
For example, Ising-like models [23–25, 60–62] and XY-type Hamiltonians [4,
63] have been simulated. Effective magnetic fields are feasible, too [6, 64].
For a detailed overview of implementable models and technical details, see
Section 2.2.

As these examples illustrate, the Rydberg platform provides an exciting
mixture between versatility, controllability, and the size of implementable
systems.

In the following, we place the research covered in this thesis into the context
of the developments outlined above.

As described before, a significant challenge is to increase the control and accu-
racy of quantum simulations to outperform approximative classical simulations.
A hope is that the studies of the interactions between Rydberg atoms presented
in Chapters 3 and 4 help to achieve this goal in the future. We published a
tutorial about the calculation of Rydberg interaction potentials [1] and wrote
the pairinteraction software for performing this calculation. The software is
released as open-source, see https://pairinteraction.github.io. Within

1By contrast, for circular Rydberg states, i.e., Rydberg states with maximum orbital and
magnetic quantum numbers, even lifetimes in the range of seconds are possible. However,
circular states are more challenging to prepare [57, 58].

2One can find magic conditions that allow for trapping both ground-state atoms and
Rydberg atoms with the same tweezers. For example, alkaline earth atoms provide the
tunability required to find such conditions by the polarizability of the second valence
electron [59].
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this thesis, the pairinteraction software was applied to find viable parame-
ters for various quantum simulations with Rydberg atoms. We mainly focused
on topological phases, which are discussed in Section 2.3, as they seem to be
especially worthwhile targets for analog quantum simulators. This is because of
two reasons. First, a topological phase does not belong to a specific Hamiltonian
but an equivalence class of Hamiltonians, as it is the case for phases in general.
Thus, there is no need to implement a particular Hamiltonian. Instead, one can
choose the Hamiltonian that is easiest to implement from the class. Second,
topologically non-trivial many-body ground states had not been studied with
quantum simulators before.

We explored the simulation of a symmetry-protected topological phase of
interacting bosons together with our experimental colleagues from the group
of Antoine Browaeys [4], see Chapter 5. Contrary to experiments studying
phenomena of topology that can be understood on the single-particle level [65–
80], the experiment was the first quantum simulation that studied a topological
phase of interacting particles. Recently, topological spin liquids has been
studied with Rydberg atoms as well, another example for a topological phase
[23, 81].

Yet another possibility for realizing topological phases is to make use of
effective magnetic fields [65, 68, 69, 82–93] that can be simulated by non-trivial
complex hopping amplitudes of Rydberg excitations. These emerge from the
intrinsic spin-orbit coupling of dipolar exchange interactions in combination with
time-reversal symmetry breaking [94]. We contributed to an experiment that
demonstrated this effect in a minimal setup with three atoms [6], see Chapter 6.
An effective magnetic field is an ingredient for realizing topological band
structures [64] and fractional Chern insulators. Our proposal for the realization
of a fractional Chern insulator was conducted with realistic experimental
parameters, see Chapter 7. Hence, there is a chance that Rydberg atoms could
be among the first platforms to realize fractional Chern insulators in artificial
matter. Because of the microscopic control of the particles within a quantum
simulator, this can help to deepen our understanding of topological states of
matter.
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2
Foundations

This chapter provides background information on quantum simulation, the
Rydberg platform, and topological phases. The intention is not to replace a
textbook but to provide a synopsis of essential concepts. For readers interested
in more details, collections of handy references are given at the beginning of
each section.

2.1 Quantum Simulation
For a brief primer on quantum simulation, the reader may refer to the intro-
duction of this thesis, see Chapter 1. In the following, some specific aspects of
quantum simulations are discussed in detail – in particular, possible applica-
tions, verification of results, and the relation between quantum simulators and
quantum computers.

The extensive reviews listed below contain further information about quantum
simulation:

• “Quantum simulation” by I. M. Georgescu et al. (2014) [14]: Introduc-
tion to digital and analog quantum simulation, detailed description of
platforms and potential applications.

• “Quantum Simulators: Architectures and Opportunities” by E. Altman
et al. (2021) [15]: Up-to-date overview about platforms, challenges, and
opportunities for quantum simulators.

2.1.1 Applications
This section extends the discussion on potential applications of quantum
simulation provided in the introduction.
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Let us start by thinking about the purpose of simulations in general [95].
Simulations are supposed to provide insights about systems that cannot be
obtained otherwise. In comparison to probing a natural system directly, simu-
lations offer two advantages: First, they enable us to change the parameters of
a system in ways that are hard to implement in reality, allowing us to obtain a
better understanding of their respective influence (it is even possible to study
entirely hypothetical systems). Second, simulations may provide access to
properties that cannot be investigated otherwise.

These are also the incentives for simulating quantum systems. However, as
pointed out already by Richard Feynman in 1981, quantum systems are very
challenging to simulate with classical computers [9]. Thus, he proposed to use
quantum simulators. Which quantum systems exactly are hard to simulate
classically is yet an open question. The development of new classical algorithms
and a better understanding of physics paved the way to remarkable classical
simulations that had been considered very difficult before. For example, a
two-dimensional system of 64 × 64 spins has been simulated classically, despite
exhibiting area law entanglement [96]. Furthermore, numerical studies show
that if one permits gate infidelities on the order of 1%, a quantum computer with
quasi-one-dimensional connectivity can be simulated classically with moderate
computational cost [97]. At the time of writing, such gate infidelities are
typical for experiments. However, highly entangled quantum states are – from
a fundamental point of view – believed to be inaccessible by classical computers
[12]. Thus, for simulating these states, a quantum simulator is required. In
addition, many classical simulations of quantum systems rely on sophisticated,
system-specific approximations that are challenging to come up with and tricky
to verify.

Thus, calculating the dynamics of interacting many-body systems and their
ground states are paradigmatic use cases of quantum simulators. The ground
states can be calculated, for example, by adiabatic preparation. This technique
is applied for the quantum simulations discussed in Chapters 5 and 7.

Quantum simulators can also be applied to benchmark algorithms developed
for simulating quantum systems classically. This application is particularly
useful because for some approximative algorithms, there are no well-established
error estimates that allow us to determine when the algorithms are reliable
without benchmarking them [18]. Moreover, benchmarking quantum computers
is a use case for quantum simulators in the future.

In addition to studying quantum systems, quantum simulators might help
to solve some classical problems as well. Some optimization problems can be
mapped to the problem of finding the ground state of certain spin models [16,
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17, 98]. For example, the maximum independent set problem3 might be solvable
by a Rydberg quantum simulator [16]. However, there is still an open debate
about how efficiently these optimization problems can be handled by quantum
hardware. One concern is that the ground state of the obtained spin model is
separated by a tiny gap from the excited states which decreases exponentially
with the system size. Hence, long runtimes may be required for the adiabatic
preparation of the ground state [100]. Alternatives to the adiabatic preparation
scheme are explored, too [101].

Lastly, quantum simulators can be applied to prepare highly entangled states,
whose correlations can be applied to beat the standard quantum limit and thus
for developing sensors and clocks with enhanced precision [102].

2.1.2 Verification
Independenty of its application, the careful verification of a quantum simulator
is vital to ensure the correctness of its results. For verification, different
complementary techniques exist.

First, we can verify the quantum simulator’s constituents and their interplay
by comparing quantum simulations for small system sizes with numerical
simulations. This approach is applied throughout this thesis. In regimes that
can be simulated efficiently on classical computers by approximative algorithms,
we can also make the comparison for larger system sizes. However, there
one danger lies in quantum simulations being presumably more sensitive to
disorder and noise in classically inaccessible regimes than in regimes that can
be simulated on a classical computer [103].

Second, for systems that are inaccessible by classical computers, we can use
the quantum simulator to probe itself. The idea is to apply the time evolution
under a Hamiltonian to the initial state and then reverse it. By doing so, we
can check whether the time evolution is unitary. If it is the case, we must end
up with the initial state again.

Third, one can compare results between different quantum simulators and
quantum computers.

Fourth, a new approach is to use randomized benchmarking to verify analog
quantum simulators. Originally, randomized benchmarking was developed for

3In graph theory, an independent set is a set of vertices of a graph such that for every two
vertices, there is no edge connecting them. It is called maximal if one cannot add another
vertex without destroying its independence. The maximum independent set is the largest
maximal independent set for a given graph. Finding it is an NP-hard problem [99].
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digital quantum computers, but it has been recently adopted successfully to
the analog setting [104].

2.1.3 Relation to Quantum Computing
This section aims at readers that are familiar with quantum computing and
addresses the connection between quantum computing and quantum simulation.

Digital quantum simulators are closely related to digital quantum computers.
The simulators use the Trotter decomposition to approximate the time evolution
under a Hamiltonian as a sequence of gates acting on a register of qubits. If
the gates constitute a universal set and if the qubits are fully addressable, the
device is, in fact, a universal digital quantum computer. In this case, any local
Hamiltonian can be simulated efficiently [13].

Analog quantum simulators are closely related to so-called adiabatic quantum
computers. Both devices have in common that they directly implement the
Hamiltonian of interest. If an analog quantum simulator can implement and
adiabatically change any local Hamiltonian, the device constitutes a universal
adiabatic quantum computer. Furthermore, such a device would have the same
computational power as a universal digital quantum computer [105].

The close relation between quantum simulators and quantum computers
is also evidenced by both requiring similar platforms. Criteria for suitable
quantum computing platforms have been worked out in [106], criteria for
quantum simulators in [10]. As a comparison of the two publications shows
[43], the criteria for quantum computers are indeed very similar but more
restrictive than the criteria for quantum simulators. Specialized analog quantum
simulators are more straightforward to build than universal quantum computers.
On the other hand, specialized analog quantum simulators can never reach
the versatility of universal error-corrected quantum computers. However, as
error correction causes a massive overhead in addition to the overhead of the
Trotter decomposition, it will probably take a long time until specialized analog
quantum simulators are outperformed by universal quantum computers – even
if error correction was demonstrated successfully [19].

2.2 Rydberg Platform
Here, the Rydberg platform and its application to analog quantum simulations
are discussed. While the Rydberg platform can take different forms, we limit
ourselves to a particular setup. In the context of this thesis, the Rydberg
platform involves an array of optical tweezers loaded with neutral atoms, which
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can be made interact by exciting them to the so-called Rydberg state. This
platform has emerged as a highly promising tool for analog quantum simulations.
The following discussion addresses readers who would like to obtain a thorough
overview of the platform.

Details about Rydberg physics and the platform can be found in the following
comprehensive books and reviews:

• “Rydberg Atoms” by T. F. Gallagher (1994) [48]: The reference work on
properties of Rydberg atoms.

• “Rydberg Physics” by N. Šibalić and C. S. Adams (2018) [50]: Recent
review about new possibilities for quantum optics, simulation, and sensing
offered by Rydberg atoms.

• “Many-body physics with individually controlled Rydberg atoms” by
A. Browaeys and T. Lahaye (2020) [42]: Overview about the Rydberg
platform as it is considered within this thesis.

• “Quantum simulation and computing with Rydberg-interacting qubits” by
M. Morgado and S. Whitlock (2021) [43]: General introduction into plat-
forms using Rydberg atoms, review of quantum simulation and computing
schemes.

• In addition, Chapter 3 of this thesis discusses the calculation of Rydberg
interaction potentials. The discussion is based on our tutorial [1].

2.2.1 Properties of Rydberg Atoms
Before details of the Rydberg platform are discussed, this section provides
a general introduction into Rydberg physics, aiming at readers who have no
previous experience in this field.

Let us begin with defining Rydberg states. In general, a Rydberg state is
a highly excited electronic state in the presence of a positively charged core
[48–50]. Because the state is highly excited, the electron is far away from
the core and feels a Coulomb-like potential. As a consequence, a Rydberg
state behaves comparably to a state of a hydrogen atom with a high principal
quantum number n. Rydberg states can be prepared in different physical
systems, for example, in solid-state systems [107], ions [108], and atoms. In the
case of the latter, we speak about Rydberg atoms.

Typical examples of atomic species used for exploring Rydberg physics are
alkali atoms or alkaline earth atoms. Our experimental collaborators from the
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Property Scaling Value for 87Rb |60S1/2⟩
Orbital radius ⟨r⟩ (n∗)2 0.26 µm
Radiative lifetime τ (n∗)3 100 µs at T = 300 K
Transition dipole moment5 d (n∗)2 2127 ea0
Binding energy En/h (n∗)−2 −1017.24 GHz
Energy splitting (En+1 − En)/h (n∗)−3 34.85 GHz
Dipole interaction coefficient5 C3/h (n∗)4 4.41 GHz µm3

Van der Waals coefficient C6/h (n∗)11 137.81 GHz µm6

Polarizability α/h (n∗)7 0.18 GHz cm2/V2

Table 2.1: Overview about how properties of Rydberg atoms scale with the effective
quantum number n∗ [48]. Here, h is Planck’s constant, e the elementary charge,
and a0 the Bohr radius. The values for 87Rb |60S1/2⟩ are calculated with our
pairinteraction software [1] and the ARC library by N. Šibalić et al. [56].

group of Antoine Browaeys in Paris are using the alkali atom 87Rb. Alkali
atoms have the unique feature that the remaining electrons form a closed shell
after exciting the outermost electron to the Rydberg state. Thus, it is relatively
straightforward to model these Rydberg atoms numerically with great accuracy,
see Chapter 3, because one only needs to consider one active electron. While
this single electron picture often works out for alkaline earth atoms as well [109],
one must watch out for perturber states that make the theoretical description
of these systems more challenging [110]. However, the Rydberg atoms studied
within this thesis do not have this difficulty and can be described very similarly
to hydrogen atoms4. We can use the fine structure bases |n, l, j, mj⟩ to label our
Rydberg states because the hyperfine splitting is negligible for the highly excited
states. The fact that the potential of the positively charged core is slightly
different from the Coulomb potential of the proton is taken into account via
standard quantum defect theory that is reviewed in the Appendix A.1. Within
this theory, the principal quantum number n gets modified by so-called quantum
defects. The resulting – non-integer – effective quantum number n∗ considers
the effects of the modified potential, in addition to the relativistic corrections
that lead to the fine structure splitting. The deviations from the Coulomb
potential also alter the radial electronic wave function. The Appendix A.2
presents different methods for calculating it.

4That the Rydberg atoms can be modeled with high accuracy makes them ideal constituents
for building a quantum simulator, because it is important that the constituents of a
quantum simulator are fully understood so that one can believe its results.
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In terms of the effective principal quantum number n∗, hydrogenic scaling laws
hold for properties of Rydberg states, see Table 2.1. Due to the high principal
quantum number, Rydberg atoms have exaggerated properties compared to
atoms in low-lying states. Because the orbital radius is larger than for ground-
state atoms, the electron is less bound to the core. As a result, interactions
between atoms and with static electric fields or microwaves are drastically
enhanced [48, 111, 112]. The (n∗)2-scaling of the transition dipole moments
enhances the dipole-dipole interaction by (n∗)4. Together with the decreasing
energy splitting of neighboring states, this leads to the van der Waals interaction
increasing as (n∗)11. Because the overlap between the electronic Rydberg wave
function and the wave function of the ground state decreases, the contribution
of decay channels get weakened, and the radiative lifetime increases as (n∗)3 for
the Rydberg states that are considered within this thesis6. Thus, Rydberg atoms
quickly reach lifetimes beyond 100 µs while having interactions V/h ≳ 1 MHz
(with Planck’s constant h). Hence, we can perform experiments in a highly
coherent regime, and Rydberg atoms are a good candidate for implementing
Hamiltonians of interacting many-body systems. As the interactions between
Rydberg atoms decrease algebraically with the interatomic distance, we can
tune the interaction strength by the spatial position of the atoms. The strong
interactions allow for placing the atoms on distances l that can be optically
resolved, typically ≳ 3 µm.

The following sections discuss techniques for trapping and arranging the
atoms in arbitrary arrays, the realization of different interactions and their
application for the implementation of spin models, as well as the detection of
Rydberg states.

2.2.2 Arrays of Individual Atoms
The Rydberg platform relies on Rydberg atoms that are arranged into arrays.
Because the lifetime of the Rydberg state is limited and arranging the atoms
in space takes comparably long (50 ms in [3]), one arranges the atoms before
exciting them to the Rydberg state. Experiments use the following protocol to
arrange the atoms in arbitrary arrays with almost unit filling:

• First, an atomic gas of ground-state atoms is laser cooled in a magneto-
optical trap. The cooling laser is red detuned to an electronic transition
of the atoms. Faster atoms see a Doppler shift that makes the cooling

5These quantities are calculated for the transition |60S1/2, mj = 1/2⟩ to |60P3/2, mj = 3/2⟩.
6For circular Rydberg states, the lifetime increases even as (n∗)5 [57].
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laser less detuned such that more photons are absorbed. The absorption
takes place for photons that propagate in the opposite direction of the
atoms’ movement so that the photon recoil slows down the atoms. The
subsequent spontaneous emission of the photon happens in a random
direction. The development of laser cooling earned Steven Chu, Claude
Cohen-Tannoudji, and William D. Phillips the Nobel Prize in 1997 [113].

• Second, an array of optical tweezers is immersed into the magneto-optical
trap (the 1/e2 radius of the tweezers is typically ∼ 1 µm and their depth
∼ 1 mK) [114]. Such an array can be produced, for example, by spatial
light modulators, digital mirror devices, or acousto-optic deflectors [44–
47, 115, 116]. All these devices can be configured to realize different
geometrical arrangements of the tweezers.
The frequency of the light that makes up the tweezers is chosen to be
too low to cause atomic excitations. Instead, it lowers the energy of the
atomic ground state via the second-order AC Stark effect. Thus, atoms
are attracted to the brightest spots, i.e., the centers of the tweezers. The
randomly moving atoms enter the tweezers and get trapped. If an atom
enters an occupied tweezer, the atom forms a pair state together with
the already present atom. This state gets excited by the laser of the
magneto-optical trap. The energy released by the spontaneous decay
of the state accelerates the atoms and kicks both of them out of the
tweezer. This process is known as a light-assisted collision. As a result,
each tweezer is either empty or occupied by one single atom. Because the
same random event can cause a change from empty to occupied and from
occupied to empty, the probability to have a trap populated is about
50% [42, 50]. The fluorescence due to the laser of the magneto-optical
trap makes it possible to observe which tweezers are occupied after the
loading.

• Third, the atoms are rearranged into an array of almost unit filling. If
acousto-optic deflectors implement the array of tweezers, we can directly
shift the tweezers to form a new geometry [46]. Otherwise, we superimpose
a movable tweezer that takes an atom from one position and releases it
at another position [44, 45, 47]. The movable tweezer is typically realized
with acousto-optic deflectors as well.

• Forth, the final array of atoms can be cooled further. For this, additional
laser cooling can be applied [3]. However, to bring the atoms into the
motional ground state of the tweezers, more sophisticated schemes such
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as Raman sideband cooling are required [117] – but for the quantum
simulations that are discussed in this thesis, it is not needed. Even
without cooling into the motional ground state, the root-mean-square
deviation σx,y,z of the atomic positions is small compared to the inter-
atomic distances. In the setup of our experimental collaborators, it is
typically σx,y = 0.1 µm within the plane of atoms and σz = 0.7 µm
perpendicular to it. Typical interatomic distances are on the order of
σx,y = 10 µm. The root-mean-square deviation of the velocity of the
atoms is σv = 0.06 m/s [3]. Finally, the desired electronic ground state is
initialized via dissipative optical pumping in the presence of a magnetic
field pointing along the quantization axis.

With this protocol, current experiments realize arrays of above two hundred
atoms [24, 25]. The arrays can be one-, two, or three-dimensional. After
the arrangement, the atoms are excited to the Rydberg state using a single
or two-photon transition where the excitation happens far detuned from the
intermediate state (in our case |5P1/2⟩) to avoid spontaneous emission [118,
119]. Because for many experimental setups, Rydberg states are anti-trapped
by the tweezers, the tweezers are typically switched off before the excitation.
Then, the residual velocity of the atoms makes them move and limits the
duration of the experiment. New approaches are developed to address this
issue. For example, after switching off the tweezers, one can switch on new
tweezers designed explicitly for trapping Rydberg atoms [120]. Alternatively,
one can find magic conditions that allow for trapping both ground-state atoms
and Rydberg atoms with the same tweezers. Alkaline earth atoms provide the
tunability required to find such conditions by the polarizability of the extra
valence electron [59], but schemes are also proposed for alkali atoms [121].

Alternatively to the presented “bottom-up” protocol, there is also a “top-
down” approach for preparing arrays of individual atoms. Instead of loading
the tweezers from an atomic gas in a magneto-optical trap, one can load
atoms into an optical lattice from a Bose-Einstein condensate. Then, by
using the superfluid to Mott insulator transition, lattices of almost unit filling
are realizable. However, at the time of writing, this approach has some
disadvantages: First, the achievable filling fraction seems to be lower than
for the other protocol – about 95% vs. 99% [25, 42]. Second, the realizable
geometries are less flexible. And third, the approach is considered to be more
complex and time-consuming [50].
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2.2.3 Realizable Interactions
The interaction between Rydberg atoms can be calculated from the electric
multipole expansion in spherical coordinates as reviewed in Chapter 3. This
calculation assumes that the interatomic distance is larger than the LeRoy
radius (the LeRoy radius is about 1 µm for n = 60) so that the electronic wave
functions do not overlap [122]. In addition, we assume that the wavelengths of
the involved Rydberg-Rydberg transitions are much larger than the considered
interatomic distances so that we are allowed to neglect retardation effects [123].
Here, we focus on the leading order of the multipole expansion, which is in
case of Rydberg atoms the dipole-dipole interaction [1, 56, 124]. The operator
for the interaction between an atom at position ri and another atom at rj

reads7 [125]

V dd
ij = 1

4πϵ0

di · dj − 3 (di · r̂ij) (dj · r̂ij)
|rij|3

, (2.1)

with vacuum permittivity ϵ0 and dipole operators di, dj . The dipole operators
couple electronic states that differ in their orbital quantum number by ∆l = ±1,
in their total angular quantum number by ∆j = 0, ±18, and in their magnetic
quantum number by ∆mj = 0, ±1. The distance vector between the two atoms
is rij = rj − ri and r̂ij = rij/|rij|.

The resulting interactions have applications in quantum information process-
ing [43, 126–129] and quantum optics, for example, to realize single-photon
sources [130] or absorbers [131]. For analog quantum simulations, the operator
(2.1) facilitates the realization of different kinds of spin models.

The general idea is to map electronic states to spin states. The electronic
states must be energetically isolated from other states to make this mapping
accurate. This isolation can be achieved by applying electric and magnetic fields
or light shifts. In order to find a regime where the desired states are energetically
isolated in the sense that the coupling to other states can be considered within
perturbation theory, extensive parameter scans may be required. For these
parameter scans, we typically use non-perturbative calculations of the pair
interaction potentials, see Chapter 3, and check whether we can, in principle,
describe the resulting pair potential curves also within perturbation theory.
For this, we check whether the admixture of non-desired states is tiny. Such a
parameter scan is exemplarily discussed in Chapter 4.

7Note that we use SI units throughout the thesis.
8In addition, it is necessary that the sum of the total angular quantum numbers of the

coupled states is j + j′ ≥ 1. This is always the case for Rydberg states of alkali atoms.
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The following section provides a qualitative overview of different types of
interactions between two Rydberg atoms and the physical models that can be
realized with these interactions. Note that within this overview, only the most
dominant terms are stated explicitly. In reality, higher-order couplings are also
present that would modify the given Hamiltonians slightly. For an example of
a rigorous description of an implementable model, see Chapter 7.

Ising-Like Models

→ See also Chapter 4.

We consider two Rydberg atoms that are in the same state, for example, |r⟩ =
|61D3/2, mj = 3/2⟩ (this is the state that is used in Chapter 4). The operator
(2.1) couples the pair state |rr⟩ to other Rydberg states |r′r′′⟩. Assuming
that |rr⟩ is energetically isolated, the main effect of the coupling is that the state
|rr⟩ gets shifted in energy. This energy shift can be calculated perturbatively.
The most dominant contribution comes from second-order perturbation theory
and is called van der Waals interaction. For atoms at positions ri and rj, it
reads

Uij =
∑

r′,r′′ (̸=r)

| ⟨r′r′′|V dd
ij |rr⟩ |2

E|rr⟩ − E|r′r′′⟩
= C6

|rij|6
, (2.2)

with van der Waals coefficient C6 that is distance-independent but in general
angular dependent. For alkali atoms in the |nS⟩ state, the interaction is
repulsive9 and the C6 coefficient almost isotropic. For alkali atoms in the
|nD⟩ state, the interaction is attractive and the C6 coefficient anisotropic,
i.e, the coefficient depends on the angle between the interatomic axis and
quantization axis. The van der Waals interaction underlies the famous Rydberg
blockade [132–135].

We use the interaction to implement Ising-like models. For this, we consider
an array of atoms. The basic idea is that we interpret the electronic ground
state |g⟩ as |↓⟩ and the Rydberg state |r⟩ as |↑⟩. All other Rydberg states
are shifted away in energy so that the mapping is accurate, see Chapter 4. A
laser is applied that couples |↓⟩ and |↑⟩ with Rabi frequency Ω and frequency
detuning δ. Then, after the rotating wave approximation, the Hamiltonian of

9This is in stark contrast to ground state atoms where the van der Waals interaction is
always attractive.
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the system reads in the rotating frame of the laser

H = 1
2
∑
i ̸=j

Uij ninj + ℏΩ
2
∑

i

σx
i − ℏδ

∑
i

ni , (2.3)

with reduced Planck’s constant ℏ, ni = (σz
i + 1)/2, and Pauli matrices σ. This

Hamiltonian is similar to the Hamiltonian of the Ising model with transverse field
B⊥ ∝ Ω. The van der Waals interaction, which is a density-density interaction,
gives rise to the σz

i σz
j interaction of the Ising model and longitudinal fields

that are also affected by the detuning δ. The model has been implemented
experimentally in one-dimension [60, 61, 136] and two-dimensions [24, 25, 137–
139].

Note that we can also write this Hamiltonian in the language of hard-core
bosons by the identification of b†

j = σ+
j and bj = σ−

j . Then, the Pauli matrices
are σx

j = bj + b†
j, σy

j = i(bj − b†
j), and σz

j = 2b†
jbj − 1. If we follow this

interpretation, |↓⟩ is the vacuum state and |↑⟩ one particle. The hard-core
constraint (b†

j)2 = 0 means that there must only be zero or one particle at a
site j. The constraint emerges from the fact that a Rydberg atom hosts a single
excitation only.

Instead of using the Rydberg state |r⟩ as |↑⟩, we can also use a long-lived
ground state level that we off-resonantly couple to the Rydberg state [140–142].
This coupling is known as Rydberg dressing. It admixes the Rydberg state
slightly to the ground state and enhances thereby the interaction of the ground
state. The resulting interaction potential behaves as 1/|rij|6 on long interatomic
distances. On short distances, the potential saturates, making it a soft-core
potential.

XY -Type Models

→ See also Chapter 5.

Let us now consider two different Rydberg states, for example, |S⟩ =
|60S1/2, mj = 1/2⟩ and |P ⟩ = |60P1/2, mj = −1/2⟩ (these are the states that
are used in Chapter 5). Then, the two pair states |PS⟩ and |SP ⟩ are resonant.
As in our case there is a non-zero transition dipole moment between the two
states, the states are coupled by the operator (2.1) in first order. For atoms at
positions ri and rj, the coupling reads

Jij = ⟨SP |V dd
ij |PS⟩ = C3

|rij|3
, (2.4)
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with dipole-dipole interaction coefficient C3. Note that the value of this
coefficient is distance-independent, but dependent on the angle θ between the
interatomic axis and the quantization axis. In particular, for the considered
states, there is the magic angle θm = arccos(1/

√
3) ≈ 54.7◦ for which the

coefficient becomes zero. This feature is used in Chapter 5 to implement an
SSH chain.

The dipolar exchange interaction can be applied to realize XY -type models.
For this, we interpret |S⟩ as |↓⟩ and |P ⟩ as |↑⟩. We can apply a microwave
field with Rabi frequency Ωµw and detuning δµw to drive transitions between
|↓⟩ and |↑⟩. Then, an array of atoms is described by the Hamiltonian

H = 1
2
∑
i ̸=j

Jij

(
σ+

i σ−
j + σ−

i σ+
j

)
+ ℏΩµw

2
∑

i

σx
i − ℏδµw

∑
i

ni , (2.5)

where σ±
i = (σx

i ± iσy
i )/2 and the rotating wave approximation and rotating

frame have been applied. The model has been studied experimentally in [4, 63].
As for the Ising-like models, we can write the Hamiltonian in terms of

hard-core bosonic operators as well. Then, the coupling gives rise to particle
hopping.

Again, we can also use Rydberg-dressed ground states instead of the Rydberg
states.

XXZ-Type Models

By combining density-density interaction and exchange interaction, we can
realize XXZ-type models. To have both types of interactions with similar
strength, it has been proposed to encode the spin states into two circular
Rydberg states that are coupled in second order. For details, see the publication
by T. L. Nguyen et al. [57].

Another possibility to engineer XXZ-type models is to start with the Hamil-
tonian (2.5) and apply a specifically designed periodic microwave field such
that the time-averaged Hamiltonian becomes the XXZ Hamiltonian. This
approach has been recently implemented in an experiment [143].

Other Models

→ See also Chapters 6 and 7.

We can extend the models that have been described before by considering more
than two electronic states.
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For example, we can use the three Rydberg states |0⟩ = |60S1/2, mj = 1/2⟩,
|+⟩ = |60P3/2, mj = 3/2⟩, |−⟩ = |60P3/2, mj = −1/2⟩. In this case, we do not
describe a spin-1/2 model, but our system resembles a model of hard-core
bosonic particles that have two different internal states. Each particle is either
in the |+⟩ state or the |−⟩ state. As for the XY -type models, the particles
hop due to the dipolar exchange interaction. In the case of an interatomic axis
that does not point along the quantization axis, the total magnetic quantum
number is allowed to change such that a particle in the |+⟩ state can hop and
become a particle in the |−⟩ state and vice versa. This change of the internal
state goes together with the collection of a phase (spin-orbit coupling). In
Chapters 6 and 7, we explain this effect in more detail and apply it to engineer
effective magnetic fields and eventually a topological phase.

2.2.4 Detection of Rydberg States
Let us assume that, for example, an XY -type model has been implemented,
where the atoms are either in the Rydberg S-state or Rydberg P -state, and we
would like to detect which atoms are in which Rydberg state. A possibility is to
exploit the anti-trapping of Rydberg states. To do so, one de-excites the specific
Rydberg state, which should be detected, back to the ground state and switches
on the tweezers afterward. All atoms that have not been de-excited escape the
trapping region quickly. Thus, only the atoms that have previously been in the
specific Rydberg state are visible in a subsequent fluorescence image. Note that
atoms that spontaneously decayed to the ground state can cause false positive
detection events. Atoms that moved too much during the experiment so that
they are outside the trapping region can cause false negative detection events.
Typically, the resulting detection errors are on the single percent level [60].

2.3 Topological Phases
For an analog quantum simulator, simulations of quantum phases are suitable
targets. This is because a quantum phase does not belong to a specific Hamil-
tonian but corresponds to an equivalence class of Hamiltonians. From this
class, we can target the Hamiltonian that is most straightforward to implement
with the analog quantum simulator. Chapters 5 and 7 are about quantum
simulations of so-called topological phases.

Excellent reviews about topological phases can be found in the following
publications:
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• “Colloquium: Zoo of quantum-topological phases of matter” by Xiao-Gang
Wen (2017) [144]: General introduction and brief survey about different
topological phases of matter.

• “One-dimensional topological states of synthetic quantum matter” PhD
thesis by Nicolai Lang (2019) [5]: The introduction of the PhD thesis con-
tains a vivid primer on topological phases. Moreover, the one-dimensional
symmetry-protected phase of Chapter 5 is thoroughly classified within
that thesis.

Here, a short introduction to the concept of topological phases is provided. Let
us start by thinking about the concept of phases in general. It originates from
condensed matter physics, whose objective is to describe systems with many
particles. Systems can be in different phases, depending on the temperature
and the interaction between the particles. For systems with the same particles,
different phases differ by different collective behaviors of the particles (according
to the principle of emergence, this collective behavior determines the properties
of the system). Formally, phases are defined by their boundaries: Systems
are in the same phase if they can be parametrically connected without a
phase transition that typically reveals itself by divergent correlation lengths or
non-analytic thermodynamic potentials [5].

A very successful scheme for describing phases is Landau’s paradigm of
spontaneous symmetry breaking [145, 146]: A system is in the disordered phase
if the symmetry group of the Hamiltonian of the system is the same as the
symmetry group under which the equilibrium state of the system is invariant.
If the system undergoes a phase transition, the state of the system breaks some
symmetries spontaneously10. Then, the system is in an ordered phase.

In classical physics, phase transitions are driven by thermal fluctuations.
However, in quantum physics, there is another possibility: quantum fluctuations
can drive phase transitions. These phase transitions can even occur at zero
temperature because the strength of quantum fluctuations is not determined
by temperature but by non-commuting terms in the Hamiltonian [147]. Here,
we focus on quantum phases at zero temperature.

Remarkably, not all quantum phases can be described by Landau’s paradigm.
In addition, there are topological phases. This observation has been very
influential, for example, the Nobel Prize in physics has been awarded for
“theoretical discoveries of topological phase transitions and topological phases of
matter” in 2016 [148]. In the following, we discuss intrinsic topological phases

10Strictly speaking, this statement is only entirely correct in the thermodynamic limit.
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and symmetry-protected topological phases. Along the way, we explain why
quantum simulations of topological phases are particularly promising targets.

2.3.1 Intrinsic Topological Phases
→ See also Chapter 7.

Quantum phases that are disordered with respect to Landau’s paradigm can
still differ by their entanglement – a possibility that is unique to quantum
systems. The entanglement pattern of a gapped ground state allows for the
classification of phases in the absence of symmetry breaking because some
global features of the entanglement pattern cannot be changed by continuous
variations of local Hamiltonians that do not close the gap.

Let us consider two gapped ground states of two different Hamiltonians. If
these Hamiltonians are connected by a continuous path of local and gapped
Hamiltonians, the ground states belong to the same phase. An equivalent
definition is that gapped ground states belong to the same phase if they can
be transformed into each other by local quantum circuits with a constant
depth [149]. In particular, if a ground state can be transformed into a product
state, it belongs to the trivial phase. Otherwise, it belongs to a topological
phase. Following the definition by Xiao-Gang Wen, a topological phase exhibits
long-range entanglement [149].

Prominent examples of such phases are fractional quantum Hall states [150,
151]. They have a non-zero topological entanglement entropy and feature, as a
consequence, exciting properties: For example, ground states are degenerate
if the system is on a manifold with a non-zero genus (such as a torus) [152].
Because the ground state degeneracy is robust against perturbations that
do not close the gap, the degenerate ground states are investigated as a
potential resource for encoding qubits and therefore robust storage of quantum
information [153, 154]. Moreover, excitations carry fractional charges and
fulfill anyonic braiding statistics. The latter makes some systems with non-
zero topological entanglement entropy interesting for fault-tolerant quantum
computing [155, 156].

There are still fundamental open questions regarding topological phases. The
mathematical framework – namely, category theory [157, 158] – for categorizing
topological phases is far more complicated and less understood than the group
theory that is applied in the case of spontaneous symmetry breaking. Another
example for an open research question is the origin of the fractional quantum
Hall state at the filling factor ν = 5/2 that is not yet fully understood [159–161].
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Thus, to learn more about topological phases and possibly pave the way for
applications in quantum information science, analog quantum simulations of
such phases are meaningful goals – especially as the necessary entanglement
makes classical simulations of large systems challenging [162]. Recently, a
system that is theoretically predicted to exhibit topological order has been
probed for the first time on an analog quantum simulator: Rydberg atoms have
been applied to investigate topological spin liquids and evaluate topological
string operators [23, 81], demonstrating the capacity of the Rydberg platform.
However, preparing the actual ground state of such a system is still an ongoing
challenge. For the adiabatic preparation, one starts in a trivial state and ends in
the topological state which is separated by a phase transition. At the transition
point, the gap must vanish – except for the finite-size gap. If the finite size
gap is small (which is often the case), non-adiabatic processes may take place
because finite coherence times limit the maximum duration of the experiment
[23]. In particular, the preparation of fractional quantum Hall states comes even
with another challenge because it requires (effective) magnetic fields. There
are many proposals on how these fields can be realized [65, 68, 69, 82–90], but
most of them leverage Floquet engineering which is prone to unwanted heating
processes that spoil the preparation of the ground state. Thus, it is no surprise
that fractional quantum Hall states have not yet been realized in quantum
simulators. However, the Rydberg platform facilitates effective magnetic fields
without requiring a time-dependent Hamiltonian [6, 64], see also Chapter 6.
In Chapter 7, we present a detailed proposal on how to make use of effective
magnetic fields to realize fractional quantum Hall states with Rydberg atoms.

2.3.2 Symmetry-Protected Topological Phases
→ See also Chapter 5.

In the previous section, we stated that two gapped ground states belong to the
same phase if their Hamiltonians are connected by a continuous path of local and
gapped Hamiltonians. In addition, one can demand that all Hamiltonians along
the path must preserve some symmetries11, i.e., the operators that represent
the symmetries must commute with these Hamiltonians (such symmetries are
called protecting symmetries). Then, only some paths are allowed while others
are excludes so that some gapped ground states can no longer be connected.

11In some cases, nature motivates that Hamiltonians must fulfill certain symmetries. For
example, closed systems typically satisfy a U(1) symmetry in the form of particle number
conservation.
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If these ground states are from the trivial intrinsic topological phase, they
belong to different symmetry-protected topological phases [144]. While being
short-range entangled, symmetry-protected topological phases can still give
rise to intriguing features such as edge states.

In Chapter 5, we present the analog quantum simulation of a symmetry-
protected topological phase of interacting bosons that derives from the SSH
chain [4].
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3
Rydberg Interaction Potentials

The main goal of this thesis is to show how to realize accurate quantum sim-
ulations of various spin models using the strong interaction between individual
Rydberg atoms. The strong Rydberg interaction is also exploited in the field
of quantum information science for engineering two- and multi-qubit quantum
gates. A precise understanding of the interaction between Rydberg atoms is
essential to find suitable experimental parameters for these applications and to
understand experiments that probe the interaction with high precision or at
short interatomic distances. In all these cases, perturbative methods are no
longer sufficient for computing the Rydberg interaction.

In this chapter, we review all relevant aspects of the non-perturbative calcu-
lation of Rydberg interaction potentials. The chapter is based on our tutorial
about the calculation of Rydberg interaction potentials [1]. We discuss the
derivation of the interaction Hamiltonian from the electrostatic multipole ex-
pansion, numerical and analytical methods for calculating the required electric
multipole moments, and the inclusion of electromagnetic fields with arbitrary
directions. We focus specifically on symmetry arguments and selection rules,
which greatly reduce the size of the Hamiltonian matrix, enabling the exact
diagonalization of the Hamiltonian up to higher multipole orders on a desktop
computer. Finally, we present example applications showing the relevance of
the non-perturbative interaction calculations.

Our pairinteraction software12 for calculating Rydberg potentials, which
includes all discussed features, is available as open-source on GitHub, https://
pairinteraction.github.io. The software has been developed together with

12Another open-source software that comes in handy for calculating properties of Rydberg
systems is the ARC library by N. Šibalić et al. [56]. This library has more functionality
built-in for calculating single atom properties but cannot calculate pair potentials in the
presence of electric and magnetic fields in arbitrary directions.
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Henri Menke who contributed methods for calculating radial matrix elements
and shared his software engineering skills with the project. Johannes Block
contributed code for calculating Rydberg pair potentials near surfaces [163].
For contributions, see also the GitHub repository of the software.

It is our hope that this software is useful to members of the Rydberg
community as a general tool to explore the rich physics of Rydberg interaction.
The goal of our open-source approach is to stimulate active participation of
additional developers.

3.1 Introduction
Among the many fascinating properties of highly excited Rydberg atoms [48],
the strong interaction between pairs of Rydberg atoms has proven to be the
key feature for diverse applications in quantum information processing and
quantum simulation [128]. A particularly important concept is the Rydberg
blockade [127], where the excitation of two or more atoms to a Rydberg state
is prevented due to the interaction. The Rydberg blockade of atomic ensembles
[126] has been observed in ultracold atomic systems in the frozen Rydberg-gas
regime [164, 165], both in bulk ensembles [166–177] and in small systems
supporting only a single excitation [178–181]. More recently, experiments have
also begun to probe Rydberg interaction effects in room-temperature thermal
vapor [182–184]. Based on the Rydberg blockade, atomic two-qubit gates
have been demonstrated [128, 132–134] as basic building blocks for large-scale
neutral atom quantum registers [44, 46, 185–187]. In turn, the power-law decay
of the Rydberg interaction provides interaction over long range and facilitates
the extension to multi-qubit Rydberg-mediated gates in such registers [41, 188,
189]. Such tailored atomic ensembles are also ideal for investigating processes
such as excitation transfer [63, 164, 190–192] or simulation of spin systems [4,
60, 137].

The mapping of Rydberg interactions onto photons by means of electro-
magnetically induced transparency (EIT) [193] has emerged as a powerful
approach to realizing few-photon optical nonlinearities [194–200], enabling a
variety of optical quantum information applications such as highly efficient
single-photon generation [130], entanglement generation between light and
atomic excitations [201], single-photon all-optical switches [202] and transistors
[203–205], single-photon subtraction [206], and interaction-induced π-phase
shifts [207]. Additionally, Rydberg EIT provides access to novel phenomena
such as attractive interaction between single photons [208], crystallization of
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photons [209], or photonic scattering resonances [210], as well as spatially
resolved detection of single Rydberg atoms in a bulk medium [190, 211, 212].
Recent Rydberg EIT experiments, which simultaneously use Rydberg S- and
P -states [213] or two different S-states [190, 203, 204] further increase the
flexibility of manipulating weak light fields [214, 215].

Detailed understanding of the Rydberg interaction is also required for the
concept of Rydberg dressing, where a small Rydberg admixture modifies the
interaction between ground-state atoms in ultracold gases [140, 216–221]. In
particular, by the choice of the Rydberg state, one can map the anisotropy of
the Rydberg interaction onto the ground-state atoms [222–224]. Experimental
demonstrations of Rydberg dressing have recently been performed using individ-
ual atoms [142] or atomic ensembles in an optical lattice [141]. Finally, the rich
structure of the Rydberg interaction potentials supports bound molecular states
formed by two Rydberg atoms [225], which have been observed in experiments
[226–228]. Prediction of the equilibrium distance and vibrational spectra for
these macro-dimers requires precise knowledge of the interaction potential
[228–232].

The physics of Rydberg interaction has been well-established for decades
[233]. As long as the two atoms are well separated and their wave functions do
not overlap, one needs to consider only the electrostatic interaction between
two localized charge distributions, most conveniently utilizing the well-known
electric multipole expansion in spherical coordinates [234–236]. The leading
relevant term in this expansion is the dipole-dipole interaction [55], which
for unperturbed Rydberg atoms at large separation results in the extensively
studied van der Waals interaction [51–54]. More generally, as long as the
interaction energies are small compared to the level spacing of the unperturbed
Rydberg pair states, perturbative calculations offer a very convenient method
for determining the radial [51] and angular [52, 53] behavior of the Rydberg
potentials.

Nevertheless, the rapid experimental progress in recent years has led to a
growing number of experiments for which the perturbative calculation is no
longer sufficient. For example, this approach fails when shorter atomic distances
are probed and state-mixing due to the interaction becomes significant. The
dipole-quadrupole contribution to the interaction has recently been observed
both in ultracold [237] and room-temperature [184] systems in experiments with
large excitation bandwidth, while the correct prediction of macro-dimer photo-
association spectra required the inclusion of terms up to octupolar order in the
potential calculation [228, 231]. In experiments utilizing very high principal
quantum numbers n > 100 [238–240], state-mixing and additional molecular
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resonances [241] become relevant already at large interatomic distances and
make non-perturbative potential calculations necessary.

The nature of the interaction also changes when coupled pair states are
(nearly) resonant [242, 243]. Such degeneracies, or Förster-resonances, can occur
naturally or by shifting the pair-state energies via external electric [169, 172,
176, 190, 244–248] or microwave [249–251] fields. Such resonances can greatly
enhance the Rydberg interaction strength [252]. When spin-orbit coupling as
well as Stark and Zeeman splitting of all involved levels are taken into account,
the resonances can exhibit new features and a rich angular dependence [205,
253]. Full potential calculations including the external fields reveal the number
of states which must be included in specific cases for accurate results.

As consequence of the rapid evolution of the field, it becomes more and
more common to rely on numerical diagonalization of the Rydberg interaction
Hamiltonian including higher orders of the multipole expansion [228, 229, 237,
240]. Here, we discuss all relevant steps required for the numerical calculation
of pairwise Rydberg interaction potentials:

1. Construction of the single-atom Hamiltonian from the orbital wave
functions (Appendix A.2) and their transition matrix elements (Ap-
pendices A.3 and A.4) in the absence of external fields.

2. Derivation of the interaction Hamiltonian for a pair of Rydberg atoms by
multipole expansion (Section 3.2.1).

3. Inclusion of external electric and magnetic fields in arbitrary directions
relative to the inter-atomic axis (Section 3.2.2).

4. Application of selection rules and symmetry arguments to reduce the size
of the Hilbert space to the relevant states (Section 3.2.3).

5. Rotation of the interaction Hamiltonian to a particular coordinate sys-
tem, given for example by the direction of an incident excitation laser
(Section 3.2.4).

6. Diagonalization and extraction of the interaction potentials (Section 3.3).
In the context of three practical applications (Section 3.4), we discuss
best practices and specific considerations in the relevant scenarios. These
examples illustrate the capabilities of the presented approach and the
agreement with experiments.
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3.2 Model

3.2.1 Rydberg Interaction
We study two neutral atoms, each having one electron excited into a Rydberg
state, as depicted in Fig. 3.1(a). Because we are only interested in interatomic
distances R for which the Rydberg atoms are well-separated, the interaction
between the atoms is dominated by the strong interactions of the Rydberg
electrons. Using the Born-Oppenheimer approximation [254], the corresponding
two-atom Hamiltonian is of the form13

Ĥ(R) = Ĥ0 + Ĥint(R) , (3.1)

where Ĥ0 contains the energies of the unperturbed Rydberg states. The operator
Ĥint captures the interaction between the two Rydberg electrons, the two ionic
cores, and the Rydberg electron of one atom and the ionic core of the other
atom. This is the standard treatment of two interacting Rydberg atoms which
is discussed in similar detail in [51, 55, 227, 231].

Because the hyperfine splitting of Rydberg levels is much smaller than
typical interaction energies [256–258], we use the fine-structure basis. As
we will see later, we can assume the two Rydberg electrons to be distin-
guishable particles. Hence, we use the product basis |n1l1j1mj1; n2l2j2mj2⟩ =
|n1l1j1mj1⟩ ⊗ |n2l2j2mj2⟩14. Note that the two Rydberg atoms are allowed to
be of different chemical species [259, 260]. The operator Ĥ0 can be written as

Ĥ0 =
∑

n1,l1,j1,mj1

En1l1j1 |n1l1j1mj1⟩ ⟨n1l1j1mj1| ⊗ 1

+1 ⊗
∑

n2,l2,j2,mj2

En2l2j2 |n2l2j2mj2⟩ ⟨n2l2j2mj2| . (3.2)

We use the common convention that the quantization axis points along the
z-direction. The potential energy Enlj of an electron excited to a Rydberg state

13Because this chapter contains a great number of different quantities, and it is not always
straightforward to see whether a quantity is an operator or a variable, we put “hats”
above operators to distinguish them from variables. In the other chapters of this thesis,
we omit the hats.

14In our notation, we omit the spin quantum number s1 = s2, which equals 1/2 for alkali
atoms.
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Fig. 3.1: (a) Considered system. We study two Rydberg atoms whose interatomic axis
is parallel to the z-axis. The positions of the Rydberg electrons are r̂1 and r̂2.
The interatomic distance R is larger than the LeRoy radius RLR [122] so that
the electronic wave functions do not overlap. (b) LeRoy radius for pairs of alkali
atoms. For calculating the LeRoy radius, we assumed both atoms to be in the
same state. The LeRoy radius increases approximately with the square of the
principal quantum number. The inset shows its dependence on the momentum
quantum numbers. The LeRoy radius for alkali atoms is bounded from above
by the LeRoy radius for hydrogen atoms RLR = a0

√
8n2(5n2 + 1 − 3l(l + 1))

[255] where a0 is the Bohr radius.

is given by a formula similar to the one known for the hydrogen atom

Enlj = − hcR∗

(n − δnlj)2 , (3.3)

where R∗ is the modified Rydberg constant and δnlj is the quantum defect
[261]. These species-dependent parameters are used to capture subtle differences
between the bare Coulomb potential of a hydrogen core and the actual potential
felt by the Rydberg electron. For details on these parameters, see Appendix A.1.

For calculating the interaction energy Ĥint, we neglect retardation effects
[123] as the wavelengths of the involved Rydberg-Rydberg transitions are much
larger than the considered interatomic distances. Furthermore, we assume the
interatomic distance to be larger than the LeRoy radius [122]

RLR = 2
(√

⟨n1l1j1|r̂2|n1l1j1⟩ +
√

⟨n2l2j2|r̂2|n2l2j2⟩
)

, (3.4)

which increases approximately with the square of the principal quantum number
like the radius of a Rydberg atom does, see Fig. 3.1(b). This assumption
tremendously simplifies the calculations. It ensures that the electronic wave
functions do not overlap, so that exchange interaction and charge overlap
interaction can be neglected. Thus, we can treat the electrons as distinguishable
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particles. Furthermore, it allows us to use a multipole expansion for the
interaction energy. In order to do so, we first think of the two Rydberg atoms
as classical charge distributions [262]. Their electrostatic interaction energy is

Hint(R) = e2

4πϵ0

(
1

|R + r2 − r1|
+ 1

|R| − 1
|R − r1|

− 1
|R + r2|

)
, (3.5)

where R denotes the interatomic distance vector. The positions r1 and r2 of
the electrons of the atom are given as relative coordinates in the body frame of
the respective atom, see Fig. 3.1(a). The multipole expansion yields [234–236]

Hint(R) =
∞∑

κ1,κ2=1

Vκ1κ2

4πϵ0|R|κ1+κ2+1 . (3.6)

The exact form of Vκ1κ2 depends on the choice of the coordinate systems used
to label the positions of the electrons. If we choose the coordinate systems
such that the z-axis points along R, i.e. along the interatomic axis, we get the
comparatively simple result

Vκ1κ2 = (−1)κ2
κ<∑

q=−κ<

√√√√(κ1 + κ2

κ1 + q

)(
κ1 + κ2

κ2 + q

)
p(1)

κ1qp
(2)
κ2−q, (3.7)

where we use κ< = min(κ1, κ2) and binomial coefficients to shorten our notation.
This result transfers into quantum mechanics by canonical quantization. Thus,
the spherical multipole moments p(1)

κq and p(2)
κq become the spherical multipole

operators p̂(1)
κq and p̂(2)

κq , that operate on the Rydberg electron of the first and
second atom, respectively. The operators are of the form

p̂(i)
κq = e r̂κ

i ·
√

4π

2κ + 1Yκq(ϑ̂i, φ̂i) , (3.8)

where Yκq(ϑ̂, φ̂) are spherical harmonics15. Note that, in our notation, the
spherical basis is {e± = ∓ 1√

2(ex ∓ iey), e0 = ez}16. The spherical multipole

15In the literature, different normalizations for spherical harmonics are found. We choose the
convention Yκq(ϑ, φ) = (−1)q

√
(2κ+1)(κ−q)!

4π(κ+q)! sinq ϑ dq

(d cos ϑ)q Pκ(cos ϑ) eiqφ that is commonly
used in quantum mechanics. Here, Pκ are Legendre polynomials and (−1)q the Condon-
Shortley phase.

16We use the common definition of the spherical multipole operators (3.8). This implies that
our spherical basis is non-standard (with the standard convention, the dipole operator in
the spherical basis would not be of the usual form p̂11e+ + p̂1−1e− + p̂10e0).
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operator p̂κq corresponds to the 2κ-pole momentum. The multipole expansion
(3.6) is a series expansion of the interaction potential in powers

ϱ = κ1 + κ2 + 1 (3.9)

of the inverse interatomic distance. The series expansion starts at ϱ = 3. Thus,
the contribution of lowest order is the dipole-dipole interaction which reflects
the neutral charge of the Rydberg atoms. Section 3.4.1 discusses the relevance
of higher-order contributions. In general, the order at which we can reasonably
truncate the expansion increases with decreasing interatomic distance.

The spherical multipole operators are composed of the product of a radial and
an angular operator whose matrix elements can be calculated independently
of one another with the formalism shown in Appendices A.3 and A.4. The
independent calculation works because the potential for the Rydberg electron
is spherically symmetric, so that the Rydberg wave function can be separated
into the product of a radial function Ψrad

nlj (r) and a spin spherical harmonic
Ylsjmj

(ϑ, φ) [263],

Ψ(r, ϑ, φ) = Ψrad
nlj (r) · Ylsjmj

(ϑ, φ) . (3.10)

3.2.2 External Fields
In general, the interaction between an atom and the electromagnetic field can
be taken care of by employing the minimal-coupling replacement [264, 265].
Assuming that the fields are static and homogeneous, this general approach
gets reduced to adding the electric interaction

V̂e = −d̂ · E with d̂ = er̂ (3.11)

and the magnetic interaction

V̂m = −µ̂ · B + 1
8me

|d̂ × B|2 with µ̂ = −µB

ℏ
(gll̂ + gsŝ) (3.12)

to the Hamiltonian (3.1), where d̂ is the electric dipole operator, and µ̂ is the
magnetic dipole operator. The g-factors gl and gs characterize the magnetic
moment through orbital motion and spin. The constant µB is the Bohr magne-
ton. The term 1

8me
|d̂ × B|2 is the diamagnetic interaction. Most importantly,

these formulas allow for electromagnetic fields in arbitrary directions and in
particular facilitate arbitrary angles between magnetic and electric fields. The
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Fig. 3.2: (a) Stark map for the Na atom in the energy range of the n = 42 manifold.
The magnetic quantum numbers do not mix under the assumption that the
quantization axis is chosen parallel to the field. For clarity, only states with
m = 1/2 are shown. (b) Zeeman map for the Na n = 42 manifold. Here, all the
states within the plot range are depicted. The diamagnetic interaction increases
the energies of the states. However, as diamagnetism does not contribute to
the linear Zeeman effect it can be neglected for a weak magnetic field.

final Hamiltonian is

Ĥ(R) = Ĥ0 + Ĥint(R) + V̂e ⊗ 1 + 1 ⊗ V̂e + V̂m ⊗ 1 + 1 ⊗ V̂m . (3.13)

In order to calculate matrix elements of V̂e and V̂m, we have to do some
preparatory work. In Appendix A.4, we review a powerful formalism to calculate
matrix elements of spherical tensor operators. To make use of it, the notation
of Eq. (3.11) and (3.12) has to be changed from the Cartesian basis to the
spherical basis {e± = ∓ 1√

2(ex ∓ iey), e0 = ez}. In the spherical basis the
components of, for example, the electric field are given by

E± = ∓ 1√
2

(Ex ± iEy) , E0 = Ez . (3.14)

Using this expression, the interaction with an electric field reads

−d̂ · E = −e r̂ ·
√

4π

3
(
Ŷ1,0E0 − Ŷ1,1E− − Ŷ1,−1E+

)
(3.15)

with spherical harmonics Yκq(ϑ̂, φ̂). Likewise we can express the dot product of
Ĵ ∈ {l̂, ŝ} and the magnetic field in the spherical basis

Ĵ · B = Ĵ1,0B0 − Ĵ1,1B− − Ĵ1,−1B+ , (3.16)

49



Chapter 3 Rydberg Interaction Potentials

where Ĵ1q are the spherical momentum operators. The operators Ĵ1,±1 are
related to the ladder operators Ĵ± = ∓

√
2Ĵ1,±1 and Ĵz = Ĵ1,0. The diamagnetic

interaction in the spherical basis reads

1
8me

|d̂×B|2 = e2

12me

r̂2 ·
√

4π

5

(√
5Ŷ0,0B

2 − Ŷ2,0(B0B0 + B+B−)

+
√

3Ŷ2,1B0B− +
√

3Ŷ2,−1B0B+

−
√

3
2 Ŷ2,2B−B− −

√
3
2 Ŷ2,−2B+B+

)
. (3.17)

The entire atom-field interaction is now expressed in terms of spherical
tensor operators, and we can proceed to calculate the matrix elements via the
formalism of Appendices A.3 and A.4. This enables not only the calculation of
pair potentials in the presence of external fields but also the computation of
Stark/Zeeman maps, see Fig. 3.2.

3.2.3 Selection Rules and Symmetries
Knowing how to calculate matrix elements facilitates a rigorous derivation
of the selection rules. The results for spherical harmonics and momentum
operators are shown in Table 3.1. Note that the selection rules for spherical
harmonics directly apply to the multipole operators. The selection rules greatly
reduce the number of matrix elements which must be calculated explicitly for
the construction of the pair Hamiltonian, enabling a significant reduction of
computation time.

The considered system of two interacting Rydberg atoms has the same
symmetries as any diatomic molecule. The point group of the system is
C∞v/D∞h if the system is heteronuclear/homonuclear [266]. The symmetries
of the point group are conserved by the Hamiltonian (3.1) of the two Rydberg
atoms in the absence of external fields.

From the symmetry under rotation about the interatomic axis, it follows
that the projection of the total angular momentum on the interatomic axis is
conserved. Since we have chosen the quantization axis to be parallel to the
interatomic axis, the total magnetic quantum number

M = mj1 + mj2 (3.18)

is conserved.
If the system is homonuclear, a further symmetry is the inversion symmetry
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Spherical harmonics Ŷκq and Momentum operators
multipole operators p̂κq Ĵ1q

n not restricted n not restricted

l =
l′ ± 0, 2, ..., κ for even κ

l′ ± 1, 3, ..., κ for odd κ
l = l′

s = s′ s = s′

j = j′ ± 0, 1, ..., κ and j + j′ ≥ κ j = j′ ± 0, 1
mj = m′

j + q mj = m′
j + q

with q ∈ {−κ, −κ + 1, ..., κ} with q ∈ {−1, 0, 1}

Table 3.1: Selection rules for the matrix elements of the spherical harmonics
⟨nlsjmj |Ŷκq|n′l′s′j′m′

j⟩ and momentum operators ⟨lsjmj |Ĵ1q|l′s′j′m′
j⟩ where

Ĵ1q ∈ {l̂1q, ŝ1q}. The selection rules for the spherical harmonics equal
the selection rules for the matrix elements of spherical multipole operators
⟨nlsjmj |p̂κq|n′l′s′j′m′

j⟩. The stated selection rules are explicitly tailored to-
wards our use-case of atoms with one single Rydberg electron. They do not
hold true for multi-electron atoms or molecules.

(ri → −ri, R → −R). Then, a properly symmetrized basis state is of the
form [231, 267, 268]

|Ψ⟩g/u ∝ |n1l1j1mj1; n2l2j2mj2⟩
− p(−1)l1+l2 |n2l2j2mj2; n1l1j1mj1⟩ , (3.19)

where p = +1 for states with gerade symmetry |Ψ⟩g and p = −1 for states with
ungerade symmetry |Ψ⟩u. The Hamiltonian does not couple states of gerade
symmetry to states of ungerade symmetry.

Independenty of whether the system is homonuclear or heteronuclear, it is
symmetric under reflection through a plane containing the interatomic axis [267,
268]. We choose the xz-plane as mirror plane. The reflection symmetry
(yi → −yi) can be exploited by changing into the symmetrized basis

|Ψ⟩+/− ∝ |n1l1j1mj1; n2l2j2mj2⟩
+ d(−1)l1+l2+mj1+mj2−j1−j2 |n1l1j1 − mj1; n2l2j2 − mj2⟩ (3.20)

with d = +1 for even states |Ψ⟩+ and d = −1 for odd states |Ψ⟩− under
reflection. If the total magnetic quantum number is zero, we can symmetrize
with respect to rotation, reflection, and inversion simultaneously. If it is non-
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Symmetry Conserved Ĥint V̂m V̂e

operation quantity ϱ = 3 ϱ > 3 x y z x y z

Symmetries originating from the point group D∞h

Rotation about z-axis mj1 + mj2 ✓ ✓ ⧸ ⧸ ✓ ⧸ ⧸ ✓
Reflection through xz-plane +/− ✓ ✓ ⧸ ✓ ⧸ ✓ ⧸ ✓
Inversion g/u ✓ ✓ ✓ ✓ ✓ ⧸ ⧸ ⧸

Symmetry in case of symmetric interaction potentials
Permutation s/a ✓ ⧸ ✓ ✓ ✓ ✓ ✓ ✓

Table 3.2: Overview about which symmetry operation commutes with which part of
the Hamiltonian (3.13). A ✓-sign indicates that the symmetry is conserved
whereas a ⧸-sign signals that the symmetry is broken. We differentiate between
dipole-dipole interaction (ϱ = 3) and interaction up to a higher order in the
multipole expansion (ϱ > 3). In case of the atom-field interactions V̂m and
V̂e, we distinguish between fields in the x, y, and z-direction. Inversion and
permutation symmetry are only present in homonuclear systems. The reflection
symmetry is only of importance if mj1 + mj2 = 0. Note, if both inversion and
permutation symmetry are present, (−1)l1+l2 is conserved as well.

zero, this is not possible since then the reflection and the rotation do not
commute. In this case, we neglect the reflection symmetry.

In case of pure dipole-dipole interaction, a system of two homonuclear
Rydberg atoms is subject to permutation symmetry (R → −R) in addition
to the symmetries of the point group. The interaction potential is symmetric
under exchange of the two ionic cores. A properly symmetrized basis state is

|Ψ⟩s/a ∝ |n1l1j1mj1; n2l2j2mj2⟩ − f |n2l2j2mj2; n1l1j1mj1⟩ , (3.21)

where f = +1 for symmetric states |Ψ⟩s and f = −1 for antisymmetric states
|Ψ⟩a. Comparing Eq. (3.19) and (3.21) shows that

P = (−1)l1+l2 (3.22)

is conserved when both permutation and inversion symmetry are present.
External fields might break the symmetries discussed above. If the operator

of the atom-field interaction V̂e (3.11) or V̂m (3.12) does not commute with a
symmetry operation, the symmetry is not conserved. For example, external
fields that do not point along the interatomic axis can mix states of different
total magnetic quantum numbers. Table 3.2 contains an overview of which
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Fig. 3.3: Rotation of the coordinate system. We consider a pair of atoms whose
interatomic axis is not parallel to the z-axis. In order to apply Eq. (3.7) for
the atom-atom interaction, we have to rotate the coordinate system. Assuming
that the interatomic axis lies in the xz-plane, a rotation around the y-axis is
needed. The rotation changes the representation of the quantum mechanical
states as well as the representation of the electric and magnetic fields. The
figure illustrates our definition of the rotation angle θ.

symmetry operation commutes with which part of the Hamiltonian (3.13) of
two interacting Rydberg atoms in the presence of external fields.

3.2.4 Angular Dependency
As discussed in Section 3.2.1, the formula for the atom-atom interaction (3.7)
is only valid if we are in a coordinate system Ccalc where the z-axis, which we
chose as the quantization axis, points in the same direction as the interatomic
axis. However, sometimes one would like to use a different coordinate system.
For example, when the Rydberg state is excited by a laser pulse, it is convenient
to use a coordinate system Clab where the z-axis points along the laser beam.

To ease the calculation, let us assume that the interatomic axis lies in the
xz-plane of Clab. Then we can change into Ccalc by rotating Clab around the
y-axis, see Fig. 3.3. The rotation angle θ is defined as the angle between the
interatomic axis and the z-axis, and is called interaction angle.

Given that our coordinate systems are right-handed and the rotation of the
coordinate system is counter-clockwise if the y-axis points towards the observer,
the magnetic and electric fields transform according to

Ecalc =

cos θ 0 − sin θ
0 1 0
sin θ 0 cos θ

Elab . (3.23)

Any state |nljmj⟩lab in the lab frame, i.e. with the quantization axis parallel
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to the laser beam, should be expressed as a linear superposition of states
|nljmj⟩calc whose quantization axis points along the z-axis of Ccalc,

|nljmj⟩lab =
∑
m′

j

dj
mjm′

j
(θ) |nljm′

j⟩calc , (3.24)

where the coefficients dj
mjm′

j
(θ) are elements of the Wigner (lowercase) d-matrix

[269]. If we had not fixed the interatomic axes in the xz-plane, we would have
to use the Wigner (uppercase) D-matrix instead. Our notation is consistent
with the definitions in [270].

Using the transformations (3.23) and (3.24), we can switch to the coordinate
system Ccalc and perform all calculations there.

In the absence of external electromagnetic fields, the eigenvalues of the
Hamiltonian and thus the pair potentials do not depend on the interaction
angle. However, the overlap of each unperturbed state |n1l1j1mj1; n2l2j2mj2⟩
with a particular eigenstate does depend on the interaction angle. The quantum
numbers of the unperturbed state become good quantum numbers if the
interatomic distance approaches infinity and the atoms are not perturbed by
external fields.

3.2.5 Extension Towards Alkaline Earth Metals
As described in Section 3.2.1, we treat Rydberg atoms as systems consisting of
a single excited electron and an ionic core. This reduction to a single active
electron problem is particularly justified for the alkali atoms because of the
closed-shell structure of the ionic core.

If we excite one electron of an alkaline earth metal to a Rydberg state, the
ionic core is no longer a closed shell because it contains the remaining valence
electron. A precise numerical treatment of this system is more complicated
than for the alkali atoms because the polarizability of the core is increased, and
perturber states exist where both valence electrons are excited. Thus, for precise
calculations, one must consider both electrons explicitly, using multichannel
quantum defect theory [110]. However, for large principal quantum numbers
n and large interatomic distances, the single active electron approximation is
valid [109], and we can apply the same framework as for alkali atoms. This
approximation relies on the assumption that L − S coupling holds, and we can
neglect terms that mix the singlet and triplet series. Then, we can calculate
the pair interaction potentials for the singlet and triplet series independently,
and the only difference to the treatment of alkali atoms is that the presence
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of the second electron makes it difficult to describe the ionic core by model
potentials. To avoid this problem, we use Whittaker functions for obtaining the
radial wave functions and calculating radial matrix elements, see Appendix A.2.
For the angular matrix elements, the formulas of Appendix A.4 hold true with
spin quantum number s = 0 for the singlet state and s = 1 for the triplet
state. Another possibility is to calculate matrix elements semiclassically [271].
Note that for sufficiently large n, the single active electron approximation also
works well for other atomic species, such as the noble gases [272] and even the
lanthanides [273].

The Appendix A.1 lists all atomic species that are supported by the
pairinteraction software at the time of writing and provides references to
quantum defects.

3.3 Construction of the Hamiltonian Matrix and
Diagonalization

In the previous sections, we established the Hamiltonian of two interacting
Rydberg atoms and explained how matrix elements of the Hamiltonian can
be calculated using Appendices A.3 and A.4. This allows us to compute
the matrix representation of the Hamiltonian. We calculate pair potentials
of the unperturbed state |n1l1j1mj1; n2l2j2mj2⟩ by numerical diagonalization
of the Hamiltonian matrix for a range of interatomic distances. Then, the
eigenenergies are plotted versus the distances to make up the pair potentials.
By drawing lines between the eigenenergy points for which the overlap between
the eigenvectors is maximal, we extract the pair potential curves. The overlap
between an eigenvector and the unperturbed state tells the probability to find
the unperturbed state on the corresponding pair potential curve.

In order to make the diagonalization of the Hamiltonian computationally
feasible, we have to keep the matrix size small. Therefore, it is important to
exploit conservation laws. As discussed in Section 3.2.3, the Hamiltonian might
conserve several quantum numbers and symmetries, leading to a block diagonal
structure of the Hamiltonian matrix, see Fig. 3.4(a).

Each block can be diagonalized independently, which leads to a massive
speed-up as the computation of all eigenpairs of a n × n-matrix costs O(n3)
floating-point operations [274, 275]. Furthermore, we diagonalize only those
blocks that belong to the unperturbed state we are interested in. In addition,
we have to restrict the basis to states having a significant influence on the pair
potentials of the unperturbed state.
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Fig. 3.4: (a) Block diagonality of the Hamiltonian matrix for a pair of dipole-dipole
interacting Rydberg atoms in the absence of external fields. As discussed
in Section 3.2.3, the Hamiltonian matrix for a homonuclear pair of atoms
decomposes into a gerade/ungerade block (g/u) . Pure dipole-dipole interaction
additionally conserves P = (−1)l1+l2 . Moreover, M = mj1 + mj2 is conserved
if the interatomic axis points along the z-axis. Blocks belonging to M = 0
can be further decomposed into an even/odd block under reflection (+/-). (b)
Radial dipole matrix elements for rubidium as a function of the difference in
principal quantum numbers n2 − n1 (for reasons of simplicity, only matrix
elements with j1 = j2 are shown). The value of the matrix elements decreases
rapidly with n2 − n1. This facilitates restriction of the basis set by means of
the principal quantum number.

Hereto, we have several possibilities. First, we can restrict the basis to
elements with similar energies as the unperturbed state. Second, it is often
useful to constrain the momentum quantum numbers because interaction of
high order is required to change the momentum quantum numbers by large
values. However, this constraint does not work if states involved in the high
order interaction are degenerate as it is the case for Stark map calculations.
Third, we can constrain the principal quantum number. If two states do not
have similar principal quantum numbers, their radial matrix elements and hence
their interaction is negligible, see Fig. 3.4(b). Higher order interactions, which
would only require matrix elements with similar principal quantum numbers,
would also be weak as the required order increases with the principal quantum
number. How the constraints should be chosen depends on many factors like
the considered distances, the required accuracy, the quantum numbers of the
unperturbed states, the order of the multipole expansion, external fields, and
the atomic species. Thus, giving the right constraints is difficult a priori. In fact,
the constraints have to be tested for each calculation. For obtaining a small
basis size, we start with strong constraints and loosen them systematically until
the pair potentials of the unperturbed state have converged within the distance
threshold we are interested in. The convergence is extensively discussed in [231].
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For calculating pair potentials in the presence of external electromagnetic
fields, the following approach has turned out to be useful: We construct a
single-atom basis and calculate the atom-field Hamiltonian for each of the two
atoms independently. We enlarge the basis sets until the Stark/Zeeman maps
have converged. We combine the eigenstates of the single-atom Hamiltonians
into pair states and obtain a pair basis that is suitable for establishing the total
Hamiltonian including atom-atom interactions. The combined eigenenergies,
that are the Stark/Zeeman energies of the pair states, are located on the diagonal
of the Hamiltonian. This procedure has the advantage, that we can now restrict
the pair basis to the states relevant for the atom-atom interaction without losing
accuracy in the treatment of the electromagnetic fields. Constraining the pair
basis stronger than the single-atom basis is appropriate, in particular because
the atom-field interaction typically couples over larger energy ranges than the
atom-atom interaction. Furthermore, whereas atom-field interactions might
change energies drastically, the small amount of admixed states is irrelevant
for the atom-atom interaction in many cases of practical relevance. Despite
these actions, the inclusion of electromagnetic fields can drastically increase
the computational cost. Depending on the type of field, the block structure of
the Hamiltonian matrix is destroyed.

3.4 Applications
In this section, we discuss three examples of the Rydberg potential calculation
with relevance to recent experiments. Comparison with experimental results
enables us to validate our numerical results and demonstrate the applicability
of full potential calculations to state-of-the-art experiments. It also allows us
to benchmark the influence of the basis size and of the truncation order on the
interaction potentials.

3.4.1 Relevance of Higher-Order Multipole Terms
As a first example application, we study multipole terms in the interaction
potential of order higher than dipole-dipole, i.e. ϱ > 3 in Eq. (3.9). The
relevance of these terms has been highlighted in several recent experiments [184,
229, 231, 237]. We focus here on the observation of Rydberg aggregation
dynamics in a vapor cell at room temperature by Urvoy et al. [184]. In this
experiment, the high atomic densities and the spectral width of the laser pulses
allow to probe Rydberg interaction at short interatomic distances, with one
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Fig. 3.5: (a-c) Potential landscape around the unperturbed Cs |32S1/2; 32S1/2⟩ state
calculated up to order 1/Rϱ of the multipole expansion of the interaction
potential: (a) ϱ = 3, (b) ϱ = 4, (c) ϱ = 5. (d) Admixture ε|SS⟩ to the perturbed
pair states for a cut through the potential at a red detuning of −2 GHz. Cuts
for ϱ = 4 and ϱ = 5 are shifted by an offset of 0.2 and 0.4, respectively.
The inclusion of the dipole-quadrupole term (ϱ = 4) results in the resonance
feature at R/RLR ≈ 2.1, which is identified in [184] as the dominant underlying
reason for the experimentally observed formation of Rydberg aggregates. While
inclusion of one additional order somewhat changes the potential landscape,
this resonance feature is not affected.

key finding being that the correlated excitation of Rydberg atoms is driven by
the dipole-quadrupole (ϱ = 4) contribution to the interaction.

Specifically, in the experiment, Rydberg excitation in a Cesium vapor cell is
driven by two-photon excitation with red detuning ∆ = ωLaser−ωAtom = −2 GHz
relative to the 32S Rydberg state. The pure van der Waals interaction potential
resulting from dipole-dipole coupling of two atoms in this state is repulsive, see
Fig. 3.5(a), suggesting that the presence of one Rydberg atom does not increase
the excitation probability of further Rydberg atoms by the red-detuned driving
lasers.
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However, including the dipole-quadrupole interaction (ϱ = 4) results in
admixture of the |32S1/2; 32S1/2⟩ pair state into several close-lying, attractively
interacting pair states (such as |31P1/2; 31Dj⟩ and |32P1/2; 30Dj⟩), as shown
in Fig. 3.5(b). As done in [184], we quantify the admixture of, for example,
|SS⟩ = |32S1/2, mj = 1/2; 32S1/2, mj = −1/2⟩ to any Rydberg pair state |Ψ⟩
by ε|SS⟩(∆) = |⟨Ψ|SS⟩|. Any such admixture at detuning ∆ results in efficient
optical excitation of additional Rydberg atoms at specific distances to a first
seed excitation. In particular, Urvoy et al. identified the resulting resonance
at R/RLR ≈ 2.1 (where RLR is the LeRoy radius), which is reproduced by our
calculations, as the dominant underlying mechanism for the correlated Rydberg
aggregation observed in the experiment [184].

Based on this finding, an obvious question is how additional multipole orders
further modify the interaction potential. In Fig. 3.5(c), we show the resulting
potential map when the ϱ = 5 terms, corresponding to quadrupole-quadrupole
and dipople-octupole interactions, are included. Significant effects of these
contributions can be seen at small interatomic distances 1 < R/RLR < 1.7, for
example in the detuning region between 2 GHz and 4 GHz. For the experiment,
the relevant figure is ε|SS⟩(∆ = −2 GHz). We show the extracted values for
all three potential calculations (ϱ = 3, 4, 5) in Fig. 3.5(d). While the inclusion
of the ϱ = 5 terms also modifies ε|SS⟩ at short distances, the main relevant
resonance feature at R/RLR ≈ 2.1 is not modified by the higher-order terms.
Thus, the quantitative differences in the potential landscape due to the next
higher-order terms do not affect the conclusions in [184].

In contrast, the features at small distances are relevant for example for
formation of bound pair states of Rydberg atoms [226–230], requiring inclusion
of even further orders in the calculation [228, 231]. In general, when increasing
ϱ, care has to be taken that the pair-state basis truncation is appropriately
adapted to include enough coupled states. In this example, we have used the
constraints ∆n = 5 and ∆l = 6 on the differences in quantum numbers of
the individual Rydberg states with respect to the state |32S1/2; 32S1/2⟩. These
cutoff criteria are motivated by the selection rules for the different interaction
orders discussed in Section 3.2.3 and the scaling of the electric multipole matrix
elements, see Section 3.3. Of particular importance for precise calculations at
distances 1 < R/RLR < 1.7 are the symmetry considerations of Section 3.2.3,
which help to greatly reduce the size of the relevant pair-state basis [231].
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Fig. 3.6: (a) Pair potential of the |DD⟩ = |59D3/2, mj = 3/2; 59D3/2, mj = 3/2⟩ state
tuned into Förster resonance with the |PF ⟩ = |61P1/2, mj = 1/2; 57F5/2, mj =
5/2⟩ state by applying an electric field of 34.3 mV/cm for both atoms aligned
along the quantization axis, i.e. θ = 0◦. (b) Same pair potential as in (a) but
for an angle of θ = 14◦ between the interatomic and the quantization axis.
(c) Time evolution of the probability to find the system in the |DD⟩ state in
the presence of an electric field. For θ = 0◦ the system undergoes undamped
oscillations between the |DD⟩ and |PF ⟩+/− state with a frequency of 9.2 MHz.
The multi level structure relevant for θ = 14◦ in (b) results in damping out of
the oscillations due to dephasing (red line). (d) Angular dependence of the
multiple oscillation frequencies out of the |DD⟩ state. To illustrate how strong
different frequencies do show up in the time evolution the size of the points
encodes the relative weight of each frequency. The blue crosses depict the
experimental results of Ravets et al. [252].

3.4.2 Angular Dependence Near a Förster Resonance
As a second example application, we demonstrate the calculation of anisotropic
Rydberg interactions in the presence of electric and magnetic fields, as discussed
in Sections 3.2.2 and 3.2.4. In this context, we calculate the interaction
potentials measured in the experiments of Ravets et al. in [252]. Here, two single
87Rb atoms were prepared in their ground state in two tightly focussed optical
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tweezers. Both the distance R between the two atoms and the angle θ between
the interatomic axis and the external fields could be precisely tuned. Using a two-
photon excitation scheme, both atoms were excited to the |59D3/2, mj = 3/2⟩
state by applying a π-pulse. In the pair-state basis and at zero electric field, the
state |DD⟩ = |59D3/2, mj = 3/2; 59D3/2, mj = 3/2⟩ is detuned by 8.69 MHz
from the state |PF ⟩ = |61P1/2, mj = 1/2; 57F5/2, mj = 5/2⟩. Due to the
different polarizabilities of the states, both pair states could be tuned into
degeneracy by applying a weak electric field of 34.3 mV/cm. With this approach,
Ravets et al. could map out the angular shape of the electric dipole-dipole
interaction between the two atoms [252].

More specifically, the strength of the interaction was measured by letting the
two-atom system evolve after the Rydberg excitation and in the presence of
the electric field. After a variable hold time, a second optical π-pulse coupling
to the |DD⟩ state was employed to bring the atoms back to their ground state.
By measuring the ground-state population after the full sequence, the time-
evolution of the |DD⟩ Rydberg pair-state population could be reconstructed.
Performing this experiment for various angles θ and fixed distance R = 9.1 µm
resulted in the beautiful dipole-dipole pattern of the interaction shown by the
blue crosses in Fig. 3.6(d).

For comparison with the experimental results, we calculate the full potentials
for different angles θ including the finite electric and magnetic fields. Here, the
optimized matrix construction discussed in Section 3.3 is particularly relevant
to make precise calculations feasible. As an example, we show in Fig. 3.6(a)
and (b) the potentials obtained for θ = 0◦ (atoms aligned with respect to the
external fields) and θ = 14◦, respectively. Besides the energy shifts caused
by the interaction, we encode here the probability ak = |⟨DD|φk⟩|2 to find
an admixture of the initially prepared unperturbed |DD⟩ state in the new
eigenstate |φk⟩ as a density plot. For θ = 0◦, Fig. 3.6(a) show that a two-level
approximation is valid for most of the distances between 7 µm and 20 µm. Most
importantly, at the experimentally relevant distance R = 9.1 µm, the system
can be treated as a two-level system.

However, the situation changes for an angle of θ = 14◦, where the two-level
approximation breaks down. This is caused by mixing of the different fine
structure states of the |57F ⟩ state and of different magnetic levels coupled for
non-zero interaction angles.

From the calculated potentials and more specifically the overlap proba-
bilities ak, it is straight-forward to calculate the coherent evolution of the
interacting Rydberg atom pair. Specifically the time-dependent probability of
being in the |DD⟩ state in the presence of interaction is given by p|DD⟩(t) =
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|∑k ak exp
(
iEk

ℏ t
)

|2. Examples for two different angles and R = 9.1 µm are
shown in Fig. 3.6(c). For θ = 0◦, we obtain an undamped sinusoidal oscillation
with a frequency of ν = 9.2 MHz, which corresponds to the splitting of the
most strongly populated pair potentials. In the case of θ = 14◦ the significant
coupling to multiple other pair states leads to dephasing that effectively damps
out the Rabi oscillations. These results agree very well with the experimental
time-evolution reported in [252].

In Fig. 3.6(d), we show all frequencies contributing to the time evolution for
R = 9.1 µm and varying θ, obtained from the energy differences Em − En of
the pair states to which the initial state couples (red points). The size of each
point encodes the relative weight of each frequency, which is proportional to
am · an. For comparison, the single frequencies at each θ extracted from the
experiment are shown by the blue crosses. One can see that for 0◦ ≤ θ ≤ 5◦ and
for 55◦ ≤ θ ≤ 90◦ our calculations find a single dominant contribution, which
is in excellent agreement with the experimental data. In contrast, for angles
outside these regions, the increased number of pair states contributing to the
time evolution explains the damped oscillations measured in the experiment.
We thank Antoine Browaeys and Thierry Lahaye for providing the experimental
data.

3.4.3 Finding Parameters for the Realization of Spin Models
As a third example application, we show how the Rydberg potential calculation
can be applied to find experimental parameters for realizing spin models with
Rydberg atoms, harnessing the atom-atom interaction. As described in the
foundations in Section 2.2.3, the general idea is to map electronic states of
the Rydberg atom to spin states, and the challenge is to find experimental
conditions under which the mapped states are isolated from other states. In
other words, the mapped states must be located in a subspace of the total
Hilbert space that is energetically well separated from neighboring states, i.e.,
the separation in energy must be significantly larger than the interaction that
couples states from the subspace to neighboring states.

To find experimental conditions that isolate the subspace, we can calculate
Rydberg potentials for different external fields and check whether the admixture
of non-desired states to the pair potential curves is small. Such a parameter
scan is exemplarily discussed in Chapter 4. It ensures that all interactions
between two Rydberg atoms can be described accurately within the subspace.
Note that in principle, higher-order couplings can still occur that act on more
than two Rydberg atoms, causing a leakage out of the subspace. This leakage
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mechanism can only be excluded entirely if all states of more than two atoms
are isolated as well. However, as it is a higher-order effect, it can often be
neglected, assuming that one does not hit a resonance accidentally.

When we have succeeded in isolating the subspace, we can treat the coupling
to the neighboring states perturbatively. By doing so, neighboring states get
admixed to the states of the subspace, i.e., the subspace gets dressed, and
effective interactions emerge. For obtaining the effective Hamiltonian that
governs the dynamics of the resulting spin model, we can apply perturbation
theory [276–278]. Such an effective Hamiltonian can then be simulated by a
Rydberg quantum simulator, see also Chapters 5 to 7.

3.5 Conclusions and Outlook
In this chapter, we discussed the calculation of interaction potentials between
pairs of atoms excited to Rydberg states. Precise knowledge of the full potential
landscape has become relevant to a wide range of experiments utilizing Rydberg
atoms in recent years. Our goal was to give a comprehensive summary of all the
relevant calculation steps of the Rydberg potential for describing current and
future experiments. We reviewed the symmetry properties of the interaction
Hamiltonian and the selection rules of the different multipole orders. These
considerations are crucial for efficient calculation of the interaction potentials.
Two further aspects important for experiments are the angular dependence
of the interaction and the inclusion of external magnetic and electric fields
of arbitrary direction. Particularly, electric fields offer the powerful ability to
strongly modify the Rydberg interaction by tuning to Förster resonances of
Rydberg pair states. With the rapid progress of both experiments and theory
investigating interacting Rydberg systems, it seems likely that more features of
the Rydberg potentials will be explored and exploited in the future.

63



Chapter 3 Rydberg Interaction Potentials

64



4
Accurate Mapping of Rydberg

Atoms on Spin-1/2 Particles
For performing quantum simulations of spin Hamiltonians with Rydberg

atoms, it is necessary to identify electronic states of a Rydberg atom that can
be mapped to spin states.

In this chapter, we discuss an illustrative example of such a mapping [2]. We
study arrays of atoms that are laser-driven to the nD3/2 Rydberg state and
analyze how accurately the atoms can be mapped onto spin-1/2 particles for
the quantum simulation of anisotropic Ising magnets. We use non-perturbative
calculations of Rydberg interaction potentials, see Chapter 3, to carefully deter-
mine experimental parameters for which the excitation of unwanted Rydberg
states is avoided and the mapping accurate. The group of Antoine Browaeys
has performed experiments to test our predictions, using systems of up to 49
atoms [2]. Comparisons between the results of the experiments and numerical
simulations of spin-1/2 models confirm that the determined parameter set
allows for an accurate mapping. For details on the experiments, see the PhD
thesis by Sylvain de Léséleuc [3].

4.1 Introduction
One of the main ingredients to realize quantum simulations of spin Hamiltonians
with Rydberg atoms is the mapping of suitable Rydberg levels to spin states
and a full characterization of the interaction potentials. In the simplest case,
one identifies the atomic ground state as the spin-down state |↓⟩ and the
Rydberg excitation as the spin-up state |↑⟩ for the implementation of spin-1/2
Hamiltonians [60, 61, 137, 279]. However, in practice, describing the atom as a
two-level system is an approximation that can be difficult to fulfill due to the
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small splittings between levels in the Rydberg manifold. For a single atom, it is
sufficient to apply a magnetic field of a few Gauss to isolate a single two-level
transition. But already for two atoms, the density of pair-states becomes quite
large, and, due to the interactions, mixing between different levels occurs in
configurations without special symmetries (Fig. 4.1). Finding the optimal
parameters such that the system is accurately described as a spin-1/2 system
with a well-defined interaction potential is thus a non-trivial task, that needs
to be addressed in view of applications in quantum simulation.

A natural choice for implementing spin Hamiltonians with Rubidium Ryd-
berg atoms is to use nS Rydberg states [61], as they possess only two Zeeman
sublevels and do not feature Förster resonances [52]. However, many experi-
ments use nP or nD states: the former are the only ones accessible from the
ground state using single-photon dipole transitions [167, 280] and are used in
particular for Rydberg dressing [141, 142, 281, 282], while the latter [60, 132,
133] require less laser power for excitation from the ground state as compared to
nS states. Moreover, for both nP and nD states, the van der Waals interaction
can be anisotropic, opening the way for simulating exotic matter [222, 223].
Nevertheless when implementing an anisotropic Ising model with nD3/2 states,
deviations from the prediction of a spin-1/2 model can occur, as observed
in [60].

In this chapter, we thus focus on Rydberg nD3/2 states, and derive un-
der which conditions the simple picture of a spin-1/2 model with an effec-
tive anisotropic interaction potential between the pair states is valid, despite
the large number of Rydberg levels involved. For that purpose, we use our
pairinteraction software [1] to numerically calculate the exact pair-state
potentials in the presence of external electric and magnetic fields. We find a
remarkable sensitivity of the interaction spectrum to weak static electric fields,
which can lead to a breakdown of the Rydberg blockade not considered in
previous studies [52, 53, 241, 243, 283, 284]. Our collaborators from the group
of Antoine Browaeys then experimentally corroborate this prediction. Finally,
we extend our study to a ring of 8 atoms and a 7 × 7 square array, the settings
for which some deviations from the spin-1/2 model were observed in [60], and
now demonstrate a much better agreement with a numerical simulation.

4.2 Setup
We use the Rydberg state |r⟩ = |nD3/2, mJ = 3/2⟩ and couple it to the atomic
ground state |g⟩ = |5S1/2, F = 2, mF = 2⟩ by a two-photon transition, see
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Fig. 4.1: Mapping a system of multilevel Rydberg atoms onto a spin-1/2
model. (a) System: two atoms separated by a distance R; θ is the angle
between the interatomic axis and the quantization axis z defined by a magnetic
field B. An electric field E can be applied along z. (b) A two-photon transition
couples coherently the ground state |g⟩ to a target Rydberg state |r⟩ with an
effective two-photon Rabi frequency Ω. (c) Full energy spectrum of the atom
pair. The mapping consists in replacing this complex structure by an effective
interaction potential.

Fig. 4.1(b). Ideally we want to identify the states |g⟩ and |r⟩ with pseudo
spin-1/2 states |↓⟩ and |↑⟩. In this case, when taking into account interactions
between atoms in |r⟩, the system maps onto an Ising-like model in a transverse
field [60, 61, 137, 279] governed by the Hamiltonian

H = ℏΩ
2
∑

i

σx
i + 1

2
∑
i ̸=j

Uijninj. (4.1)

Here, Ω is the Rabi frequency corresponding to the laser driving, σx
i = |r⟩ ⟨g|i +

|g⟩ ⟨r|i, ni = |r⟩ ⟨r|i, and the rotating wave approximation and rotating frame
have been applied. The interaction between atoms i and j is given at large
distances by an anisotropic van der Waals potential Uij = C6(θij)/R6

ij, where
Rij is the interatomic distance and θij the angle between the internuclear axis
and the quantization axis, see Fig. 4.1(a). For shorter distances, deviations
from the 1/R6 behavior are expected.
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4.3 Requirements for an Accurate Mapping

4.3.1 Lifting the Zeeman Degeneracy
We now look for conditions allowing us to describe the interaction spectrum for
a pair of atoms by a single potential curve U(R, θ) as shown in Fig. 4.1(c). To
approach this problem quantitatively, purely analytic approaches are of little use,
and we use numerical methods to diagonalize the dipole-dipole Hamiltonian [56]
(as well as higher-order multipole contributions) in the presence of arbitrarily
oriented external electric and magnetic fields, see also Chapter 3. In view
of reproducing the experiment of reference [60], we chose the state |r⟩ =
|61D3/2, mJ = 3/2⟩. Fig. 4.2 shows the interaction spectrum for a generic angle
θ = 78◦. The shading of the various interaction potentials shows the overlap of
the states with |rr⟩. In Fig. 4.2(a), no magnetic and electric fields are applied,
and some Zeeman pair states interact very weakly, while they are still coupled
to |gg⟩. Consequently, the Rydberg blockade is broken as the double excitation
of Rydberg states is possible even at short distances [53, 243]. Fig. 4.2(b)
shows the interaction potentials, but now in the presence of a magnetic field
B = −6.9 G. The Zeeman effect splits the various potentials and the state |rr⟩
is now well isolated from the other eigenstates. However, since the sign of the
Zeeman shift is opposite to that of the van der Waals interaction, there are
some specific values of the interatomic distance R where the laser excitation
of other Zeeman pair states is resonant; these magic distances, predicted by
[284], can thus lead to a breakdown of the blockade. In order to avoid this
effect, one can simply use an opposite value for the B field. This is what we
do in Fig. 4.2(c), where B = 6.9 G. These parameters are similar to the ones
applied in [60], and in these conditions, it is a good approximation to describe
the system by a single state for R > 6 µm.

4.3.2 Avoiding E-Field Sensitivity
It turns out, however, that the interaction potentials are extremely sensitive
to electric fields E. Fig. 4.2(d) corresponds to the same parameters as in
Fig. 4.2(c), but now in the presence of an electric field E = 20 mV/cm along
z. A naive calculation of the Stark shift of pair states for such a value of E,
neglecting resonance effects, would give shifts in the 100 kHz range, which would
have hardly any influence on the potentials. However, the exact diagonalization
shows that the interaction potentials are strongly affected, with many states
being resonant with the excitation laser. We thus expect a significant breakdown
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Fig. 4.2: Influence of magnetic and electric fields on the interaction
potentials around the pair-state |rr⟩ for θ = 78◦. Here, |r⟩ =
|61D3/2, mj = 3/2⟩. The shading encodes the overlap of the eigenstates with
the non-interacting state |rr⟩. (a) B = 0 and E = 0: |rr⟩ overlaps with all the
degenerate Zeeman pair states. (b) B = −6.9 G and E = 0: the interaction
curves are split due to the Zeeman effect. Some curves still strongly mix with
|rr⟩ due to the interaction. (c) B = 6.9 G and E = 0: one potential curve
dominates. However, (d) the addition of a small electric field E = 20 mV/cm
is enough to strongly perturb the pair states. (e-f) This behavior is absent for
B = 3.5 G.

of the Rydberg blockade in these conditions. Remarkably, this effect is absent
for lower magnetic fields B = 3.5 G, see Fig. 4.2(e-f). In the optimal regime
where a single potential curve U(R, θ) can be identified, we check if we can
describe it by a van der Waals potential with an angular dependence C6(θ)/R6.
Fig. 4.3(a) shows the energy dependence as a function of R for θ = 78◦ together
with a 1/R6 fit. We observe, that for R ≳ 8 µm, the van der Waals description
is a reasonable approximation. Fig. 4.3(b) shows the angular dependence of
the coefficient C6(θ). We have thus extended the anisotropic effective potential
approach developed in [191, 284] beyond the strong blockade regime.
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C6(θ)/R6 at R = 9 µm marked by the cross on (a).

4.4 Testing the Predictions

4.4.1 Two-Atom Blockade Experiments
We now turn to the experimental test of the above predictions. The setup of
our experimental collaborators has been described in detail elsewhere [60] (for a
brief review of the Rydberg platform, see also Section 2.2). Their setup consists
of a configurable two-dimensional array of optical tweezers, fully-loaded with
atoms optically pumped into |g⟩. After switching off the tweezers, the atoms
are illuminated with a Rydberg excitation pulse of duration τ and effective
Rabi frequency Ω = 2π × 1.2 MHz. At the end of the sequence, the tweezers
are switched on again, resulting in a recapturing of atoms in |g⟩ and a repulsion
of atoms in a Rydberg state. Thus, in a subsequent fluorescence image, atoms
in |g⟩/|r⟩ are observed as occupied/empty sites.

As a first test of the influence of electric and magnetic fields on the potential
curve, two-atom blockade experiments are performed [132, 133] with R = 6.5 µm
and θ = 78◦, i.e., the same parameters as in Fig. 4.2. Four different settings of
the external fields are applied: the magnetic field is either 3.5 or 6.9 G, and the
electric field either zero (within the accuracy ∼ 5 mV/cm of the cancellation
of stray fields) or 20 mV/cm. In order to quantify the Rydberg blockade, the
probability Prr to have two Rydberg excitations after illuminating the atoms
with the excitation pulse is measured. The results are displayed in Fig. 4.4. Our
collaborators observe as expected a strong suppression of |rr⟩ for all settings,
except for B = 6.9 G and E = 20 mV/cm, where the probability to excite the
two atoms is significant. To compare with the theory, we simulate the dynamics
of the two-atom system solving the Schrödinger equation and calculate the
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Fig. 4.4: Two-atom blockade experiments. Probability Prr to excite the two
atoms as a function of the pulse area Ωτ . For B = 6.9 G (a-b), increasing E
from 0 to 20 mV/cm breaks the Rydberg blockade. At B = 3.5 G (c-d), an
efficient blockade is maintained, even in the presence of the electric field. The
dots depict the experimental data measured by our collaborators. The solid
lines result from a simulation taking into account the full interaction spectrum
(see text). The dashed lines are obtained by modeling the atoms as spin-1/2
particles with a single interaction potential for |rr⟩, except in case (b) where
the pair-state is too perturbed. The error bars show the standard error of the
mean.

probability to excite the two atoms17. We assume two different models to
describe the interacting system: in the first one (Fig. 4.4 solid line), we use
the full interaction spectrum and include around 800 pair-states within 2 GHz
from the resonance (a bigger electric field would drastically increase the basis
size). This simulation with no adjustable parameter is in excellent agreement
with the experimental data. In the second model (dashed line), we describe
the interaction in the |rr⟩ state with the single potential curve identified above,
thus solving the spin-1/2 model governed by the Hamiltonian (4.1).

Geometry Dependency of the Blockade

We now investigate more systematically how the geometry and the value of the
electric and magnetic fields affect the accuracy of the mapping on a spin-1/2

17We include the residual shot-to-shot fluctuations of the interatomic distance by averaging
the result of the Schrödinger equation over 200 realizations of the random positions of
the atoms in their tweezers.
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Fig. 4.5: Influence of θ, B, E on the mapping onto a spin-1/2 system.
Probability of double excitations at long times (see text) as a function of
the magnetic field B and the angle θ. The interatomic distance is fixed at
R = 6.1 µm. The electric field is E = 0 in (a) and chosen between 0 and
20 mV/cm such that the probability for two Rydberg excitations is maximized
in (b).

model. Using the exact simulation taking into account the full interaction
spectrum, as done for Fig. 4.4, we calculate the average value of the double
excitation probability Prr at long times and look at the range of parameters
for which Prr remains small. Fig. 4.5(a) corresponds to the case E = 0,
while Fig. 4.5(b) shows a worst-case scenario where E is chosen in the range
0 − 20 mV/cm so as to maximize Prr. For θ ≈ 0 the system is faithfully
described by a spin-1/2 system. For increasing angle θ, we identify the range
of magnetic fields where Rydberg blockade is maintained. In addition, we
observe a breaking of the Rydberg blockade for negative magnetic fields as
predicted in [284]. A similar analysis for various principal quantum numbers n
indicates that the presence of a Förster resonance at n = 59 is responsible for
this sensitivity to weak electric fields [285].

4.4.2 Dynamics of an Ensemble of Atoms
Now that we have identified parameters allowing to map our two-atom system
onto a spin-1/2 model, we extend the study to larger systems. We first revisit
the experimental realization of an 8-atom ring, reported in [60], where a discrep-
ancy with the spin-1/2 model was observed. Our experimental collaborators
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Fig. 4.6: Dynamics of an ensemble of atoms under Rydberg excitation. (a)
8-atom ring with a nearest-neighbor spacing of 6.5 µm. The shaded ellipse
illustrates the range of the anisotropic blockaded region U > ℏΩ. (b) Evolution
of the Rydberg fraction fR with the pulse area Ωτ for B = 6.9 G. The inset
shows the probability P5+ to observe configurations with at least 5 excitations.
At large times, the experimental points systematically lie above the results
of a simulation of the corresponding spin-1/2 model (solid line). (c) Same
parameters with B = 3.5 G. (d) Square lattice of 7 × 7 traps (lattice spacing
6.1 µm). The blockade extends over nearest and next-nearest neighbors. (e)
Evolution of the Rydberg fraction for B = 6.9 G. Here the data shows a slow
increase in fR at long times, while the spin-1/2 model predicts a saturation.
(f) For B = 3.5 G, the agreement with the spin-1/2 model becomes very good.
All figures: error bars depict the standard error of the mean and are often
smaller than the symbol size.

illuminate the atoms with a Rydberg excitation pulse and observe the ensuing
dynamics following this quench by measuring the fraction fR of atoms that are
excited to Rydberg states. They also extract the probability P5+ that more than
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five atoms are excited, i.e., that the blockade condition is violated as for our
parameters nearest-neighbor excitation is thwarted. Prior to this experiment
the stray electric field is compensated better than 5 mV/cm. Fig. 4.6(a-c)
shows the results for two values of the magnetic fields. For B = 6.9 G, the
experiment shows a slow rise of P5+ above the prediction of the spin-1/2 model.
Contrarily, for B = 3.5 G, we find a much better agreement with the spin-1/2
model as expected from the above analysis.

In a second experiment, our collaborators probe a square array of 7×7 atoms.
The evolution of fR is shown in Fig. 4.6(d-f). As an exact simulation of the
dynamics of the 49-atom system is no longer possible, we use the fact that two
neighboring atoms cannot be excited due to the Rydberg blockade to truncate
the Hilbert space from 249 to ∼ 230 states. We have checked with systems of up
to 25 atoms, that the truncation gives the same results as an exact calculation.
We solve the time-dependent Schrödinger equation using a split-step approach.
Again, we find a deviation with respect to the spin-1/2 model for B = 6.9 G,
while at lower B the agreement is much better. We have thus identified the
conditions where the system can be used as a quantum simulator of anisotropic
spin-1/2 Ising model.

4.5 Conclusions and Outlook
In conclusion, we have explored the mapping on spin-1/2 models of interacting
multilevel Rydberg atoms by taking into account the underlying details of
the atomic structure in the presence of electric and magnetic fields. We
searched for conditions under which the interaction between two Rydberg
atoms can be faithfully described by a single potential curve. We found that
this approximation can be sensitive to electric fields, thus extending previous
studies on the breakdown of the Rydberg blockade [52, 53, 241, 243, 283,
284], and searched numerically for an optimal region of parameters. Then,
using atomic arrays of increasing size, from a pair of atoms to a 7 × 7 array,
we confirmed that the experimentally observed dynamics under a quench is
accurately reproduced by a spin-1/2 model with anisotropic Ising interaction.
This work opens exciting prospects for harnessing the rich interaction spectrum
of Rydberg atoms, for the engineering of various spin Hamiltonians. These
insights could also help to improve the control of interactions in Rydberg
dressing experiments using nP3/2 states [142], as well as for Rydberg slow light
polaritons with nD states [240].
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5
Symmetry-Protected Topological

Phase of Interacting Bosons
The concept of topological phases is a powerful tool for characterizing quan-

tum many-body ground states beyond Landau’s paradigm of symmetry breaking.
While a few topological phases appear in condensed matter systems, it has been
an outstanding goal to realize a topologically non-trivial many-body ground
state in artificial matter.

In this chapter, we discuss the quantum simulation of a symmetry-protected
topological phase of interacting bosons in a one-dimensional lattice. The
discussion is based on our joint theoretical and experimental project [4] that
was performed together with the group of Antoine Browaeys. They realized the
symmetry-protected topological phase experimentally with Rydberg atoms and
demonstrated a robust ground state degeneracy that is attributed to protected
edge states. The setup is based on atoms that are trapped in an array of optical
tweezers and excited into Rydberg levels, which gives rise to hard-core bosons
with an effective hopping by dipolar exchange interaction.

Here, we mostly concentrate on our theoretical contributions to the project
and compare experimental results with simulations. To present a coherent
story, we also provide an overview about the experimental setup. For more
information about the experiment, see the reference [4] and the PhD thesis
by Sylvain de Léséleuc [3]. For details about the classification of the realized
symmetry-protected topological phase of interacting bosons and its connection
to the celebrated Haldane state, see the PhD thesis by Nicolai Lang [5].
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5.1 Introduction
The paradigm of symmetry breaking has proven very successful for characteriz-
ing quantum phases. However, not all of them follow this paradigm, and some
of these phases are nowadays characterized in the framework of topological
phases. The most prominent example of a topological phase is the integer
quantum Hall state with its remarkably robust edge states giving rise to a
quantized Hall conductance [286]. For a long time, it was believed that such
phases occurred only in the presence of a magnetic field, until the prediction
of topological insulators [287] revealed a novel class of topological states of
matter, nowadays denoted as symmetry-protected topological phases (SPT).
They occur in systems displaying an excitation gap in the bulk, i.e., bulk
insulators, and an invariance under a global symmetry. Their defining property
is that the ground state at zero-temperature cannot be transformed into a
conventional insulating state upon deformations of the system that do not close
the excitation gap or violate the symmetry. In particular, the edge states are
robust to any perturbation commuting with the symmetry operators.

SPT phases were first predicted and observed in materials where the interac-
tion between electrons can be effectively neglected [288, 289]. In this specific
case of non-interacting fermions, SPT phases can be classified based on the
action of the Hamiltonian on a single particle [290, 291]. Thus, the appearance
of robust edge states is fully understood from the single-particle eigenstates.
This remarkable simplification motivated experimental studies of topological
phenomena at the single-particle level with artificial quantum matter real-
ized on ultracold atoms platforms [65–71], and in classical systems of coupled
mechanical oscillators [72, 73], as well as optical [74–77] or radio-frequency
circuits [78], and plasmonic systems [79, 80].

In contrast, the situation is different for bosonic SPT phases as the ground
state of non-interacting bosons is a Bose-Einstein condensate. Therefore, it
is well established that strong interactions between the particles are required
for the appearance of topological phases. Their classification is not derived
from single-particle properties, but requires the analysis of the quantum many-
body ground state; a classification of bosonic interacting SPT phases based
in terms of group cohomology has been achieved [292]. A notable example
is the Haldane phase of the anti-ferromagnetic spin-1 chain [293], which has
been experimentally observed in some solid-state materials [294, 295]. However,
the realization of topological phases in artificial matter, where one has full
microscopic control on the particles, would allow to gain a deeper understanding
on the nature of such topological states of matter. A first step has recently
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been achieved by introducing interactions between bosonic particles in a system
with a topological band structure [71, 296], but studies were restricted to the
two-body limit, still far from the many-body regime.

Here, we discuss the first realization of a many-body SPT phase of interacting
bosonic particles in an artificial system. Our setup is based on a staggered
one-dimensional chain of Rydberg atoms, each restricted to a two-level system,
resonantly coupled together by the dipolar interaction [124]. We use this to
encode hard-core bosons, i.e., bosonic particles with infinite on-site interaction
energy, coherently hopping along the chain. The system then realizes a bosonic
version of the Su-Schrieffer-Heeger (SSH) model [297]; the latter originally
described fermionic particles hopping on a dimerized lattice, giving rise to a
SPT phase of non-interacting fermions. Similarly, our bosonic setup gives rise
to two distinct phases of an half-filled chain: a trivial one with a single ground
state and an excitation gap, and a SPT phase, with a four-fold ground state
degeneracy due to edge states, and a bulk excitation gap. Following an adiabatic
preparation of a half-filled chain, our experimental collaborators detect the
ground state degeneracy in the topological phase and probe the zero-energy
edge states. Furthermore, they experimentally demonstrate the robustness of
the SPT phase under a perturbation respecting the protecting symmetry. We
show that this robustness cannot be explained at the single-particle level, a
feature that distinguishes our system from non-interacting SPT phases. All
experimental results are in excellent agreement with our numerical simulations.

5.2 SSH Model for Hard-Core Bosons
The SSH model is formulated on a one-dimensional lattice with an even number
of sites N and staggered hopping of particles, see Fig. 5.1(a). It is convenient
to divide the lattice into two sub-lattices: A = {1, 3, . . . , N − 1}, involving odd
lattice sites, and B = {2, 4, . . . , N}, with even sites. Then, a particle on site i
of one sub-lattice can hop to a site j of the other sub-lattice with a hopping
amplitude Jij (we do not restrict the system to nearest-neighbor hopping). The
many-body Hamiltonian is

HSSH = −
∑

i∈A,j∈B

Jij

[
b†

ibj + b†
jbi

]
, (5.1)

with b†
i (bi) the creation (annihilation) operator of a particle on site i. In

the original formulation of the SSH model, the particles are non-interacting
fermions. Here, we consider hard-core bosons and the operators b†

i (bi) satisfy

77



Chapter 5 Symmetry-Protected Topological Phase of Interacting Bosons

(a) (c)

(b)

(d)

Fig. 5.1: Bosonic SSH model. (a) Dimerized one-dimensional lattice and the two
sub-lattices A and B. The staggered nearest-neighbor hopping energies are
denoted as J and J ′ with |J | > |J ′|. (b) Each lattice site hosts a Rydberg
atom with two relevant levels: 60S1/2 being the vacuum state |0⟩ and 60P1/2

describing a bosonic particle b†
i |0⟩. The dipolar exchange interaction provides

a hopping of the particles. (Inset in a) Angular dependence of the hopping
amplitude measured between two sites; filled (empty) disk: positive (negative)
amplitude. It vanishes and changes sign at the angle θm ≃ 54.7◦. The solid
line is the theoretical prediction. Error bars, denoting the standard error of the
mean, are smaller than the symbol size. (c-d) Single-shot fluorescence images
of the atoms assembled in the artificial structure for the topological (c) and
the trivial (d) configuration. The chain is tilted by the angle θm to cancel
couplings between sites in the same sub-lattice.

bosonic commutation relations on different sites i ̸= j, and additionally the
hard-core constraint (b†

i )2 = 0, as two bosons cannot occupy the same site i. In
our realization, the nearest-neighbor hoppings are dominant with their energies
denoted as J2i,2i+1 = J and J2i−1,2i = J ′ with |J ′| < |J |, and are sufficient to
describe the qualitative behavior of the model.

At the single-particle level, the spectrum of the Hamiltonian in Eq. (5.1),
shown in Fig. 5.2(a), is obtained by diagonalizing the coupling matrix Jij. It
displays two bands separated by a spectral gap 2(|J | − |J ′|) and, depending on
the boundaries of the chain, localized zero-energy edge modes. There are two
such modes for a chain ending with weak links J ′ (topological configuration,
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Fig. 5.1(c)) and none if the chain ends with strong links J (trivial configuration,
Fig. 5.1(d)). The topology of the bands emerges from the sub-lattice (or
chiral) symmetry of the SSH Hamiltonian [290, 291], which notably constrains
the hopping matrix Jij to connect only sites of different sub-lattices, e.g.,
next-nearest-neighbor hoppings Ji,i+2 = J ′′ are forbidden. The existence and
degeneracy of edge modes are topologically protected from any perturbation
that does not break the sub-lattice symmetry. These single-particle properties
of the coupling matrix Jij, defining the SSH model, have been observed in
many platforms such as, e.g., ultracold atoms [298, 299], polaritons in array of
micropillars [79], or mechanical granular chains [300].

We now turn to the properties of the quantum many-body ground state18

corresponding to a half-filled chain. For non-interacting fermions, the properties
of the SSH chain follow from the Fermi sea picture based on the single-particle
eigenstates: in the trivial configuration one obtains a single insulating ground
state, while, in the topological configuration, (i) an excitation gap appears
in the bulk, and (ii) the ground state is four-fold degenerate as the two zero-
energy edge modes can be either empty or occupied. For interacting bosons,
the description of the many-body ground state is much more challenging. In
the special case with only nearest-neighbor hoppings J and J ′, the bosonic
many-body ground states for hard-core bosons can be derived via a Jordan-
Wigner transformation from the fermionic ones, and inherits the properties of a
bulk excitations gap and a four-fold ground state degeneracy in the topological
configuration, see the supplementary material to our publication [4] and the
PhD thesis by Nicolai Lang [5]. Based on the general classification of bosonic
SPT phases [292], these properties are robust by adding longer-range hoppings
as well as additional interactions between the bosons as long as the bulk gap
remains finite, and the protecting symmetry is respected. Here, the protecting
symmetries are the particle number conservation and the anti-unitary operator

SB =
N∏

i=1

[
bi + b†

i

]
K, (5.2)

where bi + b†
i is a particle-hole transformation and K denotes the complex

conjugation. In contrast to the chiral symmetry (protecting the single-particle
properties and the fermionic SPT phase), next-nearest-neighbor hoppings
J ′′ = Ji,i+2 are symmetry allowed, i.e., [HSSH, SB] = 0 even when including J ′′.

18Note that technically speaking, the simulations as well as the experiment do not realize
the ground state of the Hamiltonian HSSH as defined in Eq. (5.1), but the highest-energy
state of −HSSH. However, since our setup is a closed system, both states are equivalent.
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We will demonstrate this fundamental difference by engineering a perturbation
which shifts the edge modes away from zero-energy at the single-particle level,
but preserves the ground state degeneracy in the bosonic many-body system.

5.3 Realization with Rydberg Atoms

5.3.1 Experimental Setup
Our bosonic SSH model is realized on an artificial structure with N = 14
sites of individually trapped 87Rb atoms [44, 46, 187], see Fig. 5.1(c-d). The
motion of the atoms is frozen during the experiment of our collaborators.
Coupling between the atoms is achieved, despite the large inter-atomic distance
(∼ 10 µm), by considering Rydberg states for which the dipole-dipole coupling
is enhanced to a few MHz [124, 128].

Our experimental collaborators first prepare each atom in a Rydberg S-level,
|60S1/2, mJ = 1/2⟩, using a two-photon STImulated Raman Adiabatic Passage
(STIRAP) with an efficiency of 95%. From there, the atom can be coherently
transferred to a Rydberg P -level, |60P1/2, mJ = −1/2⟩, using a microwave field.
We denote the state with all Rydberg atoms in the S-level as the vacuum |0⟩
of the many-body system, while a Rydberg atom at site i excited in a P -level
is described as a bosonic particle b†

i |0⟩. Since each Rydberg atom can only
be excited once to the P -level, we obtain naturally the hard-core constraint.
The resonant dipolar interaction occuring between the S- and P -levels of two
Rydberg atoms at site i and j gives rise to hopping of these particles [124], as
illustrated in Fig. 5.1(b). We use this to engineer the hopping matrix Jij.

At the end of the experiment, our collaborators de-excite atoms in the
Rydberg S-level to the electronic ground state and detect them by fluorescence
imaging, while an atom in the Rydberg P -level is lost from the structure. To
obtain occupancy probabilities, the measured occupancy of each site is averaged
over several experimental runs.

To implement the sub-lattice symmetry, we use the angular dependence of the
dipolar coupling Jij = d2(3 cos2 θij−1)/R3

ij with d the transition dipole moment
between the two Rydberg levels. The hopping depends on the separation
Rij, as well as the angle θij with respect to the quantization axis defined by
the magnetic field Bz ≃ 50 G. In Fig. 5.1(a), we show the measured angular
dependence, vanishing at the magic angle θm = arccos(1/

√
3) ≈ 54.7◦, which

allows us to suppress the hopping along this direction. By arranging the atoms
in two sub-chains aligned along the magic angle, we thus satisfy the sub-lattice
symmetry. The measured nearest-neighbor couplings are J/h = 2.42(2) MHz
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and J ′/h = −0.92(2) MHz, in full agreement with our numerical determination
of the pair potential, using the pairinteraction software [1]. Note that
calculations in first order perturbation theory were not sufficient to get a high
level of agreement, but it was necessary to read off the interaction strengths
from the non-perturbatively calculated pair potentials.

5.3.2 Numerical Simulation
To verify the experimental results and our understanding of the system, we
simulate the experiments numerically with no adjustable parameters, allowing
for quantitative comparisons between theory and experiment.

Within our simulations, we do not model the preparation of the Rydberg
S-level explicitly but only study the dynamics after the atoms have been
prepared in the Rydberg state. There is a finite preparation error, measured to
be η = 5−7 %, that an atom is not transferred to the Rydberg level. This gives
rise to lattice defects, that are taken into account in the numerical simulations
by averaging over typically ∼ 1000 lattice realizations.

Our simulations calculate the dynamics under the Hamiltonian

H = HSSH + ℏΩµw(t)
2

∑
i

[
b†

i + bi

]
− ℏ∆µw(t)

∑
i

b†
ibi , (5.3)

where HSSH is given by Eq. (5.1). Our Hamiltonian explicitly accounts for the
microwave field that is applied by our experimental collaborators to coherently
transfer atoms from the S-level to the P -level, which we treat in the rotating
frame using the rotating wave approximation. The detuning from the transition
is ∆µw, and the Rabi frequency is Ωµw/(2π) ∼ 0.1 − 20 MHz. Moreover, within
HSSH, we take into account that dipolar interaction also gives rise to longer
range hoppings, for example a hopping to third-nearest neighbors on the order
of ∼ 0.2 MHz. These processes do not qualitatively change the properties of our
system but are important to obtain accurate results. All dipolar interactions
are extracted from pair potential curves calculated with our pairinteraction
software [1], taking into account the applied magnetic field Bz = 47 G. The time
evolution governed by (5.3) is calculated using a Krylov subspace method [301].

As a final step, we account for two different error processes in the experimental
detection process: First, a ground state atom may have moved away so that it
cannot be recaptured. This happens with a measured probability of ε = 0.05(1).
Second, an atom left in the Rydberg manifold might have decayed spontaneously
so that it is recaptured by mistake. The probability of the latter is ε′ = 0.05(1)
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as well. Both processes are considered via Monte Carlo sampling of the
simulation results.

5.4 Single-Particle Properties

5.4.1 Single-Particle Spectrum
As a benchmark of our system, we first study the properties of a single-particle
in the chain. The single-particle spectrum is probed by microwave spectroscopy,
see Fig. 5.2(a). Initializing the vacuum state |0⟩ with all Rydberg atoms in the
S-level, a weak microwave probe with a Rabi frequency Ωµw/(2π) = 0.2 MHz
applied for a time t = 0.75 µs can lead to the coherent creation of a particle
only if an eigenstate energy matches the microwave detuning ∆µw and if this
state is coupled to |0⟩ by the microwave field. We show in Fig. 5.2(b) the site-
resolved probability to find a particle on a given site for the two different chain
configurations. In both cases, we observe a clear signal for ℏ∆µw < |J ′| − |J |
from lower band modes delocalized along the chain. States in the upper band
are not observed as the microwave coupling from |0⟩ to these states is very
small. Only in the topological configuration, we observe an additional signal
localized at the boundaries around zero energy, corresponding to the two edge
modes.

To allow for a quantitative comparison of these experimental results with
a simulation, we calculate the average occupancy at the edge (sites 1 and 14)
and in the bulk (sites 2 to 13) as a function of the microwave detuning ∆µw.
For both the trivial and topological chain, we perform this calculation with
the experimental data and with data that we obtained by our simulation
approached described in Section 5.3.2. We achieve an excellent agreement
between theory and experiment, see Fig. 5.2(c), including the positions and
widths (due to microwave power broadening) of the spectroscopic features.
For the topological configuration, the excitation of the edge modes is seen
beautifully in the simulation as well as in the experimental data. Careful
assessment of the spectrum shows that there is a slightly increased probability
for creating particles at zero energy for the bulk as well. We explain this feature
by the presence of lattice vacancies that can result in zero-energy modes within
the bulk. The main effect of the detection errors is that the probability for
detecting a particle off-resonantly is increased by ϵ = 0.05.

In Fig. 5.2(d), we show the localization of edge modes at the boundary by
post-selecting experimental runs where at most one particle was created. We
observe that the particle populates significantly only the leftmost and rightmost
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Fig. 5.2: Single-particle spectrum. (a) Single-particle spectrum for the trivial
and the topological configuration probed by microwave spectroscopy. Right:
selection of single-particle wavefunctions calculated by our collaborators. (b)
Experimental site-resolved spectra showing the averaged occupancy of each
site as a function of ∆µw. The lower band bulk states are always observed,
whereas the upper band is not visible due to a suppressed coupling to the
microwave probe. Edge states at zero energy appear only for the topological
configuration. The white dashed lines indicate the band gap. (c) Comparison
of the measured single-particle spectra (dots) with theory (lines). The spectra
show the probability to find a particle on the leftmost or rightmost site, as
well as the site-averaged probability to find a particle in the bulk as a function
of the microwave detuning ∆µw. Error bars are standard errors of the mean
and smaller than the symbol size. (d) Spatial distribution of the edge states,
observed (red bars) and calculated (black crosses), showing an exponential
localization on the edges. The dashed line indicates the 2 % noise level caused
by preparation and detection errors.

sites, and their second neighbors, as expected from the sub-lattice symmetry
(edge states have support on one of the two sub-chains only) and in a good
agreement with a parameter-free calculation (black crosses).
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5.4.2 Hybridization of Edge Modes
For any finite chain, the left and right edge modes hybridize to form symmetric
and antisymmetric states with an energy difference Ehyb ∝ J ′|J ′/J |N , which
breaks the degeneracy of the edge modes but decreases exponentially with the
chain length N . While this remains negligible compared to the experimental
time scale for a long chain of 14 sites (Ehyb ≃ h × 20 kHz), the hybridization
is observable for smaller chains. Notably, it gives rise to a coherent transfer
of a particle between the two boundaries without involving the bulk modes,
as sketched in Fig. 5.3(a). To observe this experimentally, our collaborators
prepare a localized particle on the leftmost site with an efficiency of ∼ 94 %
using a combination of an addressing beam and microwaves sweeps [302], and
then let the system evolve freely. Fig. 5.3(b) shows the experimental results for
three chains of 4, 6 and 8 sites.

Fig. 5.3(c-d) compares measurements, taken from Fig. 5.3(b), with a sim-
ulation for a chain of 6 atoms. For this simulation, we took the state with
one particle on the leftmost site as the initial state, i.e., we did not model the
creation of the particle explicitly. The dominant oscillation frequency, which
gives the hybridization energy, agrees well between theory and experiment. The
high-frequency oscillations which are visible in the simulation average out in
the experiment due to shot-to shot fluctuations of atomic positions as well as
motions of atoms, causing varying hopping strengths. The transfer probability
is smaller than one because of lattice defects.

The hybridization energy Ehyb can be obtained numerically by diagonalizing
the coupling matrix Jij for different chain lengths up to N = 100 sites, see
Fig. 5.3(e). After initially decreasing exponentially, Ehyb scales algebraically
with the chain length, as the direct coupling J1,N ∝ 1/N4 between the edges
dominates over the higher-order coupling via nearest-neighbor interactions
Ji,i+1. The 1/N4 scaling is a combination of the 1/R3-dependence of the
dipolar interaction and the pair of edge sites getting closer to the magic angle.
Note that the transition to the algebraic regime happens for significantly longer
chains than studied in the experiment. To determine the hybridization energy
experimentally, our collaborators measure the frequency of the particle transfer
between the two edges, see zoom-in of Fig. 5.3(e). Their results are in excellent
agreement with our theoretical calculations.
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Fig. 5.3: Particle transfer between the two edges. (a) A particle on the left edge
is essentially a superposition of the symmetric and antisymmetric zero-energy
modes, split in energy by Ehyb due to the hybridization for finite chains. (b)
Experimental observation of the transfer for chains of N = 4, 6 and 8 sites after
injecting a particle on the leftmost site. (c) Measured and (d) simulated time
evolution of the probability to find a particle on the left or right edge or in the
bulk for N = 6. (e) Scaling of the hybridization energy Ehyb. The red curve is
an exponential fit for short chain lengths. For longer chains, the hybridization
energy scales algebraically as 1/N4 (blue curve). The zoom-in shows the
hybridization energy obtained experimentally from the transfer frequency (red
dots) and compares it to calculations keeping only nearest-neighbor hoppings
(dashed line) and including the full dipolar interaction (solid line).

5.5 Many-Body Ground State

5.5.1 Adiabatic Preparation
We now turn to the study of the many-body system. In Fig. 5.4(b-c), we
show the full energy spectrum in the trivial and topological configurations,
calculated by our collaborators using exact diagonalization, and ordered by
increasing number of particles. In the trivial case, there is a single ground state
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Fig. 5.4: Preparing the many-body phase at half-filling. (a) Microwave sweep
with time-varying Rabi frequency Ωµw and detuning ∆µw; the latter ends at
∆f . Energy spectrum of the many-body system in the trivial (b) and the
topological (c) configuration for different particle numbers as calculated by our
collaborators. The trivial chain exhibits a single gapped ground state with 7
particles, while the topological configuration exhibits a four-fold degeneracy
involving 6, 7 (two-fold degenerate), and 8 particles. Starting from the empty
chain, the microwave adiabatic sweep loads hard-core bosons in the lattice and
prepares the lowest energy states.

at half-filling. In contrast, the topological configuration exhibits four degenerate
ground states corresponding to the bulk half-filled, and which are characterized
by additional or missing particles mainly residing at the edges19. In order to
prepare the ground state, we perform an adiabatic microwave sweep20, shown
in Fig. 5.4(a), where the final detuning ∆f plays the role of a chemical potential
tuning the number of particles loaded in the chain: for large negative (positive)
values, the chain is completely empty (filled), while there is a finite region for
a detuning around 0 where the bulk of the chain is half-filled.

19Experimentally, only three of the four states are actually easy to access: both edges empty,
both edges occupied, and the symmetric superposition of a particle on the left and a
particle on the right edge.

20We remark that the gap to the excited states never closes during the chosen path in the
parameter space connecting the empty chain to the half-filled state (even in the limit
of an infinite number of particles). The gap is allowed to stay open even in case of the
transition from the trivial to the topological sector because the applied microwave field
does not conserve the particle number and thus breaks a protecting symmetry.
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Fig. 5.5: Evolution of particle number and ground state overlap during the
adiabatic preparation. (a) Numerically calculated evolution of the number
of excitations during an adiabatic microwave sweep with ∆f/(2π) = 1 MHz,
neglecting preparation and detection errors for a chain of 10 sites. The
probability Pn for finding n excitations within the system is depicted. As
expected, there are mainly 6 particles at the end of the sweep. The dashed
curve shows the overlap with the target state with a final value of 0.965. (b)
Evolution of the number of excitations, measured experimentally (dots) and
calculated (lines) including preparation and detection errors ε = 0.06 and
ε′ = 0.07, which were slightly higher for this dataset.

In particular, this enables the adiabatic preparation of the many-body ground
state at half-filling with empty edges (using a sweep ending at ∆f/(2π) ≃
−1 MHz) or filled edges (∆f/(2π) ≃ 1 MHz). In the following, we demonstrate
exemplarily how to create the latter. To do so, we calculate the fidelity of
the ground state preparation by simulating the time evolution of the system
under the adiabatic sweep ending at ∆f/(2π) = 1 MHz. Fig. 5.5(a) shows
how the overlap with the targeted many-body ground state develops during
the sweep, reaching its final value 0.96 (neglecting preparation and detection
errors). In addition, the figure reveals how the number of particles in the
system evolves. When including the experimental errors, the simulation is in
very good agreement with experimental results, see Fig. 5.5(b). The decrease
in the probabilities Pn is mainly caused by the detection errors. This makes us
confident that a high fidelity of the ground state preparation is reached not
only in theory but also in practice.

Now let us study systematically the dependence of the local density of
particles on ∆f , see Fig. 5.6: The bulk sites occupancy (blue curves) exhibits a
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Fig. 5.6: Occupancy as a function of the final detuning. We simulate (lines)
and our collaborators measure (dots) the occupancy of bulk and edge sites
as a function of the final detuning ∆f for the trival (a) and topological chain
(b). For a sweep ending in the single-particle gap (dashed lines), the bulk of
the chain is half-filled. Bosons are loaded in the edge sites of the topological
configuration when ∆f > 0. The error bars represent the standard errors of
the mean.

characteristic plateau at half-filling within the single-particle gap, demonstrating
the existence of a bulk excitation gap. Especially, the fluctuations of the number
of particles in the bulk are strongly reduced with a probability of 48 % to
find exactly 6 particles on the 12 bulk sites (mainly decreased from 100 % by
detection errors). Note that the small jump of the bulk density around ∆f = 0,
even in the trivial configuration, is caused by preparation errors creating lattice
defects: such a defect gives rise to two chains, one of which starts with a weak
link, and thus supports a zero-energy edge-state which gets populated when ∆f
becomes positive.

While the local bulk properties are independent of the topology of the setup,
the situation is drastically different for the edge occupancy: in the trivial
configuration, the edge sites behave the same as the bulk sites, whereas for
the topological chain the boundaries remain depleted for ∆f < 0 and exhibit a
sharp transition to full occupancy for ∆f > 0. This behavior is consistent with
the expected ground state degeneracy.

Our numerical simulations (lines) that take into account preparation and
detection errors show a good agreement with the experimentally measured
particle densities (dots) in Fig. 5.6.

5.5.2 Correlations and String Orders
We gain more insight about the many-body state by analyzing the correlations
between particles, that our experimental collaborators can measure as their

88



Chapter 5 Symmetry-Protected Topological Phase of Interacting Bosons

Cz Cx Cz
string Cx

string

Theory (no errors) -0.96 0.98 0.65 0.88
Full simulation -0.69(1) 0.68(2) 0.11(2) 0.10(2)
Experiments -0.67(1) 0.48(2) 0.11(2) 0.05(2)

Table 5.1: Theoretical predictions (with and without experimental imperfections)
and experimental measurements of the intra-dimer correlators Cz and Cx, as
well as of the string order parameters Cz

string and Cx
string.

detection scheme provides the full site-resolved particle distribution. In the
strongly dimerized regime |J | ≫ |J ′|, we expect the ∼ N/2 particles in the bulk
to be highly correlated as they can minimize their energy by each delocalizing
on a dimer (two sites connected by a strong link J). This picture remains
valid even in our regime where |J | ≃ 2.6|J ′|. A large and negative density-
density correlation is measured Cz(2i, 2i + 1) = ⟨Z2iZ2i+1⟩ ≃ −0.67(1) with
Zi = 1 − 2b†

ibi, corresponding to a suppressed probability to find two particles
on the same dimer. Our collaborators also access the off-diagonal correlations,
Cx(i, j) = ⟨XiXj⟩ with Xi = bi + b†

i measuring the coherence between two
sites i and j, by applying a strong microwave pulse before the detection
which rotates the local measurement basis around the Bloch sphere, for details
see our publication [4]. The obtained correlation Cx(2i, 2i + 1) ≃ 0.48(2)
indicates that a particle is coherently and symmetrically delocalized on two
sites forming a dimer. Furthermore, the experimental detection scheme allows
for the determination of string order parameters, which have emerged as an
indicator of topological states [303, 304]:

Cz
string = −

〈
Z2 ei π

2
∑N−2

k=3 Zk ZN−1

〉
(5.4)

and in analogy for Cx
string. Indeed, the measured string orders are finite in

the topological phase with Cz
string = 0.11(2) and Cx

string = 0.05(2), while in the
trivial phase they are consistent with zero, e.g., Cz

string = −0.02(3).
Table 5.1 compares the measured correlators to numerical simulations. The

agreement is excellent for measurements along the Z axis, whereas Cx and
Cx

string are below the predicted values, suggesting that the rotation of the
measurement basis suffers from experimental imperfections.
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5.6 Probing the Protecting Symmetry
We finally probe the robustness of the four-fold ground state degeneracy to
small perturbations, which respect the protecting symmetry SB. To do so,
we distort the chain on one side by moving the rightmost site out of the sub-
lattice B, see Fig. 5.7(a). As the edge site and its second neighbor are not at the
magic angle anymore, this creates a coupling J ′′/h ≃ 0.26 MHz between them.
This perturbation breaks the chiral symmetry protecting the fermionic SSH
model, and correspondingly leads to a splitting of the single-particle edge modes.
However, such a perturbation commutes with the symmetry SB and therefore
should not break the many-body ground state degeneracy. To check these
expectations experimentally, our collaborators first repeat the spectroscopic
measurement in the single-particle regime (applying the microwave probe on an
empty chain, as shown in Fig. 5.2(a)), and observe a splitting of the edge modes,
see Fig. 5.7(b). In contrast, the spectroscopic measurement for the bosonic
many-body ground state (applying the probe after the adiabatic preparation
reaching half-filling of the bulk) indeed reveals a near degenerate ground state,
see Fig. 5.7(c). As shown in Appendix B, the results agree well with our
numerical simulations and the tiny remaining splitting of the edge modes in
the many-body regime can be attributed to van der Waals interactions.

The above experiment illustrates that, in contrast to a non-interacting SPT
phase, the robustness of the bosonic many-body ground state at half-filling
cannot be understood at the single-particle level. To gain an intuition for
the differences between the SPT phase of non-interacting fermions and of
hard-core bosons, we use the following simple picture. Considering only the
three rightmost sites (the edge and a dimer), and taking the perturbative limit
(J ≫ J ′, J ′′), we first obtain the energy of having no particle on the edge site
and one delocalized on the dimer: −J − (J ′ + J ′′)2/ (2J) (the second term is
an energy correction due to virtual hopping of the particle from the bulk to
the edge). On the contrary, when there is one particle on the dimer and one
on the edge, we obtain −J − (J ′ ± J ′′)2/ (2J) with an energy correction now
depending on the particle quantum statistics (+ sign for bosons, − for fermions,
due to commutation rules). This simplified model captures why the fermionic
degeneracy is broken by the J ′′ term, while this is not the case for hard-core
bosons.
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Fig. 5.7: Perturbation and robustness of the bosonic topological phase. (a)
The rightmost site is shifted upwards to give a finite hopping amplitude J ′′ to
the second neighbor. (b-c) Probability to find a particle in the left (green) and
right (brown) edge sites when scanning the detuning ∆µw of the microwave
probe. The experiment is performed either on (b) an initially empty chain
to observe the energy difference between the two single-particle edge modes
caused by the perturbation J ′′ or (c) on the many-body ground state with a
half-filled bulk (6 particles in a 14-site chain) to observe the protection of the
ground state degeneracy. Solid lines are Gaussian fits from which we extract
an energy difference of 0.21(1) MHz in (b) and 0.03(2) MHz in (c).

5.7 Conclusions and Outlook
In this work, we analyzed quantum many-body states in two topologically
different phases, and observed four characteristic signatures of a SPT phase for
interacting bosons in one-dimension: (i) a ground state degeneracy characterized
by zero-energy edge states, (ii) an excitation gap in the bulk, (iii) a non-vanishing
string order, and (iv) a robustness of these properties against perturbations
respecting the protecting symmetry SB. The experimental results of our
collaborators and our numerical simulations agreed excellently.

Our work demonstrates that Rydberg platforms, which combine flexible
geometries and natural access to the strongly correlated regime via the hard-
core constraint, are capable to explore unconventional quantum many-body
states of matter.
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6
Density-Dependent Peierls Phase

Effective magnetic fields can be simulated by complex hopping amplitudes of
Rydberg excitations. Non-trivial21 complex hopping amplitudes are realizable
by combining the intrinsic spin-orbit coupling of dipolar exchange interaction
with time-reversal symmetry breaking, for example, by applying a homogeneous
external magnetic field.

In this chapter, we analyze effects of such complex hopping amplitudes in
a minimal setup of three lattice sites. This analyzes is based on our joint
publication [6], where the system was experimentally realized by the group
of Antoine Browaeys. They observed that an excitation performs a chiral
motion that is characteristic for a non-zero Peierls phase which emerges from
the complex hopping amplitudes in perturbation theory. The value of the
Peierls phase of the hopping between two sites depends on the geometry and
the presence of an excitation on the third site.

Here, we mainly focus on our theoretical contributions. For completeness,
we review the experimental setup. Details on the experiment are discussed in
the references [6] and the PhD thesis of Vincent Lienhard [7]. Note that the
visualizations of the setup and of the hopping processes that are shown within
this chapter have been created by our experimental collaborators. To give the
reader a better understanding of the physics that underlies our simulations, we
present these visualizations as well.

21Here, non-trivial means that the complex value of the hopping amplitudes cannot be
gauged away, i.e., an excitation that hops on a closed path can collect a complex phase.
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6.1 Introduction
Quantum simulators are appealing to study many-body phenomena inspired by
condensed matter physics [14]. One of the current challenges is to implement
simulations of fractional quantum Hall-like states that use the interplay between
the non-trivial topology of a band-structure, resulting from, e.g., an effective
magnetic field, and the interactions between the particles [86, 305], see also
Chapter 7. An effective magnetic field can be realized by implementing complex
hopping amplitudes teiφ between the sites of an array, characterized by a Peierls
phase φ [306–308]. A particle circulating around a closed loop then acquires
a phase analog to the Aharonov-Bohm phase, which is proportional to the
enclosed magnetic flux. Effective magnetic fields and complex-valued hopping
amplitudes have been implemented on ultra-cold atom-based platforms [82–
86], by using laser-assisted tunneling in an optical superlattice [87], high-
frequency driving of a lattice [65, 88, 89], and synthetic dimensions [68, 69, 90].
Alternative platforms have also emerged such as superconducting qubits where
complex-valued hopping amplitudes were demonstrated [91], and photonic [92]
or phononic [93] systems operating so-far in the non-interacting regime. Here,
we use the Rydberg platform to implement Peierls phases.

The Rydberg platform is a promising candidate to realize strongly interacting
synthetic quantum matter [41, 128]. The assembly of above two hundred atoms
in tunable geometries has already been achieved [24, 25, 44, 46, 47, 187, 309,
310]. The two different regimes of interaction, van der Waals and resonant
dipole-dipole [124], have been used respectively to implement Ising-like [60–62]
or XY -type spin Hamiltonians [4, 63]. In the resonant dipole-dipole regime,
when the Rydberg atoms can be considered as two-level systems with states nS
and nP , the interaction results in the hopping of the nP excitation between
two sites, making it possible to explore transport phenomena. We recently used
this fact to investigate a symmetry-protected topological phase for interacting
bosons [4], see also Chapter 5. Going beyond this two-level configuration, it
has been proposed to engineer situations where the effective particle features
an internal degree of freedom. There, the dipole-dipole interaction couples
this internal degree of freedom with the motional one, resulting in an intrinsic
spin-orbit coupling [311]. In combination with breaking of the time reversal
symmetry, this can lead to topological band structures characterized by non-zero
Chern numbers [64, 94, 312].

In this chapter, we analyze this intrinsic spin-orbit coupling in a minimal setup
of three Rydberg atoms in a triangle in a joint theoretical and experimental
project. A combination of static magnetic and electric fields perpendicular to the
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triangle allows us to isolate two levels in the nP manifold, thus giving rise to an
excitation with two internal states. The external magnetic field naturally breaks
the time-reversal symmetry, which, combined with the spin-orbit coupling,
leads to a characteristic chiral motion for a single excitation. Our experimental
collaborators from the group of Antoine Browaeys demonstrate this chiral
motion using their Rydberg platform and show that the dynamics is reversed
by inverting the direction of the magnetic field. The chiral motion is well
understood in an effective description, where one internal state of the excitation
is adiabatically eliminated. In this case, the effective Hamiltonian is described by
a non-trivial Peierls phase φ in the hopping amplitude, corresponding to a finite
magnetic flux through the triangle. Remarkably, in this approach the Peierls
phase depends on the absence or presence of a second excitation, and naturally
gives rise to density-dependent hoppings, which are required for the creation of
dynamical gauge fields [313], as recently realized for ultracold atoms in optical
lattices [314, 315]. Here, this density-dependent hopping is demonstrated
by observing the absence of chiral dynamics for two excitations. Finally,
our experimental collaborators demonstrate the ability to tune the effective
magnetic flux through the triangle by varying the geometrical arrangement of
the three atoms. All the experimental results are in good agreement with our
numerical simulations, demonstrating the reliability of the Rydberg platform
and that the physics which underlie the platform is well understood. We
conclude by discussing the implications of the spin-orbit coupling on square
and honeycomb plaquettes.

6.2 Spin-Orbit Coupling by Dipolar Exchange
Interactions

Our system consists of three 87Rb atoms trapped in optical tweezers placed
in an equilateral configuration, see Fig. 6.1(a). For each atom, we consider
three Rydberg states from the 60S1/2 and the 60P3/2 manifolds (separated in
frequency by 17.2 GHz) in a V-structure, as shown in Fig. 6.1(b). The state
|0⟩ = |60S1/2, mj = 1/2⟩ corresponds to the absence of an excitation. The
two excited states |+⟩ = |60P3/2, mj = 3/2⟩ and |−⟩ = |60P3/2, mj = −1/2⟩,
correspond to the two internal states of the excitation. We describe these two
components of the excitation on a site i by the bosonic operators a†

i and b†
i

defined by a†
i |0⟩ = |+⟩i and b†

i |0⟩ = |−⟩i. The energy difference µ = E+ − E−
between |+⟩ and |−⟩ is controlled by a magnetic field Bz and an electric field
Ez, both orthogonal to the atomic array, defining the quantization axis z. The
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Fig. 6.1: Spin-orbit coupling induced by dipolar exchange interaction. (a)
Configuration of three atoms trapped in a tunable geometry. The quantization
axis z, along the magnetic field, is perpendicular to the array of atoms. (b)
Schematic Zeeman structure of the two Rydberg manifolds 60S1/2 and 60P3/2
used in this chapter. The three levels |0⟩, |+⟩ and |−⟩ of the V-structure
involved in the dipole-dipole interaction are indicated as black lines. The
energy difference between |+⟩ and |−⟩ is µ, controlled by DC magnetic and
electric fields perpendicular to the triangle. (c) The two processes for a |−⟩
excitation to hop from site i to site j are illustrated: The |−⟩ excitation is
annihilated on site i, and a |−⟩ (solid arrow) or a |+⟩ (dashed arrow) excitation
is created on site j.

excitation transfer between two Rydberg atoms is governed by the dipole-dipole
interaction Vij = (di · dj − 3(di · r̂ij)(dj · r̂ij))/(4πϵ0r

3
ij) with the distance

vector rij = rj − ri. In our configuration, the normalized distance vector
r̂ij = (cos ϕij, sin ϕij, 0) lies in the (x, y) plane, and Vij thus reads

Vij = 1
4πϵ0r3

ij

[
dz

i dz
j + 1

2
(
d+

i d−
j + d−

i d+
j

)
(6.1)

−3
2
(
d+

i d+
j e−i2ϕij + d−

i d−
j ei2ϕij

)]
.

Here, dx
i , dy

i , dz
i are the components of the dipole operator di, d±

i = ∓(dx
i ±

idy
i )/

√
2, and rij and ϕij denote the separation and the polar angle between the
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two Rydberg atoms. The first three terms in Eq. (6.1) correspond to a transfer
of excitation conserving the total internal angular momentum of the two atoms.
The last two terms describe the spin-orbit coupling: the excitation changes its
internal state by two quanta during the transfer, and the conservation of the
total angular momentum requires that the corresponding hopping amplitudes
acquire a phase e±i2ϕij . Therefore, the dipolar interaction leads to two ways
for an excitation to hop from site i to site j, as illustrated in Fig. 6.1(c) by
our experimental collaborators: a resonant process, with amplitude −ta or −tb,
where the internal state of the excitation is conserved, and an off-resonant
process (by an energy offset µ) with complex amplitude we±2iϕij , where the
excitation changes its internal state. The amplitudes ta,b and w scale as 1/r3

ij

and are related to the dipole matrix elements by

ta,b = | ⟨±| d+ |0⟩ |2
8πϵ0r3

ij

, w = 3 ⟨+| d+ |0⟩ ⟨0| d− |−⟩
8πϵ0r3

ij

. (6.2)

6.3 Chiral Motion of a Single Excitation
We now discuss the situation where three atoms are arranged in an equilateral
triangle and derive the expression of the complex hopping amplitude of a single
|−⟩ excitation. We restrict ourselves to the case |µ| ≫ ta,b, w and treat the
hoppings perturbatively. As the internal state-flipping hopping is off-resonant,
the |−⟩ excitation has only a small probability of becoming a |+⟩ excitation.
In addition, as the interaction conserves the number of excitations, once the
atoms are initialized in the three-site state |−00⟩, they mostly remain in the
one excitation subspace consisting of the states |−00⟩, |0−0⟩ and |00−⟩. The
hopping of a |−⟩ excitation from site 1 to 2, i.e. the change of the three-atom
state from |−00⟩ to |0−0⟩, see Fig. 6.2(a), proceeds either by a direct hopping
with amplitude −tb, or by a second-order coupling via the intermediate state
|00+⟩ consisting in two successive flips of the internal state. The latter has
an amplitude −w2 e2i(ϕ32−ϕ13)/µ, with ϕ32 − ϕ13 = 2π/3. Consequently, the
hopping amplitude −teiφ from site 1 to 2 is the sum of the amplitudes of these
two processes

teiφ = tb + ei4π/3 w2

µ
. (6.3)

The representation of the amplitudes in the complex plane is shown in Fig. 6.2(b).
In this perturbative picture, the |+⟩ excitation is adiabatically eliminated, and
the problem reduces to the hopping of the |−⟩ = b†

i |0⟩ excitation described by

97



Chapter 6 Density-Dependent Peierls Phase

(a) (b)

(c)

0.0 0.5 1.0 1.5

Interaction time (µs)
0.0

0.5

1.0

Pr
ob

ab
ilit

ies P|−00〉

P|0−0〉

P|00−〉

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

En
er

gy

Fig. 6.2: Peierls phase on a triangle. (a) The two available processes for a
|−⟩ excitation to hop from |−00⟩ to |0−0⟩: direct hopping with amplitude
−tb, or virtual hoppings via |00+⟩. (b) Complex plane representation of the
effective hopping, which is the sum of the two processes depicted in (a). (c)
Calculated evolution of the site probabilities after preparing |−00⟩ with total
flux 3φ = π/2, using two different approaches: The dynamics represented by
the dashed lines are calculated using the effective Hamiltonian (6.4). The
solid lines depict the dynamics obtained by considering the three levels of the
V-structure explicitly. The excitation does not spread as time flows, and moves
from site to site in a chiral way.

the effective Hamiltonian

Heff = −t
3∑

i=1

[
eiφb†

i+1bi + e−iφb†
ibi+1

]
, (6.4)

with b4 = b1. The Peierls phase φ can be interpreted as the result of an effective
magnetic field and the magnetic flux through the triangle is thus 3φ. Experi-
mentally, both the effective hopping amplitude t and the flux 3φ are controlled
by the distance between the atoms and the energy separation µ. For non-zero
flux (modulo π), the excitation exhibits a chiral motion when evolving in the
triangle. In particular, for 3φ = ±π/2 [91], the excitation hops sequentially
from site to site in a preferred direction. Fig. 6.2(c) shows this expected motion
for the parameters used in the experiment (see Section 6.3.1): We plot the
probability to find a |−⟩ excitation at a certain site as a function of time. The
dashed lines show the dynamics governed by the effective Hamiltonian (6.4).
The solid lines depict the dynamics, considering all the three states of the
V-structure explicitly, including the |+⟩ state. The fast oscillations exhibit a
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frequency close to µ/h, and result from the non-perfect elimination of the |+⟩
state. Note that while these calculations show qualitatively correct results, we
need to consider all the six Zeeman sublevels of the 60S1/2 and 60P3/2 manifolds
to obtain accurate results, see Fig. 6.3.

6.3.1 Finding Suitable Experimental Parameters
To experimentally demonstrate the chiral motion of a |−⟩ excitation resulting
from the complex hopping of Eq. (6.3), our collaborators use three 87Rb
atoms trapped in optical tweezers arranged in an equilateral triangle [44]. The
experimental parameters must be chosen carefully to isolate the chosen V-
structure from other Rydberg states, see also Chapter 4. To do so, we worked
together to find optimal parameters under the constraint that the condition for
chiral propagation is fulfilled, i.e, 3φ = π/2. We ended up with the following
parameter set:

• A magnetic field of 8.5 G is applied to lift the degeneracy of the Zeeman
sub-levels of a single atom.

• If we used the magnetic field alone, the pair state |−−⟩ (which
will be considered in Section 6.4) would still be degenerate with
|60P3/2, mj = −3/2, 60P3/2, mj = 1/2⟩. To avoid leakage to this state
due to interactions emerging from higher order processes, we lift
the degeneracy by additionally applying an electric field. We choose
Ez = 0.4 V/cm, for which the static dipole moment induced by the
electric field is still small.

• The interatomic distances must not be selected too short to avoid inter-
mixing of other states through Rydberg-Rydberg interactions. On the
other hand, strong interactions and thus, fast dynamics are necessary to
neglect the decay of the Rydberg levels and the motion of atoms. For the
experiment, a side length of 11 µm for the triangle is a good trade-off.

The chosen electric and magnetic fields yield µ/h = −16 MHz.
For these experimental parameters, our collaborators measured ta/h ≃

1.5 MHz and tb/h ≃ 0.55 MHz, using a spin exchange experiment with two
atoms [63]. These values are in good agreement with our theoretical calculations
of the interaction energies using the pairinteraction software [1]. We then
deduce w/h ≃ 2.7 MHz using the values of the angular part of the dipole matrix
elements.
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6.3.2 Experimental Realization
To prepare the array of atoms into the initial state |−00⟩, our collaborators first
initialize all three atoms to |0⟩. To do so, they switch off the tweezers (because
the tweezers anti-trap Rydberg states) and excite the atoms, which have been
optically pumped to a well-defined ground state, to |0⟩ using a STImulated
Raman Adiabatic Passage (STIRAP) [4]. Then, our collaborators address the
atom on site 1 with a focused laser beam and apply a microwave π-pulse of
duration 400 ns resonant to the light-shifted |0⟩ → |−⟩ transition. The value
of the light shift is typically 6 MHz. The π-pulse prepares a |−⟩ excitation on
the addressed atom. After the preparation of the array of atoms into the state
|−00⟩, the system evolves under the action of the dipole exchange interaction
for a time τ . To read out the final state of the atoms, |0⟩ is de-excited to
the ground state and recaptured by the tweezers that are switched on again.
Atoms in other Rydberg states are lost so that in a subsequent fluorescence
image, |0⟩ is visible as occupied sites and |±⟩ as empty sites. Note that the
experimental detection scheme cannot distinguish between the Rydberg states
|+⟩ and |−⟩. Thus, we denote both states as a single state |1⟩. Note that
the Rydberg state |+⟩ gets barely populated during the experiment because
|µ| ≫ ta,b, w so that the |1⟩ state consists mostly of the |−⟩ state. For more
details on the experimental realization, see our joint publication [6] and the
PhD thesis of Vincent Lienhard [7].

The result of this first experiment is presented in Fig. 6.3(a), where the
three-site probabilities to be in the states |100⟩, |010⟩ and |001⟩ is plotted as a
function of the interaction time τ . As expected, we observe a chiral motion of a
localized |−⟩ excitation in the counterclockwise direction 1 → 3 → 2 → 1. This
is the signature of an effective magnetic field acting on the hopping excitation.
The fact that the three probabilities do not sum to 1 comes from the imperfect
preparation of the state |100⟩ and detection errors.

To reverse the direction of motion, the sign of the magnetic field Bz is
reversed. Then, the states of the V-structure that are accessed by the ex-
periment are |0⟩ = |60S1/2, mJ = −1/2⟩, |+⟩ = |60P3/2, mJ = −3/2⟩, and
|−⟩ = |60P3/2, mJ = +1/2⟩. Note that the value of µ remains unchanged be-
cause the Stark shift only depends on |mj|. However, the hopping of a |−⟩ to a
|+⟩ excitation now corresponds to a decrease of the internal momentum by two
quanta: The orbital phase factor is thus e2iϕij , and the sign of the Peierls phase
is changed. Fig. 6.3(b) shows the same three-site probabilities as in Fig. 6.3(a)
for this opposite direction of Bz. We now observe a chiral motion of the |−⟩
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Fig. 6.3: Observation of the chiral motion of a single |−⟩ excitation. Evolution
of the three-site probabilities to be in the states |100⟩, |010⟩ and |001⟩ as a
function of the interaction time for Bz < 0 (a) and Bz > 0 (b). Experimental
results (dots) and the full simulation (solid lines) are in good agreement.
The simulation considers all the Zeeman sublevels, experimental errors in the
preparation and the detection, and shot-to-shot fluctuations in the atomic
position (see 6.3.3). The experimental errors and fluctuations lead to the
observed damping of the oscillations. Error bars denote the standard error on
the mean, and are often smaller than the symbol size.

excitation in the clockwise direction 1 → 2 → 3 → 122.

22From an intuitive point of view, we can understand that reversing the direction of Bz

reversed the direction of the motion as follows: Reversing the direction of Bz and Ez is in
the case of our setup equivalent to looking at the triangle “from behind” instead of “from
the front”. From this perspective, the propagation is clockwise instead of counterclockwise.
Admittedly, our collaborators did not actually reverse the direction of Ez. However, as
the Stark shift does not depend on the direction of Ez, this makes no difference. Note
that Fig. 6.3(a) and (b) differ not only by the direction of the motion but also by some
tiny varieties because of small experimental differences and imperfections that we tried
to take into account in our full simulations as well, see Section 6.3.3.
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6.3.3 Numerical Simulation
As seen in Fig. 6.2(c), the dynamics of the excitations in the triangle can be
qualitatively reproduced by considering only the exchange interactions between
the levels of the V-structure. For a rough understanding, simulating the time
evolution under the effective Hamiltonian (6.4) has been sufficient. However, to
obtain a quantitative agreement between numerical simulation and experiment,
we must take into account additional effects that are not captured by these
idealized simulations. In the following, we describe in detail how we achieve a
full simulation of the experiment:

For an accurate simulation, we must keep in mind that the dipole-dipole
interaction (6.1) contains not only the terms d+

i d−
j , d−

i d+
j , d+

i d+
j , d−

i d−
j that keep

the system inside the V-structure consisting of the three states {|0⟩ , |+⟩ , |−⟩}.
However, it also contains the term dz

i dz
j that couples to Zeeman states outside

the V-structure. The effect of the latter is inhibited thanks to the electric and
magnetic fields, which energetically isolate the V-structure, but must not be
neglected to obtain quantitative agreement. In principle, one could include this
additional coupling and the resulting higher-order hopping processes within
perturbation theory. However, it is easier for us to include all the six Zeeman
sublevels of the 60S1/2 and 60P3/2 manifolds directly within the simulation.
As we only consider three atoms, the enlarged local basis can still be handled
numerically without any problems. Note that the numerical results show that
the chiral motion gets a bit faster by including all the Zeeman sublevels.

Considering the Rydberg states outside these two manifolds results in Van
der Waals interactions between the atoms, which we include in the simulation
as well. However, these interactions have only a tiny influence on the dynamics
for the parameters used in the experiment. The strengths of both dipolar
exchange and van der Waals interactions are calculated in the presence of the
applied electric and magnetic fields using our pairinteraction software [1].

The simulation starts with a triangle where each atom is in the |0⟩ state. As
a first step, we simulate the preparation of the |−⟩ excitations considering the
local light-shift and the globally applied microwave field. To do so, we start
by prediagonalizing the single-atom Hamiltonians describing the interaction of
the atoms with the applied static fields. Then, we shift the |0⟩ state of atom
1 by 5 or 6 MHz to account for the light shift (for Bz < 0, the experiment
used a shift of 6 MHz; for Bz > 0, 5 MHz was used). Finally, we apply the
microwave π-pulse of duration 400 ns resonant to the light-shifted |0⟩ → |−⟩
transition. The microwave couples the Stark- and Zeeman-shifted states of
the 60S1/2 manifold to the 60P3/2 manifold. During the excitation process,
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we take into account the van der Waals and exchange interactions between
Rydberg states. The computations are performed in the rotating frame within
the rotating wave approximation. The simulation of the preparation process
indicates leakage to other states outside the V-structure, on the order of 5%.
Presumably, this leakage could be reduced using optimal control. As a second
step, we simulate the time evolution of the prepared state under the influence
of the dipolar exchange interaction.

We take into account experimental imperfections by sampling over 500
different realizations of the initial configuration of the triangles. Firstly, we
take for the probability for lattice vacancies the measured value 0.17 (due
to missing atoms or errors in the STIRAP process). Secondly, we consider
shot-to-shot fluctuations of the positions of the atoms in their tweezers. The
root-mean-square deviation of the atomic positions is σx,y = 0.12 µm within
the plane of atoms and σz = 0.6 µm perpendicular to it, resulting in varying
hopping strengths. Importantly, due to these fluctuations, the atoms can also be
positioned in such a way that the interatomic axis is not exactly perpendicular
to the quantization axis. In this case, the dipolar interaction can change the
magnetic quantum number by one, provoking additional leakage to states
outside the V-structure. These experimental imperfections are responsible for
the observed damping of the dynamics.

As a last step, detection errors are included through Monte Carlo sampling
of the numerical results [4, 316]. In the simulation we account for the fact
that the detection scheme does not distinguish between states other than
|0⟩ by computing the probabilities P|100⟩, P|010⟩ and P|001⟩ as measured in the
experiment. Note that the preparation of a state with two excitations is
experimentally challenging and prone to additional errors. Therefore, we have
scaled vertically the theory curve shown in Fig. 6.4(b) by a factor 0.8.

Fig. 6.3(a-b) shows the results obtained by this full simulation together with
the experimental data for the chiral motion in both directions. We get a good
agreement – the frequency, the amplitude, and the damping of the chiral motion
is reproduced.

6.4 Density Dependence of the Peierls Phase
For ensembles of two-level atoms in resonant interaction, the excitations can be
mapped onto hard-core bosons, a fact used in our previous work [4]. A natural
question to ask in our present multi-level situation is the consequence of the
hard-core constraint on the dynamics of the |−⟩ excitations.
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Fig. 6.4: Demonstration of density-dependent hopping for two excitations.
(a) The presence of a |−⟩ excitation on site 3 prevents the internal state-flipping
process responsible for the complex hopping of the |−⟩ excitation from 2 to 1.
Thus, only the real coupling remains. (b) Probability to be in the doubly excited
three-site states |011⟩ (targeted initial state), |101⟩ or |110⟩ as a function of
the interaction time τ . Upper panel: simulations in an idealized case including
only the three levels of the V-structure. Lower panel: experimental results
together with the results of the full simulation. (c) Hopping processes to go
from site 1 to site 2 in the two-excitation case, showing the direct coupling and
the fourth-order process via |0++⟩. The latter leads to a slight asymmetry in
the dynamics.

6.4.1 Experimental Results
In order to explore this experimentally, we now initialize the three-atom system
with two |−⟩ excitations on sites 2 and 3, while site 1 is in state |0⟩, thus
preparing the three atom state |0−−⟩. To do so, our experimental collaborators
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use again the addressing laser on site 1 (this time, inducing a light shift of
40 MHz), but tune the π microwave pulse on resonance with the free space
|0⟩ → |−⟩ transition. All other parameters are left the same as for the single
excitation experiments.

In the case of hard-core bosons evolving with the Hamiltonian (6.4), one
would expect the hole (state |0⟩) to propagate in the opposite direction to
the single |−⟩ excitation case, as observed using superconducting circuits [91].
However, in our system, this is not the case! Remarkably, we do not observe any
chiral motion, see Fig. 6.4: The hole state |0⟩ propagates almost symmetrically
towards sites 2 and 3, suggesting that the hopping amplitude between sites is
now real, and that the description of the dynamics by the Hamiltonian (6.4) is
no longer valid.

6.4.2 Theoretical Description
To understand this, we come back to the hard-core constraint in our system.
Two particles, irrespective of their internal state |+⟩ or |−⟩, can not reside
on the same site. As a consequence, the effective hopping from site 1 to 2
is modified if an excitation is already present on site 3. This suppresses the
off-resonant process, which is at the origin of the complex hopping amplitude
in the single excitation case, leaving only the direct hopping described by −tb.
Therefore, the hard-core constraint generates a density-dependent hopping,
where the phase of the hopping amplitude, as well as its strength, depends on
the occupation of the third lattice site. The effective Hamiltonian describing
this situation generalizes the one of Eq. (6.4) to the case of more than one |−⟩
excitation:

Hmany
eff = −t

3∑
i=1

[
eiφ(1−ni+2)b†

i+1bi + ∆b†
i+1bini+2 + h.c.

]
, (6.5)

with the occupation of the third site ni+2 = b†
i+2bi+2 and ∆ = (tb−t)/t. The first

term in the effective Hamiltonian shows that the Peierls phase is now density-
dependent. The second term describes a conventional correlated hopping, which
does not modify the real or complex nature of the couplings between sites.
In addition, the adiabatic elimination leads to two-body interaction terms
∝ (w2/µ)ninj, that do not play a role in an equilateral triangle and that we
therefore drop.

We still observe a residual asymmetry in the dynamics, see Fig. 6.4(b). This
indicates that the complex-valued hopping is not fully suppressed. Following
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the same effective Hamiltonian approach as the one outlined in Section 6.2,
the internal state-flipping hopping is now a fourth-order process, as shown in
Fig. 6.4(c). Considering the hopping from site 1 to site 2, the hole can directly
hop with an amplitude −tb, or virtually go through |++0⟩, leading to a total
amplitude teiφ = tb + w4/µ3e−4iπ/3. As w ≪ |µ|, the complex part of this
hopping is extremely small compared to the single particle case, thus leading
to the observed quasi-symmetric dynamics.

To ensure that our understanding of the experimental results is correct, we
compare them with numerical simulations. The upper panel of Fig. 6.4(b)
shows an idealized simulation that takes into account only the three levels of
the V-structure. The features of the experimentally observed dynamics are
qualitatively reproduced by this simulation. The lower panel of Fig. 6.4(b)
depicts the experimental data and the results of a full simulation modeling the
experiment as described in Section 6.3.3, achieving good agreement.

6.5 Tunability of the Peierls Phase
Finally, we go back to the single excitation sector and demonstrate the control
of the Peierls phase by tuning the geometry of the triangle while keeping the
same value for µ. To do so, we study an isosceles triangle parametrized by
the angle γ, see Fig. 6.5(a). In this configuration, the distance between sites
1 and 3 varies with γ. The effective coupling, and hence the Peierls phase, is
then different for each link: the direct hoppings are t12 = t23 and t13 = κt12
with κ = 1/(2 cos[γ/2])3; the virtual coupling are κw2eiγ/µ for the 1 → 2 and
2 → 3 couplings and w2e−2iγ/µ for the 3 → 1 coupling. The variation of the
magnetic flux through the triangle, which is the sum of the three Peierls phases,
is represented in Fig. 6.5(b) as a function of the angle γ. It exhibits an almost
linear dependence for γ ∈ [0◦, 90◦].

Our demonstration of the control over the Peierls phase is achieved by
observing how a single |−⟩ excitation prepared initially on site 2 splits between
site 1 and site 3 after a given evolution time: For a negative flux (modulo 2π)
the excitation propagates towards site 1, while it propagates towards site 3
for a positive flux. For zero flux (modulo π) the propagation is symmetric,
see Fig. 6.5(c). We plot the population imbalance between site 1 and site 3,
I = (P|100⟩ − P|001⟩)/(P|001⟩ + P|100⟩), at time τ = 0.4 µs, as a function of the
angle γ. We chose τ = 0.4 µs as it corresponds to the excitation mainly located
on sites 1 and 3 for γ = 0◦. As expected, we observe that the imbalance varies
with the angle γ, and hence with the magnetic flux, see Fig. 6.5(b). For γ = 0◦
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Fig. 6.5: Tunability of the Peierls phase. (a) Tunable geometry based on an
isosceles triangle with r12 = r23 = 11 µm. (b) Calculated angle dependence
of the magnetic flux threading through the isosceles triangle. (c) Imbalance
I between site 1 and site 3 after having prepared an excitation on site 2 and
letting the system evolve for τ = 0.4 µs, as a function of the angle γ. A
positive imbalance means that the excitation mainly resides on site 1. The
three insets represent the triangle configurations for three values of γ, marked
on the graph by the three dotted lines. The experimental results (points) and
our full simulation (dashed line) agree reasonably.

and 75◦ the flux is zero and thus the propagation symmetric. The results of our
experimental collaborators are in reasonable agreement with our full simulation
of the dynamics as shown in Fig. 6.5(c).

6.6 Extension to Other Geometries
As demonstrated in the previous section for the case of an isosceles triangle, the
Peierls phase depends on the geometrical arrangement of the atoms. A natural
question to ask is what happens for geometries other than a triangle. In the
following, we discuss theoretically the Peierls phase patterns for plaquettes of
square and honeycomb lattices, considering the perturbative regime where the
|+⟩ excitation can be eliminated.

For a square geometry, see Fig. 6.6(a), we find a nearest neighbor hopping
teiφ with a Peierls phase φ, as the adiabatic elimination gives rise to two distinct
virtual processes of equal strength. On the contrary, the next-nearest-neighbor

107



Chapter 6 Density-Dependent Peierls Phase

(b)(a)

Fig. 6.6: Flux pattern resulting from the complex hopping for plaquettes
of various geometries. (a) Square geometry. The effective Hamiltonian
approach yields teiφ = tb + iw2/(µ

√
2) and t′ = tb/23/2 − 2w2/µ as calculated

by Rukmani Bai. In this case, the flux 4φ through the square corresponds
to a homogeneous magnetic field. (b) Honeycomb geometry. Here teiφ =
tb + 3w2/(4

√
3µ)eiπ/3, t′eiφ′ = tb/33/2 + 139w2/(108µ)e2iπ/3 and t′′ = tb/8 −

4w2/(3
√

3µ). The flux pattern is well described as an homogeneous magnetic
field with flux 6φ through the honeycomb in combination with an alternating
flux Φ = φ − φ′ through the red and blue triangles.

hopping remains real valued. Consequently, a single excitation experiences
a homogeneous effective magnetic field with a flux 4φ through the square.
As for the triangle case, the presence of a second excitation gives rise to a
density-dependent hopping and quenches the virtual processes. Therefore,
the dynamics of two excitations is accounted for by a modified homogeneous
magnetic field. Finally, for three excitations, all virtual processes are forbidden,
and we recover a time reversal symmetric dynamics.

For atoms on a honeycomb array, the situation can no longer be described
by a homogeneous magnetic field. As shown in Fig. 6.6(b), the Peierls phase
φ resulting from the nearest-neighbor hopping gives rise to a homogeneous
magnetic field with total flux 6φ. In addition considering the next-nearest-
neighbor coupling introduces a second Peierls phase φ′. The combination of
the two phases leads to an alternating flux pattern. Such a pattern has been
previously discussed in the context of the Haldane model on a honeycomb lattice
[317] and provides an intuitive explanation for the appearance of non-trivial
Chern numbers with C = ±1 reported in [64, 94]. For a lattice geometry
consisting of many plaquettes, the Peierls phase φ for the nearest-neighbor
hopping would now vanish by symmetry, whereas the second Peierls phase φ′

of next-nearest hopping remains finite. We would thus be able to observe chiral
edge states in the single-particle regime. In [64], we obtained these chiral
edge states by analyzing the band structure of the system and computing the
associated Chern numbers for the V-structure levels scheme. The perturbative
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approach presented here provides more intuition on the link between the
honeycomb configuration and the Haldane model.

6.7 Conclusions and Outlook
We analyzed the spin-orbit coupling present in dipolar exchange interactions.
Together with our experimental collaborators, we found a parameter set that
allowed them to observe a chiral motion of an excitation in a minimal triangular
setup of three Rydberg atoms. This motion is characteristic for the presence
of a homogeneous magnetic field through the triangle. It can be understood
best in the perturbative regime, where the spin-orbit coupling gives rise to
Peierls phases. Remarkably, the Peierls phase depends on the occupation
of neighboring sites and therefore naturally gives rise to a dynamical gauge
field. By varying the spatial arrangement, we engineered geometry-dependent
Peierls phases and explored theoretically configurations beyond the triangle. In
particular, for the honeycomb plaquette, we showed that at the single-particle
level and in the perturbative approach, our system shows the same couplings as
those of the celebrated Haldane model, which is characterized by a non-trivial
topological band structure.

Together with the strong interaction between particles that is given naturally
in Rydberg systems through the hard-core constraint, this finding makes the
Rydberg platform an interesting candidate for the realization of fractional
Chern insulators – especially as theoretical studies have already demonstrated
that fractional quantum Hall states can emerge in Haldane-like model with
hard-core bosons [318, 319].

As we will see in Chapter 7, we can indeed find a highly promising experimen-
tal parameter set for the realization of a fractional Chern insulator. Notably,
for the theoretical studies conducted in that chapter, it is crucial to explicitly
consider all states of the V-structure to achieve sufficiently flat bands. That
the perturbative approach is not sufficient to obtain meaningful results is in
strong contrast to the current chapter, where the adiabatic elimination of the
|+⟩ state was convenient.
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7
Fractional Chern Insulator

A current challenge is the investigation of the interplay between the non-trivial
topology of a band structure and interactions between particles. A topologically
non-trivial band structure [64] can result from an effective magnetic field that
can be realized in a Rydberg setup as described in Chapter 6. Interaction
between particles emerges from the hard-core constraint of Rydberg excitations.

In this chapter, we show that on a honeycomb lattice, this setting can give
rise to a many-body ground state that can be understood as a fractional
Chern insulator. Our theoretical study is conducted for realistic experimental
parameters. Using exact diagonalization, we demonstrate that the ground state
features a robust nearly two-fold degeneracy on a torus, an exponential decay
of local correlations, and that is has a many-body Chern number of one. We
discuss how the fractional character of excitations can be detected in a possible
experiment.

7.1 Introduction
Many-body ground states that feature intrinsic topological order are of broad
interest in physical and quantum information science. These states are of
practical relevance for fault-tolerant quantum computing [155, 156] and robust
quantum memory [153, 154]. Moreover, these states are actively explored as a
subject of basic research. For example, their classification [158] and the origin of
the ν = 5/2 state in the fractional quantum Hall effect [159, 161] are intriguing
topics. To address the open questions and pave the way for applications of
topological order in quantum information, simulations are necessary to deepen
our understanding. However, the long-range entanglement makes classical
simulations of large systems challenging [162]. Thus, the study of topological
order is a worthwhile target for quantum simulation.
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Over the last few years, programmable arrays of Rydberg atoms have emerged
as a highly promising platform for quantum simulation [42, 43]. Individual
atoms are trapped in optical tweezers that are arranged to form arbitrary
arrays of several hundred sites with almost unit-filling [24, 25]. To make the
atoms interact, they are excited to Rydberg states [48, 50]. The resulting van
der Waals or dipolar exchange interactions enable the realization of different
spin models where the spin states are encoded in the electronic states of the
atoms. Recent examples include Ising-like models [24, 25, 60–62], XY -type
models [4, 63], and a symmetry-protected topological phase [4]. Most recently,
topological spin liquids has been probed with the Rydberg platform, observing
features of topological order with a quantum simulator for the first time [23,
81]. However, the quantum simulation of fractional quantum Hall-like states
remains an open challenge. Their implementation requires two main ingredients:
strong interactions between particles and the realization of an effective magnetic
field. The latter is a key challenge. While many approaches exist for different
platforms [65, 68, 69, 82–90], the realization of effective magnetic fields typically
requires some form of Floquet engineering that can give rise to heating and
hence hampers the preparation of a ground state. Not long ago, it became
apparent that Rydberg atoms allow for the realization of effective magnetic fields
without requiring a time-dependent Hamiltonian, thus avoiding the heating [64,
312]. The strong interactions between particles are given naturally in Rydberg
systems as infinite on-site interactions [6].

Here, we present a detailed proposal for the realization of a bosonic fractional
Chern insulator with Rydberg atoms that features a 1/2-Laughlin-like state
[320, 321]. We consider a system similar to the models whose single-particle
sector has been studied in [64]. There, and in the experimental publication [6],
it has been demonstrated that the spin-orbit coupling of the dipolar exchange
interaction between Rydberg atoms can give rise to effective magnetic fields
and potentially to topological band structures. We extend this analysis and
study such a system in the many-body regime where the fact that each Rydberg
atom can host only one excitation leads to an infinite on-site interaction. As
topological phases are typically fragile, we take care to model the Rydberg
system accurately to ensure that our results are realistic and applicable to
recent Rydberg quantum simulation platforms.

This project consists of three parts: In Section 7.2, we describe the microscopic
Hamiltonian. In Section 7.3, we provide extensive numerical evidence that the
ground state of the system features topological order at 1/4-filling, using exact
diagonalization. In Section 7.4, we show how a Rydberg quantum simulator
could detect fractional charges [322] as a smoking gun of topological order,

112



Chapter 7 Fractional Chern Insulator

using the density matrix renormalization group (DMRG) method [323].

7.2 Setup
Our system consists of 87Rb atoms arranged in a two-dimensional honeycomb
lattice. For each atom, we consider the Rydberg states |0⟩ = |nS1/2, mj = 1/2⟩,
|+⟩ = |nP3/2, mj = 3/2⟩, and |−⟩ = |nP3/2, mj = −1/2⟩. These states form a
V-level structure. We apply a homogeneous electric field Ez and magnetic field
Bz perpendicular to the plane of atoms, along the quantization axis z, and use
the resulting Stark and Zeeman shifts to energetically isolate these states from
other Rydberg states [64], see Fig. 7.1(a-b). The fields also allow for tuning
the energy difference ∆ = E|+⟩ − E|−⟩ between |+⟩ and |−⟩. We interpret |0⟩
as the vacuum state and an excitation into one of the two other states as a
bosonic particle, where |+⟩ and |−⟩ correspond to the possible internal states
of the particle. We introduce the bosonic operators a†

i and b†
i that create a

particle at lattice site i in the internal state a†
i |0⟩ = |+⟩i and b†

i |0⟩ = |−⟩i,
respectively. Because each atom has one Rydberg electron only, the operators
fulfill the hard-core constraint, meaning that each lattice site can be either
empty or occupied by one particle.

The dipolar exchange interaction between the Rydberg states give rise to the
hopping Hamiltonian [64, 94]

H0 =
∑
i ̸=j

(
ai

bi

)† ( −ta
ij ωij e−2iϕij

ωij e2iϕij −tb
ij

)(
aj

bj

)
+ ∆

∑
i

na
i , (7.1)

with na
i = a†

iai. Here, ta
ij and tb

ij are the amplitude of the hopping of a |+⟩-
particle and a |−⟩-particle, respectively, between sites i and j. The internal
state of the particle is conserved by these hoppings. In contrast, the hopping
that is associated with the amplitude ωij changes a |+⟩-particle into a |−⟩-
particle and vice versa. This change of the internal state of the particle goes
together with the collection of a phase ±2ϕij (spin-orbit coupling), where the
angle ϕij is the polar angle of the distance vector rij = rj − ri between sites
i and j [6]. While this angle depends on the chosen coordinate system, the
physically meaningful phase, which is collected on a closed hopping path, is
independent on the choice.

Van der Waals interaction and other higher order interaction processes can
give rise to density-density interaction. Another contribution comes from the
applied electric field that induces static dipole moments to the Rydberg states.
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Fig. 7.1: Setup for the realization of a fractional Chern insulator. (a) Rydberg
atoms are arranged in a honeycomb lattice with lattice spacing l. A homoge-
neous electric field Ez and magnetic field Bz are applied perpendicular to the
plane of atoms, along the quantization axis z. (b) The fields isolate the Rydberg
levels of the V-structure |0⟩, |+⟩, and |−⟩ (black lines) that are involved in
dipolar exchange interaction. The state |0⟩ is treated as the vacuum state and
the excitations |±⟩ as particles. The energy difference ∆ = E|+⟩ −E|−⟩ between
|+⟩ and |−⟩ is controlled by the fields. (c) Single-particle band structure along
the depicted path through the Brillouin zone for the experimental parameters
that are given in the text. h is Planck’s constant. The lowest band has the
single-particle Chern number C = 1. (d) Average particle density n of the
many-body ground state as a function of the chemical potential µ. The density
shows a plateau at 1/4-filling, indicating an incompressible phase. The density
has been calculated by Johannes Mögerle.

The density-density interactions can be written as

Hint = 1
2

∑
i ̸=j

α,β∈{0,a,b}

Uαβ
ij nα

i nβ
j , (7.2)

with na
i = a†

iai, nb
i = b†

ibi, and n0
i = 1 − na

i − nb
i . Uαβ

ij is the strength of the
density-density interaction between sites i and j. While in principle, additional
two-body terms are possible, these terms are two orders of magnitude smaller
than the relevant energy scales, at least for the experimental parameters that
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we will propose in the following. Thus, the full microscopic Hamiltonian reads

H = H0 + Hint (7.3)

in good approximation.
For the realization of a fractional Chern insulator, we find a suitable set

of realistic experimental parameters, see Appendix C.1. We propose to use
the principal quantum number n = 60, the lattice spacing l = 12 µm, the
electric field Ez = 0.725 V/cm, and the magnetic field Bz = −8 G. For
these parameters, we apply the software pairinteraction [1] to calculate
the Stark and Zeeman shifted Rydberg states. Within the basis of these
states, we calculate the hopping amplitudes and interactions perturbatively
[276]. We take into account that the Rydberg states got slightly admixed by
the applied electromagnetic fields. For the chosen experimental parameters,
the energy difference is ∆/h = 18.52 MHz with Planck’s constant h and
the nearest-neighbor hoppings are ta/h = 1.26 MHz, tb/h = 0.49 MHz, and
ω/h = 2.38 MHz. For large distances, the hopping amplitudes decrease as
1/|rij|3 in good approximation. The precise values are given in Appendix C.2.
There, the values of the density-density interactions are also stated. In general,
|Uαβ

ij | ≤ 0.3 MHz and we checked that the results do not change qualitatively
if we switch off the density-density interactions. However, to be as close as
possible to a potential experiment, we keep the terms for our calculations.
Throughout the chapter, we take into account hoppings and interactions up to
next-next-nearest neighbor because longer ranging processes will cause issues
due to self-interaction in some systems with periodic boundary conditions that
we will study later on.

For now, let us focus on the single-particle band structure. Due to the
two-site unit cell and the two possible internal states of a particle, it has
four bands. The external magnetic field breaks the time-reversal symmetry,
enabling topologically non-trivial bands. Indeed, the lowest band has a non-zero
single particle Chern number [324] C = 1, see Fig. 7.1(c). The fluctuations of
the Berry curvature over the Brillouin zone [325] that are quantified by their
root-mean-square value σB = 0.4 are small. It has been found that similar
honeycomb systems can feature rather flat bands [94]. This is also the case for
the experimental parameters proposed by us, the lowest band has a flatness
ratio f = 2.7. In combination with the strong on-site interaction due to the
hard-core constraint, these properties of the single-particle band structure
makes our system a promising candidate for the realization of a fractional
Chern insulator in the many-body regime.
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Fig. 7.2: Ground state on a torus. (a) For 1/4-filling, the 10 lowest eigenstates
are calculated via exact diagonalization for different clusters of the honeycomb
lattice with periodic boundary conditions. (b) For all clusters, the ground state
is nearly two-fold degenerate and separated from the first excited state by a
gap ∆E/h ≳ 0.2 MHz. E0 is the respective energy of the lowest eigenstate.
(c) For the ground state, density-density correlations show no order as the
function ⟨ninj⟩ /n2 is short-ranged, with density operator ni = na

i + nb
i and

average density n. The function is depicted exemplarily for the clusters 24A
that we also consider for the remaining subplots.

Calculations by Johannes Mögerle within infinite-DMRG indicate an incom-
pressible phase at 1/4-filling, see Fig. 7.1(d). Note that the 1/4-filling of the
system corresponds to 1/2-filling of the lowest band of the single-particle band
structure. This result is compatible with the presence of topological order at
1/4-filling.

7.3 Topological Order
In the following, we study the many-body ground state at 1/4-filling within
exact diagonalization and demonstrate that it indeed shows the characteristics
of a bosonic fractional Chern insulator.

For this analysis, we consider various clusters [326] of the honeycomb lattice
with periodic boundary conditions, see Fig. 7.2(a). The chosen clusters are dif-

116



Chapter 7 Fractional Chern Insulator

0.0 0.5 1.0

θ1/2π

0.0

0.2

0.4

0.6

(E
−

E
0
)/

h
(M

H
z)

∆E/h

(a)

0.0 0.5 1.0

θ2/2π

0.0

0.2

0.4

0.6

(E
−

E
0
)/

h
(M

H
z)(b)

0.0 0.5 1.0

θ1/2π

0.0

0.5

1.0

θ 2
/
2
π

(c)

0.0 0.5 1.0

θ1/2π

0.0

0.5

1.0

θ 2
/
2
π

(d)

0.0

0.5

∆
E

/
h

(M
H

z)
0

1

B
/
B

θ1 θ2

Fig. 7.3: Twisted boundary conditions. (a-b) We apply twisted boundary
conditions with twist angles θ1 and θ2 as illustrated in the inset. We plot the
lowest eigenenergies as a function of one twist angle while keeping the other
zero. The ground state remains nearly degenerate. (c) The gap to the first
excited state stays wide open, independently on the twist angles. (d) The
normalized Berry curvature B/B of the nearly degenerate ground state is
mostly homogeneous as a function of the twist angles. Here, B is the average
of the Berry curvature B over all angles. The many-body Chern number is
C = 1.

ferent tessellations of the honeycomb lattice. The periodic boundary conditions
make the clusters having the topology of a torus. This statement includes the
cluster 24C, i.e., a regular hexagon with periodic boundary conditions, because
it has the geometry of a fattened Möbius band which is homeomorphic to a
torus. The clusters consist of 16 to 28 sites.

Thus, for our model, where the particle have two internal states, the resulting
many-body bases comprise up to ∼ 150 million states at 1/4-filling. Using
exact diagonalization, we calculate the 10 lowest eigenstates and find that the
ground state of our system fulfills three characteristic features of a bosonic
fractional Chern insulator:

First, the ground state is nearly two-fold degenerate [152] and separated from
the first excited state by a gap ∆E/h ≳ 0.2 MHz for all the studied clusters,
see Fig. 7.2(b). These properties are robust by applying twisted boundary
conditions on the torus with twist angels θ1 and θ2, see Fig. 7.3(a-c). In
addition, the ground state degeneracy is lifted for a setup with open boundary
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conditions.
Second, all local correlation functions within the ground state decay ex-

ponentially in the bulk. As an example, the short ranged behavior of the
density-density correlation is shown in Fig. 7.2(c). Therefore, we find absence
of any spontaneous symmetry breaking.

Third, we determine the many-body Chern number for the nearly degenerate
two-fold ground state manifold. The approach is based on applying twisted
boundary conditions and determining the corresponding Berry curvature [327].
The Berry curvature is mostly homogeneous, see Fig. 7.3(d), and we find the
many-body Chern number C = 1.

These three observations are a clear indication of a ground state exhibiting
topological order with long-range entanglement. Furthermore, all these observa-
tions are compatible with a 1/2-Laughlin-like state [162], which is the simplest
topological phase for bosons in a half-filled topological band and has been
predicted in closely related systems [318]. This interpretation is supported by
the calculation of the topological entanglement entropy of γ = (0.45 ± 0.1) ln 2
that has been performed by Johannes Mögerle for our upcoming publication,
which is currently in preparation.

7.4 Experimental Detection
Our upcoming publication will also demonstrate how a Rydberg quantum
simulator could prepare the ground state of the system adiabatically, which has
been analyzed by Nastasia Makki. In the following, we study how a quantum
simulator could find evidence for the presence of topological order within the
prepared ground state.

While quantities like ground state degeneracy, many-body Chern number,
and entanglement entropy can be calculated numerically, they are hardly acces-
sible in real world experiments. However, recently, an experimentally feasible
scheme for the detection of fractionally charged excitations has been proposed
[322]. We adapt the proposal to our Rydberg setup. For fractional Chern
insulators, one expects the accumulation of fractionally charged excitations near
engineered local defects. The charge, i.e., the particle number, is easy to access
experimentally. It is expected to be 1/2 in our case of the 1/2-Laughlin-like
ground state.

To engineer a local defect, we propose to locally apply a light shift to the
|−⟩ state. The light shift gives rise to a local chemical potential µ.

We simulate this scheme using the full microscopic Hamiltonian (7.3). While
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Fig. 7.4: Detection of fractional charges. We consider a cylinder with Lx = 8
and Ly = 3 that is finite along x. We apply a chemical potential µ ≥ 0 to
the 12 leftmost sites SL and the opposite potential to the 12 rightmost sites
SR. Using DMRG with bond dimension χ = 200, we calculate the number
of particles on the left ⟨NL⟩ and on the right ⟨NR⟩ as a function of µ with
NL,R =

∑
i∈SL,R

ni. (a) The number of particles ⟨NL,R⟩ jumps in steps of
1/2, indicated by the dashed lines. (b) The particle density ⟨ni⟩ increases on
the leftmost sites and drops on the rightmost ones if µ is increased. (c) For
comparison, we study our system in the topologically trivial sector, where the
number of particles ⟨NL,R⟩ changes continuously. The system was brought into
the trivial sector by increasing ∆/h by 50 MHz so that the |+⟩ state can be
neglected. (d) Corresponding changes in the particle density ⟨ni⟩.

in an experiment, one might realize a system with open boundary conditions
and several hundreds of atoms [24, 25], we consider a finite cylinder of 48 sites
to keep the system accessible within DMRG. The periodic boundary condition
along the y direction helps us to mitigate finite-size effects, see Fig. 7.4(b,d)
where we show an unrolled version of the cylinder. We apply a chemical
potential µ ≥ 0 to the 12 leftmost sites and the opposite potential to the 12
rightmost sites.

We calculate the ground state at 1/4-filling as a function of µ, using the
DMRG implementation of the open-source software TeNPy [328]. As a result,
we observe that the particle number summed over the leftmost sites jumps
up by 1/2 (quasiparticle), the particle number on the rightmost sites jumps
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down by the same fraction (quasihole), see Fig. 7.4(a). The creation of the
quasiparticle and quasihole happens already for small values of µ because the
spectrum is gapless at the edge of the cylinder, except for a finite-size gap. The
change of the particle number is a bit smaller than 1/2 because of the finite
correlation length of the created excitations.

For comparison, we study our system in the topologically trivial sector. To
get into the trivial sector, we increase ∆/h by 50 MHz so that the |+⟩ state
can be neglected, and we obtain in reasonable approximation a trivial two-band
model. Such a huge increase in ∆ can be experimentally realized, for example,
by inverting the direction of the magnetic field Bz. In the trivial sector, the
number of particles changes continuously.

7.5 Conclusion and Outlook
In this chapter, we presented a blueprint for the realization of a bosonic
fractional Chern insulator with Rydberg atoms. The suggested setup relies
on Rydberg atoms arranged in a honeycomb lattice and subject to dipolar
exchange interaction, giving rise to hard-core bosons hopping in an effective
magnetic field. We performed numerical studies, providing three characteristic
signatures for the existence of a Laughlin-like state in our realistic microscopic
model at 1/4-filling: (i) robust nearly two-fold ground state degeneracy on a
torus, (ii) exponential decay of local correlations in the bulk, (iii) many-body
Chern number of one.

Moreover, we adapted a recently developed technique for the experimental
detection of fractional charges [322] to our setup. Our numerical simulations
provide evidence that this technique can be applied for detecting fractional
charges in the proposed experiment.

Our detailed proposal paves the way for the quantum simulation of fractional
Chern insulators. Because of the microscopic control of the particles within a
quantum simulator, this can help to deepen our understanding of topological
states of matter.
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8
Deterministic Fast Scrambling

In contrast to the previous chapters, this chapter covers a side project that
is not linked to quantum simulations of topological phases. Instead, we focus
on our proposal for the implementation of a deterministic fast scrambler [8],
illustrating the variety of models that can be implemented using Rydberg
interactions. Fast scramblers are quantum systems that produce many-body
entanglement on a timescale that grows logarithmically with the system size N .
In our proposal, we investigate a deterministic, fast scrambling quantum circuit.
We show that a fast scrambler can be realized with an array of neutral atoms,
using O(log N) shuffling and parallel gate operations, where controlled-Z gates
are performed using Rydberg interactions. Our protocol can be harnessed to
produce highly entangled states on noisy hardware, where a fast generation of
entanglement is crucial to limit decoherence.

Most of the work published in the proposal has been conducted by Tomohiro
Hashizume, Gregory Bentsen, and Andrew Daley, except for the analyzation of
the information scrambling in a realistic setup, which has been performed within
this thesis. Here, we focus on this aspect of the proposal, taking into account
effects of decoherence. To present a coherent story, we will also provide a general
overview of the proposal. The presented plot of the setup has been created by
Gregory Bentsen. For more details on the proposal, see the reference [8] and
the PhD thesis by Tomohiro Hashizume [329].

8.1 Introduction
Quantum information scrambling refers to a process that delocalizes quantum
information by the dynamics of a many-body system and encodes it into a
many-body entangled state [330–333], thereby effectively hiding the information
from local observers. Thus, this process is a practical tool in the context of
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quantum error correction and quantum communication. In particular, strongly
scrambling quantum circuits are known to be excellent encoders that optimally
protect quantum information against the effects of single-qubit erasure and
other forms of local decoherence [334–338].

Quantum information scrambling cannot occur instantaneously: the fast
scrambling conjecture states that scrambling can develop on timescales no
shorter than t∗ ∝ log N , which scale logarithmically with the system size N .
Systems that saturate this conjectured bound on the scrambling time t∗ are
known as fast scramblers [331]. Fast scrambling dynamics can rapidly generate
Page-scrambled states, pure quantum states of a many-body system whose
reduced density matrix ρA is maximally mixed for almost all subsystems A
of size |A| < N/2 [330–332]. Prototypical models for fast scrambling [332,
339–343], inspired by the study of quantum information in black holes [330,
331, 334], often feature randomness and long-range couplings as key ingredients,
although some recent deterministic models have been proposed with sparse or
all-to-all coupling graphs with varying weights [344–346].

We propose a protocol for achieving fast scrambling in near-term experiments
with one-dimensional arrays of optically trapped neutral atoms [24, 25, 36,
61, 187, 347–353]. Within these experiments, long-lived atomic ground states
can be applied as qubit states. Our protocol for achieving fast scrambling
makes use of three experimental tools: (i) global single-qubit rotations, (ii)
parallel application of nearest-neighbor controlled-Z gates that are implemented
by temporarily exciting the atoms to a Rydberg state and harnessing the
strong Rydberg interaction, (iii) shuffling of the atoms via movable optical
tweezers. The latter is applied for implementing highly non-local, sparsely
coupled quantum circuits that allow for fast scrambling quantum channels
[331–333]. Because we realize a fast scrambler, only O(log N) applications of
parallel controlled-Z gates are required. The small number of required parallel
controlled-Z gates (interaction layers) is a significant advantage because it
minimizes the decoherence that mainly arises from the laser excitation to the
finite-lived Rydberg states [126–128, 170, 351, 354].

We analyze iterated circuits built with these tools. The simplest versions
of our circuits generate effective controlled-Z interactions on the hypercube
coupling graph [355, 356], efficiently producing Page-scrambled states from some
initially separable state using only m = ⌈log2 N⌉ interaction layers [8]. Using
2m interaction layers, we can construct deterministic circuits that strongly
scramble quantum information regardless of the input state. In this thesis,
we focus on the latter and evaluate the performance of such a circuit in the
presence of decoherence that is expected in real implementations.
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Fig. 8.1: Fast scrambling via quasi-one-dimensional shuffling. (a) Neutral
atoms (red dots, blue circles) trapped in a static, one-dimensional optical lattice
(gray boxes) can be rapidly rearranged via a two-step shuffling operation R (i-iii)
facilitated by an auxiliary one-dimensional tweezer array (bottom left). Iterated
shuffling and nearest-neighbor Rydberg interactions yield effective interactions
on highly non-local coupling graphs such as the m-regular hypercube graph Qm

(b). More generally, circuits (c) composed of shuffles (blue), nearest-neighbor
controlled-Z operations (red), and global rotations (purple) can be harnessed to
generate Page-scrambled quantum states in m iterations or strongly scrambling
quantum channels in 2m iterations.

8.2 Setup
The basis for our protocol is the possibility to realize a family of sparse non-local
coupling graphs via a quasi-one-dimensional shuffling procedure, see Fig. 8.1(a),
on atoms in optical lattices facilitated by an auxiliary programmable one-
dimensional tweezer array. Straightforward stretching and interleaving tweezer
operations [44, 46, 47, 357] can be used to rapidly shuffle the atomic positions,
see Fig. 8.1(a)(i-iii). For N = 8 these motions execute the permutation

R =
(

0 1 2 3 4 5 6 7
0 4 1 5 2 6 3 7

)
(8.1)

with atoms labeled by i = 0, 1, . . . , N − 1. More generally, for system sizes
N = 2m with m an integer, a “perfect” shuffle or “Faro shuffle” operation [358,
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359] executes the non-local mapping

i′ = R(i = bm . . . b2b1) = b1bm . . . b2, (8.2)

which cyclically permutes the bit order of the atomic index i = bm . . . b2b1
written in binary such that the least significant bit b1 of i becomes the most
significant bit of R(i).

Repeated shuffling operations R dramatically rearrange the atomic positions.
As a result, the propagation of quantum information is no longer constrained
by the underlying one-dimensional geometry of the fixed optical lattice. By
including global Hadamard H and phase P gates, one can implement the
strongly scrambling circuit

Es = [R−1CZ(odd)HP ]m[R−1CZ(even)HP ]m , (8.3)

having only 2m interaction layers CZ(even), CZ(odd). Here, R−1 is the inverse of
the shuffling operation R. The circuit is visualized in Fig. 8.1(c).

Tomohiro Hashizume and Gregory Bentsen have performed numerical studies
of Clifford circuits [360, 361], providing extensive evidence that the circuit Es
indeed yields widespread many-body entanglement in the unitary case. For
details, see our joint publication [8].

8.3 Possible Experimental Realization
In the following, we discuss a possible experimental realization of Es and how
such a realization can be simulated numerically, taking into account effects
of decoherence through noise and finite lifetimes that inevitably degrades the
performance of a scrambling circuit.

Let us start by discussing possible experimental realizations of the different
constituents of the scrambling circuit Es:

• The shuffling operations R and R−1 can be built on established tweezer-
assisted techniques for defect removal in atom arrays [44, 46, 47] and can
be implemented rapidly using a pair of acousto-optic deflectors (AOD) in
crossed configuration and driven by independent RF signals fx, fz, see
Fig. 8.1(a).

• The Hadamard H and phase P gates can be implemented as single-qubit
rotations, for example, via RF pulses or Raman transitions – assuming
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that long-lived ground states of neutral atoms are used as qubit states
|0⟩ and |1⟩ [43, 128, 362].

• The interaction layers CZ(even) and CZ(odd) comprise parallel applications
of controlled-Z gates between neighboring atoms as shown in Fig. 8.1(c).
The controlled-Z gates can be realized by exciting the qubit state |1⟩ to
a Rydberg state and making use of the strong van der Waals interactions
between Rydberg atoms [126, 127, 135, 170, 351, 354, 363, 364]. For
realizing the controlled-Z gates in parallel, one can use the scheme
described in [127]: The state |1⟩ is excited globally to the Rydberg state
|r⟩ by a π pulse, using a laser whose Rabi frequency is much larger than
the van der Waals interaction VvdW(r) ∼ 1/r6 between adjacent atoms
separated by the interatomic distance r = rnn, so that all the population
in |1⟩ is transferred to |r⟩. After waiting for the time π/VvdW(rnn), the
state |rr⟩ of two adjacent atoms has picked up the phase π, and we
bring back the population to |1⟩ by another global π pulse. We separate
neighboring atoms by 2rnn if we do not like to perform a controlled-Z
gate between them. As a result of this, the picked-up phase gets strongly
suppressed by the rapid decay of the van der Waals interaction.

These proposed implementations of the gates have the advantage that they
only require global pulses, removing the experimental hurdle of single-site
addressability and making the experiment faster to perform.

For realistic numerical simulations of the proposed experimental realization,
we consider cross-talk between atoms separated by the distance r, resulting
from the 1/r6 decay of the van der Waals interaction. Note that this crosstalk
results in non-Clifford gates so that we cannot apply the Gottesman–Knill
theorem [360] and are thus limited to simulations with a small number of qubits.
The experimentally unavoidable decoherence is considered by an effective model,
where we apply the depolarizing quantum error channel

D(ρ) = (1 − p)ρ + p
I

2 (8.4)

to all qubits after each of the 2m interaction layers of the circuits. Here, p can
be understood as the rate of single-qubit errors. The error channel is treated
with a quantum trajectory approach where we randomly sample over 6 × 104

realizations of the total circuit and average over the measurements.
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8.4 Information Scrambling in the Presence of
Decoherence

Now that we know how to simulate a possible experimental realization of Es
realistically, we characterize its scrambling properties.

For performing the characterization, we use the Hayden-Preskill thought
experiment as a tool [334, 335, 337, 338] as shown on the left side of Fig. 8.2(a).
This thought experiment is based around the observation that scrambling
channels can be seen as encoding circuits that optimally protect quantum
information against local errors. For the experiment, we consider a local
observer Alice who wishes to use the scrambling circuit Es for encoding some
quantum information that will, later on, be received by another observer Bob.
To do so, Alice first creates Einstein-Podolsky-Rosen (EPR) pairs between her
qubits A and the same number of input qubits of the circuit Es (i.e., qubits
on which the circuit acts). By doing so, she maximally entangles her qubits
with the qubits of the circuit. Bob, for his part, creates EPR pairs between his
qubits B and the remaining input qubits of the circuit. Then, to actually send
quantum information (i.e., a quantum state), Alice can project her maximally
entangled qubits onto the desired state. After the operation of the circuit, Bob
can recover Alice quantum information with high fidelity by collecting only
a small subset R of output qubits and neglecting the rest R – he only needs
|R| = |A| + O(1) output qubits. In the case of a unitary scrambling circuit,
this is tantamount to the statement that the bipartite mutual information
I2(A : RB) between Alice’s qubits A and the qubits B ∪ R accessed by Bob
is maximal. As shown, for example, in the supplementary material to our
publication [329], this is equivalent to vanishing mutual information I2(A : R)
between A and R, i.e., the output qubits R alone do reveal nothing about
Alice’s information.

This high fidelity teleportation of Alice’s quantum information to Bob occurs
if and only if the circuit is strongly scrambling [334, 337] and therefore presents
a sharp criterion for diagnosing the presence of scrambling dynamics in our
circuit Es.

However, while the Hayden-Preskill thought experiment tells under which
conditions Bob can in principle recover the quantum state that Alice has sent,
it does not tell how to do so in practice. To distinguish between scrambling
and decoherence, we attempt to recover Alice’s information using a probabilistic
decoding circuit as shown on the right side of Fig. 8.2(a), following the scheme
of Yoshida et al. [335, 337, 338]. This decoder consists of a complex-conjugated
copy of the scrambling circuit and the ability to measure EPR pairs, thus being
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Fig. 8.2: Information scrambling in the presence of decoherence. (a) Scram-
bling in the circuit Es is diagnosed by the fidelity FEPR of teleporting quantum
information from Alice’s qubit A to Bob’s qubit C, using the setup of the
Hayden-Preskill thought experiment (shown on the left) together with a prob-
abilistic decoding circuit (shown on the right, inside the dotted purple line).
(b) For N = 8 at fixed number of interaction layers t = 6 (here, the number of
interaction layers is a measure of time), the fidelity grows with the number of
qubits |R| used in the decoder, indicating successful teleportation of Alice’s
information with fidelity > 50% even in the presence of single-qubit errors
at rates p = 0.00, 0.01, . . . , 0.04 per 2-qubit gate (light to dark). For p = 0,
the fidelity is nearly identical to that of a Haar-random circuit (dotted black).
(c) The fidelity (dots, solid lines) grows with t and substantially outperforms
nearest-neighbor circuits of the same circuit depth (crosses, dotted lines) in the
presence of decoherence. (d) The decoherence metric δ falls as a function of t in
both the scrambling circuit and nearest-neighbor circuit, providing a measure
of the decoherence acting on the systems as well as a check of our numerical
methods. Each data point is averaged over 6 × 104 quantum trajectories, with
error bars smaller than the markers. The lines are guides to the eye.

experimentally feasible. In fact, decoding protocols of this type have been
realized in pioneering experiments with trapped ions [365]. Assuming that
Alice has one qubit A, the decoder circuit E∗

s acts on the qubits owned by Bob
B and one additional qubit that is maximally entangled with a further qubit
given to Bob C.

The qubits’ evolution under the scrambling and decoder circuits is calculated
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using the state vector simulator of the open-source framework Qiskit [366],
taking into account single-qubit errors at rate p. After the calculation, we
sample over all subsystems of size |R|, and evaluate the projector on the
corresponding |R| EPR pairs. The projection succeeds with the probability
PEPR. In case of success, we evaluate the projector on the EPR pair between
qubit A and C. Such an EPR pair, which is measured with probability FEPR,
is a resource for teleporting quantum information of Alice to Bob.

In the unitary case p = 0, the circuit E∗
s decodes Alice’s quantum information

with a fidelity FEPR = 2I2(A:RB)−2|A|, conditioned on successful detection of
|R| EPR pairs by Bob with probability PEPR = 2−I2(A:RB), see Fig. 8.2(b).
Note that the stated formulas for the probabilities hold for p = 0 only, where
the scrambling circuit Es shows behavior similar to a prototypical scrambler
consisting of Haar-random unitaries. Bob’s ability to recover Alice’s information
is degraded by decoherence p > 0, where the product δ ≡ PEPRFEPR22|A| ≤ 1
gives a natural metric for the strength of decoherence [337, 338].

We compare the scrambling circuit to an analogous circuit without shuffling
and thus with controlled-Z gates between nearest neighbors only. Notably,
the nearest-neighbor circuit requires a longer time to accomplish scrambling,
measured in the number of interaction layers. While the decoherence metric δ
behaves the same for the nearest-neighbor circuit and the scrambling circuit Es,
see Fig. 8.2(d), for p > 0, the reachable teleportation fidelity FEPR is significantly
smaller for the slow scrambling nearest-neighbor circuit, see Fig. 8.2(c). This
demonstrates that fast scrambling is crucial in non-error-corrected systems,
precisely because fewer gates provide fewer opportunities for decoherence. Our
scrambling circuit Es is optimal in this regard as it generates strong scrambling
using the minimal number of interaction layers 2m ∼ O(log N) allowed by the
fast scrambling conjecture [331, 332, 342].

8.5 Conclusion and Outlook
We have analyzed how deterministic, highly non-local iterated circuits can
generate fast scrambling dynamics in the presence of decoherence. Our proto-
col is amenable to direct experimental realization using shuffle operations on
neutral atom qubits. This technique allows for rapid long-range spreading of
entanglement, while minimizing errors from excitation of atoms to Rydberg
states, and uses only shuffling operations, global single-qubit rotations, and
parallel nearest-neighbor interactions. Building fast scrambling circuits in
the laboratory opens connections to a wide range of ongoing areas, including
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fundamental limits on the spreading of quantum information [331, 332, 342,
367], experimental studies of toy models of black holes [344, 368–371], effi-
cient encoders for quantum error-correcting codes [334], and highly entangled
resources for quantum computation [372, 373]. We note that the proposed
scrambling circuit might also be constructed by other means, for example, via
direct wiring of hypercubic coupling graphs in superconducting qubit systems.

Moreover, our protocol for fast scrambling could be immediately combined
with another recent Rydberg proposal [371] that discusses nearest-neighbor
models with scrambling times t∗ ∝ N .
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Ausführliche Zusammenfassung in
deutscher Sprache

Quantenmechanische Vielteilchensysteme mit klassischen Computern zu si-
mulieren ist eine große Herausforderung [9, 10]. Dies sieht man bereits daran,
dass die Anzahl der zur Beschreibung eines wechselwirkenden Vielteilchensys-
tems benötigten Koeffizienten exponentiell mit der Anzahl der Teilchen wächst.
Diese Skalierung führt dazu, dass exponentiell viel Speicher und Rechenzeit
benötigt werden. So würde zum Beispiel das Speichern aller Koeffizienten
eines quantenmechanischen Zustandes von 50 Spin-1/2-Teilchen bereits mehre-
re Petabyte erfordern. Approximative numerische Methoden können manche
Systeme beschreiben, indem sie die Zustände komprimiert abspeichern, zum
Beispiel als Tensornetzwerke [11]. Es wird jedoch angenommen, dass sich hoch-
verschränkte quantenmechanische Systeme von klassischen Systemen nicht
mehr effizient simulieren lassen [12]. Außerdem ist es zum Teil schwer, den
Gültigkeitsbereich approximativer Methoden abzuschätzen. Richard Feynman
schlug 1981 als Lösung vor, quantenmechanische – nicht klassische – Simula-
toren zum Simulieren von Quantensystemen zu verwenden [9]. Das Herzstück
eines Quantensimulators ist ein gut zu kontrollierendes quantenmechanisches
System, das in einem wohldefinierten Quantenzustand initialisiert werden kann,
der sich unter einem spezifizierbaren Hamiltonian in der Zeit entwickelt [13–15].
Eine Übersicht über mögliche Anwendungen von Quantensimulatoren geben
wir in Abschnitt 2.1. Zusammenfassend lässt sich sagen, dass die Erforschung
von Grundzuständen und der Zeitentwicklung von wechselwirkenden Vielteil-
chensystemen die Hauptanwendungen sind. Zusätzlich wird untersucht, ob sich
Quantensimulatoren auch zum Lösen harter klassischer Optimierungsprobleme
einsetzen lassen [16, 17]. Des Weiteren können sie zum Benchmarken appro-
ximativer numerischer Methoden für Quantensysteme [18] und zukünftiger
Quantencomputer verwendet werden.

Man unterscheidet zwischen digitalen Quantensimulatoren, die Gatterope-
rationen zur Simulation eines Systems verwenden, und analogen Quantensi-
mulatoren, die Hamiltonians direkt implementieren, sowie hybriden Ansätzen.
Diese Doktorarbeit beschäftigt sich mit analogen Quantensimulationen (mit
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Ausnahme von Kapitel 8). Ein analoger Quantensimulator hat den Vorteil, dass
er in der Regel robuster gegenüber Störungen ist als ein digitaler Simulator,
solange dieser noch über keine Fehlerkorrektur verfügt. Es wird angenommen,
dass bei einer analogen Simulation einer Phase eines in der Natur vorkom-
menden quantenmechanischen Systems eine Störung unerheblich ist, die auf
einen kleinen Bruchteil der Gitterplätze wirkt. Denn solche Störungen kommen
auch in vielen natürlichen Materialien vor [10]. Außerdem vermeiden analoge
Simulationen den zusätzlichen Ressourcenbedarf des digitalen Ansatzes. Für
letzteren muss die Trotter-Zerlegung verwendet werden, um den Zeitentwick-
lungsoperator als Gattersequenz anzunähern [14]. Um eine hohe Genauigkeit
erreichen zu können, ist eine hohe Anzahl an Gatteroperationen notwendig.
Dies ist mit der heutigen NISQ-Hardware23 jedoch nur schwer umzusetzen
[19]. In der Zukunft kann sich das jedoch ändern, wenn leistungsfähige und
fehlerkorrigierte digitale Hardware verfügbar ist. Solange die Fehlerkorrektur
noch nicht realisiert ist, werden analoge Quantensimulatoren jedoch zum Lösen
einiger Probleme besser geeignet sein als ihre digitalen Gegenstücke. Hierdurch
sind analoge Quantensimulatoren auch vielversprechende Kandidaten für einen
praktischen Quantenvorteil, obwohl Quantenüberlegenheit mit gatterbasierten
Quantencomputern demonstriert wurde [20]. Einige aktuelle Quantensimulatio-
nen dringen bereits in Bereiche vor, in denen exakte numerische Rechnungen
aufgrund der großen Anzahl an Teilchen nicht mehr möglich sind. Es werden
Probleme gelöst, die nur noch mit fortschrittlichen, approximativen Methoden
von klassischen Computer angegangen werden können [21–28]. Um die Re-
sultate der zitierten analogen Quantensimulationen zu reproduzieren, wurden
Tensornetzwerkmethoden oder Quanten-Monte-Carlo-Methoden benötigt. Eine
aktuelle Herausforderung ist es, Quantensimulatoren so zu verbessern, dass sie
hochverschränkte Systeme mit einer solchen Genauigkeit simulieren können,
dass approximative numerische Methoden keine Chance mehr haben.

Diese Herausforderung wird dadurch erschwert, dass analoge Quantensi-
mulatoren nicht beliebige Systeme simulieren können. Stattdessen hängt die
Klasse der implementierbaren Hamiltonians von den Details der experimentel-
len Plattform ab, die dem analogen Quantensimulator zugrunde liegt. Es gibt
jedoch bereits viele spannende Modelle, die sich implementieren lassen, wie
zum Beispiel Hubbard-Modelle, Modelle ähnlich zum Ising-Modell oder andere
Spinmodelle [14, 15]. Außerdem sind analoge Quantensimulatoren gut geeignet,
um universelle Eigenschaften zu studieren, die robust gegenüber Störtermen

23NISQ-Hardware steht für “noisy intermediate-scale quantum” Hardware [19], also für
Quantenhardware mit geringer Rauschresistenz und zu wenig Qubits für Fehlerkorrektur.
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sind [19]. In diesem Fall kann es in Ordnung sein, einen Hamiltonian durch das
Hinzufügen von Termen an eine spezifische Plattform anzupassen und diesen
dann zu implementieren. Außerdem zeigt aktuelle Forschung, dass die Klasse der
simulierbaren Hamiltonians durch die Verwendung eines variationellen Simulati-
onsansatzes erweitert werden kann. Hierbei wird ein analoger Quantensimulator
zur Präparation eines variationellen Testzustandes eingesetzt [29].

Damit eine Plattform für Quantensimulationen geeignet ist, muss diese
ein quantenmechanisches System mit vielen Freiheitsgraden beinhalten, das in
einem wohldefinierten Zustand initialisiert werden kann. Zusätzlich müssen Mes-
sungen an dem System durchführbar sein und es muss perspektivisch möglich
sein, Hamiltonians zu implementieren, die nicht klassisch behandelbar sind [10].
Letzteres impliziert, dass die Wechselwirkung im Vergleich zur Dekohärenz
schnell sein muss [30]. Wie im Review [15] gezeigt wurde, erfüllen unterschiedli-
che Plattformen diese Kriterien, wobei jede Plattform ihre eigenen Vor- und
Nachteile hat. Bevor es im nächsten Abschnitt um die Rydberg-Plattform geht,
wird im Folgenden ein kurzer Überblick über alternative Plattformen gegeben.
Prominente Beispiele sind supraleitende Schaltungen [31, 32], lineare Ionenfallen
[33, 34] und neutrale Atome in optischen Gittern [35–37]. Supraleitende Schal-
tungen und Ionenfallen bieten ein gut zu kontrollierendes Quantensystem und
werden für digitale und analoge Quantensimulationen eingesetzt, die analogen
Simulationen hauptsächlich für die Simulation von Spin-Hamiltonians. Zum
jetzigen Zeitpunkt werden jedoch nur unter hundert Spins unterstützt. Die Ska-
lierung dieser Plattformen hin zu mehr Spins ist eine zentrale Herausforderung.
Systeme zu vergrößern, die auf Ionenfallen basieren, erfordert experimentell
anspruchsvolle Techniken wie zum Beispiel das Verschieben von Ionen [38, 39].
Im Gegensatz hierzu, können neutrale Atome in optischen Gittern bereits jetzt
tausende Teilchen simulieren, allerdings mit deutlich schlechterer Kontrolle
über die Teilchen als bei supraleitenden Schaltungen oder Ionenfallen. Mit
neutralen Atomen in optischen Gittern wurde 2002 eine der ersten analogen
Quantensimulationen realisiert [40]. Diese Plattform unterstützt die native
Simulation von Fermionen oder Bosonen durch Verwendung von fermionischen
oder bosonischen Atomen. Die Plattform wird typischerweise für die Simulation
von Hubbard-Modellen eingesetzt und ist durch die vergleichsweise geringe
Anzahl an implementierbaren Gittergeometrien und Hamiltonians limitiert.
Eine aktuelle Herausforderung ist es, die Atome in den optischen Gittern zu
kühlen. Diese Herausforderung wird zum Beispiel mittels Umverteilung der
Entropie in die Randbereiche des Gitters angegangen [37].

In dieser Doktorarbeit geht es um die Rydberg-Plattform [41]. Im Rahmen der
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Arbeit verstehen wir unter dieser Plattform einen analogen Quantensimulator
mit neutralen Atomen, die in Arrays aus optischen Pinzetten gefangen sind und
in den Ryberg-Zustand angeregt werden, um Wechselwirkung zu realisieren.
Dieser Ansatz ist vergleichsweise neu, aber liefert bereits gute Ergebnisse [42,
43].

Die optischen Pinzetten können in beliebigen ein-, zwei- und dreidimensio-
nalen Arrays angeordnet werden [44–47] und werden zufällig mit Atomen aus
einem lasergekühltem atomaren Gas geladen; lichtinduzierte Kollisionen stellen
sicher, dass jede optische Pinzette mit genau einem Atom besetzt oder leer ist.
Seit 2016 können die zufällig geladenen optischen Pinzetten zu neuen Arrays
mit nahezu vollständiger Besetzung angeordnet werden [44–46]. Dieses Proto-
koll ermöglicht bereits jetzt, beliebige Geometrien mit mehr als zweihundert
Atomen zu realisieren [24, 25].

Indem man die neutralen Atome in den Rydberg-Zustand anregt, lassen sich
Wechselwirkungen zwischen den Atomen realisieren. Ein Rydberg-Zustand ist
ein Zustand, bei dem das äußerste Elektron in eine hohe Hauptquantenzahl n
angeregt ist [48–50]. Hierdurch ist das Elektron schwächer an den Kern gebunden
und die Wechselwirkung verstärkt. Die Van-der-Waals-Wechselwirkung [51–54]
wächst mit n11 an und die dipolare Austauschwechselwirkung [55] skaliert
mit n4. Typisch sind Wechselwirkungsstärken V/h ≳ 1 MHz für n = 60
und einem interatomaren Abstand von 10 µm, wobei h die Planck-Konstante
ist [42, 56]. Die radiative Lebenszeit skaliert mit n3 und erreicht 100 µs bei
Raumtemperatur für die in dieser Doktorarbeit betrachteten Rydbergzustände24.
Somit ist die Wechselwirkung deutlich stärker als die Zerfallsrate und wir können
kohärente quantenmechanische Systeme simulieren. In den meisten derzeitigen
Experimenten ist die Laufzeit allerdings nicht durch die Lebenszeit beschränkt,
sondern durch die Bewegung der Rydberg-Atome. Dies liegt daran, dass die
meisten der verwendeten optischen Pinzetten nur Grundzustandsatome fangen
können. Um dieses Problem zu lösen, werden zum Beispiel sogenannte magische
Fallen entwickelt25 [59].

Mit der Rydberg-Plattform können sehr unterschiedliche Spin-Hamiltonians
realisiert werden. Die grundsätzliche Idee ist, elektronische Zustände des Atoms

24Für zirkulare Rydberg-Zustände, also Rydberg-Zustände mit maximaler Drehimpulsquan-
tenzahl und magnetischen Quantenzahl, sind sogar Lebenszeit im Bereich von Sekunden
möglich. Diese Zustände sind jedoch schwerer zu präparieren [57, 58].

25Die magischen Fallen verwenden feinabgestimmte (“magische”) Bedingungen, die es erlau-
ben, sowohl Grundzustandsatome als auch Rydberg-Zutände zu fangen. Solche Bedingun-
gen existieren zum Beispiel für Erdalkalimetalle durch die Polarisierbarkeit durch das
zweite Valenzelektron [59].
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auf Spinzustände abzubilden. Um diese Abbildung akkurat durchführen und
die Wechselwirkung zwischen Atomen kontrollieren zu können, können ex-
terne elektrische und magnetische Felder, lichtinduzierte Verschiebungen der
Energieniveaus und Techniken zur Beimischung von Zuständen verwendet wer-
den. Zusammen mit der Möglichkeit, beliebige Arrays zu realisieren, erlauben
diese Werkzeuge die Implementierung einer Vielzahl unterschiedlicher Hamilto-
nians auf kontrollierbare Art und Weise. So wurden zum Beispiel verschiedene
Ising-artige Modelle [23–25, 60–62] und XY-Hamiltonians [4, 63] simuliert.
Künstliche Magnetfelder lassen sich ebenfalls realisieren [6, 64]. Ein detaillierter
Überblick über realisierbare Modelle und technische Hintergrundinformatio-
nen werden in Abschnitt 2.2 gegeben. Wie diese Beispiele illustrieren, bietet
die Rydberg-Plattform eine ansprechende Mischung aus Vielseitigkeit, guter
Kontrollierbarkeit und Größe der implementierbaren Systeme.

Diese Doktorarbeit liefert theoretische Grundlagen für die experimentel-
le Realisierung von Quantensimulationen mit Rydberg-Atomen. Zunächst
beschäftigen wir uns mit der genauen Berechnung der Wechselwirkung zwischen
Rydberg-Atomen und ihrer Abhängigkeit von experimentellen Parametern.
Danach verwenden wir diese Erkenntnisse, um zu zeigen, wie mit Rydberg-
Quantensimulationen verschiedene Spinmodelle studiert werden können. Nach-
stehend wird eine Übersicht über die in der Doktorarbeit erzielten Ergebnisse
gegeben.

Berechnung von Rydberg-Wechselwirkungspotentialen: Wie bereits zuvor
diskutiert, lässt sich die starke Wechselwirkung zwischen Rydberg-Atomen
für Quantensimulationen von unterschiedlichen Spinmodellen einsetzen. Die
Rydberg-Wechselwirkung wird auch im Bereich der Quanteninformatik zur
Realisierung von Zwei- und Multi-Qubit-Gattern verwendet. Ein genaues
Verständnis der Wechselwirkungspotentiale ist essentiell, um für diese Anwen-
dungen geeignete experimentelle Parameter finden zu können. Außerdem hilft
es, Experimente zu verstehen, welche die Rydberg-Wechselwirkung sehr präzise
oder auf kurzen Entfernungen untersuchen. In all diesen Fällen reichen perturba-
tive Methoden zur Berechnung der Wechselwirkungspotentiale nicht aus. Daher
gibt Kapitel 3 eine Einführung in die nicht perturbative Berechnung, basierend
auf unserem Tutorial zu diesem Thema [1]. Wir besprechen, wie sich der Wech-
selwirkungshamiltonian aus der elektrostatischen Multipolentwicklung herleiten
lässt, Matrixelemente numerisch berechnet und beliebige externe elektromagne-
tische Felder berücksichtigt werden können. Wir diskutieren Symmetrien und
Auswahlregeln, die es erlauben, Rechnungen schneller durchzuführen. All die
besprochenen Feature sind in unserer Open-Source-Software pairinteraction
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implementiert26, siehe https://pairinteraction.github.io.
Akkurates Abbilden von elektronischen Zuständen auf Spinzustände: In Ka-

pitel 4 wird die pairinteraction Software verwendet, um experimentelle
Parameter zu finden, die es ermöglichen, elektronische Zustände eines Rydberg-
Atoms auf Spinzustände abzubilden. Wir betrachten Arrays aus Atomen, deren
Grundzustand mit Lasern an den nD3/2-Rydberg-Zustand gekoppelt wird. Um
diese Atome akkurat auf Spin-1/2-Teilchen abbilden zu können, ist es wichtig,
dass die Wechselwirkung zweier Rydberg-Atome mit einer einzigen Paarpoten-
tialkurve beschrieben werden kann und hierdurch die Anregung ungewollter
Rydberg-Zustände vermieden wird. Wir finden heraus, dass diese Näherung
sensitiv bezüglich elektrischer Felder ist. Diese können dazu führen, dass an
weitere Paarpotentialkurven gekoppelt wird. Dies hat auch zur Folge, dass
die Rydberg-Blockade auf kurzen Entfernungen zusammenbricht. Unsere Er-
kenntnisse erweitern bereits existierende Studien zum Zusammenbruch der
Rydberg-Blockade [52, 53, 241, 243, 283, 284]. Wir fanden numerisch einen
optimalen Parametersatz, für den dieses Problem nicht auftritt. Experimentelle
Ergebnisse aus der Gruppe von Antoine Browaeys bestätigen, dass unser Para-
metersatz tatsächlich eine akkurate Abbildung auf Spin-1/2-Teilchen ermöglicht
[2] – sowohl kleinere Systeme aus zwei Atomen als auch anisotrope Ising-Magnete
aus 7 × 7 Atomen zeigen experimentell die Dynamik, die wir aus numerischen
Simulationen von Spin-1/2-Teilchen erwarten. Experimentelle Details finden
sich in der Doktorarbeit von Sylvain de Léséleuc [3]. Zusammen mit Kapitel 3
bildet diese Forschung eine Grundlage für verschiedene Quantensimulationen
von Spinmodellen, die wir nachfolgend beschreiben.

Realisierung einer durch Symmetrie geschützten topologischen Phase: Die
Realisierung von topologischen Phasen ist ein geeignetes Ziel für analoge Quan-
tensimulatoren, da topologische Phasen nicht zu einem spezifischen Hamil-
tonian gehören, sondern zu einer Äquivalenzklasse von Hamiltonians, wie es
für Quantenphasen allgemein der Fall ist. Daher ist es nicht notwendig, einen
bestimmten Hamiltonian zu implementieren, sondern wir können den Hamil-
tonian aus der Klasse auswählen, der auf unserer Hardware am einfachsten
zu implementieren ist. Außerdem ist das Ziel lohnenswert, da es zuvor noch
nicht gelungen war, mit einem künstlichen System einen topologisch nicht
trivialen Vielteilchengrundzustand zu realisieren. Bis dahin sind in künstlichen

26Die ARC Bibliothek von N. Šibalić et al. ist eine weitere Open-Source-Software um Ei-
genschaften von Rydberg-Systemen zu berechnen [56]. Diese Bibliothek enthält mehr
Funktionalität zur Berechnung von Eigenschaften einzelner Rydberg-Atome, kann je-
doch keine Wechselwirkungspotentiale in Gegenwart von beliebigen elektrischen und
magnetischen Feldern bestimmen.

136

https://pairinteraction.github.io
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Systemen topologische Eigenschaften studiert worden, die mit Einteilchenphysik
zu erklären sind [65–80]. In Kapitel 5 diskutieren wir die Quantensimulation
einer durch Symmetrie geschützten topologischen Phase aus wechselwirkenden
Bosonen in einem eindimensionalen Gitter, basierend auf einem gemeinsamen
Projekt mit der Experimentalgruppe von Antoine Browaeys [4]. Das Experiment
benutzt Atome, die in einem Array aus optischen Pinzetten gefangen und in
Rydberg-Zustände angeregt sind. Mit den Rydberg-Zuständen simuliert das
Experiment sogenannte Hard-Core-Bosonen mit einem effektiven Hüpfen auf-
grund der dipolaren Austauschwechselwirkung. Wir zeigen, dass der adiabatisch
präparierte Grundzustand vier charakteristischen Eigenschaften einer durch
Symmetrie geschützten topologischen Phase aufweist: (i) eine robuste Grund-
zustandsentartung, die auf geschützte Randzustände zurückgeführt werden
kann, (ii) eine Energielücke zu angeregten Zuständen im Inneren, (iii) ein nicht
verschwindender String-Ordnungs-Parameter, (iv) Robustheit dieser Eigenschaf-
ten bezüglich Störterme, welche die schützende Symmetrie respektieren. Die
experimentellen Ergebnisse sind in sehr guter Übereinstimmung mit unseren
theoretischen Untersuchungen. Für eine detailierte Beschreibung des Experi-
ments verweisen wir auf die Doktorarbeit von Sylvain de Léséleuc [3], für die
Klassifizierung der topologischen Phase auf die Doktorarbeit von Nicolai Lang
[5]. Inzwischen werden Rydberg-Atome für weitere Studien von topologischen
Systemen verwendet. So wurden vor Kurzem topologische Spinflüssigkeiten mit
Rydberg-Atomen untersucht [23, 81].

Untersuchung von komplexen Hüpfamplituden von Rydberg-Anregungen: In
Kapitel 6 analysieren wir komplexe Hüpfamplituden von Rydberg-Anregungen
in einem Minimalsystem mit drei Gitterplätzen. Dieses System wurde von
der Gruppe von Antoine Browaeys realisiert [6]. Die nicht trivialen komple-
xen Hüpfamplituden entstehen aus der Kombination von intrinsischer Spin-
Orbit-Kopplung der dipolaren Austauschwechselwirkung und gebrochener Zeit-
umkehrsymmetrie. Im Experiment wird die Zeitumkehrsymmetrie durch ein
externes Magnetfeld gebrochen. Experimentell zeigt sich das Vorhandensein
der komplexen Hüpfamplituden in der charakteristischen chiralen Bewegung
einer Anregung. Die chirale Bewegung lässt sich am besten im perturbativen
Regime verstehen, in welchem die Spin-Orbit-Kopplung zu einer Peierls-Phase
führt, die ein effektives Magnetfeld beschreibt. Der Wert der Peierls-Phase der
Hüpfamplituden zwischen zwei Gitterplätzen hängt von der Geometrie und
dem Vorhandensein einer weiteren Anregung auf dem verbleibenden Gitterplatz
ab. Wir vergleichen unsere theoretische Beschreibung des Setups mit experi-
mentellen Ergebnissen und erhalten eine hervorragende Übereinstimmung. Das
Experiment ist im Detail in der Doktorarbeit von Vincent Lienhard bespro-
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chen [7].
Proposal für die Realisierung eines fraktionalen Chern-Isolators: Eine aktuel-

le Herausforderung ist es, fraktionale Chern-Isolatoren in künstlichen Systemen
zu realisieren, die mikroskopische Kontrolle über Teilchen bieten und hier-
durch ermöglichen, ein besseres Verständnis dieser topologischen Zustände zu
bekommen. In Kapitel 7 präsentierten wir ein Proposal, wie ein fraktionaler
Chern-Isolator mit Rydberg-Atomen realisiert werden kann. Die vorgeschlagene
Realisierung basiert auf einem Zusammenspiel der nicht trivialen Topologie der
Bandstruktur und der Wechselwirkung zwischen Teilchen. Die nicht triviale
Topologie resultiert aus einem effektiven Magnetfeld, das wie im vorherigen
Kapitel beschrieben realisiert werden kann. Die Wechselwirkung zwischen den
Teilchen kommt dadurch zustande, dass sich an einem Gitterplatz nur eine
einzige Rydberg-Anregung befinden kann. Die Rydberg-Atome ordnen wir in
einem Honigwabengitter an und verwenden homogene externe eletrische und
magnetische Felder zur Feinabstimmung des Hamiltonians. Für realistische
experimentelle Parameter finden wir einen Bereich, in dem unsere Simulationen
zeigen, dass der Grundzustand des Systems charakteristische Eigenschaften eines
fraktionalen Chern-Isolators aufweist: (i) robuste zweifache Quasientartung des
Grundzustandes auf einem Torus, (ii) exponentiell abfallende Korrelationen, (iii)
Charakterisierung des quasientarteten Grundzustandes durch eine Vielteilchen-
Chern-Zahl von Eins. Unser Proposal beinhaltet auch einen Vorschlag zur
experimentellen Detektion des fraktionalen Charakters von Anregungen im
System.

Realisierung eines deterministischen, schnellen Scramblers mit Rydberg-
Atomen: In Kapitel 8 stellen wir ein Nebenprojekt vor, an dem wir in Koopera-
tion mit der Gruppe von Andrew Daley und mit Gregory Bentsen mitwirkten
[8]. Dieses Nebenprojekt illustriert, dass sich neben topologischen System auch
vollkommen andere Systeme mit Rydberg-Wechselwirkung realisieren lassen:
Wir machen einen Vorschlag, wie ein deterministischer, schneller Scrambler
implementiert werden kann. Schnelle Scrambler sind Quantensysteme, die eine
Vielteilchen-Verschränkung auf einer Zeitskala aufbauen, die logarithmisch mit
der Systemgröße N wächst. Wir zeigen, dass sich ein schneller Scrambler mit
einem eindimensionalen Array neutraler Atome unter Verwendung von O(log N)
Verschiebeoperationen und parallelen Gatteroperationen realisieren lässt. Die
hierbei verwendeten CZ-Gatter basieren auf der Rydberg-Wechselwirkung. In
dieser Doktorarbeit analysieren wir das Scrambling von Information in einem
realistischen Setup, bei dem wir Dekoheränz berücksichtigten. Für andere
Aspekte des Systems verweisen wir auf unser Paper [8] und die Doktorarbeit
von Tomohiro Hashizume [329]. Unser Protokoll kann zur Erzeugung hoch-
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verschränkter Zustände auf Systemen mit geringer Rauschresistenz verwendet
werden, bei denen eine schnelle Erzeugung von Verschränkung wichtig ist, um
Dekoheränz zu beschränken.
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Rydberg Interaction Potentials
Here, we briefly review the required steps to assemble the Hamiltonian (3.1)

for the interaction potential calculation presented in Chapter 3. As discussed
in Section 3.2.1, this requires the Rydberg level energies (3.3), and the matrix
elements of the single-atom electric multipole operators (3.8). Exact calculations
of both the energy spectrum and electron wave functions are possible only for
the hydrogen atom. We consider Rydberg atoms with a single electron in a
highly excited state (principal quantum number n ≫ 1), which behave very
similar to hydrogen, since the Rydberg electron is effectively bound to a core
with charge number Z − (Z − 1) = 1, consisting of the actual nucleus (with
charge Z) and Z − 1 inner electrons screening the core charge. This results in
expressions for the Rydberg level series which are only slightly modified from
the well-known hydrogen result and there exist relatively simple approaches for
calculating single-electron wave functions that capture the physics of Rydberg
atoms very well.

A.1 Energy Levels
We consider Rydberg states including spin-orbit coupling, because the fine-
structure of Rydberg states with low angular momentum l is well resolved in
current experiments on interacting Rydberg atoms. The Rydberg levels are
specified by the quantum numbers of the single Rydberg electron, namely n
(principal quantum number), l (orbital angular momentum), j = l ± 1/2 (total
angular momentum), and mj (magnetic quantum number). We neglect the
hyperfine splitting caused by the coupling of the electron angular momentum
j to the nuclear spin I. Although experiments are now resolving hyperfine

141



Appendix A Supplementary Material to Rydberg Interaction Potentials

Series Li Na K Rb Cs
S1/2 [375] (1986) [376] (1992) [377] (1981) [378] (2011) [379] (2016)
P1/2 [375] (1986) [380] (1995) [381] (1983) [257] (2003) [379] (2016)
P3/2 [375] (1986) [380] (1995) [381] (1983) [257] (2003) [379] (2016)
D3/2 [382] (1958) [380] (1995) [377] (1981) [378] (2011) [383] (1982)
D5/2 [382] (1958) [380] (1995) [377] (1981) [378] (2011) [379] (2016)
F5/2,7/2 [382] (1958) [384] (1997) [385] (1956) [386] (2006) [387] (1987)
G7/2,9/2 - [384] (1997) - [388] (2006) [387] (1987)
H9/2,11/2 - [384] (1997) - - -

Singlet Series Sr
1S0 [389] (1982)
1P1 [390] (1978)
1D2 [389] (1982)
1F3 [390] (1978)

Triplet Series Sr
3S1 [391] (1982)
3P0 [392] (1979)
3P1 [392] (1979)
3P2 [392] (1979)
3D1 [391] (1982)
3D2 [391] (1982)
3D3 [391] (1982)
3F2 [390] (1978)
3F3 [390] (1978)
3F4 [390] (1978)

Table A.1: References (with year) used for quantum defects in this thesis and in our
pairinteraction software. For divalent atoms, we must distinguish between
the singlet and triplet series.

levels of low-l Rydberg states up to very high principal quantum numbers
n ≈ 90 [256] and the hyperfine structure of Rydberg states can be a matter
of importance in some quantum information experiments [374], the typical
splitting ∆hfs < 11 MHz for n ≥ 40 [257, 258] makes the hyperfine level structure
(so far) irrelevant for interactions between Rydberg atoms.

The energy of Rydberg levels can be concisely written in analogy to the
Rydberg expression for hydrogen as

Enlj = −hcR∗

n∗2 , (A.1)

Here, n∗ is an effective, non-integer principal quantum number, which contains
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the species-dependent deviation from hydrogen, while

R∗ = 1
1 + me/Matom

R∞ (A.2)

is the modified Rydberg constant taking into account the species dependent
mass Matom of the atomic core. The effective quantum number is parameterized
by introducing the quantum defects as n∗ = n − δnlj. The quantum defects in
turn are written as a series expansion of the form

δnlj = δ0 + δ2

(n − δ0)2 + δ4

(n − δ0)4 + δ6

(n − δ0)6 + · · · . (A.3)

The coefficients in this polynomial expression are obtained from fits to experi-
mentally measured transition energies for specific species. The fine-structure
splitting is usually included in the quantum defects, which results in them
depending on the quantum number j. The quantum defects decrease rapidly
with increasing orbital angular momentum l, since for high-l states the influence
of the non-hydrogenic core on the single Rydberg electron orbit becomes less
relevant. Thus, quantum defects have been experimentally determined for
Rydberg states with low orbital angular momentum l, with the most precise
data being available for the alkali atoms. Table A.1 lists the references for the
coefficients of the quantum defects for the alkali atoms used for the calculations
in this thesis and of quantum defects for strontium. These quantum defects
are also implemented by default in our pairinteraction software, but can
be replaced or extended by new values. The accuracy of the quantum defects
used to compute the potential energies of Rydberg states is a key element to
the precise determination of Rydberg interaction potentials. Note that the
closed-form expression A.3 is motivated by, but differs from the analytic result
obtained in quantum-defect-theory [261, 393] by the fact that δ0 appears in
the higher-order terms instead of δnlj. This truncation “spoils the theoretical
significance” of the quantum defects [272], but is of course necessary when
fitting experimental data and provides a simple and elegant expression for the
energy of Rydberg levels.

Since Rydberg levels become more hydrogen-like with increasing l, we can use
the analytic expression for hydrogen fine-structure energies for levels without an
experimentally determined quantum defect. In addition, we include a correction
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term proportional to the core dipole polarizability αd of the considered species:

Enlj = − hcR∗

n2

(
1 + α2

n(j + 1/2) + α2

n2

)

− e2

(4πε0)2a4
0

3αd

4n3l5 . (A.4)

The derivation of this formula and a detailed discussion of the core polarizability
can be found in [48].

A.2 Electronic Wave Functions
Reducing the Rydberg atom to a single electron orbiting an extended core
consisting of the atomic nucleus and the inner electrons, enables us to calculate
effective single-electron Rydberg wave functions. Most importantly, the more
complex structure of the effective core does not lift the spherical symmetry of
the problem, thus the usual separation of variables for the Rydberg electron
wave function into radial and angular part holds. The angular part is solved
analytically and, when fine-structure is included, given by the spin spherical
harmonics

Yj± 1
2 , 1

2 ,j,mj
= 1√

2
(
j ± 1

2

)
+ 1

×
 ∓

√
j ± 1

2 ∓ mj + 1
2Yj± 1

2 ,mj− 1
2√

j ± 1
2 ± mj + 1

2Yj± 1
2 ,mj+ 1

2

 . (A.5)

Based on this expression, the angular part of the electric multipole moments
can be calculated. This is discussed in detail in Appendix A.4. Non-relativistic
quantum defect theory provides analytical solutions for the radial part, known
as Coulomb functions [261, 394]. The basic idea is to consider large distances
r from the nucleus, where the screening of the inner electrons results in an
effective core charge Z = 1. There, the radial Schrödinger equation reduces
to the well-known hydrogen case, except that the energy eigenvalues of the
bound states are fixed via the experimentally determined quantum defects. As
a consequence, the resulting solutions depend on the (non-integer) effective
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principal quantum number n∗:

Ψrad
n∗l(r) =

( 1
a0

)3/2 1√
(n∗)2Γ(n∗ + l + 1)Γ(n∗ − l)

× Wn∗,l+1/2

(
2r

n∗a0

)
. (A.6)

Here, Γ(z) is the Gamma function, and Wk,m(z) is the Whittaker function.
The Coulomb functions are obtained by solving the hydrogen Coulomb radial
equation where the energies corresponding to non-integer principal quantum
numbers have already been inserted. These are approximate wave functions
with the correct behavior for large r and the right binding energy. For the
calculation of transition matrix elements between Rydberg states, these are the
important criteria. A relativistic generalization of the quantum-defect theory
exists [395], but for the high-n Rydberg states of interest here, the modification
of the radial wave function due to the fine-structure correction turns out to be
negligible.

An alternative approach to obtaining single-electron wave functions is nu-
merically solving the radial Schrödinger equation including a species-dependent
model potential [396]. Compared to Coulomb functions this approach enables
calculation of wave functions in the inner region if the model potentials are
correctly determined. Typically, the model potential for alkali atoms contains
three contributions:

Vmod(r) = VC(r) + VP(r) + Vs.o.(r). (A.7)

Here, VC(r) is a modified Coulomb potential describing the distance dependent
screening of the core charge by the inner electrons, VP(r) describes the core
polarization due to the Rydberg electron, and Vs.o.(r) is the spin-orbit coupling.
The different terms are chosen such that the eigenvalues from the numerical
solution of the radial Schrödinger equation reproduce the experimentally mea-
sured Rydberg energies. If in turn the energies are fixed, the radial Schrödinger
equation reduces to a one-dimensional differential equation, and the electron
wave functions can be obtained simply by numerical integration (usually from
outside to inside). This approach, as well as the analytic Coulomb functions,
are implemented in our pairinteraction software. In particular, for the alkali
atoms we use expressions for VC(r) and VP(r) introduced by Marinescu et al.
[397], which yield very good agreement with experimentally observed Rydberg
level energies [398]. In the model potential by Marinescu et al., the Coulomb
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interaction with the smeared out charge distribution of the inner shells is
written as:

VC(r) = − e2

4πε0

1 + (Z − 1)e−α1r − r(α3 + α4r)e−α2r

r
, (A.8)

with coefficients α1,2,3,4 depending on the atomic species and the orbital angular
momentum l [397]. For the core polarization, only the leading dipole term is
considered, which results in:

VP(r) = − e2

(4πε0)2
αd

2r4

[
1 − e−(r/rc)6]

. (A.9)

Here, αd is again the core dipole polarizability and rc is the effective core
size, obtained by comparing the numerical solutions with the experimentally
observed energy levels. In addition to these two terms, we add an effective
expression for the spin-orbit interaction [399]

Vs.o.(r > rc) = 1
2

(
e2

4πε0

)(
gs

2m2
ec

2

)
l · s

r3 . (A.10)

This expression is only valid for large r and for smaller distances from the
core the full expression derived from the Dirac equation has to be taken into
account [396].

The spin-orbit interaction Vs.o. depends on the radial coordinate r, thus
the numerical radial wave function depends on the total angular momentum
j. In practice, one usually does not solve the radial Schrödinger equation as
eigenvalue problem, but instead inserts the level energies determined from
experimental quantum defects (A.4). Here, care must be taken when combining
model potentials (e.g. from [397]) with independently measured quantum
defects, since the inserted energies most likely are not eigenenergies of the
model potential. Improvements to the model potentials including the fine
structure term have recently been discussed by Sanayei et al. [400].

A.3 Radial Matrix Elements
Calculating the radial parts of the electric multipole matrix elements appearing
in the interaction Hamiltonian (3.7) amounts to solving integrals of the form

⟨nlj|p̂rad
κ |n′l′j′⟩ = e

∫
Ψrad

nlj (r)Ψrad
n′l′j′(r)r2+κ dr, (A.11)
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where Ψrad
nlj (r) are the radial wave functions discussed in Appendix A.2, obtained

either numerically or in the form of Coulomb functions (A.6), and κ is the
order of the multipole operator from (3.8) in Section 3.2.1. Note, that the
radial wave functions obtained by either approach are real, so that the complex
conjugation in the matrix element can be omitted. The matrix elements can be
straightforwardly calculated by numerical integration [394, 401]. To optimize
the numerics it is useful to rescale the radial coordinate and the wave functions
according to

x =
√

r , Xrad
nlj (x) = x3/2Ψrad

nlj (r). (A.12)

This scaling keeps the number of grid points between nodes of the wave function
constant [402]. As an alternative to numerical integration, various analytical
expressions for electric dipole matrix elements exist [402–404].

It is important to note that the rather simple methods of calculating single-
electron wave functions only yield accurate results for n > 30. Significantly
more advanced methods for calculating energy levels and matrix elements than
what we present here have been developed for low-n states, see e.g. [405, 406].

A.4 Angular Matrix Elements
In addition to the radial part discussed in Appendix A.3, we also need the
angular part of the electric multipole matrix elements. In this appendix, we
review the general formalism for calculating matrix elements of spherical tensor
operators, which can be applied to determine the angular parts appearing
when the multipole operators are expressed in the spherical basis. A more
comprehensive discussion of this topic can be found for example in [407]. The
formalism relies on the Wigner-Eckart theorem [269], which states that matrix
elements of spherical tensor operators T̂κq can be expressed as products of a
Wigner 3-j symbol (alternatively a Clebsch-Gordan coefficient) and a reduced
matrix element, which is independent of the angular momentum orientation. As
we perform calculations in the fine-structure basis, we show the Wigner-Eckart
theorem for the total angular momentum j = l + s. It reads

⟨lsjmj|T̂κq|l′s′j′m′
j⟩ = (−1)j−mj (lsj||T̂κ0||l′s′j′)

×
(

j κ j′

−mj q m′
j

)
, (A.13)
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where (lsj||T̂κ0||l′s′j′) is the reduced matrix element for the total angular
momentum. In case of the Wigner-Eckart theorem for the orbital angular
momentum l or spin s, the reduced matrix element (l||T̂κ0||l′) or (s||T̂κ0||s′)
would occur instead.

If T̂κq commutes with the spin s, we can relate the different reduced matrix
elements via the equation

(lsj||T̂κ0||l′sj′) = (−1)l+s+j′+κ(l||T̂κ0||l′)

×
√

(2j + 1)(2j′ + 1)
{

l j s
j′ l′ κ

}
, (A.14)

where the last term is the Wigner 6-j symbol. If T̂κq commutes with the orbital
angular momentum l, we have the relation

(lsj||T̂κ0||ls′j′) = (−1)l+s′+j+κ(s||T̂κ0||s′)

×
√

(2j + 1)(2j′ + 1)
{

s j l
j′ s′ κ

}
. (A.15)

These equations facilitate the calculation of arbitrary matrix elements, pro-
vided that we know the value of the reduced matrix element (l||T̂κ0||l′) or
(s||T̂κ0||s′), respectively. If the considered spherical tensor operator is a spheri-
cal harmonic Yκq(ϑ̂, φ̂), it commutes with the spin and the value of the relevant
reduced matrix element is

(l||Ŷκ0||l′) = (−1)l

√
(2l + 1)(2κ + 1)(2l′ + 1)

4π

(
l κ l′

0 0 0

)
. (A.16)

Given that spherical harmonics are proportional to the angular part of the
multipole operator p̂ang

κq =
√

4π
2κ+1Yκq(ϑ̂, φ̂), we can evaluate multipole matrix

elements as well. In order to calculate matrix elements of the momentum
operators Ĵ1q ∈ {l̂1q, ŝ1q}, we need the reduced matrix element

(J ||Ĵ10||J ′) = ℏ
√

J(J + 1)(2J + 1) δJJ ′ . (A.17)
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We present an additional comparison between experimental data and nu-
merical simulations, completing the study shown in Fig. 5.7 of the main text,
where we break the chiral symmetry by engineering a perturbation introducing
a coupling J ′′ between the rightmost site and its second neighbor. Following a
microwave sweep ending at a given detuning ∆f , our experimental collaborators
perform a spectroscopy of the many-body state corresponding to this final
detuning. The energy difference |∆E| is extracted by fitting with Gaussian
functions the measured occupancies of the left and right edge sites.

Fig. B.1(a) shows |∆E| as a function of ∆f for two experimental datasets.
The blue dashed line (single-particle spectroscopy) and the point at ∆f/(2π) =
−1 MHz corresponds to the two measurements presented in Fig. 5.7 of the
main text. The red points correspond to a second dataset for which ∆f is
varied. For ∆f largely negative (positive), an empty (filled) chain is prepared
and the spectroscopy experiment probes the single-particle eigenmodes, whose
degeneracy is broken by the J ′′ perturbation. In turn, for ∆f in the half-filled
region, the energy difference is much smaller as the ground state degeneracy
is protected by the unbroken symmetry SB. For intermediate values of ∆f
(gray regions), the many-body state is gapless, which precludes an adiabatic
preparation, and we observe a smooth transition between the two regions
(empty/full or half-filled chains).

The larger energy difference observed in the red dataset is most likely caused
by an electric field gradient creating an energy difference of ∼ 30 − 40 kHz
between the leftmost and righmost site due to the Stark effect. This gradient was
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Fig. B.1: Energy difference ∆E between the left and right edge states extracted from
a spectroscopy experiment performed after a microwave sweep ending at a
detuning ∆f . (a) Experimental values for two datasets. Blue: data presented in
the main text, the dashed line corresponding to the single-particle spectroscopy
performed on an empty chain. Red: additional data where ∆f is varied. (b)
Numerical simulations including (yellow) or excluding (blue) van der Waals
terms.

carefully compensated by our collaborators for the other dataset (blue point).
However, even in this case, there is a slight energy offset |∆E|/h = 0.03(2) MHz.
We explain it by a different van der Waals interaction of the leftmost and
rightmost Rydberg atoms with their neighbors when displacing the rightmost
site to engineer the J ′′ term, breaking the protecting symmetry. Including van
der Waals terms in the simulation, we indeed obtain an energy difference of
about ∼ 0.02 MHz as shown in Fig. B.1(b).
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C.1 Details on the Experimental Realization
In this section, we explain how the parameters of the Hamiltonian (7.3) depend
on the experimental parameters and motivate the chosen parameter set.

Let us start by explaining how we obtained the parameters of the Hamiltonian
from the experimental parameters. We first calculated the effect of the electric
and magnetic fields on the Rydberg states, using the pairinteraction software
[1]. For this calculation, we took into account Rydberg states that are at most
80 GHz away in energy from the states of the V-structure and have principal
quantum numbers 57 ≤ n ≤ 63 and azimuthal quantum numbers l ≤ 4. Then,
within the basis of the Stark and Zeeman shifted states, we calculated the
interactions between the states of the V-structure using perturbation theory
[276], taking into account that the Rydberg states were slightly admixed by the
applied electromagnetic fields. For the perturbative calculations, we restricted
ourselves to pair states that differ at most by 2 GHz from the pair states that
can be constructed from the V-structure.

We performed our calculations for the principal quantum number n = 60 as
the corresponding Rydberg states have already been studied experimentally in
the past. For our choice of the lattice spacing, l = 12 µm, we took care that it is
large enough to ensure that interactions can be described perturbatively. At the
same time, it is small enough to allow for dipolar exchange interactions (order
of a MHz) being much faster than the Rydberg decay (the natural lifetime is
on the order of 100 µs). The magnetic field Bz = −8 G was applied to break
the Zeeman degeneracy. For the realization of our V-level structure, it had
been crucial that the sign of the field is negative so that we could compensate
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Fig. C.1: Dependence of parameters of the Hamiltonian on the electric
field. (a) The energy difference ∆ depends strongly on the electric field
Ez through the Stark effect. In comparison, the nearest-neighbor hopping
amplitudes barley change with Ez. The dashed lines indicate the value of
Ez = 0.725 V/cm that was used throughout the Chapter 7. Note that for
some other values, other Rydberg pair states get resonant and are admixed
to the states of the V-structure (gray regions indicate an admixture > 5%).
There, our perturbative calculation of the hopping amplitudes break down.
(b-d) Close-up views of the electric field dependence of the nearest-neighbor
hopping amplitudes.

for the huge resulting energy splitting between |+⟩ and |−⟩ by applying an
electric field of about Ez = 0.7 V/cm. We can use Ez to fine-tune ∆ without
affecting the other parameters much, see Fig. C.1.

For finding the optimal value for the electric field Ez, we first calculate the
flatness ratio f and Berry curvature fluctuations σB as a function of Ez, see
Fig. C.2(a-b). A large f and a small σB are beneficial for realizing a fractional
Chern insulator in the many-body regime. However, these two quantities
reach their respective optimal values for different Ez — we have to make some
compromise. We calculate the three lowest eigenenergies on a torus at 1/4-
filling for the clusters 20 and 24A to determine the optimal value of Ez, see
Fig. C.2(c). The ground state is nearly two-fold degenerate in a small region
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Fig. C.2: Optimization of the electric field. (a) Flatness ratio f of the lowest
band of the single particle band structure as a function of the electric field Ez

(gray regions indicate regimes where our perturbative calculation of hopping
amplitudes failed). A large flatness ratio is beneficial for realizing a fractional
Chern insulator in the many-body regime. (b) Berry curvature fluctuations
σB. Typically, a small value is desirable. Note that f and σB reach their
respective optimal values for different Ez. Thus, we have to make some
compromise. (c) To figure out the optimal value of Ez, we calculate the three
lowest eigenenergies on a torus at 1/4-filling for the clusters 20 and 24A. The
ground state is nearly two-fold degenerate in a small region around the optimal
value Ez = 0.725 V/cm (dashed lines). For a zoom into this region, see inset.

around Ez = 0.725 V/cm. Remarkably, this is not the case for the region
around Ez = 0.52 V/cm, despite promising values of f and σB. We attribute
the lack of a two-fold degenerate ground state for this value of the electric field
to the fact that there, the two lowest bands are not energetically separated
from the other bands. The determinant condition, which holds for two band
models, might potentially be violated [325]. Thus, Ez = 0.725 V/cm is the
optimal value for the electric field.

Note that the proposed parameter set is not unique. We can, for example,
use a different principal quantum number if we scale the other experimental
parameters accordingly.
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C.2 Parameters of the Hamiltonian
This section contains the values of the parameters of the Hamiltonian (7.3)
that we used throughout the Chapter 7. Table C.1 shows the values of the
hopping amplitudes (7.1). Table C.2 depicts the values of the considered
interactions (7.2). All other two-body terms, for example, b†

ib
†
jaiaj, are on the

order of 0.01 MHz or less and hence neglected.

rij/l = 1 rij/l =
√

3 rij/l = 2
ta
ij/h 1.26 0.24 0.16

tb
ij/h 0.49 0.09 0.06

ωij/h 2.38 0.45 0.29

Table C.1: Hopping amplitudes up to next-next-nearest-neighbor hopping in MHz.
To avoid self-interaction in systems with periodic boundary conditions, we
neglect longer ranging processes.

rij/l = 1 rij/l =
√

3 rij/l = 2

U0,0
ij /h 0.03 0.00 0.00

U0,a
ij /h 0.07 0.01 0.01

U0,b
ij /h -0.20 0.00 0.00

Ua,a
ij /h 0.19 0.04 0.03

Ua,b
ij /h 0.25 0.05 0.03

U b,b
ij /h 0.28 0.05 0.04

Table C.2: Interactions in MHz. Note that Uα,β
ij = Uβ,α

ij .
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A. Browaeys, “Quantum simulation of 2D antiferromagnets with hundreds of
Rydberg atoms”, Nature 595, 233 (2021) (cited on pages 18, 19, 20, 31, 34,
94, 112, 119, 122, 132, 134, 135).

[25] S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran,
D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho, S. Choi, S. Sachdev, M.
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I. Sagnes, J. Bloch, and A. Amo, “Lasing in topological edge states of a
one-dimensional lattice”, Nature Photonics 11, 651 (2017) (cited on pages 21,
76, 79, 137).

[80] M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N.
Christodoulides, and M. Khajavikhan, “Topological insulator laser: Experi-
ments”, Science 359, eaar4005 (2018) (cited on pages 21, 76, 137).

[81] H. Kong, J. Taylor, Y. Dong, and K. Choi, “Melting a Rydberg ice to a
topological spin liquid with cavity vacuum fluctuation”, arXiv:2109.03741
(2021) (cited on pages 21, 39, 112, 137).
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[89] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M.
Lewenstein, K. Sengstock, and P. Windpassinger, “Tunable Gauge Potential
for Neutral and Spinless Particles in Driven Optical Lattices”, Physical Review
Letters 108, 225304 (2012) (cited on pages 21, 39, 94, 112).

162

https://doi.org/10.1103/physrevx.5.021031
https://doi.org/10.1103/physrevx.5.021031
https://doi.org/10.1038/s41566-017-0006-2
https://doi.org/10.1126/science.aar4005
https://arxiv.org/abs/2109.03741
https://arxiv.org/abs/2109.03741
https://doi.org/10.1103/revmodphys.83.1523
https://doi.org/10.1103/revmodphys.83.1523
https://doi.org/10.1038/nature11841
https://doi.org/10.1088/0034-4885/78/2/026001
https://doi.org/10.1016/j.crhy.2018.03.002
https://doi.org/10.1103/revmodphys.91.015005
https://doi.org/10.1103/physrevlett.107.255301
https://doi.org/10.1209/0295-5075/93/20003
https://doi.org/10.1103/physrevlett.108.225304
https://doi.org/10.1103/physrevlett.108.225304


Bibliography

[90] T. Chalopin, T. Satoor, A. Evrard, V. Makhalov, J. Dalibard, R. Lopes,
and S. Nascimbene, “Probing chiral edge dynamics and bulk topology of a
synthetic Hall system”, Nature Physics 16, 1017 (2020) (cited on pages 21,
39, 94, 112).

[91] P. Roushan, C. Neill, A. Megrant, Y. Chen, R. Babbush, R. Barends, B.
Campbell, Z. Chen, B. Chiaro, A. Dunsworth, A. Fowler, E. Jeffrey, J. Kelly,
E. Lucero, J. Mutus, P. J. J. O’Malley, M. Neeley, C. Quintana, D. Sank,
A. Vainsencher, J. Wenner, T. White, E. Kapit, H. Neven, and J. Martinis,
“Chiral ground-state currents of interacting photons in a synthetic magnetic
field”, Nature Physics 13, 146 (2016) (cited on pages 21, 94, 98, 105).

[92] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechts-
man, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological
photonics”, Reviews of Modern Physics 91, 015006 (2019) (cited on pages 21,
94).

[93] Y. Liu, X. Chen, and Y. Xu, “Topological Phononics: From Fundamental
Models to Real Materials”, Advanced Functional Materials 30, 1904784 (2019)
(cited on pages 21, 94).

[94] D. Peter, N. Y. Yao, N. Lang, S. D. Huber, M. D. Lukin, and H. P. Büchler,
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and S. Hofferberth, “Controlled multi-photon subtraction with cascaded
Rydberg superatoms as single-photon absorbers”, Nature Communications
12, 4328 (2021) (cited on page 32).
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and Accuracy of LAPACK’s Symmetric Tridiagonal Eigensolvers”, SIAM
Journal on Scientific Computing 30, 1508 (2008) (cited on page 55).

[276] C. Cohen and J. D. Tannoudji, Roc and G. Grynberg: Atom–Photon Interac-
tions; Basic Processes and Applications (Wiley, New York, 1998) (cited on
pages 63, 115, 151).

[277] J. R. Schrieffer and P. A. Wolff, “Relation between the Anderson and Kondo
Hamiltonians”, Physical Review 149, 491 (1966) (cited on page 63).

[278] S. Bravyi, D. P. DiVincenzo, and D. Loss, “Schrieffer–Wolff transformation
for quantum many-body systems”, Annals of Physics 326, 2793 (2011) (cited
on page 63).

178

https://doi.org/10.1017/cbo9780511814808
https://doi.org/10.1140/epjd/e2006-00143-x
https://doi.org/10.1140/epjd/e2006-00143-x
https://doi.org/10.1140/epjd/e2006-00143-x
https://doi.org/10.1016/b978-0-12-750550-3.x5001-0
https://doi.org/10.1016/b978-0-12-750550-3.x5001-0
https://doi.org/10.1142/0270
https://doi.org/10.1142/0270
https://doi.org/10.1016/j.cpc.2020.107814
https://doi.org/10.1016/j.cpc.2020.107814
https://doi.org/10.1103/physreva.44.5448
https://doi.org/10.1103/physreva.44.5448
https://doi.org/10.1103/physreva.91.012507
https://doi.org/10.1007/978-3-642-14390-8_40
https://doi.org/10.1007/978-3-642-14390-8_40
https://doi.org/10.1137/070688778
https://doi.org/10.1137/070688778
https://doi.org/10.1103/physrev.149.491
https://doi.org/10.1016/j.aop.2011.06.004


Bibliography

[279] P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl,
C. Gross, S. Kuhr, and I. Bloch, “Observation of spatially ordered structures
in a two-dimensional Rydberg gas”, Nature 491, 87 (2012) (cited on pages 65,
67).

[280] A. M. Hankin, Y.-Y. Jau, L. P. Parazzoli, C. W. Chou, D. J. Armstrong,
A. J. Landahl, and G. W. Biedermann, “Two-atom Rydberg blockade using
direct 6S to nP excitation”, Physical Review A 89, 033416 (2014) (cited on
page 66).

[281] J. Lee, M. J. Martin, Y.-Y. Jau, T. Keating, I. H. Deutsch, and G. W.
Biedermann, “Demonstration of the Jaynes-Cummings ladder with Rydberg-
dressed atoms”, Physical Review A 95, 041801 (2017) (cited on page 66).

[282] J. Zeiher, J.-y. Choi, A. Rubio-Abadal, T. Pohl, R. van Bijnen, I. Bloch, and
C. Gross, “Coherent Many-Body Spin Dynamics in a Long-Range Interacting
Ising Chain”, Physical Review X 7, 041063 (2017) (cited on page 66).

[283] T. Pohl and P. R. Berman, “Breaking the Dipole Blockade: Nearly Resonant
Dipole Interactions in Few-Atom Systems”, Physical Review Letters 102,
013004 (2009) (cited on pages 66, 74, 136).

[284] B. Vermersch, A. W. Glaetzle, and P. Zoller, “Magic distances in the blockade
mechanism of Rydbergpanddstates”, Physical Review A 91, 023411 (2015)
(cited on pages 66, 68, 69, 72, 74, 136).

[285] S. Ravets, H. Labuhn, D. Barredo, L. Béguin, T. Lahaye, and A. Browaeys,
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M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, “High-Fidelity Control
and Entanglement of Rydberg-Atom Qubits”, Physical Review Letters 121,
123603 (2018) (cited on page 122).

[351] H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi,
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