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Introduction

Condensed matter physics is a broad field which deals with many-particle systems in
which interaction strengths generally dominate over kinetic energies. One of the most
significant phenomena observed in condensed matter systems are phase transitions. They
are found in everyday life situations as the transition from frozen to liquid water (or vice
versa), but there are also many other classical and quantum mechanical systems which
can realize phase transitions (e.g. transitions into superconducting phases).1 This posed
the question if there is a unified theory for all phase transitions. In the 1930s, Landau
developed a theory which is nowadays called Landau theory of spontaneous symmetry
breaking (1937, [1]). It states that each phase of a system is characterized by a different
specific symmetry. Phase transitions occur when the symmetry is spontaneously broken.

The Landau theory proved to be a very good and successful description of condensed
matter systems, but with the discovery of the integer quantum Hall effect in 1980 by
Klitzing et al. [2], a new era of condensed matter physics began. Integer quantum Hall
systems show phase transitions at zero temperature, but the different phases have the
same symmetry. This cannot be explained by the Landau theory any more. Instead, it
motivated a new theory for the description of special phases in condensed matter based on
the branch of mathematics called topology. In a nutshell, hidden topological invariants
were found in the band structures of these systems which allow for the existence of
different phases. The fractional quantum Hall effect, which was discovered in 1982 by
Tsui et al. [3], was the first occurrence of an interacting system with different phases
which share the same symmetry. Here, a band structure cannot be defined any more,
but an intrinsic topological order allows for the existence of different phases with the
same symmetry [4, 5, 6]. The work on topological phases goes still on today and is
pursued by many researchers around the world.

Topological phases can be found in fermionic and bosonic systems, but only in two or
more dimensions. In this thesis, we discuss special one-dimensional systems (mainly the
so-called Su–Schrieffer–Heeger (SSH) chain and some variations) which are characterized
by a symmetry.2 As a symmetry is essentially an additional constraint for a system, these
one-dimensional systems can realize phase transitions which are neither described by the
Landau theory nor by intrinsic topological order. These phases are symmetry protected
topological (SPT) phases and the topic of this thesis.

In recent experiments conducted by de Léséleuc et al. [7], two symmetry protected
topological phases were realized in a bosonic SSH chain. This achievement motivates two
questions: The first one is related to the work by Wen et al. in 2013 [8] which predicts
the existence of a maximum of four phases in bosonic systems with the same protecting
symmetry as in [7]. Can these four phases be realized by SSH chains? Moreover, in 2010
Kitaev et al. [9] showed that the classification of fermionic symmetry protected phases in
Majorana chains breaks down to Z8 if interactions are allowed. What is the connection
between the four bosonic phases and these eight phases in fermionic systems?

1A phase is the set of all states of a system which can be connected without a phase transition.
2A symmetry is a transformation which does not change the appearance of the system.
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Thus, the goal of this work can be divided into two main parts: Firstly we focus on
the work by Kitaev and reproduce the breakdown of phases in fermionic SSH chains. In
the second part of this thesis, we discuss bosonic symmetry protected topological phases
in SSH chains. Following the general approach by Wen, we will use different symmetry
constraints to realize various phases in specific systems. By doing this, we also want to
gain a deeper understanding of the connection between fermionic and bosonic topological
phases.

Outline

This thesis consists of five main chapters structured in the following way:

• In Chapter 1, we give an introduction to the systems of consideration and in the
classification of fermionic symmetry protected topological phases. We will discuss
fermionic symmetries and give some insights on the winding number, which is the
topological invariant used for the classification of phases.

• In Chapter 2, we introduce the SSH chain and show how different phases can be
realized in this specific system. Furthermore, we will elaborate how stacked SSH
chains without interactions can be used to realize an arbitrary amount of phases.
In analogy to the work of Kitaev [9], we then show how in these stacked chains the
number of phases breaks down to Z4 if we allow interactions.

• In Chapter 3, we make the transition from fermionic to bosonic systems. This
requires us to introduce a new classification for phases as the fermionic classifica-
tion cannot be applied here. We give some insights on matrix-product states and
cohomology theory and use the bosonic SSH chain as an illustrative example.

• In Chapter 4, we will show how different symmetry representations for the same
symmetry group allow for the existence of different phases. This enables us to
show that stacked SSH chains with special symmetry constraints can be used to
realize four and even 16 different phases in a single system. These phenomena were
predicted by Wen et al. in 2013 [8].

• In Chapter 5, we compare the fermionic and the bosonic phases. To do so, we in-
troduce a new formalism for the classification of bosonic phases based on stabilizer
codes.

In Chapter 6, we give a short conclusion on the results of this thesis and briefly discuss
some ideas for future work.
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Zusammenfassung

Die Physik der kondensierten Materie ist ein weites Feld, das sich mit Vielteilchensys-
temen beschäftigt, in denen Wechselwirkungen über kinetische Energien dominieren.
Zu den wichtigsten Phänomenen, die in solchen Systemen beobachtet werden, gehören
Phasenübergänge. Wir beobachten sie im Alltag beispielsweise beim Übergang von ge-
frorenem zu flüssigem Wasser, aber Phasenübergänge treten auch in anderen klassischen
und quantenmechanischen Systemen auf (beispielsweise beim Übergang in supraleitende
Phasen).3 So stellte sich die Frage, ob es eine einheitliche Theorie gibt, die alle Pha-
senübergänge beschreibt. In den 1930er Jahren entwickelte Landau eine Theorie, die
wir heute Landaus Theorie der spontanen Symmetriebrechung nennen (1937, [1]). Sie
besagt, dass verschiedene Phasen eines Systems durch eine unterschiedliche Symmetrien
charakterisiert werden. Phasenübergänge treten auf, wenn eine solche Symmetrie spon-
tan gebrochen wird.

Die Landau-Theorie setzte sich als eine besonders gute und allgemein gültige Beschrei-
bung von Systemen kondensierter Materie durch. Mit der Entdeckung des integralen
Quanten-Hall-Effekts durch Kitzing et al. [2] im Jahr 1980 begann jedoch eine neue Ära
der Physik der kondensierten Materie. Hierbei treten mehrere Phasen auf, welche die
gleiche Symmetrie teilen. Solche Systeme können nicht mehr durch die Landau-Theorie
beschrieben werden. So wurde die Entwicklung einer neuen Theorie motiviert, die auf
dem mathematischen Gebiet der Topologie basiert. Kurz gesagt wurden topologische In-
varianten in der Bandstruktur dieser Systeme gefunden, die die Existenz verschiedener
Phasen mit gleicher Symmetrie erlauben. Der fraktionale Quanten-Hall-Effekt, der im
Jahr 1982 von Tsui et al. [3] entdeckt wurde, markiert das erste wechselwirkende System
mit verschiedenen Phasen, die die gleiche Symmetrie teilen. An dieser Stelle kann keine
Bandstruktur mehr definiert werden, aber eine intrinsische topologische Ordnung erlaubt
die Existenz verschiedener Phasen mit der gleichen Symmetrie [4, 5, 6]. Bis heute sind
topologische Phasen ein sehr aktives Forschungsgebiet auf der ganzen Welt.

Topologische Phasen können in fermionischen und bosonischen Systemen gefunden
werden. Sie existieren jedoch nur in zwei oder mehr Dimensionen. In dieser Arbeit
werden wir spezielle eindimensionale Systeme betrachten (hauptsächlich die sogenannte
Su–Schrieffer–Heeger-Kette (SSH-Kette) und einige Abwandlungen davon), die durch
eine zusätzliche Symmetrie charakterisiert sind.4 Da eine Symmetrie prinzipiell eine
zusätzliche Einschränkung des Systems darstellt, können in diesen eindimensionalen Sys-
temen Phasenübergänge realisiert werden, die weder durch die Landau-Theorie noch
durch intrinsische topologische Ordnung beschrieben werden können. Diese Phasen sind
symmetriegeschützte topologische (SPT) Phasen. Sie sind das Thema dieser Arbeit.

In neuen Experimenten von Léséleuc et al. [7] wurden zwei symmetriegeschützte topo-
logische Phasen in einer SSH-Kette realisiert. Dieses Ergebnis führt nun zu zwei Fragen:
Die erste Frage hängt mit der Arbeit von Wen et al. aus dem Jahr 2013 [8] zusammen.
Danach können in Systemen mit der gleichen Symmetrie wie in [7] maximal vier Phasen

3Eine Phase ist die Menge aller Zustände eines Systems, die ohne einen Phasenübergang miteinander
verbunden werden können.

4Eine Symmetrie ist eine Transformation, die das Erscheinungsbild des Systems nicht verändert.

vii



existieren. Können diese vier Phasen durch SSH-Ketten realisiert werden? Des weiteren
zeigte Kitaev et al. im Jahr 2010 [9], dass die Klassifikation von fermionischen symme-
triegeschützten topologischen Phasen in Majorana Ketten zu Z8 zusammenbricht, sobald
Wechselwirkungen erlaubt werden. Wie hängen diese acht fermionischen Phasen mit den
vier bosonischen Phasen zusammen?

Das Ziel dieser Arbeit setzt sich aus zwei Hauptbestandteilen zusammen: Zunächst be-
trachten wir die Arbeit von Kitaev und reproduzieren den Zusammenbruch der Phasen
in fermionischen SSH-Ketten. Im zweiten Teil dieser Arbeit diskutieren wir bosonische
symmetriegeschützte topologische Phasen in SSH-Ketten. Wir folgen der allgemeinen
Herangehensweise von Wen und nutzen verschiedene Symmetriebeschränkungen, um un-
terschiedliche Phasen in bestimmten Systemen zu realisieren. So erhalten wir ein tieferes
Verständnis über den Zusammenhang zwischen fermionischen und bosonischen topolo-
gischen Phasen.

Übersicht

Diese Arbeit besteht aus fünf Hauptkapiteln, die folgendermaßen strukturiert sind:

• In Kapitel 1 geben wir eine Einführung zu den betrachteten Systemen und zur
Klassifikation von fermionischen symmetriegeschützten topologischen Phasen. Wir
diskutieren fermionische Symmetrien und betrachten die Windungszahl. Sie stellt
die topologische Invariante dar, mithilfe derer die Phasen klassifiziert werden.

• In Kapitel 2 führen wir die SSH-Kette ein und zeigen, wie in diesem System ver-
schiedene Phasen realisiert werden können. Außerdem werden wir erarbeiten, wie
geschichtete SSH-Ketten ohne Wechselwirkungen genutzt werden können, um eine
beliebige Anzahl an Phasen zu realisieren. In Analogie zur Arbeit von Kitaev [9]
zeigen wir, wie in diesen geschichteten Ketten die Zahl der Phasen auf Z4 zusam-
menbricht, falls wir Wechselwirkungen erlauben.

• In Kapitel 3 vollziehen wir den Übergang von fermionischen zu bosonischen Syste-
men. Da hier die Klassifikation der fermionischen Phasen nicht mehr angewendet
werden kann, müssen wir eine neue Klassifikation einführen. Wir geben Einblicke
zu Matrix-Produkt Zuständen und zur Kohomologietheorie und nutzen die boso-
nische SSH-Kette als ein konkretes und illustratives Beispiel.

• In Kapitel 4 werden wir zeigen, wie verschiedene Symmetriedarstellungen der sel-
ben Symmetriegruppe die Existenz verschiedener Phasen erlauben. So können wir
zeigen, dass geschichtete SSH-Ketten mit bestimmten Symmetriebeschränkungen
genutzt werden können, um vier oder sogar 16 Phasen in einem einzigen System zu
realisieren. Diese Phänomene wurden im Jahr 2013 von Wen et al. [8] vorhergesagt.

• In Kapitel 5 vergleichen wir die fermionischen und bosonischen Phasen miteinan-
der. Dafür führen wir einen neuen Formalismus für die Klassifikation bosonischer
Phasen ein, welcher auf Stabilizer Codes basiert.
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In Kapitel 6 fassen wir die Ergebnisse dieser Arbeit kurz zusammen und diskutieren
einige Ideen für zukünftige Arbeiten.
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1. Classification of Fermionic Phases

In this chapter, we will introduce a classification of symmetry protected topological
(SPT) phases in fermionic one-dimensional systems without interactions.

1.1. Fermionic Chains

Before we actually work on the definition and the classification of symmetry protected
topological phases of fermions, we want to characterize the systems we consider.

In general we work with one-dimensional chains as shown in Figure 1.1. Those chains
consist of L identical unit cells which are coupled to each other in some way. While the
chain is considered to be long L → ∞, which we will refer to as the thermodynamic
limit, all couplings and interactions within the chain have to act on a short range. This
means that the coupling lengths always stay finite and do not scale with L.

Every unit cell has some internal degrees of freedom and therefore an inner dimension
d. The second quantized Hamiltonian of an open chain like this can be written as

Ĥ =

L∑
i=1

Ĥ int
i +

L−1∑
i=1

Ĥc
i (1.1)

with an internal Hamiltonian Ĥ int
i describing the individual unit cell i and a coupling

Hamiltonian Hc
i which describes the couplings between the neighbouring cells i and

i + 1. Such a Hamiltonian, which fulfils our requirement that the system only features
short-range interactions, is referred to as a local Hamiltonian. It might seem unclear
why only neighbouring unit cells should couple to each other. If that is not the case,
since we only allow short-range couplings we can always choose bigger unit cells until
all interactions are occuring between neighbouring cells. As we can see in Figure 1.1,
any open chain consists of two edge regions and a bulk between them. While the bulk
region is completely periodic, the edges break the translational symmetry. In Equation
(1.1) this shows up as there is one more internal term than there are coupling terms.
While this will later lead to some very interesting effects which occur on the edges of

· · ·
1 2 L

Figure 1.1.: We consider a long chain consisting of L identical unit cells. Every unit cell
has a d-dimensional Hilbert space and we do not allow long-range interac-
tions of any kind.
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1. Classification of Fermionic Phases

· · ·
1 2 L

Figure 1.2.: An open chain is obtained by cutting a closed periodical ring of unit cells
open between two cells.

the chains, we will start out with closed chains as shown in Figure 1.2. These rings are
now completely translational invariant with only a bulk and no edges. Here we get a
Hamiltonian of the form

Ĥ =
L∑
i=1

(
Ĥ int
i + Ĥc

i

)
. (1.2)

Again the coupling Hamiltonian Ĥc
i couples between the neighbouring sites i and i+ 1

and we use the cyclic index L+1 = 1. By simply cutting one coupling open we can later
transform a closed chain into an open chain.

We require for our Hamiltonians, that they are gapped.1 This property will make
more sense when we come to the definition of topological phases in these systems.

1.1.1. Fermionic Chains in the Momentum Space

At this point we want to make a little intermezzo and talk about the partial diagon-
alization of the Hamiltonian by a Fourier transformation. As we know, a translational
invariant system with periodic boundary conditions and no interactions has a diagonal
second quantized Hamiltonian in the momentum space. Our system also is translational
invariant and we do not allow interactions. Therefore a Fourier transformation can
actually make some calculations much easier.

First of all we have the second quantized Hamiltonian

Ĥ =
∑
ij

Hij ĉ
†
i ĉj (1.3)

which is built from the first quantized Hamiltonian H. The operators ĉ† and ĉ denote
the fermionic ladder operators. We will generally distinguish between second and first
quantized operators by marking all second quantized operators with a circumflex. Here
H is a (d · L) × (d · L) matrix. Our goal is to make this matrix smaller by using the
translational invariance of our chains and the periodic boundary conditions.

Before we actually perform the transition into momentum space, we create a double
index (iα) and (jβ) with i, j ∈ {1, · · · , L} and α, β ∈ {1, · · · , d}. This enables us to
separate the index of the unit-cells and the inner index enumerating the degrees of

1A Hamiltonian is gapped if the ground state of the corresponding system is separated from the first
exited state by a finite energy gap.

2



1.1. Fermionic Chains

freedom of each unit cell. Now we have the Hamiltonian∑
ijαβ

H(iα),(jβ)ĉ
†
(iα)ĉ(jβ). (1.4)

The translational invariance tells us that

H(iα),(jβ) = H(0α),((j−i)β). (1.5)

As we chose our unit cells such that only neighbouring cells interact, all terms with
|i− j| ≥ 2 vanish. The Fourier transformation acts only on the outer indices which
enumerate the unit cells and is performed by

ĉ†kα =
1√
L

L∑
j=1

eikj ĉ†jα (1.6a)

ĉkα =
1√
L

L∑
j=1

e−ikj ĉjα (1.6b)

with the momentum index

k =
2πi

L
(1.7)

for i ∈ {1, · · · , L}. The inverse Fourier transformation can similarly be calculated by

ĉ†jα =
1√
L

∑
k

e−ikj ĉ†kα (1.8a)

ĉjα =
1√
L

∑
k

eikj ĉkα. (1.8b)

Inserting the Fourier transformed ladder operators into Equation (1.4) gives us

Ĥ =
1

L

∑
ijαβkk′

Hiα,jβe
−i(ki−k′j)ĉ†kαĉk′β (1.9a)

=
1

L

∑
ijαβkk′

[δi,j−1H0α,1β + δi,jH0α,0β

+δi,j+1H1α,0β] e−i(ki−k
′j)ĉ†kαĉk′β (1.9b)

=
1

L

∑
iαβkk′

[
e−i(ki−k

′(i+1))H0α,1β e
−i(ki−k′i)H0α,0β

+e−i(ki−k
′(i−1))H1α,0β

]
ĉ†kαĉk′β (1.9c)

=
1

L

∑
iαβkk′

[
eik
′
H0α,1β +H0α,0β + e−ikH1α,0β

]
e−ii(k−k

′)ĉ†kαĉk′β (1.9d)

=
∑
αβkk′

[
eik
′
H0α,1β +H0α,0β + e−ik

′
H1α,0β

]
δk,k′ ĉ

†
kαĉk′β (1.9e)
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1. Classification of Fermionic Phases

=
∑
αβk

[
eikH0α,1β +H0α,0β + e−ikH1α,0β

]
︸ ︷︷ ︸

(H(k))αβ

ĉ†kαĉkβ. (1.9f)

In this calculation we found a way to express the first quantized Hamiltonian as a k-
dependent d× d matrix

(H(k))αβ =
[
eikH0α,1β +H0α,0β + e−ikH1α,0β

]
. (1.10)

We will use this later in numerous calculations.

1.2. Symmetries

The systems we consider are special in yet another way. They all carry one or more
symmetries. In the following we will discuss the details on the actions of symmetries in
fermionic chains.

Let us consider a mathematical symmetry group G which contains a finite or infinite
number of elements g and an operation

g3 = g1 · g2 (1.11)

on these elements. The definition of groups requires g3 to be also an element of the
group G. Besides that, the operation · is commutative2. Every group G has an identity
element 1 which fulfils

g = 1 · g = g · 1 (1.12)

and for every element g there exists an inverse element g−1 such that

1 = g · g−1 = g−1 · g. (1.13)

The elements of the symmetry group G are completely abstract. To describe a physical
symmetry for a quantum mechanical system, we need to find a good representation of
the group G. This means to find concrete objects Ûg for all elements g which inherit the
group structure

Ûg3 = Ûg1·g2 = Ûg1Ûg2 . (1.14)

This is called a linear representation. The elements Ûg act on the Hilbert space of our
physical system. They are always unitary. In general, a quantum mechanical system is
now symmetric under the symmetry group G if its second quantized Hamiltonian fulfils

ÛgĤ = ĤÛg (1.15)

for all elements g.
In the following we will describe how different symmetries act on fermionic systems

[10].

2This is always the case for the symmetries in this thesis. In general, symmetry groups do not have to
be commutative (Abelian). For example rotations in three dimensions are not commutative.
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1.2. Symmetries

1.2.1. Unitarily Realized Symmetries

In this chapter we will only consider systems of non-interacting fermions. Therefore the
second quantized Hamiltonian can be written as

Ĥ =
∑
i,j

ĉ†iHi,j ĉj (1.16)

in terms of the first quantized Hamiltonian H and the fermionic ladder operators ĉ and
ĉ†.

Even though a system is only symmetric under some symmetry representation Ûg if
the condition

ÛgĤÛ
−1
g = Ĥ (1.17)

holds, symmetries can act differently on the first quantized Hamiltonian H. We write
Ug for the representation of the symmetry in the first quantized formalism.

A system is symmetric under a unitarily realized symmetry if there is a unitary rep-
resentation Ug for every g ∈ G acting on the single-particle Hilbert space such that the
first quantized Hamiltonian fulfils

UgHU
†
g = H. (1.18)

Here we can write a dagger because the representations Ug are simply unitary matrices

(U−1g = U †g ).

The matrices Ug are related to the second quantized operators Ûg via

Ûg ĉiÛ
−1
g =

∑
j

U †g,ij ĉj (1.19a)

Ûg ĉ
†
i Û
−1
g =

∑
j

ĉ†jUg,ji. (1.19b)

This actually is, how the action of the symmetry is defined.
We can easily show that these relations make sense if we plug them into Equation

(1.17). We start by using Equation (1.16) which leads to

Ûg
∑
ij

ĉ†iHij ĉj︸ ︷︷ ︸
=Ĥ

Û−1g =
∑
ij

ĉ†iHij ĉj . (1.20)

We can now insert 1 = Û−1g Ûg into the equation and get∑
ij

Ûg ĉ
†
i Û
−1
g HijÛg ĉjÛ

−1
g =

∑
ij

ĉ†iHij ĉj . (1.21)

Keep in mind that Hij are just the complex elements of the matrix H so they commute
with Û . Now we can insert Equation (1.19a) and Equation (1.19b) and rearrange the
terms to get ∑

ij

ĉ†i

(
UgHU

†
g

)
ij
ĉj =

∑
ij

ĉ†iHij ĉj . (1.22)

This equation only holds if UgHU
†
g = H, which is exactly Equation (1.18).
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1. Classification of Fermionic Phases

1.2.2. Anti-Unitarily Realized Symmetries

Not all symmetries fulfil Equation (1.18). There are actually three other possibilities
for the realization of symmetries in fermionic systems. They are called anti-unitarily
realized symmetries3 which means that they contain a unitary operation and a complex
conjugation. All fermionic symmetries that appear in this thesis are of this kind. We
will shortly define all three classes of anti-unitarily realized symmetries and name them
after their most popular physical representation.

All following classes of physical symmetries are technically representations of the Z2

symmetry group. This group contains only two elements which we call 1 (the trivial
element) and g (the non-trivial element). It fulfils g · g = 1. One typical geometric
representation of this group can be a rotation of a two-dimensional object by 180 ◦. The
group element g corresponds to a rotation of the object, while the element 1 corresponds
to no rotation. Rotating an object twice means applying the representation of g ·g. Also
we know that a full rotation by 360 ◦ leads to the same result as no rotation at all which
is represented by g · g = 1. This means that rotations by 180 ◦ inherit the structure of
the Z2 group.

The same holds for the anti-unitarily realized symmetries which we discuss here. That
means that we will only consider the non-trivial element of Z2. The trivial element is
always represented by the unity 1.

Time-Reversal Symmetry

Let T̂ be the representation of the non-trivial element g 6= 1 of time-reversal symmetry
in the second quantized formalism. As always it fulfils

T̂ ĤT̂−1 = Ĥ. (1.23)

Furthermore the action of the symmetry is defined by the relations

T̂ ĉiT̂
−1 =

∑
j

U †T,ij ĉj (1.24a)

T̂ ĉ†i T̂
−1 =

∑
j

ĉ†jUT,ji (1.24b)

T̂ iT̂−1 = −i (1.24c)

with some unitary matrix UT . While the first two equations are similar as for a unitarily
realized symmetry, the third condition makes this realization anti-unitary. It leads to the
fact that we can no longer expect UT to be the first quantized operator corresponding
to T̂ which we call T . Instead we find

T = UT ◦K (1.25)

3In this context we call a symmetry anti-unitary if at some point a complex conjugation appears. The
operators of the symmetry realization may still be unitary (see also [10]).
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1.2. Symmetries

where K denotes the complex conjugation. The first quantized Hamiltonian is symmetric
under T

THT−1 = H (1.26)

but not under the unitary matrix UT . Instead we find

UTH
∗U †T = H. (1.27)

It can be shown [10], that two different kinds of time-reversal symmetries are possible.
In fact, the operator T can square to

T 2 = ±1. (1.28)

How do these conditions relate to an actual time-reversal? If T̂ is supposed to reverse
the time t, it has to act on the second quantized time-evolution operator Û(t) in the
following way:

T̂ Û(t) = Û(−t) T̂ . (1.29)

In the first quantized picture this means that

TeiHtT−1 = e−iHt (1.30)

has to hold. If the Hamiltonian would now fulfil H = H∗, we could simply implement
the time-reversal by a complex conjugation T = K. As this is not the case in general,
we need a unitary UT such that Equation (1.27) holds. Then we define T = UT ◦K and
this operator actually implements time-reversal.

Charge-Conjugation Symmetry

Let Ĉ be the second quantized operator of charge-conjugation symmetry. This class of
symmetries is defined by the conditions

ĈĉiĈ
−1 =

∑
j

(
U∗C,ij

)†
ĉ†j (1.31a)

Ĉĉ†i Ĉ
−1 =

∑
j

ĉjU
∗
C,ji (1.31b)

ĈiĈ−1 = i. (1.31c)

While the first two equations again implement the action of the symmetry on the fer-
mionic Fock space, the third condition makes Ĉ an anti-unitary operator. As we can
see, the operator of the charge-conjugation symmetry transposes creation operators to
annihilation operators and vice versa. This is how an actual charge-conjugation can be
implemented. While as always a system is symmetric under the symmetry Ĉ if

ĈĤĈ−1 = Ĥ (1.32)

holds, the unitary matrices UC fulfil

UCH
∗U †C = −H. (1.33)
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1. Classification of Fermionic Phases

In the first quantized picture the operator Ĉ takes the form

C = UC ◦K. (1.34)

Similarly to Equation (1.26) this gives us

CHC−1 = −H (1.35)

but with a minus sign.
As for the time-reversal symmetry we find the two possibilities

C2 = ±1. (1.36)

Sublattice Symmetry

The sublattice symmetry (or chiral symmetry) is the most important one for this thesis.
It is a combination of time-reversal and charge-conjugation symmetry:

Ŝ = T̂ · Ĉ. (1.37)

It acts on the fermion Fock space via

ŜĉiŜ
−1 =

∑
j

(
U∗S,ij

)†
ĉ†j (1.38a)

Ŝĉ†i Ŝ
−1 =

∑
j

ĉjU
∗
S,ji (1.38b)

and is anti-unitary
ŜiŜ−1 = −i. (1.38c)

US is an anti-unitary matrix which is related to the representations of time-reversal and
charge-conjugation symmetry on the single-particle Hilbert space by

US = UTU
∗
C . (1.39)

Bringing the operator Ŝ in the first quantized picture is simply done by converting the
operators T̂ and Ĉ:

S = T · C = (UT ◦K) · (UC ◦K) = UTU
∗
C . (1.40)

This is exactly the matrix US which we know from Equation (1.39).
Since we know how the time-reversal and the charge-conjugation symmetries act on

the first quantized Hamiltonian, we also know that

SHS−1 = −H (1.41)

holds.
In contrast to the time-reversal and the charge-conjugation symmetry, for sublattice

symmetries we always find
S2 = 1. (1.42)
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1.3. Symmetry Protected Topological Phases

Name T 2 C2 S2

A 0 0 0
AIII 0 0 1

AI +1 0 0
AII −1 0 0

D 0 +1 0
C 0 −1 0

BDI +1 +1 1
CII −1 −1 1
DIII −1 +1 1
CI +1 −1 1

Table 1.1.: List of all different possible combinations of anti-unitarily realized symmet-
ries. Zeros correspond to the symmetry being broken in the system.

1.2.3. Ten-Fold Way

If a system does not fulfil any unitarily realized symmetry, it can still be symmetric under
combinations of the three different anti-unitarily realized symmetries4. In Table 1.1, all
those possible combinations are listed. This classification is called the ten-fold way [10].

There are 3 · 3 = 9 possibilities to fulfil or break time-reversal and charge-conjugation
symmetry. If the system is symmetric under time-reversal and charge-conjugation sym-
metry, we get a sublattice symmetry for free since according to Equation (1.37) it is a
combination of the other two symmetries. Still a system can break time-reversal and
charge-conjugation symmetry but still fulfil a sublattice symmetry. This gives us one
additional symmetry class called AIII. In this thesis we will take a closer look on specific
systems which fulfil an AIII-symmetry.

1.3. Symmetry Protected Topological Phases

Let us go back to the closed chain systems sketched in Figure 1.2. Our system has a
gapped Hamiltonian Ĥ. In general, we assume that the system is in the (non-degenerate)
ground state. Now let the local Hamiltonian Ĥ(λ) be a smooth function dependent of
a parameter λ ∈ [0, 1]. Two ground states of the Hamiltonians Ĥ(0) and Ĥ(1) are said
to be in the same topological phase if and only if there exists a smooth gapped path
Ĥ(λ) between both Hamiltonians. If there is no way to find a path connecting both
Hamiltonians without closing the band gap at some λ, the two ground states belong to
two different phases. Figure 1.3 shows a sketch of a parameter space of some Hamiltonian
Ĥ with different phases.

Now we are able to find systems with different topological phases. If we want to realize
even more phases, we can do so by forbidding some additional paths Ĥ(λ). We do this by
choosing some symmetry representation Ŝ of a group G and requiring ŜĤ(λ) = Ĥ(λ) Ŝ

4Including the different signs of T 2 and C2
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1. Classification of Fermionic Phases

Ĥ(0)

Ĥ(1)

Figure 1.3.: Sketch of the parameter space of the Hamiltonian for some arbitrary sys-
tem. Black lines seperate the different topological phases. Any Hamiltonian
located on a black line has no band gap. In this picture we see that there
is no continuos path from Ĥ(0) to Ĥ(1) without a phase transition. On the
other hand, if two Hamiltonians belong to the same phase, there still exist
some paths which close the gap at some point.

for all values of λ along a given path. Obviously this restriction forbids some of the paths
connecting two Hamiltonians in the same phase. If a symmetry bans all gapped paths
between two Hamiltonians, they belong to two different new phases which are protected
by the symmetry. These phases are called symmetry protected topological phases.

1.3.1. Topological Invariant

Topology is a branch of mathematics in which geometric objects are investigated and
compared to each other. It turns out that there exist some topological invariants for
some shapes which cannot be changed by continuously deforming the object. The most
common example is the comparison of a sphere and a torus (doughnut). The obvious
difference is that a torus has one hole and a sphere has none. There is no way to
continuously transform a torus into a sphere without closing the hole at some point.
On the other hand, a torus can be transformed into any other shape which has exactly
one hole. The number of holes can therefore not be changed and is called a topological
invariant.

This observation is very similar to our phases. A system cannot be brought into
another phase with a continuous path Ĥ(λ) without closing the band gap. This is why
we speak of topological phases. The obvious question is: Is there also a topological
invariant for symmetry protected topological phases?

1.3.2. Consequences of the Sublattice Symmetry

In fact, we find that there exists a number which differs between different phases and can
in principal be calculated for any given system with Hamiltonian Ĥ. In this thesis we
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1.3. Symmetry Protected Topological Phases

want to take a closer look at the topological invariant ν (also called the winding number in
this case), given the fact that the Hamiltonian is symmetric under a sublattice symmetry

ŜĤ = ĤŜ. (1.43)

Before we go into the definition of the winding number, we have a look at the properties
of the actual systems we consider. Those properties will prove to be very useful later on.
As we showed in Subsection 1.1.1, the first quantized Hamiltonian can be expressed as
a d×d matrix which depends on the momentum H(k). Remember that d is the number
of internal degrees of freedom of the identical unit cells.

Furthermore, the action of the symmetry S on the first quantized Hamiltonian is
according to Equation (1.41)

SHS−1 = −H. (1.44)

Now assume that the Hamiltonian has an eigenstate |ψn〉 with eigenvalue εn, such that
H |ψn〉 = εn |ψn〉. Then we can calculate that the state S |ψn〉 is also an eigenstate of
the Hamiltonian, but with eigenvalue −εn:

HS |ψn〉 = −SH |ψn〉 = −Sεn |ψn〉 = −εnS |ψn〉 . (1.45)

What does this mean for the many-particle ground state? We have the same amount
of positive and negative eigenenergies and the spectrum is symmetric around ε = 0. It
is easy to show that this property also holds in the second quantized case. Therefore
in the ground-state, all states with negative energy are occupied by fermions while all
states with positive energies are unoccupied. In principle there can also be some zero-
energy states. In this case, the ground state would have a degeneracy. Still we want our
Hamiltonian to be gapped. This means that in the thermodynamic limit (L → ∞) a
finite energy is needed to excite the system. If there was a state with zero energy, this
could be filled without using any energy. Therefore we do not allow energy eigenvalues
ε = 0 for our Hamiltonian Ĥ, because according to our definition it would not be a
gapped Hamiltonian any more.

The first quantized Hamiltonian can be brought into the diagonalized form

H =


ε1
−ε1

ε2
−ε2

. . .

 . (1.46)

In this basis, the operator of the sublattice symmetry takes the form

S =


0 −1
−1 0

0 −1
−1 0

. . .

 . (1.47)

11



1. Classification of Fermionic Phases

Here, S contains a finite number of two dimensional blocks with the eigenvalues 1 and
−1 each. It can easily be shown that this fulfils Equation (1.43). Another useful basis
is the eigenbasis of S such that

S =

(
1 0
0 −1

)
. (1.48)

In this basis it can be shown that the Hamiltonian takes the form

H =

(
0 h†

h 0

)
(1.49)

with the block matrix h.

1.3.3. Definitions of the Winding Number

We perform a Fourier transformation on the chain of fermions as discussed above. This
basically diagonalizes the Hamiltonian on the unit cell level, while leaving out the internal
degrees of freedom of each cell. This means that each momentum eigenstate |ki〉 has
some internal index i ∈ {1, · · · , d} corresponding to the d degrees of freedom in the unit
cells. As the spectrum is symmetric for systems with a sublattice symmetry, for each
momentum k only the lower half of the states |ki〉 is occupied. Therefore we assume
that we diagonalized the Hamiltonian H(k) on the internal indices i and we ordered the
eigenstates such that the eigenenergies εi for i ∈ {1, · · · , d/2} are negative. The upper
half i ∈ {d/2 + 1, · · · , d} corresponds to the unoccupied states with positive energy.

The winding number can be defined by [11, 12]

ν =

∫ π

−π
dk

d/2∑
i=1

〈ki | i∂k | ki〉 . (1.50)

The sum indicates that we perform the integral for all occupied states. Calculating
this integral gives us a whole number which we call the winding number of the system.
Each symmetry protected topological phase corresponds to one winding number and
changing the phase (while closing the band gap) means changing the winding number.
The winding number is a topological invariant of the system.

Throughout the literature we find even more definitions of the winding number. For
example in [13] we find

ν =

∫ π

−π

dk

2πi
Tr
(
h−1∂kh

)
(1.51)

with the matrix h defined in Equation (1.49) as well as

ν =

∫ π

−π

dk

2πi
∂k log(det(h)) (1.52)

and

ν =

∫ π

−π

dk

2π
∂k arg(det(h)) . (1.53)
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Furthermore, we find the formula

ν = Tr

(∫ π

−π

dk

4πi
Sg−1∂kg

)
(1.54)

with the inverse matrix g = H−1 of the Hamiltonian.

In some cases the Hamiltonian can be written in terms of the vector of Pauli matrices

σ =

σxσy
σz

 (1.55a)

σx =

(
0 1
1 0

)
(1.55b)

σy =

(
0 −i
i 0

)
(1.55c)

σz =

(
1 0
0 −1

)
(1.55d)

as

H = d · σ (1.56)

with some vector d. In this case the winding number can be calculated by [14]

ν =
1

2π

∫ π

−π

(
d̂(k)× d

dk
d̂(k)

)
z

dk. (1.57)

Now we somehow ended up with six different definitions of the winding number. As
none of them is very intuitive, we will discuss them in the following and prove that they
are all equivalent to each other.

1.3.4. Equivalence of Winding Numbers

We want to show that the definitions of the winding numbers in Subsection 1.3.3 are
indeed equivalent.5 Figure 1.4 is meant to give an overview on the following calculations.
We enumerated the definitions to bring some structure into the proof. We will only show
the equivalences 2⇔ 5,1⇔ 2, 1⇔ 3 and 3⇔ 4. As shown in Figure 1.4, this will then
prove, that all winding numbers are essentially the same.

Equivalence of 1 and 3 The trace Tr
[
h−1∂kh

]
is invariant under any basis transform-

ation. Therefore we can diagonalize h and h−1 which obviously requires the same basis
for both matrices. Now the matrices only have the diagonal elements hii = λi which are
the eigenvalues of h. We can then calculate the trace:

5We will exclude Equation (1.50) from these considerations.
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1:
π∫
−π

dk
2πi Tr

(
h−1∂kh

)

2: Tr

(
π∫
−π

dk
4πiSg

−1∂kg

)
3:

π∫
−π

dk
2πi∂k log(det(h))

4:
π∫
−π

dk
2π∂k arg(det(h))5: 1

2π

π∫
−π

(
d̂(k)× d

dk d̂(k)
)
z

dk

Figure 1.4.: Overview of the different winding numbers we defined in Subsection 1.3.3. In
Subsection 1.3.4 we prove that all of those winding numbers are equivalent
to each other. We do this by showing the equivalences indicated by the
arrows in this image.

Tr
[
h−1∂kh

]
=
∑
i

λ−1i ∂kλi (1.58a)

=
∂k
∏
i λi∏

i λi
(1.58b)

= ∂k

[
log

(∏
i

λi

)]
(1.58c)

= ∂k [log(det(h))] . (1.58d)

This proves that Equation (1.51) and Equation (1.52) are equivalent.

Equivalence of 3 and 4 The following equation holds for all logarithms with complex
arguments:

log(z) = log(|z|) + i arg(z) . (1.59)

If we now look at Equation (1.52) and insert this relation, we find∫ π

−π

dk

2πi
∂k log(det(h)) =

∫ π

−π

dk

2πi
∂k [log(|det(h)|) + i arg(det(h))] (1.60)

=
1

2πi
log(|det(h)|)|π−π︸ ︷︷ ︸

=0

+
1

2πi

π∫
−π

dk i∂k arg(det(h)) (1.61)
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=

π∫
−π

dk

2π
∂k arg(det(h)) . (1.62)

This works because in contrast to arg(det(h)), the absolute value |det(h)| is a single-
valued function. This proves the equivalence of Equation (1.52) and Equation (1.53).

Equivalence of 1 and 2 Again we start off with

ν = Tr

 π∫
−π

dk

4πi
Sg−1∂kg

 (1.63)

and as our basis we choose the eigenbasis of S such that

S =

(
1 0
0 −1

)
(1.64)

and

H =

(
0 h†

h 0

)
. (1.65)

Then the inverse Hamiltonian is given by

H−1 =

(
0 h−1(

h†
)−1

0

)
. (1.66)

Now we can calculate the trace in Equation (1.63):

Tr
[
Sg−1∂kg

]
= Tr

[
SH∂kH

−1] (1.67a)

= Tr

[(
1 0
0 −1

)(
0 h†

h 0

)
∂k

(
0 h−1(

h†
)−1

0

)]
(1.67b)

= Tr

[(
h†∂k

(
h†
)−1

0
0 −h∂kh−1

)]
(1.67c)

= Tr

[
h†∂k

(
h†
)−1
− h∂kh−1

]
(1.67d)

= −Tr
[
h∂kh

−1 − h.c.
]

(1.67e)

= Tr
[
−h∂kh−1

]
− c.c.. (1.67f)

We can insert the hermitean conjugate because the trace is invariant under cyclic per-
mutations. It is obvious that

0 = ∂k1 = ∂k
(
hh−1

)
= h∂kh

−1 + h−1∂kh (1.68)

which gives us
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Tr
[
Sg−1∂kg

]
= Tr

[
h−1∂kh

]
− c.c. (1.69)

= 2i Im
(
Tr
[
h−1∂kh

])
. (1.70)

We are not allowed simply to ignore the Im yet, but we can work around that if we take
the integral of this expression:

π∫
−π

dk Tr
[
Sg−1∂kg

]
= 2i

π∫
−π

dk Im
(
Tr
[
h−1∂kh

])
. (1.71)

Following the same calculation as in Equation (1.60), we find that the real part of
Tr
[
h−1∂kh

]
vanishes in the integral, so we can add it to the equation. We do this by

simply dropping the Im. This gives us

π∫
−π

dk Tr
[
Sg−1∂kg

]
=

π∫
−π

2 Tr
[
h−1∂kh

]
dk (1.72)

and therefore proves that

Tr

 π∫
−π

dk

4πi
Sg−1∂kg

 =

∫ π

−π

dk

2πi
Tr
(
h−1∂kh

)
. (1.73)

This means that both definitions of the winding number are actually the same.

Equivalence of 2 and 5 First of all, it is clear that we can only write the k-dependent
Hamiltonian as H = d ·σ if the unit-cells of our system are two-level systems and H(k)
is therefore a 2× 2 matrix. This way d is a simple tree-dimensional vector with complex
elements dx, dy and dz. Then it is always possible to write H = d ·σ, because the Pauli
matrices and 1 form a basis of all complex 2 × 2 matrices. Still the Hamiltonian has
a symmetric spectrum, which does not allow a contribution of the matrix 1. Therefore
the matrices σx, σy and σz form a sufficient basis for H.

We start by choosing the eigenvectors of S as our basis, such that S = σz and dz = 0.
In Equation (1.54) we insert the Hamiltonian:

Tr

[∫ π

−π

dk

4πi
Sg−1∂kg

]
= Tr

[∫ π

−π

dk

4πi
SH∂kH

−1
]

(1.74)

= Tr

[∫ π

−π

dk

4πi
σz (σxdx + σydy) ∂k (σxdx + σydy)

−1
]
. (1.75)

We then invert the right part which leads to

= Tr

[∫ π

−π

dk

4πi
σz (σxdx + σydy) ∂k

(
σx

dx
d2x + d2y

+ σy
dy

d2x + d2y

)]
. (1.76)
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Now we can apply the derivation using the product rule. This leads to some lengthy
calculations. Some of the terms appearing can directly be ignored because the product
of the Pauli matrices vanishes:

= Tr

∫ π

−π

dk

4πi
σz (σxdx + σydy)

·

[
σx

(
1

d2x + d2y
∂kdx − dx

1(
d2x + d2y

)2 (2dx∂kdx + 2dy∂kdy)

)

+ σy

(
1

d2x + d2y
∂kdy − dy

1(
d2x + d2y

)2 (2dx∂kdx + 2dy∂kdy)

)]
(1.77a)

= Tr

∫ π

−π

dk

4πi

[
σzσxdxσ

y 1

d2x + d2y
∂kdy

− σzσxdxσydy
1(

d2x + d2y
)2 (2dx∂kdx + 2dy∂kdy)

+ σzσydyσ
x 1

d2x + d2y
∂kdx

− σzσydyσ
xdx

1(
d2x + d2y

)2 (2dx∂kdx + 2dy∂kdy)

]
(1.77b)

= Tr

∫ π

−π

dk

4πi

[
i1

(
dx

d2x + d2y
∂kdy −

dxdy
d2x + d2y

(2dx∂kdx + 2dy∂kdy)

)
− i1

(
dy

d2x + d2y
∂kdx −

dxdy
d2x + d2y

(2dx∂kdx + 2dy∂kdy)

)]
(1.77c)

= Tr

∫ π

−π

dk

4π
1
dx∂kdy − dy∂kdx

d2x + d2y
(1.77d)

=

∫ π

−π

dk

2π

dx∂kdy − dy∂kdx
d2x + d2y

(1.77e)

=
1

2π

(
d̂(k)× d

dk
d̂(k)

)
z

dk. (1.77f)

This proves the equivalence of Equation (1.54) and Equation (1.57).6

Interpretation of 5 Why is this topological invariant called a winding number? We
want to interpret this in more detail using Equation (1.57). As we elaborated now, the
vector d(k) is confined in the x-y-plane. As we go from k = −π to π, it follows a closed
smooth path on this plane. Equation (1.57) then counts how many times this closed
curve is winded around the origin of the coordinate system. Therefore it makes sense to
call ν a winding number.

In principle there are two ways of changing the winding number. Of course we could
add a z-component dz 6= 0 to the vector d(k) and when we deform the curve, we lift

6The vector d̂ denotes the unit vector d̂ = d/|d|.
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x

y

Figure 1.5.: In this sketch we show the curve painted by the vector d(k) for k ∈ [−π, π].
It can for example be a simple circle around the origin which gives us a
winding number of ν = ±1, depending on the direction of rotation. We can
change the winding number for example by moving the curve, such that it
does not include the origin any more, which gives us ν = 0. When we do
this in a smooth way, we cannot avoid it to cross the origin at some point.
This closes the band gap. The same happens for every kind of smooth
deformation of the path.

it over the origin. This is in principle possible but it violates the sublattice symmetry
constraint given by Equation (1.44). Another way to change the winding number is to
deform or to move it within the x-y-plane. In Figure 1.5, a sketch of a circular curve is
shown which is translated such that it does not include the origin in the end. As we can
see, there is no smooth deformation or translation of the curve that changes the winding
number without there being a point, where for one momentum k0 we find d(k0) = 0.
This is where the path crosses the origin. If the vector d vanishes, the Hamiltonian H
vanishes. This means that if we want to change the winding number without breaking
the symmetry, we have to close the band gap.

Although the vector d(k) is a quite abstract and unintuitive object, we see that the
winding number is indeed a good topological invariant which characterizes our symmetry
protected topological phases perfectly. It can only be changed by breaking the symmetry
or by closing the band gap of the system. These are exactly the same requirements for
changing the phase.
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1.4. Edge Modes

Interpretation of 4 As d(k) is a relatively abstract vector and as it can only be defined
in systems which have a 2×2 Hamiltonian H(k), we also take a look at Equation (1.53).
This gives us a less figurative but maybe more honest interpretation. If we define

ν =

∫ π

−π

dk

2π
∂k arg(det(h)) , (1.78)

we can bring the matrix h in a diagonal form. Every eigenvalue

λi = rie
iφi (1.79)

of h(k) is a complex number which draws a closed path on the complex plane for k ∈
[−π, π]. This means that we can define a winding number for every eigenvalue around
the centre of the complex plane. We find that these winding numbers are embedded in
the topological invariant:

ν =

∫ π

−π

dk

2π
∂k arg

(∏
i

λi

)
(1.80)

=

∫ π

−π

dk

2π
∂k

[∑
i

φi

]
(1.81)

=
1

2π

∑
i

φi

∣∣∣∣∣
π

−π

. (1.82)

Now we see that the topological invariant ν is nothing but the sum of all winding numbers
for all eigenvalues of h in the complex plane.

Still, if we want to change the winding number, we have to change the winding number
of at least one λi(k) which means that at some point it has to cross the origin of the
complex plane. At this point, the Hamiltonian has a zero eigenvalue and again the gap
is closed.

1.4. Edge Modes

Till now, our classification of symmetry protected topological phases was purely math-
ematical and based on the winding number. Now we want to find some actual physical
differences between states that belong to different phases. In general this is not trivial.
In this thesis we will work with states in different phases which are related to each other
by a shifted of half a unit cell. In these cases, the phases only exist because of our
definition of a unit cell. Finding differences between the phases besides the abstract
winding number is therefore not a trivial task.

If we consider our closed chain in Figure 1.2, we see that the eigenmodes of the systems
typically are delocalized. This is due to the translational symmetry of the system and
the fact that we can partially diagonalize the system via a Fourier transformation.

In the remainder of this section we will cut our chain open as shown in Figure 1.1.
In one dimension, this means that we end up with two edges at the left and the right
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1. Classification of Fermionic Phases

end of the system. As shown in [15], depending on the phase of the system, this gives
rise to so-called edge modes. Those correspond to single-particle wave functions which
only live near the edge and have a finite penetration depth into the bulk of the system.
Throughout this thesis we will work with examples of these edge modes.

The energies of these edge modes are usually inside the band gap of the system.
Therefore they are also called in-gap modes. This allows us to experimentally observe
the phase of the system: Some (trivial) phases do not support in-gap modes and some
(non-trivial) phases do. Looking for excitations within the band gap will therefore give
us some information about the actual phase of the system. Similarly to the phase, also
the topological edge modes of the system are protected by the symmetry and therefore
robust with respect to symmetry-preserving perturbations.

This connection between the topological state of the bulk and the existence of edge
modes for open boundary conditions is referred to as bulk-boundary correspondence.

1.4.1. Towards Quantum Computation

We have now given an overview on the topic of symmetry protected topological phases in
one-dimensional fermionic systems. Before proceed with the specific systems considered
in this thesis, we want to make a brief intermezzo and explain why these special systems
are interesting from a more applied point of view.

In quantum computation one relies on quantum bits (qubits) which are analogous to
the bits of a classical computer. They are supposed to be simple, degenerate two-level
systems with states |↑〉 and |↓〉 which are analogous to the binary 1 and 0 of classical
computers. The main challenge of building a working quantum computer is to find
two-level systems which are suited to be used for this application. They should be
as stable, unperturbed and scalable as possible while not requiring elaborate cooling
devices. Because of the existence of edge states, symmetry protected topological phases
may provide a workaround for some of these problems.

If we knew what a perturbation on a system looks like, we could simply take it into
account when we build our quantum computer. This is obviously not possible, but per-
turbations are not completely unpredictable either. In many cases, we know for example
that perturbations are only short-range correlated and weak. Also a perturbation might
obey one or more symmetry constraints. For example, a perturbation might conserve
the particle number in a system or not change the parity of the particle number in su-
perconductors. Thus, there may be additional perturbation terms in the Hamiltonian
which are short-range correlated, weak and conserve certain symmetries. If we find a
system with a symmetry protected topological phase which only features perturbations
commuting with the symmetry, these perturbations will not be able to change the phase
of the system and lift the degeneracy of the ground states. Therefore we say that the
phase is protected by the symmetry and we do not need to know what our perturbations
look like.

How does this help us to find good qubits? Consider a long open, chain in a topological
phase with degenerate edge modes. The energies of these edge-modes are also protected
by the symmetry constraint. In this thesis, for example, we work with the so called SSH
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1.4. Edge Modes

chain which features one fermionic edge mode with energy ε = 0 on each end of the chain.
The energy of the system does not depend on the occupancy of these modes, so we find
2 · 2 = 4 degenerate ground-states and we are able to store information on the edges of
the system. These systems could, in principle, be used as qubits, because they feature
a ground state degeneracy which is protected by a symmetry constraint.7 As long as
all perturbations obey the symmetry constraint (and the chains are long enough), we
do not need to come up with clever ideas to suppress those perturbations: They simply
decouple from the qubit.

7We want to make clear, that the SSH chain is not a good candidate for these applications because
the symmetry constraints we use do not appear like this in reality (small magnetic fields on the
edge could immediately lift the ground state degeneracy). On the other hand, Majorana chains [16]
(which also feature symmetry protected topological phases) feature more realistic symmetries which
are actually conserved.
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2. Fermionic Phases in the SSH Chain

The Su–Schrieffer–Heeger (SSH) model was first introduced in 1979 [17]. It was meant
to help us understand solitons in long polyacetylene molecules. In this thesis, we will
use the SSH model for a different purpose.

2.1. Introduction to the SSH Chain

The SSH chain falls in the class of systems which we introduced in Figure 1.1. A sketch
of it is shown in Figure 2.1. Each unit cell contains two sites which can be occupied by
one fermion each. They are coupled by hopping terms of strength J1. The unit cells are
also coupled via hopping terms of magnitude J2. The chain features two sublattices A
and B which either include all upper or all lower lattice sites. All couplings in the system
connect the two sublattices. This is the symmetry constraint of this system which we call
an AIII sublattice symmetry. There are no couplings which connect a site of sublattice
A (B) to another site of A (B).

Of course we can close the SSH chain such that it becomes a ring with periodic
boundary conditions. We simply add a hopping term of magnitude J2 to connect the
very first site of the chain to the last site. This will be necessary to calculate winding
numbers in this system.

2.1.1. Hamiltonian of the SSH Chain

We will enumerate the 2L sites of the SSH chain by simply counting them starting with
the left site in the first unit cell. This way, all odd numbers correspond to the sites in
sublattice B, while sites in sublattice A have even indices. Each particle can occupy one
of the states |i〉 with i ∈ {1, · · · , 2L}, meaning that it occupies the site i. In this basis,

· · ·

1 2 L

J1 J2A

B

Figure 2.1.: Sketch of an SSH chain. The system features unit cells with two sites
each. The sites are coupled by fermionic hopping terms of magnitude J1
and J2. The SSH chain also conserves a sublattice symmetry of type AIII
(see Table 1.1).
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2. Fermionic Phases in the SSH Chain

the first quantized Hamiltonian that describes the SSH chain [14] is

H = J1

L∑
i=1

(|2i〉 〈2i− 1|+ h.c.) + J2

L−1∑
i=1

(|2i+ 1〉 〈2i|+ h.c.) , (2.1)

or written in matrix form

H =



0 J1 0
J1 0 J2

J2 0 J1
J1 0

. . .

0 J1
0 J1 0


. (2.2)

Here we assumed that J1, J2 ∈ R. In principle these numbers can also be complex
but then they have to be included into the brackets of Equation (2.1) such that the
Hamiltonian matrix stays hermitean.1 Then Equation (2.2) reads

H =



0 J1 0
J∗1 0 J2

J∗2 0 J1
J∗1 0

. . .

0 J1
0 J∗1 0


. (2.3)

According to Equation (1.3), the second quantized Hamiltonian is

Ĥ =
2L∑
i=1

J1ĉ
†
2i−1ĉ2i +

L−1∑
i=1

J2ĉ
†
2iĉ2i+1 + h.c.. (2.4)

What does the band structure of the SSH chain look like? We cannot simply diag-
onalize the Hamiltonian matrix in Equation (2.2), especially when the system length L
gets very large. Therefore we close the chain to a ring which modifies the Hamiltonian
slightly:

H =



0 J1 0 J2
J1 0 J2 0 0

J2 0 J1
J1 0

. . .

0 0 0 J1
J2 0 J1 0


. (2.5)

1Most of the calculations of this thesis either allow complex coupling constants, or can be slightly
modified to allow them. Nevertheless, we will usually assume that J and J ′ are real numbers.
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Now we can perform a Fourier transformation on the unit cells and according to Equation
(1.10) obtain

H(k) =

(
0 J1 + e−ikJ2

J1 + eikJ2 0

)
. (2.6)

This 2× 2 matrix can now easily be diagonalized. We find the energy bands

E±(k) = ±
√
J2
1 + J2

2 + 2J1J2 cos(k). (2.7)

It is obvious that if either J1 or J2 are zero, both bands are flat. If they are both not
zero, we get curved bands. The band gap can easily be calculated by

∆E = |J1 − J2| . (2.8)

This immediately shows us that the gap is closed if J1 = J2. We will later see that this
is indeed the point at which a phase transition occurs.

2.1.2. Symmetry of the SSH Chain

As we already mentioned, the SSH chain contains a sublattice symmetry of type AIII.
In the second quantization, the generator of this symmetry group is represented by

Ŝ =

[
L∏
i=1

(
ĉ†2i−1 − ĉ2i−1

)(
ĉ†2i + ĉ2i

)]
◦K. (2.9)

At this point it is important to remember the anti-commutation relations of the fermionic
ladder operators: {

ĉ†i , ĉ
†
j

}
= 0 (2.10a)

{ĉi, ĉj} = 0 (2.10b){
ĉi, ĉ

†
j

}
= δi,j . (2.10c)

We can work out a few useful relations. First of all, the symmetry operator does not
squares to one2:

Ŝ2 =

([
L∏
i=1

(
ĉ†2i−1 − ĉ2i−1

)(
ĉ†2i + ĉ2i

)]
◦K

)2

(2.11a)

=
L∏
i=1

(
ĉ†2i−1 − ĉ2i−1

)2
·
(
ĉ†2i + ĉ2i

)2
(2.11b)

=

L∏
i=1

−1 · 1 (2.11c)

2To do this calculation, one has to keep an eye on the fermionic commutation relations.
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= (−1)L 1. (2.11d)

We still can find a inverse operator to Ŝ:

Ŝ−1 =

[
1∏
i=L

(
ĉ2i + ĉ†2i

)(
ĉ2i−1 − ĉ†2i−1

)]
◦K. (2.12)

It is easy to show that this gives ŜŜ−1 = 1.
We can now check that the symmetry Ŝ actually commutes with the Hamiltonian Ĥ.

To do so, we use the relations

Ŝĉ†2i−1Ŝ
−1 = ĉ2i−1 (2.13a)

Ŝĉ2i−1Ŝ
−1 = ĉ†2i−1 (2.13b)

Ŝĉ†2iŜ
−1 = −ĉ2i (2.13c)

Ŝĉ2iŜ
−1 = −ĉ†2i (2.13d)

to find

Ŝĉ†2i−1ĉ2iŜ
−1 = Ŝĉ†2i−1Ŝ

−1Ŝĉ2iŜ
−1 = −ĉ2i−1ĉ†2i = ĉ†2iĉ2i−1. (2.14)

This is the hermitean conjugate of ĉ†2i−1ĉ2i. If we now take a look at Equation (2.4), we

can directly see that ŜĤŜ−1 = Ĥ.
In the first quantization, we can also work out the unitary matrix S which generates

the sublattice symmetry. It has to fulfil

SH(k)S−1 = −H(k) . (2.15)

Here we use the momentum-dependent first quantized Hamiltonian H(k) from Equation
(2.6). Furthermore, S is supposed to be a unitary matrix. It is straightforward to see
that the matrix

S = σz =

(
1 0
0 −1

)
(2.16)

fulfils these requirements.
As we mentioned before, the symmetry does not only describe some characteristics of

the Hamiltonian. It is also a constraint for the whole system even with perturbations.
Therefore we are well advised to try to understand what the constraint of the sublattice
symmetry really is.

Consider two even numbers e1 and e2 as well as two odd numbers o1 and o2. What
is the action of the symmetry S on hopping terms between sites e1 and e2 (o1 and o2)?
We can find that these hopping terms get a minus sign by the symmetry:

Ŝ
(
ĉ†e1 ĉe2 + ĉ†e2 ĉe1

)
S−1 = −

(
ĉ†e1 ĉe2 + ĉ†e2 ĉe1

)
(2.17a)

Ŝ
(
ĉ†o1 ĉo2 + ĉ†o2 ĉo1

)
S−1 = −

(
ĉ†o1 ĉo2 + ĉ†o2 ĉo1

)
. (2.17b)
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If on the other hand we take an even number e and an odd number o, we will always
find

Ŝ
(
ĉ†eĉo + ĉ†oĉe

)
S−1 =

(
ĉ†eĉo + ĉ†oĉe

)
. (2.18)

This means that our Hamiltonian can only contain hopping terms between even and
odd numbered sites. If we add a hopping term which couples two even (odd) sites, the
Hamiltonian will break the sublattice symmetry. This includes the counting of particles
on a single site (n̂i = ĉ†i ĉi). On the other hand, in Figure 2.1 we saw that even and odd
sites correspond to the different sublattices of the SSH chain. The sublattice symmetry
forces our system to suppress all fermion tunnelling processes within a single sublattice.

Also keep in mind that the Hamiltonian is supposed to be local which requires the
hopping distance |e− o| to be finite in the thermodynamic limit.

The choice of S is not unique. Obviously, we can change the global phase of S without
any physical consequences, but we also could have chosen

Ŝ′ =

[
L∏
i=1

(
ĉ†2i−1 + ĉ2i−1

)(
ĉ†2i − ĉ2i

)]
◦K. (2.19)

This would yield the same physical restrictions for our SSH chain.

2.1.3. Winding Number of the SSH Chain

We want to calculate the winding number of the SSH chain and find different phases.
To do so, we use Equation (1.53). This choice is completely arbitrary and any other
formula in Figure 1.4 would give the same result.

From Equation (1.49) and Equation (2.6) we know that

h(k) = J1 + J2e
ik. (2.20)

The winding number is now calculated by

ν =

∫ π

−π

dk

2π
∂k arg(det(h)) (2.21a)

=

∫ π

−π

dk

2π
∂k arg

(
det
(
J1 + J2e

ik
))

(2.21b)

=

∫ π

−π

dk

2π
∂k arg

(
J1 + J2e

ik
)

(2.21c)

=
1

2π
arg
(
J1 + J2e

ik
)∣∣∣∣π
−π
. (2.21d)

The function J1 + J2e
ik draws a perfect circle with radius J2 and midpoint J1 into the

complex plane. In the formula above we count how often this circle goes around the
origin of the plane.

Obviously there are only two possibilities. If |J1| > |J2|, the offset of the circle is
bigger than its radius such that it does not include the origin. In this case we get the
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J1

J2 J1 = J2

ν = 0

ν = 1

Figure 2.2.: This is the phase diagram of the SSH-chain for real and positive values of
J1 and J2.

winding number ν = 0. We call the corresponding phase the trivial phase. Instead, if
|J1| < |J2|, the radius of the circle is so big compared to its offset that it includes the
origin. Due to the positive sign in the exponential function e+ik we get a positive sign
for the winding number ν = +1. This means that there is another non-trivial phase,
which we also call the topological phase. We also see that with this system we cannot
realize more than these two phases. In this thesis we will discuss different ways to stack
multiple SSH chains on top of each other to realize more than just one non-trivial phase.

Above, we left out the special case |J1| = |J2|. At this point the edge of the circle in
the complex plane exactly goes through the origin. This means that there is a value k0
for which J1 + J2e

ik0 = 0. We cannot calculate the argument any more because arg(0)
is not defined. This means that for |J1| = |J2| the winding number is no longer defined
and the classification of the symmetry protected topological phases in our breaks down.
This is where a phase transition takes place. As we already saw above, this is the same
point at which the band gap is closed. Figure 2.2 shows the phase diagram of the SSH
chain.

In this calculation the symmetry constraint on the SSH chain seems to be left out
of consideration. This is actually not true. We know that only because of the sublat-
tice symmetry, we can even write the Hamiltonian as two off-diagonal block matrices
(see Equation (1.49)). This is where we already took into account that the sublattice
symmetry always stays conserved.

What distinguishes the different phases from each other? Consider our SSH chain
with periodic boundaries and for example J1 > J2. This chain is in the trivial phase.
If we now exchange J1 and J2, obviously we end up in the topological phase but the
actual physical system looks exactly the same as before. We can either exchange the
coupling constants or we can shift the whole periodic system by half a unit cell – the
result is the same. This shows us that in the SSH chain, our phases depend strongly
on the definition of the unit cells. If we shift the unit cells by one site, the topological
phase becomes trivial and vice versa. It is important to understand that our symmetry
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· · ·

1 2 L

Figure 2.3.: Trivial phase of the SSH chain in the dimerized limit. The chain consists of
L identical seperate subsystems with a 4-dimensional Hilbert space each.

protected topological phases are basically a choice. When we cut our SSH chain such
that it becomes a long string with two ends, we will see some physical differences between
the phases. This is simply due to the fact that we always cut in between two unit cells.
In this case the choice is made while cutting the system open.

2.1.4. Fully Dimerized SSH Chain

Throughout this thesis we will mostly focus on two special cases of the open SSH chain.
We will only look at the fully dimerized limits which means, that one of the coupling
constants J1 and J2 vanishes. We will see that these systems are not only much easier
to work with but they are also very helpful from a didactical point of view.

Obviously, there is no point in looking at a SSH chain without any couplings (J1 =
J2 = 0). Therefore we start with the trivial phase and J1 6= 0 while J2 = 0. As we can
see in Figure 2.3, the system breaks down to L identical subsystems with Hamiltonian

Ĥsub = J1

(
ĉ†1ĉ2 + h.c.

)
. (2.22)

This Hamiltonian acts on a four-dimensional Hilbert space with basis |0, 0〉, |1, 0〉, |0, 1〉
and |1, 1〉, corresponding to the respective sites being occupied (1) or not (0). We find
a unique ground state

|ψ〉 =
1√
2

(|1, 0〉+ |0, 1〉) (2.23)

for each unit cell. This is in case J1 < 0. If J1 > 0, we have to write a minus sign instead
of the plus for the superposition. It has the energy ε = − |J1|. This means that in the
ground state each unit cell is half-filled.

The ground state of the system is given by

|Ω〉 =

L∏
i=1

(
ĉ†2i + ĉ†2i−1√

2

)
|0〉 , (2.24)

with the vacuum |0〉. This is simply the product state of the dimers in Equation (2.23).

Now we can take a look at the much more interesting case which is the dimerized limit
of the topological phase. As we can see in Figure 2.4, the unit cells are now connected
to each other. Still the bulk of the system can be divided in perfectly separated dimers
which are exactly the same as in the trivial phase. Only the edges differ from the case
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· · ·

1 2 L

Figure 2.4.: Topological phase of the SSH chain in the dimerized limit. The bulk of the
system looks exactly as in the trivial case (see Figure 2.3) but the edges of
the system are single separated sites. This leads to the existance of edge
states and a 4-fold degeneracy of the ground state.

above because each edge features a single site. A single unconnected site can be filled or
not – since it does not even appear in the Hamiltonian, the energy stays the same. For
each edge there are the two possibilities |0〉 and |1〉 for the ground state, which gives us
a four-fold degeneracy.

The four ground states of the topological phase of the SSH chain in the dimerized
limit are given by

|l, r〉 =
(
ĉ†1

)l (
ĉ†L

)r L−1∏
i=1

(
ĉ†2i + ĉ†2i+1√

2

)
|0〉 , (2.25)

with the occupation numbers l, r ∈ {0, 1} of the furthermost left and right site.
If we go back into the first quantized formalism, we find the two edge modes which

are the single-particle states located at the edges of the system. These states have the
energy ε = 0 and are therefore in-gap modes.

If we are not in the perfectly dimerized case and allow a J2 6= 0, we will see that
the edge modes are not located at the outermost site any more [14]. Still we can com-
putationally calculate the wave functions of these states and see that their amplitude
vanishes exponentially in the system. This means that they penetrate the system only
on a finite length which is negligible for L → ∞. Therefore, it is still feasible to call
these states edge modes. Only when J1 = J2, the edge modes break down. This is when
the phase transition occurs.

2.1.5. Conservation of the Particle Number

The number of fermions on a site can be obtained by the operator n̂i = ĉ†i ĉi. Accordingly,
the particle number of the whole SSH chain is expressed via the operator

N̂ =
2L∑
i=1

n̂i. (2.26)

The Hamiltonian of the SSH chain features only hopping terms. Therefore the particle
number in the chain is a conserved quantity. This constraint can be expressed as a
symmetry. In contrast to the anti-unitary symmetries above which correspond to a Z2

symmetry group, the particle number conservation symmetry is represented by

R̂φ = eiφN̂ . (2.27)
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· · ·

· · ·

1 2 L

Figure 2.5.: If we stack SSH chains on top of each other, we can realize more than two
symmetry protected topological phases in a single system.

Here we have 0 ≤ φ < 2π and a continuous symmetry. The corresponding symmetry
group is called U(1).

A Hamiltonian conserves the particle number if and only if for all φ, the Hamiltonian
commutes with the operator R̂φ:

R̂φĤR̂
−1
φ = Ĥ. (2.28)

It can be shown that this is true for the SSH chain.

2.2. Stacked SSH Chains

From now on we will only look at SSH chains in the fully dimerized limit. How many
symmetry protected topological phases can we realize using one-dimensional fermionic
SSH chains?

We already showed that a single SSH chain can only realize two different phases.
Therefore we will try to stack more than one chain on top of each other as shown in
Figure 2.5. This is still a one dimensional system but now we have new degrees of
freedom (four different hopping amplitudes), so we might be able to realize more than
two phases.

Let us start with two SSH chains. There are multiple ways to realize a sublattice
symmetry on this system but we will choose the simplest one:

Ŝ =

[
L∏
i=1

(
ĉ†2i−3 − ĉ2i−3

)(
ĉ†2i−2 − ĉ2i−2

)(
ĉ†2i−1 + ĉ2i−1

)(
ĉ†2i + ĉ2i

)]
◦K. (2.29)

Here we enumerate the sites as shown in Figure 2.6. Now the sites 1 and 2 of each unit
cell belong to the same sublattice, while sites 3 and 4 belong to the other one. This
symmetry can be easily expanded to n stacked chains.

How can we calculate the winding number of a system with n stacked SSH chains?
As the chains are completely separated, the Hamiltonian H can be brought in a block
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2. Fermionic Phases in the SSH Chain

1

2 3

4

Figure 2.6.: When we stack two SSH chains on top of each other, we enumerate them
counterclockwise in each unit cell starting from the top left site.

matrix form. This also holds for h:

h =


h1 0

h2
. . .

0 hn

 . (2.30)

It can easily be shown that

det(h) =
n∏
i=1

det(hi) . (2.31)

Using Equation (1.52), we can calculate the winding number:

ν =

∫ π

−π

dk

2πi
∂k log(det(h)) (2.32a)

=

∫ π

−π

dk

2πi
∂k log

(
n∏
i=1

det(hi)

)
(2.32b)

=

∫ π

−π

dk

2πi
∂k

n∑
i=1

log(det(hi)) (2.32c)

=
n∑
i=1

∫ π

−π

dk

2πi
∂k log(det(hi)) (2.32d)

=
n∑
i=1

νi. (2.32e)

This shows us that in these systems the winding number is actually additive as long as
the chains are not coupled to each other.

2.2.1. Stacking Two Chains

There are four different ways to combine two chains in the trivial or topological phase.
We start with the case of both chains being in the trivial state (see Figure 2.7). The
combined system is obviously still in its trivial phase with winding number ν = 0. This
is not only the intuitive result, but can also quickly been proven using the fact that the
winding number is additive.
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2.2. Stacked SSH Chains

Figure 2.7.: Two SSH chains in the fully dimerized limit are stacked on top of each other.
They are both in the trivial phase. The combined system is also in the trivial
phase with winding number ν = 0.

Figure 2.8.: If we put a SSH chain in the topological state on top of a chain in the trivial
state, we end up with a combined system which has the winding number
ν = 1.

We can also stack one trivial and one topological chain on top of each other. This
gives us a system in a topological phase with winding number ν = 1. In fact there
are two ways to do this. We can either have the topological chain on top as shown in
Figure 2.8, or below the trivial chain (see Figure 2.9). From the winding number we
know that those two systems belong to the same symmetry protected topological phase.
This means that there has to exist a way of converting the system shown in Figure 2.8
into the system in Figure 2.9. In fact we can find a smooth path which connects both
Hamiltonians without closing the gap. In the following we will discuss this path.

If we want to go from Figure 2.8 to Figure 2.9, it is immediately clear that we will need
to introduce some couplings between the two chains. Switching the state in the chains
separately would necessarily result in a phase transition in each of them. The challenge
is to find a smooth path which not only performs the transition, but also makes it easy
to prove that the band gap is never closed.

The idea is to choose the path such that the system always stays divided in small
identical segments. Then to compute the band structure of the whole system we would
only need to calculate the bands on one segment. Our path is illustrated in Figure 2.10.
We start off with the Hamiltonian

Ĥ0 =
L−1∑
i=1

[
ĉ†4iĉ4i+1 + h.c.

]
+

L∑
i=1

[
ĉ†4i−2ĉ4i−1 + h.c.

]
. (2.33)

Figure 2.9.: In analogy to Figure 2.8, we can also have the upper SSH chain in the trivial
state while the lower one is in the topological state. This system has the
winding number ν = 1 as well.
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2. Fermionic Phases in the SSH Chain

Figure 2.10.: Illustration of the path that can be used to convert the system shown in
Figure 2.8 into the system shown in Figure 2.9. Diffferent colors correspond
to the different signs of the hopping terms in V . Throughout the whole
path, the system stays cut up into small segments of three (on the left edge)
or four sites each. These segments can easily be computed to show that
the total Hamiltonian stays gapped. The image only shows the first half of
the procedure. The second half is completely identical but the upper and
lower chain are swapped.

Then we switch on some coupling terms between the chains of the form

V̂ = ĉ†1ĉ3 − ĉ
†
4ĉ6 + ĉ†5ĉ7 − ĉ

†
8ĉ10 + · · ·+ ĉ†4L−3ĉ4L−1 + h.c.. (2.34)

We do this in a linear way by using the path

Ĥ(λ ∈ [0, 1]) = (1− λ) Ĥ0 + λV̂ , (2.35)

which will end in the lower system illustrated in Figure 2.10. It can easily be shown
that V̂ only connects sites from different sublattices and therefore commutes with the
symmetry operator Ŝ.

Obviously, the Hamiltonian Ĥ(0) is gapped. This is also true for Ĥ(1) since this system
only consists of dimers (remember that we do not count the edge modes). Every other
point on the path Ĥ(λ) can be constructed of the two elements shown in Figure 2.11.
The Hilbert spaces of these building blocks are 16-dimensional and on the edge of the
system 8-dimensional. Here we ignore the single site on the right edge of the system
because this is trivial to solve (Ĥ = 0).

It is computationally easy to prove that in neither of those two elements the gap is
closed (see Appendix A). The ring of four sites does always have a unique ground state.
At the other hand, the three-site-system has a degenerate ground state for all λ ∈ [0, 1].
This is consistent with the fact that there is an edge mode which cannot be removed
without a phase transition.
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2.2. Stacked SSH Chains

Figure 2.11.: These are the building elements for any Hamiltonian along the path
sketched in Figure 2.10. The left element is what constructs the bulk
of the system while the right smaller element is on the left edge. Their
Hilbert spaces are 16- and 8-dimensional.

Figure 2.12.: If we stack two SSH chains in the topological state on top of each other, we
find a new phase with winding number ν = 2. This means that two SSH
chains can be used to realize up to three symmetry protected topological
phases. We can also stack even more chains on top of each other while
every additional SSH chain results in one additional phase. The phases of
stacked SSH chains form a Z group structure.

Now we know that the path Ĥ(λ) is gapped. This means, we are already half way
there for the complete transition to Figure 2.9. All we still have to do is to perform
the same path backwards again but with the trivial Hamiltonian at the upper chain and
the topological Hamiltonian at the lower chain. It is easy to see that this completes the
desired path. As this second half of the transition is performed in the same way as the
first one (only mirrored in time and space), we already know that it is gapped.

Using two stacked SSH chains, we found completely different states which according to
the winding number belonged to the same symmetry protected topological phase. Now
we actually found a smooth gapped path to connect the two states and show that they
can be transformed into each other without a phase transition.

Last but not least, we can also stack two topological SSH chains on top of each other.
This gives us the system shown in Figure 2.12. The winding number is now ν = 2 which
means that we found a new symmetry protected topological phase.

2.2.2. Stacking More than Two Chains

In the discussions above, a pattern starts to form. It is quite obvious, that if we stack n
SSH chains on top of each other, we can realize n + 1 symmetry protected topological
phases with the winding numbers ν ∈ {0, 1, · · · , n}. Adding a topological chain to the
system increases the winding number by 1. This shows us, that the topological phases
form a Z group structure and we can in principle realize as many phases as we want to.
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2. Fermionic Phases in the SSH Chain

2.3. Interactions – Breakdown of Topological Phases

We did now classify symmetry protected topological phases for non-interacting one-
dimensional fermionic systems. Furthermore we elaborated that the fermionic SSH chain
is a system which can realize two different phases. Stacking n > 0 SSH-chains on top of
each other allows us to realize n+1 different phases, which makes the number of possible
phases infinitely high. The winding number is in Z.

Now we want to expand our classification of symmetry protected topological phases to
include interacting fermions. This is important because we want to have stable phases
which are robust under perturbations as long as these perturbations fulfil a Symmetry
constraint. Till now, we also required the perturbations to be expressed as single-particle
operators. If we allow them to be interactions between particles, this will make our
approach more general.

Interactions also come with some new problems. The winding number ν is only defined
for non-interacting systems. Therefore we cannot use it for the classification of the phases
as we did before. This does not mean that the phases are not defined any more. The
winding number is a purely mathematical construct which basically inherited the phys-
ical properties of symmetry protected topological phases. The physical definition of a
phase does still work: Two states are in the same symmetry protected topological phase,
if and only if there exists a smooth, gapped path which connects their Hamiltonians.
Throughout the whole path, the system has to fulfil the requirements of the symmetry
constraint.

Now we can already see that the number of phases that can be realized in a system
can either stay the same or decrease if we allow interactions. This is simply because
we allow new paths for our Hamiltonian which could connect two originally separated
phases.3

How does the number of phases change if we allow interactions? This was already
elaborated in 2010 by Fidkowsky and Kitaev in [9]. They worked with stacked Majorana
chains which originally have a topological invariant in Z (similarly to the invariant
for stacked SSH chains). With interactions, it can be proven that the space Z of the
topological invariant breaks down to Z8 ([9]). This means that there only exist at most
eight different symmetry protected topological phases in systems of stacked Majorana
chains. These can be realized with seven chains. Adding an eighth chain will not increase
the number of phases.

In this thesis, we will not go into the details of the Majorana chain. Instead, we will
combine two Majorana chains (in a specific way) such that they form a SSH chain. This
will allow us to show that the number of phases that are realizable with stacked SSH
chains is decreased, too.

3This is true for the systems considered in this thesis. In principle there can also exist a phase which
depends on interactions to even exist. This means that the number of particles can also increase if
all Hamiltonians on a phase feature interactions.
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2.3. Interactions – Breakdown of Topological Phases

gapped path with interactions

Figure 2.13.: We can find a specific path to connect four topological SSH chains to four
trivial chains. This is a proof for the breakdown of the Z topological
invariant to Z4 in systems of stacked SSH chains.

2.3.1. Connection of Four Topological SSH Chains to the Trivial Phase

As in [9] the classification of Majorana chains broke down to Z8 and we construct each
SSH chain out of two Majorana chains, we intuitively expect the classification to break
down to Z4. This would mean that there exists a gapped path to connect four SSH
chains in the topological state to a system with four trivial SSH chains (since that is
how the Z4 group structure works). This is sketched in Figure 2.13.

Working with this big system is in principle possible but very costly, since the dimen-
sion of each unit cell is 28 = 256. To reduce the effort, we will not solve this system
analytically but numerically. Furthermore we will choose our path such that it is always
performed on separated cells of 8 sites (unit cells of the system in the trivial case). If all
chains are in the topological phase, we will start with ignoring the edges of the system
and instead look at the cells.

In Figure 2.14 we show an exemplary single cell with black lines indicating the hopping
terms between the sites. The image also shows how we enumerate the sites. The ladder

operators will be called â
(†)
i and b̂

(†)
i (i ∈ {1, · · · , 4}), depending on the sublattice of the

corresponding site.

Now we define a set of new operators (see Table 2.1). The operators acting on sublat-
tice A are called ĉ, while the operators on sublattice B are labelled ĉ′. In the following we
will call them Majorana operators. We will not go into the details of the Majorana chain
(see Section C.1), but these operators were used to convert a system of eight Majorana
chains into a system of four SSH chains.
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Ŵ Ŵ ′
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Figure 2.14.: The path leaves the cells of the system separated. The interactions Ŵ and

Ŵ ′ will only couple the sites on a single column. To make the calculations

as clear as possible, we call the ladder operators â
(†)
i and b̂

(†)
i , depending

on the sublattice they act on (A or B).

ĉ1=
(
â1 + â†1

)
ĉ′1= −i

(
b̂1 − b̂†1

)
ĉ2= i

(
â1 − â†1

)
ĉ′1=

(
b̂1 + b̂†1

)
ĉ3=

(
â2 + â†2

)
ĉ′3= −i

(
b̂2 − b̂†2

)
ĉ4= −i

(
â2 − â†2

)
ĉ′4= −

(
b̂2 + b̂†2

)
ĉ5=

(
â3 + â†3

)
ĉ′5= −i

(
b̂3 − b̂†3

)
ĉ6= i

(
â3 − â†3

)
ĉ′6=

(
b̂3 + b̂†3

)
ĉ7=

(
â4 + â†4

)
ĉ′7= −i

(
b̂4 − b̂†4

)
ĉ8= −i

(
â4 − â†4

)
ĉ′8= −

(
b̂4 + b̂†4

)
Table 2.1.: Set of operators to make calculations with four SSH chains and interactions

easier. These operators are actually Majorana modes, which shows how SSH
chains can be obtained from two Majorana chains.
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2.3. Interactions – Breakdown of Topological Phases

What are the properties of the Majorana operators? First of all it is important to see
that they build a complete basis of our Fock space, just as the fermionic ladder operators
did. This is possible, because we can also form linear combinations of the Majorana op-
erators and obtain the fermionic ladder operators. Furthermore the Majorana operators
are self-adjoint

ĉ†i = ĉi (2.36a)(
ĉ′i
)†

= ĉ′i (2.36b)

and square to one:

ĉ2i = 1 (2.37a)(
ĉ′i
)2

= 1. (2.37b)

They also fulfil the fermionic commutation relations.

We will now express the Hamiltonian of the cell (Figure 2.14) of our system using the
Majorana operators. Initially, the Hamiltonian is simply the sum of kinetic terms which
are part of the SSH chains:

T =

4∑
i=1

[
â†i b̂i + b̂†i âi

]
. (2.38)

It can be shown that this is actually the same (up to a scaling factor) as

T =
8∑
i=1

iĉiĉ
′
i. (2.39)

The path of the Hamiltonian also includes an interaction term which is given by

Ŵtot = Ŵ + Ŵ ′ (2.40)

with

Ŵ =ĉ1ĉ2ĉ3ĉ4 + ĉ5ĉ6ĉ7ĉ8 + ĉ1ĉ2ĉ5ĉ6 + ĉ3ĉ4ĉ7ĉ8 − ĉ2ĉ3ĉ6ĉ7
− ĉ1ĉ4ĉ5ĉ8 + ĉ1ĉ3ĉ5ĉ7 + ĉ3ĉ4ĉ5ĉ6 + ĉ1ĉ2ĉ7ĉ8 − ĉ2ĉ3ĉ5ĉ8
− ĉ1ĉ4ĉ6ĉ7 + ĉ2ĉ4ĉ6ĉ8 − ĉ1ĉ3ĉ6ĉ8 − ĉ2ĉ4ĉ5ĉ7

(2.41a)

Ŵ ′ =ĉ′1ĉ
′
2ĉ
′
3ĉ
′
4 + ĉ′5ĉ

′
6ĉ
′
7ĉ
′
8 + ĉ′1ĉ

′
2ĉ
′
5ĉ
′
6 + ĉ′3ĉ

′
4ĉ
′
7ĉ
′
8 − ĉ′2ĉ′3ĉ′6ĉ′7

− ĉ′1ĉ′4ĉ′5ĉ′8 + ĉ′1ĉ
′
3ĉ
′
5ĉ
′
7 + ĉ′3ĉ

′
4ĉ
′
5ĉ
′
6 + ĉ′1ĉ

′
2ĉ
′
7ĉ
′
8 − ĉ′2ĉ′3ĉ′5ĉ′8

− ĉ′1ĉ′4ĉ′6ĉ′7 + ĉ′2ĉ
′
4ĉ
′
6ĉ
′
8 − ĉ′1ĉ′3ĉ′6ĉ′8 − ĉ′2ĉ′4ĉ′5ĉ′7.

(2.41b)

This is the same interaction that was used in [9]. In the following we will show that this
Ŵtot conserves the particle number. We will only do this for Ŵ . The calculation for
Ŵ ′ is almost identical. We take Equation (2.41a) and divide it into two different parts.
The first section includes the terms ĉ1ĉ2ĉ3ĉ4, ĉ5ĉ6ĉ7ĉ8, ĉ1ĉ2ĉ5ĉ6, ĉ3ĉ4ĉ7ĉ8, ĉ3ĉ4ĉ5ĉ6 and
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ĉ1ĉ2ĉ7ĉ8. These terms all include pairs of Majorana operators which act on the same
fermionic site, like

ĉ1ĉ2 =
(
â1 + â†1

)
i
(
â1 − â†1

)
= i

â1â1︸︷︷︸
=0

+â†1â1 − â1â
†
1 − â

†
1â
†
1︸︷︷︸

=0

 . (2.42)

We immediately see that there is no way for these pairs to violate the particle number
conservation which also holds for the products of the pairs.

Now we move on to the other terms in Equation (2.41a) which include −ĉ2ĉ3ĉ6ĉ7,
−ĉ1ĉ4ĉ5ĉ8, ĉ1ĉ3ĉ5ĉ7, −ĉ2ĉ3ĉ5ĉ8, −ĉ1ĉ4ĉ6ĉ7, ĉ2ĉ4ĉ6ĉ8, −ĉ1ĉ3ĉ6ĉ8 and −ĉ2ĉ4ĉ5ĉ7. We can
actually rewrite these terms as

− ĉ2ĉ3ĉ6ĉ7 − ĉ1ĉ4ĉ5ĉ8 + ĉ1ĉ3ĉ5ĉ7 − ĉ2ĉ3ĉ5ĉ8
− ĉ1ĉ4ĉ6ĉ7 + ĉ2ĉ4ĉ6ĉ8 − ĉ1ĉ3ĉ6ĉ8 − ĉ2ĉ4ĉ5ĉ7

=− (ĉ2ĉ3 + ĉ1ĉ4) (ĉ6ĉ7 + ĉ5ĉ8)− (ĉ2ĉ4 − ĉ1ĉ3) (ĉ5ĉ7 − ĉ6ĉ8)
(2.43)

and now look at the separate factors individually. They can easily be calculated, for
example:

(ĉ2ĉ3 + ĉ1ĉ4) = i
(
â1 − â†1

)(
â2 + â†2

)
+
(
â1 + â†1

)
(−i)

(
â2 − â†2

)
(2.44a)

= i
[
â1â2 + â1â

†
2 − â

†
1â2 − â

†
1â
†
2 − â1â2 + â1â

†
2 − â

†
1â2 + â†1â

†
2

]
(2.44b)

= i
[
â1â
†
2 − â

†
1â2 + â1â

†
2 − â

†
1â2

]
. (2.44c)

All those terms are conserving the particle number. This also holds for (ĉ6ĉ7 + ĉ5ĉ8),
(ĉ2ĉ4 − ĉ1ĉ3) and (ĉ5ĉ7 − ĉ6ĉ8). Therefore also their products conserve the particle num-
ber.

Now we know that Ŵ does not change the number of fermions in our system. The
same also holds for Ŵ ′ and therefore also for Ŵtot.

Besides the conservation of the particle number, the interaction Ŵtot should also
conserve the sublattice symmetry of the SSH chains. This symmetry (on a single cell)
is given by

Ŝ =
4∏
i=1

(
âi + â†i

)(
b̂i − b̂†i

)
◦K (2.45)

=
4∏
i=1

iĉ2i−1ĉ
′
2i−1 ◦K. (2.46)

The sublattice symmetry can be expressed as a product of all Majorana operators with
odd indices. All terms of Ŵtot consist of two even and two odd Majorana operators.
Therefore the interaction commutes with Ŝ.

Now we have all we need to construct the path which connects four topological SSH
chains with four trivial chains. It is given by

Ĥ(λ ∈ [0, 1]) = (1− λ)T + λŴtot. (2.47)
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2.3. Interactions – Breakdown of Topological Phases

This path switches off the hopping terms in Figure 2.14 while switching on the inter-
actions. At λ = 1, all kinetic terms vanish and the system consists of 2L columns of
four sites each, which are connected via the interactions Ŵ or Ŵ ′. We can then perform
the same path again backwards but switch on the kinetic term of the trivial SSH chains
(instead of the topological term). This performs the transition shown in Figure 2.13.

To prove that this path is actually allowed, we still have to show that it is gapped. As
the Hamiltonian Ĥ(λ) acts on a 256-dimensional Hilbert space, we simply diagonalize
the Hamiltonian numerically. The result can be seen in Figure 2.15. At the left side
of the plot, the kinetic term T̂ is switched on and the interactions are switched off.
The energy spectrum of the cell is symmetric because of the sublattice symmetry (see
Equation (1.45)). This argument only holds for non-interacting systems. Therefore, at
λ = 1 with the interactions Ŵtot switched on, the spectrum is no longer symmetric.

As we can see, the whole path is gapped because the lowest eigenenergy never intersects
any other energies. The ground state is also unique. We already know that for λ = 0
and as the path is smooth, it has to hold for all λ ∈ [0, 1].

We now have a way of switching off all kinetic terms of the systems while holding
the gap open with interactions on all of the columns. We do the same on the edge
of the topological system which gaps out the (unprotected) edge states. Then we can
switch on the kinetic terms of four trivial SSH chains, basically performing the same
path backwards with shifted cells. This connects the phase with winding number ν = 4
to the trivial phase (ν = 0) and shows us that the winding number receives the Z4 group
structure. If we allow interactions, we can only realize four different phases using stacked
SSH chains.

4This plot can also be seen in [9]. Only some of the lines look differently. We suspect that an error has
been made which does not affect the physical conclusions of this paper.
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Figure 2.15.: Eigenenergies of the Hamiltonian Ĥ(λ) of one cell for λ ∈ [0, 1]. At λ =
0, the system consists of four separated SSH chains and the spectrum is
symmetric. At λ = 1, the kinetic terms T̂ of the SSH chains are switched
off but the band gap is maintained by the interactions Ŵtot. As we can
see, throughout the whole path the lowest eigenenergy of the cell stays
separated from all other energies. This means that the whole system stays
gapped.4
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In Chapter 1, we classified symmetry protected topological phases in one-dimensional
fermionic systems. In the following we want to do the same for systems of hard-core
bosons (e.g. spins, see Subsection 3.1.1).

3.1. Jordan–Wigner Transformation

Consider a fermionic system with ladder operators ĉ†i and ĉi. It consists of L unit cells
with d sites each1. If we want to perform simulations on such a system, we can do
this by expressing the fermionic operators as matrices. These matrices must fulfil all
requirements of the ladder operators, e.g. the commutation relations. Still there are
multiple ways to do this. One of them is the so-called Jordan–Wigner transformation
ρJW:

ρJW(ĉj) =

j−1∏
i=1

σzi · σ+j (3.1a)

ρJW

(
ĉ†j

)
=

j−1∏
i=1

σzi · σ−j . (3.1b)

A Pauli matrix σi acting on site i is an abbreviation of

σi = 1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗σ ⊗ 1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
d·L−i

(3.2)

and the ladder operators are implemented by

σ+ =

(
0 1
0 0

)
(3.3a)

σ− =

(
0 0
1 0

)
. (3.3b)

The σz-matrices are necessary to implement the anticommutation relations of the fer-
mions. The Jordan–Wigner transformation is not a local transformation. This is un-
avoidable as exchanging two fermions brings up a minus sign, no matter how large their
distance is.

1In the previous chapters, d was the internal dimension of a unit cell. This is now 2d.
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3.1.1. Hard-Core Bosons

The Jordan–Wigner transformation does not only allow us to perform numerical simu-
lations of fermionic systems. It can also make a transition from fermions to hard-core
bosons. Consider a Hamiltonian which only features hopping terms between nearest
neighbours (ĉ†j ĉj+1 + ĉ†j+1ĉj). If we perform a Jordan–Wigner transformation on this
term, we find

ρJW

(
ĉ†j ĉj+1 + ĉ†j+1ĉj

)
=ρJW

(
ĉ†j

)
ρJW(ĉj+1) + ρJW

(
ĉ†j+1

)
ρJW(ĉj) (3.4a)

=

j−1∏
i=1

σzi · σ−j ·
j∏
i=1

σzi · σ+j+1

+

j∏
i=1

σzi · σ−j+1 ·
j−1∏
i=1

σzi · σ+j (3.4b)

= σ−j σ
+
j+1 + σ−j+1σ

+
j . (3.4c)

As we can see, the σz-matrices cancel each other out and we are left with only σ+- and
σ− matrices. Those fulfil bosonic commutation relations on different sites i 6= j:[

σ+i , σ
−
j

]
= 0 (3.5a)[

σ−i , σ
−
j

]
= 0 (3.5b)[

σ+i , σ
+
j

]
= 0. (3.5c)

This means that we are working with matrices which represent bosonic ladder operators.
On the same site this is not true: {

σ+i , σ
−
i

}
= 0. (3.6)

On a single site the matrices seem to represent fermions. This is why we are not working
with ordinary non-interacting bosons, but with hard-core bosons.

Hard-core bosons are a kind of interacting bosons. They have an infinitely high re-
pulsion if two bosons are on the same site, but no interactions if they are located on
different sites. This effectively means that a site can be occupied by maximally one
boson. We implement this by using fermionic commutation relations on every site and
bosonic commutation relations between different sites.

The most common example of hard-core bosons is a chain of spins. Each spin can
point up or down which corresponds to one or no boson on the site. Spins are bosonic
particles and if we exchange two of them we do not pick up a minus sign. Still, a spin
can only be flipped once. Flipping it a second time will bring it back to the original
state.

In this chapter, we want to classify symmetry protected topological phases for one-
dimensional systems of hard-core bosons. As we can already see, we will not be able
to modify the fermionic classification to suit a bosonic system because we now have
interacting particles. Therefore we will need a completely new formalism.
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3.1. Jordan–Wigner Transformation

3.1.2. Bosonic SSH Chain

We can apply the Jordan–Wigner transformation to the fermionic Hamiltonian of the
SSH chain in Equation (2.4):

HB = ρJW

(
ĤF

)
= ρJW

(
2L∑
i=1

J1ĉ
†
2i−1ĉ2i +

L−1∑
i=1

J2ĉ
†
2iĉ2i+1 + h.c.

)
(3.7a)

=
2L∑
i=1

J1σ
−
2i−1σ

+
2i +

L−1∑
i=1

J2σ
−
2iσ

+
2i+1 + h.c.. (3.7b)

This shows us that we can directly translate the fermionic SSH chain to an SSH chain
of hard-core bosons which has the Hamiltonian

HB = ρJW

(
ĤF

)
. (3.8)

We can also apply the Jordan–Wigner transformation on the sublattice symmetry
operator from Equation (2.9). This leads to

SB = ρJW

(
ŜF

)
= ρJW

([
L∏
i=1

(
ĉ†2i−1 − ĉ2i−1

)(
ĉ†2i + ĉ2i

)]
◦K

)
(3.9a)

=

 L∏
i=1

2i−2∏
j=1

σzj

(−iσy2i−1
)[(2i−1∏

k=1

σzk

)
(σx2i)

] ◦K (3.9b)

=

[
L∏
i=1

(
−iσy2i−1

)
σz2i−1 (σx2i)

]
◦K (3.9c)

=

[
2L∏
i=1

σxi

]
◦K. (3.9d)

Now we can find one of the real differences between the fermionic and the bosonic
SSH chain. The bosonic sublattice symmetry does not forbid hopping terms within in a
single sublattice. For example, the term σ−1 σ

+
3 +σ−3 σ

+
1 = σx1σ

x
3 +σy3σ

y
1 clearly commutes

with SB. This is due to the fact that fermionic hopping terms of non-neighbouring sites
translate to bosonic interactions:

ρJW

(
ĉ†1ĉ3 + ĉ†3ĉ1

)
= σ−1 σ

z
2σ

+
3 + σ−3 σ

z
2σ

+
1 . (3.10)

This interaction does indeed not commute with SB.2

2Even though the sublattice symmetry implements a different restriction on the bosonic system com-
pared to the fermionic SSH chain, we will still call it a sublattice symmetry in the following.
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3. Classification of Bosonic Phases

3.1.3. Jordan–Wigner String

We can now already guess that there are different ways to translate a one-dimensional
fermionic system into a bosonic system. The Jordan–Wigner transformation strongly
depends on the ordering of the fermionic sites which we call the Jordan–Wigner string.
Depending on how we choose our Jordan–Wigner string in the fermionic system we
can realize different systems of hard-core bosons. Even though some of them might be
strongly interacting, while others might even feature only hopping terms, they all come
from the same fermionic system and share the same band structure.

3.2. Matrix-Product States

To classify topological phases in non-interacting fermionic systems, we used the proper-
ties of the first quantized Hamiltonian in the momentum space. As we are now working
with interacting bosons, our systems are no longer described accurately by first quant-
ized Hamiltonians. Therefore, we will use the properties of the ground state |ψ〉 itself to
classify bosonic symmetry protected topological phases.

To do this, we need an efficient way to express |ψ〉. We consider a chain of N spins
with periodic boundary conditions while each spin has the dimension d.3 Then we can
generally write the state as

|ψ〉 =
d∑

i1,··· ,iN=1

ci1,··· ,iN |i1, · · · , iN 〉 (3.11)

with the complex numbers ci1,··· ,iN . The state |i1, · · · , iN 〉 = |i1〉 ⊗ · · · ⊗ |iN 〉 is simply
the tensor product for all single spins. To describe a state, we need dN coefficients c
which gets computationally infeasible in the thermodynamic limit (N →∞).

We are only working with the ground states of local Hamiltonians. These states are
usually only short range entangled. Therefore the states of consideration only take up a
tiny part of the whole Hilbert space. It can be shown [18, 19, 20, 21, 22], that there is
a more efficient way to describe these special states:

|ψ〉 =

d∑
i1,··· ,iN=1

Tr
[
A

[1]
i1
A

[2]
i2
· · ·A[N ]

iN

]
|i1, i2, · · · , iN 〉 . (3.12)

Now we have N coefficients A[j] for the N spins with each an index ij ∈ {1, · · · , d}
enumerating the state of the corresponding spin which means that there are only d ·N
coefficients to store. This is a huge improvement. To make sure that we still can encode
all the information, we let the coefficients A[j] be matrices. Then we call the state a
matrix-product state (MPS)4.

3For hard-core bosons, obviously d = 2. We can also combine multiple bosons to a unit cell which has
a higher dimension.

4This is how a state can be expressed if it lives on a chain with periodic boundary conditions. If we
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3.2. Matrix-Product States

In general, these matrices are all different5 and can also be very big. To make our
life easier, we will restrict ourselves to our case. We only work with identical unit-cells.
This makes the system completely periodic and allows us to choose the matrices A[j]

identical:

|ψ〉 =
d∑

i1,··· ,iN=1

Tr[Ai1Ai2 · · ·AiN ] |i1, i2, · · · , iN 〉 . (3.13)

Then they are all quadratic D ×D-matrices.
Entanglements between the spins are implemented by the matrix multiplications. The

further the entanglements in the chain reach, the bigger the matrices have to be. In
principle, every state can be expressed as an MPS but this might require large matrices
that can even scale with N . Still, if we only consider short-range correlated states,
the matrix size D stays finite and we call it the bond dimension. This reduces the
computational efforts massively compared to Equation (3.11).

3.2.1. Matrix-Product State Representation of the SSH Chain

To further illustrate the MPS representation, we provide an example which is strongly
related to this thesis: the bosonic SSH chain in the dimerized limit. The Hamiltonian
of the bosonic SSH chain is given by Equation (3.7b). We will expand it such that we
close the chain to a ring.

We will start with the trivial case (see Figure 2.3). As we are working with hard-core
bosons, it is easy to see that each unit cell has the same ground state as in the fermionic
case. We choose the sign of the Hamiltonian such that the ground-state in a unit cell is
given by

|ψi〉 =
1√
2

(
|↑〉2i−1 |↓〉2i + |↓〉2i−1 |↑〉2i

)
. (3.14)

Accordingly the total (not normalized) ground state is

|ψ〉 =
L⊗
i=1

(
|↑〉2i−1 |↓〉2i + |↓〉2i−1 |↑〉2i

)
(3.15a)

=

d∑
{ij}=1

Tr[Ai1 · · ·AiL ] |i1, · · · , iL〉 . (3.15b)

We want to find the matrices Ai to bring the ground state in MPS form. Each virtual
spin in this form corresponds to one unit cell in the SSH chain which means that d = 4
(|↓↓〉, |↓↑〉, |↑↓〉 and |↑↑〉). We can make this description more intuitive by splitting each
unit cell index into a double index i → ij with i, j ∈ {↓, ↑} corresponding to the spins
of each site in the unit cell. Then we find the matrices

Aij = σxij (3.16)

work with an open chain, we need to loose the trace and instead make the first and the last matrix
left and right vectors. This way we still get a number as a coefficient. The trace implements the
coupling of the first and the last spin.

5The matrices can also have different sizes, as long as they match for the matrix multiplications.
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which represent the ground state as a matrix-product state. It can easily be shown that
the state

↑∑
{ij}=↓

Tr
[
Ai1i2 · · ·Ai2L−1i2L

]
|i1i2, · · · , i2L−1i2L〉 (3.17)

with these matrices is exactly the same as in Equation (3.15a). Furthermore, the matrices
Aij are just numbers which means that the bond dimension is D = 1. This is in
accordance with the fact that the unit-cells of the ground state in the trivial SSH chain
are not coupled to each other (see Figure 2.3) and therefore not entangled.

We can do the same for the ground-state of the topological SSH chain (see Figure 2.4).
Then the ground state is given by

|ψ〉 =
L⊗
i=1

(
|↑〉2i |↓〉2i+1 + |↓〉2i |↑〉2i+1

)
(3.18)

which can also be transformed into an MPS. To do so, we use the matrices

Aαβij = (Aij)αβ = δiασ
x
jβ (3.19)

which are actually 2×2-matrices. Again, it can easily be proven that the matrix-product
state constructed by these matrices is exactly the ground state in Equation (3.18). The
bond dimension D = 2 is due to the coupling of the unit cells to each other in the
topological SSH chain. We call the matrix indices α and β virtual indices and will
denote them by greek letters throughout this thesis.

3.3. Symmetry Protected Topological Phases

We want to find a classification for symmetry protected topological phases in one-
dimensional systems of hard-core bosons (spins). We will base this on [23, 24, 25, 26].
All the following considerations are done with a closed chain6 (with periodic boundary
conditions, see Figure 1.2).

3.3.1. Cohomology Theory

Consider a symmetry group G and an element of this group g ∈ G. The action of the
symmetry on the physical chain is given by the linear representation7 ρ(g) which acts
locally on the unit cells by the linear representations π(g):

ρ(g) = π(g)⊗ π(g)⊗ · · · ⊗ π(g)︸ ︷︷ ︸
L unit cells

. (3.20)

6We want to stress that we do not consider a closed fermionic chain which was transformed via the
Jordan–Wigner transformation. This would result in a non-local term in the Hamiltonian. Instead
we add a bosonic coupling between the first and the last unit cell.

7A representation ρ is called linear if it fulfils ρ(g1) ρ(g2) = ρ(g1g2).
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3.3. Symmetry Protected Topological Phases

The Hamiltonian is symmetric under ρ(g) which means that these two operators com-
mute:

[H, ρ(g)] = 0. (3.21)

The system has a single non-degenerate ground state which is also an eigenstate of the
symmetry operator:

ρ(g) |ψ〉 = α(g) |ψ〉 . (3.22)

Due to the unitarity of all symmetry representations, the factor α(g) is a global phase
and satisfies the condition |α(g)| = 1. It is itself a representation of the group G. The
ground-state of the chain is symmetric under ρ(g) up to a global phase α(g).

Now we express the ground state as an MPS according to Equation (3.13) with some
matrices Ai for each of the identical unit cells. It can be shown [25, 26, 27], that these
matrices transform under π(g) as follows:∑

i

[π(g)]ij Ai = γ(g)V −1(g) ·Aj · V (g) . (3.23)

The local representations π(g) are expressed as matrices with the physical indices i and
j. On the other hand, the dots (·) indicate a matrix product on the virtual indices of the
matrix Ai. Equation (3.23) shows us that the action of the symmetry on the matrices
of the MPS can be expressed as a basis transformation on the virtual indices performed
by a unitary matrix V (g) up to a phase γ(g).

To fully understand this equation, we first need to make clear that it only holds
under a specific condition. That is, that for a large enough n the set of the matrices
Ai1i2···in = Ai1Ai2 · · ·Ain for ij ∈ {1, · · · , d} span the space of D × D matrices. This
condition is called an injectivity condition ([25, 21]). Further insights on Equation (3.23)
can be found in Appendix B.

The phase γ (|γ(g)| = 1) is a linear representation of the group G. On the other hand,
the unitary matrices V (g) form a projective representation of G which means that there
exists a function χ(g1, g2) with |χ(g1, g2)| = 1, such that

V (g1)V (g2) = χ(g1, g2)V (g1g2) (3.24)

holds for all g1, g2 ∈ G ([23]). We call χ a cocycle. It characterizes the projective
representation V and thereby how the physical symmetry π acts on each unit cell.
If it would fulfil χ(g1g2) = 1 for all g1, g2 ∈ G, the matrices V would form a linear
representation. In this sense, every linear representation of a symmetry group is also a
special projective representation.

The cocycles are obviously not completely arbitrary phases. They have to be im-
plemented in such a way that the matrices V (g) still inherit the group structure of G.
Part of this structure is the associativity (g1g2) g3 = g1 (g2g3). This yields the so called
cocycle condition:

χ(g1, g2)χ(g1g2, g3) = χ(g2, g3)χ(g1, g2g3) . (3.25)

This condition will later be used to find valid cocycles for a given symmetry group G.
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3. Classification of Bosonic Phases

As we said, the cocycles χ characterize the action of the physical symmetry on the
actual ground state of the bosonic chain. While this is in principle a true statement, we
want to acknowledge that the choice of matrices V (g) in Equation (3.23) is not unique.
We can obviously find a new Ṽ (g) = f(g)V (g) with a phase f(g) (|f(g)| = 1) which still
fulfils Equation (3.23). The two matrix functions V and Ṽ correspond to an identical
action of the symmetry on the state which means that also their cocycles χ and χ̃ should
correspond to each other. We can relate them in the following way:

Ṽ (g1) Ṽ (g2) = f(g1) f(g2)V (g1)V (g2) (3.26a)

= f(g1) f(g2)χ(g1, g2)V (g1g2) (3.26b)

=
f(g1) f(g2)

f(g1g2)
χ(g1, g2) Ṽ (g1g2) . (3.26c)

On the other hand, we know Ṽ (g1) Ṽ (g2) = χ̃(g1, g2) Ṽ (g1g2). This gives us an equival-
ence relation for cocycles:

χ̃(g1, g2) =
f(g1) f(g2)

f(g1g2)
χ(g1, g2) . (3.27)

If two different cocycles can be connected by a phase f in this specific way, we know that
they correspond to the same action of the symmetry on the ground state. Therefore we
say that two cocycles belong to the same equivalence class [χ] if they can be connected
by Equation (3.27).

This suggests that there might be different cocycle classes [χ]. In fact, in some cases
we find cocycles which are not equivalent, which leads to the existence of multiple classes.
The set of all possible equivalence classes has an Abelian group structure. We call it the
second cohomology group of G: H2(G,U(1)). The classes [χ] ∈ H2(G,U(1)) are called
cohomology classes.

Up to now, all the discussions above are made for unitary realized symmetries, meaning
that the representations ρ(g) are unitary. When we discussed the fermionic chains, we
worked also with anti-unitary realized symmetries. We can also do this in the bosonic
case by simply adding a complex conjugation to a representation ρ(g). This requires us
to adjust the cocycle condition slightly.

To do this, we introduce the function σ which tells us if an element g of G is represented
by a unitary or an anti-unitary operator:

σ(g) =

{
+1 g is represented by a unitary operator

−1 g is represented by an anti-unitary operator
. (3.28)

Then the cocycle condition in Equation (3.25) can be adjusted to

χ(g1, g2)χ(g1g2, g3) = χσ(g1)(g2, g3)χ(g1, g2g3) , (3.29)

which we call the twisted cocycle condition. This twist also appears in the equivalence
condition for the cocycles in Equation (3.27) which is adjusted to

χ̃(g1, g2) =
f(g1) f

σ(g1)(g2)

f(g1g2)
χ(g1, g2) . (3.30)
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3.3.2. Classification of Bosonic Phases

Let us consider a closed chain with HamiltonianH(λ) which depends on some parameters
λ. As long as this Hamiltonian fulfils our initial conditions (local, gapped, symmetric),
it has a non-degenerate ground state. We can then express this ground state as an
MPS and use this to derive the corresponding cocycle χ. Even though the parameters λ
may have been continuous, the cocycles of different Hamiltonians are divided in discrete
classes.

Just like in Section 1.3, we can consider two Hamiltonians H(0) and H(1) and a
parameter λ ∈ [0, 1] connecting these two Hamiltonians smoothly: H(λ). Now if the
cocycles χ0 and χ1 belong to different cohomology classes, there must be a jump between
the classes at some point on the path. This is where the phase transition happens.

3.3.3. Classification of the SSH Chain

To illustrate the previous statements we want to use the dimerized states of the SSH
chain again. This shall serve as a concrete example. We will follow some calculations in
[28].

As for the fermionic chain, we have a sublattice symmetry and a particle conservation
symmetry. According to Equation (3.9d), the bosonic representation of the sublattice
symmetry is given by

SB =

[
2L∏
i=1

σxi

]
◦K. (3.31)

The particle conservation symmetry is continuous. In the fermionic chain it takes the
form of Equation (2.27). For bosonic systems we replace the particle number operator
by

ρJW(n̂i) =
1− σzi

2
(3.32)

and end up with the continuous symmetry operators

R(φ) = eiφ
∑2L
i=1

1−σzi
2 . (3.33)

Now we have the physical representations ρ(g) for the different abstract symmetry group
elements g. These operators act on the whole SSH chain but in Equation (3.23) we are
interested in the action of the symmetry on single unit cells k. The particle conservation
for a single unit cell can be implemented by

rk(φ) = eiφe−i
φ
2 (σz2k−1+σ

z
2k). (3.34)

These operators add up to the global symmetry operators with Equation (3.20). When
we do the same for the sublattice symmetry, we need to keep in mind that the complex
conjugation is not technically a part of the symmetry group but a rule for the realization.
Therefore it also has to be applied on each single unit cell. The anti-unitary sublattice
symmetry is realized as

sk = σx2k−1σ
x
2k ◦K (3.35)
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on each unit cell. Furthermore we call the different abstract group elements corres-
ponding to their representations S and Rφ. It is σ(S) = −1 because ρ(S) = SB is an
anti-unitary operator.

We start with the trivial phase of the SSH chain. The MPS for the ground state of this
chain is given by the 1× 1-matrices in Equation (3.16). If we plug them into Equation
(3.23), we can find the representations V :

Vtriv(S) = 1 (3.36a)

Vtriv(Rφ) = 1 (3.36b)

Vtriv(SRφ) = 1 (3.36c)

Vtriv(RφS) = 1. (3.36d)

It can easily be checked that these trivial unitary matrices V solve Equation (3.23).
Obviously, finding the cocycle for this representation is a trivial task:

χtriv(g1, g2) = 1 (3.37)

for all g1 and g2. Here we can already see why this phase of the SSH chain is called the
trivial phase. It is because the symmetry acts trivially on the physical unit cells of the
chain.

This is different in the topological phase. Here the matrices of the MPS have the bond
dimension D = 2 and are given by Equation (3.19). As this is just an example, we will
not go into the detailed calculations for this case. It can be shown that the matrices

Vtop(Rφ) = eiφσ
z

(3.38a)

Vtop(S) = σx ◦K (3.38b)

solve Equation (3.23). For Vtop(RφS) and Vtop(SRφ) we can make a choice but we need
to fulfil the cocycle condition. One possible way is to choose

Vtop(RφS) = e−i
φ
2
(1−σz)σx ◦K (3.39a)

Vtop(SRφ) = σx ◦K e−i
φ
2
(1−σz) (3.39b)

which results in the following cocycle elements:

χtop(S, S) = 1 (3.40a)

χtop(Rφ, Rθ) = 1 (3.40b)

χtop(Rφ, S) = 1 (3.40c)

χtop(S,Rφ) = eiφ. (3.40d)

It can be shown that this cocycle fulfils Equation (3.29).

Now we can compare the cocycles χtriv and χtop and use Equation (3.30) to check if
they belong to the same cohomology class. To do this, we assume that they belong to
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the same class and try to find the function f(g). If we assume g1 = Rφ and g2 = Rθ we
find the condition8

1 =
f(Rφ) f(Rθ)

f(Rφ+θ)
. (3.41)

This can only be fulfilled for all φ and θ if we can write f(Rφ) = eikφ with some k ∈ Z.
The equation itself would also allow different values for k, but since Rφ+2π = Rφ, we
need that same periodic behaviour for f . For k /∈ Z we would find f(Rφ+2π) 6= f(Rφ).

Now we can also look at the case g1 = S, g2 = Rφ which gives the condition

eiφ =
f(S)

f(Rφ) f(SRφ)
(3.42)

as well as the case g1 = Rφ, g2 = S which leads to

1 =
f(Rφ) f(S)

f(SRφ)
. (3.43)

We can easily combine these two equations and end up with

f(Rφ) = ei
φ
2 . (3.44)

This is a contradiction to the upper statement (f(Rφ) = eikφ) and proves that the
cohomology classes [χtriv] and [χtop] are actually not the same. This shows us that the
two different dimerized limits of the bosonic SSH chain belong to two different phases.

3.3.4. Classifications for Specific Symmetries

In general, the maximum number of possible phases depends on the second cohomology
group of the symmetry G. A specific system may not be able to realize all of them
but we can calculate H2(G,U(1)) for different symmetry groups independent of any real
system. This was done in [8]. In Table 3.1, the cohomology groups for some selected
symmetry groups are listed. The number of elements of a second cohomology group
determines the maximum number of phases which can be realized in one dimension.

If a symmetry group is denoted with a T -exponent. This means that it is anti-unitarily
realized. This notation can lead to some confusion because the representation is not a
property of the symmetry group G itself. Still, this convention is easy to use and
relatively clear.

Furthermore, we can also see that the second cohomology groups come with some
intrinsic group structures. This is not to be ignored because we will later find these
structures in the symmetry protected topological phases. For example, the SSH chain
has a sublattice symmetry which corresponds to the group ZT2 and a particle conser-
vation symmetry which is a representation of the group U(1). Therefore the combined
symmetry group is U(1) × ZT2 which gives us the cohomology group Z2

2. This means

8The abstract elements of the particle conservation symmetry group U(1) obviously inherit the algebraic
structure of U(1). This means that RφRθ = Rφ+θ and the elements are periodic (Rφ+2π = Rφ).
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Symmetry group G H2(G,U(1))

Z
T
2 Z2

Zn Z1

U(1) Z1

U(1)× Z2 Z1

U(1)× ZT2 Z
2
2

Z2 × ZT2 Z
2
2

D2 × ZT2 Z
4
2

Table 3.1.: Second cohomology groups H2(G,U(1)) for some different symmetry groups
G. They show us how many symmetry protected topological phases are in
principle possible for a given symmetry in one dimension. The last three
groups will be especially important for this thesis. It is D2 = Z2 × Z2. All
entries in this table can be found in [8]. Additional calculations on the easier
symmetries in the upper half of the table can be found in [28]

that these symmetries can realize up to four phases. We found the same in the fermionic
SSH chain. Still the group structure Z2

2 of the bosonic chain differs significantly from
the fermionic structure Z4. We will discuss this deviation in more detail later.

3.4. Bulk-Boundary Correspondence

These discussions on the classification of symmetry protected topological phases are
based on periodic bosonic chains. However, the actual systems we are interested in are
usually open chains with edges. As we already discussed for fermionic systems in Section
1.4, interesting phenomena can appear on the edges of a chain in a topological phase.
The same also happens in chains with hard-core bosons.

To understand this, we have another look at matrix-product states as in Equation
(3.12). For an open chain, we have to modify this equation to

|ψ〉 =
d∑

i1,··· ,iN=1

A
[1]
i1
A

[2]
i2
· · ·A[N ]

iN
|i1, i2, · · · , iN 〉 (3.45)

with a row vector A
[1]
i1

and a column vector A
[N ]
iN

. If we recall at Equation (3.23), we
can immediately see how opening the chain affects the action of the symmetry: this

condition does not hold any more at the edges (A
[1]
i1

and A
[N ]
iL

) of the system. Instead,
on the edges, the physical symmetry operators form projective representations of the
group G on the physical degrees of freedom. All projective representations are elements
of one of the cohomology classes in H2(G,U(1)). The symmetry actions on the system
boundaries fall into the same class as the representations V (g) (see Equation (3.23)) for
the corresponding closed chain. This suggests that we can simply look at the edges of a
chain instead of the bulk to identify the symmetry protected topological phases of the
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system [25]. This is sometimes referred to as symmetry fractionalization and relates to
the bulk-boundary correspondence.

3.4.1. Bosonic In-Gap Modes

In Section 1.4, we already mentioned fermionic edge modes with in-gap energies. Using
our bosonic classification, this becomes even clearer. Consider a system that is not in its
trivial phase. This means that the symmetry representations U(g) of the elements g ∈ G
on the edge of our system fall into a non-trivial cohomology class and are therefore truly
projective. In general, non-trivial projective representations can only be realized in two
or more dimensions [19].

Indeed, we have to remember that the symmetry representations U(g) for all g ∈ G
still commute with the Hamiltonian H, but as the projective representation is non-
trivial, they do not commute with each other in general. More precisely, there exist
some elements g1, g2 ∈ G such that

[U(g1) , U(g2)] 6= 0, (3.46)

Commuting operators share a common eigenbasis. Since [U(g1) , H] = 0, there exist two
common eigenstates |ψi〉 of U(g1) and H which fulfil the conditions

H |ψ1〉 = ε1 |ψ1〉 (3.47a)

H |ψ2〉 = ε2 |ψ2〉 (3.47b)

〈ψ1 |U(g2) |ψ2〉 6= 0. (3.47c)

(It is always possible to find these eigenvectors.) Analogously it follows that there also
exists a (different) common eigenbasis of U(g2) and H. This is only possible if ε1 = ε2.

Thus, if the phase of the system is not trivial, there exists a ground state degeneracy
in the system. The number of degenerate ground states depends on the dimension of the
smallest possible representation U , that belongs to the cohomology class that specifies
the topological phase.9

9This refers to the ground state degeneracy which is protected by the symmetry of the system. In
general, there can exist additional (spurious) degenerate states which can be gapped out by local
perturbations without breaking the symmetry.
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We discussed the classification of bosonic symmetry protected topological phases in
one dimension and elaborated that the phases are strongly connected to the second
cohomology group H2(G,U(1)) for the corresponding symmetry group G. In Table 3.1,
the cohomology groups for different symmetry groups are listed. In this chapter, we
actually want to realize the corresponding phases in SSH chains.

Coming from the fermionic SSH chain, the native symmetries of this system are the
sublattice symmetry (which is a ZT2 symmetry group representation) and the particle
conservation symmetry (which is a representation of U(1)). While we can realize this
Z
T
2 ×U(1) symmetry, we are also able to find other symmetries in the SSH chain. These

do not only lead to different physical results but may also be favourable from a didactical
point of view.

4.1. Sublattice Symmetry and Parity Symmetry

If we have a look at Table 3.1, we will see that the groups ZT2 ×Z2 and ZT2 ×U(1) actually
yield the same cohomology group. While we can use the U(1) group to implement
particle conservation into our physical system, the Z2 group is simply a subgroup of
U(1) which can correspond to a parity conservation symmetry. This means that the
total number of particles in the system is either odd or even and does not change. It
is obvious that parity conservation is a necessity for particle number conservation. In
other words, we can restrict the operator R(φ) in Equation (3.33) (which implements
the particle conservation in a SSH chain) to the values φ = 0 and φ = π. The resulting
two operators are a representation of Z2 and implement the parity conservation for our
system.

Now we want to find the four cohomology classes which correspond to the group Z2×
Z
T
2 . We call the non-trivial element of Z2 X and the non-trivial element of ZT2 which is

anti-unitarily realized Z. This way, our group G has the elements {1, X, Z,XZ}. We will
now define four different cocycles and prove that they all belong to different cohomology
classes. We will furthermore show that the classes inherit a Z2

2 group structure.
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4. Bosonic Phases in the SSH Chain

We define the cocycles

χ1(g1, g2) = 1 (4.1a)

χ2(g1, g2) =

{
ω(g2) if σ(g1) = −1

1 else
(4.1b)

χ3(g1, g2) =

{
σ(g2) if σ(g1) = −1

1 else
(4.1c)

χ4(g1, g2) = χ2(g1, g2) · χ3(g1, g2) (4.1d)

with the functions

ω(g) =

{
−1 if X in g

1 else
(4.2a)

σ(g) =

{
−1 if Z in g

1 else
. (4.2b)

We still have to prove that these cocycles are valid but we can already see a Z2
2 structure

in there. The idea is very simple. There are two non-trivial behaviours that can appear
in representations of G:

• The representation of the element Z can square to one. This is implemented in
χ3.

• The representations of X and Z can anticommute. This is implemented in χ2.

If both of these conditions are fulfilled, we simply multiply χ2 and χ3 and end up with
χ4. The cocycle χ1 corresponds to the trivial case where none of these conditions are
fulfilled.

Now we will use Equation (3.30) to show that none of these cocycles are equivalent.
To do this, we have to make the six comparisons χ1 ↔ χ2, χ1 ↔ χ3, χ2 ↔ χ3, χ4 ↔ χ1,
χ2 ↔ χ4 and χ3 ↔ χ4.

We start with the comparison of χ1 nd χ2. The idea is that we want to find different
values for g1, g2 ∈ G such that a contradiction appears after plugging them into Equation
(3.30). If we choose g1 = g2 = Z, we find the equivalence condition

1 =
f(Z)

f(Z) f(1)
· 1 (4.3)

for the cocycles χ1 and χ2. This gives us f(1) = 1. If we now choose g1 = g2 = XZ, we
will find the condition

1 =
f(XZ)

f(XZ) f(1)
· (−1) (4.4)

which gives f(1) = −1. Both statements cannot be true at the same time and therefore
χ1 and χ2 belong to different cohomology classes ([χ1] 6= [χ2]).
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4.1. Sublattice Symmetry and Parity Symmetry

Now we investigate the connection between χ1 and χ3. Choosing g1 = g2 = 1 gives us
the condition

1 =
f(1) f(1)

f(1)
· 1 (4.5)

which requires f(1) = 1. At the same time, if we choose g1 = g2 = Z, we find

1 =
f(Z)

f(Z) f(1)
· (−1) (4.6)

and f(1) = −1. Again this is a contradiction and therefore [χ1] 6= [χ3].
If we consider χ2 and χ3, we can choose g1 = Z and g2 = X which gives

− 1 =
f(Z)

f(X) f(XZ)
· 1. (4.7)

Also, if we choose g1 = Z and g2 = XZ we find

− 1 =
f(Z)

f(XZ) f(X)
· (−1) . (4.8)

Again, both statements cannot be true at the same time because that would require

f(Z)

f(XZ) f(X)
= − f(Z)

f(XZ) f(X)
(4.9)

which is not possible for |f(g)| = 1. Therefore [χ2] 6= [χ3].
The last non-trivial comparison has to be done for χ4 and χ1. We start with g1 =

g2 = 1 and Equation (3.30) gives us

1 =
f(1) f(1)

f(1)
· 1. (4.10)

This requires f(1) = 1. We can also consider g1 = g2 = Z which leads to the equivalence
condition

− 1 =
f(Z)

f(Z) f(1)
· 1 (4.11)

and f(1) = −1. Therefore [χ4] 6= [χ1].
Because χ4 = χ2 · χ3, the comparisions χ2 ↔ χ4 and χ3 ↔ χ4 are trivial. This shows

us that we really found four different cocycles in four different cohomology classes which
can be used to realize symmetry protected topological phases.

4.1.1. Realization in a Single SSH Chain

We now showed that if our symmetry in a physical system is a representation of the Z2×
Z
T
2 group, we can find a maximum of four phases. In a single SSH chain we can obviously

only find the trivial phase and one additional one but depending on the symmetry
representation the non-trivial phase may belong to different cohomology classes. We
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4. Bosonic Phases in the SSH Chain

will use the symmetry group Z2 × ZT2 as an example to show how the different classes
[χ2] and [χ4] can be realized in a single SSH chain. To do this, we will use Equation
(3.23).

As in Subsection 3.2.1, we introduce the double index ij for each unit cell such that
Equation (3.23) becomes

∑
i′j′

[π(g)]i′j′,ij Ai′j′ = γ(g)V −1(g) ·Aij · V (g) . (4.12)

As the trivial case is not particularly interesting, we consider the bosonic SSH chain in
the fully dimerized topological limit (see Figure 2.4). The MPS representation of this
state is given by the matrix

Aαβij = δiασ
x
jβ. (4.13)

Now we can make a choice as we define the physical representation of our symmetry. For
example we can choose the parity symmetry1 π(X) = σz1σ

z
2 and the sublattice symmetry

π(Z) = σx1σ
x
2 ◦K.2 Then we can insert these representations into Equation (3.23) and

find the following relations:∑
i′j′

σzi′iσ
z
j′j︸ ︷︷ ︸

[π(X)]i′j′,ij

· δi′ασxj′β︸ ︷︷ ︸
Aαβ
i′j′

= 1︸︷︷︸
γ(X)

· [σzAijσz]αβ (4.14a)

∑
i′j′

σxi′iσ
x
j′j︸ ︷︷ ︸

[π(Z)]i′j′,ij

· δi′ασxj′β︸ ︷︷ ︸
Aαβ
i′j′

= 1︸︷︷︸
γ(Z)

· [σxAijσx]αβ . (4.14b)

This gives us the projective representations V (X) = σz and V (Z) = σx ◦K.3

To which cohomology class does this state belong? In fact, this is very easy to see. It
is V (Z)2 = 1 but {V (X) , V (Z)} = 0. Therefore the corresponding cocycle must be in
the same class as χ2 (in the class [χ2]).

We could have also chosen another symmetry representation, like for example π(X) =
σz1σ

z
2 and π(Z) = σy1σ

y
2 ◦ K. Then the restrictions to our system are different and we

allow other perturbations. Again, we can calculate the representations V (X) = σz and
V (Z) = σy ◦K. These are different from the ones before because now V (Z)2 = −1 and
{V (X) , V (Z)} = 0. Therefore the system now belongs to the cohomology class [χ4].

This shows us that we can realize different topological phases in a single SSH chain just
by choosing different symmetry realizations. The same idea also applies for the other
symmetry groups. We will later use this principle to realize more than two symmetry
protected topological phases in stacked bosonic SSH chains.

1This is actually how the parity symmetry is physically implemented in real systems.
2This notation might be very confusing but is intentional.
3The complex conjugation has to be added here, such that the representation of Z is again anti-unitary.
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4.2. Realizing 16 Phases

In Table 3.1, we can see that with a D2×ZT2 = Z2×Z2×ZT2 symmetry group it is even
possible to realize 16 different cohomology classes with the group structure Z4

2. This is
done in a very similar fashion as for the Z2 × ZT2 group.

We call the generators of the Z2 groups X and Y and the anti-unitary realized gener-
ator of ZT2 is called Z. Now we can already see the analogy to the idea of the cocycles for
the Z2×ZT2 group. We can still have the same non-trivial elements in the representations
of such a symmetry and just add two more possibilities:

• The representation of Z can square to −1. (Realized by χ4.)

• The representations of X and Z can anticommute. (Realized by χ2.)

• The representations of Y and Z can anticommute. (Realized by χ3.)

• The representations of X and Y can anticommute. (Realized by χ5.)

This gives us 24 = 16 possibilities of fulfilling or not fulfilling these four conditions. Also
this inherits the Z4

2 group structure. We can realize this with the following cocycles:

χ1(g1, g2) = 1 (4.15a)

χ2(g1, g2) =

{
ω(g2) if σ(g1) = −1

1 else
(4.15b)

χ3(g1, g2) =

{
ρ(g2) if σ(g1) = −1

1 else
(4.15c)

χ4(g1, g2) =

{
σ(g2) if σ(g1) = −1

1 else
(4.15d)

χ5(g1, g2) =

{
ρ(g2) if ω(g1) = −1

1 else
(4.15e)

χ6(g1, g2) = χ2(g1, g2) · χ3(g1, g2) (4.15f)

χ7(g1, g2) = χ2(g1, g2) · χ4(g1, g2) (4.15g)

χ8(g1, g2) = χ2(g1, g2) · χ5(g1, g2) (4.15h)

χ9(g1, g2) = χ3(g1, g2) · χ4(g1, g2) (4.15i)

χ10(g1, g2) = χ3(g1, g2) · χ5(g1, g2) (4.15j)

χ11(g1, g2) = χ4(g1, g2) · χ5(g1, g2) (4.15k)

χ12(g1, g2) = χ2(g1, g2) · χ3(g1, g2) · χ4(g1, g2) (4.15l)

χ13(g1, g2) = χ2(g1, g2) · χ3(g1, g2) · χ5(g1, g2) (4.15m)

χ14(g1, g2) = χ2(g1, g2) · χ4(g1, g2) · χ5(g1, g2) (4.15n)

χ15(g1, g2) = χ3(g1, g2) · χ4(g1, g2) · χ5(g1, g2) (4.15o)

χ16(g1, g2) = χ2(g1, g2) · χ3(g1, g2) · χ4(g1, g2) · χ5(g1, g2) . (4.15p)
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4. Bosonic Phases in the SSH Chain

Cocycle Pair First Choice (g1, g2) Second Choice (g1, g2)

χ1 ↔ χ5 (1, 1) (XY Z,XY Z)
χ2 ↔ χ5 (1, 1) (XZ,XZ)
χ3 ↔ χ5 (1, 1) (Y Z, Y Z)
χ4 ↔ χ5 (1, 1) (Z,Z)
χ2 ↔ χ3 (1, 1) (XZ,XZ)

χ1 ↔ χ6 (1, 1) (XZ,XZ)
χ1 ↔ χ7 (Z,X) (Z,XZ)
χ1 ↔ χ8 (XZ, Y ) (XZ,XY Z)
χ1 ↔ χ9 (Z, Y ) (Z, Y Z)
χ1 ↔ χ10 (Y Z, Y ) (Y Z,Z)
χ1 ↔ χ11 (1, 1) (Z,Z)

χ1 ↔ χ16 (X,Y ) (Y,X)

Table 4.1.: We use Equation (3.30) to prove that different pairs of cocycles are not equi-
valent. We do this by choosing two pairs of symmetry group elements, in-
serting them into the equation and finding a contradiction for the function
f(g).

Here we use the functions

ω(g) =

{
−1 if X in g

1 else
(4.16a)

ρ(g) =

{
−1 if Y in g

1 else
(4.16b)

σ(g) =

{
−1 if Z in g

1 else
. (4.16c)

As in Section 4.1, we need to prove that all those cocycles belong to 16 different
cohomology classes by using Equation (3.30). As these calculations get quite lengthy
for 16 cocycles, we will only give short notices on how to show that each pairs are not
equivalent.

First of all, the pairs χ1 ↔ χ2, χ1 ↔ χ3, χ1 ↔ χ4, χ2 ↔ χ4 and χ3 ↔ χ4 are exactly
equivalent to the pairs in Section 4.1. We do not need to prove again that they all belong
to different cohomology classes.

Now we need to compare these cocycles with χ5 and also do the comparison χ2 ↔ χ3.
Showing that these cocycles belong to different cohomology classes is done in the same
way as in Section 4.1 via Equation (3.30). We simply assume two different pairs (g1, g2)
and insert them into the equation with the corresponding cocycles and this gives us
a contradiction. We will not show all those calculations here but we will write down
the pairs of symmetry group elements (see Table 4.1) which can be used to find a
contradiction. The explicit calculations are then very easy to be done.

62



4.3. Sublattice Symmetry and Particle Number Conservation

Now we know that the cocycles χ1 to χ5 are all in five different cohomology classes.
Furthermore we prove now that the cocycles χ6 to χ11 also all belong to different classes
(also compared to the cocycles χ1 to χ5). To do this, we need to show that the pairs
χ1 ↔ χ6, χ1 ↔ χ7, χ1 ↔ χ8, χ1 ↔ χ9, χ1 ↔ χ10, χ1 ↔ χ11 as well as χ1 ↔ χ16 are not
equivalent (see Table 4.1). Then all the remaining parts become trivial and we know
that all cocycles χ1 to χ11 and χ16 belong to different cohomology groups.4

To finish our calculations we still need to look at the cocycles χ12 to χ15. Here it is
also trivial to prove that these cocycles are not equivalent to each other and also not
to the other cocycles. Again, this can be shown by inserting the cocycles in Equation
(3.30) and multiplying both sides with cocycles until the resulting equivalence condition
is one of those which we already proved.

4.3. Sublattice Symmetry and Particle Number Conservation

The symmetry group U(1)×ZT2 is the one which we originally considered for the fermionic
SSH chain. From Table 3.1 we know that the second cohomology group of this symmetry
is given by Z2

2, just as for the Z2 ×ZT2 group. Now we want to find four cocycles which
belong to the four cohomology classes.

Let Rφ for 0 ≤ φ < 2π be the elements of the group U(1) and Z the generator of the
anti-unitarily realized symmetry group ZT2 . We choose

χ1(g1, g2) = 1 (4.17a)

χ2(g1, g2) =

{
σ(g2) if σ(g1) = −1

1 else
(4.17b)

χ3(g1, g2) =

{
eiφ2 if σ(g1) = −1

1 else
(4.17c)

χ4(g1, g2) = χ2(g1, g2) · χ3(g1, g2) (4.17d)

with

σ(g) =

{
−1 if Z in g

1 else
. (4.18)

These cocycles are actually not arbitrary guesses. Instead they are a continuous exten-
sion of the cocycles discussed in Section 4.1.

We will now once again use Equation (3.30) to show that these four cocycles belong
to four different cohomology classes. We start with the comparison χ1 ↔ χ2. Here we
first choose g1 = Z and g2 = 1 which gives us the equivalence condition

1 =
f(Z)

f(1) f(Z)
· 1 (4.19)

4This is also due to the fact that for our cocycles the identity 1
χ

= χ holds.
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and therefore f(1) = 1. On the other hand, we can also choose g1 = g2 = Z which gives
us

− 1 =
f(Z)

f(Z) f(1)
· 1 (4.20)

and f(1) = −1. This is a contradiction and therefore [χ1] 6= [χ2].
Now we compare χ1 ↔ χ3. The choice g1 = 1 and g2 = 1 will obviously give us

f(1) = 1. On the other hand, if we choose g1 = g2 = ZRπ, we get the equivalence
condition

eiπ =
f(ZRπ)

f(ZRπ) f

ZRπZRπ︸ ︷︷ ︸
=1

 · 1 (4.21)

which can easily be simplified to f(1) = −1. This shows [χ1] 6= [χ3].
Furthermore we investigate the cocycles χ2 ↔ χ3. If we choose g1 = Z and g2 = Rφ,

we find the condition

eiφ =
f(Z)

f(Rφ) f(ZRφ)
· 1. (4.22)

On the other hand, for the choice g1 = Z and G2 = ZRφ, we find

eiφ =
f(Z)

f(ZRφ) f(Rφ)
· (−1) . (4.23)

Combining both equations leads us to the condition

f(Z)

f(Rφ) f(ZRφ)
= − f(Z)

f(ZRφ) f(Rφ)
. (4.24)

This shows that [χ2] 6= [χ3].
Now we still need to compare the cocycles χ4 ↔ χ1. If we choose g1 = Z and g2 = 1

and insert them into Equation (3.30) we find the condition

1 =
f(Z)

f(1) f(Z)
· 1 (4.25)

and f(1) = 1. On the other hand (just as for the comparison χ1 ↔ χ2), we can choose
g1 = g2 = Z and find

− 1 =
f(Z)

f(Z) f(1)
· 1 (4.26)

and f(1) = −1. This proves [χ1] 6= [χ4]
The only two comparisons left are χ2 ↔ χ4 and χ3 ↔ χ4. For these cocycles the

identity χ4 = χ2 · χ3 makes the comparisons trivial. This proves that all four cocycles
belong to four different cohomology classes and it should indeed be possible to realize
four symmetry protected topological phases with this symmetry group.

Again, the cohomology classes of these four cocycles inherit the Z2
2 group structure

since
[
χ2
i

]
= [χ1] for all i ∈ {1, · · · , 4} and [χ2 · χ3] = [χ4].

5

5These equivalences can easily be proved by Equation (3.30).
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4.4. Stacking Bosonic SSH Chains

We want to stack multiple separated SSH chains on top of each other. What is the com-
bined phase of the chains if we know the individual cohomology classes which correspond
to each chain?

To understand the underlying mechanism to this concept we consider two chains (not
necessarily SSH chains) with ground states |a〉 and |b〉. Their combined ground state
can be written as6

|ψ〉 = |a〉 ⊗ |b〉 =
∑
{ik}

Tr[Ai1 · · ·AiL ] |i1 · · · iL〉 ⊗
∑
{jk}

Tr[Bj1 · · ·BjL ] |j1 · · · jL〉 . (4.27)

Using the identities Tr(A⊗B) = Tr(A) · Tr(B) and AC ⊗ BD = (A⊗B) (C ⊗D), we
can rewrite this to an MPS:

|ψ〉 =
∑
{ik,jk}

Tr[Ai1 · · ·AiL ⊗Bj1 · · ·BjL ] |i1j1 · · · iLjL〉 (4.28a)

=
∑
{ik,jk}

Tr

(Ai1 ⊗Bj1)︸ ︷︷ ︸
Ci1j1

· · · (AiL ⊗BjL)︸ ︷︷ ︸
CiLjL

 |i1j1 · · · iLjL〉 (4.28b)

=
∑
{ik,jk}

Tr[Ci1j1 · · ·CiLjL ] |i1j1 · · · iLjL〉 . (4.28c)

We can write the new matrices of the combined state as the Kronecker product Cij =
Ai ⊗Bj of the original matrices of both chains.

For the following calculations all subsets a and b sort the operators and matrices to
their SSH chain. Now we can have a look at Equation (3.23) which takes the form∑

i

[π(g)]ii′ Ci = γ(g)V −1(g) · Ci′ · V (g) . (4.29)

We can now rewrite this equation using π(g) = πa(g) ⊗ πb(g) and solve it by inserting
V (g) = Va(g)⊗ Vb(g):∑

i

[π(g)]i′i (Ai ⊗Bi) (4.30a)

=γ(g)V −1(g) · (Ai′ ⊗Bi′) · V (g) (4.30b)

=γ(g)
[
V −1a (g)⊗ V −1b (g)

]
· (Ai′ ⊗Bi′) · [Va(g)⊗ Vb(g)] (4.30c)

=
(
γa(g)V −1a (g) ·Ai′ · Va(g)

)
⊗
(
γb(g)V −1b (g) ·Bi′ · Vb(g)

)
(4.30d)

Here we dropped the double index to make the calculation easier. We also inserted
γ(g) = γa(g) · γb(g) and used the identity (A⊗B)−1 = A−1 ⊗ B−1. This calculation
shows us that combined systems of two chains a and b have the combined projective

6In the ground state there is no entanglement between the two chains.
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X

Y

Figure 4.1.: Two bosonic SSH chains in the fully dimerized limit are stacked on top
of each other. We choose the symmetry representation of the sublattice
symmetry such that a σx matrix acts on each site in the upper chain and a
σy matrix acts on each lower site.

representation V (g) = Va(g)⊗ Vb(g). It can easily be shown that the cocycle for V (g) is
given by χ(g1, g2) = χa(g1, g2) · χb(g1, g2):

V (g1) · V (g2) = (Va(g1)⊗ Vb(g1)) · (Va(g2)⊗ Vb(g2)) (4.31a)

= (Va(g1) · Va(g2))⊗ (Vb(g1) · Vb(g2)) (4.31b)

=χa(g1, g2)Va(g1g2)⊗ χb(g1, g2)Vb(g1g2) (4.31c)

=χa(g1, g2)χb(g1, g2)︸ ︷︷ ︸
χ(g1,g2)

V (g1g2) . (4.31d)

This is a very important finding. If we stack multiple chains with different cocycles on
top of each other, the combined cocycle will be the product of all cocycles. This way, we
can directly guess the phase of a system which consists of many chains. Keep in mind
that this only works if the chains are completely separated.

4.4.1. Stacked Bosonic SSH Chains

Now we can apply this to the observations which we made in Subsection 4.1.1. Consider
two bosonic SSH chains (see Figure 4.1). We use the Z2 × ZT2 symmetry group again.
The parity symmetry acts as a σz matrix on each site of the whole combined system
but we choose the sublattice symmetry representation such that σx matrices act on the
upper chain and σy matrices act on the lower chain.

Now we can simply go through all four possible configurations of this system. If
both chains are in the trivial phase, their cocycles are both trivial (see the equivalent
Equation (4.1a)). The combined cocycle is the product of those two and is also trivial.
The system is in the phase characterized by [χ1]. Now let us consider the upper chain in
the topological phase. Then it has the cocycle χ2 (see the equivalent Equation (4.1b))
while the lower chain is still in the trivial phase. The product of both cocycles is obviously
still in the class [χ2]. If the upper SSH chain is in the trivial state and the lower chain
is topological, the combined system is characterized by the class [χ4]. Combining both
chains allows us now to realize the fourth phase which corresponds to [χ3] = [χ2 · χ4].

We want to point out two observations:

1. The mechanism used to create bosonic phases is very different from the way in
which we stacked fermionic SSH chains to create up to four phases (see Section
2.2). We will discuss these differences in more detail later.
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a

b

c

d

Figure 4.2.: Four bosonic SSH chains with the D2 × ZT2 symmetry group can be used
to realize up to 16 different phases. The concept is exactly identical to the
realization of four phases with two bosonic SSH chains.

2. The physical symmetry realization is key to the realization of more than two phases.
If we had chosen to realize the sublattice symmetry as σx matrices on all sites, we
would have only been able to realize the phases [χ1] and [χ3].

We can now also consider the symmetry group D2 × ZT2 . This allows us in principle
to realize 16 different symmetry protected topological phases. To do this, we can use
four stacked SSH chains (see Figure 4.2) a to d and special realizations of the symmetry
generators X, Y and Z. They are realized on each column of sites as

ξ(X) = 1aσ
x
b 1cσ

x
d (4.32a)

ξ(Y ) = 1a1bσ
x
c σ

z
d (4.32b)

ξ(Z) = σyaσ
z
bσ

z
c1d ◦K. (4.32c)

These matrices act on each site of their different chains. It is important to notice that
the three realizations do not commute with each other but they commute on every full
unit cell. By putting the different SSH chains into their topological state we can now
realize 16 different combinations with 16 different phases. As the calculations are exactly
the same as for the example above but longer, we will leave them out at this point.
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Classifying bosonic symmetry protected topological phases as shown in Chapter 3 is
a quite complex task and can take a lot of time. This is due to the fact that the
ground states can become very complicated in some systems, especially if we add many
interactions. On the other hand, in this thesis we only work with fully dimerized chains
which in principle are very simple. In this chapter we present a method, which allows us
to assign a specific system to a topological phase much faster. It will not require us to
calculate the ground states, instead we only work with the Hamiltonian terms. We will
first introduce a tool called stabilizer codes and later apply this tool to our problem.

5.1. Stabilizer Codes

The stabilizer formalism has been introduced in [29]. We base our following introduction
loosely on [30].

Consider a spin system with N spins. All operations on this system can be performed
by the group

G = {σαi |i ∈ {1, · · · , N} , α ∈ {0, x, y, z}} (5.1)

which contains all Pauli matrices (including σ0 = 1) on each site and also all possible
combinations of products of these Pauli matrices.1 Now we choose a set of elements of
G which we call

g = {g1, g2, · · · , gk | ∀ i∈{1, · · · , k} : gi∈G} (5.2)

and we require the elements of g to fulfil the following two conditions:

• All elements of g commute: [gi, gj ] = 0, ∀ i, j ∈ {0, · · · , k}.

• All elements of g square to one and −1 is not an element of g: g2i = 1, ∀i ∈
{0, · · · , k} ∧ −1 /∈ g.

Together with the multiplication of Pauli matrices, the set g can form a group

S = 〈g〉 ⊆ G, (5.3)

which we call the stabilizer group. This group includes all elements of g and all possible
products of the elements of g.

1The group G of Pauli operators is not to be confused with symmetry groups, which we also sometimes
call G.
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Now we go back to our spin system which lives on the Hilbert space H. The stabilizer
group characterizes a stabilized subspace of H which we call

PS = {|ψ〉 ∈ H | ∀g ∈ S : g |ψ〉 = 1 · |ψ〉} . (5.4)

This is the set of states on which all elements of S act as 1.

5.2. Classification of Phases Using Stabilizers

Consider an open system of N spins in its ground state. The Hamiltonian

H =
M∑
i=1

Hi (5.5)

of the system is always a sum of terms which are elements of the group G. In general
the classification of the symmetry protected topological phases in such a system relies on
the ground state of the closed chain. Nonetheless it might be very difficult to determine
the ground state for some systems. This is where we can use the stabilizer codes. We
will also use open chains and determine the phase by the action of the symmetry on the
edge of the system.

In many cases (especially in the systems we consider in this thesis) the Hamiltonian
terms can be written as Hi = c · gi with some elements gi ∈ G and a global constant
c for all terms. As we already observed that this constant does not affect the phase of
the system, we assume c = −1. If the terms Hi furthermore commute and square to 1,2

we can use the stabilizer formalism. As we know that the eigenvalues of the elements gi
and all Hamiltonian terms commute, we also know that the ground state of the system
is also an eigenstate of all terms Hi with eigenvalue −1.

Now we rescale the Hamiltonian by dividing it by c. Then the ground state is the state
with the highest energy M and all rescaled terms Hi = gi act on this state as identities.
Here we see that the terms Hi generate a stabilizer group S and the ground states of
the systems are the set PS.

Instead of writing down the state, we now have a set of Pauli matrices and say that
the ground states are all states which have the eigenvalue 1 for these combined Pauli
matrices. How does this help to classify the phases? We know how the symmetry
operators act on the system. They are also elements of the group G. As the symmetry
acts trivially on the ground state of a closed chain we expect something similar for the
open chain but not on the edges.

Consider a symmetry operator U . All elements of the stabilizer group S act as 1 on
the ground states |ψi〉, so we know that

U |ψi〉 = Ug |ψi〉 (5.6)

for all g ∈ S. Now we simply multiply elements of the stabilizer group S (which are
products of the terms Hi) onto the symmetry operator until it acts as a 1 on the bulk

2If that is not the case, the stabilizer method cannot be used.
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of the system. This procedure does not change the action of U onto the ground states
at all. In some cases we will see that the whole operator U can be transformed into
a trivial 1 which then shows us that the system is in the trivial phase. In general, we
will see that there will be an action of U on the edges of the system which cannot be
annihilated by terms of H. These actions on the edge will help us to identify the phase
of the system. This concept is based on the bulk-boundary correspondence which we
already discussed in Section 3.4.

5.3. Stabilizer Formalism on the SSH Chain

Now we will show specific examples for the application of the stabilizer formalism which
also are part of this thesis. We choose the symmetry group Z2 × ZT2 which we already
discussed in Section 4.1. Here we know that we can realize four phases using two chains
as long as we choose the symmetry representations correctly.

Consider for example two bosonic SSH chains in the fully dimerized limit which are
both in the trivial phase. The Hamiltonian of this system is then given by3

H =
L∑
k=1

(
σ+4k−3σ

−
4k + σ+4k−2σ

−
4k−1

)
+ h.c.. (5.7)

Now we use the identity σ+i σ
−
j + σ+j σ

−
i = σxi σ

x
j + σyi σ

y
j . This enables the following

notation:

H =

L∑
k=1

(
σx4k−3σ

x
4k + σy4k−3σ

y
4k + σx4k−2σ

x
4k−1 + σy4k−2σ

y
4k−1

)
. (5.8)

To make all the following calculations much easier we rewrite the Hamiltonian as

H =

1 2

XX
1 1

+

1 2

Y Y
1 1

+

1 2

1 1
XX

+

1 2

1 1
Y Y

+

3 4

XX
1 1

+

3 4

Y Y
1 1

+

3 4

1 1
XX

+

3 4

1 1
Y Y

+ · · · . (5.9)

Each position on these matrices corresponds to a physical site. The letters X, Y , Z
and 1 label the Pauli matrices which act on the site. Above each matrix we write down
the column on the chain on witch these matrices act (If we had only one SSH chain,
this would be simply the number of each site.). Now we choose the sublattice symmetry
representation

S =

1 2 ··· 2L

XX · · · X
Y Y · · · Y (5.10)

and the parity symmetry representation

P =

1 2 ··· 2L

ZZ · · · Z
ZZ · · · Z . (5.11)

3We enumerate the sites as in Figure 2.6.

71



5. Stabilizer Codes

How do these symmetries act on the actual system? We can work this out by using the
terms of the Hamiltonian. It is actually easy to see that all the terms in Equation (5.9)
commute which makes them perfect generators for our stabilizer group. It also means
that these terms act as 1 on the ground states (in general there can be more than one
ground state). Now we multiply the terms together in a specific way4:

ΩS =

1 2

XX
1 1

·

1 2

1 1
Y Y

·

3 4

XX
1 1

·

3 4

1 1
Y Y

· · · = X · · · X
Y · · · Y . (5.12)

This operator is still an element of our stabilizer group and therefore acts as a one onto
all ground states. If we want to know how the symmetry operator S acts onto the state,
we can multiply it with ΩS without changing anything:

S′ = S · ΩS =
1 · · · 1
1 · · · 1 ◦K. (5.13)

Here we can see that the sublattice symmetry actually acts trivially onto the whole
chain.

We can do a similar calculation for the parity symmetry P by multiplying all terms
of H

ΩP =

1 2

XX
1 1

·

1 2

Y Y
1 1
·

1 2

1 1
XX

·

1 2

1 1
Y Y

· · · = ZZ · · · Z
ZZ · · · Z (5.14)

and modifying the symmetry operator

P ′ = P · ΩP =
1 · · · 1
1 · · · 1. (5.15)

We see that the parity symmetry also acts trivially onto the chain. These calculations
show us that the system is in the trivial phase.

This conclusion becomes clearer if we take a look at two stacked SSH chains in the
topological state. Then their Hamiltonian is

H =

2 3

XX
1 1

+

2 3

Y Y
1 1

+

2 3

1 1
XX

+

2 3

1 1
Y Y

+

4 5

XX
1 1

+

4 5

Y Y
1 1

+

4 5

1 1
XX

+

4 5

1 1
Y Y

+ · · · , (5.16)

which does not act on the first and the last sites (columns 1 and 2L). If we do the same
calculations as above, we find

S′ =
X 1 · · · 1X
Y 1 · · · 1Y ◦K (5.17)

and

P ′ =
Z 1 · · · 1Z
Z 1 · · · 1Z. (5.18)

4For operators which act on the whole system, we drop the column indices.
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It is obvious that the symmetries will always act on the edges of the system in a non-
trivial way. In Section 4.1 we discussed the four cohomology classes for the Z2 × ZT2
symmetry and how they differ from each other. Now we see that on the edges, the
symmetries act as the operators

Sleft = Sright =
X
Y
◦K (5.19a)

Pleft = Pright =
Z
Z
. (5.19b)

These two operators commute but S2
left = S2

right = −1. This property is associated with
the cohomology class [χ3] (see Equation (4.1c)). We found the same result in Subsection
4.4.1.

The analogue calculations can also be made for the two other configurations of the
stacked chains.

5.4. Comparison of Bosonic and Fermionic Phases

We showed how the stabilizer formalism can be used to distinguish different phases in
open systems. Now we want to apply it to systems with more complicated ground states.

In this thesis we discussed fermionic and bosonic phases in stacked SSH chains. Even
though for both cases we can realize up to four phases (for the given symmetry), the
mechanisms to create these phases are very different. Also the bosonic phases have a Z2

2

group algebra while the fermionic phases are simply added in a Z4 structure. Now we
want to understand how fermionic and bosonic phases translate.

First of all, we need to understand that transforming stacked fermionic chains into
bosonic chains using the Jordan–Wigner transformation is not as trivial as for single
SSH chains. Consider two stacked chains of fermions. To transform them, we have to
choose a Jordan–Wigner string as shown in Figure 5.1. This sketch shows two trivial
chains. If we transform them into a bosonic system, we find the Hamiltonian

H =
L∑
k=1

(
σ+4k−3σ

z
4k−2σ

z
4k−1σ

−
4k + σ+4k−2σ

−
4k−1

)
+ h.c.. (5.20)

This is an interacting Hamiltonian and not the Hamiltonian of two stacked bosonic
SSH chains. Both subchains are coupled by these interactions. In the dimerized limit,
we can in principle always find a Jordan–Wigner string which gives us a non-interacting
system but this will only hold for one phase. Switching the phases on the chains will
always give us an interacting system.5

5In principle we could choose the Jordan–Wigner string such that it first goes straight through the
upper chain and then through the lower chain. This would always give a non-interacting Hamilto-
nian (besides the interactions of hard-core bosons themselves) but it would not be local any more.
Therefore we do not allow these Jordan–Wigner strings.
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1

2 3

4 5

1 2 3 4

Figure 5.1.: Two fermionic SSH chains in the fully dimerized limit are stacked on top
of each other. They are both in the trivial phase. We choose the Jordan–
Wigner string as shown in this sketch. We also label the columns in the
chain as they are used in the matrix representation of the bosonic operators
(e.g. Equation (5.21)).

We will now always choose the Jordan–Wigner string shown in Figure 5.1. Other
strings will give us the same qualitative results for the classificaiton. As we see, the
Hamiltonian in Equation (5.20) couples the chains together. This makes it harder to
write down the ground state as an MPS and classify it using Equation (3.23). This is
why we introduced the stabilizer formalism. We can simply rewrite the Hamiltonian as

H =

1 2

XX
Z Z

+

1 2

Y Y
Z Z

+

1 2

1 1
XX

+

1 2

1 1
Y Y

+ · · · (5.21)

and easily see that all terms of H commute with each other. This shows us that they
generate a stabilizer group which we can now use to classify our phases.

Furthermore, we also need to choose our symmetry representations for the fermi-
onic system and translate them into bosonic operators (using the same Jordan–Wigner
string).

We represent the fermionic sublattice symmetry by

ŜF =

L∏
i=1

[(
ĉ4i−3 − ĉ†4i−3

)(
ĉ4i + ĉ†4i

)(
ĉ4i−2 − ĉ†4i−2

)(
ĉ4i−1 + ĉ†4i−1

)]
◦K. (5.22)

It can be shown that the bosonic representation for that is

S = ρJW

(
ŜF

)
=

L∏
i=1

σx4i−3σ
x
4iσ

y
4i−2σ

y
4i−1 ◦K (5.23)

which is the symmetry representation we already used in Figure 4.1. We will write it as

S =
X · · · X
Y · · · Y ◦K. (5.24)
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To make the calculations easier we will again use the parity symmetry instead of the
particle conservation symmetry. For the fermionic system this can be realized by

P̂F = (−1)N̂ =

4L∏
i=1

(−1)n̂i . (5.25)

In the bosonic picture this translates to

P = ρJW

(
P̂F

)
=

4L∏
i=1

σzi (5.26)

which we will write as

S =
Z · · · Z
Z · · · Z. (5.27)

Now we can find a corresponding bosonic phase to the fermionic system in Figure 5.1.
To do this, we multiply the following terms of the Hamiltonian:

ΩS =

1 2

XX
Z Z

·

1 2

1 1
XX

·

1 2

XX
Z Z

·

1 2

1 1
XX

· · · = X · · · X
Y · · · Y . (5.28)

As this operator does not act onto the ground state, we can multiply it to Ŝ and obtain

Ŝ′ = Ŝ · Ω̂Ŝ =
1 · · · 1
1 · · · 1 ◦K. (5.29)

We see that the sublattice symmetry acts trivially onto the ground state of the system.6

For the parity symmetry, we multiply all the Hamiltonian terms together which gives

ΩP =

1 2

XX
Z Z

·

1 2

Y Y
Z Z

·

1 2

1 1
XX

·

1 2

1 1
Y Y

· · · = Z · · · Z
Z · · · Z. (5.30)

The action of the parity symmetry on the ground state is

P ′ = P · ΩP =
1 · · · 1
1 · · · 1. (5.31)

Both symmetries act trivially on the edges of the system which means that the system
is in the trivial phase. This is the expected result as we do not have any degenerate
edge modes which would allow a non-trivial symmetry representation on the edges. To
classify the phases we will again use Equation (4.1a) to Equation (4.1d). For this system,
the corresponding cohomology class is [χ1].

6In this case we actually know that there is only one non-degenerate ground state. This is due to the
fact that we can perfectly solve the fermionic system and the Jordan–Wigner transformation is an
isomorphism which does not change the energy spectrum.
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1

2 3

4 5

Figure 5.2.: Two fermionic SSH chains are stacked on top of each other. The upper chain
is in the topological state. We choose the Jordan–Wigner string as shown
in the sketch.

If we put the upper fermionic SSH chain in its topological state, this realizes the first
non-trivial fermionic phase (see Subsection 2.2.1). The bosonic Hamiltonian for this
system is

H =

1 2

1 1
XX

+

1 2

1 1
Y Y

+

2 3

XX
1 1

+

2 3

Y Y
1 1

+ · · · . (5.32)

Again we can check that all these terms commute. Now we can combine them to

ΩS =

1 2

1 1
Y Y

·

2 3

XX
1 1

·

3 4

1 1
Y Y

·

4 5

XX
1 1

· · · = 1 X · · · X 1
Y Y · · · Y Y (5.33a)

ΩP =

1 2

1 1
XX

·

1 2

1 1
Y Y

·

2 3

XX
1 1

·

2 3

Y Y
1 1
· · · = 1 Z · · · Z 1

ZZ · · · ZZ. (5.33b)

This shows us that the actual action of the symmetries is given by

S′ = S · ΩS =
X 1 · · · 1X
1 1 · · · 1 1

◦K (5.34a)

P ′ = P · ΩP =
Z 1 · · · 1Z
1 1 · · · 1 1

. (5.34b)

This is not a trivial projective representation any more because the edges of these two
operators anticommute. Therefore this system is in the bosonic phase [χ2].

We know that the fermionic system shown in Figure 5.3 is in the same phase as the
system in Figure 5.2 (see Subsection 2.2.1). As the Jordan–Wigner transformation is an
isomorphism, the two corresponding bosonic systems are also in the same phase.

The Hamiltonian of the chain in Figure 5.3 is

H =

1 2

XX
Z Z

+

1 2

Y Y
Z Z

+

2 3

Z Z
XX

+

2 3

Z Z
Y Y

+ · · · . (5.35)

This is now a highly interacting Hamiltonian which does not allow us to divide the chain
into smaller segments. Therefore it would be very hard to classify the symmetry protec-
ted topological phase of this system using Equation (3.23). The stabilizer formalism can
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1

2 3

4 5

Figure 5.3.: Two fermionic SSH chains are stacked on top of each other. The lower chain
is in the topological state. We choose the Jordan–Wigner string as shown
in the sketch.

easily solve this problem. It can be shown that all terms in Equation (5.35) commute
and therefore generate a stabilizer group. Now we can multiply them to

ΩS =

1 2

Y Y
Z Z

·

2 3

Z Z
XX

·

3 4

Y Y
Z Z

·

4 5

Z Z
XX

· · · = Y X · · · XY
Z Y · · · Y Z (5.36a)

ΩP =

1 2

XX
Z Z

·

1 2

Y Y
Z Z

·

2 3

Z Z
XX

·

2 3

Z Z
Y Y

· · · = ZZ · · · ZZ
1 Z · · · Z 1

, (5.36b)

which allows us to find the action of the symmetries on the ground states

S′ = S · ΩS =
Z 1 · · · 1Z
X 1 · · · 1X ◦K (5.37a)

P ′ = P · ΩP =
1 1 · · · 1 1
Z 1 · · · 1Z. (5.37b)

On the edges of the chain the symmetries act as

Sleft = Sright =
Z
X
◦K (5.38a)

Pleft = Pright =
1
Z
. (5.38b)

Those operators anticommute and S2
left = S2

right = 1. This shows us, that the system is
again in the bosonic phase [χ2] as expected.

We can also consider two topological chains as shown in Figure 5.4. This system has
the bosonic Hamiltonian

H =

2 3

XX
Z Z

+

2 3

Y Y
Z Z

+

2 3

1 1
XX

+

2 3

1 1
Y Y

+ · · · (5.39)

which only consists of commuting terms. The following calculations are exactly the same
as for Figure 5.1 but the first and last column of the chain are left out in the Hamiltonian.
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1

2 3

4 5

Figure 5.4.: Two fermionic SSH chains are stacked on top of each other. Both chains are
in the topological state. We choose the Jordan–Wigner string as shown in
the sketch.

Therefore we can directly guess the symmetry actions

S′ =
X 1 · · · 1X
Y 1 · · · 1Y ◦K (5.40a)

P ′ =
Z 1 · · · 1Z
Z 1 · · · 1Z. (5.40b)

On the edges of the chain, the symmetries act as

Sleft = Sright =
X
Y
◦K (5.41a)

Pleft = Pright =
Z
Z
. (5.41b)

These operators commute and S2
left = S2

right = −1. Therefore the system in Figure 5.4
corresponds to the bosonic phase [χ3].

Now we were able to show that two SSH chains in different configurations can be
translated into bosonic systems in the phases [χ1], [χ2] and [χ3].

7 This matches the
observation made in Subsection 2.2.1, that two fermionic SSH chains can realize three
different fermionic phases. We are not able to realize the [χ4] phase in this fermionic
system.

If we want to find all four fermionic and bosonic phases, we need three chains. We
use the system and the Jordan–Wigner string shown in Figure 5.5. There are 23 = 8
different possible configurations for three SSH chains. Therefore we will not write down
the full calculations here.

We use the sublattice symmetry representation

ŜF =
L∏
i=1

[(
ĉ6i−5 − ĉ†6i−5

)(
ĉ6i − ĉ†6i

)(
ĉ6i−4 − ĉ†6i−4

)
·
(
ĉ6i−1 + ĉ†6i−1

)(
ĉ6i−3 − ĉ†6i−3

)(
ĉ6i−2 + ĉ†6i−2

)]
◦K (5.42)

7This result might look different if we had chosen a different Jordan–Wigner string or a different
symmetry representation ŜF in Equation (5.22). Then we can in principle find different non-trivial
bosonic phases. The qualitative result would still have been the same and we could obviously still
only realize three bosonic phases.
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1

2

3 4

5

6

Figure 5.5.: Sketch of three fermionic SSH chains stacked on top of each other. We use
the Jordan–Wigner string shown in this image to transform the system into
a system of hard-core bosons.

Fermionic Phase Corresponding Bosonic Phase

0 [χ1]
1 [χ2]
2 [χ4]
3 [χ3]

Table 5.1.: Comparison of the fermionic and corresponding bosonic phases in the system
shown in Figure 5.5. The fermionic phases are simply classified by the number
of topological chains in the system. The corresponding bosonic phases can
easily be obtained via the stabilizer formalism.

which translates to the bosonic operator

S = ρJW

(
ŜF

)
=
X · · · X
Y · · · Y
X · · · X

◦K. (5.43)

The bosonic parity symmetry representations is as always

P =
Z · · · Z
Z · · · Z
Z · · · Z

. (5.44)

Now we can again apply the stabilizer formalism.8 The results are shown in Table 5.1.
Indeed we can see that the four fermionic phases are translated to four bosonic phases.
Still, we need three fermionic chains but we could realize four bosonic phases with just
two bosonic SSH chains. The problem is that these bosonic chains would not translate
to fermionic SSH chains (just like the fermionic SSH chains do not translate to bosonic
SSH chains) but to more complicated interacting fermionic systems.

8It can be shown that for all configurations of chains, the terms of the Hamiltonian commute.
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1

2

3

4 5

6

7

8

Figure 5.6.: Sketch of four fermionic SSH chains stacked on top of each other. We use
the Jordan–Wigner string shown in this image to transform the system into
a system of hard-core bosons.

5.5. Breakdown of Fermionic Phases with Stabilizers

In Section 2.3 we discussed the breakdown of the classification of fermionic phases to Z4

as we introduced interactions. Even though we already gave a proof for this, we briefly
want to show a second proof using stabilizer codes.

Consider four fermionic SSH chains in the topological state (see Figure 5.6). We
can now translate this system into a system of hard-core bosons. Using the stabilizer
formalism we will show that the bosonic system (which always includes interactions) is
in the trivial state [χ1]. Then, as we now have a better understanding of the connection
between fermionic and bosonic phases, we know that also the fermionic system is in its
trivial phase. We choose the symmetries as before which gives us the operators

S =

X · · · X
Y · · · Y
X · · · X
Y · · · Y

◦K (5.45a)

P =

Z · · · Z
Z · · · Z
Z · · · Z
Z · · · Z

. (5.45b)

The Hamiltonian of the system is

H =

2 3

XX
1 1
1 1
1 1

+

2 3

Y Y
1 1
1 1
1 1

+

2 3

Z Z
XX
1 1
1 1

+

2 3

Z Z
Y Y
1 1
1 1

+

2 3

Z Z
Z Z
XX
1 1

+

2 3

Z Z
Z Z
Y Y
1 1

+

2 3

Z Z
Z Z
Z Z
XX

+

2 3

Z Z
Z Z
Z Z
Y Y

+ · · · (5.46)

and consists of commuting terms. Now it is easy to show that the symmetry operators
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5.5. Breakdown of Fermionic Phases with Stabilizers

act on the ground states as

S′ =

X 1 · · · 1X
Y 1 · · · 1Y
X 1 · · · 1X
Y 1 · · · 1Y

◦K (5.47a)

P ′ =

Z 1 · · · 1Z
Z 1 · · · 1Z
Z 1 · · · 1Z
Z 1 · · · 1Z

. (5.47b)

These operators act on the edges as

Sleft = Sright =

X
Y
X
Y

◦K (5.48a)

Pleft = Pright =

Z
Z
Z
Z

. (5.48b)

It is straightforward to see that both operators commute and the sublattice operator
squares to one. This shows us that the system is in the phase [χ1].

These calculations are in direct correspondence to the work by Kitaev in [9]. In
this paper, the breakdown of fermionic phases in stacked Majorana chains to Z8 was
discussed. With the bosonic systems corresponding to fermionic SSH chains we can
prove a breakdown to Z4 which we already found in Section 2.3. Because of the special
nature of the Majorana chains, these systems allow the existence of intermediate phases.
These cannot exist in corresponding bosonic systems because they translate to non-
localities. We discuss this in more detail in Appendix C.
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6. Conclusion

In this thesis, we discussed different aspects of symmetry protected topological phases.
Thereby we were able to establish a deeper understanding of the physical mechanisms
which are the essential to the topological phases protected by abstract cohomology the-
ory. We also used SSH chains as concrete examples. We covered fermionic phases as
well as bosonic phases.

In Chapter 1, we gave an introduction to the classification of symmetry protected
topological phases of non-interacting fermionic phases. We introduced symmetries and
gave a special emphasis on the winding number, which is a topological invariant of the
phases.

With Chapter 2 we introduced the fermionic SSH chain. We showed that with stacked
SSH chains, one can realize an arbitrary number of phases. Following the work of Kitaev
[9], we proved that with the introduction of interactions, the fermionic classification of
phases in stacked SSH chains breaks down to Z4. Using stacked SSH chains, we showed
how these four phases can be realized.

In Chapter 3, we introduced the Jordan–Wigner transformation to translate fermionic
systems into systems of hard-core bosons. As the classification of fermionic phases via
the winding number relies on non-interacting systems, this formalism cannot be applied
for interacting bosons. Instead, we showed how the cohomology theory can be used to
establish a classification of bosonic phases. To this end, we gave an introduction to
matrix-product states.

The cohomology theory allows predictions of the maximum number of realizable phases
in a system for given symmetries. In Chapter 4, we were able to show that the symmetry
groups Z2 × ZT2 and U(1) × ZT2 each allow four non-equivalent projective symmetry
representations with a Z2

2 group structure – which can directly be related to the existence
of symmetry protected topological phases. For stacked SSH chains, we explicitly realized
all those phases. Furthermore, we showed that using four SSH chains and the D2 × ZT2
symmetry group, we can even realize 16 different phases with a Z4

2 structure.

The classification of bosonic symmetry protected topological phases in one dimension
relies on the matrix-product state representation of the ground states in the system
of consideration. As in some systems it can be very hard to find the explicit ground
states analytically, in Chapter 5 we introduced another formalism for the classification
of bosonic phases. It is based on the stabilizer formalism and the bulk-boundary corres-
pondence. The stabilizer formalism can be used without knowledge of the ground states
of a system. We applied it to compare fermionic and bosonic phases in stacked SSH
chains.
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6. Conclusion

Outlook

A few aspects of this thesis are not completely understood yet. Therefore, it would be
interesting to do some future considerations following our work. Firstly, the stabilizer
formalism is subtle when anti-unitary symmetries are involved. Further investigations on
this topic could give deeper insights, especially when anti-unitarily realized symmetries
are involved. Furthermore, one could do more general considerations on the comparison
of fermionic and bosonic phases.

The systems we considered in this thesis are mostly very abstract and conceptual.
Therefore, it would be interesting to search for actual physical realizations of the dis-
cussed systems. This includes the search for symmetries which are actually conserved in
real systems and lead to the same classifications that we found in this thesis.
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A. Gapped transitions in two SSH chains

We want to show, that the path constructed in Equation (2.35) is actually gapped. To
do so, we will investigate the Hamiltonians of the cells shown in Figure 2.10.

We will start with the cell of four sites. In the path this cell has the Hamiltonian

Ĥ(λ) = (1− λ)
(
ĉ†1ĉ4 + ĉ†4ĉ1 + ĉ†2ĉ3 + ĉ†3ĉ2

)
+ λ

(
ĉ†1ĉ2 + ĉ†2ĉ1 − ĉ

†
4ĉ3 − ĉ

†
3ĉ4

)
.

(A.1)

Using Pauli matrices as representations of the operators, we diagonalize this 16-di-
mensional Hamiltonian analytically and find the eigenvalues ε1 = 0 (six-fold degen-
erate), ε2,3 = ±

√
1− 2λ+ 2λ2 (three-fold degenerate) and ε4,5 = ±2

√
1− 2λ+ 2λ2

(non-degenerate). The energies can be seen in Figure A.1. The band gap is the en-
ergy difference between the lowest and the second lowest energy. As can be seen, the
gap is never closed.

The same holds for the eight-dimensional system of three sites in Figure 2.11, which
has the Hamiltonian

Ĥ(λ) = (1− λ)
(
ĉ†1ĉ2 + ĉ†2ĉ1

)
+ λ

(
ĉ†2ĉ3 + ĉ†3ĉ2

)
. (A.2)

The eigenvalues of this Hamiltonian are ε1 = 0 (four-fold degenerate) and ε2,3 =
±
√

1− 2λ+ 2λ2 (two-fold degenerate). These energies are plotted in Figure A.2. Be-
sides of the degeneracy of the ground state (which is due to the symmetry protected
edge state of the system) the band gap remains open.

These calculations prove, that the path in Equation (2.35) is gapped.
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Figure A.1.: Eigenenergies of the cell of four sites for the path of Equation (A.1). As we
can see, the gap stays open along this path.
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Figure A.2.: Eigenenergies of the cell of three sites for the path of Equation (A.2). As
we can see, the gap stays open along this path. The ground state has a
two-fold degeneracy which corresponds to the protected edge state of the
system in Figure 2.10.
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B. More on the Classification of Bosonic
Phases

We discussed the classification of bosonic symmetry protected topological phases in Sec-
tion 3.3. Here, we want to give some further incomplete insights on this classification.
This mainly concerns the derivation of Equation (3.23) which is highly non-trivial. All
calculations are performed in a translational invariant closed chain with periodic bound-
aries.

B.1. First Considerations

First of all, we want to consider Equation (3.23) and prove that it implies the ground
state of the system being symmetric under our symmetry action. This does not prove
this equation, but it gives a first sense of how it works.

A state |ψ〉 is symmetric under a symmetry representation ρ(g) with g ∈ G if

ρ(g) |ψ〉 = γ(g) |ψ〉 . (B.1)

This means that the state does not change under the symmetry action, except for a global
phase γ(g) which itself is a one-dimensional representation of the symmetry group G.
As in Equation (3.20), the symmetry ρ is represented on each site by π.

Let us now consider the left side of Equation (B.1) and transform it by inserting an
MPS for |ψ〉:

ρ(g) |ψ〉 =
∑
···ij ···

Tr
[
· · ·Aij · · ·

]
· · ·π(g) · · · |· · · ij · · · 〉 (B.2a)

=
∑
···ij ···

Tr
[
· · ·Aij · · ·

]
· · ·
∑
v

(π(g))ij ,v · · · |· · · v · · · 〉 (B.2b)

=
∑
···ij ···

Tr

[
· · ·
∑
v

(π(g))ij ,v Aij · · ·

]
|· · · v · · · 〉 (B.2c)

=
∑
···ij ···

∑
···v···

Tr
[
· · ·
(

(π(g))ij ,v Aij

)
· · ·
]
|· · · v · · · 〉 (B.2d)

=
∑
···v···

Tr

· · ·
∑

ij

(π(g))ij ,v Aij

 · · ·
 |· · · v · · · 〉 (B.2e)
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B. More on the Classification of Bosonic Phases

Now we look at the right side of Equation (B.1) and write the phase γ(g) =
∏
i γi(g).

We also insert an invertible matrix V (g) of size D ×D:

γ(g) |ψ〉 = γ(g)
∑
···

Tr
[
· · ·Aij · · ·

]
|· · · ij · · · 〉 (B.3a)

=
∑
···

Tr
[
· · · γj(g)Aij · · ·

]
|· · · ij · · · 〉 (B.3b)

=
∑
···

Tr
[
· · ·
(
γj(g)V −1(g) ·Aij · V (g)

)
· · ·
]
|· · · ij · · · 〉 . (B.3c)

If we compare the traces in Equation (B.2e) and Equation (B.3c) we see that Equation
(B.1) will always be fulfilled if Equation (3.23) holds.

B.2. Double Tensor of the MPS

The following remarks are based on the works [23, 21, 26, 22]. To develop a classification
of bosonic symmetry protected topological phases based on the ground state |ψ〉, we first
need to understand how two states in different phases differ from each other.

Let Ai,αβ be a matrix of the MPS of |ψ〉. The virtual indices α and β are the actual
indices of the matrix elements. The physical index i denotes the state of the unit cell
corresponding to Ai,αβ. We define the double tensor

Eαγ,βχ =
∑
i

Ai,αβ (Ai,γχ)∗ (B.4)

which uniquely determines the ground state up to a local change of basis on each unit
cell [23, 25, 21, 30].

Usually we define our phases as an equivalence relation of gapped Hamiltonians. An
equivalent definition is the following [23, 6, 31]: Two ground states belong to the same
phase if there is a local unitary transformation connecting them, i.e. they share the
same double tensor E.

The tensor E has some important properties. We require the ground state of our
chain to be short-range correlated. This is only fulfilled if the tensor E has a largest
non-degenerate eigenvalue1 [23, 25], which we can set to 1 (we discuss this in Section
B.4). This requirement is equivalent to the injectivity condition mentioned in Section 3.3.
It states that for a large enough number n, the set of matrices Ai1 · · ·Ain on consecutive
sites for all ij ∈ {1, · · · , d} span the space of all D × D matrices. Every MPS that
satisfies the injectivity condition is a unique gapped ground state of a local Hamiltonian
[23, 25, 20, 21].

We also want to introduce the tensor

E[O]αγ,βχ =
∑
ij

OijAi,αβA
∗
j,γχ (B.5)

1In the following, we will talk about eigenvectors which are actually matrices. We interpret them as
vectors with double indices.
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B.3. Transformation Behaviour of the MPS Matrices

for any operator O. This will be useful later on.
Instead of the double tensor, we will also use the linear map

E(X) =
∑
i

AiXA
†
i . (B.6)

We see that this is directly related to Equation (B.4) because

[E(X)]αγ =
∑
βχ

Eαγ,βχXβχ. (B.7)

Similarly we define the transfer map

EO(X) =
∑
ij

〈i |O | j〉AiXA†j (B.8)

which corresponds to Equation (B.5).

B.3. Transformation Behaviour of the MPS Matrices

We will now derive Equation (3.23)∑
i

[π(g)]ij Ai = γ(g)V −1(g) ·Aj · V (g) . (B.9)

This will require some assumptions. We will follow the calculations in [22].
We assume:2

• The matrix 1 is the only eigenvector of E for the eigenvalue 1: E(1) = 1. This

implies
∑

iAiA
†
i = 1 (see [21]).

• There exists a diagonal, positive, invertible and unique matrix Λ, such that∑
iA
†
iΛAi = Λ (see [21]).

• The largest non-degenerate eigenvalue of Eπ(X) is 1 for the local physical sym-
metry representation π(g) on a unit cell.

Now we consider Equation (3.23). The physical symmetry representation π(g) has a
physical eigenbasis.3 If we choose this basis for our physical indices, we find

π =
∑
j

eiθj |j〉 〈j| (B.10a)

because symmetry operators are unitary and all eigenvalues take the form λi = eiθi .
Now Equation (3.23) takes the form

eiθjAj = γV ·Aj · V −1 (B.11)

with the phase γ. In the following, we perform some isolated calculations which will be
useful later.
2These assumptions seem to be the crux of the proof. To the best of my knowledge, at least the first

two assumptions are related to the injectivity condition of the MPS.
3From now on, we will drop the g-dependence of the symmetry related operators.
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B. More on the Classification of Bosonic Phases

B.3.1. Spectral Radius of the Transfer Map

The transfer map of the symmetry is

Eπ(X) =
∑
j

eiθjAjXA
†
j (B.12)

as we use the eigenbasis of π. We will now prove that the spectral radius of this map is
ρ(Eπ) ≤ 1.

Assume that the map Eπ(X) has an eigenvector V for the eigenvalue λ:

Eπ(V ) = λV. (B.13)

Then we get

λV =
∑
j

eiθjAjV A
†
j . (B.14)

Multiply with ΛV † on both sides, take the trace and then take the absolute value to get

∣∣∣λTr
(
V ΛV †

)∣∣∣ =

∣∣∣∣∣∣
∑
j

Tr
(
eiθjAjV A

†
jΛV

†
)∣∣∣∣∣∣ . (B.15)

As we already defined Λ as an invertible diagonal matrix above, the square root Λ1/2

exists and Λ1/2 =
(
Λ1/2

)†
. Therefore, Tr

(
V ΛV †

)
is the squared Frobenius norm of V Λ1/2

and therefore ≥ 0. This yields∣∣∣λTr
(
V ΛV †

)∣∣∣ = |λ|Tr
(
V ΛV †

)
. (B.16)

We define

Xj = Λ
1
2AjV

† (B.17a)

Yj = eiθjΛ
1
2V †Aj (B.17b)

to simplify Equation (B.15):

|λ|Tr
(
V ΛV †

)
=

∣∣∣∣∣∣
∑
j

Tr
(
X†jYj

)∣∣∣∣∣∣ . (B.18)

Using the Cauchy–Schwarz inequality, we can transform the right side to∣∣∣∣∣∣
∑
j

Tr
(
X†jYj

)∣∣∣∣∣∣ ≤
√∑

j

Tr
(
X†jXj

)
·
√∑

j

Tr
(
Y †j Yj

)
(B.19a)

=

√∑
j

Tr
(
V A†jΛAjV

†
)
·
√∑

j

Tr
(
A†jV ΛV †Aj

)
(B.19b)
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B.3. Transformation Behaviour of the MPS Matrices

=

√√√√√Tr

V
∑

j

A†jΛAj

V †
 ·

√√√√√Tr

∑
j

AjA
†
j

V ΛV †

 (B.19c)

=
√

Tr(V ΛV †) ·
√

Tr(V ΛV †) (B.19d)

=
∣∣∣Tr
(
V ΛV †

)∣∣∣ . (B.19e)

Here we used the assumptions from above. Going back to Equation (B.15), we can see
that |λ| ≤ 1. This proves that the spectral radius ρ(Eπ) ≤ 1.

We assumed that the map Eπ(X) has the largest non-degenerate eigenvalue 1. This
implies that there exists an eigenvector V such that Eπ(V ) = 1 · V and the spectral
radius is ρ(Eπ) = 1. The spectral radius is one, if and only if the Cauchy–Schwarz
inequality becomes an equality in Equation (B.19a). This happens if the vectors Xj and
Yj are parallel such that Yj = γXj for some factor γ.

B.3.2. More on the Proportionality Factor

The vectors Xj and Yj are connected by the proportionality factor γ. We can insert the
definitions of these vectors from Equation (B.17a) and Equation (B.17b):

Yj = γXj (B.20a)

eiθjΛ
1
2V †Aj = γΛ

1
2AjV

† (B.20b)

eiθjV †Aj = γAjV
†. (B.20c)

We multiply both sides with their adjoint:

V †AjA
†
jV = |γ|2AjV †V A†j . (B.21)

Furthermore, we multiply Λ to both sides of the equation, take the sum over j and take
the trace: ∑

j

Tr
(

ΛV †AjA
†
jV
)

= |γ|2
∑
j

Tr
(

ΛAjV
†V A†j

)
(B.22a)

Tr

ΛV †

∑
j

AjA
†
j

V
 = |γ|2 Tr

∑
j

A†jΛAj

V †V
 (B.22b)

Tr
(

ΛV †V
)

= |γ|2 Tr
(

ΛV †V
)

(B.22c)

1 = |γ|2 . (B.22d)

This proves that γ is a phase and |γ| = 1.
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B.3.3. More on the Eigenvector

Now we prove that the eigenvector V is actually a unitary matrix. To do so, we calculate
E
(
V V †

)
:

E
(
V †V

)
=
∑
i

AiV
†V A†i . (B.23)

From Equation (B.20c), we know4

AjV
† = γ−1eiθjV †Aj (B.24a)

V A†j = γe−iθjA†jV. (B.24b)

This yields

E
(
V †V

)
= V †

[∑
i

AiA
†
i

]
V = V †V. (B.25)

The Vector V †V is an eigenvector of the map E with the eigenvalue 1. Following our
assumptions, 1 is the only eigenvector of E for the eigenvalue 1. Therefore V †V = 1

and V is a unitary matrix.

B.3.4. Assembling the Proof

Now we have all we need to prove Equation (3.23) under the assumptions we made
above. We showed that Equation (B.20c) holds. Furthermore γ is a phase and V is a
unitary matrix. Therefore we can rewrite this equation to

eiθj = γV AjV
† (B.26)

which is exactly Equation (B.11) or Equation (3.23) in the eigenbasis of π.

B.4. Largest Eigenvalue of the Double Tensor

We will prove that the double tensor Eαγ,βχ has a non-degenerate largest eigenvalue
which we can set to one. To do so, we will follow some calculations in [23]. We will
divide the proof into smaller parts and assemble them in the end.

B.4.1. Norm of the Ground State

We calculate the norm of a ground state |ψ〉 which is represented as an MPS:∑
i1···iN

Tr(Ai1 · · ·AiN ) |i1 · · · iN 〉 . (B.27)

We find

4For the second equation, we take the hermitean conjugate on both sides.
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B.4. Largest Eigenvalue of the Double Tensor

〈ψ |ψ〉 =
∑
i1···iN

〈i1 · · · iN |Tr
(
A∗i1 · · ·A

∗
iN

) ∑
j1···jN

Tr(Aj1 · · ·AjN ) |j1 · · · jN 〉 (B.28a)

=
∑
i1···iN

Tr
(
A∗i1 · · ·A

∗
iN

)
Tr(Ai1 · · ·AiN ) (B.28b)

=
∑
i1···iN

Tr
([
Ai1 ⊗A∗i1

]
· · ·
[
AiN ⊗A

∗
i1

])
(B.28c)

= Tr

∑
i1

[
Ai1 ⊗A∗i1

]
· · ·
∑
iN

[
AiN ⊗A

∗
i1

] (B.28d)

= Tr
[
E
N
]
. (B.28e)

This connects the norm of a state to the double tensor E. Now we scale the double
tensor such that the largest eigenvalue is 1. This will only affect the norm of the MPS.

The trace is invariant under the diagonalization of E. Therefore Tr
[
E
N
]

=
∑

i λ
N
i for

the eigenvalues λi of the double tensor. We can see that in the thermodynamic limit
(N → ∞) all terms |λ| < 1 will vanish. Only the eigenvalues we set to one survive.
Then the norm of the ground state becomes the number of eigenvalues which are one.

B.4.2. Operator Expectation Value

Consider a local operator O acting on any site k of our system. We calculate the
expectation value of O in the ground state:

〈O〉 =
〈ψ |O |ψ〉
〈ψ |ψ〉

(B.29a)

=

∑
i1···iN

∑
j1···jN

〈i1 · · · iN |Tr
(
A∗i1 · · ·A

∗
iN

)
OTr(Ai1 · · ·AiN ) |j1 · · · jN 〉

〈ψ |ψ〉
(B.29b)

=

∑
i1···ik−1

∑
ikjk

∑
ik+1···iN

Tr
[(
Ai1 ⊗A∗i1

)
· · ·Oikjk

(
Aik ⊗A∗jk

)
· · ·
(
AiN ⊗A∗iN

)]
〈ψ |ψ〉

(B.29c)

=
Tr
[
E
N−1

E[O]
]

Tr[EN ]
. (B.29d)

B.4.3. Correlation Function

Now consider two local operators O1 and O2 which act on two different sites i and j =
i+L+1, such that there are L sites inbetween them. The correlation for these operators
can be calculated by 〈O1O2〉 − 〈O1〉 〈O2〉. Analogously to the previous calculations we
can express it via the double tensor:

〈O1O2〉 − 〈O1〉 〈O2〉 =
Tr
[
E
N−L−2

E[O1]E
L
E[O2]

]
Tr[EN ]

−
Tr
[
E
N−1

E[O1]
]

Tr
[
E
N−1

E[O2]
]

Tr2[EN ]
.

(B.30)
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B.4.4. Jordan Normal Form

Let A be a quadratic D × D matrix. Any matrix of that form is similar to a block
diagonal matrix J which means there exists a Q such that J = Q−1AQ. This block
diagonal D ×D matrix

J =

J1 . . .

Jk

 (B.31)

can be always chosen such that each block Ji has the form

Ji =


λi 1

λi
. . .
. . . 1

λi

 . (B.32)

Then J is called the Jordan normal form of A. The elements λ are the eigenvalues of the
matrix A. The number of blocks for a single eigenvalue λi is its geometric multiplicity.
The sum of all sizes of blocks corresponding to one value λi is the algebraic multiplicity
of the eigenvalue.5

Now we bring the double tensor in its Jordan normal form

Ẽ =
∑
λ

λPλ +Rλ (B.33)

with the block matrices Pλ and Rλ. The block Pλ is just the diagonal part

Pλ =



. . .

0
1

. . .

1
0

. . .


(B.34)

5If a matrix is diagonalizable, the geometric and algebraic multiplicities of all eigenvalues are equal and
all Jordan blocks have the size one.
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and Rλ is the nilpotent part

Pλ =



. . .

0 0
0 1

. . .
. . .
. . . 1

0 0
0

. . .


. (B.35)

We bring E into the Jordan normal form by a basis transformation, but this will not
change the trace.

B.4.5. Assembling the Proof

From Subsection B.4.1 we know that we can rescale the double tensor such that its largest
eigenvalues live on the complex unit circle (|λ| = 1). Now we consider the expectation
value of an operator in the thermodynamic limit and insert the Jordan normal form. To
begin with, we assume that all eigenvalues λi with |λi| = 1 are λi = 1 and that these
eigenvalues have the geometric multiplicity 1. Then there is only one block in the Jordan
normal form which survives:6

lim
N→∞

〈O〉 = lim
N→∞

Tr
[
E
N−1

E[O]
]

Tr[EN ]
(B.36a)

= lim
N→∞

Tr
[
(P1 +R1)

N−1
Ẽ[O]

]
Tr
[
(P1 +R1)

N
] . (B.36b)

All Jordan blocks for smaller eigenvalues vanish in the thermodynamic limit. The de-

nominator Tr
[
(P1 +R1)

N
]

is simply a fixed number, as all nilpotent parts vanish in

the trace. This does not necessarily hold for the numerator Tr
[
(P1 +R1)

N−1
Ẽ[O]

]
. If

Tr
[
R1Ẽ[O]

]
6= 0, the denominator (and therefore the expectation value of O) will di-

verge in the thermodynamic limit.7 The expectation value of all physical local operators
has to be finite, therefore R1 = 0 must be fulfilled and the algebraic multiplicity is one.

We can perform this calculation for more blocks (higher geometric multiplicities) with
|λi| = 1 and will find that all those blocks have to be one-dimensional.

6We call Ẽ[O] = Q−1
E[O]Q.

7This is simply because (P1 +R1)N−1 = P1 + (N − 1)R1 + · · · and (N − 1) diverges.
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Now we consider the correlation function:

〈O1O2〉−〈O1〉〈O2〉 =
Tr
[
E
N−L−2

E[O1]E
L
E[O2]

]
Tr[EN ]

−
Tr
[
E
N−1

E[O1]
]

Tr
[
E
N−1

E[O2]
]

Tr2[EN ]
(B.37a)

=
Tr
[
(
∑

λ λPλ +Rλ)N−L−2 Ẽ[O1] (
∑

λ λPλ +Rλ)L Ẽ[O2]
]

Tr[EN ]

−
Tr
[
(
∑

λ λPλ +Rλ)N−1 Ẽ[O1]
]

Tr
[
(
∑

λ λPλ +Rλ)N−1 Ẽ[O2]
]

Tr2[EN ]
.

(B.37b)

Now we assume that all eigenvalues |λi| = 1 are actually one (λi = 1) and we conclude
them all in the matrices P̃1 and R̃1, while still R̃1 = 0.8 Then by performing the limes
N →∞, we find

=
Tr
[
P̃1Ẽ[O1] (

∑
λ λPλ +Rλ)L Ẽ[O2]

]
P̃1

−
Tr
[
P̃1Ẽ[O1]

]
Tr
[
P̃1Ẽ[O2]

]
Tr2
[
P̃1

] . (B.38)

We can now increase the distance L→∞ in first order:

=
Tr
[
P̃1Ẽ[O1] P̃1Ẽ[O2]

]
P̃1

−
Tr
[
P̃1Ẽ[O1]

]
Tr
[
P̃1Ẽ[O2]

]
Tr2
[
P̃1

] . (B.39)

If now P̃1 is only one-dimensional (has only one non-zero diagonal element), the first
term decouples both operators and becomes equal to the second term, leading to

lim
L→∞

〈O1O2〉 − 〈O1〉 〈O2〉 = 0. (B.40)

The second order decays exponentially in L.
On the other hand, if P̃1 has more than one non-zero element, this argument does

not apply any more and the correlation stays finite at large distances. This violates our
physical requirement of the system being short-range correlated. Therefore P̃1 must be
one-dimensional and the largest eigenvalue 1 is unique.

As we made a few assumptions above, we will now generalize this proof. We don’t
immediately find a reason for all eigenvalues of E to be real and ≥ 0. What happens if
we have complex eigenvalues?

First of all this is not an issue for all |λ| < 1, since these terms still vanish in the
thermodynamic limit. For the eigenvalues |λ| = 1, this is more complicated.9 We can

8This way the number of diagonal elements of P̃1 is the geometrical multiplicity.
9Remember that the sum of all largest eigenvalues must be a positive real number such that the norm
〈ψ |ψ〉 > 0 (see Equation (B.29d)).
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store the phases of the largest eigenvalues in the diagonal elements of P̃1. This does not
change the proof for R̃1 = 0, but we need to reconsider the calculation for the correlation
function.

Consider the case of that P1 being one-dimensional. Then the only largest eigenvalue
has to be one (such that 〈ψ |ψ〉 > 0) and the proof holds. In the case of a more
dimensional P1, Equation (B.39) will become more complicated but will still generally
give a finite value and not vanish. Therefore the proof holds in all cases and the double
tensor E has a non-degenerate largest eigenvalue 1.

B.4.6. Interpretation

The interesting part about this proof is that it does not require any artificial assumptions
for E. The only requirements are that the norm of the ground state is positive and all
correlations vanish at large distances. Therefore the fact that the double tensor has a
largest non-degenerate eigenvalue is a purely physical result and will always hold for our
systems.
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C. Phases in Majorana Chains

As we elaborated in Section 2.3, the classification of fermionic phases in SSH chains
breaks down to Z4 if interactions are allowed. To find this result we used the approach of
Kitaev in [9]. This paper covers the breakdown of fermionic phases in stacked Majorana
chains to Z8. The discrepancy of Z4 and Z8 exists, because we combined two Majorana
chains to one SSH chains. Single Majorana chains can realize intermediate phases which
do not appear for the SSH chains. Here we want do give some additional insights for
these intermediate phases using the stabilizer formalism.

C.1. Introduction of the Majorana Chain

The Majorana chain is defined in [16]. We start with a chain of L spinless fermions with

ladder operators â†i and âi. Then we define the Majorana operators

ĉ2i−1 = âi + â†i (C.1a)

ĉ2i =
1

i

(
âi − â†i

)
. (C.1b)

As these operators are self-adjoint, they formally correspond to quasi-particles (Majorana
modes) which are their own anti-particles. The Majorana operators anticommute which
makes the Majorana modes fermionic.

The Majorana chain is now defined by the Hamiltonian

ĤF = i

(
u

L∑
i=1

ĉ2i−1ĉ2i + v
L−1∑
i=1

ĉ2iĉ2i+1

)
. (C.2)

Each unit cell of the Majorana chain contains one fermion site corresponding to two
Majorana modes.1

As we can see, this chain has some similarities to the SSH chain. The Majorana chain
is in the trivial phase for u > v and in the topological phase for u < v. We will only
consider the dimerized limit.

1As the SSH chain has two fermion sites per unit cell, we need two Majorana chains to construct one
SSH chain.
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C. Phases in Majorana Chains

C.2. Jordan–Wigner Transformation of the Majorana Chain

As we want to apply the stabilizer formalism, we need to perform a Jordan–Wigner
transformation on the Majorana chain. The Majorana operators are translated via

ρJW(c2i−1) =
i−1∏
j=1

σzj · σxi (C.3a)

ρJW(c2i) =
i−1∏
j=1

σzj · σ
y
i . (C.3b)

This gives us the trivial (u = 1, v = 0) bosonic Hamiltonian2

Htriv =

1

Z +

2

Z +

3

Z + · · · (C.4)

and the topological (u = 0, v = 1) Hamiltonian

Htriv =

1 2

XX +

2 3

XX +

3 4

XX + · · · . (C.5)

We can immediately see that these terms all commute and therefore can be used to
generate a stabilizer group.

C.3. Symmetry of the Majorana Chain

As we defined the SSH chains out of Majorana chains, we gave them a sublattice sym-
metry, but originally the Majorana chain has a time-reversal symmetry3 T̂F which fulfils
the following conditions [9]:

T̂Fĉ2i−1T̂
−1
F = −ĉ2i−1 (C.6a)

T̂Fĉ2iT̂
−1
F = ĉ2i (C.6b)

T̂FiT̂−1F = −i (C.6c)

T̂ 2
F = 1. (C.6d)

These conditions are satisfied by the operator

T̂F =

L∏
i=1

ĉ2i−1ĉ2i ◦K. (C.7)

It can be shown, that T̂FĤFT̂
−1
F = ĤF.

In the bosonic picture the time-reversal symmetry becomes

T = ρJW

(
T̂F

)
= Z · · · Z ◦K. (C.8)

2As we will apply the stabilizer formalism, we ignore any prefactors of the Hamiltonian.
3Time-reversal symmetries are anti-unitarily realized (see Subsection 1.2.2).
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C.4. Intermediate Phases in Majorana Chains

Now we can apply the stabilizer formalism on the Majorana chain. In the trivial case, we
can immediately see that the time-reversal symmetry acts trivially on the whole chain.4

The topological chain is much more interesting. Here we can see that the terms of the
Hamiltonian Htriv cannot be used to simplify the action of the symmetry on the bulk.
This means that the symmetry acts non-trivially onto the whole chain and not just
on the edges. Therefore, we cannot classify this system any more using the stabilizer
formalism (cf. Chapter 5).

C.5. Phases in Stacked Majorana Chains

Consider two stacked Majorana chains which are both in the topological state. The
Hamiltonian is5

H =

1 2

XX
Z 1

+

1 2

1 Z
XX

+

2 3

XX
Z 1

+

2 3

1 Z
XX

+ · · · . (C.9)

All terms of H commute with each other. The time-reversal symmetry is represented by

T =
Z · · · Z
Z · · · Z ◦K. (C.10)

Now we multiply all terms of the Hamiltonian to

ΩT =

1 2

XX
Z 1

·

1 2

1 Z
XX

·

2 3

XX
Z 1

·

2 3

1 Z
XX

· · · = XZ · · · Z Y
Y Z · · · ZX. (C.11)

Now we can see the action of the time-reversal symmetry on the ground states:

T ′ = T · ΩT =
Y 1 · · · 1X
X 1 · · · 1Y ◦K. (C.12)

If two Majorana chains are stacked on top of each other, we can reduce the action of the
symmetry to an action on the edges of the system. These actions on the edge square to
−1 and are therefore non-trivial.

The same pattern repeats itself. Even numbers of topological Majorana chains can
be classified and odd numbers of topological Majorana chains lead to an action of the
symmetry on the bulk. Therefore, we called the odd phases intermediate. These consid-
erations give a better understanding of the difference between the phases in SSH chains
(which behave like the even phases in Majorana chains) and the odd phases of Majorana
chains.

4Simply multiply all terms of the Hamiltonian to the symmetry operator.
5This Hamiltonian is obviously dependent on the Jordan–Wigner string. Other strings would yield the

same results.
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C.6. Additional Comments

We want to mention that the stabilizer formalism seems to yield some problems in these
systems. The issues are related to anti-unitarily realized symmetries.

If we would have defined other Majorana operators, the time-reversal symmetry would
have been just a complex conjugation T̂F = K. Then we cannot use stabilizer formalism
(at its current state) any more as a tool for the classification of topological phases
because this symmetry always acts trivially on the bulk. It is still a non-trivial symmetry
operation because of the complex conjugation. Therefore we believe that the stabilizer
formalism is subtle if anti-unitarily realized symmetries are considered. This will require
some further investigations. Nonetheless, we trust our results in Chapter 5.
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[24] Norbert Schuch, David Pérez-Garćıa and Ignacio Cirac. ‘Classifying quantum phases
using matrix product states and projected entangled pair states’. In: Phys. Rev. B
84 (16 Oct. 2011), p. 165139. doi: 10.1103/PhysRevB.84.165139. url: https:
//link.aps.org/doi/10.1103/PhysRevB.84.165139.

[25] Xie Chen, Zheng-Cheng Gu and Xiao-Gang Wen. ‘Complete classification of one-
dimensional gapped quantum phases in interacting spin systems’. In: Phys. Rev. B
84 (23 Dec. 2011), p. 235128. doi: 10.1103/PhysRevB.84.235128. url: https:
//link.aps.org/doi/10.1103/PhysRevB.84.235128.
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