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Abstract

In the last decade the study of cold Rydberg atoms has caught more and more atten-
tion. Due to their strong dipole-dipole interactions they have become a prime candidate
for realising a quantum computer [13]. Controlling and implementing Rydberg atoms as
quantum gates is in this case strongly related to the interaction with light fields. For this
interaction nonlinear optical effects arise like electromagnetically induced transparency
(EIT) or the reduction of the group velocity to several meters per second [4].

The properties of dissipative and strongly interacting system, e.g. Rydberg media, give
rise to applications like a single-photon-emitter as well as a single-photon-absorber [7], [10].
Especially the blockade mechanism arising in Rydberg media plays an important role in
this case. This mechanism can be used, depending on the application, to isolate a single
photon from an ensemble of photons as well as to absorb a single photon making the
medium transparent for the other photons. The resulting state, however, is not a pure
state any more which requires a description with the help of the density matrix formalism
and the quantum optical master equation.

In this thesis we deal with the light propagation in Rydberg media. Therefore we first
study the classical dynamics of the electromagnetic field in inhomogeneous media. In
addition, we calculate the amplitude and intensity reflection coefficients for two selected
functions of the refractive index, which have the form of Eckart potentials. In the second
part we consider the quantum master equation for continuous media and present a general
solution which we apply on Fock states as well as on coherent states. Additionally, we
take account of the blockade-mechanism of strongly interacting Rydberg atoms that leads
to deterministic single photon subtraction in a saturating absorber.
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Zusammenfassung

Das Studium ultrakalter Quantengase hat in den letzten Jahren mehr und mehr an Bedeu-
tung gewonnen. Durch ihre starke Dipol-Dipol-Wechselwirkung und die hohe Lebensdauer
sind vor allem Rydberg-Gase, die als Kandidat zur Realisierung eines Quantencomput-
ers gelten, in den Fokus gerückt [13]. Die Kontrolle und Implementierung der Rydberg-
Gase als Quantengatter hängt dabei wesentlich mit ihrer Wechselwirkung mit Lichtfeldern
zusammen. Im Rahmen dieser Wechselwirkung treten Effekte wie die elektromagnetisch
induzierte Transparenz (EIT) und das Abbremsen der Gruppengeschwindigkeit des Lichts
auf wenige Meter pro Sekunde auf [4].

Dissipative und stark wechselwirkende Systeme wie z.b. Rydberg-Gase besitzen Eigen-
schaften, die genutzt werden können, um Anwendungen wie Einzelphotonenquellen oder
Einzelphotonendetektoren realisieren zu können [7], [10]. Dabei spielt der bei Rydberg-
Medien auftretende Blockade-Effekt eine wichtige Rolle. Je nach Anwendung kann dieser
Effekt dazu genutzt werden, ein einzelnes Photon aus einem Ensemble zu isolieren oder
genau ein Photon zu absorbieren und das Medium für die verbleibenden Photonen trans-
parent erscheinen zu lassen. Der resultierende Zustand ist dann nicht mehr rein, weshalb
man zur Beschreibung der Dynamik solcher Prozesse auf den Dichtematrixformalismus
und die quantenmechanische Master-Gleichung zurückgreifen muss.

In dieser Arbeit befassen wir uns mit der Lichtausbreitung in Rydberg-Gasen. Dazu
untersuchen wir zuerst die klassische Dynamik des elektromagnetischen Feldes in inhomo-
genen Gasen und berechnen die Reflexionskoeffizienten für zwei ausgewählte Funktionen
des Brechungsindex in Form der Eckart-Potentiale. Im zweiten Teil der Arbeit betrachten
wir die quantenmechanische Master-Gleichung für kontinuierliche Medien und präsentieren
eine allgemeine Lösung, die wir auf Fock-Zustände und kohärente Zustände anwenden
werden. Zusätzlich berücksichtigen wir den Blockade-Mechanismus stark wechselwirk-
ender Rydberg-Atome, der bei einem saturierenden Medium zu einer deterministischen
Absorption eines einzelnen Photons führt.
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1 Basic concepts

In this chapter, we present the basic concepts that are used throughout this thesis. This
includes the classical description of electromagnetic fields as well as their quantum me-
chanical one. In addition, the concept of open quantum systems and quantum master
equations is discussed. Since we are concerned with Rydberg atoms, we give a short
overview of their properties, too.

1.1 Classical wave equation for inhomogeneous media

In classical electrodynamics, electromagnetic fields in the vacuum are described by the
Maxwell equations (in Gaussian units) [11]

∇ · E = 0 ∇ · B = 0 (1.1a)

∇ × E +
1

c
∂tB = 0 ∇ × B − 1

c
∂tE = 0. (1.1b)

However, in order to treat electromagnetic fields in macroscopic media these equations
have to be modified due to the response of the medium to the electromagnetic field. The
electric field E is then transformed into the displacement field D because of the induced
polarisation P

D = E + 4πP. (1.2)

The polarisation is related to the electric field by the dielectric susceptibility χ

P = χE. (1.3)

In general, χ is anisotropic, inhomogeneous and depends on the frequency and the intensity
of the electric field. Since we will later restrict our calculations to one-dimensional system,
we can assume it to be isotropic. We further assume χ to be independent of the frequency
and the intensity of the light field. Hence, eq. (1.2) reduces to

D = (1 + 4πχ(x)) E = ε(x)E (1.4)

where ε denotes the electric permittivity.

The magnetic induction B is modified by the magnetization M of the medium and thus
yields the magnetic field

H = B − 4πM. (1.5)

Since we treat systems whose magnetization is negligible, we assume the magnetic field
to be equal to the magnetic induction. Thus, the macroscopic Maxwell equations for a
non-conducting medium read

∇ · D = 0 (1.6a)
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∇ · B = 0 (1.6b)

∇ × E +
1

c
∂tB = 0 (1.6c)

∇ × B − 1

c
∂tD = 0. (1.6d)

As for the vacuum [11], using these equations we can derive a wave equation in an inho-
mogeneous medium. Therefore, we take the curl of eq. (1.6c) and substitute eq. (1.6d).
Noting that D = ε(x)E we get

∇ (∇ · E) − ∇2
E = −ε(x)

c2
∂2
t E. (1.7)

Here we used the relation

∇ × (∇ × E) = ∇ (∇ · E) − ∇2
E. (1.8)

Eq. (1.6a) leads to

∇ · E = − 1

ε(x)
(∇ε(x)) · E. (1.9)

We assume the electric field to be polarized perpendicular to the x-axis, i.e. E = Eêz ,
and therefore (∇ε(x)) · E = 0. The electric permittivity is related to the refractive index
by Maxwell’s relation

n2(x) = ε(x) (1.10)

and thus leads to the wave equation for one-dimensional inhomogeneous media

∂2
xE − n2(x)

c2
∂2
tE = 0. (1.11)

1.2 Quantization of the electromagnetic field

In order to quantize the electromagnetic field we use Maxwell’s equation in the vacuum
(eqs. (1.1)). The electric and magnetic fields can be derived by the use of a vector potential
A that satisfies the wave equation

∇2
A − 1

c2
∂2
t A = 0 (1.12)

and the Coulomb gauge
∇ · A = 0. (1.13)

The electric and magnetic fields can be written as

E = −1

c
∂tA (1.14a)

B = ∇ × A. (1.14b)

respectively. Further, we imagine the fields to be confined inside a cubic cavity of side
length L of perfect reflecting walls where L is much larger than the wavelengths of the
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fields. In the case of continuous mode fields, the limit L → ∞ has to be taken afterwards.
Imposing boundary conditions leads to discrete wave vectors

k =
2π

L
(nx,ny,nz) (1.15)

where nx, ny and nz are integer numbers. In order to simplify our calculations we chose
A(r,t) = A(r,t)êz . The Coulomb gauge (1.13) requires k to be perpendicular to the
vector potential and we chose k = kêx. The vector potential can then be expressed as a
superposition of plane waves and takes the form

A(x,t) =
∑

k

[

Ake
i(kx−ωkt) +A∗

ke
−i(kx−ωkt)

]

. (1.16)

The energy of the electromagnetic field

H =
1

8π

∫

V

(

E
2 + B

2
)

(1.17)

leads to [6]

H =
V

4πc2

∑

k

(AkA
∗
k +A∗

kAk) . (1.18)

Introducing the canonical variables qk and pk

Ak =
1

2ωk

√

4πc2

V
(ωkqk + ipk) (1.19a)

A∗
k =

1

2ωk

√

4πc2

V
(ωkqk − ipk) (1.19b)

the field energy takes the form of decoupled harmonic oscillators

H =
1

2

∑

k

(

p2
k + ω2

kq
2
k

)

. (1.20)

The quantization is performed by converting the canonical variables into their correspond-
ing quantum-mechanical canonical operators q̂k and p̂k respectively. These operators obey
the commutation relation

[q̂k, p̂k′ ] = i~δk,k′ . (1.21)

In analogy to eq. (1.19), we define the creation an annihilation operators

âk =
1√

2~ωk
(ωkq̂k + ip̂k) (1.22a)

â†
k =

1√
2~ωk

(ωkq̂k − ip̂k) (1.22b)

that satisfy the bosonic commutation relations

[âk, âk′ ] = 0 =
[

â†
k, â

†
k′

]

(1.23a)
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[

âk, â
†
k′

]

= δk,k′ . (1.23b)

The Hamiltonian of the quantized electromagnetic field thus reads

Ĥ =
∑

k

~ωk

(

â†
kâk +

1

2

)

=
∑

k

~ωk

(

n̂k +
1

2

)

. (1.24)

where n̂k is the number operator of the mode k. The term 1/2 takes into account an
infinitely large vacuum energy that will be neglected in further calculations. Nevertheless,
the vacuum energy gives rise to measurable effects like the Casimir force or the Lamb shift.

The quantized form of eq. (1.16) can be obtained by setting

Âk =

√

2π~

ωkV
âk (1.25)

and then reads

Â(x,t) =
∑

k

√

2π~

ωkV

[

âke
i(kx−ωkt) + â†

ke
−i(kx−ωkt)

]

. (1.26)

Thus the electric field operator, related to the vector potential by eq. (1.14a), takes the
form

Ê(x,t) = i
∑

k

√

2π~ωk
V

[

âke
i(kx−ωkt) + â†

ke
−i(kx−ωkt)

]

. (1.27)

One often splits the electric field operator into one part that contains the positive frequen-
cies and another part containing the negative frequencies. The part of the electric field
operator that contains the positive frequencies is given by

Ê+(x,t) = i
∑

k

√

2π~ωk
V

âke
i(kx−ωkt). (1.28)

The negative-frequency part is then

Ê−(x,t) =
[

Ê+(x,t)
]†
. (1.29)

In the following calculations, we omit the ’hat’ since the operator character should be clear
by the context.

1.2.1 Continuous-mode fields

In experiments, light beams are often time-dependent and therefore have to be described in
terms of two or more modes. For systems studied in cavities it is sufficient to treat discrete
modes according to the boundary conditions at the walls of the cavity. Nevertheless, in
the absence of such cavities the light field has to be described in terms of continuous modes.
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The spacing between two modes inside a cavity of length L is given by

∆k =
2π

L
. (1.30)

The quantization in absence of cavities is best performed by assuming one axis (i.e x-axis)
to be of infinite extent but retaining a finite cross-section area A perpendicular to this
axis (c.f. [12]). In this case the spacing between to modes tends to zero and the sums over
k can be converted into an integral with

∑

k

→ L

2π

∫

dk. (1.31)

The discrete Kronecker delta turns into the continuous Dirac delta-function with

δk,k′ → ∆kδ
(

k − k′) (1.32)

We can then relate the continuous-mode creation and annihilation operators, a(k) and
a†(k) respectively, to their discrete counterparts by

ak →
√

∆k a(k) a†
k →

√
∆k a†(k). (1.33)

They now satisfy the commutation relation
[

a(k), a†(k′)
]

= δ(k − k′). (1.34)

With this results eq. (1.28) can be written as

E+(x,t) = i

∞∫

0

dk

√

~ck

A
a(k)eik(x−ct) (1.35)

where we have set ωk = ck. The Hamiltonian of the electromagnetic field in terms of
continuous modes then takes the form [12]

H =

∞∫

0

dk ~cka†(k)a(k) + vacuum energy. (1.36)

The vacuum energy is ignored in the further discussions.

For systems where the bandwidth of the field excitation is much smaller than its cen-
tral frequency ω0 = ck0 we can perform the narrow-bandwidth approximation and put ω0

in front of the integral. Furthermore, the range of integration can be extended over the
negative frequencies as well since the will not contribute to the integral appreciably. We
define the Fourier-transformed creation and annihilation operators by

a(x) =
1√
2π

∞∫

−∞

dka(k)e−ikx (1.37a)

15



a†(x) =
1√
2π

∞∫

−∞

dka†(k)eikx. (1.37b)

These operators satisfy the commutation relation
[

a(x), a†(y)
]

= δ(x− y). (1.38)

The electric field operator can then be expressed by

E+(x,t) = i

√

~ck0

A
a(x− ct). (1.39)

Number states

In order to define continuous-mode number states we define the wave-packet creation
operator

a†
φ =

∫

dkφ(k,t)a†(k) =

∫

dxφ(x,t)a†(x) (1.40)

where φ denotes a normalized pulse shape. A single photon state is then defined by

|1φ〉 = a†
φ|0〉. (1.41)

General number states are therefore given by

|nφ〉 =
1√
n!

(

a†
φ

)n
|0〉. (1.42)

For number states the expectation value of the electric field operator vanishes as in the
case of single and discrete-mode fields

〈nφ|E(x,t)|nφ〉 = 0. (1.43)

Coherent states

In analogy to single mode fields we define the coherent states

|α〉 = exp
(

a†
φ − aφ

)

|0〉. (1.44)

In this case the pulse shape α(x) has not to be normalized but [12]
∫

dk|α(k)|2 =

∫

dx|α(x)|2 = 〈n〉 (1.45)

where 〈n〉 denotes the mean photon number in this pulse. Using the commutation relation
eq. (1.34) we can rewrite eq. (1.44) into

|α〉 = exp

(

a†
φ − 1

2
〈n〉
)

|0〉. (1.46)

Since the coherent states are eigenstates of the annihilation operator

a(k)|α〉 = α(k)|α〉 a(x)|α〉 = α(x)|α〉 (1.47)
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the expectation value of the electric field operator no longer vanishes but takes the form

〈α|E(x,t)|α〉 = i

√

~ck0

A

∫

dk
(

α(k)eik(x−ct) − α∗(k)e−ik(x−ct)
)

= −2

∫

dk Im
{

α(k)eik(x−ct)
}

= −2 Im {α(x− ct)} . (1.48)

This is the same result we would obtain for the classical value of the electric field.

1.3 Open quantum systems and quantum master equation

The dynamics of closed and fully coherent quantum systems is governed by the Schrödinger
equation

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉 (1.49)

where H is the Hamiltonian of this system. In open quantum systems where uncontrolled
interactions with external degrees of freedom have to be taken into account the system
cannot be described in terms of pure states any longer. We rather have to deal with a
statistical mixture of states that can be described by the density operator

ρ =
∑

i

pi|ψi〉〈ψi| (1.50)

where pi is the probability to find the system in the pure state |ψi〉.

Including the external degrees of freedom the evolution of the system is fully coherent
and can be described by the von-Neumann equation

d

dt
ρ = − i

~
[H, ρ] . (1.51)

In this case, H is a composition of the Hamiltonian of the system HS , the environment HE

and the interaction HI between both of them (see Figure 1.1). Since we are not interested
in the description of the evolution of the environment E, we have to consider the reduced
density operator of the system S only

ρS = TrE {ρ} . (1.52)

In order to derive a quantum master equation we rewrite eq. (1.51) in the interaction
picture

d

dt
ρ(t) = − i

~
[HI(t), ρ(t)] . (1.53)

Taking the trace over the environment this equation can be transformed into [2]

d

dt
ρS(t) = − 1

~2

t∫

0

dsTrE [HI(t), [HI(s), ρ(s)]] . (1.54)
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Figure 1.1: Schematic picture of an open quantum system (cf. [2]). The dynamics of the
system S is given by the Hamiltonian HS. The Hamiltonian HE describes the
evolution of the environment E. The interaction between those two subsystems
is given by the interaction Hamiltonian HI . The dynamics of the whole system
S + E is then governed by the Hamiltonian H = HS +HE +HI .

This equation can be simplified by performing the Born-approximation and the Markov-
approximation. The first one assumes the coupling between the environment and the
system to be weak such that the environment is approximately unaffected by the system.
Consequently, the density operator may be written as a tensor product of the density
operators of the subsystems

ρ(t) ≈ ρS(t) ⊗ ρE . (1.55)

The Markov-approximation is based on a coarse-grained time scale and the dynamics on
a time scale comparable to the time scale over which the excitations of the environment
decays is not resolved. Put simply, we assume the environment to have no memory in
such a way that the change of the quantum system at a time t is only influenced by the
state of the quantum system at a time t. Considering these approximations, eq. 1.54 can
be written in the so-called Lindblad-form [2]

d

dt
ρS(t) =

∑

k

Γk

(

akρS(t)a†
k − 1

2

{

a†
kak, ρS(t)

})

. (1.56)

In the Schrödinger picture this reads

d

dt
ρS(t) = − i

~
[HS, ρS(t)] +

∑

k

Γk

(

AkρS(t)A†
k − 1

2

{

A†
kAk, ρS(t)

})

. (1.57)

The first term on the right side containing the Hamiltonian HS describes the coherent
evolution of the system S. The operators Ak and A†

k are eigenoperators of HS and induce
non-coherent transitions from one state to another with the rate Γk due to the coupling
to the environment.

1.4 Rydberg atoms

Rydberg atoms are atoms with one or more electrons excited into a state with a principal
quantum number n ≫ 1 [5]. Assuming only one electron to be excited into a higher state
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we can treat the atom to behave approximately hydrogenicly since the positive charge of
the core is shielded by the remaining electrons. In fact, the energy levels of a Rydberg
atom can be calculated using the hydrogen formula by replacing the principle quantum
number n by an effective principle quantum number n∗

E(n∗) = −2π~cR

(n∗)2
(1.58)

where R is the Rydberg constant and n∗ = n− δl with the so-called quantum defect δl. As
for the hydrogen atom the scaling of most of the important properties of Rydberg atoms
are determined by the effective principle quantum number n∗. Table 1.4.1 shows some
scaling laws for selected properties of Rydberg atoms.

Property Scaling 87Rb |43s〉
Binding energy (n∗)−2 8.56 meV
Level spacing (n∗)−3 109.99 GHz
Orbit-radius (n∗)2 2384.2 a0

Polarizability (n∗)7 8.06 MHz/(V/cm)2

Natural lifetime (n∗)3 99µ s

Transition dipole moment (n∗)−3/2 -0.0176 a.u.
van der Waals C6 coefficient (n∗)11 −1.7 · 1019 a.u.

Table 1.4.1: Scaling laws of selected properties of Rydberg atoms and exemplary values
for the 87Rb |43s〉 state [8]

1.4.1 Blockade Mechanism

The blockade mechanism of Rydberg atoms is based on the strong interaction between
them. For a general two level system the interaction Hamiltonian reads

HI =

(

∆ V
V 0

)

(1.59)

where ∆ is the energy difference between the two states and V denotes the interaction.
The eigenvalues of HI are given by

E± =
∆

2
± 1

2

√

∆2 + 4V 2. (1.60)

For Rydberg atoms the dominating interaction is the dipole-dipole interaction that is

V =
C3

r3
(1.61)

where angular dependencies have been dropped. For large interatomic distances the inter-
action is much smaller than the energy difference ∆ and the negative eigenvalue is given
in leading order by

VI = E− = − C2
3

∆r6
∼ C6

r6
. (1.62)
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This has the form of a van der Waals interaction. Since the van der Waals coefficient C6

is proportional to (n∗)11 this interaction is very strong for Rydberg atoms.

Strong interactions between excited atoms cause a blockade mechanism that allows one
excitation only. The blockade-condition is given by

VI > W (1.63)

where W denotes the linewidth of the excitation laser. In order to discuss the blockade
mechanism based on the strong interaction between Rydberg atoms we consider two atoms
coupled resonantly to Rydberg states by the Rabi frequency Ω (see Figure 1.2). The
linewidth is governed by power-broadening depending on the Rabi frequency and therefore

C6

r6
> 2~Ω. (1.64)

The blockade radius then is defined by

rB =

(
C6

2~Ω

) 1
6

. (1.65)

Figure 1.2: Due to the strong interaction between two excited states the doubly ex-
cited state is shifted out of resonance for spatial separations smaller than the
blockade-radius rB. Thus, a system confined in a region smaller than the
blockade-volume ∼ r3

B can only carry a single excitation. Cf. [9]

1.4.2 Collective States

Assuming that the ensemble of N Rydberg atoms is confined inside a volume smaller that
the blockade-volume ∼ r3

B, the system cannot carry but a single excitation. In this case
the Hilbert space of the system is spanned by the collective ground state

|G〉 = |g1, . . . , gN 〉 (1.66)

and N excited states
|i〉 = |g1, . . . , ei, . . . , gN 〉. (1.67)
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Since the system is invariant under permutation of atoms the light field couples to the
collective excited state

|W 〉 =
1√
N

∑

i

|i〉. (1.68)

In this case we can reduce the dynamics of the system of N atoms to a two-level system
which gives rise to the term ’superatom’. The coupling of the collective ground state to
the collective excited state is then given by the collective Rabi frequency

Ωcoll =
√
NΩ. (1.69)
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2 Classical wave propagation through

inhomogeneous media

In this section we present a solution for the classical wave equation in inhomogeneous
media. Further we derive the reflection coefficients for the anti-symmetric and symmetric
Eckart potentials. In the last part we perform the slowly varying envelope approximation
in order to reduce the wave equation to a first order partial differential equation.

2.1 Stationary solutions and reflection coefficients

The wave equation in inhomogeneous media with electric susceptibility χ(x) reads
(

∂2
x − n2(x)

c2
∂2
t

)

E(x,t) =

(

∂2
x − 1 + χ(x)

c2
∂2
t

)

E(x,t). (2.1)

We now make the separation ansatz E(x,t) = E(x)e−ickt. In turn the wave equation
reduces to a second order differential equation

(

∂2
x + k2(1 + χ(x))

)

E(x) = 0. (2.2)

Next, we assume particular shapes for the electric susceptibility χ(x) in order to find
analytical solutions. These will have the forms of anti-symmetric and symmetric Eckart
potentials, χa(x) and χs(x) [3] (see Figure 2.1), namely

χa(x) = χ0

exp
(
x
x0

)

1 + exp
(
x
x0

) χs(x) = χ0

exp
(
x
x0

)

(

1 + exp
(
x
x0

))2 (2.3)

where χ0 is related the hight of the potential and x0 is related to the width over which
the potential changes.

2.1.1 Anti-symmetric Eckart potential

We first concentrate on the anti-symmetric Eckart potential χa(x). With the substitution

exp
(
x
x0

)

= y we can rewrite eq. (2.2) into

(

y2∂2
y + y∂y + (x0k)2

(

1 + χ0
y

1 + y

))

E(y) = 0. (2.4)

Through q = x0k and
√

1 + χ0 = n the solution can be expressed in terms of hypergeo-
metric functions 2F1

E(y) = c1y
iq

2F1 (iq(1 − n), ik(1 + n), 1 + 2iq,−y)

c2y
−iq

2F1 (−iq(1 + n),−iq(1 − n),1 − 2iq,−y) . (2.5)
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Figure 2.1: Plot of the anti-symmetric (purple line) and symmetric (blue line) Eckart
potential 2.3 over the spatial coordinate x. The value of χ0 of the symmetric
Eckart potential in this plot is four times larger than the value of χ0 of the
anti-symmetric Eckart potential.

In order to calculate the reflection coefficient for the anti-symmetric potential, we expand
the solution in the limit y → 0 (x → −∞) and in the limit y → ∞ (x → ∞). In the first
case, the hypergeometric functions reduce to 1 and the solution becomes

E(x → −∞) = c1e
−ikx + c2e

ikx. (2.6)

The first term describes a reflected wave, which is due to the scattering at the medium,
whereas the second term represents the incident wave. The expansion of eq. (2.5) for
x → ∞ then yields

E(x → ∞) = eiknx
(

c2
Γ(1 − 2iq)Γ(2iqn)

Γ(iq(n− 1))Γ(1 + iq(n− 1))
+ c1

Γ(1 + 2iq)Γ(2iqn)

Γ(iq(n + 1))Γ(1 + iq(n+ 1))

)

+e−iknx
(

c2
Γ(1 − 2iq)Γ(−2iq)

Γ(−iq(n + 1))Γ(1 − iq(n + 1))
+ c1

Γ(1 + 2iq)Γ(2iqn)

Γ(−iq(n− 1))Γ(1 − iq(n− 1))

)

(2.7)

where Γ(. . .) denotes the Gamma function. The first term yields a wave propagating to
the left with a modified wave vector k̄ = kn which is due to the refractive medium. The
second term gives a counterpropagating wave with the same modified wave vector. This
term actually represents a wave scattered at x = ∞ and therefore its amplitude should
vanish, which leads to the condition

c2
Γ(1 − 2iq)Γ(−2iq)

Γ(−iq(n+ 1))Γ(1 − iq(n+ 1))
+ c1

Γ(1 + 2iq)Γ(2iqn)

Γ(−iq(n− 1))Γ(1 − iq(n− 1))
= 0. (2.8)

The amplitude reflection coefficient r(q,n) which is defined as the ratio of outgoing and
incoming wave amplitude takes the form

r(q,n) =
c2

c1
= − Γ(1 + 2iq)Γ(2iqn)Γ(−iq(n + 1))Γ(1 − iq(n+ 1))

Γ(−iq(n− 1))Γ(1 − iq(n − 1))Γ(1 − 2iq)Γ(−2iqn)
. (2.9)
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The intensity reflection coefficient R(q,n) is defined as the absolute square of eq. (2.9),
which is valid for complex values of n as well. However, for real n this expression can be
brought into a more elegant form by using the following identities

|Γ(ix)|2 =
π

x sinh(πx)
(2.10a)

|Γ(1 + ix)|2 =
πx

sinh(πx)
. (2.10b)

Thus, the intensity reflection coefficient reads

R(q,n) = |r(q,n)|2 =
sinh2(πq(1 − n))

sinh2(πq(1 + n))
(2.11)

In the limit x0 → 0 (q → 0), which represents a hard step, the intensity reflection coefficient
remains finite and expanding eq. (2.11) for small x0 up to leading order yields

R(0,n) =

(
n− 1

n+ 1

)2

. (2.12)

This is exactly the same result that can be derived by imposing boundary conditions for
the electric and magnetic fields at dielectric interfaces [11].

Figure 2.2 shows the intensity reflection coefficient R(q,n), eq. (2.11), plotted over the
dimensionless coordinate q for several values of n. It can be seen that for q → 0 R remains
finite and its value increases with increasing n. For large q, i.e. for a large ratio x0/λ,
the reflected wave vanishes. This can be interpreted physically by identifying k with the
energy of the photon. For large q, this means large energies, the photon can penetrate
the barrier easily whereas for small energies, it will be scattered. A more classical in-
terpretation would be that for small wavelengths compared to the length over which the
potential varies the photon does not notice the change of the barrier and therefore will
not be scattered.

2.1.2 Symmetric Eckart potential

In this section, we concentrate on the symmetric Eckart potential χs(x). We follow basi-
cally the calculations of [3]. The wave equation for the symmetric Eckart potential is

[

∂2
x + k2

(

1 + χ0
ex/x0

(
1 + ex/x0

)2

)]

E(x) = 0. (2.13)

We now substitute y = −ex/x0 and with the notation q2 = k2x2
0 the wave equation becomes

[

y2∂2
y + y∂y + q2

(

1 − χ0
y

(1 − y)2

)]

E(y) = 0. (2.14)

This hypergeometric differential equation can be solved in terms of hypergeometric func-
tions just like above. Nevertheless, we impose the conditions that for x → ∞ there should
be only a transmitted wave ∼ eikx = (−y)iq. For x → −∞, we expect the solution to split
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Figure 2.2: Intensity reflection coefficient R plotted over q = kx0 for several values of n.
R vanishes for large q and has a maximum for q → 0 whose value increases for
increasing n.

into two waves, the incident wave proportional to eikx and the reflected wave proportional
to e−ikx. It is shown [3] that the solution takes the form

E(y) = (−y)iq2F1

(
1

2
− δ,− 1

2
+ δ, 1 − 2iq,

1

1 − y

)

, (2.15)

where q = kx0 and δ = 1
2

√

1 + 4q2χ0. For x → ∞ (−y → ∞) this expression converges to
(−y)iq and therefore represents the transmitted wave. In the limit x → −∞ (y → 0) the
hypergeometric function used in eq. (2.15) does not converge. Thus the expression has to
be analytically extended which is done by compounding two hypergeometric functions [3].
The analytically extended expression of eq. (2.15) then becomes

E(y) =c1(−y)iq2F1

(
1

2
− δ,−1

2
+ δ, 1 + 2iq,

y

y − 1

)

+ c2 (−y)−iq
2F1

(
1

2
− δ,−1

2
+ δ, 1 − 2iq,

y

y − 1

)

(2.16)

with

c1 =
Γ(1 − 2iq)Γ(−2iq)

Γ
(

1
2 − 2iq + δ

)

Γ
(

1
2 − 2iq − δ

) , (2.17a)

c2 =
Γ(1 − 2iq)Γ(2iq)

Γ
(

1
2 + δ

)

Γ
(

1
2 − δ

) . (2.17b)

This extended form converges for y → 0 (x → −∞) and yields the expression

E(y → 0) = c1(−y)iq + c2(−y)−iq, (2.18)

which satisfies the condition of an incident and a reflected wave. The intensity reflection
coefficient R(q,χ0) is thus the absolute square of the ratio c2/c1

R(q,χ0) =

∣
∣
∣
∣

c2

c1

∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣
∣

Γ
(

1
2 − 2iq + δ

)

Γ
(

1
2 − 2iq − δ

)

Γ
(

1
2 + δ

)

Γ
(

1
2 − δ

)

∣
∣
∣
∣
∣
∣

2

. (2.19)
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This expression holds for general χ0 and therefore is valid for complex values of χ0 in
analogy to eq. (2.9). Nevertheless, for real values of χ0, we can simplify this expression
by making use of the following identities

Γ

(
1

2
+ s

)

Γ

(
1

2
− s

)

=
π

cos(πs)
, Γ(z) = Γ(z̄), (2.20a)

cos(x− y) cos(x+ y) = cos2(x) − sin2(y), sin(ix) = i sinh(x). (2.20b)

A straightforward calculation leads to

R(q,χ0) =
cos2

(
π
2

√

1 + 4q2χ0

)

cos2
(
π
2

√

1 + 4q2χ0

)

+ sinh2 (π2q)
. (2.21)

Figures 2.3 and 2.4 show the intensity reflection coefficient R(q,χ0), eq. (2.19), of the
symmetric Eckart potential for several values of χ0. It can be seen that the reflection
coefficient vanishes for large q as in the case of the anti-symmetric potential. In contrast,
for q → 0 it tends to zero. This behaviour is obvious, since for non-vanishing k, q → 0
means that there is no barrier and therefore no reflection. A very interesting observation
can be made for large values of χ0 (see Figure 2.3). There are values of q for which R
is zero due to destructive interference of the scattered and incident wave. This arises
whenever

√

1 + 4q2χ0 = m with an integer number m. However, this is only true for real
values of χ0. For complex values of χ0 these minima are not zero any more and vanish for
higher values of the imaginary part of χ0 (see Figure 2.4).

Figure 2.3: Intensity reflection coefficient for the symmetric Eckart potential plotted over
q for real values of χ0. R vanishes for large values of q. There are values of q
for which R is equal to zero due to destructive interference.

2.2 Slowly varying envelope approximation

The previous discussions concentrated on plane waves of the form ei(kx−ωt). However, in
reality such plane waves never occur and are better described in terms of wave packets.
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Figure 2.4: Intensity reflection coefficient of the symmetric Eckart potential plotted over q
for complex values of χ0. The minima of R are not zero any more and vanish
for large values of the imaginary part of χ0.

They are constructed by superposition of plane waves

ψ(x,t) =

∫

dkei(kx−ω(k)t)φ(k), (2.22)

where φ(k) is the distribution of wave vectors in k-space and ω(k) = ck.

We now assume the bandwidth of φ(k) to be very small compared to the value k0 around
which φ is centered. This is a very reasonable assumption since in the optical regime,
the bandwidth of the laser exceeds the frequency by many magnitudes ( ω0

∆ω ≈ 1010). We
further assume that in configuration space the pulse has the form

ψ(x,t) = eik0(x−ct)φ(x,t). (2.23)

Here we neglect the wave packet travelling in the opposite direction. Since the wave
vectors are very sharply centered around k0 for lasers for example we assume that φ(x,t)
only varies slowly with x and t. This is called the slowly varying envelope approximation
and we can drop the higher order derivatives

∣
∣
∣∂2
xφ
∣
∣
∣ ≪ |k0∂xφ| ,

∣
∣
∣∂2
t φ
∣
∣
∣ ≪ |ω0∂tφ| . (2.24)

Inserting the ansatz (2.23) into the wave equation and performing the slowly varying
envelope approximation (2.24) we get

∂xφ(x,t) +
1

c
(1 + χ(x)) ∂tφ(x,t) +

k0

2
χ(x)φ(x,t) = 0. (2.25)

This equation can be solved analytically assuming that χ(x → −∞) = 0

φ(x,t) = exp



−k

2

x∫

−∞

dx′χ(x′)



 f





x∫

−∞

dx′(1 + χ(x′)) − ct



 , (2.26)
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where we claim f(· · · ) to be a normalized function for every t. The exponential factor
gives rise to a decaying amplitude. The integral in the argument of f can be understood as
a reduction of the group velocity. In the absence of a refractive medium the wave packet is
centered around x = ct. In an inhomogeneous medium, the group velocity is not constant
any longer but varies locally c(x) = c/n(x). If χ(x) is very small compared to 1 we can
neglect this effect and the solution eq. (2.26) just describes the decay of the amplitude.

Anti-symmetric Eckart potential

We now want to apply the results derived above and consider the Eckart potentials (2.3)
that satisfy the condition χ(x → −∞) = 0. Both potentials can be integrated analytically
and for the anti-symmetric potential eq. (2.26) leads to

φ(x,t) = exp

{

−k

2
χ0x0 log

(

1 + ex/x0

)}

f
(

x+ χ0x0 log
(

1 + ex/x0

)

− ct
)

=
(

1 + ex/x0

)−
kχ0x0

2 f
(

x+ χ0x0 log
(

1 + ex/x0

)

− ct
)

. (2.27)

It can be easily seen that the wave packet will vanish for large x because the decay factor
(

1 + ex/x0

)−
kχ0x0

2 will tend to zero (see Figure 2.5).

Figure 2.5: Ratio of the amplitude of the incident wave (φ0) and the amplitude of φ(x)
for several values of χ0 (n =

√
1 + χ0). Due to the decay factor the amplitude

will vanish completely for sufficient large x. We chose k = 1.

Symmetric Eckart Potential

In the case of the symmetric Eckart potential we rewrite χ(x)

χs(x) = χ0

exp
(
x
x0

)

(

1 + exp
(
x
x0

))2 =
χ0

4

1

cosh2
(

x
2x0

) . (2.28)
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Then the solution reads

φ(x,t) = exp

{

−kχ0x0

4

(

tanh

(
x

2x0

)

+ 1

)}

f

(

x+
1

2
χ0x0

(

tanh

(
x

2x0

)

+ 1

)

− ct

)

.

(2.29)
A graphical illustration of this solution is shown in Figure 2.6. For x/x0 ≪ 0 the shape
of the decay factor is similar to the anti-symmetric case whereas for large x it has a non-
vanishing value due to the localized refractive medium. For large values of χ0 the wave
will vanish completely.

Figure 2.6: Ratio of the amplitude of the incident wave (φ0) and the amplitude φ(x) plotted
over x/x0 for several parameters of χ0. The amplitude does not vanish in
general for x → ∞ but remains constant after having passed through the
medium and only vanishes completely in the case of χ0 → ∞. We chose k = 1.

We want to keep this result in mind because we will come across it in the next chapter.

2.A Hypergeometric Series

The Gauss hypergeometric series 2F1(a,b; c; z) is defined as the infinite series

2F1(a,b; c; z) = 1 +
ab

c
z +

a(a+ 1)b(b+ 1)

1 · 2c(c+ 1)
z2 +

a(a+ 1)(a + 2)b(b+ 1)(b + 2)

1 · 2 · 3c(c + 1)(c+ 2)
z3 + · · ·

=
Γ(c)

Γ(a)Γ(b)

∞∑

n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n!
(2.30)

which converges only for |z| < 1 and for ℜ(c − a − b) > −1 [1]. It is not defined if c is
a negative integer. It is obvious that 2F1(a,b; c; 0) = 1. In order to extend eq.(2.30) for
|z| ≥ 1 there are several useful linear transformation formula but we only concentrate on
the ones we used above. Since we are concerned with the case where z = ±∞ the following
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transformation formula proves useful

2F1(a,b; c; z) =
Γ(c)Γ(b − a)

Γ(b)Γ(c − a)
(−z)−a

2F1

(

a,1 − c+ a; 1 − b+ a;
1

z

)

Γ(c)Γ(a − b)

Γ(a)Γ(c − b)
(−z)−b

2F1

(

b,1 − c+ b; 1 − a+ b;
1

z

)

. (2.31)

Another useful relation is given in [3]

ya(1 − y)c2F1(a+ b+ c,a+ b′ + c; 1 + a− a′; y)

=
Γ(1 + a− a′)Γ(c′ − c)

Γ(1 − a′ − b− c)Γ(−a′b′ − c)
ya(1 − y)c2F1(a+ b+ c,a+ b′ + c; 1 + c− c′; 1 − y)

+
Γ(1 + a− a′)Γ(c− c′)

Γ(1 − a′ − b− c′)Γ(−a′ − b′ − c′)
ya(1 − y)c

′
2F1(a+ b+ c′, a+ b′ + c′; 1 + c′ − c; 1 − y).

(2.32)
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3 Solution of the quantum master equation

for continuous mode fields

In this chapter we will present a solution of the quantum optical master equation. In
order to see how the quantum master equation looks like for continuous inhomogeneous
media we will give a short derivation of it first. In the second section we will solve the
master equation for a density matrix built up from a single-photon state as well as the
vacuum state. Hence we will receive a differential equation for the pulse shape similar to
eq.(2.25). This solution will then be generalized to arbitrary states and in the last section
we will take account of the blockade radius by implementing a mechanism that only allows
a single excitation.

3.1 Derivation of the quantum master equation for a continuous

medium

Figure 3.1: A single photon is quasi-localized in an interval I inside the medium (shaded).
Inside this interval there are several atoms that interact with each other and
with the photon. The number of atoms inside this interval has to be sufficiently
large in order to behave like a bath. Due to the interaction with the medium
the amplitude of the wave packet will decrease.

We first consider a reservoir of two-level systems (atoms). Then the interaction between
photons and the reservoir can be described by the interaction Hamiltonian

HI = g
∑

i

(

aiσ
i
+ + a†

iσ
i
−

)

(3.1)

where σi− = (|g〉〈e|)i and
(
σi−
)†

= σi+ represent a two-level system and i denotes the
specific location of photons and atoms. The coupling strength g is assumed to be equal for
every atom. We further assume a coarse-grained structure of length with a characteristic
lengthscale ∆x so we do not want to distinguish between photons absorbed at a place i or
j as long as |i − j| ≤ ∆x. Hence, a photon quasi-localized in an interval I interacts with
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the atoms in an interval of length ∆x and we can rewrite eq. (3.1) into

HI = g
∑

I

NI



aI
∑

J∈∆x

σJ+ + a†
I

∑

J∈∆x

σJ−



 . (3.2)

where NI denotes the number of atoms in the interval I. Since the atoms represent a bath
we have to keep in mind that the number of atoms in an interval of length ∆x has to be
sufficiently large. The property of representing a bath is connected to the fact that there
are no ’memory’ effects in the bath. As this behaviour relies on the interaction between
the atoms there is an ’effective range’ ∆x′ over which the summation over J has to take
place (see Figure 3.2).

Figure 3.2: The photon is absorbed by an atom (red dot). This atom interacts with all
atoms inside an effective range ∆x′ (ellipse)

In the limit ∆x → 0 this range can be larger than ∆x itself. Therefore eq. (3.2) takes the
form

HInt = ~
∑

I

NI

(

aIκ
† + a†

Iκ
)

(3.3)

with

κ = g
∑

J∈∆x′
σJ− (3.4)

The derivation of the quantum master equation for this type of interaction is well under-
stood and can be found in several textbooks about quantum optics, i.e. [14]. Since we are
interested in the limit of a continuous field we have to take the limit aI → a(x) and hence
rewrite eq. (3.3) into

HInt = ~
∑

I

∆x
NI

∆x

(

aI√
∆x

√
∆xκ† +

a†
I√
∆x

√
∆xκ

)

. (3.5)

In the limit ∆x → 0 the sum turns into an integral and the photon creation and annihi-
lation operator are converted into their corresponding continuous operators. The atomic
reservoir and its coupling strength g give rise to an absorption rate γ = g2ρ2(ω0), where
ρ(ω0) is the density of states for the carrier frequency ω0 of the light field. Due to the con-
tinuous limit this absorption rate is modified by the factor ∆x into Γ = γ∆x. This can be
interpreted as a differential absorption rate that now is given over an infinitesimal interval
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∆x and as a result it gets an additional dimension of length. Following the calculations
of [14] then leads to the master equation in the interaction picture

∂tρ = Γ

∫

dxn(x)

(

a(x)ρa†(x) − 1

2

{

a†(x)a(x), ρ
})

. (3.6)

The master equation in the Schrödinger picture is achieved by simply including − i
~

[H, ρ]
and thus yields

∂tρ = − i

~
[H, ρ] + Γ

∫

dxn(x)

(

a(x)ρa†(x) − 1

2

{

a†(x)a(x), ρ
})

. (3.7)

3.2 Solving for a single photon state

After having derived the quantum master equation for a continuous medium in the previous
section, we now want to solve it for a density matrix whose basis consist of a single-photon
state and the vacuum state.

We consider a pulse that is built as a superposition of single-photon continuous modes
{|k〉} and the vacuum state.

|ψ(t)〉 =

∫

dkφ(k,t)|k〉 + c0(t)|0〉 = |1〉 + c0(t)|0〉 (3.8)

The coefficients φ(k,t) and c0(t) have to satisfy the initial values

∫

dk|φ(k,t → −∞)|2 = 1 c0(t → −∞) = 0 (3.9)

as the influence of the density distribution vanishes for x → ±∞.

Therefore, the density operator for this system reads

ρ(t) = |ψ(t)〉〈ψ(t)|

=

∫

dk

∫

dk′φ(k,t)φ∗(k′,t)|k〉〈k′| + c∗
0(t)

∫

dkφ(k,t)|k〉〈0|

+ c0(t)

∫

dkφ∗(k,t)|0〉〈k| + |c0(t)|2|0〉〈0|

= |1〉〈1| + |c0(t)|2|0〉〈0| (3.10)

In order to receive a set of differential equations for the coefficients φ(k,t) and c0(t) and
their complex conjugates we need to calculate the matrix elements of the density operator
defined in eq. (3.10). Hence, we project eq. (3.7) onto the substates |k〉 and |0〉 that build
the base of the Hilbert space of the system. As the calculation of the matrix elements in
k-space will be more convenient, we have to fourier transform the right part of eq. (3.7).

∫

dxn(x)a(x)ρa†(x) =

∫

dk

∫

dk′ 1√
2π
n(k − k′)a(k′)ρa†(k) (3.11a)
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∫

dxn(x)
{

†(x)a(x), ρ
}

=

∫

dk

∫

dk′ 1√
2π
n(k − k′)

{

a†(k)a(k′), •
}

(3.11b)

These relations will transform eq. (3.7) into

∂tρ = − i

~
[H, ρ] +

Γ√
2π

∫

dkdk′n(k − k′)

(

a(k′)ρa†(k) − 1

2

{

a†(k)a(k′), ρ
})

(3.12)

Since the commutator as well as the anti-commutator have the same order of creation and
annihilation operators we can introduce an effective Hamiltonian

Heff =

∫

dk

[

~cka†(k)a(k) − i
~Γ

2
√

2π

∫

dk′n(k − k′)a†(k)a(k′)

]

, (3.13)

which in fact is not hermitian any more. The second term in this effective Hamiltonian
gives rise to dissipation in the system and therefore leads to a decay of the amplitude
φ(x,t). If we redefine the commutator [A,B]h.c = AB −A†B†, we can simplify the master
equation

∂tρ = − i

~
[Heff, ρ]h.c +

Γ√
2π

∫

dkdk′n(k − k′)a(k′)ρa†(k) (3.14)

This very compact form allows for calculating the matrix elements very quickly, noting
that

a†(k)a(k′)|q〉〈q′| = δ(k′ − q)|k〉〈q′| a†(k)a(k′)|0〉〈q′| = 0 (3.15a)

a(k′)|q〉〈q′|a†(k) = δ(k′ − q)|0〉〈0|δ(k − q′) a(k′)|0〉〈q′|a†(k) = 0 (3.15b)

Finally, the matrix element 〈q| · · · |q′〉 yields

(∂tφ(q,t))φ∗(q′,t) + φ(q,t)(∂tφ
∗(q′, t)) = −icqφ(q,t)φ∗(q′, t) + icq′φ∗(q′,t)φ(q,t)

− Γ

2
(φ(t) ⋆ n)(q)φ∗(q′, t)

− Γ

2
(φ∗(t) ⋆ n)(q′)φ(q,t) (3.16)

where φ(t) ⋆ n denotes the convolution of φ(k,t) and n(k). The matrix element 〈0| · · · |0〉
does not depend on k and yields

∂t|c0(t)|2 = Γ

∫

dk(φ(t) ⋆ n)(k)φ∗(k,t) = Γ

∫

dxn(x)|φ(x,t)|2 (3.17)

At last the matrix element 〈q| · · · |0〉 yields

∂t(c
∗
0(t)φ(q,t)) = c∗

0(t)

(

−icqφ(q,t) − Γ

2
(φ(t) ⋆ n)(q)

)

(3.18)

as well as the complex conjugate equation.

Let us now take a closer look at the equations derived above. In fact, eq. (3.16) can
be split into two differential equations, one for φ and another for its complex conjugate

∂tφ(q,t) = −icqφ(q,t) − Γ

2
(φ(t) ⋆ n)(q) (3.19a)
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∂tφ
∗(q,t) = icqφ∗(q,t) − Γ

2
(φ∗(q,t) ⋆ n)(q) (3.19b)

The first equation describes a propagating wave packet with a group velocity of −c and
a decaying amplitude due to the absorbing medium in the second term. Analogously, the
second equation yields a wave packet propagating with a group velocity of c and a decay
that is equal to the first one. Fourier transformation of eq. (3.19a) yields

∂tφ(x,t) = c∂xφ(x,t) − Γ

2
n(x)φ(x,t) (3.20)

This equation is equivalent to eq. (2.25) we derived in section 2.2. For n(x → ±∞) = 0
we can solve this equation

φ(x,t) = exp



− Γ

2c

+∞∫

x

dx′n(x′)



 f(x+ ct) (3.21)

where f is the normalized pulse shape. Since the density is positive the exponential is
always smaller than one and thus yields to a decay of the amplitude.

In order to receive an equation for the absolute square of φ, we multiply eqs. (3.19a)
and (3.19b) with φ and φ∗ respectively and add them. This yields

∂t|φ(x,t)|2 = −Γn(x)|φ(x,t)|2. (3.22)

Performing the integration over the space variable x leads to an equation similar to eq.
(3.17).

∂t

∫

dx|φ(x,t)|2 = −Γ

∫

dxn(x)|φ(x,t)|2 (3.23)

The negative sign takes the decreasing probability of finding a photon into account whereas
the positive sign in eq. (3.17) increases the probability for a photon being absorbed.
Furthermore, the total change of probability is zero as can be seen by taking the derivative
of the trace of the density matrix with respect to time.

∂t Tr {ρ} = Tr {∂tρ} = −Γ

∫

dxn(x)|φ(x,t)|2 + Γ

∫

dxn(x)|φ(x,t)|2 = 0 (3.24)

For the sake of simplicity we have performed the calculation of the trace in space represen-
tation. Because of the vanishing time derivative the trace of the density matrix will remain
constant. Its initial value is 1 because c0(t → −∞) = 0 and

∫
dk|φ(k,t → −∞)|2 = 1.

Therefore the trace is preserved as it should be.

Tr {ρ(t)} = 1 (3.25)

3.2.1 Application on a given density distribution

As we will derive a more general solution in the next section the following discussion will
be rather short and is just meant to give a foretaste of what will come in the next section.
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Until now we have not assumed a particular density distribution except the condition
that it should vanish in the limit x → ±∞. A distribution satisfying this condition is the
symmetric normalized Eckart potential

n(x) =
a

2 cosh2(ax)
, (3.26)

we used earlier. With this distribution eq. (3.21) becomes

φ(x,t) = exp

{−Γ

4c
(1 − tanh(ax))

}

f(x+ ct) (3.27)

with a normalized function f . In the limit x → ∞ where the influence of the medium be-
comes negligible the exponential term converges to one and we gain the initial state wave
packet. In the limit x → −∞ where the wave packet has passed through the medium, the

exponential term converges to exp
(

− Γ
2c

)

.

Integrating eq. (3.17) yields the probability of a photon being absorbed at a given time t.
This is illustrated in Figure 3.3. The probability increases as the wave packet is passing
through the medium and remains constant afterwards (t → ∞). In the limit t → ∞ the
probability of a photon being absorbed depends on the ratio Γ/c. For a high absorption
(high Γ/c) the probability is almost one whereas for a weak absorption (small Γ/c) the
probability of a photon being absorbed is rather small.

Figure 3.3: Probability of finding no photon at a time t. For a high absorption (high Γ/c)
the photon is absorbed almost completely. For weak absorption (small Γ/c)
the probability of a photon to be absorbed is very small.

3.3 General solution of the quantum master equation

So far we have studied the dynamics of a single-photon state passing through a dissipative
medium. Since the calculations we performed above turn out to be very cumbersome, we
derive a quite more powerful and general solution that actually holds true for arbitrary
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states.

We can simplify the master equation by introducing ’superoperators’ (the bullets are
placeholders for other operators that stand on the right of these ’superoperators’)

K =

∫

dk(−ick)
[

a†(k)a(k), •
]

(3.28a)

J = Γ

∫

dkdk′ 1√
2π
n(k − k′)a(k′) • a†(k) = Γ

∫

dxn(x)a(x) • a†(x) (3.28b)

L = −1

2
Γ

∫

dkdk′ 1√
2π
n(k − k′)

{

a†(k)a(k′), •
}

= −1

2
Γ

∫

dxn(x)
{

a†(x)a(x), •
}

.

(3.28c)
With these ’superoperators’ the master equation reduces to

∂tρ = (K + J + L) ρ. (3.29)

Obviously, this is a very useful reduction as this equation can be integrated and leads to
a formal solution of our problem. Assuming that the initial state is defined at t = 0 the
formal solution reads

ρ(t) = exp (t(K + J + L)) ρ(0) = U(t)ρ(0) (3.30)

From this equation, we see that the initial state ρ(0) will evolve in time according to a
density matrix propagator U(t) that consists of the three ’superoperators’ defined above.
Since we know the action of each of these operators alone on a given density matrix,
we are interested in a disentangled operator of the form etJetLetK . The operator etK

containing the Hamiltonian leads to a propagation of the wave packet. Since L has a
similar structure as K but is , it also preserves the total photon number but leads to a
decay of the amplitude. At last J lowers the number of photons by one and thus eJ leads
to a decay into the vacuum state.

3.3.1 Splitting the time evolution operator

In order to disentangle the time evolution operator we will make use of the Baker-
Campbell-Hausdorff formula (BCH formula) whose properties and corollary formulas are

presented in section 3.A. Using the relation log
(

eXeY
)

= Z with Z = X + s
1−e−sY for

[X,Y ] = sY we have to rescale the operator Y

Y → 1 − e−s

s
Y. (3.31)

This yields the BCH formula

eX+Y = eXe
1−exp(−s)

s
Y . (3.32)

We now define a new operator N(s) with N(0) = J + L that will help us to apply the
modified BCH formula. This operator reads

N(s) = Γ

∫

dkdk′ 1√
2π
n(k − k′)e−ic(k−k′)ts

(

a(k′) • a†(k) − 1

2

{

a†(k)a(k′), •
})

(3.33)
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The commutator of tK and tN(s) then yields

[tK, tN(s)] = t∂sN(s) (3.34)

and therefore we can disentangle the time evolution operator in a first step

et(K+N(s)) = etKe
1−exp(−∂s)

∂s
tN(s). (3.35)

It will prove useful to put the operator K that contains the Hamiltonian of the system on
the right since this leads to a propagating wave packet. Interchanging both exponentials
again yields another exponential factor

et(K+N(s)) = etKe
1−exp(−∂s)

∂s
tN(s) = e

exp(∂s)−1
∂s

tN(s)etK , (3.36)

where we have used eq. (3.105).

Performing the derivatives and taking the limit s → 0 yields

exp(∂s) − 1

∂s
tN(s) = tΓ

∫

dkdk′ 1√
2π
n(k − k′)

e−ic(k−k′)t − 1

−ic(k − k′)t
e−ic(k−k′)ts

(

a(k′) • a†(k) − 1

2

{

a†(k)a(k′), •
})

s→0
= tΓ

∫

dkdk′ 1√
2π
n(k − k′)

e−ic(k−k′)t − 1

−ic(k − k′)t
(

a(k′) • a†(k) − 1

2

{

a†(k)a(k′), •
})

(3.37)

Now we have to split the exponential containing the modified operators J̄ and L̄ and
therefore need their commutation relations. As both were defined originally in the space
domain we perform our calculations there. For the sake of a clearer presentation we
introduce

Ω(k − k′, t) = tΓn(k − k′)
e−ic(k−k′)t − 1

−ic(k − k′)t
(3.38)

with which eq. (3.37) reduces to

J̄ + L̄ =

∫

dkdk′ 1√
2π

Ω(k − k′, t)
(

a(k′) • a†(k)

−1

2

{

a†(k)a(k′), •
})

=

∫

dxΩ(x,t)

(

a(x) • a†(x) − 1

2

{

a†(x)a(x), •
})

. (3.39)

The commutator for J̄ and L̄ yields

[

L̄, J̄
]

=

∫

dxΩ2(x,t)a(x) • a†(x). (3.40)
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Using the same mathematical trick as mentioned above we can introduce a new operator
J̄(r) with J̄(0) = J̄ . This operator is defined by

J̄(r) = tΓ

∫

dxΩ(x,t)erΩ(x,t)a(x) • a†(x). (3.41)

The commutator (3.40) then reads

[

L̄,J̄(r)
]

= ∂rJ̄(r) (3.42)

A straightforward calculation using the BCH formula like above yields

eL̄+J̄(r) = e
exp(∂r)−1

∂r
J̄(r)eL̄. (3.43)

Simplifying all exponentials and performing the limit r → 0, we get

exp(∂r) − 1

∂r
J̄(r) =

∫

dx
eΩ(x,t) − 1

Ω(x,t)
Ω(x,t)erΩ(x,t)a(x) • a†(x)

=

∫

dx
(

eΩ(x,t) − 1
)

a(x) • a†(x) = Ĵ (3.44)

This leads to the final result

et(J+L+K) = exp

[∫

dx
(

eΩ(x,t) − 1
)

a(x) • a†(x)

]

exp

[

−1

2

∫

dxΩ(x,t)
{

a†(x)a(x), •
}]

exp [tK] (3.45)

We now want to apply this solution to a given initial state of the density matrix ρ(0).

3.3.2 Application on number states

In this section we apply the scheme we developed above on a general number state. We
will find that the solution reproduces our results for a single photon state. Consider now
a continuous-mode number state |nφ〉 that was already defined in eq. (1.42). We assume
the photons to be all in the same mode and to be indistinguishable so they all have the
same pulse shape and the same polarization. Thus the multimode number state with a
normalized pulse shape φ reads

|nφ〉 =
1√
n!

∫

dk1 · · · dknφ(k1, . . . , kn, t = 0)a†(k1) · · · a†(kn)|0〉. (3.46)

This expression holds true for entangled photons as well. If we further assume them to be
disentangled the general pulse shape φ factorizes and eq.(3.46)leads to

|nφ〉 =
1√
n!

∫

dk1 · · · dknφ(k1) · · · φ(kn)a†(k1) · · · a†(kn)|0〉. (3.47)

The initial density matrix therefore reads

ρ(0) = |nφ〉〈nφ|. (3.48)
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For a number state we can further simplify the general solution found above

ρ(t) = eĴe
− 1

2

∫
dkdk′ 1√

2π
Ω(k−k′)a†(k′)a(k)

e− i
~
Ht|nφ〉〈nφ|e i

~
Hte

− 1
2

∫
dkdk′ 1√

2π
Ω(k−k′)a†(k′)a(k)

(3.49)
Since |nφ〉 is an eigenstate of H and a†(k′)a(k) are number conserving they will just in-
fluence the pulse shape φ but not the total photon number n. The dynamics of these
operators therefore are coherent. The Hamiltonian will lead to a propagation of the wave
packet whereas the exponential containing Ω will lead to a decay of the amplitude. In

addition, eĴ will lead to a decay into the vacuum state. For the sake of simplicity, we will
use a single photon state first in order to understand the dynamics of this state. Simpli-
fying notation we set |1φ〉 = |1〉 because we treat continuous-mode states only.

Single photon state

Application of H onto a single photon state yields

− i

~
tH|1〉 =

∫

dk(−ickt)φ(k)a†(k)|0〉 (3.50)

and therefore

e− i
~
tH |1〉 =

∫

dke−icktφ(k)a†(k)|0〉 (3.51)

that represents a propagating wave with group velocity −c. Further, application of L̄
yields

− 1

2

∫

dkdk′ 1√
2π

Ω(k − k′)a†(k)a(k′)|1〉 = −1

2

∫

dk(Ω(t) ⋆ φ)(k)a†(k)|0〉 (3.52)

Thus we get

−1

2

∫

dkdk′ 1√
2π

Ω(k − k′,t)a†(k)a(k′)e− i
~
Ht|1〉 = −1

2

∫

dkdk′ 1√
2π

Ω(k − k′,t)e−ick′tφ(k′)a†(k)|0〉

FT
= −1

2

∫

dxΩ(x,t)φ(x+ ct)a†(x)|0〉.
(3.53)

Applying eL̄ then yields higher orders of −1
2Ω(x,t) and we can define a new pulse shape

ψ(x,t) = e− 1
2

Ω(x,t)φ(x+ ct). (3.54)

The time dependent density matrix thus reduces to

ρ(t) = eĴ |1ψ〉〈1ψ |. (3.55)

Until now the operator Ĵ has not been taken into account but will be important later
when we will implement the Rydberg blockade mechanism into our system. To see the
action of this operator we expand the exponential in a series

exp(Ĵ) =
∑

m

1

m!
Ĵm = 1 + Ĵ +

1

2
Ĵ2 + · · · (3.56)
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If we apply Ĵ on the single photon state |1ψ〉 we get

Ĵ |1ψ〉〈1ψ| =

∫

dx
(

eΩ(x,t) − 1
)

a(x)|1ψ〉〈1ψ |a†(x) =

∫

dx
(

eΩ(x,t) − 1
)

|ψ(x,t)|2|0〉〈0|

=

∫

dx
(

eΩ(x,t) − 1
)

e−Ω(x,t)|φ(x+ ct)|2|0〉〈0|

=

∫

dx
(

1 − e−Ω(x,t)
)

|φ(x+ ct)|2|0〉〈0| (3.57)

This operator just decreases the number of photons in the system. They are absorbed by
the medium thus leading to a increase of probability of having zero photons in the course
of time. For a single photon state the series expansion will break after the first order
because there are no more photons left. The full solution of the density matrix for a single
photon state then reads

ρ(t) = |1ψ〉〈1ψ | +

∫

dx
(

1 − e−Ω(x,t)
)

|φ(x+ ct)|2|0〉〈0|. (3.58)

The trace of the density matrix is preserved as well because |φ(x+ ct)|2 is still normalized

Tr{ρ(t)} =

∫

dx〈x|ρ(t)|x〉 + 〈0|ρ(t)|0〉

=

∫

dx
[

e−Ω(x,t) + 1 − e−Ω(x,t)
]

|φ(x+ ct)|2 = 1 (3.59)

General number state

The following calculations are similar to those already performed above so we give the
results only. Analogously, the exponential containing the Hamiltonian leads to propagation
of the wave packet

e− i
~
Ht|nφ〉 =

∫

dk1 · · · dkn
1√
n!
e−ic(k1+···kn)tφ(k1, . . . ,kn)a†(k1) · · · a†(kn)|0〉

=

∫

dx1 · · · dxn
1√
n!
φ(x1 + ct, . . . , xn + ct)a†(x1) · · · a†(xn)|0〉 (3.60)

Furthermore, application of the factor that leads to a decay of the amplitude yields

e− 1
2

∫
dyΩ(y,t)a†(y)a(y)e− i

~
Ht|nφ〉 =

∫

dx1 · · · dxn
1√
n!

exp

(

−1

2
(Ω(x1,t) + · · · Ω(xn,t))

)

φ(x1 + ct, . . . , xn + ct)a†(x1) · · · a†(xn)|0〉 (3.61)

If the photons are not entangled, they will of course all evolve just like the single photon
state we discussed above.
∫

dx1 · · · dxn
1√
n!

exp

(

−1

2
(Ω(x1,t) + · · · Ω(xn,t))

)

φ(x1 + ct, . . . , xn + ct)a†(x1) · · · a†(xn)|0〉 =
1√
n!

(∫

dxe− 1
2

Ω(x,t)φ(x+ ct)a†(x)

)n

|0〉
(3.62)
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The exponential containing Ĵ will again decrease the number of photons in the initial
number state. As there are only n photons, the exponential series will stop after the n-th
order. If we assume the photons not to be entangled, the application of the m-th order of

eĴ on a number state |nψ〉 (n ≥ m) yields

1

m!
Ĵm =

1

m!

n!

(n−m)!

(∫

dx
(

1 − e−Ω(x,t)
)

|φ(x+ ct)|2
)m

|(n−m)ψ〉〈(n −m)ψ|

=

(

n

m

)(∫

dx
(

1 − e−Ω(x,t)
)

|φ(x+ ct)|2
)m

|(n−m)ψ〉〈(n −m)ψ| (3.63)

So the full solution for an initial number state |nφ〉 is

ρ(t) =
∞∑

m=0

(

n

m

)(∫

dx
(

1 − e−Ω(x,t)
)

|φ(x+ ct)|2
)m

|(n −m)ψ〉〈(n −m)ψ|. (3.64)

Of course, the trace of ρ(t) is preserved and remains constant for all times.

Tr{ρ(t)} =
∞∑

m=0

(

n

m

)(∫

dx
(

1 − e−Ω(x,t)
)

|φ(x+ ct)|2
)m (∫

dxe−Ω(x,t)|φ(x+ ct)|2
)n−m

=

(∫

dx
(

1 − e−Ω(x,t)
)

|φ(x+ ct)|2 +

∫

dxe−Ω(x,t)|φ(x+ ct)|2
)n

= 1 (3.65)

Coherent states

Since coherent states can be expressed in terms of number states, we can treat them
similarly to above. In section 1.2.1 the coherent states for continuous-mode fields were
defined as

|α〉 = exp
(

a†
α − aα

)

|0〉 = N exp
(

a†
α

)

|0〉 (3.66)

with the normalization factor N = e− 1
2

〈n〉. Expanding the exponential creation operator,
the coherent state can be written as a superposition of number states

|α〉 = N
∑

n

1

n!

(

a†
α

)

|0〉 = N
∑

n

1√
n!

|nα〉. (3.67)

Since we know the action of eL̄ on number states (eq. (3.62)), a straightforward calculation
yields

eL̄etK |α〉〈α| = N 2 exp

{∫

dxeΩ(x,t)|α(x + ct)|2
}

|α(x+ ct)e− 1
2

Ω(x,t)〉〈α∗(x− ct)e− 1
2

Ω(x,t)|

= exp

{

−
∫

dx
(

1 − eΩ(x,t)
)

|α(x+ ct)|2
}

|α(x + ct)e− 1
2

Ω(x,t)〉〈α∗(x− ct)e− 1
2

Ω(x,t)|.
(3.68)

The factor in front of the ’bra’ and the ’ket’ is due to normalization. In contrast to the
number states, coherent states are eigenstates of eĴ since a(x)|α〉 = α(x)|α〉. This leads
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to

eĴeL̄etK |α〉〈α| =
∑

m

1

m!

[∫

dx
(

eΩ(x,t) − 1
)

|α(x+ ct)|2e−Ω(x,t)
]

exp

{

−
∫

dx
(

1 − eΩ(x,t)
)

|α(x+ ct)|2
}

|α(x+ ct)e− 1
2

Ω(x,t)〉〈α∗(x− ct)e− 1
2

Ω(x,t)|

=

∣
∣
∣
∣α(x+ ct)e

−Ω(x,t)
2

〉 〈

α(x− ct)e−
Ω(x,t)

2

∣
∣
∣
∣ . (3.69)

As can be seen, the coherent state remains coherent but its amplitude decays as it passes
through the inhomogeneous medium.

3.3.3 Application on a given density distribution

As we have seen so far, the general solution derived above is a very useful tool for general
number states. Since we only gave a short discussion about the solution for a single photon
state above, we will now apply the general solution on a given density distribution in the
case of a single photon state as well. Therefore we use again the normalized symmetric
Eckart-potential, which we now shift by x0 along the x-axis.

n(x− x0) =
a

2 cosh2(a(x− x0))
(3.70)

The shift will be convenient due to the normalization condition the wave packet has to
satisfy for t = 0 when it is in its initial state.

The decay of the wave packet is governed by the function Ω(x,t) which is defined as
the fourier transform of

Ω(k,t) = tΓn(k)
e−ickt − 1

−ickt = Γn(k)
e−ickt − 1

−ick , (3.71)

where n(k) is the fourier transform of n(x). Actually, the fourier transform of a shifted
function is just the fourier transform of the unshifted function multiplied with a factor
eikx0 and thus yields

F{n(x− x0)} = eikx0F{n(x)} = eikx0
k
√

π
2

2a cosh
(
kπ
2a

) . (3.72)

The fourier transformation of eq. ( 3.71) thus yields

Ω(x,t) =
Γ

2c
(tanh(a(ct + x− x0)) − tanh(a(x− x0))) (3.73)

This looks different from the solution (eq.(2.26) for the single photon state at first instance.
The difference is due to the fact that we assume the wave packet to be in its initial
normalized state at t = 0. For t = 0 the wave packet is centered around x = 0. In
addition this means that the influence of the absorbing medium has to vanish at x = 0
and therefore strictly speaking the limit x0 → −∞ has to be taken. As we are only

45



interested in how Ω influences the wave packet, we can restrict the discussion to the case
in which x + ct = 0 due to the fact that this is the center of the wave packet. Therefore
eq. (3.73) reduces to

Ω(x,t) =
Γ

2c
(tanh(−x0a) − tanh(a(x− x0))) . (3.74)

Since the wave packet propagates in the negative direction of the x-axis and starts at
x = 0, we treat all x-values to be negative. Thus, for x0 ≪ x, where the packet has not
yet passed the medium, eq. (3.74) reduces to

Ω(x,t) ≈ Γ

2c
(tanh(−x0a) − tanh(−x0a)) = 0. (3.75)

In the other case when the wave packet passed through the medium (x0 ≫ x), we get

Ω(x,t) ≈ Γ

2c
(tanh(−x0a) − tanh(ax))

x0→−∞≈ Γ

2c
(1 − tanh(ax)) . (3.76)

This is exactly the same solution we obtained above in the case of a single photon state.
The pulse shape ψ then reads

ψ(x,t) = exp

{

− Γ

4c
(1 − tanh(ax))

}

φ(x+ ct). (3.77)

The ratio of incoming and transmitted amplitude is then given by the square of the
exponential for x → −∞

|ψtrans|2
|ψin|2 = exp

(

−Γ

c

)

(3.78)

For the study of this equation we have to keep in mind that Γ is given as a differential
absorption rate and thus has the dimension of length over the time so that the ratio Γ/c
is dimensionless.

The physical interpretation of eq.(3.78) is that if the time that light needs to pass through
an infinitesimal interval is small compared to the time scale on which absorption takes
place over this interval,τpass ≪ 1

γ , the decay will be suppressed and the amplitude of the
transmitted wave packet remains almost the same as the one of the incident wave packet.
In the reverse case, if 1

γ ≪ τpass, the photon will be absorbed completely. In Figure 3.4
this is shown for three values of Γ/c.

3.4 Implementation of a saturating absorber

In this section we implement the Rydberg blockade mechanism and derive the dynam-
ics of such a single photon absorber. We assume the spatial confinement of the Ryd-
berg atoms to be smaller than the Rydberg blockade radius so the system can be de-
scribed by a two-state system with collective ground and excited state denoted by |G〉
and |W 〉, respectively (cf. 1.4.2). Furthermore, we introduce the new jump-operators
c(x) = a(x) ⊗ |W 〉〈G| = a(x)|W 〉〈G| and c†(x) = a†(x)|G〉〈W | that satisfy c(x)c(x′) = 0
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Figure 3.4: Amplitude ratio of the incident wave and the wave at a point x. If Γ is small
compared to c, the amplitude will decrease very less, whereas for large Γ the
photon will be absorbed almost completely.

and hence only allow a single excitation. The jump operators transfer excitations between
the light field and the two level system. For example, if a photon is annihilated at a place
x, the two-level system will go into its excited state |W 〉. If the two-level system loses an
excitation, a photon will be created.

Substituting the modified creation and annihilation operator into the quantum master
equation (3.7) leads to

∂tρ = − i

~
[H, ρ] + Γ

∫

dxn(x)

(

a(x)|W 〉〈G|ρ|G〉〈W |a†(x) − 1

2

{

a†(x)a(x)|G〉〈G|, ρ
})

.

(3.79)

With the help of sub-matrices of the density matrix defined by

ρG = 〈G|ρ|G〉, (3.80a)

ρW = 〈W |ρ|W 〉 (3.80b)

we can project eq. (3.79) onto the subspaces containing the ground state and the collective
excited state, respectively. The equation thus splits into two equations

∂tρG = − i

~
[H, ρG] + LρG (3.81a)

∂tρW = − i

~
[H, ρW ] + JρG, (3.81b)

where we use the notation introduced in the previous section. The first equation describes
the well known propagation of a wave packet where L leads to decay of the amplitude of
the wave packet. In contrast, the second equation leads to a differential equation for the
wave packet in the case of an excited medium.
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Assuming an incoming two-photon state

|2ψ〉 =
1√
2

∫

dxdx′ ψ(x,x′, t)a†(x)a†(x′)|0〉 (3.82)

and

ρG = |2ψ〉〈2ψ |, (3.83)

eq. (3.81a) yields a differential equation for ψ(x,x′, t)

∂tψ(x,x′, t) = c∂xψ(x,x′, t) + c∂x′ψ(x,x′, t) − Γ

2

(

n(x) + n(x′)
)

ψ(x,x′, t). (3.84)

This equation can be solved by making the separation ansatz ψ(x,x′, t) = ψ(x,t)ψ(x′, t)
and then yields the solution

ψ(x, x′, t) = φ(x+ ct)φ(x′ + ct) exp






− Γ

2c





∞∫

x

dy n(y) +

∞∫

x′

dy n(y)










, (3.85)

where we imposed the boundary condition ψ(x,x′, t) = φ(x + ct)φ(y + ct) for x,y → ∞.
Actually, this is the same result that we have obtained in the sections 3.2 and 3.3.2.

We assume ρW to have the form of a single-photon density matrix since we expect one
photon to be absorbed by the medium

ρW =

∫

dxdx′ζ(x,x′, t)a†(x)|0〉〈0|a(x′). (3.86)

Substituting this form of ρW and the solution of ρG into eq. (3.81b) then yields a differ-
ential equation for ζ(x,x′, t)

∂tζ(x, x′, t) = c∂xζ(x, x′, t) + c∂x′ζ(x, x′, t) + 2Γ

∫

dz n(z)ψ(z,x, t)ψ∗(z, x′, t). (3.87)

Since ψ can be separated (see eq. (3.85)), this equations takes the form

∂tζ(x, x′, t) = c∂xζ(x, x′, t) + c∂x′ζ(x, x′, t) + 2Γ

∫

dz n(z)|ψ(z, t)|2
︸                           ︷︷                           ︸

γ(t)

ψ(x,t)ψ∗(x′, t). (3.88)

This first order partial differential equation is inhomogeneous and the last term acts like
a driving force that increases ζ to the overlapping of the density distribution and the
two-photon wave packet at time t. Since the driving force vanishes for t → −∞, the
homogeneous solution of this differential equation has to vanish due to the initial condition

Tr {ρ(t → ∞)} = Tr {ρG(t → ∞)} + Tr {ρW (t → ∞)}

=

(∫

dx |ψ(x,t → ∞)|2
)2

+

∫

dx ζ(x,x,t → ∞) = 1. (3.89)
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The particular solution of eq. (3.88) is

ζ(x,x′, t) = φ(x+ ct)φ(x′ + ct)

t∫

−∞

ds γ(s) exp
(
N(x+ c(t − s)) +N(x′ + c(t − s))

)
(3.90)

where N(x) = − Γ
2c

∞∫

x
dz n(z).

Strong absorption

We now assume the absorption to be very strong and therefore the absorption length to
be very small. In this case, the photon is absorbed within a very short length scale and
we can assume the remaining medium to be infinitely extended and the absorption length
is much shorter than the pulse length. Thus we can assume the density to have the form

n(x) ∼ 1 − Θ(x), (3.91)

where Θ(x) is the Heaviside step function

Θ(x) =

{

0, x < 0

1, x ≥ 0
. (3.92)

Since the absorption length is very short, we assume the decay to behave like a step
function, too

exp






− Γ

2c

∞∫

x

dz n(z)






= exp

{

− Γ

2c
(Θ(x) − 1) x

}

≈ Θ(x). (3.93)

In this case, eq. (3.88) takes the form [7]

∂tζ(x,x′, t) = c∂xζ(x,x′, t)+c∂x′ζ(x,x′, t)+2|φ(t)|2φ(x+ct)φ∗(x′+ct) (1 − Θ(x))
(
1 − Θ(x′)

)
.

(3.94)
For x,x′ > 0, this turns into a homogeneous differential equation where ζ(x,x′, t) = 0 due
to the initial conditions we mentioned above. For x,y ≤ 0, we can integrate eq. (3.94)
which yields

ζ(x,x′, t) = 2φ(x+ ct)φ∗(x′ + ct)

t∫

−∞

ds |φ(s)|2. (3.95)

This represents the case in which both photons have entered the medium. In general, the
solution reads

ζ(x,x′, t) = 2φ(x + ct)φ∗(x′ + ct)

t+min(x,x′)/c∫

−∞

ds |φ(s)|2. (3.96)
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The dependency of x and x′ in the range of integration in the last integral provides
knowledge of the timing of the absorption whose consequences will be discussed below.
This result also can be obtained by using eq. (3.90). Thus, the complete density matrix
reads

ρ = ρG + ρW = |2ψ〉〈2ψ| +

∫

dxdy φ(x+ ct)φ(y + ct)

t+min(x,y)/c∫

−∞

ds |φ(s)|2a†(x)|0〉〈0|a(y),

(3.97)
where |2ψ〉 and ψ are defined by eq. (3.82) and (3.85), respectively and φ is a normalized
function, e.g. a Gaussian function. It can be seen that the outgoing field consists of one
photon since Tr {ρW} =

∫
dx ζ(x,x,t) = 1. This can be interpreted as follows. As soon

as the first photon enters, the medium is saturated and therefore is transparent for the
following photon. However, due to the knowledge of the timing of the absorption of the
first photon, the resulting state cannot be pure any more since it carries information about
the second photon. This can be verified mathematically by tracing over ρW

Tr
{

ρ2
}

=

∞∫

−∞

dxdy 4φ(x+ ct)2φ(y + ct)2






t+min(x,y)/c∫

−∞

ds φ(s)2






2

=
2

3
< 1. (3.98)

This can be generalized to a n-photon Fock state, where the purity is given by [7]

Tr
{

ρ2
}

=
n

2n− 1
. (3.99)

Weak absorbtion

In the case of weak absorption, the absorption length is much larger than the pulse length.
We can therefore assume n(x) to be a slowly varying function of x whereas φ(x + ct) is
sharply centered around x = −ct. In this approximation, the decay factors N in eq. (3.90)
can be assumed to be centered around x = −ct as well so that we get

ζ(x,x′,t) ≈ φ(x+ ct)φ(x′ + ct)

t∫

−∞

dsγ(s)e2N(−cs) = φ(x+ ct)φ(x′ + ct)G(t). (3.100)

This represents a pure state since

ρW (t) = G(t)

∫

dxdx′ φ(x+ ct)φ(x′ + ct)a†(x)|0〉〈0|a(x′) = G(t)|1φ〉〈1φ|. (3.101)

Since a weakly absorbing medium does not provide information about the time when a
photon is absorbed, the outgoing state remains pure.

3.A Baker-Campbell-Hausdorff formula

The Baker-Campbell-Hausdorff formula is the solution of

Z(X,Y ) = log
(

eXeY
)

(3.102)
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if X and Y do not commute in general. The function Z(X,Y ) can be represented as

Z(X,Y ) = X +Y +
1

2
[X,Y ] +

1

12
[X,[X,Y ]] − 1

12
[Y,[X,Y ]] − 1

24
[Y,[X,[X,Y ]]] + · · · (3.103)

where the higher orders are nested commutators of X and Y . If the commutator of X and
Y takes the form [X,Y ] = sY for a non-zero number s, the formula above will reduce to

Z(X,Y ) = X +
s

1 − e−s
Y. (3.104)

In addition, commutation of eXeY therefore reduces to

eXeY = eexp(s)Y eX . (3.105)
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Conclusion

In the first part of this thesis we discussed the classical behaviour of the electromagnetic
field in inhomogeneous media. We saw that for very smoothly shaped surfaces the inten-
sity of the reflected wave vanishes. Furthermore, for a localized medium the intensity of
the reflected wave is exactly zero for certain combinations of the wavelength, the width
of the medium and the dielectric susceptibility of the medium. In addition, we performed
the slowly varying envelope approximation in order to transform the wave equation into a
second order partial differential equation that can be solved analytically for certain shapes
of the susceptibility.

In the second part, we stressed our discussions on the behaviour of the quantized electro-
magnetic field in dissipative media in terms of continuous modes. Therefore we considered
the quantum master equation in continuous media. It was shown that the time evolution
of the pulse shape that defines the photon state evolves the same way it does in classical
electrodynamics. However, dissipative effects lead to incoherent dynamics that were dis-
cussed for number states. We also considered the dynamics of continuous-mode coherent
states. Additionally, we studied the implementation of a saturating absorber that consists
of an ensemble of Rydberg atoms confined in a volume smaller than its blockade-volume
and therefore only allows for a single excitation. We saw that mixed states can be created
by propagating through a strongly absorbing medium.
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