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Abstract

The properties of a dissipative and strongly interacting system of Rydberg atoms give rise to applications like a single-photon absorber [1]. When the atoms are confined in a region smaller
than the so-called Rydberg blockade radius, the system can only carry a single excitation. In such a case, a single photon can be absorbed from a pulse leaving the medium transparent for

the following ones.
For such a setup, we consider a quantum master equation approach in continuous media where the largest energy scale is the absorption rate of the medium also accounting for the satura-

tion of the medium. We present a general solution for an arbitrary incoming light field extending the results given in [2].
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Solving the quantum master equation
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