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Abstract | Wezeroinon the so far rather understudied aspect of dissipatively driven quantum simulation, that is, the utilization of purely dissipative interactions to explore quantum
phases and non-equilibrium phase transitions. To elucidate these concepts, we scrutinise exemplarily two lattice theories of spins coupled to tailored Markovian baths in
the absence of any unitary dynamics, namely the paradigmatic transverse field Ising model and a considerably more complex Z- lattice gauge theory with coupled Higgs
field. We show that pure representatives of the quantum phases can be realized in limiting cases and illustrate that the non-equilibrium mean field phase diagrams parallel
the quantum phase diagrams of the Hamiltonian "blue print" theories qualitatively.

O DEIN Quantum Systems

+ The time evolution of Markovian open quantum systems
can be described by a Lindblad master equation [1]:

] 1
p=>_ [LmLI - {LILi,p}] =Lp

( O density matrix, Lz’ non-hermitian jump operators)

+ The jump operators can either be derived microscopically
or contrived by hand (quantum simulator). We do the latter.

+ Generic solution: p(t) = exp(Lt)po with initial state pg.

+ Fixed points Lp = (0 are termed non-equilibrium steady
states (NESS). The pure ones with L;p = 0 are called
dark states.
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The DiSSipatiVG Z.5-Gauge-Higgs Model

+ Is this approach feasible for more complex theories?

+ Consider the Z.5 lattice gauge theory with coupled matter field on a (hyper-)cubic lattice [3]:
Hp,on=—),,05 = A le—) 70 —w) By

(A, w positive parameters, 0, matter/Higgs field on site s, T, gauge field on edge €,

€ & p bounding edges of face P, e—= (S ,t) endpoints of edge)

with

The DISSI pative Transverse Ising Model

+ We aim at a purely dissipative analogue of the paradigmatic

transverse Ising model (TIM) Hriy = — Z<S,t> oiof —g>, oF

with unique ground state | + - - +) for ¢ = 00 and

degenerate ground states {| ... 1),|{ ... )} for g = 0 [2].

+ Introduce two competing jump operators for each site of a

rectangular lattice:

1
P, =+/ko? [l — 7] and F, =07 {]l—anfaﬁ

tes

T
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(K relative bath strength, 0, Pauli matrix on site s, ¢ coordination number, £ € s neighbours of S) ’ ’ ’ ’

+ Dark states for k = 0|oco correspond to TIM ground states

for g = 0|oo (ferromagnetic | paramagnetic).

Results for the dissipative Transverse Ising Model

+What happens for 0 < k£ < 00 ? Phase transition (PT) analogous to the TIM?

+ Mean field (MF) theory: Product ansatz p = ®S Ps = Trace out all but one
spin = Effective Lindblad operator Lot Apply self-consistency relation.

+ MF phase diagram: We find a continuous PT at kK, = 4(1 — l/q) :
with a unique NESS for K 2 K. and two stable NESS for K < K. (B). i

Parametrizing ps = (1 + & - @) /2 with Bloch vector @ vyields cross-sections
of Bloch spheres (A) where the flow encodes the relaxation towards the NESS.

+ MF dynamics: Expressed as dynamical system 0;@ = £™ (&) of Bloch vector.
Relaxation: @(t) = angss + 0a(t) = Algebraic decay of day, . at K. (C).

+ Quantum Trajectory Monte-Carlo: We simulated small (3x3) systems exactly.

D shows a typical trajectory for & = 1/9 with initial state | 7)®".
—» Intermittent total magnetization and jump rate.

+ 4 terms in Hamiltonian
—» 4 jump operators?

+ No! Topologically non-
trivial excitations cannot
be contracted by local

lo—(s4) = 057;0f deformations.
B, = Heep TZ —» Gauge string / Higgs brane

fragility needed (C1-4).

+ Local (gauge) symmetry: G, = o [ ¥ —3» Physical states: G|x) = |x) (Gauss law)

e:sce €

+ Phase diagram (A) is almost completely known through analytical and numerical calculations:
(1) confined charge phase / (ll) free charge phase / (lll) Higgs phase

+ Contrive competing jump operators that drive the system in the three distinct phases:
Generic structure: [, = THEN - IF where IF detects elementary

+ We propose 6 types of
jump operators (B):

excitations of the desired phase, and THEN moves/annihilates them. (notation: Ouey = [yl Y ,c, Ox )
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+What happensfor ) < A <ococand 0 < w < o0 ?
Phase transitions analogous to the Hamiltonian theory?

+ Mean field theory: Insert the product ansatz

p=Q.r K, Py

and proceed as in (3) with two separate mean fields
for mass/Higgs (m) and gauge fields (8).

+ MF dynamics: There are two coupled Bloch vectors
oym = ﬁmf,m(g, m) and 0,g = L™V8(gF,m)
with p?* = (15 +mdcs)/2 and pg = (1. + g7.)/2 .

+ Mean field theory results (A1-5):

—» All three phases are predicted + Phases (1)/(ll)
and (1)/(Il) separated by 1st order PT + Phases (ll)
and (lll) separated by 2nd order PT + No analytic
transition between phases (1) and (lll) predicted.

+ Dissipative MF phase diagram parallels the well-known
MF phase diagram of the Hamiltonian theory [4].
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Expectation value (7%)
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+ Fix the unphysical degrees of freedom by recasting the theory in unitary gauge:
Tr:TV =1, Tr°T'=1°"
To*T" = 0%, To®T" =G,

—» Matter field carries unphysical degrees of freedom -3 Fix/Drop this field.

—» [ — T[Tt Jumpoperatorin unitary gauge.

+ Mean field theory (B1-3): Apply MF theory with single mean field for gauge field.
—» First order phase transition separates phases (1) and (I1)/(lll) + Phases (Il) and
(111) merge + Analytic transition between (I) and (II)/(lll) is predicted.

+ Dissipative MF phase diagram in unitary gauge parallels the well-known
MF phase diagram of the Hamiltonian theory in the same gauge [4].

G. Lindblad, On the generators of quantum dynamical semigroups,
Communications in Mathematical Physics 48, 119 (1976).

S. Sachdev, Quantum Phase Transitions,
2 ed. (Cambridge University Press, 2011).

with Higgs fields, Physical Review D 19, 3682 (1979).

in lattice gauge theories, Physics Reports 102, No. 1 & 2, 1-119 (1983).

Studienstiftung

.
contact Nicolai@itp3.uni-stuttgart.de pate July 2014 Partly supported by SFB TRR/21 &% andthe German National Academic Foundation des deutschen Volkes

¢
\ /



