Hauptseminar: Wechselwirkende Quantengase - WS 2009/2010

David Peter

		0 00000 0000	

Normalerweise störend

- Reibung in der klassischen Physik
- BEC: Kühlen um thermische ,,Unordnung" zu beseitigen

- Quanten-Hall-Effekt
- Hochtemperatursupraleiter
- Anderson-Lokalisierung

Einführung			Zusammenfassung
		0 00000 0000	

Normalerweise störend

- Reibung in der klassischen Physik
- BEC: Kühlen um thermische ,,Unordnung" zu beseitigen

- Quanten-Hall-Effekt
- Hochtemperatursupraleiter
- Anderson-Lokalisierung

Einführung			Zusammenfassung
		0 00000 0000	

Normalerweise störend

- Reibung in der klassischen Physik
- BEC: Kühlen um thermische ,,Unordnung" zu beseitigen

- Quanten-Hall-Effekt
- Hochtemperatursupraleiter
- Anderson-Lokalisierung

Einführung			Zusammenfassung
		0 00000 0000	

Normalerweise störend

- Reibung in der klassischen Physik
- BEC: Kühlen um thermische ,,Unordnung" zu beseitigen

- Quanten-Hall-Effekt
- Hochtemperatursupraleiter
- Anderson-Lokalisierung

Inhalt	Einführung			Zusammenfassung
			0 00000 0000	

Inhalt

1 Einführung

2 Theorie

- 3 Simulationen
- 4 Experimente

Einführung			Zusammenfassung
		0 00000 0000	

Inhalt

1 Einführung

- Festkörperphysik
- Anderson-Lokalisierung

2 Theorie

3 Simulationen

4 Experimente

Einführung			Zusammenfassung
00000		0 00000 0000	

Festkörperphysik

periodischer Kristall

- Translationsinvarianz
- Lösung: Blochwellen (1928)
- Leitend, falls Fermienergie im Band

Kristall mit zufälligen Störungen

- Translationsinvarianz gebrochen
- Blochwellen keine Lösungen mehr
- bei starker Unordnung keine Störungstheorie möglich
- Semi-klassische Theorien (Drude-Modell 1900) können Transport nicht richtig beschreiben

Einführung			Zusammenfassung
00000		0 00000 0000	

Festkörperphysik

periodischer Kristall

- Translationsinvarianz
- Lösung: Blochwellen (1928)
- Leitend, falls Fermienergie im Band

Kristall mit zufälligen Störungen

- Translationsinvarianz gebrochen
- Blochwellen keine Lösungen mehr
- bei starker Unordnung keine Störungstheorie möglich
- Semi-klassische Theorien (Drude-Modell 1900) können Transport nicht richtig beschreiben

	Einführung			Zusammenfassung
	o ●0000		0 00000 0000	
Anderson-Loka	alisierung			

Veröffentlichung 1958

PHYSICAL REVIEW

VOLUME 109, NUMBER 5

MARCH 1, 1958

Absence of Diffusion in Certain Random Lattices

P. W. ANDERSON Bell Telephone Laboratories, Murray Hill, New Jersey (Received October 10, 1957)

This paper presents a simple model for such processes as spin diffusion or conduction in the "impurity band." These processes involve transport in a lattice which is in some sense random, and in them diffusion is expected to take place via quantum jumps between localized sites. In this simple model the essential randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

- Durch Unordnung können Teilchen (quantenmechanisch) lokalisiert werden
- Andersons Veröffentlichung wurde 4500 mal zitiert (Platz 5)

und ...

	Einführung			Zusammenfassung
	o ●0000		0 00000 0000	
Anderson-Loka	alisierung			

Veröffentlichung 1958

PHYSICAL REVIEW

VOLUME 109, NUMBER 5

MARCH 1, 1958

Absence of Diffusion in Certain Random Lattices

P. W. ANDERSON Bell Telephone Laboratories, Murray Hill, New Jersey (Received October 10, 1957)

This paper presents a simple model for such processes as spin diffusion or conduction in the "impurity band." These processes involve transport in a lattice which is in some sense random, and in them diffusion is expected to take place via quantum jumps between localized sites. In this simple model the essential randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

Durch Unordnung können Teilchen (quantenmechanisch) lokalisiert werden

Andersons Veröffentlichung wurde 4500 mal zitiert (Platz 5)

und ...

	Einführung			Zusammenfassung
	o ●0000		0 00000 0000	
Anderson-Loka	alisierung			

Veröffentlichung 1958

PHYSICAL REVIEW

VOLUME 109, NUMBER 5

MARCH 1, 1958

Absence of Diffusion in Certain Random Lattices

P. W. ANDERSON Bell Telephone Laboratories, Murray Hill, New Jersey (Received October 10, 1957)

This paper presents a simple model for such processes as spin diffusion or conduction in the "impurity band." These processes involve transport in a lattice which is in some sense random, and in them diffusion is expected to take place via quantum jumps between localized sites. In this simple model the essential randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

- Durch Unordnung können Teilchen (quantenmechanisch) lokalisiert werden
- Andersons Veröffentlichung wurde 4500 mal zitiert (Platz 5)

und ...

	Einführung				Zusammenfassung		
	0 00000			0 00000 0000			
Anderson-Lokalisierung							

Nobelpreis 1977

,,for their fundamental theoretical investigations of the electronic structure of magnetic and disordered systems"

Philip Warren Anderson

Sir Nevill Francis Mott

John Hasbrouck van Vleck

***1923**

*1905 **†**1996

*1899 **†**1980

Einführung			
_ 00●00		0 00000 0000	

Anderson-Lokalisierung: Erklärung

- Teilchen wird an Störstellen gestreut (nicht am Gitter!)
- Auf jedem Pfad ändert sich die Phase
- Teilchen kann zurückgestreut werden
- Für geschlossenen Pfad gilt: $\Delta \varphi_{hin} = \Delta \varphi_{zurück}$
- Beide Streu-Pfade interferieren konstruktiv: ,,coherent backscattering"
- Wahrscheinlichkeit zurückzukehren ist erhöht

Einführung			
_ 00●00		0 00000 0000	

Anderson-Lokalisierung: Erklärung

Teilchen im zufälligen Potential:

Anderson-Lokalisierung

- Teilchen wird an Störstellen gestreut (nicht am Gitter!)
- Auf jedem Pfad ändert sich die Phase
- Teilchen kann zurückgestreut werden
- Für geschlossenen Pfad gilt: $\Delta \varphi_{\rm hin} = \Delta \varphi_{\rm zurück}$
- Beide Streu-Pfade interferieren konstruktiv: ,,coherent backscattering"
- Wahrscheinlichkeit zurückzukehren ist erhöht

Einführung			
0 00●00		0 00000 0000	

Anderson-Lokalisierung: Erklärung

- Teilchen wird an Störstellen gestreut (nicht am Gitter!)
- Auf jedem Pfad ändert sich die Phase
- Teilchen kann zurückgestreut werden
- Für geschlossenen Pfad gilt: $\Delta \varphi_{hin} = \Delta \varphi_{zurück}$
- Beide Streu-Pfade interferieren konstruktiv: ,,coherent backscattering"
- Wahrscheinlichkeit zurückzukehren ist erhöht

Einführung			
0 00●00		0 00000 0000	

Anderson-Lokalisierung: Erklärung

- Teilchen wird an Störstellen gestreut (nicht am Gitter!)
- Auf jedem Pfad ändert sich die Phase
- Teilchen kann zur
 ückgestreut werden
- Für geschlossenen Pfad gilt: $\Delta \varphi_{hin} = \Delta \varphi_{zurück}$
- Beide Streu-Pfade interferieren konstruktiv: ,,coherent backscattering"
- Wahrscheinlichkeit zurückzukehren ist erhöht

Einführung			
0 00●00		0 00000 0000	

Anderson-Lokalisierung: Erklärung

- Teilchen wird an Störstellen gestreut (nicht am Gitter!)
- Auf jedem Pfad ändert sich die Phase
- Teilchen kann zurückgestreut werden
- Für geschlossenen Pfad gilt: $\Delta \varphi_{hin} = \Delta \varphi_{zurück}$
- Beide Streu-Pfade interferieren konstruktiv: ,,coherent backscattering"
- Wahrscheinlichkeit zurückzukehren ist erhöht

Einführung			
0 00●00		0 00000 0000	

Anderson-Lokalisierung: Erklärung

- Teilchen wird an Störstellen gestreut (nicht am Gitter!)
- Auf jedem Pfad ändert sich die Phase
- Teilchen kann zurückgestreut werden
- Für geschlossenen Pfad gilt: $\Delta \varphi_{hin} = \Delta \varphi_{zurück}$
- Beide Streu-Pfade interferieren konstruktiv: ,,coherent backscattering"
- Wahrscheinlichkeit zurückzukehren ist erhöht

Einführung			
o 00●00		0 00000 0000	

Anderson-Lokalisierung: Erklärung

Teilchen im zufälligen Potential:

Anderson-Lokalisierung

- Teilchen wird an Störstellen gestreut (nicht am Gitter!)
- Auf jedem Pfad ändert sich die Phase
- Teilchen kann zurückgestreut werden
- Für geschlossenen Pfad gilt: $\Delta \varphi_{hin} = \Delta \varphi_{zurück}$
- Beide Streu-Pfade interferieren konstruktiv: ,,coherent backscattering"
- Wahrscheinlichkeit zurückzukehren ist erhöht

Einführung			
o 00●00		0 00000 0000	

Anderson-Lokalisierung: Erklärung

Teilchen im zufälligen Potential:

Anderson-Lokalisierung

- Teilchen wird an Störstellen gestreut (nicht am Gitter!)
- Auf jedem Pfad ändert sich die Phase
- Teilchen kann zurückgestreut werden
- Für geschlossenen Pfad gilt: $\Delta \varphi_{hin} = \Delta \varphi_{zurück}$
- Beide Streu-Pfade interferieren konstruktiv: ,,coherent backscattering"
- Wahrscheinlichkeit zurückzukehren ist erhöht

Anderson-Lokalisierung ist 1-Teilchen Phänomen!

Einführung			
_ 000●0		0 00000 0000	

Anderson-Lokalisierung: Relevante Skalen

Es treten zwei relevante Längenskalen auf

- De Broglie-Wellenlänge λ_{dB}
- Mittlere freie Weglänge /

Ioffe-Regel Kriterium

Lokalisierung findet statt, falls

 $l < \lambda_{\rm dB}$

Führt zu einer Mobilitätskante

Einführung			
_ 000●0		0 00000 0000	

Anderson-Lokalisierung: Relevante Skalen

Es treten zwei relevante Längenskalen auf

- De Broglie-Wellenlänge λ_{dB}
- Mittlere freie Weglänge /

loffe-Regel Kriterium

Lokalisierung findet statt, falls

 $l < \lambda_{\rm dB}$

Führt zu einer Mobilitätskante

Einführung			Zusammenfassung
0 0000●		0 00000 0000	

Was bedeutet Lokalisierung?

- klassisch: Teilchen ist räumlich eingegrenzt, falls *E*_{ges} ≤ *V*_{max}
- QM: Teilchen kann tunneln, kein ausreichendes Kriterium
- Anderson-Lokalisierung findet auch im Fall E_{ges} >> V_{max} statt!

- Lokalisiert, falls Wellenfunktion von Zentrum aus hinreichend schnell abfällt
- Anderson-Lokalisierung:

 $\Psi(x) \propto \exp(-|x-x_0|/\xi)$

mit der Lokalisierungslänge ξ

	Einführung				Zusammenfassung			
	0 0000			0 00000 0000				
A 1								

Was bedeutet Lokalisierung?

- klassisch: Teilchen ist räumlich eingegrenzt, falls *E*_{ges} ≤ *V*_{max}
- QM: Teilchen kann tunneln, kein ausreichendes Kriterium
- Anderson-Lokalisierung findet auch im Fall E_{ges} >> V_{max} statt!

- Lokalisiert, falls Wellenfunktion von Zentrum aus hinreichend schnell abfällt
- Anderson-Lokalisierung:

 $\Psi(x) \propto \exp(-\left|x-x_{0}\right|/\xi)$

mit der Lokalisierungslänge ξ

Einführung	Theorie		Zusammenfassung
		0 00000 0000	

Inhalt

1 Einführung

2 Theorie

- Anderson-Modell
- Aubry-André-Modell

3 Simulationen

4 Experimente

	Einführung	Theorie		Zusammenfassung
		o	0 00000 0000	
Anderson-Mode				

Hamilton-Operator

Hamilton-Operator für das diskrete Anderson-Modell:

	Einführung	Theorie		Zusammenfassung
		0	0 00000 0000	
Anderson-Mode				

Hamilton-Operator

Hamilton-Operator für das diskrete Anderson-Modell:

kinetische Energie

Beschreibung

Tight-Binding-Modell

	Einführung	Theorie		Zusammenfassung
		0	0 00000 0000	
Anderson-Mode				

Hamilton-Operator

Hamilton-Operator für das diskrete Anderson-Modell:

kinetische Energie

- Tight-Binding-Modell
- J: Tunnelrate

	Einführung	Theorie		Zusammenfassung
		Ö	0 00000 0000	
Anderson-Mode	20			

Hamilton-Operator

Hamilton-Operator für das diskrete Anderson-Modell:

- Tight-Binding-Modell
- J: Tunnelrate
- Δ_k : Zufallszahl, z.B. gleichmäßig aus Intervall [0, Δ]

	Einführung	Theorie		Zusammenfassung
		Ö	0 00000 0000	
Anderson-Mode	20			

Hamilton-Operator

Hamilton-Operator für das diskrete Anderson-Modell:

- Tight-Binding-Modell
- J: Tunnelrate
- Δ_k : Zufallszahl, z.B. gleichmäßig aus Intervall $[0, \Delta]$

	Einführung	Theorie		Zusammenfassung
		Ö	0 00000 0000	
Anderson-Mode	20			

Hamilton-Operator

Hamilton-Operator für das diskrete Anderson-Modell:

kinetische Energie

ext. Potential

Eigenschaften

Metall-Isolator-Übergang in 3D, Ordnungsparameter Δ/J

	Einführung	Theorie		Zusammenfassung
		Ö	0 00000 0000	
Anderson-Mode	20			

Hamilton-Operator

Hamilton-Operator für das diskrete Anderson-Modell:

Eigenschaften

- Metall-Isolator-Übergang in 3D, Ordnungsparameter Δ/J
- Für d = 1, 2 sind alle Zustände lokalisiert (Isolator)

	Einführung	Theorie		Zusammenfassung
		Ö	0 00000 0000	
Anderson-Mode	20			

Hamilton-Operator

Hamilton-Operator für das diskrete Anderson-Modell:

Gründe für ein abgewandeltes Modell

Anderson-Modell zeigt Phasenübergang nur in 3 Dimensionen

Experimente aus Florenz realisieren Aubry-André Modell

	Einführung	Theorie		Zusammenfassung
		Ö	0 00000 0000	
Anderson-Mode	20			

Hamilton-Operator

Hamilton-Operator für das diskrete Anderson-Modell:

Gründe für ein abgewandeltes Modell

Anderson-Modell zeigt Phasenübergang nur in 3 Dimensionen

Experimente aus Florenz realisieren Aubry-André Modell

	Einführung	Theorie		Zusammenfassung
		0	0 00000 0000	
Aubry-André-N	Aodell			

Hamilton-Operator

Hamilton-Operator für das diskrete Aubry-André-Modell:

	Einführung	Theorie		Zusammenfassung
		0	0 00000 0000	
Aubry-André-M	Aodell			

Hamilton-Operator

Hamilton-Operator für das diskrete Aubry-André-Modell:

Beschreibung

Δ: Stärke des äußeren Potentials

 β : Irrationale Zahl \longrightarrow quasiperiodisches Potential

	Einführung	Theorie		Zusammenfassung
		0	0 00000 0000	
Aubry-André-M	Aodell			

Hamilton-Operator

Hamilton-Operator für das diskrete Aubry-André-Modell:

- Δ: Stärke des äußeren Potentials
- β : Irrationale Zahl \longrightarrow quasiperiodisches Potential

	Einführung	Theorie		Zusammenfassung
		0	0 00000 0000	
Aubry-André-N	Aodell			

Hamilton-Operator

Hamilton-Operator für das diskrete Aubry-André-Modell:

	Einführung	Theorie		Zusammenfassung
		0	0 00000 0000	
Aubry-André-M	Aodell			

Hamilton-Operator

Hamilton-Operator für das diskrete Aubry-André-Modell:

	Einführung	Theorie		Zusammenfassung
		0	0 00000 0000	
Aubry-André-M	Aodell			

Hamilton-Operator

Hamilton-Operator für das diskrete Aubry-André-Modell:

Eigenschaften

Phasenübergang auch in 1D, Ordnungsparameter Δ/J

Für $\beta = \frac{\sqrt{5}+1}{2} \longrightarrow$ Phasenübergang bei $\Delta/J = 2$

	Einführung	Theorie		Zusammenfassung
		0	0 00000 0000	
Aubry-André-M	Aodell			

Hamilton-Operator

Hamilton-Operator für das diskrete Aubry-André-Modell:

Eigenschaften

Phasenübergang auch in 1D, Ordnungsparameter Δ/J
 Für β = √5+1/2 → Phasenübergang bei Δ/J = 2

Einführung	Simulationen		Zusammenfassung
		0 00000 0000	

Inhalt

1 Einführung

2 Theorie

- 3 Simulationen
 - Verfahren
 - Ergebnisse

4 Experimente

	Einführung	Simulationen		Zusammenfassung
	0		0	
	00000		00000	
Verfahren				

Verfahren

Simuliere Aubry-André-Modell (1D)

- Stelle diskreten Hamilton-Operator auf (N × N-Matrix, N: Anzahl Gitterpunkte)
- (Wähle Randbedingungen)
- Berechne Eigenwerte (Energien) und Eigenvektoren (Zustände) numerisch
- Grundzustand = Eigenvektor zum niedrigsten Eigenwert

Berechnung der Lokalisierungslänge (Korrelationslänge)

- Die Lokalisierungslänge ξ ist proportional zur Streuung: $\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$
- Für exponentiell lokalisierte Zustände gilt $\Delta x = \xi/\sqrt{2}$

	Einführung	Simulationen		Zusammenfassung
	00000	0	0	
			0000	
Verfahren				

Verfahren

Simuliere Aubry-André-Modell (1D)

- Stelle diskreten Hamilton-Operator auf (N × N-Matrix, N: Anzahl Gitterpunkte)
- (Wähle Randbedingungen)
- Berechne Eigenwerte (Energien) und Eigenvektoren (Zustände) numerisch
- Grundzustand = Eigenvektor zum niedrigsten Eigenwert

Berechnung der Lokalisierungslänge (Korrelationslänge)

- Die Lokalisierungslänge ξ ist proportional zur Streuung:
 $\Delta x = \sqrt{\langle x^2 \rangle \langle x \rangle^2}$
- Für exponentiell lokalisierte Zustände gilt $\Delta x = \xi/\sqrt{2}$

	Einführung	Simulationen		Zusammenfassung
		o ●o	0 00000 0000	
Ergebnisse				

Aufgetragen ist jeweils die Dichte $|\Psi(k)^2|$ über der Position.

	Einführung	Simulationen		Zusammenfassung
	0	0	0	
			0000	
Ergebnisse				

Aufgetragen ist jeweils die Dichte $|\Psi(k)^2|$ über der Position.

	Einführung	Simulationen		Zusammenfassung
		0		
			00000	
Ergebnisse				

Aufgetragen ist jeweils die Dichte $|\Psi(k)^2|$ über der Position.

150

200

	Einführung	Simulationen		Zusammenfassung
		0		
			00000	
Ergebnisse				

Aufgetragen ist jeweils die Dichte $|\Psi(k)^2|$ über der Position.

	Einführung	Simulationen		Zusammenfassung
		° ⊙●	0 00000 0000	
Ergebnisse				

Phasenübergang

Trage die Lokalisierungslänge über dem Verhältnis Δ/J auf:

• Phasenübergang bei $\Delta/J = 2$

Einführung		Experimente	Zusammenfassung
		0 00000 0000	

Inhalt

2 Theorie

3 Simulationen

4 Experimente

- Motivation
- BEC im Laser-Speckle
- BEC im quasiperiodischen Gitter

	Einführung		Experimente	Zusammenfassung
			00000 0000	
Motivation				

Warum? (Wiederholung)

Warum untersucht man die Anderson-Lokalisierung mit Bose-Einstein-Kondensaten?

- Wechselwirkung kann kontrolliert (abgeschaltet) werden (Feshbach-Resonanzen, Einstellen der Dichte)
- Dimension frei wählbar
- Externe Potentiale können beliebig und genau eingestellt werden (vgl. Festkörper mit Phononen)
- Direkte Messung der Dichteprofile

Bisher noch nie an Materiewellen beobachtet(!), jedoch mit

- 1990: Ultraschall Weaver, R. L. et al., Wave Motion 12, 129-142
- 1991: Mikrowellen Dalichaouch, R. et al., Nature 354, 53-55
- 1997: Licht Wiersma, D. S. et al., *Nature* 390, 671-673

	Einführung		Experimente	Zusammenfassung
			00000 0000	
Motivation				

Warum? (Wiederholung)

Warum untersucht man die Anderson-Lokalisierung mit Bose-Einstein-Kondensaten?

- Wechselwirkung kann kontrolliert (abgeschaltet) werden (Feshbach-Resonanzen, Einstellen der Dichte)
- Dimension frei wählbar
- Externe Potentiale können beliebig und genau eingestellt werden (vgl. Festkörper mit Phononen)
- Direkte Messung der Dichteprofile

Bisher noch nie an Materiewellen beobachtet(!), jedoch mit

- 1990: Ultraschall Weaver, R. L. et al., Wave Motion 12, 129-142
- 1991: Mikrowellen Dalichaouch, R. et al., Nature 354, 53-55
- 1997: Licht Wiersma, D. S. et al., Nature 390, 671-673

		Experimente	
00000		● 0000 0000	

BEC im Laser-Speckle

BEC im Laser-Speckle (Paris 2008)¹

Experimenteller Aufbau

- BEC aus 20.000 ⁸⁷Rb Atomen
- Quasi-1D Falle mit Fallenfrequenzen
 - $\omega_{\perp}/2\pi =$ 70Hz, Ausdehnung: 3µm
 - $\omega_z/2\pi = 5,4$ Hz, Ausdehnung: 35µm wird abgeschaltet

- Expansion im Laser-Speckle Potential (siehe nächste Folie)
- Wechselwirkung durch niedrige Dichte vernachlässigbar
- Dichtemessung durch Fluoreszenz-Aufnahmen (Auflösung 15µm)

 $^{^{1}}$ Billy, J. et al., Direct observation of Anderson localization of matter waves in a controlled disorder. *Nature* **453**, 891-894 (2008).

Einführung		Experimente	Zusammenfassung
0		0	
		0000	

Laser-Speckle

- Speckle: Leite kohärente Strahlung durch diffuses Medium
- Im Experiment: Aufgeweiteter Laser bei 514nm (großes δ_L) mit niedriger Leistung
- charakteristische Größen:
 - Korngröße $\pi\sigma_{\mathsf{R}} \approx 0.82 \mu \mathsf{m}$
 - Impuls Cut-off bei

$$k_{\rm c} = 2/\sigma_{\rm R}.$$

Zustände oberhalb nicht (exponentiell) lokalisiert: vgl. Mobilitätskante

	Einführung		Experimente	Zusammenfassung
			0 00000 0000	
BEC im Laser-	Speckle			

Ergebnisse - Lokalisierung (räumlich)

Lokalisierung auf Millimeterskala

 Exponentieller Abfall der Dichte am Rand: Starker Hinweis auf Anderson-Lokalisierung

Einführung		Experimente	Zusammenfassung
00000	00	00000	
		0000	

Ergebnisse - Lokalisierung (zeitlich)

- Lokalisierungslänge ändert sich zeitlich nicht
- Lokalisierter Zustand über Sekunden hinweg beobachtbar

Einführung		Experimente	Zusammenfassung
00000	00	00000	
		0000	

Ergebnisse - Mobilitätskante

unterhalb der Mobilitätskante:

 $k_{
m max} < 1/\sigma_{
m R}$ exponentiell lokalisierter Zustand: Dichte $\propto e^{-|z|/\xi}$

oberhalb der Mobilitätskante: $k_{\max} > 1/\sigma_{\rm R}$ algebraisch lokalisierter Zustand: Dichte $\propto |z|^{-\beta}$ mit $\beta = 2,01 \pm 0,03$.

kmax: Größte Impulskomponente im BEC, oR: Speckle-Korngröße

Einführung		Experimente	Zusammenfassung
00000	00	00000	
		0000	

Ergebnisse - Mobilitätskante

unterhalb der Mobilitätskante:

 $k_{\max} < 1/\sigma_{\mathsf{R}}$

exponentiell lokalisierter Zustand:

Dichte $\propto e^{-|z|/\xi}$

oberhalb der Mobilitätskante: $k_{\max} > 1/\sigma_{\rm R}$ algebraisch lokalisierter Zustand: Dichte $\propto |z|^{-\beta}$ mit $\beta = 2,01 \pm 0,03$.

kmax: Größte Impulskomponente im BEC, oR: Speckle-Korngröße

	Einführung			Experimente	Zusammenfassung		
				0 00000 •000			
BEC im quasiperiodischen Gitter							

BEC im quasiperiodischen Gitter (Florenz 2008)²

Experimenteller Aufbau

- BEC aus 10.000 ³⁹K Atomen
- Durch Feshbach-Resonanz: Wechselwirkungsenergie ≪ kin. Energie
- Realisiert Aubry-André-Modell
- Optische Gitter (1D) durch zwei stehende Wellen:

• 1032nm und 862nm $\longrightarrow \beta \approx 1,1972$

 $^2 Roati,$ G. et al., Anderson localization of a non-interacting Bose-Einstein condensate. *Nature* **453**, 895-898 (2008).

Anderson-Lokalisierung David Peter

	Einführung			Experimente	Zusammenfassung				
				0000					
DEC in another	DEC in substantia situation of the								

Ergebnisse - Lokalisierung

	Einführung		Experimente	Zusammenfassung
			0 00000 00●0	
BEC im quasi	periodischen Gitter			

Ergebnisse - Universalität

Lokalisierung auf der Mikrometerskala

Universelles Verhalten f
ür verschiedene J

Einführung		Experimente	Zusammenfassung
00000	00	00000	
		0000	

Ergebnisse - Phasenübergang

- Fitte n(z) = n₀ exp (− |x/ξ|^α) an das Dichteprofil
- Übergang von Gaußschem
 Wellenpaket (α = 2) zu
 lokalisiertem Zustand (α = 1)
- Phasenübergang bei $\Delta/J \approx 2$

Einführung			Zusammenfassung
		0 00000 0000	

Ausblick

Was ist mit den wechselwirkenden Quantengasen?

- Theoretische Herausforderung: gemeinsame Behandlung von Unordnung und Wechselwirkung
- Viele offene Fragen, Experimente mit BEC können Vorreiter sein
- Theoretisch vorhergesagt:
 - Anderson-Lokalisierung von Solitonen
 - Mott-Anderson-Übergang, neue Quantenphasen. Experiment³:

³Deissler, B. et al, *arXiv* **0910.5062v2** (2010)

Einführung			Zusammenfassung
		0 00000 0000	

Ausblick

Was ist mit den wechselwirkenden Quantengasen?

- Theoretische Herausforderung: gemeinsame Behandlung von Unordnung und Wechselwirkung
- Viele offene Fragen, Experimente mit BEC können Vorreiter sein
- Theoretisch vorhergesagt:
 - Anderson-Lokalisierung von Solitonen
 - Mott-Anderson-Übergang, neue Quantenphasen. Experiment³:

³Deissler, B. et al, *arXiv* **0910.5062v2** (2010)

Einführung			Zusammenfassung
		0 00000 0000	

Zusammenfassung

- In Zufalls-Potentialen tritt (exponentielle) Lokalisierung auf
- Phasenübergang bei kritischer Unordnungsstärke (3D)
- Grund: Kohärente Rückstreuung an den Störstellen (1 Teilchen Phänomen)
- Wechselwirkungsfreie Anderson-Lokalisierung theoretisch (und jetzt experimentell) gut verstanden
- In Zusammenhang mit WW sind noch viele Fragen offen

Fragen?

Einführung			Zusammenfassung
		0 00000 0000	

Zusammenfassung

- In Zufalls-Potentialen tritt (exponentielle) Lokalisierung auf
- Phasenübergang bei kritischer Unordnungsstärke (3D)
- Grund: Kohärente Rückstreuung an den Störstellen (1 Teilchen Phänomen)
- Wechselwirkungsfreie Anderson-Lokalisierung theoretisch (und jetzt experimentell) gut verstanden
- In Zusammenhang mit WW sind noch viele Fragen offen
- Fragen?

			Zusammenfassung
		0 00000 0000	

Aufgetragen ist jeweils die Dichte $|\Psi(k)^2|$ über der Position.

