

Topological flat bands with Chern number C = 2by dipolar exchange interactions

David Peter — Palaiseau — November 6th, 2014

Mikhail Lukin Norman Yao

Sebastian Huber

motivation: topological states of matter

motivation: topological states of matter

topological bands

tunneling phases for neutral particles?

F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)

Y. Wang. Phys. Rev. B 86, 201101 (2012)

setup with polar molecules

one molecule pinned at each lattice site Three level dipole from rotational structure:

Three level dipole from rotational structure:

Three level dipole from rotational structure:

dipole-dipole interactions in the plane

$$H_{ij}^{dd} = \frac{1}{|\mathbf{R}_{ij}|^3} \left[d_i^0 d_j^0 + \frac{1}{2} (d_i^- d_j^+ + d_i^+ d_j^-) - \frac{3}{2} (d_i^- d_j^- e^{2i\phi_{ij}} + d_i^+ d_j^+ e^{-2i\phi_{ij}}) \right]$$

dipole-dipole interactions in the plane

$$H_{ij}^{dd} = \frac{1}{|\mathbf{R}_{ij}|^3} \left[d_i^0 d_j^0 + \frac{1}{2} \left(d_i^- d_j^+ + d_i^+ d_j^- \right) - \frac{3}{2} \left(d_i^- d_j^- e^{2i\phi_{ij}} + d_i^+ d_j^+ e^{-2i\phi_{ij}} \right) \right]$$

energy conserving processes:

molecule *i*

molecule j

dipole-dipole interactions in the plane

$$H_{ij}^{dd} = \frac{1}{|R_{ij}|^3} \left[d_i^0 d_j^0 + \frac{1}{2} (d_i^- d_j^+ + d_i^+ d_j^-) - \frac{3}{2} (d_i^- d_j^- e^{2i\phi_{ij}} + d_i^+ d_j^+ e^{-2i\phi_{ij}}) \right]$$

energy conserving processes:
$$(-) \quad (+) \quad (d_i^- \quad (d_j^- \quad (d_j$$

$$H_{ij}^{dd} = \frac{1}{|\mathbf{R}_{ij}|^3} \left[d_i^0 d_j^0 + \frac{1}{2} (d_i^- d_j^+ + d_i^+ d_j^-) - \frac{3}{2} (d_i^- d_j^- e^{2i\phi_{ij}} + d_i^+ d_j^+ e^{-2i\phi_{ij}}) \right]$$

interaction term, not relevant
for single excitation dynamics

Describe excitations as effective particles (hardcore bosons)

$$\begin{aligned} b_{i,+}^{\dagger} &= |+\rangle_i \langle 0|_i \\ b_{i,-}^{\dagger} &= |-\rangle_i \langle 0|_i \end{aligned} \qquad \psi_i^{\dagger} = \begin{pmatrix} b_{i,+}^{\dagger} \\ b_{i,-}^{\dagger} \end{pmatrix} \end{aligned}$$

Tunneling Hamiltonian

 \mathcal{T} -symmetry: $t^+ = t^-$

 $|0\rangle$

Describe excitations as effective particles (hardcore bosons)

$$\psi_{i,+}^{\dagger} = |+\rangle_{i} \langle 0|_{i}$$

$$\psi_{i}^{\dagger} = \begin{pmatrix} b_{i,+}^{\dagger} \\ b_{i,-}^{\dagger} \end{pmatrix}$$

$$\overset{|m=2\rangle}{4B}$$

$$\overset{|m=2\rangle}{4B}$$

$$\overset{|1\rangle}{1}$$

$$\overset{\alpha}{2B}$$

$$\overset{|1\rangle}{1}$$

$$\overset{\alpha}{1}$$

$$\overset{\alpha}{1}$$

$$\overset{\alpha}{1}$$

$$\overset{\beta}{1}$$

$$\overset{$$

Tunneling Hamiltonian

$$H = \sum_{i \neq j} \frac{a^{3}}{|\mathbf{R}_{ij}|^{3}} \psi_{i}^{\dagger} \begin{pmatrix} -t^{+} & w e^{-2i\phi_{ij}} \\ w e^{2i\phi_{ij}} & -t^{-} \end{pmatrix} \psi_{j}$$
$$+ \sum_{i} \psi_{i}^{\dagger} \begin{pmatrix} \mu & 0 \\ 0 & -\mu \end{pmatrix} \psi_{i}$$
$$\mathcal{T}\text{-symmetry: } t^{+} = t^{-}$$

$$H = \sum_{k} \psi_{k}^{\dagger} \begin{pmatrix} -t^{+} \epsilon_{k}^{0} + \mu & w \epsilon_{k}^{-2} \\ w \epsilon_{k}^{2} & -t^{-} \epsilon_{k}^{0} - \mu \end{pmatrix} \psi_{k} \qquad \qquad \psi_{k} = \frac{1}{\sqrt{N_{s}}} \sum_{j} \psi_{j} e^{ikR_{j}} \\ \epsilon_{k}^{m} = \sum_{j \neq 0} \frac{a^{3}}{|R_{j}|^{3}} e^{ikR_{j} + im\phi_{j}}$$

band structure

are these bands topological?

Review on topological insulators: M. Hasan and C. Kane, Rev. Mod. Phys. **82**, 3045 (2010)

Review on topological insulators: M. Hasan and C. Kane, Rev. Mod. Phys. **82**, 3045 (2010)

.

$$\frac{1}{2\pi}\int_{\mathsf{BZ}}\!\mathsf{d}^2\mathbf{k}\,\mathcal{B}_\nu(\mathbf{k})=C_\nu$$

ΓX

$$\frac{1}{2\pi} \int_{\mathsf{BZ}} \mathrm{d}^2 \mathbf{k} \, \mathcal{B}_{\nu}(\mathbf{k}) = C_{\nu}$$

$$\mathcal{B}_{\nu}(\boldsymbol{k}) = \partial_{k_{x}} \mathcal{A}_{\nu}^{y}(\boldsymbol{k}) - \partial_{k_{y}} \mathcal{A}_{\nu}^{x}(\boldsymbol{k})$$
$$\mathcal{A}_{\nu}^{j}(\boldsymbol{k}) = i \langle u_{\nu}(\boldsymbol{k}) | \partial_{k_{j}} | u_{\nu}(\boldsymbol{k}) \rangle$$

Berry vector potential (gauge dependent)

Chern number

Bloch functions of the ν -th band

Chern number as a winding number

Gapped system:
$$\boldsymbol{n}_{\boldsymbol{k}} = \begin{pmatrix} w \operatorname{Re} \epsilon_{\boldsymbol{k}}^{2} \\ w \operatorname{Im} \epsilon_{\boldsymbol{k}}^{2} \\ \mu + t \epsilon_{\boldsymbol{k}}^{0} \end{pmatrix} \in \mathbb{R}^{3} \setminus \{\boldsymbol{0}\}$$
 $E_{\pm}(\boldsymbol{k}) = n_{\boldsymbol{k}}^{0} \pm |\boldsymbol{n}_{\boldsymbol{k}}|$

Chern number as a winding number

Gapped system:
$$\boldsymbol{n}_{\boldsymbol{k}} = \begin{pmatrix} w \operatorname{Re} \epsilon_{\boldsymbol{k}}^{2} \\ w \operatorname{Im} \epsilon_{\boldsymbol{k}}^{2} \\ \mu + t \epsilon_{\boldsymbol{k}}^{0} \end{pmatrix} \in \mathbb{R}^{3} \setminus \{\boldsymbol{0}\}$$
 $E_{\pm}(\boldsymbol{k}) = n_{\boldsymbol{k}}^{0} \pm |\boldsymbol{n}_{\boldsymbol{k}}|$

normalized vector!

Gapped system:
$$n_k = \begin{pmatrix} w \operatorname{Re} \epsilon_k^2 \\ w \operatorname{Im} \epsilon_k^2 \\ \mu + t \epsilon_k^0 \end{pmatrix} \in \mathbb{R}^3 \setminus \{\mathbf{0}\}$$
 $E_{\pm}(\mathbf{k}) = n_k^0 \pm |\mathbf{n}_k|$
normalized vector!
 $\hat{\mathbf{n}} : T^2 \longrightarrow S^2$ $\hat{\mathbf{n}} : \textcircled{O} \longrightarrow \textcircled{O}$

How can we classify such mappings \hat{n} ?

▷ winding number:

how many times does \hat{n} wrap the sphere (as we integrate over the BZ)?

Gapped system:
$$\boldsymbol{n}_{\boldsymbol{k}} = \begin{pmatrix} w \operatorname{Re} \epsilon_{\boldsymbol{k}}^{2} \\ w \operatorname{Im} \epsilon_{\boldsymbol{k}}^{2} \\ \mu + t \epsilon_{\boldsymbol{k}}^{0} \end{pmatrix} \in \mathbb{R}^{3} \setminus \{\boldsymbol{0}\}$$
 $E_{\pm}(\boldsymbol{k}) = n_{\boldsymbol{k}}^{0} \pm |\boldsymbol{n}_{\boldsymbol{k}}|$ normalized vector!

$$\hat{\boldsymbol{n}}: T^2 \longrightarrow S^2$$
 $\hat{\boldsymbol{n}}: \bigcirc \longrightarrow \bigcirc$

How does a nontrivial mapping with C = 2 look like?

Gapped system:
$$n_{k} = \begin{pmatrix} w \operatorname{Re} \epsilon_{k}^{2} \\ w \operatorname{Im} \epsilon_{k}^{2} \\ \mu + t \epsilon_{k}^{0} \end{pmatrix} \in \mathbb{R}^{3} \setminus \{\mathbf{0}\}$$
 $E_{\pm}(k) = n_{k}^{0} \pm |n_{k}|$
normalized vector!
 $\hat{n} : T^{2} \longrightarrow S^{2}$ $\hat{n} : \textcircled{O} \longrightarrow \textcircled{O}$

▷ second homotopy group of two-sphere:

$$\pi_2(S^2) = \mathbb{Z}$$

The Chern number or the winding number of the vector \hat{n}

C as winding number

$$C = \frac{1}{4\pi} \int_{\mathsf{BZ}} \mathrm{d}^2 \mathbf{k} \left(\partial_{k_x} \hat{\mathbf{n}}_{\mathbf{k}} \times \partial_{k_y} \hat{\mathbf{n}}_{\mathbf{k}} \right) \cdot \hat{\mathbf{n}}_{\mathbf{k}}$$

bulk-edge correspondence Chern number \leftrightarrow number of edge modes

Hatsugai, Phys. Rev. Lett. 71, 3697 (1993)

Chern number in the disordered system

Chern number in the disordered system

honeycomb lattice: flat bands

C = +1C = 0C = 0C = -1

 $flatness = bandwidth/bandgap \approx 6.4$

- b dipolar exchange interactions & broken time-reversal symmetry naturally lead to topological bands
- ▷ Chern number depends on the underlying lattice square lattice: C = 2 honeycomb: C = 1 4
- ▷ Robust against missing dipoles (lattice sites)
- \triangleright Numerical candidate for the interacting C = 2 system^{1,2}:

bosonic fractional Chern insulator state at $\nu = 2/3$: Halperin (221) state?

¹Y. Wang, Phys. Rev. B **86**, 201101 (2012) ²G. Möller, Phys. Rev. Lett. **103**, 105303 (2009) Thank you! arXiv:1410.5667

$$\Psi_{(l;m;n)} = \prod_{i \neq j} \left(z_i^{\downarrow} - z_j^{\downarrow} \right)^l \prod_{i \neq j} \left(z_i^{\uparrow} - z_j^{\uparrow} \right)^m \prod_{i,j} \left(z_i^{\uparrow} - z_j^{\downarrow} \right)^n \mathrm{e}^{-\frac{1}{4} \sum_{j,\alpha} \left| z_j^{\alpha} \right|^2}$$

How to calculate the Chern number in the disordered system?

impose twisted boundary conditions

$$\psi(x + L, y) = e^{i\theta_x} \psi(x, y)$$

 $\psi(x, y + L) = e^{i\theta_y} \psi(x, y)$

$$C = \frac{1}{2\pi} \iint \mathrm{d}\theta_{x} \mathrm{d}\theta_{y} F(\theta_{x}, \theta_{y})$$

many-body Berry curvature $F(\theta_x, \theta_y) = \operatorname{Im}\left(\left\langle \frac{\partial \Psi}{\partial \theta_y} \middle| \frac{\partial \Psi}{\partial \theta_x} \right\rangle - \left\langle \frac{\partial \Psi}{\partial \theta_x} \middle| \frac{\partial \Psi}{\partial \theta_y} \right\rangle\right)$ Slater-determinant of lower "band" $\Psi(\theta_x, \theta_y)$

dispersion relation x/1 model

Analogy with Landau levels:

$$H = \hbar\omega_c \left(n + \frac{1}{2} \right)$$

with $\omega_c = eB/m$

▷ perfectly flat band(s) with Chern number C = 1

Hall conductivity:
$$\sigma_{xy} = rac{e^2}{h} imes C$$

double-layer picture

Setup:

 \triangleright Polar molecules

 \triangleright Dipolar exchange interactions

Two-band model

 \triangleright Mapping to bosons

 \triangleright Introduction to topological bands

Square lattice:

 \triangleright Edge states

 \triangleright Robustness against disorder

Honeycomb lattice: ▷ flat bands ▷ phase diagram What if the lattice is not perfect?

edge states are robust against disorder:

20% of the molecules randomly removed