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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Untersuchung verschiedener
Modellsysteme im Rahmen der ultrakalten Quantengase. Im Mittelpunkt stehen
dabei neuartige Verfahren um Quantenzustände mit topologisch nichttrivialen
Eigenschaften mittels dipolaren Wechselwirkungen zu realisieren. Ein berühm-
tes Beispiel für einen Zustand mit topologischen Eigenschaften zeigt sich im
Quanten-Hall Effekt. Die exakte Quantisierung der Hall-Leitfähigkeit kann
durch das Auftreten einer topologischen Invarianten verstanden werden. Die
Robustheit physikalischer Effekte gegenüber äußeren Störungen macht topo-
logische Materialien dabei interessant für Anwendungen. Entdeckt wurde der
Quanten-Hall Effekt in zweidimensionalen Elektronengasen bei extrem tiefen
Temperaturen und hohen Magnetfeldern. Die schwierigen experimentellen Bedin-
gungen, sowie eine Reihe offener Fragen, besonders im Bereich des fraktionalen
Quanten-Hall Effekts, motivieren daher die Suche nach alternativen Systemen.
Seit einigen Jahren sind Experimente auf dem Gebiet der ultrakalten Quan-

tengase so weit fortgeschritten, dass routinemäßig neuartige Modellsysteme
simuliert werden können. Ein Abschnitt dieser Arbeit beschäftigt sich mit der
Realisierung des Quanten-Hall Effekts in ultrakalten Gasen. Ein Problem be-
steht darin, den Effekt des Magnetfelds auf Elektronen mit elektrisch neutralen
Atomen zu simulieren. Eine mögliche Lösung, die auf Ideen von Larmor zu-
rückgeht, bedient sich einer exakten Analogie zwischen geladenen Teilchen im
Magnetfeld und neutralen Teilchen in einem rotierenden System, wobei die
Rotationsfrequenz die Rolle des Magnetfeldes übernimmt. Die Corioliskraft im
rotierenden System verhält sich dabei beispielsweise wie die Lorentzkraft im
Magnetfeld. Unser Ansatz besteht darin, die Relaxierung in dipolaren Systemen
zu nutzen, um das zweidimensionale Quantengas in Rotation zu versetzten.
Dabei wird der interne Drehimpuls der Atome durch die Dipol-Dipol Wechsel-
wirkung in eine externe Rotation umgewandelt. Um den Vorgang mehrmals zu
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wiederholen, kann der interne Zustand anschließend durch ein externes Magnet-
feld zurückgesetzt werden. Der Vorteil dieser Methode besteht darin, dass nicht
die Rotationsfrequenz des Systems gesteuert wird, sondern direkt der Gesamt-
drehimpuls. Hierdurch kann eine intrinsische Instabilität umgangen werden,
die auftritt, wenn die Rotationsfrequenz mit der Fallenfrequenz vergleichbar
wird. Bei Kenntnis der genauen Atomzahl können mit dieser Methode dann be-
stimmte Quanten-Hall Zustände realisiert werden, da deren Gesamtdrehimpuls
bekannt ist. Weiterhin untersuchen wir den Einfluss der Wechselwirkung im
Rahmen einer vollständigen numerischen Simulation und studieren die dipolar
wechselwirkenden Zustände bei fraktionaler Füllung.
Der zweite große Teil dieser Arbeit beschäftigt sich mit dipolaren Spin-

Systemen und topologischen Bandstrukturen. Wir gehen dabei von einer vor-
gegebenen zweidimensionalen Gitterstruktur aus, auf deren Gitterplätzen sich
einzelne fest angebrachte Dipole in Form von polaren Molekülen oder Rydberg
Atomen befinden. Wir sind an der Dynamik der Anregungen dieser Dipole
interessiert, die durch die Dipol-Dipol Wechselwirkung getrieben wird. Insbe-
sondere können diese Anregungen zwischen verschiedenen Dipolen ausgetauscht
werden. Damit verhalten sie sich ähnlich wie tunnelnde Elektronen in einem
Ionengitter, wobei die Prozesse jedoch aufgrund der Dipol-Dipol Wechselwir-
kung langreichweitig sind. Dies führt in zwei Dimensionen zu Veränderungen
bei kleinen Impulsen. Wir untersuchen dipolare Spin-Systeme im Rahmen der
Spinwellen-Theorie, die unter anderem eine spontan gebrochene kontinuierliche
Symmetrie bei endlichen Temperaturen vorhersagt.
Des Weiteren zeigen wir, dass in dipolaren Systemen topologische Bandstruk-

turen realisiert werden können. Betrachtet man zwei verschiedene Anregungen
mit unterschiedlichem internen Drehimpuls, dann können diese über die dipolare
Wechselwirkung ineinander umgewandelt werden. Dabei tritt ein komplexer
Faktor auf, welcher der Gesamtdrehimpuls-Erhaltung Rechnung trägt. Diese
Spin-Bahn Kopplung kann dann zu nichttrivialen Phasen in Tunnelprozessen auf
geschlossenen Wegen führen. Das entspricht aber gerade dem Effekt eines Ma-
gnetfeldes auf ein geladenes Teilchen, wobei die Phase den magnetischen Fluss
in Einheiten des Flussquants angibt. Wird außerdem die Zeitumkehr-Symmetrie
gebrochen, können in diesen Systemen topologische Bänder auftreten, deren
Charakter von der Geometrie des Gitters abhängt. Wir studieren das Verhalten
der auftretenden chiralen Zustände auf dem Rand und untersuchen den Einfluss
von Unordnung auf die topologische Struktur.
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The story so far: In the beginning the Universe
was created. This has made a lot of people very
angry and been widely regarded as a bad move.

Douglas Adams



Introduction

The history of topological materials is just a little over thirty years old. A
good point to start is the discovery of the quantized Hall conductance in two-
dimensional semiconductor samples by von Klitzing in the early 1980s [7, 8]. He
found that the Hall conductance develops plateaus as a function of the magnetic
field which are exactly quantized in multiples of a fundamental constant that
depends on the elementary charge and Planck’s constant. In particular, it is
independent of any material properties or external conditions. Due to the high
precision of the quantization levels, for which an explanation was given in the
following years by Laughlin and Halperin [9, 10], this effect immediately found
applications in metrology as a direct measurement of the fine structure constant
and as a standard for the unit of resistance. The discovery by von Klitzing was
awarded with the 1985 Nobel Prize in physics.
A few years after the discovery, Thouless and others discovered the first

connection to topological properties [11–17]. They found a direct relation
between the Hall conductance and a topological invariant called Chern number.
In much the same way that the number of ‘handles’ of a closed two-dimensional
manifold can be calculated by an integration over its curvature, the Chern
number of a Hamiltonian can be calculated by integrating its Berry curvature
over a periodic two-dimensional configuration space. Similar to the Gaussian
curvature of the manifold, the Berry curvature of the quantum mechanical
system quantifies the geometric changes of the wave functions under transport
around closed loops [18, 19]. The connection of the quantized Hall conductance
to a topological invariant manifests itself in the robustness of the physical effect
against local perturbations.
A related, but considerably more complex phenomenon was experimentally

discovered by Tsui, Störmer and Gossard in 1982 at even lower temperatures in
cleaner samples [20]. They found that the Hall conductance could additionally
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develop plateaus at certain fractional values of the filling factor, the ratio
between the number of electrons and the number of magnetic flux quanta
threading through the sample. These plateaus correspond to fractionally filled
Landau levels and could not be explained by a single-particle treatment. Once
again, it was Laughlin who was able to explain the phenomenon [21], winning
him the 1998 Nobel Prize in physics together with Tsui and Störmer. He found
that the two-dimensional electron gas condenses into a new state of matter, a
quantum fluid with fractionally charged excitations and anyonic statistics. This
strongly correlated state of matter is an example of a topologically ordered
state with a ground state degeneracy that depends on the topology of the
underlying space and a robustness against local perturbations [22, 23]. The
structure of some fractional quantum Hall states still remains unexplained. The
most prominent example is the even-denominator state at a filling of 5/2 that
was experimentally observed as early as 1987 by Willet et al. [24]. Particular
interest in this state draws from work by Moore and Read [25], suggesting that
it might give rise to quasiparticles with non-Abelian statistics. Interchange
of non-Abelian anyons leads to a change in the ground state manifold of the
system. This property can be utilized for fault-tolerant quantum computation,
an idea that has been proposed by Kitaev in 1997 [26]
Fundamental questions about the nature of these states as well as their

prospective use in topological quantum computation spur the research in this
field today. Traditional experiments with semiconductor samples remain chal-
lenging due to immense requirements on the sample quality, low temperatures
and high magnetic fields. With the turn of the century and the advent of
ultracold gases experiments, new ideas how to reach the Quantum Hall regime
emerged. Unmatched control over system parameters as well as the ability to
manipulate and observe on the single-particle level turn these systems into an
optimal platform to advance our understanding in the field of Quantum Hall
physics. A fundamental problem appears when trying to emulate the effect
of the magnetic field. Electrically neutral atoms clearly do not couple to the
magnetic vector potential in the way that electrons do. Various solutions to
this problem have been proposed and experimentally implemented. Following
an analogy that goes back to ideas by Larmor around 1900, it is possible to
use a rapid rotation to induce an effective magnetic field for the neutral parti-
cles [27]. In the two-dimensional system, the frequency of rotation corresponds
to the effective magnetic field strength parametrized by the cyclotron frequency.
Likewise, the Coriolis force is in one-to-one correspondence with the Lorentz
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force. Starting in the early 2000s, experiments in this respect have advanced
over the years [28–31].
An alternative route was followed by Haldane [32]. In 1988, he proposed a

lattice model with broken time-reversal symmetry which showed a quantum
Hall effect without the requirement of Landau levels that would be generated
by an external magnetic field. The Haldane model utilizes complex tunneling
phases that respect the symmetry of the lattice and generate a topological
band structure. It is a showcase for a class of materials called Chern insulators.
They behave similar to ordinary band insulators, but have conducting states at
the edge of the material: a physical manifestation of their non-trivial Chern
number [33]. For charged particles, the required complex tunneling phases are
connected to the external magnetic field through a Peierls substitution [34].
In this regard, synthetic magnetic fields can be created for neutral particles
by realizing complex tunneling phases. Powerful approaches are optical flux
lattices [35], laser-assisted tunneling [36–39] or lattice shaking methods [40, 41].
The latter has recently been used by Jotzu et al. to realize the Haldane ‘toy
model’ with ultracold fermions in an optical lattice [42].
Finally, another strategy is to use spin-orbit coupling techniques [43–47]

to realize topological phases. The interplay between external and internal
degrees of freedom can lead to phenomena which are similar to the magnetic
field counterparts. In 2005, Kane and Mele showed that spin-orbit coupled
electrons in graphene can realize a topological system which encapsulates two
time-reversed copies of Haldane’s model [48, 49]. The resulting arrangement
is an example for a time-reversal invariant topological insulator. It shows a
quantum spin Hall effect where the two spin-components have a Hall conductance
with opposite sign [50, 51]. A physical realization in semiconductor quantum
wells was proposed by Bernevig et al. in 2006 [52, 53] and experimentally
demonstrated by König et al. one year later [54].
A variety of experimental methods to probe topological materials have been

established in recent years. Edge states have been observed in different systems
like silicon photonics [55, 56], photonic lattices [57] and phononic mechanical
systems [58]. Furthermore, the perfect control over ultracold atomic systems
has led to new ways to directly measure topological properties like the Zak
phase [59], the Berry curvature [60] or the Chern number [61].
This thesis is concerned with the study of quantum states which can have

topological properties that are induced by dipole-dipole interactions. The
first two chapters discuss the properties of dipolar systems in general. After
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presenting different physical implementations of systems with dipole-dipole
interactions, we start from a microscopic setup and describe a generic way to
derive effective models which allow us to understand their behavior. We mainly
study one- or two-dimensional systems where single dipoles are pinned at the
sites of an externally given lattice structure. We work in a convenient picture
where internal excitations of the dipoles in the system are being thought of
as individual particles. The dipole-dipole interaction between the microscopic
constituents then drives the dynamics of these effective particles. The dipolar
exchange interaction in particular allows these particles to ‘hop’ between different
lattice sites. Due to the long-range character of the dipolar interaction, these
processes are strictly non-local. This is in contrast to most condensed matter
systems where tunneling events are typically exponentially suppressed at larger
distances. The second chapter addresses the modifications in two-dimensional
spin systems which are a result of the long-range dipolar interactions.
Chapters four and five later build on these foundations and deal with the

realization of topological band structures in one- and two-dimensional setups.
By incorporating an additional excited state in the dipolar level structure, we
are able to study the dynamics of effective particles with an internal degree of
freedom. The dipolar exchange interaction then mixes the two internal states
and thereby induces a coupling between the ‘spin’ degree of freedom and the
orbital motion. We demonstrate that this spin-orbit coupling leads to the
appearance of a synthetic magnetic field which generates band structures with
nontrivial topological properties.
The dipolar relaxation term that leads to the appearance of the spin-orbit

coupling is also used in the third chapter. Inspired by the ideas of rapidly
rotating atomic gases, we devise a scheme to use the dipolar exchange interaction
to realize quantum Hall states in a system of ultracold dipolar fermions. In
contrast to usual stirring-techniques, the dipolar relaxation allows us to have
direct control over the total angular momentum of the system. In this way, we
can avoid the rotational instability and put the system in a well defined state.
In particular, we show how this method can be used to generate integer and
certain fractional quantum Hall states.

14



1
Effective models for dipolar systems

This introductory chapter is mostly of technical nature and describes the
detailed steps in the derivation of effective models for the excitations in dipolar
systems. Starting from the microscopic setup, the goal is to introduce a common
framework to understand the different dipolar models which are subject of
chapters 2, 3, 4 and 5 of this thesis. For this purpose, we will briefly introduce
three kinds of physical systems exhibiting dipole-dipole interactions: dipolar
atoms, polar molecules and Rydberg atoms.
After describing their properties, the next step is to understand the structure

of the dipole-dipole interaction itself. It comes in two different types, although
both of them are usually present at the same time. The static dipole-dipole
interaction has been of great interest and importance in ultracold systems from
the beginning [62–70]. In dipolar spin systems, it can be used to engineer Ising-
type spin interactions [P1, P6, 71–75]. In this thesis, we are mostly going to focus
on the second type: dipolar exchange interactions. Here, the internal state of the
dipolar particles is allowed to change [75–80]. The exchange interactions can be
subdivided into two sectors according to the angular momentum characteristic.
One sector preserves the internal and external angular momentum separately. In
chapter 2, this will be used to simulate XY -type spin interactions. The second
sector only conserves the sum of internal and external angular momentum. This
type of interaction induces a spin-orbit coupling. It plays an essential part in
chapters 3 to 5, where the coupling between internal and external degrees of
freedom will be used in different ways.



Chapter 1 Effective models for dipolar systems

1.1 Physical implementations of dipolar systems

In this section we briefly review some of the possible realizations of dipolar
systems in ultracold atomic and molecular systems and discuss some of the
similarities as well as important differences. A detailed review on dipolar
systems has been given by Lahaye et al. [70]. Other systems can also be used
to simulate dipolar models, but are not detailed here. Those include trapped
ions setups [81, 82], nuclear spins on diamond surfaces [83] or optical lattice
clocks [84].

1.1.1 Atoms with high magnetic moments

Highly dipolar atoms were among the first experimental realizations of ultracold
dipolar systems [65]. These atoms have large magnetic dipole moments due
to their particular electronic structure. In the recent years, a large number
of different dipolar atoms have been successfully cooled. Chromium with a
magnetic moment of 6µB is successfully used in experiments in both bosonic [65,
85] and fermionic forms [86]. Dysprosium with a magnetic moment of 10µB
is the atom with the largest dipole moment. Again, both bosonic [87] and
fermionic [88] quantum degenerate gases have been demonstrated. The same
is true for Erbium with a magnetic moment of 7µB, where bosonic [89] and
fermionic isotopes [90] have been cooled to quantum degeneracy.
In their electronic ground state, these atoms typically posses a large amount

of internal hyperfine states which contribute to a rich internal structure that
can be controlled via Zeeman shifts and optical pumping techniques. Compared
to polar molecules, magnetic atoms have a permanent dipole moment, even at
zero field. This is useful for certain applications which involve dipolar relaxation
such as demagnetization cooling [91–93]. Other advantages compared to polar
molecules are the generally simpler structure which makes them easier to cool
and manipulate as well as the absence of chemical reactions present in polar
molecules [94, 95].

1.1.2 Polar molecules

The dipolar effects in polar molecules can be much larger due to the electric
nature of the dipole moments which typically leads to an interaction strength
which is stronger by up to four orders of magnitude due to the α2 fine-structure
factor between electric and magnetic systems. For a detailed comparison of the
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interaction strengths, see Lahaye et al. [70]. Different species of polar molecules
have been successfully cooled, among them KRb [96, 97], NaK [98] and NaLi [99].
For a review, see Quéméner and Julienne [95].
In this thesis, we focus on the rotational structure of the polar molecules,

neglecting any vibrational and electronic excitations, as well as possible hyperfine
structure effects. Then, the internal structure of the molecules is given by the
rotational degree of freedom. Describing the molecule as a rigid rotor, the
internal structure is given by Hrot = BJ2 − dE, where B is the rotational
constant and d is the dipole moment which couples to an external electric field
E. In the absence of any external fields, the eigenstates are simply given by the
angular momentum states |J,M〉 where J is the total angular momentum and
M = −J, . . . , J is the projection onto the quantization axis.
In contrast to magnetic atoms, polar molecules do not have a dipole moment

in the absence of external fields, that is 〈J,M |d|J,M〉 = 0 for any J,M . An
external electric field, however, mixes states with different J and induces static
dipole moments which are eventually constrained by the permanent electric
dipole moment d of the molecules. Another important difference compared to
magnetic atoms is the rotational splitting B which is typically much larger than
the dipolar interaction strength between two molecules at realistic inter-molecule
separations, although this can be circumvented [P5].
Just like atoms, polar molecules can be trapped in optical lattices [100]. The

experimentally achievable fillings are, so far, much smaller than for atoms.
Nevertheless, long-range dipolar effects have been observed in optical lattices,
demonstrating one of the fundamental building blocks for dipolar spin mod-
els [77].

1.1.3 Rydberg atoms

While we mostly focus on polar molecules in this thesis, the physics and
energy scales in highly excited Rydberg atoms can be very similar to polar
molecules [101]. Dipolar effects have been observed in Rydberg atoms [80,
102–104] and the achievable dipole moments can be even larger than for polar
molecules [105]. While the internal structure can be more complicated due
to the fine structure, precise control through electric and magnetic fields still
allows to select a suitable set of internal states for the realization of dipolar
spin systems [80, 106].
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1.2 Dipole-dipole interaction

The aim of this section is to rewrite the familiar interaction between two dipoles
di and dj at positions Ri,Rj, namely

Hdd
ij = κ

|Rij|3
[
di · dj − 3

(
di · R̂ij

) (
dj · R̂ij

)]
= κ

|Rij|3
Dij, (1.1)

in a spherical tensor representation [107, 108] which will be useful throughout
this thesis. Equation (1.1) is given in terms of the relative vector Rij = Rj−Ri

and its normalized form R̂ij. The constant prefactor is given by κ = 1/4πε0
for electric dipoles and by κ = µ0/4π for magnetic dipoles. In the following,
we focus on the distance-independent part Dij = di · dj − 3(di · R̂ij)(dj · R̂ij)
of the dipole-dipole interaction which can be written in terms of the spherical
tensor T 2(di,dj) of rank two with the components

T 2
0 (di,dj) = 1√

6
(d+
i d
−
j + 2d0

id
0
j + d−i d

+
j ),

T 2
±1(di,dj) = 1√

2
(d±i d0

j + d0
id
±
j ),

T 2
±2(di,dj) = d±i d

±
j . (1.2)

It is constructed from the two dipole moments which are themselves rank-one
tensors with spherical components

d0
j = dzj , d±j = ∓ 1√

2
(
dxj ± id

y
j

)
. (1.3)

Using this, the dipole-dipole interaction can be written in a compact form as a
contraction of two rank-two tensors [109]:

Dij = −
√

6 T 2(C) · T 2(di,dj)

≡ −
√

6
2∑

m=−2
(−1)mC2

−m(θ, φ)T 2
m(di,dj). (1.4)

Here, T 2(C) is the tensor which is built from the modified spherical harmonics
C l
m(θ, φ) =

√
4π

2l+1Y
l
m(θ, φ). The spherical angles θ = θij and φ = φij describe

the direction of the vector R̂ij in the coordinate system of the quantization axis.
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We can expand this expression to get

Dij = (1− 3 cos2 θ)
[
d0
id

0
j + 1

2
(
d+
i d
−
j + d−i d

+
j

)]
− 3√

2
sin θ cos θ

[(
d0
id
−
j + d−i d

0
j

)
e+iφ−

(
d0
id

+
j + d+

i d
0
j

)
e−iφ

]

− 3
2 sin2 θ

[
e+2iφ d−i d

−
j + e−2iφ d+

i d
+
j

]
. (1.5)

It is worth noting that the T 2
m=0(di,dj)-terms in the first row conserve the

“internal” angular momentum while the m = 1 (m = 2) terms in the second
(third) row increase or decrease the internal angular momentum by one (two)
quanta.

1.2.1 High-symmetry alignments

For most applications, we will be concerned with two-dimensional systems where
the dipoles are aligned perpendicular to the plane. Then, the dipoles are also
perpendicular to the interconnecting axis Rij, implying θ = π/2. In this case,
the m = 1 terms drop out and the tensorial part reduces to

D
(2D)
ij = d0

id
0
j + 1

2
(
d+
i d
−
j + d−i d

+
j

)
− 3

2
(
d−i d

−
j e+2iφ +d+

i d
+
j e−2iφ

)
. (1.6)

For a one-dimensional geometry there are two high-symmetry alignments. If
the dipoles are perpendicular to the lattice direction (say, the x-direction) we
can set φ = 0, further simplifying Dij to

D
(1D,⊥)
ij = d0

id
0
j + 1

2
(
d+
i d
−
j + d−i d

+
j

)
− 3

2
(
d−i d

−
j + d+

i d
+
j

)
= dzi d

z
j + dyi d

y
j − 2dxi dxj . (1.7)

Conversely, if the dipoles point along the lattice direction, we can set θ = 0 in
equation (1.5) to get

D
(1D,‖)
ij = −2d0

id
0
j −

(
d+
i d
−
j + d−i d

+
j

)
= −2dzi dzj + dxi d

x
j + dyi d

y
j . (1.8)

1.2.2 Tilted field geometry

If we are not in a high-symmetry geometry, we can consider a more general
situation (see figure 1.1a) with a two-dimensional system in the xy plane and

19



Chapter 1 Effective models for dipolar systems

(a) Tilted-field 2D geometry (b) Schematic level structure

Fig. 1.1: (a) Illustration of the relevant axes and angles. The lattice lies in the xy
plane while the static external field E is tilted from the z axis by an angle Θ0 and
rotated around it by an angle Φ0 with respect to the x axis. The direction of the
vector Rij , connecting two dipoles, is determined by the polar angle φij . (b) Internal
rotational states of a dipole with a ground state |0〉 and excited state |1〉 with M = 0,
as well as two states |±〉 with M = ±1. The relevant static dipole moments (blue) and
transition dipole moments (red) are shown. The plus sign is for the transitions going
“upwards” and the minus sign for transitions going “downwards”.

an external polarizing field E pointing in an arbitrary direction [108]. Let the
external field direction be determined by the spherical angles Θ0 and Φ0:

Ê =


sin Θ0 cos Φ0
sin Θ0 sin Φ0

cos Θ0

 . (1.9)

As before, we are interested in the interaction between two dipoles which are
now separated by the in-plane vector

Rij =


Rij cosφij
Rij sinφij

0

 . (1.10)

For the angle θ between the dipole orientation Ê and the interconnection line
between the dipoles R̂ij, we find the relation

cos θ = Ê · R̂ij = sin Θ0 (cos Φ0 cosφij + sin Φ0 sinφij)
= sin Θ0 cos(φij − Φ0). (1.11)
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By defining the difference Φ̄ = φij − Φ0, we can express the relevant terms in
the dipole-dipole interaction from equation (1.5) as

f0(Θ0, Φ̄) ≡ 1− 3 cos2 θ = 1− 3 sin2 Θ0 cos2 Φ̄,
f1(Θ0, Φ̄) ≡ sin θ cos θ eiφ = sin Θ0 cos Φ̄

(
cos Θ0 cos Φ̄ + i sin Φ̄

)
,

f2(Θ0, Φ̄) ≡ sin2 θ e2iφ =
(
cos Θ0 cos Φ̄ + i sin Φ̄

)2
. (1.12)

Those are easily seen to reduce to the expressions (1.6) in the case of a perpen-
dicular external field with Θ0 = 0, implying θ = π/2 and Φ̄ = φij. In total, the
tensorial part of the dipole-dipole interaction is given by

Dij = f0(Θ0, Φ̄)
[
d0
id

0
j + 1

2
(
d+
i d
−
j + d−i d

+
j

) ]
− 3√

2

[
f1(Θ0, Φ̄)(d0

id
−
j + d−i d

0
j)− f1(Θ0,−Φ̄)(d0

id
+
j + d+

i d
0
j)
]

−3
2

[
f2(Θ0, Φ̄)d−i d−j + f2(Θ0,−Φ̄)d+

i d
+
j

]
. (1.13)

1.3 Effective models

The different dipolar models throughout this thesis will be largely determined
by a particular choice of internal states of the dipoles. These states can be
additionally “dressed” by external DC and AC fields, with the details depending
on the particular physical realization. In the following, we look at several
specific choices. Each of them corresponds to a rise in complexity compared to
the previous one, but also introduces additional properties and characteristics.

1.3.1 Realizing Ising and XY interactions

We start with the simplest case where we have chosen two states, denoted as
|0〉 and |1〉, which have the same M quantum number (see figure 1.1b). Then,
only the d0

id
0
j part of the dipolar interaction is relevant. We define the dipole

elements

d0 = 〈0|d0|0〉, d1 = 〈1|d0|1〉, q1 = |〈1|d0|0〉| = |〈0|d0|1〉|, (1.14)

where dα denotes a static dipole moment and qα a transition dipole element.
The evaluation of these matrix elements for polar molecules in the presence of
external fields is straightforward and has been described in detail elsewhere [107].
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Using the projectors P 0 = |0〉〈0| and P 1 = |1〉〈1|, we can now express the dipole-
dipole interaction (1.6) in the {|0〉 , |1〉} subspace as

Hdd
ij = κ

R3
ij

[
d2

1P
1
i P

1
j + d2

0P
0
i P

0
j + d1d0(P 1

i P
0
j + P 0

i P
1
j )

+ q2
1(σ+

i σ
−
j + σ−i σ

+
j )
]
, (1.15)

where we have neglected all processes which are not energy-conserving, i.e. terms
that do not conserve the number of excitations. Using σz = P 1 − P 0 and
1 = P 1 + P 0 we find

Hdd
ij = κ

R3
ij

[(d1 − d0)2

4 σzi σ
z
j + q2

1(σ+
i σ
−
j + σ−i σ

+
j )

+ d2
1 − d2

0
4 (σzi + σzj ) + (d1 + d0)2

4

]
. (1.16)

Here, the first two terms describe Ising- and XY-type interactions between the
two-level dipoles. The third term is equivalent to a magnetic field in z direction
and the last term is a constant energy offset. Typically, we will be interested in
the interaction terms in the first line. Note, however, that the “magnetic field”
term and the constant offset depend on the positions of all other dipoles. If the
system is not translationally invariant, these terms describe spatially dependent
contributions.

Dipolar XXZ Hamiltonian: Using the spin one-half operators Sαi = ~σαi /2, we can
write the interaction Hamiltonian for a system of interacting dipoles as

H = 1
2
∑
i6=j

Hdd
ij =

∑
i6=j

κ

~2R3
ij

[(d1 − d0)2

2 Szi S
z
j + q2

1(Sxi Sxj + Syi S
y
j )
]

= Ja3

~2
∑
i6=j

cos θ Szi Szj + sin θ (Sxi Sxj + Syi S
y
j )

R3
ij

(1.17)

where we have introduced J cos θ = κ(d1 − d0)2/2a3 and J sin θ = κq2
1/a

3 for a
convenient parametrization. The length a (lattice constant) has been introduced
to define an energy scale J , which will be useful for future applications. This
model is reminiscent of the famous XXZ Hamiltonian, where the nearest neighbor
interactions are replaced by the dipolar R−3

ij interaction. For particular values
of the θ parameter, this model describes an Ising model (θ = 0, π), XY model
(θ = ±π/2) or Heisenberg model (θ = π/4, 3π/4). The modifications due to the
dipolar interaction are subject of chapter 2 of this thesis.
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Angular momentum difference: Staying in the regime of two-level dipoles, we can
reach a different but related situation, if the upper state |1〉 is replaced by the
M = 1 state |+〉, see figure 1.1b. Proceeding similarly as before, we define the
relevant dipole matrix elements

d0 = 〈0|d0|0〉, d+ = 〈+|d0|+〉, q+ = |〈+|d+|0〉| = |〈0|d−|+〉|. (1.18)

Note that we can choose the phases of |0〉 and |+〉 freely, allowing us to
choose real values for the transition dipole elements. Be aware, however, that
〈0|d−|+〉 = 〈+|(d−)†|0〉∗ = −〈+|d+|0〉∗ due to the definition of d±. In contrast
to the previous section, the term d0

id
0
j only generates an interaction term

proportional to σzi σzj , as the angular momentum of the two states is different.
However, the term d+

i d
−
j in the dipole-dipole interaction provides the same

excitation-conserving tunneling term proportional to σ+σ− that we got before.
The different nature of the states leads to a flipped sign compared to the previous
model:

Hdd
ij = κ

R3
ij

[(d+ − d0)2

4 σzi σ
z
j −

q2
+
2 (σ+

i σ
−
j + σ−i σ

+
j )

+ d2
+ − d2

0
4 (σzi + σzj ) + (d+ + d0)2

4

]
. (1.19)

This allows us to tune the model in equation (1.17) to different θ values.

Magnetic dipoles: As an immediate application of equation (1.19), we consider
spin S = 1/2 atoms with a magnetic dipole moment d = µBgσ/2. Then, the
dipole matrix elements are given by

d0 = 〈0|d0|0〉 = −µBg/2,
d+ = 〈+|d0|+〉 = +µBg/2,
q+ = |〈+|d+|0〉| = 〈+|

√
2σ+|0〉 = +µBg/

√
2. (1.20)

Including the energy non-conserving terms proportional to σ−i σ−j , the Hamilto-
nian reduces to

Hdd
ij = κµ2

Bg
2

4R3
ij

[
σzi σ

z
j −

(
σ+
i σ
−
j + 3σ−i σ−j e+2iφ + h.c.

)]
. (1.21)

This type of interaction between two magnetic dipoles will be utilized in chap-
ter 3, where we make use of the dipolar relaxation terms.
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1.3.2 Excitation hopping: mapping to hard-core bosons

It is often useful to think about spin models in terms of excitations above a
certain well defined (ground) state [110]. As an exemplary case, we take the
spin 1/2 model from equation (1.17) and write it in terms of S± = Sxi ± iS

y
i :

H = Ja3

~2
∑
i6=j

1
R3
ij

[
cos θ Szi Szj + 1

2 sin θ (S+
i S
−
j + S−i S

+
j )
]
. (1.22)

Assume that, for some set of parameters, the system is in the state |G〉 =∏
i |↓〉i and we are interested in the excitations. Then, for each site, we can

introduce the operator bi = S−i /~ = |↓〉〈↑|i as well as its adjoint b†i = S+
i /~.

These operators satisfy the commutation relation [bi, b
†
j] = (1− 2ni)δij, where

ni = b†ibi = Szi /~+ 1/2. For i 6= j, these are just bosonic commutation relations.
However, on a single site, we find bibi = b†ib

†
i = 0 and {bi, b

†
i} = 1. When

interpreting b†i as the creation of a single particle (excitation) at site i, these
equations formalize the so-called hard core constraint: only a single excitation
can be present at each site. Keeping the constraint in mind, we can treat these
operators as bosonic creation and annihilation operators for single excitations
above the vacuum |G〉 with bi |G〉 = 0 and write the model as

H = J
∑
i6=j

a3

R3
ij

[
cos θ ninj + 1

2 sin θ
(
b†ibj + bib

†
j

)]
. (1.23)

For a detailed treatment, see chapter 2 and appendix B. In the following, we
will extend this idea to dipoles with more than two internal states.

1.3.3 Three-level dipoles: appearance of spin-orbit coupling

First, we investigate a V-type level scheme including three internal states of a
dipole, |0〉, |+〉 and |−〉, as shown in figure 1.1b. The relevant dipole matrix
elements are

d0 = 〈0|d0|0〉, d± = 〈±|d0|±〉, q± = |〈±|d±|0〉|. (1.24)

As before, we define a vacuum state |G〉 = ∏
i |0〉i as well as hardcore bosonic

operators b± = |0〉〈±| and n± = b†±b±. We can either think of two different
kinds of bosons (‘+’ excitations and ‘−’ excitations) or think of a single boson
with an internal spin degree of freedom. It is useful to write the spherical
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components of the dipole operator in terms of the bosonic operators:

d0 = d+n+ + d−n− + d0(1− n+ − n−)
= d0 + (d+ − d0)n+ + (d− − d0)n−,

d+ = q+b
†
+ − q−b−,

d− = −q+b+ + q−b
†
−. (1.25)

Restricting ourselves to a two-dimensional geometry with a perpendicular
polarization, we can express the relevant parts of the dipole-dipole interaction
from equation (1.6) as

d0
id

0
j = d2

0 + d0(d+ − d0)(n+,i + n+,j) + d0(d− − d0)(n−,i + n−,j)
+ (d+ − d0)2n+,in+,j + (d− − d0)2n−,in−,j

+ (d+ − d0)(d− − d0)(n+,in−,j + n−,in+,j)
d+
i d
−
j = −q2

+b
†
+,ib+,j − q2

−b
†
−,jb−,i

d+
i d

+
j = −q+q−(b†+,ib−,j + b†+,jb−,i) (1.26)

where we have neglected any excitation non-conserving terms. Further drop-
ping the constant terms and “magnetic field” terms, we find the many-body
Hamiltonian

H = 1
2
∑
i6=j

Hdd
ij =

∑
i6=j

tαβij b
†
α,ibβ,j + 1

2
∑
i 6=j

V αβ
ij nα,inβ,j. (1.27)

Here, a summation over the α, β indices, which label the internal state of
the excitation, is assumed. This is a (generalized) hard core Bose-Hubbard
Hamiltonian, including long-range hopping terms and long-range density-density
interactions. In our case, the tunneling rates and interaction matrix elements
are given by

tij = κ

R3
ij

 −q2
+
2

3q+q−
2 e−2iφij

3q+q−
2 e+2iφij −q2

−
2

 ,
V αβ
ij = κ

R3
ij

(dα − d0)(dβ − d0). (1.28)

By introducing the lattice spacing a, we can define the nearest-neighbor tunneling
rates

t+ = κq2
+

2a3 , t− = κq2
−

2a3 , w = 3κq+q−
2a3 . (1.29)
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Using these, the single-particle tunneling part of the Hamiltonian can be written
as

Hsingle =
∑
i 6=j

a3

R3
ij

bi,+
bi,−

†  −t+ w e−2iφij

w e2iφij −t−

bj,+
bj,−

 . (1.30)

This model is the basis for the realization of topological band structures in
chapters 4 and 5. The off-diagonal tunneling elements are a manifestation of
the spin-orbit coupling which is present in these dipolar models.

One-dimensional system: In one dimension, we can always choose φij = 0. Fur-
thermore, if q+ = q−, the tunneling elements simplify to

tij = κq2

2R3
ij

(3σx − 1). (1.31)

By transforming to |x〉 = (|+〉 − |−〉)/
√

2 and |y〉 = (|+〉 + |−〉)/
√

2, the
tunneling part can be diagonalized:

tij = κq2

R3
ij

−2 0
0 1

 . (1.32)

If the energy of the |x〉 , |y〉 manifold is low enough compared to the |0〉 state,
this causes excitations to condense in the |x〉 state, building a ferroelectric state
of matter. The accompanying quantum phase transition has been investigated
by Klinsmann et al. [P5, 111].

1.3.4 General case: four level dipoles in a tilted external field

Finally, we briefly discuss the most general case when all four states in figure 1.1b
are involved. We assume the geometry from figure 1.1a with a possibly tilted
external field. Introducing a bosonic operator b1 = |1〉〈0| for the additional
state, we can write the tunneling rates in the basis {+, 1,−}:

tij = κ

R3
ij


−q2

+
2 f0

3q+q1√
2 f∗1

3q+q−
2 f∗2

3q+q1√
2 f1 q2

1f0 −3q1q−√
2 f∗1

3q+q−
2 f2 −3q1q−√

2 f1 −q2
−
2 f0

 . (1.33)

Here, fm = fm(Θ0, φij − Φ0) are the functions defined in equation (1.12). Note
that f1(Θ0, φij − Φ0) = 0 for an external field which is perpendicular to the
two-dimensional plane (Θ = 0). This leads to an effective decoupling of the |1〉
state from the other two, taking us back to the model in equation (1.30).

26



2
Anomalous behavior of

dipolar spin systems

The foundation for understanding the behavior and properties of quantum matter
is based on models with short range interactions. Experimental progress in
realizing dipolar spin systems has however increased the interest in systems with
strong dipole-dipole interactions. While many properties of quantum systems
with dipole-dipole interactions derive from our understanding of systems with
short range interactions, the dipole-dipole interaction can give rise to phenomena
not present in their short range counterparts. Prominent examples are the
description of dipolar Bose-Einstein condensates, where the contribution of the
dipolar interaction can not be included in the s-wave scattering length [70], and
the absence of a first order phase transition with a jump in the density [112]. In
this chapter, we demonstrate that two-dimensional spin systems with dipolar
interactions can exhibit anomalous behavior.
A remarkable property of cold polar molecules confined into two dimensions

is the potential formation of a crystalline phase for strong dipole-dipole interac-
tions [113, 114]. In contrast to a Wigner crystal with Coulomb interactions [115],
the crystalline phase exhibits the conventional behavior expected for a crystal
realized with a short range repulsion and the characteristic 1/r3 behavior of the
dipole interaction can be truncated at distances involving several inter-particle
separations. Several strongly correlated phases have been predicted, which
behave in analogy to systems with interactions extending over a finite range,
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Fig. 2.1: (a) Mean-field phase diagram for the XXZ model with dipolar interactions,
where tan θ is the ratio between the XY and the Ising spin couplings. (b) Ground state
energy per particle: the dashed lines show the mean-field predictions, while the solid
lines include the contributions from the spin waves. At the critical values θc and θ̃c,
the ground state energy exhibits the jump ∆ec ≈ 0.14J and ∆ẽc ≈ 0.06J , indicating
the potential formation of an intermediate phase.

such as a Haldane phase [116], supersolids [117, 118], pair supersolids in bilayer
systems [119], valence bond solids [120], as well as p-wave superfluidity [121],
and self-assembled structures in multi-layer setups [122].
On the other hand, it has been demonstrated that polar molecules in optical

lattices are also suitable for emulating quantum phases of two-dimensional
spin models [71, 73, 108]. Here, we demonstrate that such spin models with
dipole-dipole interactions exhibit several anomalous features, which are not
present in their short-range counterparts.

2.1 Dipolar XXZ model

We consider a two-dimensional setup on a square lattice, where each lattice site is
occupied by one dipolar particle. We focus on models with two internal degrees
of freedom, such that we can define a spin 1/2 system. Then, as demonstrated
in equation (1.17) on page 22, the Hamiltonian reduces to a XXZ model with
dipole-dipole interaction between the spins [73, 123]:

H = Ja3

~2
∑
i6=j

cos θ Szi Szj + sin θ (Sxi Sxj + Syi S
y
j )

|Ri −Rj|3
. (2.1)
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Here, the first term with strength J cos θ accounts for the static dipole-dipole
interaction between the different internal levels, while the last term with strength
J sin θ describes the virtual exchange of a photon between the two spins. The
constant a denotes the lattice spacing. The dependence of the couplings J and θ
on the microscopic parameters is discussed in detail in section 1.3.1 and related
works by Müller [124] and Gorshkov et al. [73, 108]. The one-dimensional
version of this model has been studied in [72].

2.2 Mean-field theory

Before analyzing this spin model on the square lattice, we shortly discuss the
phase diagram of its counterpart with nearest neighbor interactions only. In
this case, the phase diagram is highly symmetric and exhibits four different
phases:

(I-AF) −π/4 < θ < π/4
Ising antiferromagnetic phase with excitation gap

(XY-AF) π/4 < θ < 3π/4
XY antiferromagnetic phase with linear excitation spectrum

(I-F) 3π/4 < θ < 5π/4
Ising ferromagnetic phase with excitation gap

(XY-F) 5π/4 < θ < 7π/4
XY ferromagnetic phase with linear excitation spectrum

The modifications of the phase diagram due to dipole-dipole interactions between
the spins can be analyzed within mean-field theory. The main influence is the
reduction of the stability for the antiferromagnetic phases, as the next-nearest
neighbor interaction introduces a weak frustration to the system. The ground
state energy per lattice site within mean-field reduces to eI-AF = J cos θ εK/4
and eXY-AF = J sin θ εK/4 for the antiferromagnetic phases. The summation over
the dipole interaction comes down to a dimensionless parameter εK ≈ −2.646,
which is related to the dipolar dispersion [P1, P6, 75, 124]

εq =
∑
j 6=0

eiqRj
a3

|Rj|3
(2.2)

29



Chapter 2 Anomalous behavior of dipolar spin systems

GS α spin wave excitation spectrum Eα
q ground state energy per spin eα

I-F J(sin θ εq − cos θ ε0) 3J cos θ ε0
4 + 1

2

∫ dq
v0

Eα
q = J cos θε0

4

XY-F J
√

sin θ (εq − ε0)(cos θ εq − sin θ ε0) 3J sin θ ε0
4 + 1

2

∫ dq
v0

Eα
q

I-AF J
√

(sin θ εq+K − cos θ εK)(sin θ εq − cos θ εK) 3J cos θ εK
4 + 1

2

∫ dq
v0

Eα
q

XY-
AF

J
√

sin θ (εq+K − εK)(cos θ εq − sin θ εK) 3J sin θ εK
4 + 1

2

∫ dq
v0

Eα
q

Table 2.1: Spin wave excitation spectrum Eα
q and ground state energy eα.

at the corner of the Brillouin zone with K = (π/a, π/a). Conversely, the ferro-
magnetic phases are enhanced with a mean-field energy eI-F = J cos θ ε0/4 and
eXY-F = J sin θ ε0/4 where ε0 ≈ 9.033. The modifications to the phase diagram
are shown in figure 2.1: first, the Heisenberg points at θ = π/4, 5π/4 are pro-
tected by the SU(2) symmetry and still provide the transition between the Ising
and the XY phases. However, the transitions from the ferromagnetic towards the
antiferromagnetic phases are shifted to the values θc = arctan(εK/ε0) ≈ −0.1π
and θ̃c = π + arctan(ε0/εK) ≈ 0.6π.
The dipole dispersion εq in equation (2.2) converges very slowly due to the

characteristic power law decay of the dipole-dipole interaction. It is this slow
decay, which will give rise to several peculiar properties of the system. There-
fore, we continue first with a detailed discussion of this dipolar dispersion. The
precise determination of εq is most conveniently performed using an Ewald
summation [115, 124], which transforms the summation over the slowly converg-
ing terms with algebraic decay into a summation of exponential factors. The
complete derivation is given in section A.4. The main result is equation (A.22)
with

εq =− 2πa|q| erfc(a|q|/2
√
π) + 4π

(
e−

a2|q|2
4π − 1

3

)

+ 2π
∑
i6=0

∞∫
1

dλλ3/2
[
e−πλ(

Ri
a +aq

2π )2

+ λ2e−
πλ|Ri|

2

a2 +iRiq
]

(2.3)

where erfc(x) the complementary error function. The important feature of the
dipole dispersion is captured by the first term in equation (2.3), which gives
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Chapter 2 Anomalous behavior of dipolar spin systems

rise to a linear and non-analytic behavior εq ∼ ε0 − 2πa|q| for small values
|q| � 1/a, while all remaining terms are analytic. It is this linear part, which
will give rise to several unconventional properties of spin systems in 2D with
dipolar interactions, and is a consequence of the slow decay of the dipole-dipole
interaction. The summation in the last term converges exponentially and
guarantees the periodicity of the dipolar dispersion. The quantitative behavior
is shown in figure 2.2a. For q = 0 and q = K, exact results can be derived,
giving ε0 ≈ 9.033 and εK = (1/

√
2− 1)ε0 ≈ −2.646 (details in section A.4.1).

2.3 Spin-wave analysis

Next, we analyze the excitation spectrum above the mean-field ground states
within a spin wave analysis. This theory is well established [125, 126], and its
application for a spin system with dipolar interaction is straightforward. It
allows for the full treatment of the 1/r3 tail of the dipole-dipole interactions.
The details of the calculation for one specific case (the antiferromagnetic XY
model) are presented in appendix B. The results are summarized in table 2.1,
and shown in figure 2.2. In the following, we present a detailed discussion for
each of the four ordered phases.

2.3.1 Ising ferromagnetic phase

The ferromagnetic mean-field ground state is twofold degenerate with all spins
either pointing up or down, and is the exact ground state for θ = π, i.e.,
|G〉 = ∏

i |↓〉i. Within the spin wave analysis, the ground state is not modified
and the excitation spectrum reduces to EI-F

q , see table 2.1. The spin waves exhibit
an excitation gap ∆: (i) approaching the Heisenberg point at θ = −3π/4, the
excitation gap vanishes, indicating the instability towards the XY ferromagnet,
(ii) in turn, for antiferromagnetic XY couplings, the gap is minimal at K,
vanishes at the mean-field transition point θ̃c and drives an instability towards
the formation of antiferromagnetic ordering.
In contrast to any short range ferromagnetic spin model, the dispersion relation

EI-F
q is not quadratic for small momenta, but rather exhibits a linear behavior, i.e.,

EI-F
q ∼ EI-F

0 +~c|q| with velocity c = −2πaJ sin θ/~, which is a consequence of the
dipolar interaction in the system. This anomalous behavior strongly influences
the dynamics of the spin waves. The dynamical behavior of a single localized
spin excitation is shown in figure 2.3a for a Gaussian initial state. In order to
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Fig. 2.2: Spin wave excitations with Γ = (0, 0), M = (0, π/2), and K = (π/a, π/a)
for different θ angles. (a) Spectrum of the I-F phase which also shows the behavior of
the dipolar dispersion εq for θ = −3π/4, see red line. (b-d) Spectrum for the XY-F,
I-AF and XY-AF phases. Each red line is a critical excitation spectrum indicating an
instability.

probe the linear part in the dispersion relation, the width σ of the localization
is much larger than the lattice spacing a, and therefore, the dynamics is well
described by a continuum description. Instead of the conventional quantum
mechanical spreading, one finds a ballistic expansion of a cylindrical wave
packet with velocity c. In addition, the dipole-dipole interaction also strongly
influences the correlation function. Within conventional perturbation theory, we
find algebraic correlations 〈Sxi Sxj 〉 ∼ 1/|r|3. This algebraic decay of correlations
even in gapped systems is a peculiar property of spin models with long-range
interactions [127, 128].

2.3.2 XY-ferromagnetic phase

Here, the spins are aligned in the xy plane. Within the spin wave analysis, we
obtain the excitation spectrum EXY-F

q and the modified ground state energy eXY-F.
In the low momentum regime, the dispersion relation behaves as EXY-F

q ∼
√
|q|,

in contrast to the well known linear Goldstone modes for the broken U(1)
symmetry. This anomalous behavior is a peculiar property of the dipolar
interaction, and the most crucial consequence is the existence of long-range
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Fig. 2.3: Time evolution for localized spin excitations described by the Gaussian wave
packet ψ0(r) = e−|r|

2/2σ2
/
√
πσ2 with σ � a in the continuum description. (a) For

a linear dispersion c|q| in the I-F phase, the dynamics is described by cylindrical
symmetric wave packets (see inset) traveling with velocity c, instead of the conventional
quantum mechanical spreading for massive systems. (b) For an anomalous dispersion
with α

√
|q| in the XY-F phase, the behavior at long times t �

√
σα reduces to a

scaling function ξ(z) via |ψ(x, τ)|2 = ξ(x/τ − 1/2)/τ 2 (see inset) using rescaled time
τ = tα/

√
σ and space x = |r|/σ coordinates. It describes a cylindrical symmetric wave

front with velocity α
√
σ.

order for the continuous broken symmetry at finite temperatures even in two-
dimensions [129]. This property follows immediately from the above spin wave
analysis: the order parameter reduces to m ≡ ∆m− 1/2 = 〈Sxi 〉/~, where ∆m
accounts for the suppression of the order parameter by quantum fluctuations.
Within spin wave theory, it reduces to (∆m = 〈a†iai〉)

∆m =
∫ dq
v0

[cos θ q + sin θ(εq − 2ε0)
4Eq

coth
(Eq

2T

)
− 1

2

]
. (2.4)

This expression is finite and small: at T = 0, the integrand behaves as ∼ 1/
√
|q|

and we find a suppression of the order ∆m ≈ 0.008 at θ = −π/2. The smallness
of this corrections due to quantum fluctuations is a good justification for the
validity of the spin wave analysis. On the other hand, even at finite temperatures,
the low momentum behavior of the integrand takes the form ∼ T/|q|, and
provides a finite contribution in contrast to a conventional Goldstone mode,
which provides a logarithmic divergence.
The appearance of a long-range order at a finite temperature for a ground state

with a broken U(1) symmetry is a peculiar feature of dipole-dipole interactions,
which renders the system more mean-field like. Note that this finding is
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correlation function T = 0 0 < T < Tc Tc < T

〈Szi Szj 〉 ∼ |r|−5/2 ∼ |r|−3 ∼ |r|−3

〈Syi S
y
j +Sxi S

x
j 〉 −m2 ∼ |r|−3/2 ∼ |r|−1 ∼ |r|−3

Table 2.2: Correlation functions in the XY-F phase predicted by the spin wave analysis
and high temperature expansion.

consistent with the well-known Mermin-Wagner theorem as the latter does not
exclude long-range order for interactions with a 1/rα tail, where α ≤ 4 [130,
131]. The system exhibits a finite temperature transition into a disordered phase
at a critical temperature Tc. This behavior is also expected from the analysis of
the classical XY model with dipolar interactions [129]. The correlation functions
determined within spin wave theory and through a high temperature expansion
are summarized in table 2.2. For details, see appendices B and C. Note that
the spin wave analysis neglects the influence of vortices. This is well justified
here, as the dipolar interactions gives rise to a confining of vortices, i.e., the
interaction potential between a vortex–anti-vortex pair increases linearly with
the separation between the vortices.
The spin wave dynamics caused by the anomalous dispersion relation ∼

√
|q|

are shown in figure 2.3b for a Gaussian wave packet of width σ. Interestingly,
the propagation velocity of the wave packets is proportional to

√
σ and thus

faster for broad wave packets, in contrast to the usual dispersion dynamics.
This is a consequence of the group velocity vq ∼ 1/

√
|q| which is large for the

small momentum components involved in the broad wave packets.

2.3.3 Ising antiferromagnetic phase

Next, we focus on the antiferromagnetic phases and start with the I-AF ground
state. Again, the ground state is two-fold degenerate on bipartite lattices. We
choose the ground state with spin up on sublattice A and spin down on sublattice
B, i.e., |G〉 = ∏

i∈A |↑〉i
∏
j∈B |↓〉j. The spin wave analysis is straightforward, and

we obtain the spin wave excitation spectrum EI-AF
q and ground state energy eI-AF,

see table 2.1. The system exhibits an excitation gap as expected for a system
with a broken Z2 symmetry. However, the dipole interactions give rise to an
anomalous behavior at small momenta similar to the ferromagnetic Ising phase
with EI-AF

q − EI-AF
0 ∼ − sin θ |q|. Consequently, the dynamics of spin waves at
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low momenta is analogous to the Ising-ferromagnet, see figure 2.3. Within spin
wave theory, we obtain that the antiferromagnetic correlations 〈(−1)i−jSβi S

β
j 〉

and the ferromagnetic correlations 〈Sβi S
β
j 〉 decay with the power law ∼ 1/|r|3

with β = x, y, z determined by the characteristic behavior of the dipole-dipole
interaction. The excitation gap vanishes approaching the mean field critical
point θc towards XY- ferromagnetic phase, and also approaching the Heisenberg
point at θ = π/4. For the latter, the qualitative behavior of the excitation
spectrum changes drastically within a very narrow range of θ, see figure 2.2c.

2.3.4 XY antiferromagnetic phase

Finally, we analyze the properties of the antiferromagnetic XY phase. In contrast
to the ferromagnetic XY phase, the excitation spectrum EXY-AF

q exhibits the con-
ventional linear Goldstone mode, see figure 2.2d. This can be understood, as the
antiferromagnetic ordering introduces a cancellation of the dipolar interactions,
and provides a behavior in analogy to its short range counter part: true long-
range order exists only at T = 0, while at finite temperature the system exhibits
quasi long-range order and eventually undergoes a Kosterlitz-Thouless transition
for increasing temperature. Nevertheless, the dipole-dipole interactions give rise
to the characteristic algebraic correlations, e.g., 〈(−1)i−jSzi Szj 〉 ∼ 1/|r|3 for the
antiferromagnetic transverse spin correlation at zero temperature.

2.4 Phase transitions

Finally, we comment on the transitions between the different phases. The spin
wave analysis predicts, that the excitation spectrum for each phase becomes
unstable at the mean-field critical points: For the Heisenberg points at θ =
π/4, 5π/4, such a behavior is expected due to the enhanced symmetry and one
indeed finds, that at the critical point, the excitation spectrum from the Ising
phase coincides with the spectrum from the XY ground state. Consequently,
the spin waves provide the same contribution to the ground state energy,
see figure 2.1b. In turn, at the instability points θc and θ̃c, the excitation
spectrum of the antiferromagnetic phase is different from the spectrum of the
ferromagnetic phase. Consequently, the ground state energy within the spin
wave analysis exhibits a jump, see figure 2.1a. Such a behavior is an indication
for the appearance of an intermediate phase. However, this question can not be
conclusively answered within the presented analysis due to the limited validity
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of spin wave theory close to the transition points. However, the appearance of
a first order phase transition can be excluded by arguments similar to the one
used by Spivak and Kivelson [112].
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3
Driving dipolar fermions

into the Quantum Hall regime

Despite being ideal models for complicated solid state systems, ultracold quan-
tum gases lack one important aspect of the electronic complex: because of the
charge neutrality of the atoms, there are no mobile charge carriers that possess
a direct coupling to the magnetic vector potential. Plenty of interesting effects,
however, arise when charged particles are subject to high magnetic fields in low
dimensional systems. The most prominent ones are the integer quantum Hall
effect [7], as well as the fractional quantum Hall effect [21] as an example for
the appearance of a topological state, potentially giving rise to fundamental
excitations with non-Abelian statistics.
Several schemes have been proposed to simulate the effect of magnetic fields

for neutral particles. Artificial gauge fields can be created by imprinting phases,
making use of the Peierls substitution in optical lattices [36, 40, 132], or by
tailoring spatially dependent Hamiltonians to generate geometric phases [133],
for an overview see Dalibard et al. [134]. Rapidly rotating quantum gases
provide an alternative route via Larmor’s theorem, using the analogy between a
charged particle in a constant magnetic field and a neutral particle in a rotating
frame [30, 31]. Several theoretical proposals demonstrate the appearance of
highly correlated quantum Hall states for dipolar bosons [135] and fermions [136,
137]. However, the experimental realization of quantum Hall states has been
elusive so far. For rotating systems, the main problem is the precise control
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Fig. 3.1: Dipolar particles, trapped in a
quasi-2D geometry with a radial confine-
ment ω. When the external magnetic field
B is tuned in resonance, dipolar interac-
tions Vdd can induce spin relaxation pro-
cesses, leading to a net angular momentum
increase of 1~ per particle.

ω

2~

x

y

B, z

Vdd

on the rotation frequency, which is required to reach the lowest Landau level
without crossing the rotational instability [28].
We propose a new scheme to access the regime of fast rotation for a dipo-

lar Fermi gas such as 161Dy or 167Er, where quantum degeneracy has been
demonstrated recently [88, 90]. Starting from a spin-polarized state, dipolar in-
teractions can lead to spin relaxation with a net angular momentum transfer [91].
This is known as the Einstein–de Haas effect [138] and has been proposed to
create rotating Bose-Einstein condensates [139, 140]. We suggest to use this
mechanism in a trapped, quasi-two-dimensional system to control the amount
of angular momentum, and – by repeated application of the transfer scheme –
reach the lowest Landau level (LLL). This scheme allows for direct control over
the total angular momentum instead of the rotation frequency and circumvents
the prime experimental difficulties toward the realization of the quantum Hall
regime in harmonically trapped gases.

3.1 Setup

We consider a system of N fermionic atoms with magnetic dipole moments d.
While extensions to schemes with polar molecules are possible, the permanent
dipole moments of the atoms lead to some simplifications. To shorten the
discussion, we consider only two internal levels (pseudospin 1/2). The particles
are confined in a quasi-two-dimensional harmonic trap with a radial frequency
ω and an axial frequency ωz. For strong z confinement ~ωz � EF, where EF
is the Fermi energy derived below, the system is effectively two dimensional,
see figure 3.1. The interactions between the particles are described by the
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dipolar interaction potential in equation (1.1)

Vdd(R) = κ

|R|3
[
di · dj − 3(di · R̂)(dj · R̂)

]
(3.1)

where R = Ri −Rj is the relative distance between the two particles. Note
that a weak s-wave scattering length does not change the general behavior of
our transfer scheme and is ignored in the following. For two internal levels, we
can write the dipole moment d = µBgS/~ = µBgσ/2 in terms of the Landé
factor g and the Pauli matrices σ.

3.2 The transfer process

In two dimensions, using the spin raising and lowering operators σ± = (σx ±
iσy)/2, the interaction between these two-level dipoles reduces to

Vdd(R, φ) = Cdd

R3

[
σzi σ

z
j − (σ+

i σ
−
j + 3 e2iφ σ−i σ

−
j + h.c.)

]
, (3.2)

which is the expression given in equation (1.21) on page 23. Here, R and φ are
polar coordinates in the xy plane and Cdd = κµ2

Bg
2/4 characterizes the strength

of the interaction. Note that this expression can also be derived from the full
interaction (3.1) by integrating out the fast motion perpendicular to the xy
plane in the limit ωz →∞.
The dipolar interaction features three different processes. The first term

proportional to σzi σzj describes spin-preserving collisions, while the second term
σ+
i σ
−
j accounts for spin-exchange collisions. These terms conserve separately

the total spin and the total angular momentum. Finally, the third operator
e2iφ σ−i σ

−
j describes the relaxation process that transfers spin to orbital angular

momentum, see figure 3.2a,b. The sum L+ S is still conserved and the spin flip
leads to an orbital motion with an increase of relative angular momentum of 2~.
It is this process that allows us to drive the dipolar particles to higher angular

momentum states. Assuming the gas is initially in a spin-polarized state with
the external magnetic field pointing in the positive z direction, the particles will
undergo spin relaxation when the field is adiabatically ramped through zero
and finally pointing in the negative z direction. During this adiabatic ramping,
the total orbital angular momentum is increased by N~ with N the number of
particles in the system. For the goal to reach the lowest Landau level regime, it
is required to transfer L? ≡ N(N − 1)/2 · ~ angular momentum to the orbital
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Fig. 3.2: (a) Energy levels of a 2D harmonic oscillator. (b) One of the possible spin-flip
processes, bringing both particles to higher angular momentum states. (c) Eventually,
after repeated application of the driving scheme, all particles occupy the lowest Landau
level.

degrees of freedom, as described below. It is therefore necessary to reverse the
magnetic field and the spins to their original position, in a way that guarantees
repeated application of the transfer scheme without affecting the orbital angular
momentum.
To achieve this, we propose rotating the magnetic field by 180◦ around an

arbitrary axis lying in the xy plane (say, the y axis), slowly enough such that
the spins rotate adiabatically, but fast enough such that the orbital degrees of
freedom cannot follow. To satisfy the adiabaticity with respect to the spins and
diabaticity with respect to the external degrees of freedom, the speed of the
rotation γrot has to satisfy ω � γrot � ωL, where ωL = gµBB/~ is the Larmor
frequency. After the rotation, the magnetic field has enclosed a D-shaped path
in the xz plane. The spins are now pointing upward (in analogy to figure 3.2a
but with increased angular momentum) and the transfer scheme can be applied
again. Multiple repetitions are realistic and only limited by the finite lifetime
of the trapped ensemble.
High angular momentum states are indeed related to the quantum Hall regime,

as there is a close connection between the Landau levels and the states |n,m〉
of a two-dimensional harmonic oscillator in terms of a radial quantum number
n = 0, 1, . . . and angular momentum ~m, see figure 3.2a. In particular, the
ground state of N fermions filled into the harmonic oscillator with the constraint
L = L? is given by the many-body state

Ψ = 〈{zi}|A
N−1∏
m=0
|0,m〉 = N

 ∏
i<j

(zi − zj)
 e− 1

2
∑
|zk|2 . (3.3)
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Fig. 3.3: Exact ground state energy (dots) for N = 10 particles at fixed angular
momentum L, compared to the approximate expression (solid line) as given in equa-
tion (3.8). For L > L? = 45~, the energy increases linearly. Inset shows L as a function
of the rotation frequency Ω in the analytic model. L diverges at the critical rotation
frequency Ω = ω, when the rotation exceeds the trap frequency.

Here zk = (Xk + iYk)/lHO are complex coordinates of the particles, A is the
antisymmetrizer, N is a normalization constant, and lHO =

√
~/mω is the

harmonic oscillator length. This wave function is equivalent to the Laughlin
wave function for integer filling ν = 1, with lHO =

√
~/mω replacing the magnetic

length
√

2lm =
√

2~c/eB for electronic systems. Quite generally, the states with
n = 0 and m ≥ 0 correspond to the states in the lowest Landau level, see
figure 3.2c. To reach the LLL regime, we have to repeat the transfer scheme at
least L?/N~ = (N − 1)/2 times.

3.2.1 Modeling the transfer

To quantify a single transfer process, our first aim is to calculate the total
energy of N harmonically trapped fermions for a fixed total angular momentum
L (polarized state, one spin component). For the noninteracting system, the
energy can be obtained by simple summations. We start with the ground state
for L = 0, where all energy shells up to the Fermi energy are completely filled.
The energy of the single particle states |n,m〉 is given by Enm = ~ω(2n+|m|+1).
To avoid cluttering of notation, we introduce dimensionless quantities indicated
by a ˆ sign. These quantities are measured in oscillatory units. That is, energy
in units of ~ω, angular momentum in units of ~, lengths in units of lHO and
time in units of ω−1. The degeneracy of each energy level is simply given by
g(Ê) = Ê. With N = ∑

g(Ê) = ÊF(ÊF + 1)/2 the Fermi energy is determined
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by

ÊF = 1
2
(√

8N + 1− 1
)

N�1−−−→
√

2N. (3.4)

The total energy for N particles is then given by

Ê(N) =
ÊF∑
Ê=1

g(Ê)Ê = N

3
√

8N + 1 N�1−−−→ (2N)3/2

3 (3.5)

which shows the known scaling of a trapped 2D Fermi gas [141]. Note that the
energy for the unpolarized system is given by 2 Ê(N/2) = 2

3N
3/2. To derive the

total energy E(N,L) for L 6= 0, we define Nm as the number of particles with
angular momentum m. The energy in terms of Nm is given by

Ê =
∑
m

Nm−1∑
n=0

Ênm =
∑
m
Nm (Nm + |m|) . (3.6)

The exact ground state energy can be found combinatorially for small particle
numbers by varying the Nm for fixed N and L. The result for N = 10 is
shown in figure 3.3. For larger particle numbers this method is not feasible,
but an analytic solution can be found for large particle numbers. Then, we can
treat Nm as a continuous function. To find the minimum of equation (3.6) at
fixed N and L, we introduce two Lagrange multipliers µ, Ω for the conditions
N = ∑

mNm and L̂ = ∑
mNmm, respectively. Taking the functional derivative

with respect to Nm yields Nm = (µ̂ − |m| + Ω̂m)/2. The parameters can be
determined by solving the constraints and summing from m− = −µ̂/(1 + Ω̂) to
m+ = µ̂/(1− Ω̂), where Nm± = 0. One finds

Ω̂ = 3L̂√(
2N

)3 +
(
3L̂
)2
, µ̂ = N2√(

2N
)3 +

(
3L̂
)2
. (3.7)

By using these relations and omitting correction terms of order 1/L and
√
N ,

we obtain the total energy

Ê(N, L̂) = 1
3

√(
2N

)3 +
(
3L̂
)2
. (3.8)

This result agrees with the exact behavior for L = 0 as derived in equation (3.5),
and even for particle numbers as small as N = 10 it is close to the exact
ground state energy, as shown in figure 3.3. For L ≥ L?, the minimization
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Fig. 3.4: Description of the transfer in the analytical model with N = 100 particles
for decreasing energy splitting ∆ between the two components ↑ and ↓. The transfer
starts at ∆ = EF with particles continuously being transferred into the ↓ state as ∆ is
lowered to −EF. Notice that during the transfer, both components rotate in the same
direction. The crossing N↑ = N↓ is not precisely at ∆ = 0 due to the initial bias.

problem becomes trivial as all particles occupy the lowest Landau level. The
energy is exactly given by Ê = L̂, which is also obtained asymptotically
from equation (3.8) in the limit L̂� N .
It is now possible to quantify the link between our approach (fixed angular

momentum) and rapidly rotating systems (fixed rotation frequency) explicitly.
Both are connected by a Legendre transform and we should in fact interpret
the Lagrange multiplier Ω = ∂E

∂L as the rotation frequency. In a harmonic trap,
the system becomes unstable if Ω exceeds the value of the trap frequency ω, as
the harmonic confinement in the rotating frame is effectively given by ω − Ω.
The angular momentum

L̂ = (2N)3/2

3
Ω̂√

1− Ω̂2
(3.9)

has a singularity for Ω̂ = Ω/ω = 1 and large values of L can only be achieved
by tuning Ω close to the critical value. It is this precise control on the rotation
frequency that so far prevented the experimental realization of the quantum
Hall regime in harmonically trapped gases. In contrast, for the present situation,
the system is always stable as Ω(L) < ω for all L. An arbitrary orbital angular
momentum can be transferred to the system by the ramping scheme with high
precision.
Starting from expression (3.8) for the energy, we are now able to describe the

transfer process in the adiabatic limit. Let N↑ be the number of particles in
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Fig. 3.5: (a) Full simulation of the transfer scheme for N = 4, 6, and 8 particles in the
adiabatic limit γ → 0. As the Zeeman splitting ∆ is tuned through zero, the angular
momentum increases in steps of 2~, indicating the transfer of two particle at a time.
The interaction strength is given by Ĉdd = 0.1. (b) Angular momentum at the end
of the transfer for N = 6 particles at different values of the Landau-Zener parameter
λ = Ĉ2

dd/γ̂. The data points for different rates collapse onto a single curve. The solid
line is a probabilistic model, fitted to the data points.

the spin-up state and N↓ = N −N↑ the particles in the spin-down state. We
describe both components separately and write the total energy as

E(N↑, L↑) + E(N↓, L↓) + ∆ ·N↓ (3.10)

where we have introduced the Zeeman energy shift ∆ = µBgB (energy mea-
sured with respect to the energy of the lower Zeeman state). We assume that
every particle eventually takes part in the transfer process (adiabaticity) and
consequently one quanta of angular momentum is transferred per particle. Start-
ing from the nonrotating state at L = 0, this imposes the transfer condition
L↑ + L↓ = L = N↓~. Adding this condition with another Lagrange multiplier,
one can quantify the transfer process as a function of ∆, see figure 3.4. Coming
from high fields where ∆ > EF, the transfer starts right at the Fermi energy.
Note that during the transfer, while EF > ∆ > −EF, both components (↑, ↓)
rotate in the same direction. Eventually all particles get transferred to the lower
spin state and the total angular momentum equals L = L↓ = N~.

3.3 Numerical simulation

To justify the adiabaticity assumption above, we simulate the transfer process for
small systems of few particles. We include all interactions mediated by Vdd(R, φ),
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and assume, that the strength of the interaction Ĉdd = (Cdd/l
3
HO)/~ω � 1 is

weak compared to the Landau level splitting. Then, only a few excited states
have to be taken into account. The system dynamics is described by

H =
∑
i

[Enm + ∆(t) δσ,↓] c†ici + 1
2
∑
ijkl

Vijkl c
†
ic
†
jclck (3.11)

where each of the indices ijkl of the fermionic operators labels a set of quantum
numbers (n,m, σ) and ∆(t)/~ω = −γt is the time-dependent Zeeman shift,
controlled by the linearly decreasing magnetic field. The calculation of the
dipolar interaction matrix elements Vijkl ∼ Cdd is presented in appendix D. The
only relevant parameters in this model are the transfer rate γ̂ = γ/ω and the
interaction strength Ĉdd. For the perfect adiabatic transfer, in the limit γ → 0,
we can find the instantaneous ground state of H as ∆ decreases. The results are
shown in figure 3.5a for N = 4, 6, and 8 particles. The total angular momentum
L(∆) increases gradually from L = 0 to L = N~ in steps of 2~, indicating that
two particles are transferred at a time.
To obtain results for a finite transfer rate γ, we simulate the full time-

dependent many-body problem. The total angular momentum L(t → ∞) at
the end of the transfer for N = 6 particles is shown in figure 3.5b for different
values of Ĉdd and γ̂. Remarkably, the data points collapse onto a single line
using λ = Ĉ2

dd/γ̂. This parameter arises in the Landau-Zener formula of a single
level crossing, and the collapse indicates that each pair transfer is dominated
by an individual avoided level crossing.

3.3.1 Probabilistic Landau-Zender model

We can derive a very simple model that accounts for this behavior and describes
the final angular momentum observed in the full simulation (see solid line). To
derive the total amount of angular momentum after the transfer we assume that
each 2-particle process is described by an independent Landau-Zener (avoided)
crossing, neglecting any interference effects. For each Landau-Zener process, we
define the probability to transfer the n-th pair of particles by Pn = 1−e−λ/λn with
λ = Ĉ2

dd/γ̂ the Landau-Zener parameter and λn an effective coupling strength,
describing the n-th pair-transfer process. The total angular momentum for
N particles after one cycle is then given by weighting each possible outcome
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(L̂ = 0, L̂ = 2, . . . , L̂ = N) by the respective probability

L̂N =
N/2−1∑
n=1

2nP1 · · ·Pn(1− Pn+1) +NP1 · · ·PN/2

= 2P1
(
1 + P2

(
1 + P3

(
1 + . . .

(
1 + PN/2

))))
. (3.12)

For N = 6 particles this reduces to

L̂6 = 2P1(1 + P2(1 + P3))
= 2

(
1− e−λ/λ1

)(
1 +

(
1− e−λ/λ2

)(
2− e−λ/λ3

))
. (3.13)

The assumption of independent crossings can now be justified a-posteriori. By
fitting L̂6 to the simulation data we find λ1 = 0.0056, λ2 = 0.025, λ3 = 1.74
with λ1 � λ2 � λ3. While we suspect this approximation to break down for
larger N , the model describes the transfer for small particle numbers in good
agreement with the simulation.

3.4 Experimental realization and detection

The preparation of the integer quantum Hall state with an orbital angular
momentum of L̂? = N(N − 1)/2 is finally achieved by a sequence of ramping
cycles: Starting with an unpolarized sample with the fermions equally distributed
between the two spin states, i.e., N↑ = N↓ = N/2, a first transfer increases
the orbital angular momentum by only L̂ = N/2. Then, N/2− 1 subsequent
cycles will transfer exactly the required orbital angular momentum to reach the
integer quantum Hall state.
In an experimental realization with 161Dy atoms, the number of cycles can

be significantly reduced due to the total spin of F = 21/2 in the hyperfine
ground state. Although calculations for 22 internal levels are too complex, we
expect no qualitative modifications, except that 21~ of angular momentum
are transferred per particle and cycle. Other highly dipolar fermions used in
cold atom experiments are 167Er and 53Cr with a total angular momentum of
F = 19/2 and 9/2, respectively [142, 143]. They could therefore provide 19~ or
9~ of angular momentum per atom and transfer. One thing to keep in mind for
Lanthanides is the immense number of Feshbach resonances, which could pose
a problem for our transfer scheme [144, 145].
The two important experimental requirements are a precise magnetic field

control [146] as well as a deterministic preparation scheme for a certain particle
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Fig. 3.6: Density distribution n(r) for different non-interacting states of N = 55
particles. The fermionic LLL state at L = L? has a perfectly flat density of 1/πl2HO in
a circular region of radial size

√
NlHO ≈ 7.4lHO while the L = 0 ground-state is close

to the well-known parabolic Thomas-Fermi distribution. The bosonic ground state is
shown for comparison.

number, as demonstrated in [147]. For the magnetic field ramp we can estimate
an optimal minimum value for the rate γ̂ = 2ÊF/t̂e = 2

√
2N/ωte by observing

that the Zeeman splitting has to be tuned at least once from EF to −EF within
the experimental accessible time te, which is limited by the lifetime of the atoms
in the trap. The Landau-Zener parameter is finally given by

λ = ωte

2
√

2N

(
lDDI

4lHO

)2
(3.14)

where the length lDDI = mκd2/~2 parametrizes the strength of the interac-
tion [88]. In a setup with N ∼ 10 fermionic 161Dy atoms, a long lifetime of
te = 10s and a radial frequency of ω = 3kHz are needed to reach values of λ on
the order of 1. We comment, however, that the transfer scheme works already
for smaller values of λ.
A particularly interesting property of the integer quantum Hall state, po-

tentially useful to detect the successful generation, is the perfectly flat density
n = 1/πl2HO within a circular region of radial size

√
NlHO, shown in figure 3.6.

3.5 Fractional Quantum Hall states

By simply continuing the transfer scheme, it is possible to reach states with
L > L?. In this regime, highly correlated ground states appear that are closely
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Species cycles particles obtained state (ν)
161Dy (F = 21/2) 1 64 1

1 22? 1/3

1 10 1/7

1 8 1/9

2 22? 1/5

3 22? 1/7

167Er (F = 19/2) 1 58 1
1 20? 1/3

2 20? 1/5

53Cr (F = 9/2) 1 28 1
1 10? 1/3

2 10? 1/5

Table 3.1: Playing with numbers: Examples of accessible final fractional states with
more than 4 particles for a perfectly working transfer scheme. For N? = 2F+1 particles,
every FQHE state can be obtained with m = 1/ν cycles.

connected to fractional quantum Hall effect (FQHE) states. We consider a
situation where we start from an unpolarized state and run the initial half-
cycle to the polarized state (transferring F · N angular momentum). The
subsequent k cycles transfer 2F ·N of angular momentum. A FQHE state with
a filling of ν = 1/m has a total angular momentum of m · L?. Consequently,
k = 1

2

(
m(N−1)

2F − 1
)
cycles are needed to generate a ν = 1/m state with N

particles. Table 3.1 shows a few possible scenarios for the generation of fractional
states for small numbers of particles and a perfectly working transfer scheme.
The obtained (non-interacting) states in the lowest Landau level at L > L? are

highly degenerate, as there are many possibilities to distribute the total angular
momentum among the particles. In fact, it is easy to show that the degeneracy
g(N,∆L) of the state with N particles and an excess angular momentum of
∆L = L− L? is given by the number of integer partitions of the number ∆L
into at most N integers. Each term in such an integer partition is related to the
angular momentum offset of a particle from its initial position at ∆L = 0. As an
example, consider the case of N = 3 particles and a total angular momentum of
L = L? + ∆L = 3 + 4. Then, we have an excess angular momentum of ∆L = 4
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Fig. 3.7: (a) Density distributions for interacting ground states of N = 6 particles at
total angular momentum L = L?, 2L? and 3L?. The Laughlin wave function at m = 3
(ν = 1/3) is shown for comparison. (b) Ground state energy and excitation spectrum
of N = 5 particles for increasing angular momentum. The inset shows the opening gap
at L = 3L?, corresponding to a filling of ν = 1/3.

and the degeneracy of the state is given by g(3, 4) = 4 with the following four
possible integer partitions and their related states |m1,m2,m3〉:

4←→ |0, 1, 6〉 , 2 + 2←→ |0, 3, 4〉 ,
1 + 3←→ |0, 2, 5〉 , 1 + 1 + 2←→ |1, 2, 4〉 . (3.15)

For N = 4 particles (or more) with the same ∆L = 4, there would be one
additional integer partition 1 + 1 + 1 + 1, leading to five degenerate states. In
general, this degeneracy grows exponentially with the number of particles and
angular momentum, as the asymptotic behavior for ∆L = N shows [148]:

g(N,N) ∼ 1
4N
√

3
eπ
√

2N
3 . (3.16)

3.5.1 Exact diagonalization in the lowest Landau level

The dipolar interaction lifts this huge degeneracy and highly correlated ground
states appear [135–137, 149–151]. In our setup, it is possible to directly tune to
certain angular momentum values instead of obtaining L from a given rotation
frequency Ω. We can calculate the ground state at a fixed angular momentum L

for small particle numbers by exact diagonalization in the degenerate subspace.
Again, we assume that the strength of the interaction Ĉdd = (Cdd/l

3
HO)/~ω � 1
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is weak compared to the Landau level splitting. The matrix elements of the
dipolar interaction in the lowest Landau level are given in equation (D.11).
Figure 3.7a shows the density distribution of the interacting ground states for

six particles. While the density for L = L? is flat in the center, the distribution
spreads to higher radii for increasing L. The density distribution at L = 3L?
is close to the corresponding Laughlin wave function at a filling of ν = 1/3.
Figure 3.7b shows the ground state energy and the excitation spectrum for
five particles at different total angular momentum. The decreasing energy
is a consequence of the spreading density at higher angular momentum. At
L = 3L? it is possible to see evidence for a gap opening. For details like overlap
calculations, we refer to work by Osterloh et al. [137] and Qiu et al. [149].

50



4
Topological band structures

from dipolar exchange interactions

A well established concept for the generation of two-dimensional topologically
ordered states exhibiting anyonic excitations are flat bands characterized by a
topological invariant in combination with strong interactions [152, 153]. The
prime example is the fractional quantum Hall effect, where strong magnetic
fields generate Landau levels [154]. Furthermore, lattice models without Landau
levels have been proposed for the realization of topological bands [32, 155–172].
Notably, spin-orbit coupling has emerged as an experimentally promising tool
for band structures with topological invariants [49–51, 173–175]. In this chapter,
we show that dipolar interactions, exhibiting intrinsic spin-orbit coupling, can
be exploited for the realization of topological bands with cold polar molecules.
In cold gases experiments, the phenomenon that dipolar interactions exhibit

spin-orbit coupling is at the heart of demagnetization cooling [91, 92, 146,
176], and has been identified as the driving mechanism for the Einstein-de
Haas effect in Bose-Einstein condensates [P4, 140] and the pattern formation
in spinor condensates [139, 177, 178]. Recently, it has been pointed out that
dipolar spin-orbit coupling can be observed in band structures realized with
polar molecules [75]. These ideas are motivated by the experimental success in
cooling and trapping polar molecules in optical lattices [70, 96–100].
Here, we show that a system of polar molecules gives rise to topological band

structures, exploiting the spin-orbit coupling of dipolar interactions in combi-
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nation with a term that breaks time-reversal symmetry. The main advantages
of our realization are its robustness and the low experimental requirements,
while many alternative theoretical proposals with cold gases require strong
spatially inhomogeneous laser fields with variations on the scale of one lattice
constant [166, 172, 179–184]. We point out that our proposal can also be applied
to Rydberg atoms in similar setups [80, 185, 186].

4.1 Introduction to topological band structures

As an introduction to topological band structures, we shortly review the theory
for a two-band model. For a detailed overview of this topic, see reviews by Hasan
and Kane [51] and Bernevig [187]. Consider the following generic tunneling
Hamiltonian

H =
∑
i 6=j

ψ†iTijψj, (4.1)

where ψ†i = (b†i,+, b
†
i,−) is a spinor-operator acting on lattice site i at position

Ri, involving two creation operators which are related to an internal degree
of freedom or to the specific position for a lattice with a two-site unit cell.
The tunneling elements are described by the two-by-two matrix Tij. As will
become clear later, we can assume that Tij is traceless, since we are only
interested in the topological properties. Using the translational symmetry, the
model can be block-diagonalized in momentum space by introducing the Fourier
representation ψk = 1√

Ns

∑
j ψj eikRj , with Ns the number of lattice sites:

H =
∑
k
ψ†kHkψk, Hk =

∑
i 6=0

Ti0 e−ikRi . (4.2)

Since the Bloch-Hamiltonian is a traceless Hermitian two-by-two matrix, it can
always be written as the product Hk = nk ·σ of a three-dimensional real vector
nk and the vector of Pauli matrices σ. Note that the vector nk ∈ R3 includes
the full information about this system. In particular, the two band dispersion
relation is simply given by Ek,± = ±|nk|.
A seemingly trivial observation in topological band theory is the realization

that nk contains more information than just the dispersion relation. To see this,
we assume that (for a certain set of parameters) the model has no band-crossing,
such that the vector nk is nonzero for all k in the Brillouin zone. Then, we
can “factor out” the information about the dispersion relation and consider the
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Fig. 4.1: Visualization of (an equivalence class of) mappings T 2 → S2 from a torus
to a sphere with a nontrivial winding number C = 2. We start by placing the sphere
inside the torus, which has been cut along the blue circle. Twisting the upper half
of the torus by 2π and folding down, we can seal the torus along the blue circle and
contract the glued joint to a single point. Now, each point on the torus T 2 lies on
(points to) a specific position on the surface of the sphere. The torus covers the sphere
twice, hence the winding number of two.

normalized vector n̂k = nk/|nk|. Mathematically, this is a mapping n̂ : T 2 → S2

from a two-torus T 2 (the structure of the two-dimensional Brillouin zone) to the
two-sphere S2 (because the three-dimensional vector is normalized). Continuous
functions of this kind can be classified with topological methods. It is possible
to visualize a mapping T 2 → S2 (see figure 4.1 for an example), but it is easier
to continue this discussion with a conceptually simpler mapping S2 → S2 from a
sphere to itself. It can be shown that the classification is in fact equivalent [188].
In algebraic topology, continuous functions with the general structure Sk → Sn

are classified by the k-th homotopy group of the n-sphere, denoted by πk(Sn).
Functions f : S1 → S1 from the unit-circle to itself, for example, are classified
by the first homotopy group (called the fundamental group) of S1. It is well
known that π1(S1) ∼= Z, because mappings of this kind can be classified by a
winding number

ν = 1
2π

2π∫
0

dk ∂kf(k) = f(2π)− f(0)
2π ∈ Z (4.3)

that counts how many times the origin is encircled as we integrate over k ∈ S1.
For our two-dimensional model, we are interested in the second-homotopy
group of the two-sphere. It turns out that π2(S2) ∼= Z. Consequently, different
mappings n̂k (that is, different band structures) can be classified by a topological
index C ∈ Z called the Chern number. In a similar way to the one-dimensional
example, the Chern number can be calculated as a winding number of the
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vector n̂k via:

C = 1
4π

∫
BZ

d2k (∂kxn̂k × ∂ky n̂k) · n̂k . (4.4)

Similar to a winding number of a closed path γ : S1 → R2\{0} in the punctured
plane, the Chern number cannot change unless the vector nk is zero for a
certain point k in the Brillouin zone. This shows that the space of all possible
Hamiltonians Hk factors into discrete classes of adiabatically equivalent models,
characterized by their Chern number: band structures that can be deformed
into one another without closing the bandgap.
It is this kind of robustness that makes topological properties interesting for

applications. The physical properties that follow from a nontrivial Chern number
are robust against small perturbations in the above-mentioned sense. The most
important link to physical properties is the bulk-edge correspondence [33]. It
guarantees the existence of edge states at the boundaries between different
topological phases. In particular, for a finite two-band system, the number of
states at the edge of the system is equal to the Chern number (imagine the
vacuum outside as being topologically trivial). A related consequence of the
nonzero Chern number appears in a fermionic system with a completely filled
lowest band (Chern insulator). Here, the Hall conductance is directly related to
the Chern number via σxy = e2

h C.
Another way to look at the topological properties of the band structure and

the meaning of the Chern number is through the theory of Berry phases [18, 19].
Given the Bloch eigenstates |uk〉 of the lower band, i.e. Hk |uk〉 = Ek,− |uk〉, we
can define the Berry vector potential by A(k) = i 〈uk|∇k|uk〉. Using this, we
can calculate the Berry phase along a closed path ∂S in the Brillouin zone via

γ(S) ≡
∫
∂S

dk ·A(k) =
∫
S

d2k B(k) (4.5)

where B(k) = (∇k×A(k))z = ∂kxA
y(k)−∂kyAx(k) is the Berry curvature. For

the two-band model, the Berry curvature is given by

B(k) = 1
2(∂kxn̂k × ∂ky n̂k) · n̂k. (4.6)

Comparing this with equation (4.4), we see that the Chern number can be seen
as the total Berry curvature γ(T 2) in the Brillouin zone divided by 2π. Now let
S be a region S ⊂ T 2 and Sc = T 2 \ S be its complement. Then, the sum of
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(a) (b)

Fig. 4.2: (a) Setup: Each lattice site of a two-dimensional optical lattice is occupied
by a single polar molecule. The molecules can be excited into two different rotational
states. Dipole-dipole interactions induce long-range tunneling links for the excitations.
(b) Rotational level structure of each molecule with applied electric field and additional
microwave field with Rabi frequency Ω and detuning ∆.

the Berry phases γ(S) along ∂S and γ(Sc) along the reversed path ∂Sc has to
be an integer multiple of 2π. On the other hand γ(S) + γ(Sc) = γ(T 2) = 2πC.
This shows that the Chern number has to be an integer.
An important aspect for topological phases is the role of symmetries [189–

191]. For the purposes of this chapter, we are mainly interested in time-reversal
symmetry. A Hamiltonian H is time-reversal symmetric, if there exists an anti-
unitary operator T such that T −1HT = H. For the Bloch Hamiltonian, this
translates to the condition U †H∗kU = H−k, where U is a unitary operator. Such
a condition forces the vector nk to lie in a plane. For U = σx, for example, we
have nzk = 0 whereas for U = 1 we have nyk = 0. Consequently, the mapping nk
cannot cover the whole sphere and the Chern number is zero. A more physical
way to see this, is that the Berry curvature (and hence the Chern number) is
odd under time-reversal. Therefore, breaking of time-reversal symmetry is a
necessary requirement for a nonzero Chern number.

4.2 Setup

We consider a two-dimensional system of ultracold polar molecules in a deep
optical lattice with one molecule pinned at each lattice site, as shown in fig-
ure 4.2a. The remaining degree of freedom is given by the internal rotational
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excitations of the molecules with the Hamiltonian

Hrot
i = BJ2

i − di · E . (4.7)

Here, B is the rotational splitting, Ji is the angular momentum of the ith
molecule and di is its dipole moment which is coupled to the applied static
and microwave electric fields E = Es + Eac(t). In the absence of external fields,
the eigenstates |J,m〉 of Hrot

i are conveniently labeled by the total angular
momentum J and its projection m. Applying a static electric field mixes states
with different J . The projection m, however, can still be used to characterize
the states. In the following, we focus on the lowest state |0〉 with m = 0 and
the two degenerate excited states |±〉 with m = ±1, see figure 4.2b. The first
excited m = 0 state, called |1〉, will be used later.
The full system, including pairwise dipole-dipole interactions between the

polar molecules, is described by H = ∑
iH

rot
i + 1

2
∑
i6=j H

dd
ij . As we have seen in

equation (1.6) on page 19, the interaction for the two-dimensional setup with
the electric field perpendicular to the lattice can be expressed as

Hdd
ij = κ

|Rij|3
[
d0
id

0
j + 1

2
(
d+
i d
−
j + d−i d

+
j )

− 3
2
(
d−i d

−
j e2iφij +d+

i d
+
j e−2iφij

)]
(4.8)

with κ = 1/4πε0. As before, φij denotes the in-plane polar angle of the vector
Rij ≡ |Rij| · (cosφij, sinφij)t which connects the two molecules at lattice sites i
and j, and the operators d0 = dz and d± = ∓(dx ± idy)/

√
2 are the spherical

components of the dipole operator. The intrinsic spin-orbit coupling is visible in
the second line of equation (4.8), where a change in internal angular momentum
by ±2 is associated with a change in orbital angular momentum encoded in the
phase factor e∓2iφij .
For molecules with a permanent dipole moment d in an optical lattice with

spacing a, the characteristic interaction energy V = κd2/a3 is much weaker
than the rotational splitting B. For strong electric fields, the energy separation
between the states |±〉i and |1〉i is also much larger than the interaction energy.
Then the number of |±〉 excitations is conserved. As described in section 1.3.3,
this allows us to map the Hamiltonian to a bosonic model: The lowest energy
state ∏i |0〉i with all molecules in the ground rotational state is the vacuum
state, while excitations of a polar molecule into the state |±〉i are described
by hard-core boson operators b†i,± = |±〉i〈0|i. Note that these effective bosonic
particles have a spin angular momentum of m = ±1.
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Fig. 4.3: Exemplary tunneling process along the small-
est possible loop on the square lattice. The excitation
hops from orbital (1,+) over (2,−) to (3,−) and back to
(1,+). The spin-orbit coupling leads to a non-trivial flux
φflux = arg(∏ tij) = −π/2, where tij are the indicated
tunneling rates. Reversing all orbitals +↔ − changes
the sign to φflux = π/2.

4.3 Bosonic model

The dipole-dipole interaction gives rise to an effective hopping Hamiltonian for
the bosonic particles due to the dipolar exchange terms: d+

i d
−
j , for example, leads

to a (long-range) tunneling b†i,+bj,+ for the +-bosons while the term d−i d
−
j e2iφij

generates spin-flip tunneling processes b†i,−bj,+ e2iφij with a phase that depends
on the direction of tunneling. For the study of the single particle band structure
we can drop the term proportional to d0d0 which describes a static dipolar
interaction between the bosons. Then, as shown in equation (1.30) on page 26,
the interaction Hamiltonian reduces to

Hdd =
∑
i6=j

a3

R3
ij

ψ†i

 −t+ w e−2iφij

w e2iφij −t−

ψj , (4.9)

where we use the spinor notation ψ†j =
(
b†j,+, b

†
j,−
)
. The energy scale of the

hopping rates t+, t−, and w is given by V = κd2/a3. The exact expressions
depend on the microscopic parameters and will be given in the next section.
The off-diagonal terms in equation (4.9) lead to a spin-orbit coupling which
can induce a non-trivial “magnetic” flux along certain paths in the lattice, see
figure 4.3.

4.3.1 Time-reversal symmetry breaking by the microwave field

We have seen that a crucial aspect for the generation of topological bands with a
nonzero Chern number is the breaking of time-reversal symmetry. In our setup,
this is achieved by coupling the state |+〉 to the rotational state |m = 2〉 with
an off-resonant microwave field with Rabi frequency Ω ≡ 2Eac |〈m = 2|d+|+〉|
and detuning ∆, see figure 4.2b. For a large detuning ∆� Ω, V , the number of
|+〉 (and |−〉) excitations is still conserved. In the rotating frame, within the
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rotating wave approximation, the AC-dressed |+〉 state is given by

|+〉ac = (1− ε2/2) |+〉 − ε |m = 2〉 (4.10)

up to second order in ε = Ω/2∆. Note that the coupling of the |−〉 state to the
third m = 0 state can be neglected due to a large detuning from the difference
in Stark shifts between m = 0 and m = 2. Therefore, the states |0〉 and |−〉
are essentially unaffected by the microwave. To avoid cluttering of notation, we
also drop the ac label of the |+〉 state.
Then, the transition dipole moment for the |+〉 state is slightly reduced,

compared to the |−〉 state. Using the definition in equation (1.24), we have
q+ = |〈+|d+|0〉| = q−(1− ε2/2). In turn, the nearest-neighbor tunneling rates
from equation (1.29) are given by

t+ = κq2
−

2a3 (1− ε2), t− = κq2
−

2a3 , w = 3κq2
−

2a3 (1− ε2/2). (4.11)

Note that t+ = t− without the applied microwave (time-reversal symmetric
point). The microwave coupling also lifts the degeneracy between the two
excitations |±〉i and provides an energy splitting given by the AC Stark shift,
equal to 2µ ≡ Ω2/4∆. We remark that this energy shift 2µ can also be
independently controlled via magnetic fields [77, 97].

4.4 Topological band structure

In momentum space with ψk = 1√
Ns

∑
j ψj eikRj , including the internal energy

Hrot
i of the excitations |±〉i, the Hamiltonian (4.9) can be rewritten as

H =
∑
k
ψ†k
(
n0

k 1+ nk · σ
)
ψk (4.12)

where the real vector nk characterizes the spin-orbit coupling terms and takes
the form

nk =


wRe ε2k
w Im ε2k
µ+ t ε0k

 . (4.13)

Here, we have introduced the difference in tunneling rates t = (t− − t+)/2 > 0.
The spin-independent hopping is determined by n0

k = −t̄ ε0k with the average
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Fig. 4.4: (a) Dispersion relation for the |+〉 and |−〉 states on the square lattice. The
dashed line shows the time-reversal invariant point t = µ = 0 with band touching at
the Γ and M point. The band minima are located at the two X points (π/a, 0) and
(0, π/a). The solid line shows the gapped topological bands in the time-reversal-broken
system for w/t̄ = 3, µ = 0 and t/t̄ = 0.4. For t/t̄ & 0.13, the band minimum is at the Γ
point. (b) Dispersion relation for the |+〉 and |1〉 states for electric field angles Θ0 = 0
(dashed) and Θ0 = π/4 (solid), respectively. The latter has a lower band with flatness
f ≈ 1. Note: The two ’X’ points (π/a, 0) and (0, π/a) are not equivalent in this model
as the electric field breaks the x/y symmetry.

tunneling rate t̄ = (t+ + t−)/2. The behavior of both n0
k and nk is determined

by the previously used dipolar dispersion relation, extended to include a nonzero
angular momentum transfer m [P1, P6, 75, 124]

εmk =
∑
j 6=0

a3

|Rj|3
eikRj+imφj . (4.14)

The precise determination of this function can be achieved by an Ewald sum-
mation technique, providing a non-analytic low momentum behavior ε0k ≈
ε00 − 2π|k|a and ε2k ≈ −2π

3 |k|a e2iϕ. Here, ε00 ≈ 9.03 and ϕ is defined by
k̂ = (cosϕ, sinϕ)t. For details, see appendix A.
In the presence of time-reversal symmetry, represented by T = σxK with
K being complex conjugation, the system reduces to the one discussed by
Syzranov et al. [75]. At the T -invariant point, i.e. t = µ = 0, the two energy
bands of the system exhibit a band touching at the high-symmetry points
Γ = (0, 0) and M = (π/a, π/a) where ε2k vanishes, see figure 4.4a. The touching
at the Γ point is linear due to the low-momentum behavior of εmk . The lower
band at the Γ point is flat due to the exact cancellation of the linear terms.
Note that each of the touching points splits into two Dirac points if the square
lattice is stretched into a rectangular lattice.
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Breaking of time-reversal symmetry by the microwave field leads to an opening
of a gap between the two bands. The dispersion relation is given by

E±(k) = −t̄ ε0k ±
√
w2
∣∣∣ε2k∣∣∣2 +

(
µ+ t ε0k

)2 (4.15)

and shown in figure 4.4a. It is gapped whenever the vector nk 6= 0. The first
two components can only vanish at the Γ or M point. Consequently, the gap
closes if and only if the third component is zero at one of these two points. We
find the two transition points

µ/t = −ε00 ≈ −9.03,
µ/t = −ε0M =

(
1− 1/

√
2
)
ε00 ≈ +2.65. (4.16)

In the gapped system, the Chern number can be calculated as the winding
number of the normalized vector n̂k = nk/|nk| as specified in equation (4.4). We
find that the Chern number of the lower band is C = 2 for −ε00 < µ/t < −ε0M,
and zero outside this range. The non-trivial topology solely results from dipolar
spin-orbit coupling and time-reversal symmetry breaking.
Please note that it is necessary to truncate the summation in the expression

for εmk in order to perform the calculation of the Chern number. It is easy
to check, however, that the remaining terms are not strong enough to close a
gap. Conversely, the cutoff radius needs to be larger than

√
2a, because the

next-to-nearest neighbor terms are crucial for the nontrivial Chern number and
may not be neglected (the y component of nk is zero otherwise).

4.5 Flat bands

One of the challenges is to find a specific setup that optimizes the flatness of
the topological bands. This can be achieved either by focusing on different
lattice structures (see next section) or by an alternative choice for the two
excitations. Instead of considering |+〉 and |−〉, we choose a model including
the |+〉 and |1〉 states. This is possible for weak electric fields, if the |−〉
state is shifted by a microwave field, or by exploiting the coupling between the
nuclear spins of the polar molecules and the rotational degree of freedom [77,
97]. As described in section 1.3.4 (excluding the |−〉 state), this leads to the
single-particle Hamiltonian

Hdd =
∑
i6=j

a3

R3
ij

ψ†i

−t+f0 wf∗1

wf1 −t1f0

ψj , (4.17)
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Fig. 4.5: Topological phase diagram in the honeycomb lattice for t/t̄ = 0.54. The
labels give the Chern numbers of the four bands (bar indicates negative number) from
bottom to top while the solid lines correspond to touching points between two bands.
The color indicates the flatness f of the lowest band. The arrow shows the parameters
of the flat-band model in figure 4.7b.

where fm = fm(φij − Φ0,Θ0) are the functions defined in equation (1.12) on
page 21, depending on the electric field direction Θ0,Φ0 and the tunneling rates

t+ = κq2
+

2a3 , t1 = −κq
2
1

a3 , w = 3κq+q−√
2a3 . (4.18)

This model intrinsically breaks time-reversal symmetry and has the advantage
that the |+〉 and |1〉 states have different signs for the tunneling strength, making
the T -breaking parameter t = (t+ − t1)/2 large compared to t̄ = (t+ + t1)/2.
For an electric field direction perpendicular to the lattice, this system is gapless
because f1(φij, 0) = 0. Opening the gap is achieved by rotating the electric field
away from the z-axis by an angle Θ. The dispersion relation for Θ = 0
and π/4 is shown in figure 4.4b. The lower band has a flatness ratio of
f = bandgap/bandwidth ≈ 1.

4.6 Dependence on the lattice geometry

Returning to the simple setup in figure 4.2b, the influence of the lattice geometry
on the topological properties can be exemplified by studying the case of the
honeycomb lattice. Due to the two distinct sublattices, we generally obtain
four bands in the presence of broken time-reversal symmetry. Depending on
the microscopic parameters, the bands exhibit a rich topological structure,
characterized by their Chern numbers. Note that the Chern numbers are
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(a) (b)

Fig. 4.6: Hopping strengths and flux pattern of a single layer in different lattices.
Tunneling elements without arrow are real numbers. Complex hoppings have the
indicated strength along the arrow and the complex conjugate in the opposite direction.
(a) Square lattice: A single layer can be constructed by stripes of one component along
one of the primitive vectors, effectively doubling the unit cell. The second layer is
given by a translation along the second primitive vector. (b) Honeycomb lattice: By
distributing the |+〉 , |−〉 orbitals to the two distinct sublattices it is possible to retain
the symmetry of the lattice. The second layer is given by a 60◦ rotation.

calculated with a numerical method similar to the one for the disordered system.
In figure 4.5, we show a two-dimensional cut through the topological phase
diagram, spanned by the parameters t/t̄, w/t̄ and µ/t̄. We find a multitude of
different topological phases with large areas of flatness f > 0 for the lowest
band. A flatness f < 0 indicates that the maximum of the lowest band is higher
than the minimum of the second band. In contrast to the square lattice, an
energy splitting µ 6= 0 is sufficient for a nonzero Chern number; t 6= 0 is not
necessarily needed. Figure 4.7b shows the dispersion relation with a lowest
band of flatness f ≈ 6.4 and a Chern number C = −1. The different behavior
of the same model on the square and hexagonal lattice will be explained in
section 4.7.1.

4.7 Classification and double-layer picture

Topological band structures can be classified by considering equivalence classes
of models that can be continuously deformed into each other without closing
the energy gap [51]. In particular, the Chern number of a single band can
only change if it touches another band. Using this idea, we show that the
square-lattice model in its C = 2 phase is adiabatically equivalent to a system
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of two uncoupled copies of a C = 1 layer.
To see this, imagine separating the two orbitals |+〉 and |−〉 per site spatially

along the z-direction (without changing any tunneling rates) such that we obtain
two separate square lattice layers, called A and B. Sorting all terms in the
Hamiltonian into intra- and inter-layer processes, we can write

H = HA +HB + λHAB (4.19)

where λ = 1. The choice of which orbital resides in layer A (and B) can be
made individually for each lattice site. In any case, the resulting two layers will
be interconnected by an infinite number of tunneling links HAB. The idea is
to find a specific arrangement of the orbitals such that we can continuously
let λ −→ 0 without closing a gap in the excitation spectrum, preserving the
topological phase while disentangling the layers.
Focusing on layer A (layer B being simply the complement), one possible

arrangement is shown in figure 4.6a. The + (−) orbitals are assigned to odd
(even) columns along the y-direction. For the Chern number of such a single
layer we find C = 1, using methods analogous to the ones described in section 4.4.
The full system can be understood as two such layers, shifted by one lattice site
in x-direction. With a unit cell twice the size of the original model, each layer
contributes to one half of the full Brillouin zone, effectively doubling the Chern
number to C = 2.
The single layer system has some interesting properties. In figure 4.6a we

show that it is possible to find a staggered magnetic flux pattern which creates
the same tunneling phases as the dipole-dipole interaction, including tunneling
up to the next-to-nearest neighbor level. The resulting single layer model is
reminiscent of the famous Haldane model [32], adapted to the square lattice [156,
166, 179–183, 192, 193]. Using a site-dependent microwave dressing, it has been
shown that a model similar to our single-layer system can be realized, giving
rise to a ν = 1/2 fractional Chern insulating phase [166, 183]. It is rather
remarkable that uniform dipole-dipole interactions give rise to a model usually
requiring strong modulations on the order of the lattice spacing.

4.7.1 Hexagonal lattice

The relation to the bilayer system also allows us to explain the different behavior
on the hexagonal lattice. Applying the same procedure, a single layer can be
constructed which retains the original symmetry of the honeycomb lattice, see
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Fig. 4.7: (a) Sample-averaged Chern number 〈C〉 in the disordered system for in-
creasing density ρ of defects. A single realization either yields C = 2 or C = 0. Bars
indicate two standard errors. The results are shown for square lattices of size L×L with
L = 10, 20, 40 and a cutoff radius for the interaction Rc . L/2 slightly smaller than
half the system size to avoid self-interaction. The long-range tunneling stabilizes the
topological phase for defect densities ρ . 0.45. As a comparison, the dashed line shows
the results for a 10× 10 grid with tunneling only included up to the next-to-nearest
neighbor, leading to a significant destabilization. (b) Two-dimensional projection of the
dispersion relation in the honeycomb lattice for t/t̄ = 0.54, w/t̄ = 1.97 and µ/t̄ = −4.54.
The lowest band has a flatness ratio of f ≈ 6.4 and a Chern number of C = −1.

figure 4.6b. Here, the two bands of the single layer also have a Chern number
of C = ±1. In contrast to the square lattice, however, the Brillouin zone of a
single layer is the same as for the full (double layer) system with both orbitals
at each site. Consequently, the four bands of the full system are constructed
from the combination of two C = 1 and two C = −1 bands. As a result, the
lowest band in the honeycomb lattice can have a Chern number of C = 1. Note
that the inter-layer coupling in the bilayer honeycomb system is crucial to open
a gap.

4.8 Influence of disorder

An experimental initialization with a perfectly uniform filling of one molecule
per site is challenging. Consequently, we analyze the stability of the topological
band structure for random samples with a nonzero probability ρ for an empty
lattice site. The determination of the Chern number for the disordered system
follows ideas from refs. [12, 14]. We start with a finite geometry of L×L lattice
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sites and twisted boundary conditions

ψ(x+ L, y) = eiθx ψ(x, y),
ψ(x, y + L) = eiθy ψ(x, y) (4.20)

for the single particle wave function. Next, we randomly remove ρL2 lattice
sites (dipoles). We are interested in the Chern number of the lower ‘band’,
composed of the lowest Nl = L2(1 − ρ) states (there are 2Nl states in total).
To this end, we pretend to have a free fermionic system at half filling whose
many-body ground state Ψ = Ψ(θx, θy) is given by the Slater determinant of
the lowest Nl states. Then, the Chern number can be calculated as

C = 1
2π

∫∫
dθxdθy F (θx, θy), (4.21)

where F (θx, θy) is the many-body Berry curvature depending on the boundary
condition twists:

F (θx, θy) = Im
(〈∂Ψ

∂θy

∣∣∣∣ ∂Ψ
∂θx

〉
−
〈 ∂Ψ
∂θx

∣∣∣∣∂Ψ
∂θy

〉)
. (4.22)

Note that equation (4.21) reduces to equation (4.4) in the translationally
invariant case. For the numerical computations, we use a discretized version [194].
The results for the disordered system are summarized in figure 4.7a. We find
that the long-range tunneling stabilizes the topological phase for defect densities
ρ . 0.45. The long-range tunneling ∼|R|−3 is found to significantly enhance the
stability compared to a model with artificial truncation at the next-to-nearest
neighbor level.

4.9 Edge states

One way to detect the topological band structure experimentally is to create a
local excitation close to the edge of the system. In the topologically nontrivial
phase, the excitation will move along the edge in a specific direction due to the
chiral nature of the edge state, a behavior that can be used as an indication of
the topological nature of the bands [56]. A convenient way to investigate the
structure of the edge states is a cylindrical geometry which is infinite in one
direction (x) and has a finite number of lattice sites in the other (y). Then,
the momentum kx in the infinite direction can still be used to characterize
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Fig. 4.8: Upper panel: Dispersion relation for
the |+〉 and |1〉 states on a cylindrical square
lattice geometry with infinite extent in the x
direction and 31 sites in the y direction. As
a function of the momentum kx, there are
2 × 31 bands corresponding to two orbitals
for each of the discrete sites in y direction.
Four edge states cross the bandgap in the
C = 2 phase (two for each edge), in accordance
with the bulk-edge correspondence [33]. Lower
panel: Exponentially decaying amplitude of
the edge states at the two points indicated by
the arrows. Due to the opposite group velocity
on opposing sites of the cylinder, the two edge
states have the same chirality.
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the states. In figure 4.8 we show the spectrum for such a geometry in the
C = 2 phase on the square lattice for the |+〉 , |1〉 model. The remnants of
the two-dimensional bulk bands are still visible as a projection consisting of a
bundle of single one-dimensional bands. Four edge states cross the bandgap in
accordance with the bulk-edge correspondence, as there are two states for each
edge of the system. These would also be visible in a spectroscopic analysis, as a
single mode between the broad continuum of the two bands. A characteristic
property of edge states is the exponential decay from the boundary into the
bulk of the system, see figure 4.8.
Figures 4.9a and 4.9b depict the two-dimensional structure of the edge-states

in a small finite system for the square and honeycomb lattices. Figures 4.9c
and 4.9d show the same system with a fraction of ρ = 0.2 of the lattice sites
removed, demonstrating the robustness of the edge states against missing
molecules. For more details on the edge states in our system, we refer to
follow-up work by Weber [106].
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(a) (b)

(c) (d)

Fig. 4.9: Edge state amplitudes |ψ+(x, y)|2 (red) and |ψ−(x, y)|2 (blue) on finite
rectangular patches. (a) On the square lattice for the |+〉 , |−〉 model in the C = 2
phase with opposite orbitals on horizontal and vertical edges. The second edge state
(not shown) has inverted orbitals. (b) Edge state on the honeycomb lattice between
the lower two C = −1 and C = 0 bands, for the same parameters as in figure 4.7b.
(c) Edge-state in the disordered system with a defect density of ρ = 0.2 on the square
lattice for a certain disorder realization. (d) Edge state on the honeycomb lattice which
travels along an interior edge which developed due to the missing lattice sites (defect
density ρ = 0.2).
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4.10 Many-body system

Finally, the most spectacular evidence of the topological nature would be
the appearance of fractional Chern insulators in the interacting many-body
system at a fixed density of excitations. In our system, the hard-core constraint
naturally provides a strong on-site interaction for the bosons. In addition,
the remaining static dipolar interactions are a tunable knob to control the
interaction strength. The most promising candidate for a hard-core bosonic
fractional Chern insulator in a band with C = 2 appears for a filling of ν = 2/3,
as suggested by numerical calculations [158, 160, 172], in agreement with the
general classification scheme for interacting bosonic topological phases [195,
196]. A continuum trial wavefunction for such a state would be the Halperin
(l;m;n) state [156, 158, 166, 172, 197, 198] with

Ψlmn = N
∏
i6=j

(
z↓i − z

↓
j

)l ∏
i6=j

(
z↑i − z

↑
j

)m∏
i,j

(
z↑i − z

↓
j

)n e−
1
4
∑

j,α|zαj |
2

. (4.23)

This state is a natural extension of the Laughlin wave function to a double-layer
system where z↓i = x↓i + iy↓i and z↑i are the complex coordinates in the lower and
upper layer and N is a normalization constant. In our system, the two layers
are given by the deconstruction described in section 4.7. Since we are dealing
with hard-core bosons, one would expect a (2; 2; 1) state where l = 2,m = 2
is the lowest non-trivial state which is compatible with the bosonic statistics
and n = 1 enforces the inter-layer hard-core constraint. For details about the
hard-core bosonic Halperin state in a related system, see Yao et al. [172].
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5
Realizing the Creutz ladder model

with dipolar interactions

In this part we apply the ideas of chapter 4 to one-dimensional systems. Using a
lattice with a double-chain structure, we show how dipolar exchange interactions
can lead to the simulation of a homogeneous magnetic field and nontrivial
topological band structures. The appearance of a constant magnetic field in a
time-reversal invariant system is only possible because the system decomposes
into two completely separate sectors. Each of them acquires a magnetic field
of equal strength but opposite sign, in a similar way to the quantum spin
Hall effect [48]. Furthermore, we show that each sector is a realization of a
cross-linked ladder model introduced by Creutz [199–203]. This model has
topological bands which can be perfectly flat. The topological properties and
the resulting edge states are protected by inversion symmetry. We examine the
properties of the double Creutz ladder and describe the modifications due to
the long-range dipolar hoppings.

5.1 Setup

Consider the one-dimensional system depicted in figure 5.1. Single dipoles are
located at each site of a double-chain lattice with spacing a and a separation of h
between the two chains. The level scheme is the one discussed in chapter 4, but
without any microwave field (see figure 4.2b on page 55). Every dipole initially



Chapter 5 Realizing the Creutz ladder model with dipolar interactions

Fig. 5.1: Setup for the realization of the Creutz ladder. One dipole is pinned at each
lattice site of a double chain with lattice spacing a in horizontal direction and a distance
h between the two chains. A unit cell at site j includes both the upper and lower
dipole. Horizontal (h), vertical (v) and diagonal (d) tunneling links are indicated for
the idealized model with a cut-off Rc =

√
a2 + h2 and t = 0.

starts in the ground state |0〉 and can be excited into one of the two orbitals |+〉
or |−〉. We are only interested in the single-excitation dynamics and use the
notation |α〉j = |α〉j,upper |0〉j,lower to indicate a state at lattice site j where the
dipole on the upper chain has been excited into the orbital α ∈ {+,−} and the
dipole on the lower chain is still in the ground state. Conversely, |α〉j describes
an excitation on the lower chain. Then, the four states |+〉j, |−〉j, |+〉j, |−〉j
define a complete local basis at lattice site j. Introducing hard-core bosons for
each of these states and transforming to momentum space in the same way as
in chapter 4, we find that the Bloch Hamiltonian takes the form

H(k) =


−t εk w εk −t η0

k w η−2
k

w εk −t εk w η+2
k −t η0

k

−t η0
k w η+2

k −t εk w εk
w η−2

k −t η0
k w εk −t εk

 . (5.1)

Here, t is the orbital-preserving tunneling strength (t ≡ t+ = t−) and w is
the orbital-changing tunneling rate, as defined in equation (4.11). The one-
dimensional variant of the dipolar dispersion relation comes in two forms. The
function

εk = a3 ∑
x6=0

eikx
|x|3

= 2
∑
j>0

cos(kaj)
|j|3

(5.2)

includes all processes within a single chain and the function

ηmk = a3 ∑
x

eikx+imφx

(x2 + h2)3/2 = im

(h/a)3 +
∑
j>0

2 cos(kaj +mφj)
(j2 + (h/a)2)3/2 (5.3)

covers all inter-chain processes. Here, φx = arg(x+ ih) = φj = arg(j + ih/a) is
the polar angle of the position (x, h) of the dipole on the opposite chain. Note
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that both functions are real-valued since m = 0,±2. Moreover, εk = ε−k is
symmetric in k whereas ηmk satisfies the relation ηmk = η−m−k .

5.2 Symmetries

The described system has an inversion symmetry (or 180◦ rotation symmetry),
described by H(−k) = PH(k)P−1, where the unitary operation P = σx⊗1 flips
the upper and lower chains. In addition, the system is time-reversal symmetric,
i.e. H(−k) = T H(k)T −1. Here, time-reversal is described by the anti-unitary
operator T = UTK, where K is complex conjugation and UT = 1 ⊗ σx is a
unitary operator that exchanges the two orbitals. The time-reversal operation
satisfies T 2 = +1. The combination of these two symmetries gives rise to an
operator PT = σx ⊗ σxK which commutes with the Bloch-Hamiltonian:

[PT , H(k)] = 0 ⇒ [σx ⊗ σx, H(k)] = 0. (5.4)
The second commutation relation follows from the fact that H(k) is real-
valued. Using the knowledge about the symmetry, we can block-diagonalize the
Hamiltonian. To do so, we change to a basis which diagonalizes the operator
σx ⊗ σx. We define

|↑〉± = 1√
2
(
|+〉 ± |−〉

)
,

|↓〉± = 1√
2
(
|+〉 ± |

−〉
)
. (5.5)

Notice how these four states are invariant up to a phase under a combined
flip of the chains |α〉 ↔ |α〉 and the orbitals + ↔ −. In the new basis
|↑〉− , |↓〉− , |↑〉+ , |↓〉+ the Hamiltonian takes the form

H(k) =


−t εk−w η−2

k −t η0
k−w εk

−t η0
k−w εk −t εk−w η+2

k

−t εk +w η−2
k −t η0

k +w εk
−t η0

k +w εk −t εk +w η+2
k


= −t1⊗Mk − w σz ⊗Nk (5.6)

where the left side of the tensor product selects the block (+ or − sign) and the
right side selects |↑〉 or |↓〉. The two blocks H∓(k) = −tMk ∓ wNk are given in
terms of the two matrices

Mk =
εk η0

k

η0
k εk

 , Nk =
η−2

k εk
εk η+2

k

 . (5.7)
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Fig. 5.2: Tunneling links for the two states |↑〉+ and |↓〉+. Notice that the two depicted
chains live in an abstract space which is not to be confused with the real space of
the original ladder. The tunneling along a single chain is determined by the diagonal
elements of the real-space model while the inter-chain hopping is given by the horizontal
elements. A constant magnetic flux of 4δ threads through each plaquette or unit cell in
this abstract space.

5.3 Idealized model: mapping to the Creutz ladder

To understand the structure of the Hamiltonian, let us first assume that t = 0.
We can focus on one of the blocks, say H+(k) = wNk with the states |↑〉+ , |↓〉+.
Furthermore, we introduce a cut-off Rc =

√
a2 + h2 in the dipolar tunneling,

such that only terms within one plaquette remain, see figure 5.1. We use the
symbols wh = w to denote the horizontal (intra-chain) tunneling, wv = w cot3(δ)
for the vertical (inter-chain) coupling and wd = w cos3(δ) for the strength of
the diagonal (inter-chain) tunneling. The angle δ is given by tan δ = h/a.
We can visualize the model in the new basis by considering a ladder in

an abstract space, where the upper chain is made up of |↑〉+ states and the
lower chain is made up of |↓〉+ states. The resulting system with tunneling
elements between the new basis states is shown in figure 5.2. Notice how the
phases induced by the dipolar exchange interactions lead to the appearance of
a constant artificial magnetic field with a flux of 4δ per unit cell, determined
entirely by the geometric angle of the original real-space model.
It turns out that the model in this abstract space is identical to a cross-

linked ladder model in a magnetic field; a system that has been introduced by
Creutz [199]. For the simplified case we have considered so far (t = 0 and artificial
cut-off), the parameters of the original model are given by K = wh = w,M = 0
and r = wd/wh = cos3(δ). The magnetic flux per unit cell in the Creutz model
is given by 2θ which translates to 4δ in our model.
By performing the summation for the dipolar dispersion relation up to the
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cut-off radius explicitly, we get

εk = 2wh cos(ka),
ηmk = −wv + 2wd cos(ka+mδ), m = ±2. (5.8)

Using these expressions, we can write the lower block of the Hamiltonian as

H+(k) =
−wv + 2wd cos(ka− 2δ) 2wh cos(ka)

2wh cos(ka) −wv + 2wd cos(ka+ 2δ)


= + 1 × (−wv + 2wd cos(2δ) cos(ka))

+ σz × 2wd sin(2δ) sin(ka)
+ σx × 2wh cos(ka). (5.9)

From the expansion into the 1, σz, σx components, we can directly get the
dispersion relation

E±(k) = −wv + 2wd cos(2δ) cos(ka)

±
√

(2wd sin(2δ) sin(ka))2 + (2wh cos(ka))2
. (5.10)

5.3.1 Perfectly flat bands

The Creutz ladder supports two perfectly flat bands. To see this, we first set the
displacement between the two chains equal to the lattice constant, i.e. h = a.
Then, the angle δ is given by π/4. This results in a flux of π per unit cell. In
this case, equation (5.10) simplifies to

E±(k) = −wv ±
√

(2wd sin(ka))2 + (2wh cos(ka))2
. (5.11)

We can see that the system has flat bands if wd = wh, in which case the energy
is given by E±(k) = −wv ± 2wh. The dispersion relation for wd = wh and
wd = 2−3/2wh is shown in figure 5.3a.
In the flat band case, the horizontal tunneling elements in figure 5.2 are given

by iwh, whereas the cross-link tunneling elements are given by wh. This leads
to a destructive interference of all paths going from |↑〉j to |↑〉j±2 or |↓〉j±2, as
shown in figure 5.3b (we suppress the + index on the states as we only work in
a single block). Consequently, the excitations are localized on single plaquettes.
Each plaquette hosts two states∣∣∣P±j 〉 = 1

2
(
i |↑〉j + |↓〉j ± |↑〉j+1 ± i |↓〉j+1

)
. (5.12)

with exact energies E± = 〈P±j |H|P±j 〉 = −wv ± 2wh.
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Fig. 5.3: (a) Dispersion relation for a single two-by-two block H+(k) for δ = π/4 and
wd = wh (solid lines, perfectly flat bands) and wd = 2−3/2wh, which is the generic
value that is obtained for a simple setup where

√
2 is the distance along the diagonal.

(b) Destructive interference of the two paths going from j to j+ 2 in the flat band limit
for δ = π/4 and wd = wh, cf. original figure by Creutz [199]. The indicated tunneling
elements are in units of w.

5.3.2 Edge states

A finite system of length L has 2L lattice sites but only L− 1 plaquettes. This
means that only 2L− 2 states can be described in terms of the plaquette states∣∣∣P±j 〉. Consequently, two states are left over. These are the two edge states at
each end of the ladder. In the flat-band limit, the left-hand side edge state is
given by “half” a plaquette state

|E〉+ = 1√
2
(
|↑〉1,+ + i |↓〉1,+

)
= 1

2
(
|+〉1 + |−〉1 + i|+〉1 + i|−〉1

)
. (5.13)

We can see that the excitation is shared among all four orbitals in the original
basis. The localization at the edge is only exact in the flat-band limit. In the
following, we look at the full model including the long-range dipolar hopping.

5.4 The full dipolar model

Leaving the idealized model, we remove the artificial cut-off and also add the
orbital-preserving tunneling terms proportional to t. Then, we can write the
block H+(k) from equation (5.6) as

H+(k) = −tMk + wNk

= (−t εk +w ηsk)1− w ηak σz + (w εk−t η0
k)σx. (5.14)
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Fig. 5.4: Topological winding numbers of the double Creutz ladder system as a function
of the angle δ = arctan(h/a) and the ratio of tunneling rates t/w. The lines indicate
band touchings at the k = 0 or k = π/a point for the H−-ladder (blue) and H+-ladder
(green). The shaded areas have nontrivial winding numbers ν± for one of the Creutz
ladders or both of them.

We have introduced the symmetric and anti-symmetric combinations

ηsk = 1
2
(
η2
k + η−2

k

)
, ηak = 1

2
(
η2
k− η−2

k

)
. (5.15)

Then, the dispersion relation for the lower block is given by

E±(k) = −t εk +w ηsk±
√

(w ηak)2 + (w εk−t η0
k)2. (5.16)

By replacing w with −w, we immediately get the dispersion relation for the
upper block H−(k), namely

E ′±(k) = −t εk−w ηsk±
√

(w ηak)2 + (w εk +t η0
k)2. (5.17)

5.4.1 Topological structure

Following the strategy of section 4.4, equation (5.14) can be written in the form
H+(k) = n0

k · 1+ nk · σ. Here, n0
k = 1

2 trH+(k) is the diagonal part and nk is
given by

nk =


w εk−t η0

k

0
−w ηak

 . (5.18)

To determine the topological ‘phase diagram’, we look for points where nk = 0.
The odd function ηak in the z-component can only be zero at k = 0 and k = π/a.
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Fig. 5.5: Dispersion relation of the full dipolar
model for realistic parameters with h/a = 0.72
and t/w = 1/3. Both ladders (blue and green
bands) have winding numbers of ν = 1. Note
that the bands are allowed to cross due to the
block-diagonal structure of the full Hamiltonian.
The point-spectrum on the right side shows
the energies of a finite ladder with the same
parameters and a length of L = 100. Two edge
states appear in the bandgap of each sector.
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Consequently, the bandgap closes if nx0 = 0 or nxπ/a = 0, leading to the two
conditions

t/w = ε0
η0

0
= 2ζ(3)

η0
0
,

t/w =
επ/a
η0
π/a

= − 3ζ(3)
2 η0

π/a

. (5.19)

Similar conditions hold for the H− block, where the signs are simply reversed.
If t/w is not at one of the critical values, we can normalize the vector and define
the winding number

ν = 1
2π

π/a∫
−π/a

dk (n̂xk∂kn̂zk − n̂zk∂kn̂xk) . (5.20)

For values t/w between the two critical values, each ladder has a non-trivial
winding number of ν = 1. The resulting topological phase diagram for both
sectors is shown in figure 5.4. It has overlapping regions where both of the
ladders have topologically nontrivial winding numbers.

5.4.2 Symmetry protection

In both blocks of the full Hamiltonian, the symmetries found in section 5.2 are
given by P = σx and T = σxK with respect to the new basis. For the winding
number in equation (5.20) to be a well-defined topological index, we rely on
the fact that the nk vector lies in the xz plane, i.e. ny(k) = 0. As we shall see
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shortly, this is a consequence of time-reversal symmetry and inversion symmetry.
For a Hamiltonian H(k) = nk · σ, the two symmetries lead to the following
conditions on the nk vector:

P T
nx−k = +nxk, nx−k = +nxk,
ny−k = −nyk, ny−k = +nyk,
nz−k = −nzk, nz−k = −nzk. (5.21)

Consequently, nxk needs to be an even function of k, nzk needs to be an odd
function of k and nyk = 0 for all k. If the condition nyk = 0 is violated by breaking
one of the two symmetries, the winding number ν is no longer a useful index,
as it can change without a closing of the bandgap.

5.4.3 Symmetry classification

One might wonder to which symmetry class our model belongs according to the
general classification scheme [189–191]. We have seen that the full model is time-
reversal symmetric with T 2 = +1. In the language of the classification scheme,
the inversion symmetry can also be regarded as a time-reversal symmetry with
T2 = PK and T 2

2 = +1. This construction is possible because the Hamiltonian
is real-valued. Considering just a single time-reversal symmetry is sufficient, as
the combination of two time-reversal symmetries always gives rise to a unitary
symmetry [191]. In our case this is just the operator σx ⊗ σx which we used
to block-diagonalize the Hamiltonian. The full dipolar model consequently
belongs to symmetry class AI, apparently without any topological index in one
dimension [189–191]. Note that this is not in contradiction to the existence of
the winding number defined above: the presence of inversion symmetry can lead
to the appearance of additional symmetry-protected topological phases. In fact,
adding inversion symmetry to the class AI leads to a Z topological index [204,
205].
At a certain fine-tuned point, the idealized model becomes “particle-hole”

symmetric. To see this, consider a single block H+(k) from equation (5.9) at
π-flux, i.e. δ = π/4. Subtracting the constant energy shift −wv, we have

H ′+(k) = H+(k) + wv1 =
2wd sin ka 2wh cos ka

2wh cos ka −2wd sin ka

 . (5.22)
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Fig. 5.6: Scaling behavior of the en-
ergy difference ∆E between the two
edge states. In the full dipolar model
without any cut-off (Rc = ∞), the
energy scales algebraically with L−3

(green line is a fit to ∆E1/L
3). If a

cut-off Rc = 5a < L is introduced,
the scaling turns exponential. For a
disordered system with a random on-
site potential µrand/w ≈ 0.01, the edge
states split off with a constant ∆E.
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This Hamiltonian satisfies CH ′+(k)C−1 = −H ′+(−k) where C is the anti-unitary
operator C = σzK that squares to +1. In combination with time-reversal
symmetry, this also leads to a chiral symmetry S = iσy which anti-commutes
with the Hamiltonian. Summarizing these results, we find that the idealized
model at the point δ = π/4 belongs to the symmetry class BDI, because T 2 = 1
and C2 = 1 (same conclusion as Tovmasyan [201]). In a one-dimensional system,
the BDI class has a Z topological index. However, since the “fake” particle-hole
symmetry C only appears at a fine-tuned point in the presence of inversion
symmetry, this topological index is symmetry-protected in the same way as the
winding number of the full dipolar model. This is very similar to the case of
the Su-Schrieffer-Heeger model [206], which can also be classified as BDI, but
only in the presence of inversion symmetry [207].

5.4.4 Edge state properties

Figure 5.5 shows the dispersion relation of the full dipolar model in the region
where ν+ = ν− = 1. The point spectrum for a finite ladder of length L shows
the appearance of four edge states; two for each block of the Hamiltonian. In
the following, we focus on the two edge states with the lower energy. In the
presence of long-range dipolar hopping, the edge states are not exactly localized
at the edge, but the amplitudes decay with 1/x3 into the bulk. In consequence,
the coupling between the two edge states is proportional to 1/L3. This leads to
an energy difference ∆E which scales like 1/L3 with the length of the ladder.
Conversely, the edge state amplitude decays exponentially into the bulk if the
dipolar interaction is artificially cut off at a finite distance Rc < L, leading to
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an exponentially small energy difference. Finally, if the inversion symmetry
is broken, the edge states split off independently of L with a constant energy
offset ∆E. Such a symmetry breaking could be introduced by a random on-site
potential, for example. The energy scaling results are summarized in figure 5.6.

5.4.5 Outlook

We have shown that dipolar exchange interactions can lead to the appearance of
a constant magnetic flux in a very simple setup on a double-chain lattice. The
artificial magnetic field can be tuned by changing a single geometric parameter:
the height between the two chains. Moreover, the system can be understood as
two decoupled copies of a Creutz-ladder with opposite-sign parameters. This
model can have bands with topologically nontrivial winding numbers and edge
states that are protected by inversion symmetry. The many-body physics of our
model can be understood by studying hard-core bosons on the Creutz-ladder.
In the short-range version, this has been subject of a work by Tovmasyan et
al. [201].
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6
Rydberg electron-induced atom losses

This chapter contains a brief description and a technical addendum to a side-
project concerning a single Rydberg electron that is coupled to a Bose Ein-
stein condensate [P3]. In the experiment, performed by Jonathan Balewski
and coworkers, a single atom within a Rubidium condensate is excited to a
high-n Rydberg state whose extent includes several thousands of ground state
atoms. Due to the interaction with the ground state atoms, the electron creates
excitations in the BEC which eventually can be measured as particle loss. Un-
derstanding the nature of the excitations and computing the particle losses is
the scope of this chapter. For a detailed overview on this topic, see Balewski et
al. [P3, 208] as well as Karpiuk et al. and Gaj et al. [209, 210].

6.1 Interaction between electron and ground state atoms

In the s-wave approximation, the contact interaction between the electronic
density ρ(r) = |Ψ(r)|2 in the Rydberg ns state and the ground state atoms is
described by the interaction potential V (r) = gρ(r), where g = 2π~2a/µ is the
coupling constant that is determined by the electron-atom scattering length a
and the reduced mass µ ≈ me. Within a local density approximation with a
constant atomic density

n(r) = 1
V

∑
p,q

eiqr a†p+qap (6.1)
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with annihilation operators ap and quantization volume V, the interaction can
be expressed as a convolution in momentum space, where

Hint = g
∫

d3r n(r)ρ(r) = g

V

∑
p,q

a†p+qapρk. (6.2)

Neglecting constant energy shifts and two-particle excitations, we can write the
interaction in terms of Bogoliubov operators bq = uqa−q − vqa†q and the BEC
particle number N0 as

Hint ≈
g
√
N0

V

∑
q 6=0

ρq
(
uq − vq

)(
b†q + b−q

)
. (6.3)

6.2 BEC excitations and atom losses

To estimate the number of excitations induced by the presence of the Rydberg
electron which has a finite lifetime of τ = 1/γ, we first consider the probability
to excite a certain mode with quasi momentum q, when a perturbation of the
type Hint e−γt is applied. In lowest order we have

P0→q =
∣∣∣∣∣∣− i

~

∞∫
0

dt eiωqt−γt 〈q|Hint|0〉
∣∣∣∣∣∣
2

. (6.4)

Here, |0〉 describes the many particle ground state and |q〉 = b†q |0〉 is the excited
state with energy

Eq = ~ωq =
√
ε2q + 2n0gcεq. (6.5)

We have introduced the recoil energy εq = ~2q2/2mRb, the BEC density n0 =
N0/V and the atom-atom coupling constant gc = 4π~2aRb/mRb with the s-wave
scattering length aRb. For the probability we find

P0→q =
g2ρ2

q
V 2~2

∫
dω S(q, ω) |C(ω)|2 =

g2ρ2
q

V 2~2N0
εq
Eq
|C(ωq)|2 , (6.6)

where S(q, ω) = N0 εq/Eq · δ(ω − ωq) is the dynamic structure factor of the
BEC and C(ω) = 1/(γ − iω) is the Fourier transform of the exponential decay.
During the time-of-flight process, the atom-atom interactions quickly become
negligible and the Bogoliubov modes are converted in to real particles. Using
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N = ∑
k a
†
kak, we find that 〈q|N |q〉− 〈0|N |0〉 = u2

q + v2
q additional particles are

in the excited state. The total number of lost atoms therefore be expressed as

L =
∑
q
P0→q (u2

q + v2
q). (6.7)

Replacing the sum by an integral, we find

L = 1
2π2

n0g
2

~2

∫
dq q2ρ2

q

1 + (qξ)2

2 + (qξ)2 |C(ωq)|2 ≡
∫

dq P (q)(u2
q + v2

q) (6.8)

where ξ = 1/
√

8πn0aRb is the healing length of the condensate. For high
principal quantum numbers we can use an asymptotic expression for the Fourier
transform of the electronic density (see equation (6.23) for details)

ρq = J0(qRe/2) sinc(qRe/2) (6.9)

where Re = 2n2a0 denotes the classical electron radius. Then, we find

L/τ 2 = 2
π2

n0g
2

R2
e~2

∫
dq J0(qRe/2)2 sin(qRe/2)2 1 + (qξ)2

2 + (qξ)2
1

1 + ω2
q/γ

2 , (6.10)

where we have separated the main dependency on the two experimentally acces-
sible quantities on the left hand side. To understand what kind of excitations
are generated by the Rydberg electron, figure 6.1 shows the excitation weight
P (q) ∼ P0→qq

2 as a function of q. The main excitation peak is located at
q ≈ 2/Re < 1/ξ, which lies well in the phonon regime for all principal quantum
numbers investigated in the experiment.

6.2.1 Refinements

Some experimental details require extensions to equation (6.10) given above.
They are described in the following.

Atomic density: First, to account for density inhomogeneities due to the external
potential in a simple way, we replace the BEC density n0 by its mean value

n = n0

1−
(2Re

5Rρ

)2
−
(
Re
5Rz

)2 (6.11)

on a sphere of radius Re centered in the middle of the cylindrical cloud with
Thomas-Fermi radii Rρ and Rz in radial and axial direction, respectively.
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Fig. 6.1: Weight of the different excitation momenta q for two principal quantum
numbers n = 110 and 160. The Bogoliubov excitation spectrum with linear and
quadratic regimes is shown as a reference.

Field ionization: Second, in the experimental sequence, the interaction between
the Rydberg electron and the ground state atoms is suddenly terminated after
a certain time tc at which the field ionization occurs. To account for this, the
function C(ω) is modified accordingly:

|C(ω)|2 =
∣∣∣∣∣∣
tc∫

0
dt eiωt−γt

∣∣∣∣∣∣
2

= 1 + e−2γtc −2 e−γtc cos(ωtc)
γ2 + ω2 . (6.12)

Lower cutoff: The last correction concerns the way the losses are detected in the
experiment. In the absorption images, excitations at small momenta cannot be
distinguished from the condensate fraction due to finite momentum components
in the Thomas-Fermi profile. A lower cutoff may thus be introduced in the
radial q integration. It turns out that this correction is negligible and almost
all excitations will be detected as losses.

Finally, figure 6.2 shows the quantity L/τ 2 in a comparison between experi-
ment and theory. The agreement is reasonably well if the measured lifetimes
are taken into account (see also related work by Karpiuk et al. [209]).
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Fig. 6.2: Atom losses divided by the square of the Rydberg lifetime τ . Comparison
between experiment [208] and theory. For the solid line, a lifetime of τ = 10µs is
assumed while the crosses take the measured Rydberg lifetime into account.

6.3 Fourier transform of the Rydberg electronic density

To find the number of losses in equation (6.8), the Fourier transform of the
electronic density in the Rydberg state is required. To calculate this quantity,
we start with the wave function of the Hydrogen ns state which is given by

Ψ(r) = e− r
n

√
π n5

L1
n−1

(2r
n

)
. (6.13)

In this section, we have set a0 = 1 to avoid cluttering of notation. The three-
dimensional Fourier transform for spherically symmetric functions is directly
given by a Hankel transformation in the radial coordinate. With ρ(r) = |Ψ(r)|2,
we have

ρq =
∫

d3r e−iqr ρ(r) = 4π
q

∞∫
0

dr r sin(qr)ρ(r)

= 4
q n5

∞∫
0

dr r sin(qr) e− 2r
n L1

n−1

(2r
n

)2

= 1
q n3

∞∫
0

dx x sin
(qn

2 x
)

e−x L1
n−1(x)2 (6.14)

where we have used the reduced length x = 2r
n in the last step.
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6.3.1 Universal solution in the classical limit

For large n −→∞ we expect the Fourier transform ρq to be a universal function
of the rescaled momentum k = 2n2q, where the factor 2n2 is the classical
electron radius (in units of a0). Using this transformation, we find

ρk = 2
kn

∞∫
0

dx x sin
(
kx

4n

)
e−x L1

n−1(x)2
. (6.15)

With the explicit expression for the Laguerre polynomial

L1
n−1(x) =

n∑
α=1

n
α

(−x)α−1

(α− 1)! (6.16)

we can expand the square L1
n−1(x)2:

ρk = 2
kn

n∑
α=1

n∑
β=1

(−1)α+β

(α− 1)!(β − 1)!

n
α

n
β


·
∞∫
0

dx sin
(
kx

4n

)
e−x xα+β−1. (6.17)

We can now evaluate the remaining integral
∞∫
0

dx sin
(
kx

4n

)
e−x xα+β−1 = Im

∞∫
0

dx e−(1−ik/4n)x xα+β−1


= Im

(α + β − 1)!(
1− ik

4n

)α+β

 (6.18)

leading to

ρk = 1
2n2

n∑
α=1

n∑
β=1

(−1)α+β (α + β − 1)!
(α− 1)!(β − 1)!

n
α

n
β


· Im

 1
κ (1− iκ)α+β

 (6.19)

where we have defined κ = k
4n to simplify the structure. We can now expand

this expression into a series around κ = 0. All odd orders vanish identically.
For even ν, the coefficient of ν-th order is given by

ρ
(ν)
k /ν! = (−1)ν/2

2n2(4n)ν(ν + 1)!
n∑

α=1

n∑
β=1

(−1)α+β(α + β + ν)!
(α− 1)!(β − 1)!

n
α

n
β

. (6.20)
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Finally, we can take the classical limit n −→ ∞, allowing us to express the
double infinite series as

ρ
(ν)
k /ν! = (−1)ν/2

(4n)ν(ν + 1)!

2ν + 1
ν

. (6.21)

The power series in ν can now be summed to give the final result

ρk =
∞∑

ν=0,2,...

(−1)ν/2
(4n)ν(ν + 1)!

2ν + 1
ν

kν = J0

(
k

2

)
sinc

(
k

2

)
(6.22)

where J0 is the zeroth-order Bessel function. Transforming back to the momen-
tum variable q, we find a concise form for the Fourier transform of the electronic
density in the classical limit:

ρq = J0
(
qn2

)
sinc

(
qn2

)
. (6.23)

6.3.2 Classical probability distribution

An interesting application of the expression for ρq in equation (6.23) is to
derive the classical probability function of the Hydrogen atom. By Fourier
transforming the universal function ρk back to real space we find

ρ(x) = 1
16π2 n6 x3/2(1− x)1/2 (6.24)
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as a function of the reduced coordinate x = r/Re = r/2n2. As expected, the
probability distribution diverges at the classical turning point x = r/Re = 1. It
can easily be checked, that ρ(x) is properly normalized:

4π
Re∫
0

dr ρ(r/Re)r2 = 1. (6.25)

The radial probability function is given by

P (r) = 4πρ(r/Re)r2 = 2
πRe

√√√√ r/Re
1− r/Re

(6.26)

and is shown in figure 6.3, where it is compared with the exact expressions for
a finite principal quantum number n.
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A
Dipolar dispersion relation

A.1 Definition and properties

This appendix is concerned with the properties of the dipolar dispersion rela-
tion [P1, P6, 75]

εmk =
∑
j 6=0

a3

|Rj|3
eikRj+imφj , m ∈ {0,±2} (A.1)

on a general two-dimensional Bravais lattice. Here, a is the lattice constant,
Rj = (Xj, Yj)t is the position of the j-th lattice site and φj = arg(Xj + iYj) is
the polar angle in the lattice plane, i.e. the angle between the vector R and
the positive x axis. Note that ε±2

k changes under a redefinition of the angle
φj −→ φj+φ0. The absolute value

∣∣∣ε±2
k

∣∣∣ is invariant, however. For the remainder
of this section we will measure lengths in units of a and suppress the j index,
such that

εmk =
∑

R 6=0

1
R3 eikR+imφR , (A.2)

where R = |R| and the sum runs over all lattice sites except the origin. Using
φ−R = φR + π and the inversion symmetry of Bravais lattices, we can derive
the following properties of the dispersion relation (m is always even):

εm−k = εmk ,

ε−mk = (εmk )∗ . (A.3)

The second property also shows that ε0k ∈ R.
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Fig. A.1: Plot of the function εmk on a
high-symmetry path in the Brillouin zone
of the square lattice. The linear behavior
at k = Γ is apparent as well as the zeros of
ε2k at k = Γ,M.

ε0
K

0

ε0
Γ

M Γ X M

ε0
k ∣∣ε2

k

∣∣

A.2 Symmetries and zeros

Let S be a symmetry operation which leaves the lattice invariant, i.e. S {R} =
{R}. Since the scalar product is left invariant, we can derive the property

εmSk =
∑

R 6=0
R−3 eikR+imφSR . (A.4)

Now let S = Cp be a rotation by 2π/p. Then, we find

εmSk = e2πim/p εmk . (A.5)

If k∗ is a high-symmetry point which is left invariant under the rotation,
that is Sk∗ = k∗ + G with an arbitrary reciprocal lattice vector G, we find
εmk∗ = e2πim/p εmk∗, leading to a condition for zeros of the dispersion relation:

εmk∗ = 0 if m /∈ pZ. (A.6)

For m = ±2, we can use any symmetry Cn with n > 2.

Triangular lattice: The points Γ = (0, 0) as well as K = (4π/3, 0) and K′ = −K
are invariant under C3 rotations. Therefore, ε20 = ε2K = ε2K′ = 0 on the triangular
lattice.

Square lattice: The points Γ and M = (π, π) are invariant under C4 rotations,
leading to the two zeros ε20 = ε2M = 0, see figure A.1.

A.3 Low-momentum behavior

For small |k| � 1 we can make a crude approximation and replace the discrete
Fourier series by a continuous Fourier transform (we will re-derive the results
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Appendix A Dipolar dispersion relation

in this section in a “cleaner” way later). We set kR = kR cos(φ − ψ) where
φ ≈ φR is the angle between R and the x-axis and ψ is the corresponding angle
between k and the kx-axis. Then

εmk =
∑

R 6=0
R−3 eikR+imφR ≈

∞∫
Rc

dR
2π∫
0

dφ eikR cos(φ−ψ)+imφ /R2

= k eimψ
∞∫
zc

dz
2π∫
0

dφ eiz cos(φ)+imφ /z2

= 2πk(−1)m/2 eimψ
∞∫
zc

dz J|m|(z)/z2 (A.7)

where we have to introduce a lower cutoff Rc for the radial integration which
we cannot determine (Jm is the Bessel function of the first kind). Consequently,
this calculation is only useful if we find quantities like εmk − εm0 which (a) allow
us to safely take the limit zc = kRc −→ 0 while keeping Rc constant and (b) do
not depend on Rc in this limit.

m = 0: In the case of ε0k, the integral in the expression

ε0k ≈ 2πk
∞∫
zc

dz J0(z)/z2 (A.8)

diverges as z−1
c in the limit zc −→ 0. However, we can subtract this diverging

part and calculate

εmk −
2π
Rc
≈ 2πk

 ∞∫
zc

dz J0(z)
z2 − 1

zc

 = −2πk, (A.9)

giving us the correct expression for the linear part in k, i.e. ε0k = ε00 − 2π|k|.

m = 2: For any |m| > 1, the integral can be evaluated in the limit zc −→ 0.
We find

εmk ≈
2π(−1)m/2
m2 − 1 k eimψ (A.10)

which allows us to determine ε±2
k ≈ −2π

3 |k| e
±2iψ.
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A.4 Exact results and Ewald summation

This section is mainly of interest for a numerically efficient determination of the
function εmk as well as a precise description of the low momentum behavior. To
start, it is convenient to rewrite εmk such that the explicit angular dependence
is removed from the sum. With R = (X, Y )t and eimφR = (X + iY )m/Rm we
can write

εmk =
∑

R 6=0

(X + iY )m
R3+m eikR =

∑
R 6=0

(−i∂kx + ∂ky)m
R3+m eikR

= (−i)m(∂kx + i∂ky)mχ3+m(k) (A.11)

where χs(k) = ∑
R 6=0 eikR R−s. In the following, we will see how to derive exact

results for the function χ3+m(k).

A.4.1 Exact values on the square lattice

At the Γ = (0, 0) point, the exact value of the function χs(0) = 4β(s/2)ζ(s/2)
can be expressed with the help of the Riemann ζ-function and the Dirichlet
β-function [211]. This immediately leads to

ε00 = χ3(0) = 4ζ(3/2)β(3/2) ≈ 9.03. (A.12)

To get the exact value at the M = (π, π) point, we denote the two sublattices
of the bipartite square lattice by A and B. Both have a lattice constant of

√
2.

By A, we denote the sublattice that includes the origin and B is the sublattice
which includes the nearest neighbors of the origin. The full lattice is denoted by
A+B. Then, ε00 = ε00(A+B) = ε00(A) + ε00(B) and ε0M = ε00(A)− ε00(B). With
ε00(A) = 2−3/2ε00, we find

ε0M = 2ε00(A)− ε00 =
(
1/
√

2− 1
)
ε00 ≈ −2.65. (A.13)

Using a similar technique with four sublattices, we can also find

ε0X = 1
4
(
1−
√

2
)
ε00 ≈ −0.94 (A.14)

at the X = (π, 0) point. These exact values can serve as a useful benchmark for
any kind of approximation.
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A.4.2 Ewald summation

This section uses techniques introduced by Müller [124] and extends the results
to m 6= 0. First, using the relation

1
Rs

= 1
Γ(s/2)

∞∫
0

dλλs/2−1 e−λR
2
, s > 0 (A.15)

we can rewrite

χs(k) = 1
Γ(s/2)

∑
R 6=0

(∫ η

0
+
∫ ∞
η

)
dλλs/2−1 e−λR

2+ikR

= ηs/2

Γ(s/2)
∑

R 6=0

 ∞∫
1

dλλ−s/2−1 e−ηR
2/λ

+
∞∫
1

dλλs/2−1 e−ηλR
2

 eikR (A.16)

where we have substituted λ → η/λ in the first and λ → ηλ in the second
integral. The parameter η > 0 determines the border between the real-space and
the k-space summation. Using the Poisson summation formula we transform

∑
R 6=0

e−ηR
2/λ+ikR =

∑
R

(. . . )− 1 = πλ

η

∑
q

e−
λ
4η |q+k|2 −1, (A.17)

which leads to

χs(k) = ηs/2

Γ(s/2)

(
π

η

∑
q
Es/2

 |q + k|2

4η

− 2
s

+
∑

R 6=0
E1−s/2

(
R2η

)
eikR

)
. (A.18)

Here, we have introduced the exponential integral function

En(z) =
∞∫
1

dt e−zt
tn

. (A.19)

Both sums in equation (A.18) are fast-converging since high values of q and R,
respectively, are exponentially suppressed by En. Using this expression, we can
accurately plot the function εmk in the Brillouin zone, see figure A.1.
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Appendix A Dipolar dispersion relation

A.4.3 Non-analytic behavior at low momenta

Setting s = 3⇔ m = 0 in equation (A.18), we find:

ε0k = χ3(k) = 2π
∑

q
E3/2

 |q + k|2

4π

− 2
3 +

∑
R 6=0

E−1/2
(
πR2

)
eikR

 (A.20)

where we have explicitly chosen η = π. We can combine the two sums by writing
the q = 0 term separately and by making the replacement q −→ 2πR for the
rest of the q-sum:

ε0k = 2πE3/2(k2/4π)− 4π
3

+ 2π
∑

R 6=0

(
E3/2(π |R + k/2π|2) + E−1/2

(
πR2

)
eikR

)
. (A.21)

Expanding the definitions of the exponential integral function, this can be
written as

ε0k = −2π|k| erfc(|k|/2
√
π) + 4π

(
e−
|k|2
4π − 1

3

)

+ 2π
∑

R 6=0

∞∫
1

dλ
[
λ−3/2 e−πλ|R+k/2π|2 +λ1/2 e−πλR

2+ikR
]
. (A.22)

This is the result stated in equation (2.3) on page 30. For general (even) m,
i.e. for any odd s = 3 +m, we can expand

Es/2(z) = Γ(1− s/2) zs/2−1 +
∞∑
k=0

(−1)k+1zk

k!(1 + k − s/2) (A.23)

which means that the q = 0 term has a contribution

ηs/2

Γ(s/2)
π

η
Γ(1− s/2)

 |k|2
4η

s/2−1

= 22−sπ Γ(1− s/2)
Γ(s/2) |k|s−2

. (A.24)

Substituting s = 3 + m and taking m derivatives, the prefactor of the linear
term becomes

π (1 +m)!! Γ[−(m+ 1)/2]
Γ[(3 +m)/2] = 2π (−2)1+m/2(1 +m/2)!

(2 +m)! . (A.25)

For m = 0 the prefactor is given by −2π, see equation (A.22), and for m = 2 we
find 2π/3. Both results are in accordance with the estimation in section A.3.
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B
Spin-wave analysis

We present the derivation of the spin wave excitation spectrum within the spin
wave analysis for the system described in chapter 2. The basic approach is
to start with the ground states exhibiting perfect order, which are the correct
ground states for the classical model at the four points θ = 0,±π/2, π. Then, we
introduce bosonic creation and annihilation operators creating a spin excitation
above the ground state according to the Holstein-Primakoff transformation.
The spin Hamiltonian then reduces to a Bose-Hubbard model. In lowest order,
we can ignore the interactions between the bosonic particles, and obtain a
quadratic Hamiltonian in the bosonic operators, which is diagonalized using
a Bogoliubov-Valantin transformation. The latter transformation deforms the
ground state and introduces fluctuations into the system.

B.1 XY antiferromagnetic phase

In the following, we demonstrate the spin wave analysis for the most reveal-
ing case: the antiferromagnetic XY phase. The generalization to the other
ground states is straightforward. Without loss of generality, we choose the anti-
ferromagnetic order to point along the x direction. The square lattice is bipartite,
and we denote the two sublattices as A and B. Then, the anti-ferromagnetic
mean-field ground-state is given by |G〉 = ∏

i∈A |←〉i
∏
j∈B |→〉j with spins on

sublattice A pointing in the negative x direction, i.e., Sx |←〉 = −~/2 |←〉, and
spins on sublattice B pointing in the positive x direction (Sx |→〉 = ~/2 |→〉).



Appendix B Spin-wave analysis

Excitations on sublattice A are created by flipping a spin with the ladder
operator Sx+ = Sz − iSy, while excitations on sublattice B are created via
Sx− = Sz + iSy. We apply a Holstein-Primakoff transformation to bosonic
operators

Szi = ~
2(ai + a†i)ϕ(ni),

Syi = ~
2i(ai − a

†
i) eiKRi ϕ(ni), (B.1)

where the phase eiKRi = e−iKRi accounts for the sublattice-dependent sign
with K = (π/a, π/a). The factor ϕ(ni) = 1 − ni is introduced to guarantee
bosonic commutation relations for the operators ai. Here, we are interested in
the leading order of the spin wave expansion, and can therefore set ϕ(ni) ≈ 1.
The bosonic operators reduce to

ai = (Sz + iSyeiKRi)/~,
a†i = (Sz − iSyeiKRi)/~, (B.2)

and the number operator ni = a†iai = 1
2 + Sxe

iKRi/~.
Expanding the spin Hamiltonian in terms of the bosonic operators leads to

a Bose-Hubbard Hamiltonian for the spin wave excitations. In leading order,
we can neglect the interactions between the bosons and obtain the quadratic
Hamiltonian

H/J = sin θ εK
3N

4 −
1
2
∑
i

[
a†iai + aia

†
i

]
+ 1

4
∑
i6=j

χij
(
a†iaj + aia

†
j

)
+ ηij

(
aiaj + a†ia

†
j

)
|Rij/a|3

(B.3)

with Rij = Ri −Rj, N the number of lattice sites, and the coupling the terms
χij = cos θ + sin θeiKRij and ηij = cos θ − sin θeiKRij including the anti-ferro-
magnetic ordering. Introducing the Fourier representation

ai = 1√
N

∑
q
aqe

−iqRi, (B.4)

the terms involving the bosonic operators in equation (B.3) reduce to
1
4
∑
q

[
(cos θ εq + sin θ εq+K − 2 sin θεK)

(
a†qaq + aqa

†
q

)

+ (cos θ εq − sin θ εq+K)
(
aqa−q + a†qa

†
−q

)]
. (B.5)
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Appendix B Spin-wave analysis

The diagonalization of this Hamiltonian is straightforward using a standard
Bogoliubov transformation with b†q = uq a

†
q − vq a−q. Then, the Hamiltonian

takes the form

H = 3JN sin θ εK
4 +

∑
q
EXY-AF

q

(
b†qbq + 1

2

)
(B.6)

with the spin-wave excitation spectrum EXY-AF
q . In addition, the coefficients for

the Bogoliubov transformation are given by

uq, vq = ±
√√√√1

2

(cos θ εq + sin θ (εq+K − 2εK)
2 Eq

± 1
)
, (B.7)

with Eq ≡ EXY-AF
q /J . The property u2

q − v2
q = 1 asserts that the transformation

is canonical. In addition, the ground state obeys the condition bq |vac〉 = 0, and
the ground state energy per spin at zero temperature T = 0 reduces to eXY-AF,
see table 2.1.
We are now able to validate the spin wave approach self-consistently: the

deformation of the ground state by the spin wave analysis provides a suppression
∆m of the anti-ferromagnetic order m ≡ ∆m− 1

2 =
〈
Sxi e

iKRi

〉
/~, given by

∆m =
∫ dq
v0

〈
a†qaq

〉
=
∫ dq
v0

[
v2

q + (2v2
q + 1)fq

]
, (B.8)

where fq =
〈
b†qb
†
q
〉

=
[
exp(EXY-AF

q /T )− 1
]−1 accounts for the thermal occupa-

tion of the spin waves. At zero temperature T = 0, this expression converges
and we obtain ∆m ≈ 0.03 for θ = θ̃c as well as ∆m = 0.39 for θ ≈ π

4 . In turn,
at finite temperatures T > 0, the low momentum behavior of the integrand
scales as |q|−2, and therefore ∆m diverges logarithmically: the long range order
is destroyed by the thermal spin wave fluctuations, and gives rise to the well
known quasi long-range order in analogy to short range XY models.

B.2 Correlation functions

Finally, the spin wave analysis also allows us to analyze the correlation functions
cαα(Rij) = 〈Sαi Sαj eiKRij〉. Using the translational invariance of our system, the
correlation functions reduce to

cαα(r) =
∫ dq
v0

cαα(q + K) e−iqr (B.9)
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with cαα(q) = 〈SαqSα−q〉. Combining the Holstein Primakoff transformation from
equation (B.1) and the Bogoliubov transformation, the correlation functions
can be expanded in terms of the coefficients uq and vq as

czz(q + K) = 1
4(uq+K + vq+K)2 coth

(
JEq

2T

)
,

cyy(q + K) = 1
4(uq − vq)2 coth

(
JEq

2T

)
. (B.10)

The long distance behavior |r| → ∞ of the correlation function is determined
by the low momentum behavior of the above expressions

(uq+K + vq+K)2 ∼ |q|+ const.

(uq − vq)2 ∼ 1
|q|

(B.11)

and describes the leading non-analytic part. The latter can be replaced using
the following relation, which derives via an Ewald summation,

|q|γ ∼
∑
j 6=0

eiqRj

|Rj|2+γ (B.12)

for |q| → 0 and γ > −2; (for γ = 0, 2, 4, . . . the left side is replaced by
|q|γ log |q|). At zero temperature T = 0, the integration in equation (B.9) is
straightforward and provides the scaling behavior czz(r) ∼ |r|−3 and cyy(r) ∼
|r|−1.

98



C
Classical dipolar XY model

The classical XY model with ferromagnetic long-range dipolar couplings is given
by

H = −Ja3 ∑
i6=j

Si · Sj
|Ri −Rj|3

= −J
∑
i6=j

cos(θi − θj)
|rij|3

. (C.1)

Here, J > 0 is the coupling constant, Si = (cos θi, sin θi)t are classical spins
restricted to two dimensions and rij = (Ri−Rj)/a is the dimensionless relative
distance, used for conciseness.

C.1 High temperature expansion

With the reduced inverse temperature β = J/kT , we can write the partition
function as

Z =
∫ ∏

k

dθk
2π exp

(
β
∑
i 6=j

cos(θi − θj)|rij|−3
)
. (C.2)

In the high temperature limit β � 1, keeping only linear terms in β, the
two-point correlation function 〈SαSβ〉 is given by

〈SαSβ〉 = 〈cos(θα − θβ)〉

= 1
Z

∫ ∏
k

dθk
2π cos(θα − θβ)

∏
i6=j

(
1 + β cos(θi − θj)|rij|−3

)
(C.3)
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After integration over all angles, only two terms in the expansion of the product
over i 6= j contribute to the lowest order: β cos(θα − θβ)|rαβ|−3 and β cos(θβ −
θα)|rβα|−3. Then, the correlation function is given by

〈SαSβ〉 = 2β
Z

∫ ∏
k

dθk
2π cos(θα − θβ)2 |rαβ|−3 = β

Z

1
|rαβ|3

= β

|rαβ|3
. (C.4)

In the last step, we have used that Z = 1 +O(β3), as the smallest loop includes
three terms.
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D
Harmonic oscillator matrix elements of

the dipolar interaction

D.1 Talmi-Moshinsky transformation

In this section, we show how to simplify the matrix elements of the dipolar
interaction Vijkl = 〈ij|Vdd|kl〉 with each index ijkl representing a set of 2D
harmonic oscillator quantum numbers i = (ni,mi, σi) and

Vdd(R, φ) = Cdd

R3

[
σz1σ

z
2 − (σ+

1 σ
−
2 + 3 e2iφ σ−1 σ

−
2 + h.c.)

]
(D.1)

the dipolar interaction in terms of R = R1−R2 = (R cosφ,R sinφ), the relative
vector between the two particles and its polar coordinates. The spin-part is
easily resolved and we can concentrate on matrix elements of the form

V ∆m ≡ 〈n′1m′1n′2m′2|
ei∆mφ

R3 |n1m1n2m2〉 (D.2)

with the difference in angular momentum ∆m = 0,±2. It is useful to change
the basis to center-of-mass and relative coordinate states with

Q = R1 + R2√
2

, q = R1 −R2√
2

. (D.3)

Note the symmetric definition with the additional factor of 1/
√

2 compared
to the usual definition of the relative vector. Due to the quadratic character
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of the potential, the new degrees of freedom Q and q are subject to the same
harmonic potential. Thus, the product state |n1m1n2m2〉 = |n1m1〉 |n2m2〉 can
be decomposed in terms of harmonic oscillator states |NM〉 |nm〉 of the Q,q
coordinates via

|n1m1n2m2〉 =
∑

N,M,n,m

T n1m1n2m2
NMnm |NMnm〉 (D.4)

where the T n1m1n2m2
NMnm are called Talmi-Moshinsky coefficients [212, 213]. Since

the center-of-mass is not affected by the interaction, the relevant matrix elements
are

〈n′m′| ei∆mφ

(
√

2q)3 |nm〉 = δm+∆m,m′

∞∫
0

dq R
m′

n′ (q)Rm
n (q) q(√

2q
)3 (D.5)

where the radial functions Rm
n are given in terms of the generalized Laguerre

polynomials L|m|n as

Rm
n (q) =

√√√√ 2n!
(n+ |m|)! q

|m| exp
(
−q

2

2

)
· L|m|n (q2). (D.6)

The matrix element V ∆m is thus given by

V ∆m =
∑

N,M,n,n′,m

(T ∗)n
′
1m
′
1n
′
2m
′
2

NMn′(m+∆m) · T
n1m1n2m2
NMnm ·

∞∫
0

dq R
m+∆m
n′ (q)Rm

n (q) q(√
2q
)3 .

(D.7)

where the remaining integral can be calculated analytically for specific values
of n, n′,m and ∆m.

D.2 Lowest Landau level

In the lowest Landau level where ni = 0 for all particles, this expression can
be further simplified. The decomposition of a state |0m10m2〉 into relative and
center of mass coordinates shows that only |0M0m〉 states appear due to energy
conservation. If we consider a single spin component, the only relevant matrix
element is the σzi σzj part with ∆m = 0 and

V 0 = 2−3/2 ∑
M,m

(T ∗)m
′
1m
′
2

Mm · Tm1m2
Mm 〈m|q−3|m〉. (D.8)
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For m ≥ 0 the integration yields

〈m|q−3|m〉 = 2
m!

∞∫
0

dq q2m−2 e−q
2

=
Γ
(
m− 1

2

)
Γ
(
m+ 1

) (D.9)

For m = 0, the integration diverges as the integrand behaves like q−2 for small
q. However, if we consider the antisymmetrized matrix element

V m′1,m
′
2,m1,m2 ≡ Vm′1,m′2,m1,m2 − Vm′2,m′1,m1,m2, (D.10)

the diverging term for m = 0 cancels, as any of the other even-m terms, and we
are left with

V m′1,m
′
2,m1,m2 = 2−1/2

m1+m2∑
m=1,3,...

(T ∗)m
′
1m
′
2

Mm · Tm1m2
Mm

Γ
(
m− 1

2

)
Γ
(
m+ 1

) (D.11)

where m1 + m2 = m′1 + m′2 and M = m1 + m2 − m. The Talmi-Moshinsky
coefficients in the lowest Landau level are given by

Tm1m2
Mm =

(
−1√

2

)m+m1
√
m1!m2!
m!M !

m1∑
k=0

(−1)k
M
k

 m

m1 − k

 (D.12)
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