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Zusammenfassung

Der quantenmechanische Transport von Information beziehungsweise Energie durch
Netzwerke ist das Thema vieler Veröffentlichungen. Aktuell wird zum Beispiel daran
geforscht, wie Informationen mit Hilfe von Spin-Systemen effektiv transportiert wer-
den können [1, 2]. Auch Photosynthese betreibende Organismen erfahren zur Zeit viel
Aufmerksamkeit. Sie besitzen Lichtsammelkomplexe, die die Energie von absorbier-
tem Licht zu Reaktionszentren leiten. Neue Forschungen zeigen, dass dieser Energie-
transport sehr effektiv und kohärent erfolgt [3]. In dieser Bachelorarbeit geht es um
den Transport von Anregungen. Alle diese Transportphänomene sind miteinander ver-
wandt. Wenn man eines analysiert, lernt man in der Regel auch etwas über die anderen.
In den meisten Fällen kann der Transport vereinfacht durch Modelle beschrieben wer-
den, die dem Bose-Hubbard Modell [4] ähneln.
Dieser Ansatz wird auch in der vorliegenden Arbeit verfolgt. In dieser werden Netzwer-
ke betrachtet, die aus mehreren bosonischen Zwei-Niveau-Systemen bestehen. Zunächst
befindet sich ein einziges dieser Systeme in dem angeregten Zustand. Durch Wechsel-
wirkung zwischen den Systemen breitet sich dann die Anregung quantenmechanisch
im gesamten Netzwerk aus. Das im Verlauf dieser Bachelorarbeit entwickelte Simulati-
onsprogramm ermöglicht zu analysieren, wie sich unterschiedliche Netzwerkgeometrien
und Wechselwirkungspotenziale auf die Ausbreitung der Anregung auswirken.
Hierzu werden zunächst sehr einfache, kleine Netzwerke und dann Gitter untersucht.
Es ergeben sich unter anderem die folgenden Ergebnisse: Je mehr Nachbarn ein an-
geregtes Teilchen hat, desto schneller wird es von einem Teil der Anregung verlassen.
Andererseits steigt der zurückbleibende Anteil ebenfalls mit der Nachbarzahl. Auch
die Positionierung der Nachbarn hat einen großen Einfluss. So führt zum Beispiel die
Anisotropie von quadratischen Gittern mit Dipol-Dipol-Wechselwirkung zu einer An-
regungsausbreitung über die Diagonalen. Es stellt sich heraus, dass schon kleinste Posi-
tionsänderungen der Gitterteilchen einen großen Einfluss auf die Ausbreitungen haben.
Um das Simulationsprogramm zu überprüfen, werden analytisch Dispersionsrelationen
für unendlich lange, lineare Ketten hergeleitet. Diese stimmen gut mit den Disper-
sionsrelationen überein, die aus den Simulationsergebnissen berechnet werden. Dass
hierbei nur endlich viele Teilchen verwendet worden sind, führt dazu, dass nur diskrete
Wellenvektoren auftreten. Außerdem divergiert die Dispersionsrelation für mit 1/R ab-
fallende Wechselwirkungen nicht. Dispersionsrelationen können auch zu einem besseren
Verständnis der Anregungsausbreitung beitragen. Zum Beispiel zeigt sich, dass sie für
kubische Gitter nur für kleine Wellenvektoren isotrop sind. Dies führt dazu, dass sich
auf kubischen Gittern nur breit verteilte Anregungen isotrop ausbreiten.
Zum Schluss wird geprüft, ob es machbar ist, den Anregungstransport mit Superatomen
zu untersuchen. Diese sind Cluster von Atomen, die sich eine Rydberg-Anregung teilen.
Es zeigt sich, dass dies prinzipiell möglich ist. Jedoch muss man den Durchmesser der
Superatome im Verhältnis zu ihrem Abstand klein halten, da es ansonsten zu einer
schnellen Dephasierung kommt.
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Abstract

This thesis deals with the simulation of networks of non-radiatively interacting bosons.
The coupling between the bosons causes excitations to propagate.
Our numerical implementation allows us to analyze arbitrary two-dimensional patterns
coupled by nearest neighbor interaction or 1/Rα-potentials. We study how crucially the
propagation of excitations depends on network geometries and interaction potentials.
To gain a better understanding of observed phenomena, several dispersion relations are
extracted from simulation data. A comparison with analytically calculated dispersion
relations reveals finite-size effects. The analytic results are also used to validate the
simulation program.
As a specific implementation of such coupled networks, we investigate systems of Ryd-
berg excitations. We analyze how promising the approach is, to experimentally study
energy transfer with the help of so-called superatoms. It becomes apparent that their
physical extension causes dephasing.
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1 Introduction

1 Introduction

Motivation

Quantum networks that transfer information respectively energy are subjects to active
research.

• The transfer of quantum information through spin systems is a current topic.
One goal is to improve the transport efficiency [1, 2].

• The study of quantum energy transport in biologic systems, such as photosyn-
thetic bacteria (see figure 1), has received huge attention in the last few years,
even though the basic principles were firstly discussed more than 80 years ago [5].
Not long ago evidence for wavelike energy transfer through quantum coherence
was found [3].

All of these networks are related to each other. Hence, if we investigate one of them we
will learn about the others. One common approach is to describe them with the help
of models that are similar to the Bose-Hubbard model [4]. This model was originally
designed for “hopping” bosons, but it also describes “hopping” information or energy.
Another similarity between some of these processes is, that they can be seen as quantum
walks. Quantum walks allow quantum algorithms which are much faster than their
classical counterparts [6]. Quite recently it was shown, that multiparticle quantum
walk is capable of universal quantum computation [7].
In this bachelor thesis we look at networks consisting of bosonic two level systems. We
suppose that they interact non-radiatively in such a way that excitations are transfered.
This process can be analyzed with the help of Rydberg gases. The long time goal of
our research is to better understand the excitonic energy transfer observed in biologic
systems. This thesis can be considered as a first step. As a side effect we also learn
about the related networks mentioned above. At several passages of this thesis we are
going to refer to them.

Fig. 1: Light harvesting protein of a green sulfur bacteria [8].
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1 Introduction

Outline of this thesis

First, we develop a general model of the propagation of excitations in chapter 2. Dur-
ing the course of the bachelor thesis we have programmed a software that efficiently
calculates the time evolution. We make use of this software to analyze the propagation
in various networks with various interaction potentials.
In chapter 3 we investigate three types of networks. We start with the type that is
most simple to understand and end with the most complicated one.

• At first we analyze networks consisting of few particles which can be understood
easily.

• Afterwards we look at regular lattices and study how anisotropy affects the prop-
agation.

• Finally we take a short glance at irregular networks.
In chapter 4 we analytically calculate dispersion relations and compare them with
simulation results to validate our simulation procedure. Hereby we learn about finite
size effects on dispersion relations. Additionally, dispersion relations help us a to
understand the spread of excitations.
In chapter 5 we study the feasibility of implementing such transfer networks in ultracold
Rydberg gases with so-called superatoms.
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2 The model

2 The model

In this chapter, we develop a model for the propagation of excitations in networks.
A quantum system with a finite number of sites is considered. Each site is occupied
by exactly one bosonic particle that can be in the quantum state |0〉 or |1〉. At the
beginning of the simulation one or more particles are excited to |1〉 with a certain
probability. The particles will interact if and only if they are in different states. The
interaction will be non-radiative.
This general system is studied in the following. In chapter 5 we get more specific.
There, we are going to use so called superatoms as particles to build up the system.

2.1 Schrödinger equation

Because we are only interested in coherent processes, the time evolution of the system
can be obtained by solving the Schrödinger equation. To avoid numerical errors due
to very huge or small numbers atomic units are used.

i
d
dt
|Ψ(t)〉 = H |Ψ(t)〉 (1)

As we will see in the next section the Hamilton operator is time-independent, so that
the solution can be easily determined.

|Ψ(t)〉 = e−iHt |Ψ(0)〉 (2)

To calculate the matrix exponential e−iHt we diagonalize the Hamilton operator. Be-
cause it is Hermitian, it can be diagonalized by a unitary matrix. Let us assume the
Hamilton operator has the eigenvalue and eigenvector pairs (λi, vi). Then the solution
of the Schrödinger equation can be written as follows.

|Ψ(t)〉 =
(
v1 · · ·

) (
e−iλ1t

. . .

) (
v1 · · ·

)∗

|Ψ(0)〉 (3)

Here, M∗ is the conjugate transpose of the matrix M .

2.2 Hamilton operator

Without interaction, a system containing one excited particle is in a state that is
an eigenvector of the Hamiltonian. With interaction, this is no longer the case and
the state is not a stationary solution of the Schrödinger equation any more. Hence,
the probability of finding a particle in an excited state will change over time. In
the following we going to determine the Hamilton operator that describes the time
evolution.
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2 The model

We will say that there is an excitation at site a, if the particle at this site is in the
state |1〉. From this point of view, the interaction of particles causes hopping of exci-
tations. This way of speaking allows us to perform calculations in the Fock space of
the excitations, that is created by a very simple basis set.

• It owns the basis elements |n1, ...na, ..., nN〉.
• The occupancy number na ∈ {0, 1} tells, whether there is an excitation at site a.

The idea of hopping excitations suggests that our system can be described by a Hamil-
ton operator, that is similar to the Hamiltonian of the Bose-Hubbard model [4], like
we said in chapter 1.

HBH = −t
∑
〈n,m〉

c†ncm +
U

2

∑
n

c†ncn(c
†
ncn − 1) (4)

Here, 〈n,m〉 represents nearest neighbor interaction. We extend this to arbitrary in-
teraction by replacing the simple hopping constant t with a function of n and m.
Additionally the first sum has to include all combinations of sites.
Moreover we have to ensure that excitations can not be at the same site (hard-core
bosons). In principle, this can be achieved by setting the on-site repulsion constant U to
infinity. However, we do not need to do this, since our Fock space does not permit more
than one excitation at the same site. Therefore we can neglect the addend containing
U . By doing so we achieve the following interaction Hamilton operator.

Hi =
∑
n6=m

t(n,m) c†ncm (5)

The creation c†n and annihilation operators cn operate in the Fock space of the excita-
tions. In the following Rnm = |xn−xm| is the distance between the two sites n and m.
We consider various explicit interaction types:

• t(n,m) = t(δn−m−1 + δn−m+1): nearest neighbor interaction in 1D
• t(n,m) = t/Rnm

6: van der Waals interaction
• t(n,m) = t/Rnm

3: dipol-dipol interaction
• t(n,m) = t/Rnm: coulomb interaction

Our considerations have led to a very general interaction Hamilton operator 5 that fits
many systems. In chapter 5 we are going to prove exemplarily, that we have chosen
the correct Hamilton operator by canonical quantization of dipole-dipole interaction.
In general the interaction Hamilton operator 5 is not sufficient to describe systems.
One has to add the Hamilton operator He containing the energies of the states on its
diagonal. For systems containing one specific number of excitations all entries on the
diagonal have the same value. Thus He is proportional to the identity matrix I, so
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2 The model

that He = k I. Therefore it commutes with the interaction Hamilton operator Hi and
the following calculation can be performed (matrices are printed in bold).

| |Ψ(t)〉 |2 =
∣∣ e−i(He+Hi)t |Ψ(0)〉

∣∣2 = ∣∣ e−i(kI+Hi)t |Ψ(0)〉
∣∣2

=
∣∣ e−ikIte−iHit |Ψ(0)〉

∣∣2 = ∣∣e−ikte−iHit |Ψ(0)〉
∣∣2

=
∣∣e−iHit |Ψ(0)〉

∣∣2 (6)

Hence, He can be neglected for these systems.
In the end we are interested in the probability of finding an excitation at a certain site.
To calculate this quantity one has to use the single excitation basis. Let |Ψ(t)a〉 be the
wave function at the site a. Than the probability equals 〈Ψ(t)a|Ψ(t)a〉. Experimentally,
a method distinguishing between the two states is required. In the case of Rydberg
excitations, one can for example use state selective field ionization.

2.2.1 Example

As an example we are going to derive the Hamilton operator of a system that has
the shape of an equilateral triangle, see figure 2. We suppose that each side has the
length a = 1. Then all types of interactions lead to the same result because of the
special geometry.

1

2 3

Fig. 2: An equilateral triangle with one particle at each corner is an example of a simple
system. The lines show the coupling.

To express the Hamilton operator as a matrix, we need the basis elements of the Fock
space. Restricting the available states of the system to one or two simultaneous exci-
tations, the available Fock space can be constructed with the following basis elements.

Basis = {|0, 0, 1〉, |0, 1, 0〉, |1, 0, 0〉, |0, 1, 1〉, |1, 0, 1〉, |1, 1, 0〉} (7)

The system has the following Hamilton operator where E is the energetic difference
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2 The model

between the states |0〉 and |1〉.

H = t


E 1 1 0 0 0
1 E 1 0 0 0
1 1 E 0 0 0
0 0 0 2E 1 1
0 0 0 1 2E 1
0 0 0 1 1 2E

 = t

(
H1

H2

)
(8)

As we can see, the Hamilton operator is sparse. It is composed of two blocks H1 and
H2 on the diagonal. Thus the Schrödinger equation separates into two independent
differential equations, which can be solved separately.
It is interesting, that instead of seeing interacting particles one can view figure 2 as the
cycle graph C3. The continuous-time quantum walk on this graph can be described by
H1 [9].

2.3 Simulation method

In the course of this thesis, the numerical solution of the model described above
was implemented in C++. The resulting program enables the study of arbitrary two-
dimensional patterns coupled by different 1/Rα-potentials. A graphical user interface
is constructed with the Qt framework, see figure 3. For matrix and vector calculations
the library Eigen 3 is used. The patterns are drawn with the help of OpenGL.

Fig. 3: Graphical user interface of the simulation program
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2 The model

In order to perform calculations, the users has to specify the system they like to sim-
ulate.

• Power law of interaction potential
• Geometry of the pattern
• Number of excitations and their initial distribution

This input data is used to automatically calculate the basis elements and the Hamilton
operator of the system. Furthermore the initial conditions of the Schrödinger equation
are determined from the initial distribution of the excitations. The Hamilton operator is
stored as a sparse matrix. The initial conditions and the basis elements are memorized
as sparse vectors. The expression “sparse” means that nulls are not stored explicitly.
This saves a lot of storage space in main memory.
Once calculated, the Hamiltonian and the basis elements are cached to reduce the
simulation time.
The time evolution is calculated by diagonalization of the Hamilton operator, see equa-
tion 3. Since diagonalization requires the costly eigendecomposition, it is slow for huge
matrices. Hence, it is necessary to keep the matrices small.
We achieve this by the use of two tricks.

• We use not all basis elements of the Fock space. If we like to simulate the spread
of m excitations, only the basis elements that contain exactly m excitations are
relevant to us.

• We are analyzing the Hamilton operator. If it is built up by several blocks as
shown in equation 8, the program will identify them. In this case the program
will perform the calculations with the blocks.

There are even more tricks to think of.
• Highly symmetric systems lead to highly symmetric matrices. These can be

simplified by changing to a basis set that fits the symmetry.
• Huge eigenvalues cause fast oscillations. On average they are irrelevant, espe-

cially they can not be measured. Therefore, such eigenvalues do not need to be
determined.

• The time evolution can also be calculated by integration of the Schrödinger equa-
tion. For very large systems this is faster than diagonalization.

However, these methods are not implemented yet because for our purposes we do not
need them. A 500 × 500 matrix is still diagonalized in roughly one second and we do
not require larger ones.
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3 Dependence on geometry and potentials

3 Dependence on geometry and potentials

The objective of this chapter is to simulate and understand the energy transfer for
several network geometries and interaction potentials. We start with simple networks.
Thereafter we analyze lattices. Finally we end with random networks, that a hard to
comprehend.

3.1 Simple networks

In the following a dipole-dipole interaction potential (∝ 1/R3) is used for all patterns.
We have chosen this particular potential because dipole-dipole interacting Rydberg
atoms can be used to experimentally implement these networks. This is what we are
going to look at in chapter 5.
All networks are plotted the same way.

• The particles are represented by spheres.
• Their color indicates the probability of finding an excitation in logarithmic scale.

Blue stands for 0 and red for 1.

3.1.1 Dependence on number of neighbors

To figure out how position differences influence the propagation, we investigate several
local network configurations.
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Fig. 4: At the beginning the central particles of the symmetric networks are excited. The
plot shows the time evolution due to dipole-dipole interaction.
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3 Dependence on geometry and potentials

At first we like to study networks with one central particle that is surrounded by various
neighbors. Initially the excitation is at the center. Because the neighbors are positioned
symmetrically, the excitation propagates isotropically. Thus, the probability of finding
a excitation is the same for all neighbors. Therefore all neighbors together behave
like one virtual particle. Hence, all of these symmetric systems are comparable to
two-particle systems and the excitation probabilities oscillate sinusoidally, see figure 4.
Increasing the number of the neighbors has two effects on the oscillating excitation
probability.

1. The amplitude becomes small. A small amplitude means, that a minor percent-
age of the excitation leaves the central particle. Hence, for a huge number of
neighbors the probability of finding the excitation in the center stays at a high
level.

2. The frequency of the oscillation gets higher. The frequency increases so fast,
that the following statement holds true: The more neighbors exist, the faster the
excitation probability declines. Hence, if an excitation leaves the central particle,
it will leave it very fast.

3.1.2 Dependence on distance between neighbors

Increasing the number of neighbors go along with reducing the distance between them.
This raises the question whether the observations can also be made with two neighbors
getting closer and closer to each other. The results are shown in figure 5.
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Fig. 5: An excited partical has two neighbors. Depending on the distance between the neigh-
bors the excitation probability oscillates with a different amplitude and frequency.

As we can see, the amplitude becomes smaller and the frequency higher like it was
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3 Dependence on geometry and potentials

observed before. However, the effect is much less pronounced. Additionally the exci-
tation probability seems to decline with the same rate for all configurations. Thus an
increase in the declining rate is a true many neighbor effect.

3.2 Regular lattices

After we have studied several simple network configurations we are going to analyze
how the propagation depend on the type of interaction. In order to do this a linear
chain, a cubic lattice, and a triangular lattice are studied with different interaction
potentials. All lattices are finite, no periodic boundary conditions are applied.
We are going to use potentials which decreases as 1/Rα. The 1/R99-potential is a very
good approximation for nearest neighbor interaction.
To ensure comparability between the lattices, as much of their parameters as possible
are kept constant.

• The lattice constant a = 1 is the same in all directions.
• The linear chain consists of 21 particles. Both the cubic and the triangular lattice

have 21× 21 particles.
• All simulations start with one excitation in the middle of the lattice at t = 0.

They end at t = 4

3.2.1 Linear chain

At the beginning we analyze the simplest possible lattice, the linear chain.

1/
R

t = 0 t = 0.8 t = 1.6 t = 2.4 t = 3.2 t = 4

1/
R

3
1/
R

9
9

Fig. 6: The propagation of an excitation on linear chains is shown.
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3 Dependence on geometry and potentials

The 1/R-potential completely differs from all other potentials (including 1/R2, al-
though it is not shown). The excitation spreads much faster and interference fringes
occur after a shorter time because of interaction with the boundary.1

The 1/R99-potential represents nearest neighbor interaction. Comparable systems have
already been experimentally studied. For example, in a paper dealing with quantum
walks of correlated photons [10] a similar model has been used. This shows the rela-
tionship to quantum walks, mentioned in chapter 1.

3.2.2 Cubic lattice

After the transition to the second dimension new effects occur. First of all excitations
get distributed over a larger number of sites. The average probability of finding the
excitation decreases.
Additionally, two-dimensional lattices are not isotropic — in contrast to the linear
chain. As an example the cubic lattice is shown in figure 7.

1/
R

t = 0 t = 0.8 t = 1.6 t = 2.4 t = 3.2 t = 4

1/
R

3
1/
R

9
9

Fig. 7: The propagation of an excitation on cubic lattices is shown.

A particularly conspicuous aspect is, that the 1/R3-potential leads to dominant prop-
agation along the diagonals. This is counterintuitive because the coupling along the
diagonals is weaker than the coupling in the X- and Y-direction. Perhaps the phenom-
ena could by understood by studying interference paths. The propagation along the
diagonals does not occur for most of the other potentials.

1 In chapter 4.1 we will learn about another fundamental difference between the 1/R-potential and
all others: For an infinite linear chain the dispersion relation diverges as k approaches zero.
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3 Dependence on geometry and potentials

It is also worth mentioning, that for the 1/R3-potential the inner interference pat-
tern is surrounded by an isotropic bluish glow. We are going to explain its reason in
chapter 4.4.

3.2.3 Triangular lattice

The triangular lattice is more isotropic than the cubic lattice. This is also reflected
in the spread of the excitations, see figure 8. For example the 1/R3-potential leads to
an almost isotropic propagation unless excitations get reflected by the boundary. We
have to look closely to see phenomena similarly to the spread along the diagonals that
occurred on cubic lattices.

1/
R

t = 0 t = 0.8 t = 1.6 t = 2.4 t = 3.2 t = 4

1/
R

3
1/
R

9
9

Fig. 8: The propagation of an excitation on triangular lattices is shown.

One can compare the speed of propagation between the lattices. We are going to do
this for the 1/R3-potential. Thereto we can visually determine the time, when the
outer bluish glow reaches the boundary. We obtain the following times:

• For the linear chain with coordination number 2: t ≈ 4

• For the cubic lattice with coordination number 4: t ≈ 2.4

• For the triangular lattice with coordination number 6: t ≈ 1.6

As we can see, the higher the coordination number becomes, the faster one part of the
excitation spreads.
Another part of the excitation stays at the central particle. The higher the coordination
number becomes, the longer it stays. This is also illustrated by the comparison of the
figures.
These observations are in in perfect agreement with the results of chapter 3.1.1.
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3 Dependence on geometry and potentials

3.3 Irregular patterns

Inspired by the assumption that nature uses quantum networks to transfer the energy
of light [3], see chapter 1, we try to built up a network that transfers an excitation
from a starting point to a goal.
As a first step to study such complex systems, we consider a small random network
and then analyze the effect of small modifications of individual network site positions.
Some results are shown in figure 9. As we can see, further optimization would be
needed to obtain a really effective excitation transport. In order to do this genetic
algorithms could be used [11].

m
or

e
ef

fe
ct

iv
e

start

goal

t = 0 t = 1 t = 2 t = 3

le
ss

ef
fe

ct
iv

e

start

goal

Fig. 9: The small position differences between the two patterns have a huge impact on the
propagation. A dipole-dipole interaction potential is used.
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4 Dispersion relations

4 Dispersion relations

Dispersion relations can provide a better understanding of the propagation of the
excitations. Furthermore they can be determined analytically for simple models, for
example for one-dimensional lattices in the shape of infinite linear chains. The results
can be used to validate the simulation.

4.1 Analytic calculation

4.1.1 Linear chain with nearest neighbor interaction

A linear chain with nearest neighbor interaction was looked at. Let N be the number
of sites and a the lattice constant. Then equation 5 takes the following form.

H = t
N−1∑
n=0

(
c†ncn+1 + c†ncn−1

)
(9)

We assume that the lattice is periodic. Then the equation c
(†)
n = c

(†)
n+j·N , j ∈ Z holds

true for the creation and annihilation operators. They are located in the spatial domain
and can be expressed by the use of the Fourier transformed operators b† and b in the
momentum domain with wave vector k = 2π

a
j
N

, j ∈ {0, ..., N − 1} and xn = a · n.

cn =
1√
N

∑
k

exp(−ikxn) · bk (10)

c†n =
1√
N

∑
k

exp(ikxn) · b†k (11)

These expressions can be used to diagonalize the Hamilton operator.

H =
t

N

N−1∑
n=0

∑
k,k′

exp(ikxn − ik′xn+1) b
†
kbk′ + exp(ikxn − ik′xn−1) b

†
kbk′

=
t

N

N−1∑
n=0

∑
k,k′

(exp(ikxn − ik′xn+1) + exp(ikxn − ik′xn−1)) · b†kbk′

= t
∑
k,k′

[exp(ik′a) + exp(−ik′a)] · b†kbk′ ·
1

N

N−1∑
n=0

exp(i(k − k′)xn)

= t
∑
k,k′

[2 cos(k′a)] · b†kbk′ · exp(iφ) δk−k′

=
∑
k

[2t cos(ka)] · b†kbk · exp(iφ) =
∑
k

ε(k) · b†kbk · exp(iφ) (12)

The expression exp(iφ) with the irrelevant phase φ was caused by the Fourier transform.
It results in a phase shift, that can be neglected because of its global nature. We get
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4 Dispersion relations

the following dispersion relation [12].

ε(k) = 2t cos(ka) (13)

4.1.2 Linear chain with 1/Rα-interaction

For other types of interactions the dispersion relation can be determined analytically
with the help of the polylogarithm Lis(z) =

∑∞
n=1

zn

ns [13]. Let us assume the interaction
strengths drops off as 1/Rα, so that we can use the hopping function r(R) = 1/Rα.
We like to look at a linear chain with N + 1 sites. We define xn = a · n with n ∈
{−N/2, ..., 0, ...N/2} and lattice constant a. The function t̃(R) reads as follows.

t̃(r) =

{
t(R) R 6= 0

0 R = 0
(14)

With the help of this function and the creation and annihilation operators in momen-
tum domain we can rewrite the Hamilton operator of the linear chain.

H =
∑
n6=m

t(|xn − xm|) c†ncm

=
∑
k,k′

1

N + 1

∑
n6=m

t(|xn − xm|) exp(ikxn − ik′xm) b
†
kb

′
k

=
∑
k,k′

1

N + 1

∑
m

exp(−ik′xm)
∑
n

t̃(|xn − xm|) exp(ikxn) b
†
kb

′
k (15)

We can use the shift theorem for discrete Fourier transform [14] and the definition of
the delta function in Fourier space to get rid of the sum over m.

H =
∑
k,k′

1

N + 1

∑
m

exp(i(k − k′)xm)
∑
n

t̃(|xn|) exp(ikxn) b
†
kb

′
k

=
∑
k,k′

δk−k′

∑
n6=0

t(|xn|) exp(ikxn) b
†
kb

′
k

=
∑
k

N/2∑
n=1

(
exp(ikxn)

|xn|α
+

exp(−ikxn)

|xn|α

)
b†kb

′
k (16)

If the number of lattice sites N approaches infinity, we will obtain the polylogarithm.
Here, Re [z] returns the real part of z.

H →
∑
k

2t

aα
Re

[
∞∑
n=1

exp(ika)n

nα

]
b†kbk =

∑
k

2t

aα
Re
[
Liα(eika)

]
b†kbk (17)

This gives us the dispersion relation.

ε(k) =
2t

aα
Re
[
Liα(eika)

]
(18)
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4 Dispersion relations

Its series expansion around k = 0 can be calculated for different α. Logarithms are
extracted.

• for α = 1: ε(k) = −2 log(|k|) +O(|k|2)
As we can see, this is a non-physical solution because it’s divergent for k = 0.

• for α = 2: ε(k) = π2

3
− π |k|+O(|k|2)

• for α = 3: ε(k) = 2 ζ(3) + |k|2 log(|k|) +O(|k|2)
• for α = 4: ε(k) = π4

45
− π2

6
|k|2 +O(|k|4)

• for α > 4: The leading term stays |k|2.
The list is only valid for the one-dimensional case. The higher the number of dimensions
become, the shorter the range of the potential has to be in order to get a quadratic
dispersion relation for small k.

4.2 Determination from simulation data

The dispersion relation of a non-periodic cubic lattice can be determined by the use
of the simulation program. One approach is to study the propagation of a Gaussian
excitation Ψ(r).
The Fourier transform of the Gaussian excitation is a Gaussian distribution A(k) in
k-space. In Fourier space the time evolution can be described with the help of the
dispersion relation ω(k) [15].

Ψ(r, t) =
∑
k

A(k) exp(i(kr − ω(k)t)) (19)

It follows, that the discrete Fourier transformation of Ψ(r, t) is a function of ω(k).

DFT(Ψ(r, t)) ∝ A(k) exp(−iω(k)t) (20)

Strictly speaking this equation holds true only for periodic boundary conditions. How-
ever, it can be seen as a good approximation for finite lattices, if the width of the
excitation is much smaller than the lattice size. In this case one can make use of for-
mula 20 to calculate the dispersion relation from the knowledge of the excitation at
two different times t1 and t2.

ω(k) = ln
(

DFT(Ψ(r, t2))

DFT(Ψ(r, t1))

)
i

t2 − t1
(21)

In our simulation there is neither loss nor gain of excitations apart from effects caused
by numerical errors. Hence, the imaginary part of ω is next to null. This is why we
are going to plot only the real part of dispersion relations.
In practice we start the simulation at t1 = 0 with one single excitation in the middle.
So Ψ(r, t1) is a delta peak. Choosing it as the initial excitation has proofed useful
because this approach minimizes the effect of the boundary. The time t2, after which
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4 Dispersion relations

the excitation is determined again, has to be chosen thoughtfully. On the one hand a
too short time prevents the excitation to feel the whole lattice and very small numbers
occur, which evoke huge numerical errors. On the other hand a too long time leads to
a broad excitation which interacts with the boundary. Moreover we have to watch out
for different branches of the complex logarithm in equation 21.
We will have picked the right value of t2, if small variations of this time have no
influence on the obtained dispersion relation.

4.3 Comparison between simulation and analytic calculation

Several linear chains with different number of sites are studied. Either nearest neigh-
bor interaction or a potential of the type 1/Rα are used. The strategy described above
is applied to determine the dispersion relation from simulation data. We make use
of equation 13 and 18 to calculate the dispersion relation analytically for endless lat-
tices. Because we work in atomic units the energies obtained from these formulas are
equivalent to angular frequencies.
A comparison between the simulation results for 21 sites and the analytic calculations
for an infinite number of sites is shown in figure 10. No free parameters are used.
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Fig. 10: The figure shows the dispersion relations of a linear chain for 1/R-potentials as well
as nearest neighbor interaction. We obtained dispersion relations for 21 sites from
the simulation (shown as crosses). Analytical calculations resulted in dispersion
relations for an infinite number of sites (shown as lines). Apparently the deviations
between simulation and analytic results are negligible for huge wave vectors. For
small ones finite size effects can occur.

The dashed yellow line represents the dispersion relation for nearest neighbor inter-
action that is expressed by equation 13. Instead of dealing with the exact expression

22



4 Dispersion relations

one can use the potential 1/Rα with a huge number α. This potential presents a very
good approximation to the nearest neighbor potential. For calculating the black line
we used α = 99. No difference to the exact solution can be discerned.
The comparison between simulation and analytic calculation shows one obvious differ-
ence. The calculated dispersion relations are continuous. As opposed to this, the
simulations yield wave vectors that can only attain discrete values because of the finite
lattice size. Apart from that the results correspond very well, in particular for huge
wave vectors k. For small k the deviations increase because small wave vectors means
long wavelengths which strongly feel the boundary of the lattice. Hence, finite size
effects occur. This becomes particular obvious for the 1/R-potential. As shown in
chapter 4.1 this potential will causes a divergent behavior for small k, if the lattice is
endless. In our simulations only finite values occur.
In the following we like to examine the influence of the finite lattice size in detail. For
this purpose the deviation between simulation and analytic results is determined for
different number of lattice sites. As a measure for the deviation between calculated and
simulated dispersion relations the absolute differences are determined at every point
except k = 0. The values at this position are not used, because here the analytically
calculated dispersion relation diverges for 1/R.
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Fig. 11: This log-log plot shows the average deviations between simulated and analytically
calculated dispersion relations for several 1/Rα-potentials as well as nearest neighbor
interaction. The values at k = 0 are not taken into account because of the divergent
behavior for 1/R. All analytically calculations were accomplished with infinite lat-
tices, whereas the simulations were performed on lattices with N sites. The graphs
show that finite-size effects will decrease very fast, if small lattices grow in size.

The average deviations are shown in figure 11 as a function of the number of sites N .
The straight lines in this log-log plot indicate that the average deviations decreases
as 1

Nm for small numbers N . The slopes of the lines tell us that the constant m attains
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4 Dispersion relations

values between 0.8 for the 1/R-potential and 5.6 for nearest neighbor. The shorter the
range of the interaction potential is, the faster the average deviation decrease.
No matter what potential is present the deviation decrease the fastest for small number
of sites. This allows us to use our analytic models already for a small lattices provided
that we don’t want to study any divergent behavior.
Let us compare the magnitude of the deviations with the relevant energy scales. As we
can see in figure 10 the energies are within the single-digit range for all wave vectors.
Already for five sites the deviations are one to three orders of magnitude smaller. They
bottom out at 10−6. This number represents the deviation caused by numerical errors.
All in all there is a good agreement between the numerical models for endless lattices
and the simulation results for finite ones. Therefore we can assume that the simulation
provides valid results.

4.4 Analysis of several dispersion relations

After we have validated the simulation program with analytic results, we are going
to use it to obtain further dispersion relations. They will help us understand the
propagation of excitations.
In the following we are going to study two-dimensional cubic lattices. Therefore the
momentum space and so the dispersion relation have two dimensions. As an example
the dispersion relation of a 21×21 lattice with a 1/R3 interaction potential is visualized
by a color map, see figure 12. It shows that the dispersion relation is isotropic only for
small wave vectors. The reason for this is that a huge wave vector is equivalent to a
small wavelength, which feels the anisotropy of the cubic lattice.
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Fig. 12: The image shows the dispersion relation for a two-dimensional cubic lattice with the
interaction potential 1/R3. The bigger the wave vector is the more anisotropic the
dispersion relation becomes. The black lines display the way along which several
two-dimensional dispersion relations are plotted in figure 13.
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Instead of using color maps one can plot the dispersion relation along straight lines
connecting characteristic points of the two-dimensional dispersion relation. In doing
so one can show several dispersion relations in the same diagram. This enables us to
compare them. Figure 13 shows the dispersion relation as well as the absolute values of
the corresponding group velocities. They can be calculated with the following formula.

vgroup =

∣∣∣∣dω(k)dk

∣∣∣∣ (22)

Because we are in atomic units angular frequencies are equivalent to energies and we
obtain the group velocities as slopes of the graphs in the upper diagram of figure 13.
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Fig. 13: In the upper diagram the two-dimensional dispersion relations for nearest neighbor
and 1/Rα interaction potentials are plotted along straight lines connecting the sym-
metry points shown in figure 13. The lower diagram visualizes the absoulte values
of the corresponding group velocities. The used lattice has 21× 21 sites.

This figure hints at several properties of the dispersion relations.
• All dispersion relations have in common that the energy reaches its maximum

at k = 0. The first energetic minimum is at kx,y = π/a. Why this is the case,
can be explained using the example of a dipole-dipole interaction potential.2
Suppose that there is a dipole at each site of the two-dimensional lattice. Since
the wavelength equals infinity for k = 0 all dipoles are orientated in the same
direction. Thus the dipoles repulse each other and the interaction energy is
high. For kx,y = π/a the wavelength equals λ = 2π

k
= a/2, so that the dipoles

are orientated alternately up or down. Hence, each dipole attracts its nearest
neighbors. Therefore the interaction energy is below zero.

2 A detailed discussion of the dipole-dipole potential is provided in chapter 5.1.
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• The longer the range of a potential is, the higher maximum group velocities
occur. This finding matches the observation that excitations spread faster with
long range than with short range interactions.

• For short range interactions the highest group velocities are located on the di-
agonal of the dispersion relation. This is particularly true for nearest neighbor
interaction. This result is somewhat counter-intuitive because a nearest neigh-
bor potential prevents direct interactions between diagonally adjacent sites. So
an excitation can get from one site to its diagonal neighbors only by choosing a
detour. Perhaps interference is the key to understanding why the propagation
along the diagonal is still so fast.

Now, we like to take a detailed look at the influences of a dispersion relation on the
propagation of several Gaussian excitations. We study a two-dimensional cubic lat-
tice with the dipole-dipole interaction potential 1/R3. We have decided to use this
potential, because we are going to deal with it extensively in chapter 5.
At the beginning of our simulation the particles in the middle of a lattice with 21× 21
sites share one excitation. The probability to find the excitation is Gaussian dis-
tributed. We are going to examine the influence of the width of the excitation on their
propagation behavior. Therefore we are going to use excitations in the form of a delta
peak as well as a small and broad Gaussian distribution. Figure 14 shows these peaks
in Fourier space along with the dispersion relation.
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Fig. 14: The smaller a excitation in position space is the broader it gets in momentum space.
Hence a delta excitation feels the whole dispersion relation. In contrast, a broad
Gaussian excitation is influenced only by the dispersion relation for small wave vec-
tors.

It demonstrates that depending on the widths of the peaks other parts of the dispersion
relation are relevant to them. For instance, the delta peak feels the whole dispersion
relation because it’s infinitely broad in momentum space.
As we have seen in figure 12 the dispersion relation is isotropic for small wave vectors.
A Gaussian distribution that is broad in position space does only contain small wave
vectors. Therefore one expects, that such an excitation propagates in an isotropic man-
ner. It is even possible to predict the propagation in greater detail. As figure 14 shows,
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the dispersion relation is nearly linear for small wave vectors.3 Hence on anticipates
that the broad excitation propagates circularly in all directions with a constant velocity
like a ring of light. As we can see in figure 15 these expectations are correct.
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Fig. 15: The figure shows two-dimensional lattices with 21 × 21 sides and 1/R3 interaction
potentials (logarithmic color scale). At the time t = 0 several Gaussian distributions
are excited. Depending on their width they see different parts of the dispersion
relation and propagate in different ways. From the time t = 3 on the excitations
interact with the boundaries. Hence phenomena like standing waves can be observed.

The propagation of a small or even delta shaped peak can not be easily predicted
from the dispersion relation. However, some general statements can be made based on
figure 15.

• The part of the excitation that feels the isotropic section of the dispersion relation
spreads homogeneously. The propagation is fast, because the isotropic section
contains the highest group velocities, see figure 13.

• The other part of the excitation propagates anisotropically and slowly. We can
see interference phenomena.

Interaction with the boundaries of the lattice leads to interference pattern. Here,
another difference between small and broad peaks can be observed. For small peaks
the distance between interference fringes is smaller than for broad peaks. The reason
for this is, that broad peaks lack huge wave vectors and thus small wavelengths.

3 In chapter 4.1 we saw that a 1/R2-potential and not a dipole-dipole potential leads to a linear
dispersion relation for small wave vectors. However, this result was obtained by looking at one-
dimensional lattices.
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5 Implementation with superatoms

5 Implementation with superatoms

In chapter 3, we have simulated excitonic energy transfer. To realize it experimentally
one could make use of ultracold Rydberg atoms in the s and p-state as interacting
two-level systems. Another proposal is to use so-called superatoms, which are caused
by the Rydberg blockade [16]. In the current chapter, we are going to analyze how
promising this approach is.
Before we can start with the analysis, we have to explain what superatoms are. In
order to do this we need to know about Rydberg atoms and their interaction.

5.1 Rydberg atoms

A Rydberg atom is an atom, that have one electron excited to a very high principal
quantum number n. The excited electron feels a hydrogenic potential due to its large
distance from the nucleus and the core electrons [17].
It can be described by formulas much in the same way as the hydrogen atom. One can
derive scaling laws of several atomic properties by the use of these equations.

Property Scaling law
Polarizability n7

Dipole matrix elements between neighboring levels n2

Radiative life time n3

Tab. 1: Most atomic properties of Rydberg atoms depend on the principle quantum number n.
This table shows the scaling laws [18] of properties that are relevant for us.

As we can see, Rydberg atoms are strongly interacting because of their high quantum
number n. This facilitates exciting experiments.
In the following we are going to work with a simple model of an atom.

• The atom can be in the ground state, Rydberg s-state or p-state.
• The dipole matrix element between the ground state and a Rydberg state is

negligibly small. Transitions between the ground state and a Rydberg state
won’t occur at least unless they are externally driven.

• The dipole matrix element between the Rydberg s-state and p-states is huge.
In our simulation we are going to use several of these atoms. Since the dipole matrix
elements scale with n2, there is a strong dipole-dipole interaction between an atom in a
Rydberg s-state and one in a Rydberg p-state (ground state atoms can be neglected).
To determine the Hamilton operator for dipole-dipole interaction we take the classical
expression for the interaction energy as a starting point. For two classical dipoles ~d1
and ~d2 at a distance of ~r the energy in atomic units can be calculated with the following
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formula [19].

E =
~d1 · ~d2 − 3(~d1 · ~̂r)(~d2 · ~̂r)

|~r|3
(23)

To simplify this formula we like to get rid of the angular dependency. For that reason we
assume that the dipoles are aligned parallel and the distance vector ~r is perpendicular
to ~d1 and ~d2.

E =
d1 · d2
|~r|3

(24)

This classical equation can be transformed into a quantum formula. Seen as a special
case of a two-body interaction the dipole-dipole interaction can be easily noted in sec-
ond quantization. In order to do this indices q, r, s and t are used. Each index indicates
the state of an atom. It can be seen as a multi-index which tells us the atom position
and whether the atom is in the s-state or p-state: q = {position, s-state or p-state}.

The dipole matrix element d =
∣∣∣〈q | d̂ | s〉

∣∣∣ will occur in the following formula. It’s
non-zero only for transitions between the s-state and the p-state. Therefore we have
to sum up only over particular indices.

Hdip =
∑
q,r,s,t

〈q, r | classical dipol-dipol interaction energy E | s, t〉 b†qb†rbtbs

=
∑
a6=b

d2

rab3
b†{a,s-state}b

†
{b,p-state}b{a,p-state}b{b,s-state} (25)

This equation can be simplified. The atom at position a will be in state {a, p-state}, if
and only if it isn’t in state {a, s-state}. Hence, it’s enough to store whether the atom
is excited in the p-state. Therefore the Fock space of the atoms can be reduced to the
Fock space of excitations, which we have introduced in chapter 2.2.
To simplify equation 25, let us define new operators c†a = b†{a,s-state}b{a,p-state} and
ca = b†{a,p-state}b{a,s-state}. They operate in the Fock space of excitations and fulfill
the commutation relations of hard-core bosons [20].

[c†a, c
†
b] = [ca, cb] = [ca, c

†
b] = 0 for a 6= b

{c†a, c†a} = {ca, ca} = 0 (26)
{ca, c†a} = 1 (27)

These commutation relations result from the bosonic commutation relations for b(†)

and the fact, that an atom can be either in the p-state or in the s-state.
With the new operators equation 25 gets its final form. It resembles equation 5 for
dipol-dipol interaction.

Hdip =
∑
a6=b

d2

Rab
3 c†acb (28)
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This shows, our strongly interacting Rydberg system is a special case of the universal
model we have analyzed before. On the first glance it seems perfectly suited to exper-
imentally study excitonic energy transfer. However, in practice it is hardly possible to
excite single atoms to Rydberg states. Instead of single Rydberg atoms one obtains
superatoms. In the following we are going to explain it.

5.2 Superatoms

Let us assume we try to excite atoms inside a dense cloud to Rydberg states with the
help of a laser.
The van der Waals interaction between Rydberg atoms is very strong because of their
high polarizability. The interaction shifts the energy levels of the atoms. If the shift is
greater than the bandwidth of the excitation laser, the laser will be out of resonance
and the atoms can not be excited. Hence, if one atom is in a Rydberg state, no further
atoms can be excited in its surrounding volume. This mechanism is referred to as
Rydberg blockade.
Since one can not tell which atom was firstly excited, the correct quantum state is
a superposition of all possibilities. We can imaging a cluster of atoms sharing one
excitation. This cluster is called superatom [17].
If we neglect the internal structure of superatoms, they are similar to normal atoms. If
this approximation is valid, we will have a tool to experimentally study the mechanisms
of excitonic energy transfer. We are going to determine the limits of this approximation
with the help of simulations.

5.3 Simulation procedure

For this purpose we look at a system consisting of two superatoms. The right one is in
the collective Rydberg s-state and the left one excited to the collective Rydberg p-state.
If they behaved like normal atoms, the probability P of finding the excitation on the
left hand side would be a cosine function of time. The probability could be calculated
by diagonalization of the Schrödinger equation as described in chapter 2.1. In atomic
units, it could be expressed by the following formula where E is the interaction energy.

P =
1

2
(cos(2Et) + 1) (29)

To figure out whether this is indeed the case we have to calculate the exact time
evolution of our superatom system. In order to do this one has to use a basis set that
represents all possible many-particle states. Lets assume that both superatoms consists
of N atoms. Then each basis element can be expressed by a vector with 2N elements.

(a1, ...aN , b1, ...bN)
T (30)
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Here, ai (resp. bi) stands for the quantum state of the atom that is located at the
site i of the superatom a (resp. b). For the following notations we introduce indices
x ∈ {a, b} and y ∈ {a, b}.
There are three possible quantum states for each atom.

• Ground state: xi = −1

• Rydberg s-state: xi = 0

• Rydberg p-state: xi = 1

Since both superatoms can contain only one Rydberg state each, all but one xi have
to be −1. This consideration reduces the size of our basis set enormously.
Let us suppose the superatom a is in the collectively Rydberg p-state and b is in the
collectively Rydberg s-state. Then we have to choose the following start vector.

|Ψstart〉 ∝



a1 = 1
a2 = −1
a3 = −1

...
b1 = 0

b2 = −1
b3 = −1

...


+



1
−1
−1

...
−1
0

−1
...


+



1
−1
−1

...
−1
−1
0
...


+



−1
1

−1
...
0

−1
−1

...


+ . . . (31)

For our system containing two superatoms the Hamilton operator 28 has to be slightly
modified.

Hsuper =
∑
xi 6=yj

{
0 xi = −1 ∨ yi = −1

d2

Rxiyj
3 c†xi

cyj otherwise (32)

If we look carefully at the Hamilton operator and the basis set, we will make an
interesting observation: For each basis element |Ψi〉 there is exactly one other basis
element |Ψj〉, so that 〈Ψi | Hsuper | Ψj〉 6= 0. This means the Hamilton operator is
composed of 2 × 2 matrices. Thus the Schrödinger equation separates into equations
for pairwise interacting particles!
Hence, we do not need to perform simulations with superatoms. It is sufficient to do
the simulations with normal atoms for several times. At each run we have to select one
atom from every superatom. We have to proceed until every possible atom combination
has been selected. In the end we have to average over the complex results of each run.
This gives us the time evolution of the superatom system.

5.4 Simulation results

For the simulation we suppose that the atoms inside each superatom are uniformly
distributed. We use the width of the distribution as a measure of the diameter of the
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two superatoms. In figure 16 the results are plotted. We averaged over several runs
until the shape of the curves did not change any more.
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Fig. 16: The coherent time evolution of systems consisting of two superatoms is plotted. The
colored areas symbolise the decline of the amplitudes over time.

As we can see, the time evolution strongly depends on the diameter of the superatoms
in comparison to their distance. For a small diameter the superatoms behaves similarly
to normal atoms. The excitation is transferred from one superatom to the other one
and back again. For an increasing diameter the oscillation is damped more and more.
Less oscillations can be seen. For example, for a diameter one tenth the small as
the distance we observe roughly three oscillations. The reason for this decay is that
the atoms of the superatoms couple pairwise. Because of the physical extension of
the superatoms the coupling strength varies. This leads to oscillations with several
frequencies. On average we obtain curves that seem to be damped. However, if the
curves have approached zero and we wait for some time, we will see an revival of the
oscillations. This phenomenon is characteristic for dephasing.
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6 Conclusion and outlook

Conclusion

We analyzed networks of bosons coupled by 1/Rα-potentials. The interactions led to
propagation of excitations.
At the beginning of the work we developed a general model describing the dynamics
in such networks. The software programmed during this thesis implements the model
and solves the resulting Schrödinger equation efficiently. Its graphical user interface
enables easy setup of network geometries and interaction potentials.
To develop a general understanding of the basic exchange action we first studied simple
networks containing only few sites. In doing so we got the result, that increasing the
number of neighbors of an excited particle has two effects. Firstly, a higher percent-
age of the excitation stays at the particle. Secondly, the percentage of the excitation
which does not stay leaves it faster. After we had understood the simple systems we
looked at more complicated ones. Two-dimensional regular lattices reveal interesting
phenomena because of their anisotropy. For example, on a cubic lattice with dipole-
dipole interaction the excitation spreads along the diagonals. Finally we considered
random networks. It turned out that already small modifications of individual network
site positions have a huge impact on the propagation. Thus it is a hard job to design
networks that lead to targeted propagation of excitations. However, as previously said
photosynthetic organisms managed to efficiently transfer light energy through quantum
networks. This energy transfer is subject of active research [3, 5].
To validate our simulation procedure we analytically calculated dispersion relations for
linear chains and compared them to simulation results. Even though the calculations
were performed with infinite chains and the simulation with finite ones, both results
matched very well — except for some finite-size effects: In case of finite chains the wave
vector can only attain discrete values and no divergent behavior can occur. Dispersion
relations can also provide a better understanding of the propagation of excitations
in cubic lattices. The dispersion relation is isotropic only for small wave vectors.
Hence, only the long-wave Fourier components of an Gaussian excitation propagate
isotropically. Additionally we calculated and discussed group velocities.
In the end we analyzed the feasibility of experimentally studying excitonic energy trans-
fer with so-called superatoms. In order to do this we looked at systems consisting of two
superatoms. We figured out, that the Schrödinger equation separates into equations
for pairwise interacting particles. Thus the time evolution could be calculated by sim-
ulating several two particle systems. We saw that superatoms behave approximately
the same way as normal atoms. However, their physical extension causes dephasing.
This means, in principle we can use superatoms to study excitonic energy transfer, but
we have to keep their diameter small in comparison to their distance. Otherwise we
will hardly observe anything due to the fast dephasing.
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Outlook

One future goal is to experimentally realize the simulated systems with superatoms.
There are also a lot of further theoretical questions.

• How does disorder, perturbation of energy levels, and decoherence [21] influence
the propagation of excitations?

• Is it possible to use these effects to obtain more effective energy transfer?
• Which network geometry allows the most effective transport?

To answer the last two questions one would have to investigate many different network
configurations. Probably it would be possible to construct theories for large classes
of networks. Another approach would be to let the computer systematically examine
a great many configurations. This could be done for example by the use of genetic
algorithms [11].
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