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Abstract

Topological insulators are gapped states of quantum matter which cannot be adiabatically

connected to conventional insulators [1] and are characterized, among other aspects, by gap-

less boundary modes. They constitute an active field of research and have the potential to be

used for new technologies such as electronic devices with low power consumption, topological

quantum computers, etc. While theorists have performed systematic classifications of such

topological phases (for example, [2]), the identification of the precise topological character-

istics of a given Hamiltonian can still be challenging. Recently, machine learning algorithms

have also been employed for “learning” phases and phase transitions in condensed matter

systems [3]. However, most of these use supervised algorithms which require a-priori la-

belling of data sets. Our focus is on unsupervised algorithms, which have recently been used

for the classification of topological phases [4, 5]. The advantage of unsupervised algorithms

is that they don’t require labelled data. Such algorithms try to extract patterns from the

data sets and classify the data into groups. This opens up the possibility of the algorithm

to discover new phases or uncover patterns which haven’t been observed before, from raw

data. We use the Diffusion Map algorithm to perform topological classification of 1-D 2 band

Hamiltonians, and derive the corresponding auxiliary quantum many-body Hamiltonian for

this problem.
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Introduction

Since the discovery of the major types of forces that are present in the nature and the laws

that determine dynamics of particles which are acted upon with those forces, one of the next

important steps has been to determine how a system of a large number of particles behaves

in the presence of relevant forces. This problem is both important and challenging because

in nature we mostly deal with systems that have a rather large number of particles while

on the other hand, we know that a problem as simple as the three-body problem is quite

challenging to solve analytically. Besides, contrary to what one might expect, a collection

of particles has a lot of interesting physics (what is called emergent phenomena) which can

be quite different from the behaviour of the individual particles [6]. Thus, this problem has

been one of the centres of attraction among physicists and substantial progress has been

made in statistical physics and condensed matter physics.

One of the unique characteristics of such many-particle systems is the existence of the

so-called various “phases” [7], [8]. A ubiquitous example is water, which can exist in three

phases - solid, liquid and steam - based on its temperature, pressure and volume. Phases

can be defined as regions in some parameter space of a many-body system within which

the system has similar physical properties. Up until a few decades ago, a useful way of

identifying the phase of a system using the Ginzburg-Landau theory of phase transitions [9].

The basis of that theory was a local order parameter whose value could determine the phase

of the system.

About four decades ago, it was shown that in certain materials (aptly named topolog-

ical insulators), the phase of a many-body system also depends on the topology [1], [10].

The study of such systems heavily draws concepts from the branch of mathematics called

topology. The interest in physics of such materials has been boosted by the discovery of

their potential to be used for new technologies such as electronic devices with low power

1



Figure 1: We can topologically classify closed, oriented loops on a two dimensional plane
using their winding number. The winding number is defined as the number of loops around
the origin that the curve completes. A loop traversed in counter-clockwise direction is
considered to be +1 and vice versa. [Image source: wikipedia.org]

consumption, topological quantum computers, etc.

Classification of phases, both conventional and topological, is an important task and

various methods have been employed to achieve that. However, in this thesis, we are con-

cerned with the classification of topological phases. The challenge with topological phases is

that unlike conventional phases (which depend on a local order parameter), they depend on

the geometry (which is a global property of the system). Thus, identification of topological

phases involves a global scanning which is a relatively cumbersome task. Usually, such topo-

logical phases are identified by a quantity known as the topological invariant. A topological

invariant classifies all those geometries which can be achieved via continuous operations (i.e.

vaguely speaking, stretching and bending, but not tearing). An example of a topological

invariant is the winding number (Fig. 1).

Even though the order parameter or the topological invariant can be calculated analyti-

cally, an automated calculation (and subsequent identification of the phase) is both conve-

nient as well as more practical. Towards that end, machine learning algorithms have gained

popularity and they have been shown to perform well for this purpose ([3], [11], [12], [13]).

However, most of these algorithms use supervised machine learning. One of the problems

with supervised learning is that they require a large number of data sets for which the an-

swers are already known. The model is first “trained” using this data set, which is often a

2



computationally expensive process. One can also argue that albeit such training makes the

model very good at predicting answers to similar cases, their performance in a somewhat

different context might be questionable. This is where unsupervised algorithms come into

the picture.

In principle, unsupervised algorithms do not need any sort of training and they work

solely on the principle of identifying patterns in the data and classifying the whole data

into groups with similar patterns. Thus, for a data set that contains Hamiltonians which

show topological phases, if one can somehow encode the process of recognising topological

equivalence in a unsupervised machine learning algorithm then that algorithm should be

able to find out the different topological phases of the physical system described by the

Hamiltonian. This is precisely what was achieved very recently in [4], which was followed

by [5]. Such unsupervised algorithms are usually much lesser computationally expensive

(when compared to supervised algorithms and deep neural networks) and they also have the

potential of discovering new phases without prior training.

In this thesis, we first briefly study how topology can affect physical properties of a

many-body system by using the example of the Su-Schrieffer–Heeger model. We look at

the concept of winding number as a topological invariant. We then study the Diffusion

Map algorithm, which is the machine learning algorithm that was used in [4], and [5] for

unsupervised classification of topological phases by calculating the winding number. We also

see how the Diffusion Map (for any general setting) can be mapped to a quantum mechanical

problem. Finally, using this background knowledge, we apply the Diffusion Map algorithm

to classify one-dimensional two-band Hamiltonians that are drawn from a given probability

distribution. We then derive the corresponding quantum many-body Hamiltonian for the

Diffusion Map used in our case.

3
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Chapter 1

The Su-Schrieffer–Heeger Model

In this chapter, we will look at a very simple one-dimensional model that exhibits topological

phases, characterised by the existence/absence of zero-energy edge states. We will also see

how the topological invariant acts as the identifier of the different topological phases. This

is important as this is the quantity that we calculate using the machine learning algorithm.

The presentation in this chapter has been inspired from [14] and [15].

1.1 Description of the Model

We consider a one-dimensional chain with N unit cells, with each unit cell having two sites

(sub-lattice points X and Y ). We neglect interactions between the electrons and consider

them to be spin-less. The Su-Schrieffer–Heeger Model (SSH model) [16] describes hopping

Figure 1.1: Diagrammatic representation of the SSH model. The grey circles represent sub-
lattice X and black circles represent sub-lattice Y . Both of them together constitute one
unit cell, and the chain is constructed by repeating the unit cell one after the other. p and
q are the intra-cell and inter-cell hopping amplitudes, respectively.

5



of electrons in such a one-dimensional chain with varying hopping amplitudes (as shown in

the Fig. 1.1). The only possible dynamics in such a system will be hopping of electrons

between neighbouring sites. The Hamiltonian of the SSH model is thus given by:

Ĥ = p

N∑
n=1

(|n,X⟩ ⟨n, Y |+ h.c.) + q

N−1∑
n=1

(|n+ 1, X⟩ ⟨n, Y |+ h.c.) (1.1)

Here, m is the index of the unit cell and X and Y are the sub-lattice points. The

abbreviation h.c. stands for Hermitian conjugate of the terms that are followed by h.c.

We can separate the states using the tensor product basis and write:

|n,X(Y )⟩ −→ |n⟩ ⊗ |X(Y )⟩

Thus, we can write the SSH Hamiltonian using the tensor product basis by separating

the external (unit cells) and internal (sub-lattice sites) degrees of freedom. To make the

expression simpler, we use the Pauli matrices, which are defined as:

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (1.2)

Now we can write the Hamiltonian in terms of the Puali matrices defined above as follows:

Ĥ −→ Hext ⊗Hint = p

N∑
n=1

|n⟩ ⟨n| ⊗ σ1 + q

N−1∑
n=1

(
|n+ 1⟩ ⟨n| ⊗ σ1 + iσ2

2
+ h.c.

)
(1.3)

Since this is a finite open chain, we will treat the edges and the bulk part of the chain

separately because it is easier to solve the bulk part, for which we can assume periodic

boundary conditions.

6



1.2 Bulk Hamiltonian

In any sort of physical realisation of a one dimensional chain, we will have a large value of

N . This lets us impose the thermodynamic limit wherein the bulk will constitute the major

part and will determine the physical properties of the chain. Thus, it makes sense to look

at the bulk Hamiltonian. For ease of calculation, we impose periodic boundary conditions.

Thus the bulk Hamiltonian Hb is defined as:

Hb =
N∑

n=1

(p |n, Y ⟩ ⟨n,X|+ q |(nmodN) + 1, X⟩ ⟨n, Y |+ h.c.) (1.4)

The bulk part has the property of translational invariance and as a result, we can apply

Bloch’s theorem and write plane wave basis states for the external Hilbert space as follows:

|k⟩ = 1√
N

N∑
n=1

eink |n⟩ (1.5)

Using the above basis states, we can write Hb in the following way:

Hb =
∑
k

(p |k, Y ⟩ ⟨k,X|+ p |k,X⟩ ⟨k, Y |+ qeik |(k,X⟩ ⟨k, Y |+ qe−ik |(k, Y ⟩ ⟨k,X|)

We can separate the external and internal Hilbert space and write Hb as:

Hb =
∑
k

|k⟩ ⟨k| ⊗ {(p+ qe−ik) |Y ⟩ ⟨X|+ (p+ qeik) |(X⟩ ⟨Y |}

We can further simplify the Hamiltonian by writing it succinctly using the band Hamil-

tonian.

Hb =
∑
k

|k⟩H(k) ⟨k|

7



Figure 1.2: Dispersion relation of the SSH bulk Hamiltonian for various combinations of the
hopping amplitudes p and q. Image source: [14] (after slight modification).

where, the internal Hilbert space band Hamiltonain H(k) is defined as:

H(k) =

(
0 p+ qeik

p+ qe−ik 0

)
(1.6)

In order to find the band structure of the Hamiltonian, we have to diagonalise it and

find the Energy dispersion relation. On diagonalising, we find that the eigenvalues and the

eigenstates (E(k) and ψ(k)) of H(k) are given by:

E(k) = ±
√
p2 + q2 + 2pq cos(k)

±ψ(k) =

(
±e−iθ(k)

1

)

θ(k) = tan−1

(
q sin k

p+ q cos k

) (1.7)

We can plot the energy dispersion for different values of p and q, as shown in Fig 1.2. We

see that other than the p = q case, the model is that of an insulator because there is a band

gap. Looking at the dispersion plots, it seems that the cases p < q and p > q are similar to

each other, but in order to get complete information about the system, we have to look at

the eigenvectors as well.
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Figure 1.3: Trajectory of the end-point of g⃗(k) for the cases (a) p = 1, q = 0; (b) p =
1, q = 0.6; (c) p = 1, q = 1; (d) p = 0.6, q = 1; (e) p = 0, q = 1. Image source: [15] (after
modification).

Using the Pauli matrices defined in (1.2), we can write the band Hamiltonian in a more

compact way as shown below:

H(k) = g⃗(k) · σ⃗, (1.8)

where g⃗(k) and σ⃗ are defined as follows:

σ⃗ = {σi}, i ∈ {0, 1, 2, 3}
gx(k) = p+ q cos k,

gy(k) = q sin k,

gz(k) = 0.

(1.9)

As a result of the above definition, we see that the parameter that governs the eigenstates,

θ(k), is now equal to tan−1
(

gy(k)

gx(k)

)
. This way of writing the band Hamiltonian in terms of

g⃗(k) is particularly useful because when we look in the gx − gy plane (because gz(k) = 0),

we see that the direction of the vector (which depends on θ(k)) represents the eigenvectors

and the magnitude of the vector represents the eigenvalues of our band Hamiltonian. This

representation captures full information about the Hamiltonian. On plotting this vector in

the gx − gy plane, we can see a difference between the p < q and p > q cases, as illustrated

in Fig 1.3.

The winding number of a path can be defined as the total number of complete loops

around the origin that the path has traversed. In this process, we take the clockwise and

anti-clockwise direction to be opposite to each other and thus one clockwise loop followed

9



by one anti-clockwise loop will result in a winding number of zero. Fig. 1.3 shows the path

traversed by the vector g⃗(k). These plots illuminate a difference between the hitherto similar

cases of p < q and p > q. We see that in the case where p < q, the winding number of the

curve about the origin is +1 whereas in the case where p > q, the winding number is 0. We

can also see that in the process of transitioning from winding number 0 to winding number

1, the curve has to go through the case where p = q where the winding number is undefined

because the curve passes through the origin itself. This point is the point of topological phase

transition between the two topologically different phases (p < q and p > q) characterised by

their winding number. To see how this topological difference manifests itself physically, we

will have to look at the original SSH model which was a finite open chain (i.e. without the

periodic boundary conditions). Thus, we will have to include the boundary of the chain as

well, rather than just focusing on the bulk.

1.3 Including the boundary in the SSH model

Once we include the boundary, we lose the periodic boundary conditions and as a result, we

can no more solve this analytically. To see how the difference in topology manifests itself

physically, we will have to look at the eigenstates of the SSH chain.

In Fig.1.4, we plot the energy eigenvalues and the eigenspectrum for the case of N = 10.

In Fig.1.4(a), we see that there exist approximately zero energy states as long as p < q = 1.

Fig.1.4 (b) and Fig.1.4 (c) show the nature of the eigenstates corresponding to such zero

energies. These eigenstates are localised at the ends. These kind of states are called edge

states. We cannot have such (approximately) zero energy edge states once p > q. This is

how the topological difference within regions in the parameter space of p− q is expressed in

the physical properties of the chain.

This is an example of the bulk-boundary correspondence. We looked at the bulk Hamil-

tonian and by calculating the topological invariant, we found that there are two topologically

different regions in the parameter state which gives rise to two physically different phases.

Thus, analysing the topological properties of the bulk Hamiltonian allows us to predict the

existence of the edge states (and vice versa).

Thus, through the simple example of the SSH model, we saw the existence of topological

10



Figure 1.4: Energy spectrum and eigenstates for a finite sized SSH model with N = 10
(a) Plot of the energy eigenvalues as a function of p with q = 1; (b), (c) Plots of two
approximately zero energy eigenfunctions when p < q ; (d) a generic delocalised eigenstate,
when p > q. Image source: [15]

phases, their physical consequences and their characterisation with the help of a topological

invariant - which was the winding number in our case. It is this winding number that we

will calculate using unsupervised machine learning algorithm.
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Chapter 2

The Diffusion Map Algorithm

This chapter deals with the machine learning approach called the Diffusion Map algorithm

[17], [18]. It was originally proposed as a dimensionality reduction method. In essence, such

methods search for some principle variables out of the many variables present in the data

set and as a result, they classify the data. We will first go over the basics of the algorithm

and then see how it can be used to perform classification of topological insulators. For

simplicity, we will proceed by assuming that the data set describes some physical system

that we eventually want to classify.

2.1 Defining a diffusion process on the data set

The first step in the algorithm is to define a diffusion process on the data set. Let us denote

our data set with X = {xm| m = 1, 2, ..., N} where each data point xm describes a physical

system and lies in the configuration space Ω. Now we treat each data point as a node on

a graph and we define a function that determines the transition probability from one node

(data point) to the other. Definition of the function, known as the kernel, is the key point

here and it should be such that the value of the kernel is low between data points that are

not “similar” to each other. Fig. 2.1 shows a pictorial representation of the diffusion process

and the type of kernel that is ideally desirable.

To define the transition probabilities and subsequently the transition matrix for the

13



Figure 2.1: Each node represents a data point. Nodes with the same colour represent similar
data points. The width of the edges denote the magnitude of transition probability. Ideally,
the transition probabilities should be close to zero for non-similar data points.

process, we first define a kernel k(x, y) that maps X ×X to a non-negative real number and

is symmetric in its arguments. Let tm,m′ be the transition probability from xm to xm′ . We

can define tm,m′ as:

tm,m′ =
k(m,m′)

zm
, where zm =

∑
m′

k(m,m′). (2.1)

The above definition defines a transition matrix T whose elements are given by tm,m′ .

The transition matrix follows the following conditions:

tm,m′ = tm′,m,

tm,m′ ≥ 0,∑
m′

tm,m′ = 1.

(2.2)

The Markov process defined by the transition matrix has a stationary distribution which

is given by:

14



πm =
zm∑
m′ zm′

(2.3)

We also see that the process follows the detailed balanced equation, and thus, it is

reversible. These properties allow us to perform its spectral analysis. We can say that the

matrix T has a set of eigenvalues, λm, and eigenvectors, ψm, that satisfy:

Tψm = λmψm (2.4)

2.2 The Diffusion Distance

In order to perform classification of the data set, we look at the “Diffusion Distance” [17].

The Diffusion Distance between two data points m and m′ is obtained after performing the

diffusion process defined by the matrix T for a certain number of times, say 2p times. For

large values of p, this metric captures the similarity between the two samples m and m′. The

Diffusion Distance after 2p steps is defined as:

D2p(m,m
′) :=

∑
m′′

1

zm′′
((tp)m,m′′ − (tp)m′,m′′)2 (2.5)

Using (2.1), we can write the above expression as:

D2p(m,m
′) =

1

zm
(t2p)m,m +

1

zm′
(t2p)m′,m′ − 2

zm′
(t2p)m,m′ (2.6)

The above makes it obvious that the 2p-step Diffusion distance between data point m

and m′ is smaller when these two points are maximally connected (i.e. 2
zm′

(t2p)m,m′ is large).

Taking the example of the extreme case where m = m′, we see that the Diffusion distance is

zero for that case. Thus, more similar the data points, lower is the diffusion distance.

As shown in [17], we can write the Diffusion distance in terms of the eigenvalues and

eigenvectors defined in (2.4). Such an expression of (2.5) is given by:

15



D2p(m,m
′) =

N∑
n=0

λ2pn [(ψn)m − (ψn)m′ ]2 (2.7)

If we order the eigenvalues and eigenvectors such that λ0 ≥ λ1 ≥ . . . ≥ λN−1, then since

T is the transition matrix of a diffusion process, λ0 = 1 and the eigenvector corresponding

to that doesn’t contribute to (2.7). Thus we have the Diffusion Map:

xm −→


(ψ1)m

(ψ2)m
...

(ψk)m

 (2.8)

where k ≤ N − 1. For large enough k, it can be shown that the approximate Diffusion

distance defined as,

D2p(m,m
′) =

k∑
n=1

λ2pn [(ψn)m − (ψn)m′ ]2 (2.9)

is approximately equal to the original Diffusion distance defined in (2.7). Thus, the mapping

(2.8), gives a lower dimensional representation of the data wherein the dimensions have been

reduced from N to k. We will see that in our case, after appropriate definition of the kernel,

this k will be equal to the total number of topological phases.

2.3 The Auxiliary Quantum Problem

As shown in [18], we can derive a quantum mechanical problem corresponding to the Diffusion

Map that we get. This Hamiltonian has the property that its low energy spectrum determines

the λm and ψm of the Diffusion Map (up to a certain value of m). In order to derive the

Hamiltonian, we first need to take the continuum limit of the diffusion process.

16



2.3.1 Diffusion Map in the continuum limit

We first embed our configuration space Ω in Euclidean space Rn. We also assume the

following form of the kernel (which we will use later for our particular case):

k(xm, xm′) = h

(
||xm − xm′||2

ϵ

)
(2.10)

where h(x) is a function that decays exponentially when the argument is large, ||.||
denotes the Euclidean norm in Rn and ϵ is the parameter that determines how fast the

kernel decays. We also assume that N is large enough so that we can assume N −→ ∞.

Under these conditions, we can view the summations to be Monte-Carlo sampled integrals.

Thus, quantities get redefined in the following way:

zϵ(xm) :=

∫
Ω

dxm′ρ(xm′)kϵ(xm, xm′) (2.11)

where ρ(xm′) is the probability distribution from which the samples are drawn. The

transition probabilities in this case get redefined as:

tϵ(xm, xm′) =
kϵ(xm, xm′)

zϵ(xm)
, (2.12)

and the eigenvalue equation (2.4) becomes:

∫
Ω

dxm′ρ(xm′)tϵ(xm, xm′)ψn(xm′) = λnψn(xm) (2.13)

For the case when N −→ ∞, the eigenvectors ψn(xm) are approximately equal to (ψn)m

defined in (2.4). We can define an operator T̂ϵ that acts on functions in Ω:

(
T̂ϵf
)
(xm) :=

∫
Ω

dxm′ρ(xm′)tϵ(xm, xm′)f(xm′) (2.14)

Thus in the limit N −→ ∞, (ψn)m and λn (defined in (2.4)) approach the solution of:
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T̂ϵψn = λnψn (2.15)

2.3.2 The auxiliary Hamiltonian

We assume that our data set X is of a physical system that has an energy functional E(xm).

Thus, the probability distribution is given by:

ρ(xm) =
e−E(xm)

Z
(2.16)

where Z is the partition function.

Here, we use the result of [18] which states that the generator

Ĝϵ =
1− T̂ϵ
ϵ

(2.17)

satisfies

Ĝϵf ∼ −∆̂fρ

ρ
+

(∆̂ρ)

ρ
f, ϵ −→ 0 (2.18)

for f defined on Ω. Here, ∆̂ = ∇̂ · ∇̂.

For ρ(xm) = e−E(xm)

Z
, in the limit ϵ −→ 0, the solutions {λn, ψn} in (2.15) satisfy the

following Schrödinger equation:

HΨn = EnΨn (2.19)

where H is

H = −∆̂ + V (x), V (x) = ||∇̂E||2 − ∆̂E (2.20)

As ϵ −→ 0, we have:

λn ∼ 1− ϵEn, ψn ∼ Ψn

ρ
(2.21)

We use this result later to derive the auxiliary Hamiltoninian for our case.
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Chapter 3

Unsupervised Classification of 1-D

2-band Hamiltonians

We will now use the Diffusion Map algorithm to perform classification of topological phases in

physical systems, which was first done in [4] where it was shown that it can detect the phases

in the XY model. Subsequently, it was also used for classification of band Hamiltonians in

[5]. In this work, we extend this approach and classify an ensemble of 1-dimensional 2-

band Bloch Hamiltonians with chiral symmetry, that are drawn from a specific probability

distribution.

3.1 Our Model

We sample 2 band Hamiltonians in 1D, hk = h†k ∈ C2×2, with chiral symmetry C = iσ2.

Therefore, the Hamiltonians obey hk, C = 0. Similar to the approach in chapter 1, we write

the Hamiltonian using the Pauli matrices (1.2) in the following form:

hk = gxkσ1 + gzkσ3, gik = gik+2π (3.1)

Rather than performing the path-finding approach used in [5], we perform importance

sampling of hk. Similar to random-matrix ensembles, we consider the ensemble of 2 × 2-
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matrix-valued functions hk which are 2π periodic and sufficiently smooth in k and obey

{hk, C} = 0. We sample hk distributed according to:

P ({hk}) =
1

Z
e−

α
2

∫
k tr[h†

khk]−β
2

∫
k tr[∂kh

†
k∂khk]

∏
k

σ({hk, C}). (3.2)

where
∫
k
. . . =

∫ 2π

0
dk. . .. Due to the parameterisation in (3.1), the above probability

distribution can be written as:

P ({g⃗k}) =
1

Z
e−E[g⃗k], E[{g⃗k}] = α

∫
k

g⃗2k + β

∫
k

(∂kg⃗k)
2 Z =

∫ ∏
k

d2g⃗ke
−E[g⃗k], (3.3)

where we defined g⃗k = (gxk , g
y
k)

T ; this form of the probability density is much easier to

sample since the chirality constraint is already taken into account.

3.2 Choice of Kernel

We use the local similarity measure which was defined in [5]. For a data set comprising

of Nb-band Hamiltonians hmk (where m denotes the data point) that solve the eigenvalue

equation:

hmk |ψm
nk⟩ = Em

nk |ψm
nk⟩ , (3.4)

we use the local similarity measure between Hamiltonians m and m′ given by:

Sm,m′ =
1

Nk

∑
k

1

Nb

Nb∑
n=1

| ⟨ψm
nk|ψm′

nk ⟩ |2 (3.5)

where Nk is the total number of k−points.
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In our case, because of the parameterisation, the above similarity measure is given by

the following expression:

Sm,m′ =
1

2

[
1 +

1

2π

∫
k

ˆ⃗gmk · ˆ⃗gm′

k

]
, ˆ⃗gmk :=

g⃗mk
|⃗gmk |

. (3.6)

For our purpose, we will need a discretised version, which is given by:

Sm,m′ =
1

2

[
1 +

1

Nk

∑
k

ˆ⃗gmk · ˆ⃗gm′

k

]
, ˆ⃗gmk :=

g⃗mk
|⃗gmk |

. (3.7)

The above similarity measure reduces the quantum problem to a classical problem. Using

this measure, we define the kernel for our Diffusion Map

k(xm, xm′) = e−(1−Sm,m′ )/ϵ (3.8)

which in turn defines the transition matrix elements Tm,m′

Tm,m′ =
k(xm, xm′)

zm
, zm =

∑
m′

k(xm, xm′). (3.9)

We use this transition matrix to proceed with the Diffusion Map and classify the Hamilto-

nians based on their topology.

3.3 Sampling of the Hamiltonians

To sample the Hamiltonians, we first convert (3.3) to a discrete version

E [⃗gk] = α
∑
k

g2k + α′
∑
k

(gk+1 − gk)
2 − β

∑
k

g2k cos(θk+1 − θk) (3.10)

where we have reparameterised g⃗k = gk(cos θk, sin θk)
T . Using this energy functional, we

perform Monte-Carlo sampling of the Hamiltonians. The parameter values for sampling,

corresponding to which the plots were obtained are: Nk = 30, α = 1.0, α′ = 0.5, β = 0.58.

We used the kernel as defined in (3.8), with ϵ = 0.055, to obtain the transition matrix T .

The results have been plotted in 3.1. We discuss the results in the next section.
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(a) (b)

(c) (d)

Figure 3.1: Results for 1-D 2 band model (a) Number of samples vs their winding
number (b) Eigenvalues (λi) of the transition matrix T . We see that there are 5 leading
eigenvalues, corresponding to the five topologically different types of Hamiltonians that are
present in the data set (c) The transition probability matrix T (here denoted as K). The
samples have been rearranged in the order of increasing winding number. Value of matrix
element Kl,l′ is higher when samples l and l′ are topologically similar (i.e. have the same
winding number) (d) We perform K-Means clustering after plotting the eigenvectors Ψi

(i = 1, ..., 4) in 4 dimensions. K-Means associates each sample to a cluster. Here, we plot a
histogram between the cluster index and the winding number for all the samples.
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3.4 Discussion

We started with chains that had winding numbers starting from 0, going all the way up to

±10. Then we allowed random fluctuations on random sites and performed Monte-Carlo

sampling. The resulting distribution with respect to the winding numbers has been plotted.

As expected, we get a Gaussian like distribution which favours lower winding numbers, so

much so that all the chains with winding number > 2 eventually ended up lying in range of

−2 to 2.

3.1(b) shows the eigenvalues of the transition matrix T . We see that there are five leading

eigenvalues. Going back to the definition of Diffusion Distance in (2.7), which was defined

as:

D2p(m,m
′) =

N∑
n=0

λ2pn [(ψn)m − (ψn)m′ ]2,

we can say that the Diffusion Distance can now be approximated by:

D2p(m,m
′) =

4∑
n=1

λ2pn [(ψn)m − (ψn)m′ ]2,

since for large values of p, the contribution due to other eigenvectors will be close to

zero as λ2pi will be very small. Thus, the Diffusion Map reduced the data set into four

eigenvectors which can give us the five clusters that are associated to the five topologically

different Hamiltonians (the idea which was first proposed in [4]).

Thus, for any data set involving Hamiltonians that have topological phases, the total

number of leading eigenvalues gives us the number of topologically different phases present

in the data set.

We then rearrange the transition matrix rows based on the winding number of samples

(which is calculated from the angle rotated by the vector g⃗ as we move from k = 1 to k = Nk

in the chain). After rearrangement, we plot the matrix in 3.1 (c). We see that the transition

probability (which is proportional to the similarity between samples, as defined in (3.8)), is

higher for samples with same winding number. Thus it shows that the algorithm was able

to classify the Hamiltonians correctly.

23



To further see this, we plotted the eigenvectors in four-dimensional space and performed

K-Means clustering (refer Appendix). The K-Means algorithm associates every data point

with a cluster centre. Thus, our samples now have two labels - the K-means cluster centre

and the winding number. If the classification has been done correctly, then these labels will

match for majority of the samples and indeed, we see that is the case in 3.1 (d).

To summarise overall, we extended the study of diffusion map algorithm for topological

classification ([4], [5]) and applied it to classify data set sampled from a probability distri-

bution. This further goes on to show the robustness and applicability of this unsupervised

technique.
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Chapter 4

Derivation of the Auxiliary

Hamiltonian

Now we move on to the final part, which is the derivation of the auxiliary quantum many-

body Hamiltonian for the Diffusion process defined on our data set. We use the general

approach outlined in section 2.3.

4.1 The general scheme

We know that when the samples, xl, for the Diffusion Map algorithm are drawn from a

probability distribution of the form

ρ = e−E(x)/Z, (4.1)

then the corresponding dual quantum mechanical Hamiltonian is given by:

Heff = −∆̂ + V (x), (4.2)

where V (x) is given by:

V (x) = ||∇̂E||2 − ∆̂E. (4.3)
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4.2 Simplifying the probability distribution

In our case, the sample consists of Hamiltonians of the following form:

hk = gxkσx + gzkσz, gjk = gjk+2π ∈ R. (4.4)

We have shown that the ML algorithm successfully clusters {hk} which are 2π periodic,

sufficiently smooth in k, obey {hk, C} = 0 and are distributed according to:

P ({hk}) =
1

Z
e−

α
2

∫
k tr[h†

khk]−β
2

∫
k tr[∂kh

†
k∂khk]

∏
k

σ({hk, C}).

Due to the parameterisation in (4.4), we have:

P ({g⃗k}) =
1

Z
e−E[g⃗k], E[{g⃗k}] = α

∫
k

g⃗2k + β

∫
k

(∂kg⃗k)
2 Z =

∫ ∏
k

d2g⃗ke
−E[g⃗k], (4.5)

where we defined g⃗k = gkĝk = (gxk , g
y
k)

T . On discretising the energy function, we get:

E[{g⃗k}] = α
∑
k

g⃗2k + β
∑
k

(g⃗k+1 − g⃗k)
2

Consequently, the discretised expression for the corresponding probability distribution be-

comes:

P ({g⃗k}) =
1

Z
e−[α

∑
k g⃗2k+β

∑
k(g⃗k+1−g⃗k)

2]

Since the topological phases were only dependent on the angle rotated by g⃗k as we move

along k, and not on the variable magnitude at every k−point, we take the conditional

probability distribution that depends only on the directions, i.e. {ĝk}. Thus, we integrate

out gk and get the following expression for P ({ĝk}):

P ({ĝk}) =
1

Z

∫ ∏
k

dgkgke
−E[g⃗k]

=
1

Z

∫ ∏
k

(
dgkgke

−[α
∑

k g⃗2k+β
∑

k(g⃗k+1−g⃗k)
2]
)

=< e−β
∑

k(g⃗k+1−g⃗k)
2

>
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where,

< · · · > :=
1

Z

∫ ∏
k

dgkgke
−α

∑
k g2k .

In order to obtain the Hamiltonian, it is convenient to have a probability distribution of

the form shown in (4.1). The following calculations are done to achieve such a form for the

probability distribution. We start by expanding the exponential up to second order, which

gives:

P ({ĝk}) ∼ < 1− β
∑
k

(g⃗k+1 − g⃗k)
2 +

β2

2

∑
k,k′

(g⃗k+1 − g⃗k)
2(g⃗k′+1 − g⃗k′)

2 >

=< 1− β
∑
k

(g2k+1 + g2k − 2gk+1gkĝk+1 · ĝk)

+
β2

2

∑
k,k′

{
g2k+1g

2
k′+1 + g2k+1g

2
k′ − 2g2k+1gk′+1gk′ ĝk′+1 · ĝk′

+ g2kg
2
k′+1 + g2kg

2
k′ − 2g2kgk′+1gk′ ĝk′+1 · ĝk′

− 2gk+1gkĝk+1 · ĝkg2k′+1 − 2gk+1gkĝk+1 · ĝkg2k′

+ 4gk+1gkĝk+1 · ĝkgk′+1gk′ ĝk′+1 · ĝk′
}
>

=< 1− β
∑
k

[2g2k − 2gk+1gk(ĝk+1 · ĝk)]

+
β2

2

∑
k,k′

{
4g2kg

2
k′ + 4gk+1gkgk′+1gk′(ĝk+1 · ĝk)(ĝk′+1 · ĝk′)− 8g2kgk′+1gk′(ĝk′+1 · ĝk′)

}
>

=< 1− 2β
∑
k

g2k + 2β2
∑
k,k′

g2kg
2
k′ +

(
2β +−4β2

∑
k′

g2k′

)∑
k

gk+1gk(ĝk+1 · ĝk)

+ 2β2
∑
k,k′

gk+1gkgk′+1gk′(ĝk+1 · ĝk)(ĝk′+1 · ĝk′) >

To simplify the above expression, we define the following quantities:

α̃ :=< 1− 2β
∑
k

g2k + 2β2
∑
k,k′

g2kg
2
k′ >

β̃ :=<

(
2β +−4β2

∑
k′

g2k′

)
gk+1gk > ∀k,

β̂k,k′ :=< 2β2gk+1gkgk′+1gk′ > .

(4.6)
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We note the following property of β̂k,k′ which follows from its definition and translation

symmetry in the problem:

β̂k,k′ = β̂l,l′ , ∀ |k − k′| = |l − l′|. (4.7)

Thus, we can write β̂k,k′ as β̂η, where η = |k − k′|.Using (4.6), we can write P ({ĝk}) in a

much more simpler form:

P ({ĝk}) = α̃ + β̃
∑
k

(ĝk+1 · ĝk) +
∑
k,k′

β̂k,k′(ĝk+1 · ĝk)(ĝk′+1 · ĝk′) (4.8)

Due to the integral involved in < ... > and the translational symmetry of the problem,

the seemingly k dependence of the parameters vanish as the integral is over the full chain.

4.3 Deriving Eeff

Let us assume for some Eeff, we can get a probability distribution of the form shown in (4.1)

that equals the probability that we obtained in (4.8). Let Eeff be:

Eeff = −σ − ϵ
∑
k

(1− ĝk+1 · ĝk)−
∑
k,k′

fk,k′(1− ĝk+1 · ĝk)(1− ĝk′+1 · ĝk′)

The corresponding probability (up to second order in (1− ĝk+1 · ĝk)) is given by:

e−Eeff ∼ 1 + σ +
σ2

2
+ (ϵ+ σϵ)

∑
k

(1− ĝk+1 · ĝk)

+
∑
k,k′

(fkk′ +
ϵ2

2
+ σfkk′)(1− ĝk+1 · ĝk)(1− ĝk′+1 · ĝk′)

(4.9)

Now we group the terms together so that the expression becomes comparable to (4.8).

On comparing, we find the relations between the old parameters α̃, β̃, ˜βk,k′ and σ, ϵ, fk,k′ .
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Note that the properties mentioned in (4.7) apply to fk,k′ .

e−Eeff = 1 + σ +
σ2

2
+
∑
k

(ϵ+ σϵ) +
∑
k,k′

(fkk′ +
ϵ2

2
+ σfkk′)︸ ︷︷ ︸

α̃

+

(
−ϵ− σϵ− 2

∑
k′

(fkk′ +
ϵ2

2
+ σfkk′)

)
︸ ︷︷ ︸

β̃

∑
k

(ĝk+1 · ĝk)

+
∑
k,k′

(fkk′ +
ϵ2

2
+ σfkk′)︸ ︷︷ ︸

β̂k,k′

(ĝk+1 · ĝk)(ĝk′+1 · ĝk′)

(4.10)

This shows that we can effectively write (4.8) using Eeff given by:

Eeff = −σ − ϵ
∑
k

(1− ĝk+1 · ĝk)−
∑
k,k′

fk,k′(1− ĝk+1 · ĝk)(1− ĝk′+1 · ĝk′) (4.11)

This in turn, enables us to write the probability distribution in the form shown in (4.1),

given by P ({ĝk}) = e−Eeff .

4.4 Calculating the expression for potential energy

Since we now have a convenient expression for the probability distribution, we can now

straightaway use the formulae given in (4.3) and (4.2) to write the auxiliary Hamiltonian by

replacing E with Eeff. To make the analysis easy, we define the following two quantities:

ϕ := −ϵ
∑
k

(1− ĝk+1 · ĝk) first order

ω :=
∑
k,k′

fk,k′(1− ĝk+1 · ĝk)(1− ĝk′+1 · ĝk′) second order
(4.12)

Now, we will calculate the expression for potential energy up to second order in (1 −
ĝk+1 · ĝk) using (4.3). To proceed further, we also note that in our case, the following holds
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true:

ĝk = (cos θk, sin θk)
T

=⇒ ĝk+1 · ĝk = (cos θk+1, sin θk+1) (cos θk, sin θk)
T

= cos θk+1 cos θk + sin θk+1 sin θk

= cos (θk+1 − θk)

(4.13)

From (4.3), we know that the expression for potential energy is given by:

V (x) = ||∇̂E||2 − ∆̂E.

Now we will calculate ||∇̂Eeff||2 and ∆̂Eeff for our case (both up to second order in (1− ĝk+1 ·
ĝk)). Since the configuration space is embedded in Rn, we also note that the operators are

defined as:

∇̂ :=
∑
j

∂

∂xj
ĵ

∆̂ :=
∑
j

∂2

∂x2j

(4.14)

4.4.1 ||∇̂Eeff||2

The first derivative of Eeff w.r.t. a coordinate θρ is:

∂Eeff

∂θρ
=

∂ϕ

∂θρ
+
∂ω

∂θρ

=⇒ ||∇̂Eeff||2 ∼
∑
ρ

(
∂ϕ

∂θρ

)2

=
∑
ρ

(
∂

∂θρ
[−ϵ

∑
k

(1− ĝk+1 · ĝk)]

)2

=
∑
ρ

(
∂

∂θρ
[−ϵ

∑
k

(1− cos (θk+1 − θk))]

)2

using (4.13)

=
∑
ρ

ϵ2{sin(θρ+1 − θρ)− sin(θρ − θρ−1)}2
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Therefore,

||∇̂Eeff||2 =
∑
ρ

ϵ2{sin(θρ+1 − θρ)− sin(θρ − θρ−1)}2 (4.15)

4.4.2 ∆̂Eeff

The second derivative of Eeff w.r.t. a coordinate θρ is:

∂2Eeff

∂θ2ρ
=
∂2ϕ

∂θ2ρ
+
∂2ω

∂θ2ρ

Let us further simplify the expression for Eeff:

Eeff = −σ − ϵ
∑
k

(1− ĝk+1 · ĝk)−
∑
k,k′

fk,k′(1− ĝk+1 · ĝk)(1− ĝk′+1 · ĝk′)

= −σ −Nϵ−
∑
k,k′

fk,k′︸ ︷︷ ︸
A

+

(
ϵ+ 2

∑
k′

fk,k′

)
︸ ︷︷ ︸

B

∑
k

(ĝk+1 · ĝk)−
∑
k,k′

fk,k′(ĝk+1 · ĝk)(ĝk′+1 · ĝk′)

= A+B
∑
k

cos (θk+1 − θk)−
∑
k,k′

fk,k′ cos (θk+1 − θk) cos (θk′+1 − θk′)

(4.16)

where we used the property shown in (4.13). Thus, the first and consequently the second

derivative of Eeff can be calculated as follows

∂Eeff

∂θρ
= B[sin(θρ+1 − θρ)− sin(θρ − θρ−1)]− 2 sin(θρ+1 − θρ)

∑
k′

fρk′ cos(θk′+1 − θk′)

+ 2 sin(θρ − θρ−1)
∑
k′

f(ρ−1)k′ cos(θk′+1 − θk′)

=⇒ ∂2Eeff

∂θ2ρ
= −B[cos(θρ+1 − θρ) + cos(θρ − θρ−1)] + 2 cos(θρ+1 − θρ)

∑
k′

fρk′ cos(θk′+1 − θk′)

+ 2 cos(θρ − θρ−1)
∑
k′

f(ρ−1)k′ cos(θk′+1 − θk′)

− 2 sin(θρ+1 − θρ)
{
fρρ sin(θρ+1 − θρ)− fρ(ρ−1) sin(θρ − θρ−1)

}
+ 2 sin(θρ − θρ−1)

{
f(ρ−1)ρ sin(θρ+1 − θρ)− f(ρ−1)(ρ−1) sin(θρ − θρ−1)

}
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Using the above result, after grouping the terms appropriately, we get

∆̂Eeff =
∑
ρ

[
−B[cos(θρ+1 − θρ) + cos(θρ − θρ−1)] + 2 cos(θρ+1 − θρ)

∑
k′

fρk′ cos(θk′+1 − θk′)

+ 2 cos(θρ − θρ−1)
∑
k′

f(ρ−1)k′ cos(θk′+1 − θk′)

− 2 sin(θρ+1 − θρ)
{
fρρ sin(θρ+1 − θρ)− fρ(ρ−1) sin(θρ − θρ−1)

}
+ 2 sin(θρ − θρ−1)

{
f(ρ−1)ρ sin(θρ+1 − θρ)− f(ρ−1)(ρ−1) sin(θρ − θρ−1)

}]

Here, terms like B[cos(θρ+1 − θρ) + cos(θρ − θρ−1)], once acted upon by summation over

the index ρ, become equal to each other. Therefore, for simplicity, we can write:

∑
ρ

B[cos(θρ+1 − θρ) + cos(θρ − θρ−1)] = 2B cos(θρ+1 − θρ) (4.17)

On using (4.17), we get the following expression:

∆̂Eeff =
∑
ρ

[
− 2B cos(θρ+1 − θρ) + 4 cos(θρ+1 − θρ)

∑
k′

fρk′ cos(θk′+1 − θk′)

− 4fρρ sin
2(θρ+1 − θρ) + 4f(ρ−1)ρ sin(θρ+1 − θρ) sin(θρ − θρ−1)

] (4.18)

Thus, after using (4.15) and (4.18), the expression for V is as follows:

V =
∑
ρ

[
ϵ2{sin(θρ+1 − θρ)− sin(θρ − θρ−1)}2 + 2B cos(θρ+1 − θρ)

+ 4fρρ sin
2(θρ+1 − θρ)− 4f(ρ−1)ρ sin(θρ+1 − θρ) sin(θρ − θρ−1)

− 4 cos(θρ+1 − θρ)
∑
k′

fρk′ cos(θk′+1 − θk′)

]

32



Once again, on using the property shown in (4.17), we get the following expression for

V :

V =
∑
ρ

[
(2ϵ2 + 4fρρ) sin

2(θρ+1 − θρ)− (4f(ρ−1)ρ + 2ϵ2) sin(θρ+1 − θρ) sin(θρ − θρ−1)

+ 2 cos(θρ+1 − θρ)

(
B − 2

∑
k′

fρk′ cos(θk′+1 − θk′)

)]
(4.19)

4.5 Expression for Heff

Now that we have the expression of V , it is straightforward to write down the final Hamilto-

nian according to (4.2). From (4.14), we know that ∆̂ = ∂2θρ . Thus, using (4.19) and (4.7),

we get the following expression for the Hamiltonian:

Heff =
∑
ρ

[
− ∂2θρ + (2ϵ2 + 4f0) sin

2(θρ+1 − θρ)

− (4f1 + 2ϵ2) sin(θρ+1 − θρ) sin(θρ − θρ−1)

+ 2 cos(θρ+1 − θρ)

(
B − 2

∑
k′

fρk′ cos(θk′+1 − θk′)

)] (4.20)

where,

B =

(
ϵ+ 2

∑
k′

fk,k′

)

4.6 Ground state check for Heff

Since there were some approximations involved, we also perform a consistency check for the

Hamiltonian that we have obtained. Let us take ψm = ρ and apply the Hamiltonian on this
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state. Since V = ∇ρ
ρ
, Hρ = 0 and hence, ρ is the ground state of the Hamiltonian. We can

also see this by noting the following from (2.21):

λn ∼ 1− ϵEn, ψn ∼ Ψn

ρ
(4.21)

Since λ0 = 1, E0 = 0 and therefore psi0 is the ground state.

Let us check if P ({ĝk}) = e−Eeff calculated in (4.9), is the ground state of Heff. We will

only keep terms up to first order in (1− ĝk+1 · ĝk) for the expression of Eeff. Thus we have:

Eeff ∼ −σ − ϵ
∑
k

{1− cos(θk+1 − θk)}

Ψ0 ∼ 1 + σ + (ϵ+ σϵ)
∑
k

{1− cos(θk+1 − θk)}+
σ2

2

+
ϵ2

2

∑
k,k′

{1− cos(θk+1 − θk)}{1− cos(θk′+1 − θk′)}

= 1 + σ + ϵ+ σϵ+
σ2

2
+
ϵ2

2
− (ϵ+ σϵ+ ϵ2)

∑
k

cos(θk+1 − θk)

+
ϵ2

2

∑
k,k′

cos(θk+1 − θk) cos(θk′+1 − θk′)}

Heff ∼
∑
ρ

[
− ∂2θρ + 2ϵ cos(θρ+1 − θρ) + 2ϵ2 sin2(θρ+1 − θρ)− 2ϵ2 sin(θρ+1 − θρ) sin(θρ − θρ−1)

]

Acting the Laplacian on the ground state gives:

−
∑
ρ

∂2θρΨ0 =
∑
ρ

[
− 2 cos(θρ+1 − θρ)(�ϵ+ σϵ+ ��ϵ2) +

(((((((((((((((((((

ϵ2{sin(θρ+1 − θρ)− sin(θρ − θρ−1)}2

+ 2ϵ2 cos(θρ+1 − θρ)
∑
k

cos(θk+1 − θk)

]
(4.22)

Multiplying the potential energy term the ground state gives (up to second order in the
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coefficients):

∑
ρ

VθρΨ0 =
∑
ρ

[
(((((((((
2ϵ cos(θρ+1 − θρ)

((((((((((((((((((((((((((((

+2ϵ2 sin2(θρ+1 − θρ)− 2ϵ2 sin(θρ+1 − θρ) sin(θρ − θρ−1)

(((((((((((
+2ϵσ cos(θρ+1 − θρ)

]
(4.23)

Since the Hamiltonian is the addition of the terms written in (4.22) and (4.23), we can

cancel out the terms that cancel out. Terms struck with same colour cancel each other out.

(Note that for one such cancellation, we used the property mentioned in (4.17). Thus, we

see that HeffΨ0 ∼ 0, as expected. As we keep on including higher order terms in (4.23), the

terms get cancelled among themselves.

4.7 Hamiltonian in the Continuum Limit

Now we calculate the expression for the Hamiltonian in the continuum limit, i.e. Nk −→ ∞.

The discrete Hamiltonian was:

Heff =
∑
ρ

[
− ∂2θρ + (2ϵ2 + 4f0) sin

2(θρ+1 − θρ)

− (4f1 + 2ϵ2) sin(θρ+1 − θρ) sin(θρ − θρ−1)

+ 2 cos(θρ+1 − θρ)

(
B − 2

∑
k′

fρk′ cos(θk′+1 − θk′)

)] (4.24)

where,

B =

(
ϵ+ 2

∑
k′

fk,k′

)

Now we calculate the expression for the Hamiltonian in the continuum limit. Definition

of B now becomes:

B :=

(
ϵ+ 2

∫
dkfk,k′

)
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To take the continuum limit, we replace θk+1 with
(
θk + ∂kθk +

∂2
kθk
2

)
. Thus the Hamil-

tonian now becomes:

Heff =

∫
dk

[
− δ2θ + (2ϵ2 + 4f0) sin

2(∂kθk +
∂2kθk
2

)

− (4f1 + 2ϵ2) sin(∂kθk +
∂2kθk
2

) sin(∂kθk +
∂2kθk
2

)

+ 2 cos(∂kθk +
∂2kθk
2

)

(
B − 2

∫
dk′fρk′ cos(∂k′θk′ +

∂2k′θk′

2
)

)] (4.25)

Now we expand the sine and cosine terms such that every term in the whole expression

is up to fourth order in ∂kθk.

Heff =

∫
dk

[
− δ2θ + 4(f0 − f1)

{
(∂kθk)

2 + ∂kθk∂
2
kθk +

(∂2kθk)
2

4

}
+ 2

{
1−

{(∂kθk)2
2

+
∂kθk∂

2
kθk

2
+

(∂2kθk)
2

8
+

(∂kθk)
4

4!

}}(
B − 2

∫
dk′fkk′

)
− 4
{(∂kθk)2

2
+
∂kθk∂

2
kθk

2
+

(∂2kθk)
2

8

}∫
dk′fkk′

{(∂k′θk′)2
2

+
∂k′θk′∂

2
k′θk′

2
+

(∂2k′θk′)
2

8

}
+ 4

∫
dk′fkk′

{(∂k′θk′)2
2

+
∂k′θk′∂

2
k′θk′

2
+

(∂2k′θk′)
2

8
+

(∂kθk)
4

4!

}]
(4.26)

Since ∂kθk∂
2
kθk =

(∂k(∂kθk)
2)

2
, it is a total derivative and it thus vanishes.

Heff =

∫
dk

[
− δ2θ + 4(f0 − f1)

{
(∂kθk)

2 +
(∂2kθk)

2

4

}
+ 2

{
1−

{(∂kθk)2
2

+
(∂2kθk)

2

8
+

(∂kθk)
4

4!

}}(
B − 2

∫
dk′fkk′

)

− 4
{(∂kθk)2

2
+

(∂2kθk)
2

8

}∫
dk′fkk′

{(∂k′θk′)2
2

+
(∂2k′θk′)

2

8

}]

+ 4

∫
dk′fkk′

{(∂k′θk′)2
2

+
(∂2k′θk′)

2

8
+

(∂kθk)
4

4!

}]
(4.27)

36



Now we simplify the expression further:

Heff =

∫
dk

[
− δ2θ +

(
4(f0 − f1)−B + 2

∫
dk′fkk′

){
(∂kθk)

2 +
(∂2kθk)

2

4

}
+ 2

(
B − 2

∫
dk′fkk′

)(
1− (∂kθk)

4

4!

)
+ 4

∫
dk′fkk′

(∂kθk)
4

4!

+ 4

{
1−

{(∂kθk)2
2

+
(∂2kθk)

2

8

}}∫
dk′fkk′

{(∂k′θk′)2
2

+
(∂2k′θk′)

2

8

}]
(4.28)

Thus, we have the following expression for Heff in the continuum limit:

Heff =

∫
dk

[
− δ2θ + 2ϵ+ (4(f0 − f1)− ϵ)

(
(∂kθk)

2 +
(∂2kθk)

2

4

)
− 2ϵ

(∂kθk)
4

4!
+

∫
dk′fkk′

(∂kθk)
4

3!

+

{
2−

(
(∂kθk)

2 +
(∂2kθk)

2

4

)}{∫
dk′fkk′

(
(∂k′θk′)

2 +
(∂2k′θk′)

2

4

)}]
(4.29)

We can further simplify this to (after introducing the angular momentum field Lk =

−i δ
δθk

)

Heff =

∫
dk

[
L2
k + 2ϵ+ c1

[
(∂θk)

2 +
(∂2θk)

2

4

]
+ c2

(∂kθk)
4

4!

]
−
∫
dk

∫
dk′fk−k′(∂θk)

2(∂θk′)
2 +O(∂6)

(4.30)

where c1 = 4(f0−f1)−ϵ+2
∫
dk′fkk′ and c2 = −2ϵ+4

∫
dk′fkk′ . Defining the two-component

unit field n̂k = (cos θk, sin θk)
T , we can also write this more explicitly as a 1D, non-local,

non-linear sigma model

Heff =

∫
dk

[
L2
k + 2ϵ+ c1

[
(∂n̂k)

2 +
(∂2n̂k)× n̂k

4

]
+ c2

(∂n̂k)
4

4!

]
−
∫
dk

∫
dk′fk−k′(∂n̂k)

2(∂n̂k′)
2 +O(∂6)

(4.31)
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4.8 Discussion and Outlook

Thus, we obtain the auxiliary quantum many-body Hamiltonian for the Diffusion process

defined on the data set of Monte-carlo sampled 1-D 2 band Hamiltonians with chiral sym-

metry. Such cases of duality are interesting because they often illuminate deep connections

between entities that look unrelated.

This kind of treatment also has the potential to uncover interesting things in both the

diffusion map algorithm as well the quantum many-body problem. In [4], the quantum

problem corresponding to the diffusion map on the data set of XY model could reveal

important properties of the XY model.

In our case, the low energy spectrum and eigenstates will give us the λn and ψn that

we obtained after running the Diffusion Map algorithm for classifying the Hamiltonians.

In future, we plan to solve the auxiliary quantum Hamiltonian and show that it indeed

captures the winding numbers, and that the problem of classifying the sampled Hamiltonians

is equivalent to solving this auxiliary Hamiltonian.
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Appendix

K-means clustering

Here, we present a brief explanation of the working of K-means clustering algorithm. It is

an unsupervised machine learning algorithm which is used to find clusters/groups in a data

set.

To see how it works in principle, let’s assume we have a data set X = {xi}, i =

{1, 2, ..., N}. The K-Means algorithm divides the data set into M groups (M < N),

Gj, j = {1, 2, ...,M}. It assigns data points from X into the groups Gj in such a way

that the assignment minimises the following function:

E =
M∑
j=1

∑
xi∈Gj

||xi − gj||2

where gj (known as the centroid of the group) is the mean of the points in group Gj.

Typically, one needs to provide the number of clusters (M) one is expecting within the

data set. Based on this, the algorithm makes the clusters and assigns a centroid (correspond-

ing the group) to every data point.
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