
Master Thesis

Solving inverse problems of
many-body physics with neural

networks

Stefan Obernauer

October 27, 2022

Supervised by Ass.-Prof. Dr. Mathias S. Scheurer

Institute for Theoretical Physics

Abstract

Over the past few years machine learning techniques have found increasing influence
as a numerical method in many physical problems. What stands out as a main
advantage of those techniques is the ability to analyze large amounts of data which can
no longer be examined by conventional methods. An interesting research area here are
inverse problems, where machine learning algorithms can be used for reconstructing
parameters from an existing dataset. An example of such datasets in condensed
matter physics are scanning tunneling microscope images. These images can provide
a wide range of information about the underlying system and common neural network
architectures, which are widely used for image classification tasks, can help to shed
light on the essential parameters involved.
In this thesis we study the ability of deep neural networks to reconstruct parameters

of the e↵ective Hamiltonian from scanning tunneling microscope images. For this
purpose we define a minimal tight-binding model for twisted bilayer graphene with
a nematic phase, which provides the basis for the artificial generation of the images.
We can show that a convolutional neural network, which examines STM images at
only one energy, is not su�cient to make accurate predictions about the underlying
nematic parameters. However, a network architecture examining the STM images
at four di↵erent energies allows significantly improved statements about the nematic
structure. Finally we show that the best way to train the neural network is to feed
scaleograms of the local density of states at one lattice site. These scaleograms alone
are su�cient to enable a high accuracy in the predictions of the nematic parameters.

i

Danksagung

An erster Stelle möchte ich mich herzlich bei meinen Eltern und meiner Schwester
bedanken. Ohne deren stetige Unterstützung wäre ich als Physikstudent und vor
allem als Mensch niemals so weit gekommen. Sie haben mich davor bewahrt, stressige
Zeiten unnötig ernst zu nehmen und es mir ermöglicht, meinen Blick stets auf das
Wichtige im Leben zu richten.
Ein besonderer Dank gilt meinem Betreuer Ass.-Prof. Dr. Mathias S. Scheurer,

welcher dieses interessante Thema vorgeschlagen hat und mir zu jeder Zeit mit seinem
Rat zur Seite stand.
Ebenso möchte ich den Mitgliedern der Arbeitsgruppe danken, welche mich o↵en

in ihre Runde aufgenommen haben. Mein besonderer Dank gilt hierbei João Augusto
Sobral, welcher mir bei Fragen zu den theoretischen Themen geholfen hat. Eine
große Hilfe waren ebenfalls meine Mitstudenten und Bürokollegen Jakob Wessling
und Michael Perle, mit denen ich stets auf erbauliche Weise über Physik und die Welt
reden konnte.

ii

Contents

1 Introduction 1

2 Twisted multi-layer graphene 3
2.1 Single-layer graphene . 3

2.1.1 Geometry . 3
2.1.2 Tight-binding model . 4
2.1.3 Dirac-like fermions . 6
2.1.4 Symmetries and distant-neighbor hopping 7

2.2 Twisted bilayer graphene . 8
2.2.1 Geometry . 8
2.2.2 Symmetries . 10
2.2.3 Nematicity . 12

2.3 Twisted double bilayer graphene . 13

3 Scanning tunneling microscope 14
3.1 Many-body Green’s function . 14
3.2 STM . 16

4 Machine learning 19
4.1 Artifical neural networks . 19
4.2 How training works . 21

4.2.1 Gradient Descent . 21
4.2.2 Backpropagation . 22
4.2.3 Better optimizers . 23

4.3 Convolutional neural networks . 24
4.4 Tensorflow . 26

5 Generating the STM images 28
5.1 A minimal tight-bind model for TBG 28
5.2 Nematic order parameter . 30
5.3 Computing the STM response . 31

6 ML results 34
6.1 Orientation of nematic director . 34

6.1.1 Discrete director values . 34
6.1.2 Continous director values . 34

iii

6.2 Form of nematicity . 37
6.2.1 All nematic parameters . 37
6.2.2 Only two nematic parameters 38

6.3 Adding more energy channels . 38
6.3.1 Only two nematic parameters 39
6.3.2 All nematic parameters . 39

6.4 Adding LDOS at a single point . 40
6.5 Only LDOS at a single point . 43

7 Conclusion and outlook 47

iv

1 Introduction

In recent years machine learning techniques have become increasingly important in
business and science. This is mainly due to the fact that great progress has been made
in image recognition and natural language processing and more and more companies
are resorting to the analysis of large amounts of data through machine learning algo-
rithms. It is therefore only natural to ask whether machine learning could also be used
as a solution to physical problems. In condensed matter physics in particular, which
has always relied on numerical simulations due to its high-dimensional problems, ma-
chine learning seems to be a suitable candidate. In fact, numerous papers have been
published in recent years that deal with the possibilities of machine learning applied
to condensed matter physics [1–3]. There is notable research in the analysis of images
of scanning tunneling microscopes (STM), which are an experimental possibility to
collect large and complex amounts of data about material properties and thus prove
to be a field for machine learning activities [4–8].
In this thesis, STM images are the data type to be examined by the machine

learning technique of deep neural networks (DNNs). However, no experimental STM
images are used here, as the images are generated numerically on the computer. This
methodology makes it possible to train a neural network for a wide variety of realiza-
tions of a physical model rather quickly and thus to derive favorable neural network
architectures for each of these realizations. A neural network trained on artificial STM
images could then be used to examine experimental images. However, this step was
omitted in this thesis, since the physical model used is optimized to generate huge
datasets quickly and thus is not suitable for a generalization onto experimental data.
The model in question is a toy model for twisted bilayer graphene (TBG) introduced

by my supervisor and it resembles the most important characteristics of the graphene
system. This tight-binding model is based on a Bloch Hamiltonian hk[{tj}], which
depends on several parameters tj and is the key ingredient for the artificial genera-
tion of the STM images. Several quite unexpected phases have been proposed to be
discovered in TBG, one of them being a nematic phase. Such a phase corresponds to
an experimentally observed rotational symmetry breaking in the STM images, while
translational symmetry is preserved [9]. The rotational symmetry breaking is a fea-
ture of the STM image that has proven to be learnable from a neural network [5].
Hence we decided to add a nematic coupling hk ! hk[{tj}] + �hk[{↵j}] to the toy
Hamiltonian, which is parametrized by ↵j and should describe the occurrence of ne-
matic order. As we will see in the following chapters, the generation of the artificial
STM images based on the parameters ↵j is rather straightforward. However the op-
posite case, meaning to extract the parameters from the generated images, is a highly

1

1 Introduction

non-trivial task. This raises the exciting question of whether machine learning is able
to solve this inverse problem, namely to deduce the corresponding parameters ↵j of
the underlying Hamiltonian from an STM image with a visible nematic phase. The
fact that inverse problems have already been successfully solved with machine learning
techniques shows courage for a positive outcome of this experiment [10–14].
In chapters 2-4 I will first present the basic theory necessary for understanding my

work. It is a summary of the current state of research and in no way a product of
my own cognitive work. The main sources I have used are given at the beginning of
each chapter. Chapter 2 begins with a derivation of the most important properties of
monolayer graphene and subsequently also for TBG, laying the foundation for a justi-
fication of the toy model. In the course of this, a brief overview of the current state of
research on twisted double bilayer graphene (TDBG) will also be given. Furthermore
a description of the nematic coupling is introduced. In chapter 3 the most important
equations for the artificial generation of STM images are derived step by step and
the physical meaning of these images is also dealt with in more detail. In chapter 4
the basics of neural networks are presented and the deep learning library Tensorflow,
which I used for implementing the various architectures, is discussed. After these
three theory chapters the actual part of my work begins, although the model for TBG
introduced in chapter 5 was given to me from my supervisor. This chapter depends
heavily on the theory in the first two chapters and ends with the successful generation
of the STM images for di↵erent nematic couplings. Chapter 6 then corresponds to the
main results of my work, in which machine learning is applied to the STM images.

2

2 Twisted multi-layer graphene

In order to lay a foundation for twisted bilayer graphene (TBG) and twisted double
bilayer graphene (TDBG), I will first summarize the most important properties of
a simple monolayer graphene system. Based on these definitions, the physics of the
layer stackings is derived.

2.1 Single-layer graphene

The derivations in the following monolayer graphene sections mainly follow the papers
from Rozhkov [15] and Neto [16].

2.1.1 Geometry

(a) (b)

Figure 2.1: In figure (a) we see the honeycomb structure of single-layer graphene with
a unit cell (dotted lines) containing two atoms. Each atom corresponds to a triangular
sublattice denoted with (A, B) and can be reached via a Bravais lattice vector RA(B) =
n1a1 + n2a2(+�3), where aj are primitive vectors, nj are integers and �j correspond to the
nearest-neighbor vectors. Figure (b) shows the corresponding hexagonal Brillouin zone with
reciprocal lattice vectors bj and high-symmetry corner points K(0) [15].

3

2 Twisted multi-layer graphene

Figure 2.1 (a) shows that a simple graphene layer consists of carbon atoms arranged
in a hexagonal lattice. This lattice structure is based on a triangular Bravais lattice
with a diatomic basis (A, B). One often speaks of two sublattices, since each of the
two basis atoms is arranged in a triangular lattice itself. The two atoms are separated
by a bond length of a ⇡ 1.42 Å, which defines a lattice constant a0 =

p
3a. If the

origin of the lattice vectors lies on sublattice A, the bond length also corresponds to
the length of the basis vector �3, which is also one of three nearest-neighbor vectors

�1 =
a0

2

✓
1p
3
, 1

◆
, �2 =

a0

2

✓
1p
3
,�1

◆
and �3 = � a0p

3
(1, 0) . (2.1)

The two primitive lattice vectors, which define the triangular Bravais lattice RA(B) =
n1a1 + n2a2(+�3) on sublattice A (B), are given as

a1 = a0

 p
3

2
,
1

2

!
, a2 = a0

 p
3

2
,�1

2

!
(2.2)

and in turn allow the specification of the reciprocal lattice vectors

b1 = 2⇡
R90�a2

a1R90�a2
=

2⇡

a0

✓
1p
3
, 1

◆
, b2 = 2⇡

R90�a1

a2R90�a1
=

2⇡

a0

✓
1p
3
,�1

◆
, (2.3)

where R90� is defined as a 90� rotation matrix. The resulting Brillouin zone (BZ) itself
has a hexagonal structure and contains high symmetry points on its corners, which
are central to the physical understanding of graphene. These K(0) points are the only
two distinguishable corner points of the BZ. Every corner point can be generated by
choosing a definition for a pair K(0) (see equation (2.9)) and translating these two
points by a reciprocal lattice vector. The corresponding k-space geometry can be seen
in figure 2.1 (b).

2.1.2 Tight-binding model

In order to derive the physics of single-layer graphene, a tight-binding description is
introduced. Focusing on the basic case, where electrons on one lattice site can only
tunnel to their nearest neighbors, the Hamiltonian reads

H = �t

X

hi,ji,�

(a†
i,�
bj,� + b

†
j,�
ai,�) (2.4)

where a
(†)
�,i

and b
(†)
�,j

are electron creation (annihilation) operators with spin � = (", #)
respectively defined for carbon sites on the two di↵erent sublattices RA

i
and RB

j
. The

Hamiltonian implies that t is the nearest-neighbor hopping energy, as the operators an-
nihilate electrons on one sublattice site while creating electrons on a nearest-neighbor
site simultaneously. To solve for the spectrum equation (2.4) can be rewritten in

4

2 Twisted multi-layer graphene

reciprocal space. This is done by performing a Fourier transformation of the electron
operators

ak,� =
1p
N

X

i

e
ikRA

i ai,�, bk,� =
1p
N

X

j

e
ikRB

j bj,�, (2.5)

with the indices i(j) running over all carbon sites of sublattice A(B). Here N denotes
the total number of unit cells (UCs). By writing the two operators as a single spinor

 k,� = (ak,�, bk,�)
T
, †

k,� =
⇣
a
†
k,�, b

†
k,�

⌘
, (2.6)

and by rewriting the sum over nearest-neighbors hi, ji as a sum over the nearest-
neighbor vectors from equation (2.1) the Hamiltonian from equation (2.4) becomes

H =
X

k,�

 †
k,�hk k,�, with hk = �t

✓
0 f(k)

f
⇤(k) 0

◆
and f(k) =

3X

j=1

e
ik�j . (2.7)

By diagonalizing the Bloch Hamiltonian hk we then arrive at the important expression
for the band spectrum:

E±(k) = ±t|f(k)| = ±t

s

3 + 2 cos(a0ky) + 4 cos(
a0

2
ky) cos(

p
3

2
a0kx) (2.8)

Hence we have a spectrum with two bands (±) and the plot from figure 2.2 reveals
the existence of two band crossings at the corner points of the BZ. We want to Taylor
expand equation (2.8) close to these points, which can be defined as

K =
2⇡

a0

✓
1p
3
,
1

3

◆
, K

0
=

2⇡

a0

✓
1p
3
,�1

3

◆
, (2.9)

yielding
E±(K + q) = ±~vF |q|, (2.10)

where the Fermi velocity is defined as vF =
p
3a0t/(2~) ' c/300, q = k�K(0) and it

should hold that |q| ⌧ |K|.
We can clearly see that the energy dispersion near the corner points is linear (as

a clear distinction to the usual quadratic dependence). Furthermore the electrons
behave like relativistic massless Dirac fermions. For this reason the corner points are
so-called Dirac points. This special bandstructure also leads to a density of states
(DOS) ⇢(E) ⇡ 2E/(⇡v2

f
) linear to the energy. The properties near the Dirac points

are of particular importance, since in neutral graphene the physics near these points
dominate. The dominance of the K(0) points is more apparent when considering the
electronic structure of graphene. It was shown that in the undoped case there is
exactly one pz electron on each carbon site, which leads to two electrons per unit
cell [17]. We showed that there are two possible energy bands and since each state
can be occupied by exactly two electrons, the valence band has to be fully occupied
whilest the conduction band is empty. Therefore the linear DOS vanishes at E = 0
and the Fermi energy lies exactly at the crossing point of the bands. These properties
are typical for semimetal materials [18].

5

2 Twisted multi-layer graphene

Figure 2.2: Plot of the lowest two bands of single-layer graphene. The Dirac points on
the corners of the BZ separate the conduction (upper) and valence (lower) bands. In their
vicinity the electron dispersion and DOS becomes linear. In this plot the parameters from
equation (2.8) have been set to t = 1 and a = 1.

2.1.3 Dirac-like fermions

Close to the Dirac points the electrons are nearly massless and thus fulfill the massless
Dirac equation. This can be shown by writing each of the transformed operators from
equation (2.5) as a sum of two new operators. The idea behind this is that we want to
separate the description for electrons close to each of the two Dirac points. The new
operators are therefore labeled by (K ! 1,K0 ! 2) and redefine the old electronic
operators on each site as

ai ⇡ e
�iKRA

i a1i + e
�iK0RA

i a2i, bj ⇡ e
�iKRB

j b1j + e
�iK0RB

j b2j, (2.11)

where the index for spin was dropped for convenience. These operators are then used
in equation (2.4) and expanded to linear order in �. The Hamiltonian then includes
two copies of a massless Dirac-like Hamiltonian. Each copy describes the physics of
electrons in the vicinity of each of the Dirac points K(0). The first quantized Dirac
equations read

�i~vF� ·r 1(r) = E 1(r) (close to K)

�i~vF�⇤ ·r 2(r) = E 2(r) (close to K
0
),

(2.12)

where i are electron wave functions with two components and � = (�x, �y) are Pauli
matrices. Those wave functions are of special interest when studying symmetries and
topological properties of the system. In momentum space and for each of the two

6

2 Twisted multi-layer graphene

lowest bands (±) with corresponding energies from equation (2.10) they are given as

±
1 (q) =

1p
2

✓
e
�i✓q/2

±e
i✓q/2

◆
, for HK = ~vF� · q,

±
2 (q) =

1p
2

✓
e
i✓q/2

±e
�i✓q/2

◆
, for HK0 = ~vF�⇤ · q,

(2.13)

where the phase is defined as ✓q = arctan(qx/qy). By rotating the phase by 2⇡ the
wave function picks up a phase of ⇡ and changes sign. This behavior results from
the chirality (or helicity), which describes the projection of the momentum on the
pseudospin. The states from equation (2.13) are eigenstates of the chirality operators

�1
±
1 = ±1

2

±
1 , �2

±
2 = ±1

2

±
2 , with �1 =

� · q
2|q| , �2 =

�⇤ · q
2|q| (2.14)

and from these definitions we conclude that the pseudospin � can be aligned parallel or
antiparallel to q. The states in the two di↵erent Dirac points have opposite chirality
and each K(0) point defines a so called valley [19]. These two valleys are usually
denoted by ⇠ = ±1 as the Dirac points are often defined as K� = �K+. The new
notation and valley index can then be used to write the Dirac Hamiltonian in the
compact form [18] [20]

H
⇠K(q) = ~vF

✓
0 ⇠qx � iqy

⇠qx + iqy 0

◆
= ~vFq · (⇠�x, �y). (2.15)

2.1.4 Symmetries and distant-neighbor hopping

Since the overall aim is to justify a tight-binding model for TBG which is restricted by
a minimal set of symmetries, let’s first have a look at the symmetries in the monolayer
graphene system. The principle idea of breaking symmetries by adding hopping terms
in the Bloch Hamiltonian can later be used for the TBG case.
Equation (2.7) gives an o↵-diagonal Bloch Hamiltonian hk for the simplest case of

nearest-neighbor hopping t1. Under this o↵-diagonal form the Hamiltonian preserves
time-reversal

h
⇤(�k) = h(k) (2.16)

and inversion symmetry
�xh(�k)�x = h(k), (2.17)

where � is a Pauli matrix in pseudospin space. Both symmetries result in equations
constraining the Hamiltonian h(k) at opposite points in reciprocal space. To get a
constraint at the same k-point, the two symmetries are combined to TI-symmetry:

�xh
⇤(k)�x = h(k) (2.18)

7

2 Twisted multi-layer graphene

We have showed with equation (2.15) that our o↵-diagonal and Hermitian matrix
can be written in the general form h(k) = h1(k)�x + h2(k)�y. Putting this ex-
pression in equation (2.18) immediately shows the invariance of graphene under this
TI-symmetry. However adding a term h3(k)�3 implies h3(k) = �h3(k)) h3(k) = 0,
e↵ectively forbidding a potential di↵erence on the two sublattices. The protection
of Dirac points in graphene can therefore be related to the fact, that no term pro-
portional to �z is present in the Hamiltonian. A breaking of either time reversal
or inversion symmetry opens a gap between the two bands [19]. A Semeno↵ mass
term m�z is su�cient to break inversion symmetry, whilest time-reversal symmetry
in general can be broken by adding an external magnetic field. Haldane [21] showed
that in graphene a complex intrasublattice hopping t2e

�i�
�z, which corresponds to an

alterning (but net) magnetic flux through the UC, is su�cient to break time-reversal
symmetry. A monolayer graphene system with t1-hopping, the t2-hopping term just
mentioned and a Semeno↵ mass term corresponds to the original Haldane model. We
will later use these ideas and define our own Haldane model for TBG [22–24].

2.2 Twisted bilayer graphene

Even if a single layer of graphene already has exciting electronic properties, new
insights can be gained by stacking multiple layers of graphene on top of each other.
It has been found that very interesting physics happens when bilayers of graphene
are twisted in relation to one another. The resulting geometry is called a moiré
pattern. Theoretical investigations have shown that such moiré patterns lead to a
band structure containing two moiré bands per valley and per spin [25]. These bands
are very flat, in contrast to the linear bands in single-layer graphene. The bandwidth
depends on the twist angle between the layers, leading to magic angles (✓ ⇡ 1.1�)
where the bandwidth almost vanishes completely. Such a material is called magic
angle twisted bilayer graphene (MATBG). Because the energy in such bands changes
only very slowly with the electron momentum, the electrons are strongly correlated.
Such strongly correlated systems are of particular interest, as it is hoped that this
will provide a better understanding of the insulating and superconducting states in
cuprates. In fact, in 2018 [26, 27], a team from MIT was able to detect such phases
in TBG as well [28].

2.2.1 Geometry

An example of a moiré structure can be seen in figure 2.3 (a). Looking at this
pattern it can bee seen that light and dark areas alternate periodically. A separate
description can be assigned to each of these areas. In the bright areas one speaks of
AA stacking, since each atom from the upper layer has a corresponding partner from
the lower layer. In the dark areas on the other hand there is always an atom without a
partner, which is called AB or BA stacking [19]. One can clearly see that the AB/BA

8

2 Twisted multi-layer graphene

stacking areas create a honeycomb lattice, whereas the AA stacking areas sit in the
middle of these hexagons and form a triangular lattice. In general every twist angle
between two stacked graphene layers is su�cient to create a moiré pattern, however,
exact lattice translation symmetries only result if so-called commensurate angles are
found. In various papers from the last few years authors have introduced equations
and geometrical properties resulting from these commensurate angles [29–34]. In the
following the most important findings are given. The commensurate angles for a
corresponding superlattice are given as

cos ✓ =
m

2 + 4mn+ n
2

2(m2 +mn+ n2)
(2.19)

where m and n are integers. The main focus lies on twist angles between ✓ 2 (0, ⇡/3)
as angles outside of the given range can be attained via the symmetries of the su-
perlattice. Those symmetries are determined by the location of the twisting center,
however, the twisting center has no influence on the commensuration condition. The
commensuration and therefore lattice properties like the superlattice constant L(m,n)
solely depend on the twist angle ✓. The lattice vectors of the superlattice can be given
through the lattice vectors of single-layer graphene (ai)

L1 = na1 +ma2, L2 = �ma1 + (n+m)a2, (2.20)

leading to a superlattice period

L =
ra0

2 sin(✓/2)
. (2.21)

One can show [30] that the superlattice constant L has a r = |m � n| times bigger
length than the moiré lattice vectors LM , which in principle can be chosen for any
angle ✓. It follows that the lattice vectors of the superlattice unit cell Li and the
moiré unit cell (mUC) Li

M
coincide for r = 1. An example for this condition is shown

in figure 2.3 (a), where (m,n) = (8, 9) leading to a twist angle ✓ = 3.89�. Figure (b)

shows the k-space for the same configuration. It can be seen that the four valleys K(l)
±

of the two stacked layers are folded into two new K̄(0) points of the moiré BZ (mBZ).

In this case of r = 1 the Dirac points K(1)
+ and K(2)

� (K(2)
+ and K(1)

�) map to K̄ (K̄
0
).

At small twist angles it becomes clear that |K(1)
+ � K(2)

+ | ⌧ |K(1)
+ � K(2)

� | meaning

that a coupling between the Dirac points K(1)
+ and K(2)

� is restrained, though they
are folded to the same Dirac point in the reciprocal moiré space. This valley charge
conservation, corresponding to the U⌫(1) symmetry, allows to group the states in the

vicinity of K(1)
+ and K(2)

+ into a single valley, again denoted with ⇠ = +. The same
holds for their time reversal opposites being grouped to valley ⇠ = � again for small
twist angles [29].

9

2 Twisted multi-layer graphene

Figure 2.3: Figure (a) gives the atomic structure and moiré lattice vectors of two stacked
graphene layers with a twist angle ✓ = 3.89�, (m,n) = (8, 9). Figure (b) shows the corre-
sponding BZ folding of the two single-layer BZs (green and red lines) leading to a reduced
moiré BZ. The reciprocal lattice vectors of the moiré lattice are given as GM

i
[35].

2.2.2 Symmetries

The following symmetries section is mainly based on Ref. [29]. Besides the transla-
tional symmetry achieved via the commensuration condition in equation (2.19) there
are further microscopic symmetries depending on the location of the twisting center.
Taking the AA stacking case as a starting point, three available high-symmetry points
for the twisting center are the honeycomb center and the two carbon atoms. In the
first case we have the largest point group, namely D6. This group is generated by
C6 rotation on the one hand, on the other hand there is a rotational symmetry that
exchanges the two layers: C2x. This symmetry can also be found if we place the
twisting center on one of the carbon atoms. However, the point group is now reduced
to D3, since the superlattice is only invariant under C3 rotations. Just like monolayer
graphene the system again is invariant under time reversal T .

Wannier obstruction

It is found that a tight-binding model is constrained under the resulting representa-
tions at the high-symmetry points. A proper description of the two nearly flat bands
(per valley and per spin) can only be attained by placing the Wannier functions in
the middle of the AB/BA regions, leading to a honeycomb structure. By setting up
a corresponding tight-binding theory it turns out that the mentioned symmetries are
not su�cient to explain the robustness of the Dirac points determined in experiments.
For this reason approximate symmetries, which are not yet visible in the commen-
surate structures, are introduced. As can be seen in continuum theory, a nonlocal

10

2 Twisted multi-layer graphene

C2T = (C6T)3 symmetry is able to describe the protection of Dirac points, but at the
same time leads to an obstruction when trying to construct well-localized Wannier
states. This behavior results from the U⌫(1) symmetry, since both monolayer valleys
grouped in the bilayer valley have the same chirality, leading to a total chirality not
equal to zero. However, a two band tight-binding Hamiltonian always has to result
in a total chirality of zero. The connection of this chirality obstruction with mirror
obstruction resulting from C2x-symmetry has been shown by Ref. [29]: To define the
chirality operator for TBG one can first look at an open region of the mBZ which
completely covers the Dirac points. The smoothness of a basis of Bloch wave functions
can then be secured by defining C2T as

ck ! �xKck, (2.22)

where K is complex conjugation and ck is an electron operator in momentum space.
Now the Hamiltonian is constrained by this symmetry and has to be of the form

H(k) = n0(k) + n1(k)�x + n2(k)�y. (2.23)

This further allows for a definition of the chirality as the winding of (n1(k), n2(k))T .
In this basis the operators have to transform under C2x either as

ck ! �xcC2xk, (2.24)

for opposite eigenvalues at the high symmetry point M or as

ck ! ⌘McC2xk, (2.25)

for identical eigenvalues ⌘M . As a consequence (n1(k), n2(k))T has to transform as

(n1(k), n2(k))
T ! (n1(C2xk),�n2(C2xk))

T for opposite EVs, (2.26)

(n1(k), n2(k))
T ! (n1(C2xk),+n2(C2xk))

T for identical EVs. (2.27)

Looking at equation (2.26) one sees that the loops around K and K
0 of the mBZ

have the same number of windings, while equation (2.27) leads to di↵erent ones. As
the number of windings around the Dirac cones corresponds to the chirality in their
vicinity it follows that chirality obstruction can be taken into account by defining the
action C2x via equation (2.24) [29] [36]. We will use this fact again by defining our
own minimal tight-binding model for TBG.

Solving the obstruction

As our own minimal model should take into account this obstruction of the Wannier
states, it is of particular interest of how to integrate it in the simplest possible way.
Luckily the obstruction can be solved by adding additional bands in a Haldane-like
tight-binding model. The solution shown by Zou [29] is a four-band model (for each

11

2 Twisted multi-layer graphene

valley and spin) where we have a pair of two bands with opposite Chern number.
This four-band model can be attained by placing two orbitals on each site of the two
site UC of the honeycomb lattice (spanned by the AB/BA sites). As we only want to
focus on a single valley it is clear that C6 and T won’t preserve the valley. However,
all the other symmetries and combinations of C6T will preserve it leading to a single
valley point group generated by C6T and C2x [36]. It is therefore important to note
that (C6T)2 = C3. We will use the fundamental idea of this model later.

2.2.3 Nematicity

The following description of nematicity is taken from Ref. [37]. In addition to the
superconducting and insulating phases, there are other notable phases of TBG that
can be attributed to the strong correlations between the electrons. One of them is
a nematic phase, which in the case of TBG is defined by a break in C3 symmetry
at various points in the proposed phase diagram. The representation of the nematic
order parameter is rather straightforward on a hexagonal lattice. It is defined by the
two components

� = (�1,�2)
T
, (2.28)

and it should transform under the irreducible representation E of D3 in the case of
our suggested four-band minimal model. As a first guess it can be assumed that the
nematic order can be oriented arbitrarily, which can be expressed by the parameteri-
zation

� = �(cos 2✓, sin 2✓)T , (2.29)

with an angle ✓ determining the orientation of the director n = (cos ✓, sin ✓)T . However
it turns out that the nematic director cannot take any direction, but is limited to a
certain number of angles due to crystal anisotropies. This can be studied in Landau
theory, where the anisotropy is taken into acount with the cubic term in the action

Snem[�] = S0[�] +
�

6

Z

x

(�3
+ + �

3
�)

| {z }
��

3 cos 6✓

3

, (2.30)

where the last term is integrated over a spatial coordinate and imaginary time x =
(r, ⌧) and �± = �1 ± i�2. The final form of the cubic term suggests that there are
di↵erent solutions for the minimum, depending on the sign of �:

� > 0 : ✓ =
(2n+ 1)⇡

6
(2.31)

� < 0 : ✓ =
2n⇡

6
(2.32)

As it holds that �(✓ + ⇡) = �(✓) the allowed solutions are given for n = 0, 1, 2 and
are hence threefold degenerate. In real space this corresponds to a strengthening of

12

2 Twisted multi-layer graphene

the lattice bonds like shown in figure 2.4. We will be able to observe these bond
strengthenings on our artificially generated STM images.

Figure 2.4: Band ordering for threefold degenerate nematic oder in real space [37].

2.3 Twisted double bilayer graphene

The interesting electronic properties of TBG only become visible when the twist an-
gle ✓ has been tuned closely to a magic angle. For this reason in experiments with
TBG the focus lies on setting up ✓ as precisely as possible. In order to circumvent
this di�cult task further possibilities are sought to fine tune flat moiré bands. One
approach is to push the idea of graphene layer stacking further. Then the next emer-
gent multi-layer systems are trilayer graphene and twisted double bilayer graphene
(TDBG). The latter one is composed of two AB-stacked graphene bilayers, which
are then rotated by an angle ✓, leading again to a moiré superlattice. This system
seems to be particularly interesting, because (in contrast to TBG) the bandwidth of
the moiré bands can be controlled via an external electric displacement field D. It
has been shown that under certain ranges of this applied field a correlated insulator
phase can be generated, which doesn’t rely on an accurate magic angle between the
layers [38,39].
The displacement field D not only influences the band structure of TDBG, but

also the symmetries of the system. First of all, TDBG has point group D3, which
means that the system, like TBG, is invariant under C3 and C2x rotations. However,
a displacement field breaks the C2x symmetry, lowering the point group to C3. The
symmetry considerations of TBG cannot easily be transferred to TDBG, since TDBG
is not invariant under C2 rotations. Since in TBD the combined symmetry C2T

protects the Dirac cones, it is not surprising that in TDBG those are absent [40].
Nevertheless TDBG systems are an interesting and thriving research topic and though
my work focuses on a minimal TBG system it hopefully will also be generalizeable to
TDBG models.

13

3 Scanning tunneling microscope

This chapter follows the derivations and explanations from Bruus [41]. The basic
principle of a scanning tunneling microscope (STM) is that electrons can tunnel from
the probed material to a tip of a measuring device. This tunneling can happen because
of a small overlap of the wave functions from both materials, which is described by a
tunnel matrix. In order to be able to describe this matrix and thus also the electron
current that flows through the device, the concept of Green’s function plays a key
role.

3.1 Many-body Green’s function

The idea of a many-body Green’s function goes back to the non-interacting Green’s
function, which is also called a propagator as it gives a wavefunction (r, t) known
at time t

0 at a later time t via the equation

 (r, t) =

Z
dr0G(r0t0, rt) (r0, t0), (3.1)

where Green’s function is given in the form

G(rt, r0t0) = �i⇥(t� t
0)hr|e�iH(t�t

0)|r0i. (3.2)

In analogy to this non-interacting propagator, the retarded Green’s function is defined
for the many-body case

G
R(r�t, r0�0

t
0) = �i⇥(t� t

0)h{ �(rt),
†
�0(r0t0)}i, (3.3)

where {..., ...} is the anti-commutator as we are dealing with fermions. The retarded
Green’s function can also be viewed as a propagator since equation (3.3) describes the
amplitude with which a particle, starting in position r0 at time t0, propagates to a new
position r at a later time t, completely analogous to the interpretation of equation
(3.2). The big di↵erence to the non-interacting propagator is that now the whole
many-body Hamiltonian is taken into account and therefore correlations between the
electrons can also be treated properly. The function is called retarded, because only
times t > t

0 are allowed. There are more types of Green’s functions treating di↵erent
cases for the allowed time evolution. The Green’s function in real space GR(r�t, r0�0

t
0)

14

3 Scanning tunneling microscope

can be connected to every other basis |⌫i via

G
R(r�t, r0�0

t
0) =

X

⌫,⌫0

 ⌫(�r)G
R(⌫�t, ⌫ 0�0

t
0) ⇤

⌫0(�
0r0), with (3.4)

G
R(⌫�t, ⌫ 0�0

t
0) = �i⇥(t� t

0)h{a⌫�(t), a†⌫0�0(t0)}i. (3.5)

In a translational invariant system we are further allowed to write GR(r, r0) as GR(r�
r0) and connect it to the Green’s functionG

R(k�t,k0
�
0
t
0) = �i⇥(t�t

0)h{ak�(t), a†k0�0(t0)}i
in k-space through the relation

G
R(r� r0, �t, �0

t
0) =

1

V

X

k

e
ik(r�r0)

G
R(k, �t, �0

t
0), (3.6)

where we used the fact that G(k,k0) = �k,k0G(k). In the case of free electrons with
a corresponding Hamiltonian H =

P
k�
⇠k�c

†
k�ck� the retarded Green’s function takes

the form
G

R

0 (k�, t� t
0) = �i⇥(t� t

0)e�i⇠k(t�t
0)
, (3.7)

where Green’s function is diagonal in k and �. A Fourier transform of equation (3.7)
gives

G
R

0 (k�,!) = lim
⌘!0+

1

! � ⇠k + i⌘
, (3.8)

which is further used for the definition of the spectral function

A0(k�,!) = �2=[GR

0 (k�,!)] = 2⇡�(! � ⇠k). (3.9)

As the spectral function is simply a delta function in the case of non-interacting
electrons, an energy excitation ! can only occur if the added electron is in state
⇠k = !. In general the spectral function does not simply correspond to a delta
function and is given through

A(⌫,!) = �2=[GR(⌫,!)]. (3.10)

A very important relation is, that the occupation of an electron state is given as

n⌫ = hc†
⌫
c⌫i =

Z 1

�1

d!

2⇡
A(⌫,!)nF (!), (3.11)

where nF is the Fermi-Dirac distribution. This equation makes it clear that the
spectral function allows an interpretation similar to that of the density of states and
that conclusions about the DOS are possible by measuring the spectral function.

15

3 Scanning tunneling microscope

Figure 3.1: A STM tip scanning across TBG measuring the tunneling current [42].

3.2 STM

The set-up of an STM experiment consists of a material to be examined and a con-
ductive tip that is moved across the material (see figure 3.1). Electrons can tunnel
between the two materials because the wave functions overlap if the distance is small
enough. This tunneling current can be measured via contacts attached to the two ma-
terials and gives information about the topography of the scanned system [42]. This
behavior is also made visible in the Hamiltonian of both materials, which receives an
additional term

H12 =
X

⌫µ

⇣
T⌫µc

†
1,⌫c2,µ + T

⇤
⌫µ
c
†
2,µc1,⌫

⌘
, (3.12)

where c1,⌫ and c2,µ are electron operators corresponding to the Hamiltonians of the
two systems H1 and H2. The tunneling matrix is given through

T⌫µ =

Z
dr ⇤

⌫
(r)H(r) µ(r), (3.13)

where H(r) is the one-particle Hamiltonian and j are electron wavefunctions for
both systems given in first quantization language. A current flowing from system 1
to system 2 is defined by the changing of particle numbers and hence can be written
in a mathematical form most prominent from the Heisenberg picture

I =
d

dt
N1 = i[H,N1] = �i

X

⌫µ

⇣
T⌫µc

†
1,⌫c2,µ � T

⇤
⌫µ
c
†
2,µc1,⌫

⌘
. (3.14)

Since the overlap of the wave functions is only very weak and the tunneling decreases
exponentially with distance, the current can be calculated down to the lowest order in
T⌫µ. As can be seen in equation (3.14), only one term for the second order is missing.
After applying linear response theory and doing a Fourier transformation, the current

16

3 Scanning tunneling microscope

can be written as a function of the spectral density as follows

I =

Z 1

�1

d!

2⇡

X

⌫µ

|T⌫µ|2A1(⌫,!)A2(µ,! + eV)[nF (! + eV)� nF (!)], (3.15)

where the last factor shows a dependence on the di↵erence of Fermi-Dirac distributions
and V = V2 � V1 is a di↵erence of applied voltages to the respective systems.
An STM experiment to measure the local density of states is done by an mea-

surement of the di↵erential conductance dI/dV . A nearly constant DOS in the tip
material leads to a simplification of the sum over µ in equation (3.15), namely

X

µ

|T⌫µ|2A2(µ,! + eV) ⇡ const. (3.16)

Hence equation (3.15) can be written as

dI

dV
/
Z 1

�1
d!

✓
@nF (! + eV)

@!

◆X

⌫

A1(⌫,!), (3.17)

which can be further simplified by noticing that the derivative of the Fermi-Dirac
distribution approaches a delta function at low temperatures:

dI

dV
/
X

⌫

A(⌫,�eV) (3.18)

This is a straightforward equation to experimentally measure the spectral function

Figure 3.2: A di↵erence in the chemical potential µi induced by an applied voltage results in
a current and a di↵erential conductance, which successfully measures the spectral function
of the probed material A(⌫, ✏) [41].

and therefore the local density of states by measuring the change of current when
altering the voltage. It also allows to compute artificial STM images by defining a

17

3 Scanning tunneling microscope

proper spectral function. Figure 3.2 shows the relation between the DOS of the probed
material and the measured di↵erential conductance for a tip with nearly constant
DOS. It can be seen that an applied voltage +V0 shifts the chemical potential µ2 of
the tip thus leading to a current to the probed material. The di↵erential conductance
can then be derived by adding a small voltage �V leading to an adjusted current dI.
Varying the voltage V0 from positive to negative values results in a dI/dV spectrum
resembling the LDOS of the probed material above and below the chemical potential
µ1.

18

4 Machine learning

This chapter is mainly based on the explanations and derivations from Nielsen [43]
and Géron [44]. The overall aim of my work is to develop a computer program
that recognizes and examines patterns in STM images that are not analyzable by
the human eye. As we have seen from the references in the introduction such tasks
are being increasingly solved with machine learning techniques. In general machine
learning means to program a computer in such a way that it can learn from existing
data sets. In the best case, the computer can then apply its gained ”experience” to
new data. A common example are classification tasks, in which the program learns
the connection between some training data and its classifications (labels). When
the data is supplied with the labels, this is called supervised learning, in contrast to
unsupervised learning, where no help of this kind is provided for the program. For the
learning task a model with tuneable parameters is defined and these parameters are
optimized to output the correct labels. The corresponding quantity to minimize in the
optimization process is called loss function. The selection of the model architecture
is key in categorizing machine learning programs. In our case of building an image
classifier, one type of architecture is particularly suitable: artificial neural networks

4.1 Artifical neural networks

The very first artificial neural network (ANN) was invented back in the 1940s in an
attempt to explain the neural processes in animal brains [45]. Since then a variety of
architectures have been proposed. They all share the common idea that just like the
logical building blocks of our brain, which are called neurons, artificial neurons can be
build up to form huge networks on their own solving increasingly di�cult tasks. The
simplest type of artificial neuron is a threshold logic unit (TLU). An example can be
seen in figure 4.1 (a). Such a neuron processes an input array x through three steps.
First it gives a weight wj to every single input xj and sums them up z = x ·w. Next it
applies a so-called activation function and finally it returns the result. A simple choice
for an activation function is a step function, then the output can only take the values
0/1 leading to a binary classifier. Training this kind of classifier would mean to find
the suitable weights wj under which the TLU outputs the correct classification (which
is either 0 or 1) for various inputs. Usually a trainable bias neuron is also added to the
summation z = x ·w + b, increasing the tunability of the output. A single TLU can
only perform very simple logical operations and even a whole layer of TLUs, which
is called a perceptron, quickly reaches its limitations. However if several perceptron

19

4 Machine learning

Figure 4.1: Figure (a) shows the functioning of a single threshold logic unit (TLU) [44].
Figure (b) shows the alignment and stacking of TLUs leading to a multi layer perceptron
(MLP) [43].

layers are connected one after the other the resulting deep neural network (DNN) is
capable of solving highly complex problems. In figure 4.1 (b) an example architecture
for such a multilayer perceptron (MLP) is shown. One sees that the neurons in the
first hidden layer are connected to all the input neurons. In the second hidden layer,
in turn, all neurons are connected to all neurons in the previous layer. So the output
from one neuron is used as input for all neurons in the next layer. In this way, any
number of layers can be lined up one after the other, leading to networks which can
accomplish increasingly subtle tasks. As all neurons are connected to the ones in the
previous layer one often speaks of dense layers.

Figure 4.2: Comparison of possible activation functions for an artificial neuron.

However, in order for a DNN to solve complex problems, the weights and biases have
to be trained with the help of training data. A desired behavior for the weight updates
would be that small changes in the output can be triggered by small changes of the
weights. This cannot be achieved with a simple step function, since here the values
can jump back and forth abruptly between 0 and 1. For this reason, various activation
functions were introduced, of which the Rectified Linear Unit function (ReLU)

ReLU(z) = max(0, z) (4.1)

20

4 Machine learning

and the sigmoid function

�(z) =
1

1 + e�z
(4.2)

have proven their worth today. As can be seen in figure 4.2 the sigmoid function
approaches the step function for very large and small values. In the middle range,
however, it is smooth, which leads to a continuously changing output when the weights
are tweaked. The sigmoid function is often used at the output layer for classification
tasks. In this way, the output value can be interpreted as a probability of belonging
to a class. The ReLU is the standard function for the hidden layers, as it has proven
its usefulness in practical use. In order to understand how the activation function
works on the neurons in the various layers, it is advisable to introduce a notation for
these kind calculations. The notation in the following equations is based on Ref. [43].
The activation of a neuron j in layer l can be linked to the activation of a neuron in
layer (l � 1) by the equation

a
l

j
= f

X

k

w
l

jk
a
l�1
k

+ b
l

j

!
= f

�
z
l

j

�
, (4.3)

where k runs over the neurons in layer (l � 1) and w
l

jk
is the weight between the

neuron j in layer l and the neuron k in layer (l�1). This equation can also be written
in matrix form a

l = f
�
w

l
a
l�1 + b

l
�
= f

�
z
l
�
where the activation function is applied

elementwise.

4.2 How training works

4.2.1 Gradient Descent

With equation (4.3) we now have a mathematical form that describes the output of
each neuron in each layer. The question now is how the weights wl

jk
can be trained in

each layer so that the network finally outputs the correct output vector aL. The basic
method to achieve this is Gradient Descent (GD). The idea of GD is to minimize a
cost function C. This is done by calculating the gradient of the cost function rC

with regard to its parameters, in this case the weights and biases. Since the gradient
always points in the direction of greatest slope, a minimum of the cost function can
be achieved by pushing the parameters in the ”opposite” direction. The size of this
adjustment is determined with a learning rate ⌘. Calculating and substracting the
gradient from the parameters over and over again thus means that a minimum of
the cost function can be found over time. The resulting algorithm for updating the
weights and biases reads

w
l
0

jk
= w

l

jk
� ⌘

@C

@w
l

jk

, b
l
0

j
= b

l

j
� ⌘

@C

@b
l

j

. (4.4)

21

4 Machine learning

A basic choice for the cost function C is the mean squared error (MSE)

CMSE =
1

2n

X

x

k y(x)� a
L(x) k2, (4.5)

where aL(x) is the final layer output of a training sample x, y(x) is the true output of
that sample and the sum runs over all training samples n. As this cost function is an
average over cost functions applied to a single sample C = 1/n

P
x
Cx, the gradients

in equation (4.3) have to be calculated for every single training sample. However this
time consuming task can be improved by dividing the training data into mini-batches.
The gradients are then calculated and averaged for only a small number of randomly
selected samples. After the weights and biases are adjusted, a new mini-batch is
selected. This continues until all training samples have been processed. One run
through the training dataset is called an epoch.

4.2.2 Backpropagation

Backpropagation is an algorithm to e�ciently calculate the gradients from equation
(4.4). As its name suggests, the starting point for calculation lies at the output layer
of the network. The main idea behind this method is to calculate errors �l

j
for neurons

j in layers l during one run through the model (the forward pass) and to relate those
errors to the gradients. An error can be defined by

�
l

j
=
@C

@z
l

j

, (4.6)

then the total cost of the network would be changed by �l
j
�z

l

j
if the weighted sum

of a single neuron gets tweaked by f
�
z
l

j
+�z

l

j

�
. This implies that the overall cost

can’t be minimized anymore if �l
j
is already very small, justifying the definition of the

error. With the help of this error the steps of the backpropagation algorithm read as
follows:

�
L = raC � f

0(zL) (4.7)

�
l = ((wl+1)T �l+1)� f

0(zl) (4.8)

@C

@w
l

jk

= a
l�1
k
�
l

j
,
@C

@b
l

j

= �
l

j
(4.9)

After a full forward pass, during all activations al have been computed, the algorithm
starts at caclulating the error of the output layer �L. This error can then be used to
calculate the error from the previous layer, �L�1. Applying equation (4.8) over and
over again will determine all errors through all layers, which are then used to calculate
every gradient fo the cost function in the network via equation (4.9).

22

4 Machine learning

4.2.3 Better optimizers

As we have seen, many steps are necessary for a training epoch in order to adjust the
parameters well. Training can therefore take a very long time, especially in very deep
networks with millions of parameters. On the one hand, this can result in various
problems that seem to occur in very deep networks (e.g. unstable gradients), on the
other hand, the gradient descent algorithm also has potential for improvement. The
following equations and explanations in this section rely mainly on Ref. [44].

Momentum optimization

A first way to improve the GD algorithm is to take into account the old gradient
from the previous calculation step when updating the new parameters. Such an algo-
rithm can be derived from the analogy of a ball rolling towards the global minimum.
With normal gradient descent the ball will always have the same velocity, but with
momentum optimization the ball will experience an acceleration. This allows the al-
gorithm to converge faster [46,47]. The algorithm for the weights can be represented
mathematically as follows

m
0 = �m+ ⌘rwC, (4.10)

w
0 = w �m, (4.11)

where we dropped the indices for the layer and exact position of the neuron. Here
m corresponds to the so-called momentum and � is a new hyperparameter, which is
called friction in analogy to the physical image of an accelerating ball. A common
value for this hyperparameter is � = 0.9.

Adaptive Gradient Algorithm (AdaGrad)

Another way to further consider the gradients calculated in the previous step is to use
them to adjust the learning rate ⌘. For this, the following algorithm for the weights
of a neuron was proposed by Duchi [48]

g
0 = g +rwC ⌦rwC, (4.12)

w
0 = w � ⌘p

diag(g) + ✏
·rwC, (4.13)

where ✏ is a very small constant to avoid division by zero and g
0 is the outer product

matrix of the summation over the square roots of all previous gradients. This means
that the learning rate will be downscaled if the cost function is very steep. This
behavior should lead to updates that approach the global minimum more directly.

RMSProp

An often encountered problem with AdaGrad is that the algorithm scales down the
learning rate too much and that the learning never converges. The RMSProp algo-

23

4 Machine learning

rithm tries to fix this by limiting the summation from equation (4.12) to the most
recent gradients via an exponential decay

g
0 = �g + (1� �)rwC ⌦rwC, (4.14)

where the hyperparameter � is usually set to 0.9.

Adaptive Moment Estimation (Adam)

The standard optimizer for machine learning nowadays is Adam, which combines the
advantages of momentum optimization and RMSProp [49]. The algorithm is given as

m
0 = �1m+ (1� �1)rwC, (4.15)

g
0 = �2g + (1� �2)rwC ⌦rwC, (4.16)

m̂ =
m

0

1� �
t

1

, (4.17)

ĝ =
g
0

1� �
t

2

, (4.18)

w
0 = w � ⌘p

ĝ + ✏
· m̂, (4.19)

where t corresponds to the current number of iteration when starting with iteration
1. The special update rule for m̂ and ĝ comes from the fact that both m and g are
biased towards their initialization value 0.

4.3 Convolutional neural networks

An approach to feed images into a network with the knowledge of dense layers would
be to assign a neuron to each pixel with the corresponding intensity and to convert
the two-dimensional image of size (m⇥n) into a one-dimensional input vector of size
(m · n). However, this reduction in dimensionality means that information about the
spatial structure of the image is lost. Pixels that are far apart are treated exactly
the same as those that are close together. A network architecture that can include
the spatial structure in the learning process is called a convolutional neural network
(CNN).
The main idea is that each pixel is assigned a neuron, but the input layer retains

the two-dimensional structure of the image. The neurons from the first hidden layer
are connected to the input neurons via a receptive field. Each neuron in the hidden
layer has its own receptive field which is shifted across the entire imput image. The
length per shift is called the stride and is a hyperparameter of the network. The size
of the receptive field is called the kernel size and has often an extent of 5⇥ 5 or 3⇥ 3.
An example for a kernel size of 5⇥5 is shown in figure 4.3. As can be seen in the figure
the hidden layer has fewer neurons than the input layer. Sometimes it is preferred

24

4 Machine learning

Figure 4.3: Main idea behind a convolutional layer [43].

that the number of neurons remains constant. For this purpose, additional neurons
with the value 0 are inserted around the neurons of the input image. The method is
called zero padding.
The reason for the high e�ciency and speed of a CNN is that the weights and biases

are the same for all neurons in the convolutional layer. Because of this, a single layer
extracts exactly one feature from an image. In order to recognize several features of
an image, further convolutional layers are stacked, leading to several feature maps.
The output of a neuron in layer l at position (j, k) is defined as

a
l = f

b+

sX

l=0

pX

m=0

wl,ma
l�1
j+l,k+m

!
, (4.20)

where the sums run over the weights and neurons of a receptive field in layer (l � 1)
with kernel size (s⇥ p). Equation (4.20) can also be written as al = f

�
b+ w ⇤ al�1

�
,

where ⇤ is the convolutional operator. Because of this operation, a CNN has far fewer
parameters than a simple dense layer. The number of parameters can be reduced
even further by inserting a pooling layer after a convolutional layer. A pooling layer
has the same form as a convolutional layer, with a receptive field connected to the
previous layer. However, the interest here is not in learning weights, rather in reducing
information. A max-pooling layer for example simply takes the maximum value from
the receptive field. As a result, information about the exact position of the feature is
neglected. An example for a max-pooling layer with kernel size 2 ⇥ 2 can be seen in
figure 4.4.
A complete CNN consists not only of convolutional and pooling layers, it com-

bines these new concepts with the previous ideas of a DNN. Usually, after the last
pooling layer, the neurons from di↵erent feature maps are brought into a single one-
dimensional vector, this is done by a so called flattening layer. This layer is then used
as an input layer for a dense layer. Based on this, di↵erent DNN models can then be
used again to optimize the output.

25

4 Machine learning

Figure 4.4: Main idea behind a pooling layer [43].

4.4 Tensorflow

As we have seen, there are many things to consider when constructing a DNN. From
the most basic elements like multidimensional arrays to the implementation of opti-
mizers and backpropagation, there is a lot of programming work involved. To sim-
plify the construction of deep networks, François Chollet published the high-level API
Keras [50]. Keras focuses on building models via a simple use of layers, but does not
provide any low-level mechanics itself and therefore needs a backend program. Mean-
while only Tensorflow is accepted as backend and Tensorflow even comes with its
own Keras implementation tf.keras. The core of Tensorflow is similar to NumPy, but
instead of arrays the mathematical operations are executed on tf.Tensor (immutable)
or tf.Variable (mutable) objects. A simple 2 ⇥ 2 array to store and update model
weights can be defined with these code lines:

import t en so r f l ow as t f

w = t f . Var iab le ([[1 . , 2 .] ,
[3 . , 4 .]])

Tensorflow not only supports standard mathematical functions, but also o↵ers a va-
riety of functions that are useful for machine learning applications. These operations
can easily be o✏oaded to GPUs and TPUs. However, the biggest advantage of Ten-
sorflow is that, compared to NumPy, it can automatically calculate the gradient of
any di↵erentiable tensor. When calculating the gradient using tf.GradientTape, Ten-
sorflow even records all operations on trainable parameters (tf.Variables) and can
therefore use them for the backward pass in the backpropagation algorithm. Ten-
sorflow thus o↵ers all the necessary low-level functions so that the high-level Keras
components can function properly. An example for a CNN model I used in this thesis
built with Keras is:

from t en so r f l ow import keras

26

4 Machine learning

model = keras . models . S equent i a l ([
ke ras . l a y e r s . InputLayer (input shape =(65 ,65 ,1)) ,
ke ras . l a y e r s . Conv2D(f i l t e r s =16,

k e r n e l s i z e =(3 ,3) ,
s t r i d e s =(1 ,1) ,
a c t i v a t i o n=’ r e l u ’ ,
padding=”va l i d ”) ,

keras . l a y e r s .MaxPool2D(p o o l s i z e =(2 ,2) ,
s t r i d e s =(2 ,2)) ,

ke ras . l a y e r s . Conv2D(f i l t e r s =32,
k e r n e l s i z e =(3 ,3) ,
s t r i d e s =(1 ,1) ,
a c t i v a t i o n=’ r e l u ’ ,
padding=”va l i d ”) ,

keras . l a y e r s .MaxPool2D(p o o l s i z e =(2 ,2) ,
s t r i d e s =(2 ,2)) ,

ke ras . l a y e r s . F lat ten () ,
ke ras . l a y e r s . Dense (64 , a c t i v a t i o n=’ r e l u ’) ,
ke ras . l a y e r s . Dense (32 , a c t i v a t i o n=’ r e l u ’) ,
ke ras . l a y e r s . Dense (4 , a c t i v a t i o n=’ l i n e a r ’)
])

This model takes images of size 65 ⇥ 65 and feeds them through two convolutional
and max-pooling layers, then through two dense layers and an output layer with 4
neurons. The loss function and optimizer are then defined via

model . compile (opt imize r=keras . op t im i z e r s .Adam() ,
l o s s=t f . ke ras . l o s s e s . MeanSquaredError ())

and the training process can be started with:

model . f i t (t r a in ing da ta , va l i da t i on da ta , epochs)

The standard values for Adam optimizer in tf.keras are ⌘ = 0.001, �1 = 0.9, �2 = 0.999
and ✏ = 1e � 07. It becomes clear that powerful neural networks can be built and
trained with just a few lines of code. This makes Tensorflow very accessible, however,
by using the the low-level API also very complex models and training algorithms can
be implemented [51,52].

27

5 Generating the STM images

5.1 A minimal tight-bind model for TBG

The first step of this thesis is to find a simple model for which artificial STM images can
be generated easily and quickly. Since this question is very general, we decided on a
model of TBG. The following toy model of TBG o↵ers the possibility of implementing
a four-band model and thus the key features of the system rather quickly. This tight-
binding model was introduced by my supervisor and a justification for the basic ideas
was attempted in the theory part. One of the key features of the resulting model are
the valley preserving symmetries, which are listed in the following:

1. C3 rotation perpendicular to the plane.

2. C2x : (x, y) ! (x,�y) two-fold in-plane rotation along the x-axis exchanging
the two layers.

3. The product of time-reversal and two-fold rotation perpendicular to the plane
of the system: C2T .

The transformations in momentum space can be attained by introducing the Pauli
matrices ⇢ and � in sublattice and orbital space, respectively. The electron operators
in real space on each site i of the honeycomb lattice for each orbital l = 1, 2 are then
given as ci,l. This corresponds to momentum space operator of the form ck,l,⇢ with
⇢ = 1, 2 denoting the sublattice. A convenient assumption would be that the orbitals
can be chosen to transform trivially under C3 rotations. This means that there is no
change of sublattice and orbital and that ⇢z/2 is involved in the transformation as a
generator of rotations around the z-axis:

C3ckC
†
3 = ⇢0�0e

�⇢za1k/2cC3k (5.1)

C2x also acts trivially on the sublattice space and the action on orbital space in case
of Wannier obstruction has already been shown in equation (2.24) leading to the
transformation

C2xckC
†
2x = ⇢0�xcC2xk. (5.2)

It has been shown with equation (2.22) that C2T will transform one orbital into one
another. As the action of this symmetry will also exhange sublattices the transfor-
mation can be written as

C2TckC2T
† = ⇢x�xck. (5.3)

28

5 Generating the STM images

The action of C2x and C2T on the two Wannier orbitals can be seen in figure 5.1
(a). The form of the orbitals (blue(up)/red(down)) corresponds to Wannier functions
underlying the D3 point group

W± = ±c1y(y
2 � 3x2)� c2(x

2 + y
2)2, (5.4)

where c1,2 are constants to fine tune the form of the orbitals.

(a)

(b)

Figure 5.1: (a) Non-trivial action on the Wannier orbitals of the emergent single-valley
symmetries. (b) Resulting hopping terms on the two-orbital honeycomb lattice in order to
break additional symmetries. These figures were provided by my supervisor.

Since the model should be as simple as possible and should only cover symmetries
from a single valley, we now want to try to break all possible symmetries which are
thinkable on a honeycomb lattice. This is done by an increasing number of hopping
terms leading to a Haldane Hamiltonian:

1. The nearest neighbor term t1 can be chosen to be the usual form of monolayer
graphene leading to the spectrum of equation (2.8).

2. The next-nearest neighbor term t2e
i�z↵2 can be complex in general and will break

time-reversal symmetry. It has to have opposite flux for the di↵erent orbitals in
order to attain a vanishing Chern number in the fully coupled model.

3. The third-nearest neighbor term t3e
i�0↵3 will break inversion symmetry. So far

we have introduced a Haldane-like model for one of the orbitals with a non-zero
Chern number. A model with the same band structure and opposite Chern
number for the other orbital can then be defined via a C2T -related copy of this
Haldane, which means to send ↵2 ! �↵2.

4. By applying an onsite-coupling w1

P
k c

†
k⇢0�xck Dirac cones will be induced on

the coupled four-band model.

29

5 Generating the STM images

The resulting 2⇥ 2 Haldane Hamiltonian for one of the orbitals has the form

hk = t1 (�x + �x cos (ka1)� �y sin (ka1) + �x cos (ka2)� �y sin (ka2))

+ t2 (cos(ka2 � ↵2) + cos(k(a1 � a2)� ↵2) + cos(ka1 + ↵2))

✓
1 0
0 0

◆

+ t2 (cos(ka2 + ↵2) + cos(k(a1 � a2) + ↵2) + cos(ka1 � ↵2))

✓
0 0
0 1

◆

+ t3 (�x cos (k(a2 � a1) + ↵3) + �y sin (k(a2 � a1) + ↵3))

+ t3 (�x cos (k(�a2 � a1) + ↵3) + �y sin (k(�a2 � a1) + ↵3))

+ t3 (�x cos (k(a1 � a2) + ↵3) + �y sin (k(a1 � a2) + ↵3))

(5.5)

where the lattice vectors ai are defined according to monolayer graphene from equation
(2.2), but with a0 = 1. By taking a copy of this Hamiltonian for the second orbital,
sending ↵2 ! �↵2 and coupling those two models one gets a 4⇥ 4 Hamiltonian with
four energy bands. The resulting band structure for the one-orbital Haldane and the
two-orbital one are shown in figure 5.2.

(a) (b)

Figure 5.2: Band structure along the high-symmetry points for the one-orbital (a) and two-
orbital (b) Haldane model.

5.2 Nematic order parameter

The nematic order parameter � = (�1,�2)T couples to the electrons in the general
form

�hk = � · gk = �1g1,k + �2g2,k, (5.6)

30

5 Generating the STM images

where the matrix-valued gj,k should be constrained by the irreducible representations
of D3 while being invariant under C2T :

C3 : � ! R3�, R3 :=
1

2

✓
�1 �

p
3p

3 �1

◆
(5.7)

C2x : � ! R2x�, R2x :=

✓
1 0
0 �1

◆
(5.8)

C2T : � ! � (5.9)

To find these gj,k, one can define the pair of functions f1,k, f2,k which are smooth and
periodic on the Brillouin zone, real-valued, and obey

fR3k = R3fk, fR2xk = R2xfk, fk := (f1,k, f2,k)
T
. (5.10)

Focusing on the lowest lattice harmonics of this infinite-dimensional function space [40]

fk =
8

3

cos(ky)� cos(

p
3kx
2

) cos(
ky

2
),
p
3 sin(

p
3kx
2

) sin(
ky

2
)

!T

, (5.11)

and using equations (5.1)-(5.3) one can then write

gk = ↵0⇢0�0

✓
f1,k

f2,k

◆
+ ↵1⇢0�x

✓
f1,k

f2,k

◆
+ ↵2⇢0�y

✓
�f2,k

f1,k

◆
+ ↵3⇢z�z

✓
�f2,k

f1,k

◆
, (5.12)

where ↵j are some real-value expansion coe�cients. For the orientations of � =
(cos(2✓), sin(2✓))T there are only two possible solutions like shown in equations (2.31)-
(2.32): ✓ = 0 (and the symmetry-related ✓ = ⇡/3, 2⇡/3) and ✓ = ⇡/6 (and the
symmetry-related ✓ = ⇡/2, 5⇡/6).

5.3 Computing the STM response

In order to compute the di↵erential conductance in real space dI/dV (x) it is necessary
to compute Green’s function as can be seen from equations (3.10) and (3.18). In our
case of a 4⇥4 Hamiltonian with two Wannier orbitals per lattice site Green’s function
takes the form

G
R

↵�
(R�R0

,!) =
1

V

X

k

e
ik(R�R0)

G
R(k,!), (5.13)

G
R

↵�
(k,!) = lim

⌘!0+

✓
1

! � hk + i⌘

◆

↵�

, (5.14)

where compared to equations (3.6) and (3.8) we ignored the spin and we are on the
translation invariant honeycomb lattice with Bravais lattice vectors R(0). We can then

31

5 Generating the STM images

use equation (3.4) to change to a real space basis |xi

dI

dV
(x,!) / =

"
X

j,k,↵,�

WRj↵(x)G
R

↵�
(Rj �Rk,! = �eV)W ⇤

Rk�
(x)

#
, (5.15)

where WRj↵(x) are Wannier functions from equation (5.4). The indices ↵ and �

correspond to four di↵erent realizations of the Wannier functions, as each of the two
orbitals W± can be placed on each of the two sublattices. The index Rj corresponds
to the fact that the Wannier function is computed in several UCs, therefore leading
to a function WRj↵(x) = W↵(x�Rj ��) with � corresponding to the atom basis and
therefore fixing the sublattice.
With equations (5.14)-(5.15) and the previously defined 4⇥ 4 Hamiltonian we have

all the ingredients to generate some artificial STM images for a four-band TBG model.
Figure 5.3 shows some examples for various nematic director values at an energie of
! = �1 eV, ⌘ = 0.01, a total of k = 2500 vectors out of the first BZ and nematic
parameters ↵0 = 0.06, ↵1 = 0.04, ↵2 = 0.07 and ↵3 = 0.05. The bond strengthening
behavior of the nematic phase can be clearly seen and distinguishes the di↵erent
director values. The energy was chosen to lie within the energy bands from figure
5.2 (b). The parameter ⌘ and the number of k-vectors were chosen in a way that the
images can be generated quickly but also don’t deviate too much from the optimal
case of k ! 1. The nematic parameters were sampled from the interval (0.01, 0.1).
The choice on the lower boundary comes from the fact that the nematic order can
already be seen well at a value of ↵j = 0.01.

32

5 Generating the STM images

(a) ✓ = 0 (b) ✓ = ⇡/3

(c) ✓ = 2⇡/3 (d) ✓ = ⇡/6

(e) ✓ = ⇡/2 (f) ✓ = 5⇡/2

Figure 5.3: STM plot at an energie of ! = �1 eV for various values of the nematic director
✓. The blue and red circles correspond to the two sublattices A/B. The green cross marks
a Bravais lattice point and the arrows are the basis vectors pointing to the two atoms.

33

6 ML results

6.1 Orientation of nematic director

6.1.1 Discrete director values

To start and test whether a neural network is capable of recognizing meaningful struc-
tures in the artificially generated STM images, a simple case with a simple network
should first be examined. Before examining the role of the nematic parameters ↵j,
we first want to examine the nematic director ✓. Although the director can take con-
tinuous values when neglecting crystal anisotropies, the simplest case corresponds to
the three discrete solutions ✓ = 0, ⇡/3, 2⇡/3 (or ✓ = ⇡/6, ⇡/2, 5⇡/6). So the first task
for an ANN is to predict the correct class for ✓. Since this task looks relatively simple
at first glance and is even possible for human eyes in the most cases, I chose a simple
structure of three layers for the network:

1. An input layer, which consists of 4,225 neurons due to an image size of 65⇥ 65.

2. A hidden layer with 512 neurons and ReLU activation function.

3. An output layer with 3 sigmoid neurons.

The output value of the sigmoid neurons is interpreted as a probability value of
belonging to one of the three classes (directions). In total there are 2,165,251 trainable
parameters in the network. Adam is chosen as an optimizer and the cost function to
be optimized is the MSE from equation (4.5). The optimizer and cost function will
remain the same for the rest of all machine learning tasks. A total of 39,500 sample
images were generated, of which 33,000 serve as training data, 6,000 as validation data
and 500 as test data. The images were sampled at random energies between �4 eV
and 4 eV and with random ↵j 2 (0.01, 0.1) configurations. The results of the trained
network are very promising for more sophisticated tasks. Out of the 500 images in the
test dataset, only 7 were incorrectly classified. These are images on which no clear
structure can be seen even for the human eye. All other images have been classified
correctly, two examples can be seen in figure 6.1.

6.1.2 Continous director values

In general, the values of the director ✓ need not be discrete. A more realistic choice
would therefore be ✓ 2 (0, ⇡). In this case, the human eye can no longer easily extract

34

6 ML results

Figure 6.1: Example of two correctly classified STM images in the case of discrete director
values. Class 0 corresponds to ✓ = 0, class 1 to ✓ = ⇡/3.

the exact value of the nematic director. This increasing complexity of the problem
should also be taken into account when selecting the neural network:

1. A convolutional layer with 16 filters, a kernel size of 3 ⇥ 3, a stride of one and
a ReLU activation function. As no padding was used the layer dimensions are
(63, 63, 16).

2. A max-pooling layer with size 2 ⇥ 2 and stride 2 which halves the size of the
image.

3. A convolutional layer with 32 filters, a kernel size of 3 ⇥ 3, a stride of one and
a ReLU activation function. As no padding was used the layer dimensions are
(29, 29, 32).

4. A max-pooling layer with size 2⇥ 2 and stride 2.

5. A layer that flattens the pooling layer of size (14, 14, 32) resulting in 6,272 input
neurons for the following dense layer.

6. A dense layer with 64 neurons and ReLU activation function.

7. A dense layer with 32 neurons and ReLU activation function.

8. An output layer with 1 neuron and linear activation function.

This CNN has a total of 408,385 parameters. Here one can see one of the main
advantages of CNNs in comparison to simple DNNs with solely dense layers: Although
the network is very complex and has many layers, the number of parameters is smaller
than in the network with only one dense layer from the previous task. Here a total of
62,000 sample images were generated, of which 39,500 serve as training data, 10,000

35

6 ML results

Figure 6.2: Figure (a) shows the course of the loss function (MSE) for the training and
validation set over the number of trained epochs. Already from 20 epochs the error is
already very small and needs about 100 more epochs to converge. Figure (b) shows the
true values of the nematic director plotted against the predictions from the network. The
coloring of the datapoints simply corresponds to the error |✓pred�✓true| of every single point.

as validation data and 2,500 as test data. The images were sampled at a fixed energy
of �1 eV and with random ↵j 2 (0.01, 0.1) configurations. In figure 6.2 (a) one can
see the evolution of the MSE over the training epochs for the training data set and
the validation set. It can be seen that the error of the training set reaches a very
small value after just a few epochs, whereas the error of the validation set is still
a few epochs behind. In the end, however, both sets converge in the similar error
range. It should be noted that for all machnine learning training tasks I used an early
stopping callback with a patience of 50 epochs. This means that the training stops
as soon as the loss in the validation dataset does not change for 50 epochs. For this
reason, the point of convergence is already at about 60 epochs in this case. Since an
epoch lasts only a few seconds due to the small number of parameters, the network
trains extremely quickly. Since these learning curves plots always look very similar
for successful trainings, even on di↵erent tasks, I’ll leave this one as representative
example, but I’ll refrain from such plots for the next results. In figure 6.2 (b) one can
see that the network does not have to be improved further. The predictions of the
nematic director ✓ on the test dataset for values other than 0 and ⇡ are already very
close to the true values with which the STM images were generated. Since the values
of 0 and ⇡ correspond to the same point on the unit circle, it is not surprising that
the network reaches its limitations here.
The function keras.layers.GaussianNoise was used to check the reliability of the

predictions. It lays a Gaussian noise over the training and validation data right at the
beginning of the training process. In our case it is used as a fast method to check if
precise statements can still be made about the test data set, which is left exactly the
same without Gaussian noise. Here, too, it could be shown that the network delivers
equally good results. The result is shown in figure 6.3.

36

6 ML results

Figure 6.3: The true values of the continous nematic director plotted against the predictions
from the network. The coloring of the datapoints simply corresponds to the error of every
single point.

6.2 Form of nematicity

6.2.1 All nematic parameters

Next, attention should now be drawn to the form of nematicity. It should be inves-
tigated whether it is possible for a CNN to extract the nematic parameters ↵j from
the STM images. Exactly the same network should be used as for the case of the
continuous director. The only di↵erence is that there are now four output neurons,
slightly increasing the total parameter count to 408,484. A total of 20,000 sample im-
ages were generated, of which 15,700 serve as training data, 3,000 as validation data
and 1,300 as test data. The images were sampled at a fixed energy of �1 eV with
a fixed nematic director ✓ = 5⇡/6 and with random ↵j 2 (0.01, 0.1) configurations.
The results for the predictions on the test dataset are shown in figure 6.4. As can
be clearly seen, the network does not succeed in making satisfactory predictions for
any of the ↵j over the entire parameter space. Especially for ↵3 there seems to be
no learning process at all. Furthermore, attempts were made to improve the results
with deeper networks and a far higher number of filters and neurons in the dense
layers. In addition, common machine learning methods such as batch normalization
and dropout layers were used. However, after a large number of variations of the
network, no fundamental improvement could be detected. Also a change in the im-
age size and an increased number of images could not produce any better results. It
must therefore be assumed that the problem of solving all four parameters at once is
too complex for the currently sampled dataset. There are now two ways to further
test this assumption: First, to reduce the complexity of the problem by solving for
fewer nematic parameters. Secondly, increasing the quality of the training data, for

37

6 ML results

Figure 6.4: The plots show the true values of the nematic parameters plotted against the
predictions from the network. In this case the network was trained with only one energy
channel, leading to unsatisfying predictions. The coloring of the datapoints simply corre-
sponds to the error of every single point.

example by sampling at several energies and thus increasing the number of channels
in the network.

6.2.2 Only two nematic parameters

First, the inverse problem should be simplified by only determining two parameters,
namely ↵0 and ↵3. We again use the same CNN and sample images at the same
conditions like in the previous tasks. A total of 9,600 sample images were generated,
of which 6,100 serve as training data, 2,400 as validation data and 1,100 as test data.
As can be seen in figure 6.5, the predictions for ↵0 are already on the right track,
however, the predictions for ↵3 remain at an unacceptable level. We can therefore say
with good conviction that the problem is in principle too complex to be solved with
samples at just one energy.

6.3 Adding more energy channels

Regardless of the complexity of the neural network, the STM samples provided are
not su�cient to be able to make accurate predictions about the nematic parameters.

38

6 ML results

Figure 6.5: The plots show the true values of the nematic parameters ↵0 and ↵3 plotted
against the predictions from the network. Even a simplification of the problem by reducing
the amount of nematic parameters doesn’t lead to accurate predictions. The coloring of the
datapoints simply corresponds to the error of every single point.

For this reason, the variety of the training samples should be increased by creating
plots not only at an energy �1 eV, but at four di↵erent energies (�2,�1, 1, 2) eV.
Consequently, for a randomly sampled ↵j combination at a director angle of ✓ = 5⇡/6,
there are four di↵erent images. These four di↵erent images can then be transferred
in parallel to Tensorflow for training. First, each energy channel is trained separately
using the same CNN model that we have used before. The only di↵erence is that at
the end of each channel there is no output layer, but the last dense layers of the four
channels are concatenated and fed again through one dense layer with 128 neurons
and ReLU activation, with an output layer again at the end. The network model is
shown in figure 6.6 and has a total amount of 1,650,436 trainable parameters.

6.3.1 Only two nematic parameters

First we want to check whether the training of the simpler variant with only two
parameters can be improved by the additional energy channels. With the 3 additional
energies, we no longer have 9,600 images in total, but per channel. The allocation
key to training, validation and test data has remained the same. The results for the
predictions on the test dataset with the four-channel model can be seen in figure 6.7.
It is clear to see that this CNN has perfectly learned the intricacies of STM images.
The deviation of the predictions from the true values is only extremely minimal, even
the predictions of the parameter ↵3, which was previously a lot more di�cult to learn,
are only just a tiny bit less accurate than their partner’s. With these encouraging
results, we can now extend to the most general case with all four parameters.

6.3.2 All nematic parameters

Like in the case of only two nematic parameters ↵j the total amount of images is
now 4 times larger compared to the single-channel model, which means that 60,000

39

6 ML results

Figure 6.6: The CNN model has been expanded to include three more energy channels,
resulting in additional layers in the network to bring the channels together. This image was
generated with the Keras funtion keras.utils.plot model().

images are now involved in the training and testing process. The loss function has
converged after approximately 300 epochs and the results are shown in figure 6.8.
It can be clearly seen that in the case of four energy channels the network is able
to make meaningful predictions about the test dataset. In contrast to the single
channel problem, predictions involving ↵2 are now the most unreliable. But even this
parameter can be determined much better than any other parameter in the single
channel case. Nevertheless, we don’t want to be completely satisfied here and add
another possibility for a channel.

6.4 Adding LDOS at a single point

We have seen that an increase in energy channels leads to a significant improvement
in the results. The question now remains as to how we can continue to take this into
account. As the pixels of the STM image can be viewed as a local LDOS at fixed
energy, let us now focus on the LDOS at a single STM point at di↵erent energies.
Such an LDOS(!) leads to a simple graph, as shown in figure 6.9 (a). A honeycomb
lattice point, namely a sublattice point A, was selected as the fixed point of this plot.

40

6 ML results

Figure 6.7: This plots shows the true values of the nematic parameters ↵0 and ↵3 plotted
against the predictions from the network. An increase to a total of four energy channels
leads to almost perfect predictions. The coloring of the datapoints simply corresponds to
the error of every single point.

A continuous wavelet transform (CWT) is recommended as a method of converting
such a plot into an image that can be evaluated by a CNN in the same way as the STM
image channels. A CWT produces images, so-called scaleograms, which can easily be
passed on to CNNs. A CWT works in a similar way to a Fourier transform, with the
main di↵erence that accuracy in the time domain is preserved. This method has been
used successfully by Ref. [10]. According to this reference, a CWT of a discrete 1D
dataset (the LDOS at any energy in our case) with size Nf can be written as

f̃(t, s) =
1p
s

Nf�1X

i=0

fi

✓
(i� t)�

s

◆
, (6.1)

{f0, f1, ..., fNf�1} = {f(tmin), f(tmin +�), ..., f, (tmax)} (6.2)

where (t) is the so-called mother wavelet function. This funtion is translated by a
parameter t and scaled by a parameter s. In our case we stick to the choice made by
Ref. [10] and also choose the real Morlet form

 (t) = e
�t

2
/2 cos(5t). (6.3)

However, I did not implement the function myself, but resorted to the PyWavelets
package. With this package, corresponding scaleograms with the size 65 ⇥ 65 were
created for 5,000 alpha configurations in the previous training dataset, for 2,000 al-
pha configurations in the validation dataset and for 1,000 configurations in the test
dataset. As each alpha configuration comes with four energy channels and now also a
scaleogram channel, we have a total of 40,000 images. These images can then be fed
into the same CNN shown in figure 6.6 with an additional scaleogram channel. An
example of a scaleogram that can run through this channel is shown in figure 6.9 (b).
The resulting predictions of the nematic parameters are shown in figure 6.10. As it
turns out, the scaleograms of the LDOS images are the missing piece of the puzzle to

41

6 ML results

Figure 6.8: The plots show the true values of the nematic parameters plotted against the
predictions from the network. Additional energy channels lead to a significant improvement
in the accuracy of the predictions. The coloring of the datapoints simply corresponds to the
error of every single point.

create a nearly perfectly trained network. In order to verify the results even further,
we want to take into account the fact that STM images and scaleograms aren’t in-
herently perfect and are always subject to noise. For this purpose, the LDOS images
are generated again, but this time with a small contribution of Gaussian noise with
a standard deviation of 0.05. Figure 6.11 shows the di↵erence between a LDOS plot
without (left) and the same image with (right) noise. Figure 6.12 shows an STM im-
age with Gaussian noise with the same standard deviation. The training process was
now repeated with the adapted images. The results in figure 6.13 show that even with
Gaussian noise the results are more accurate than for the case with no scaleogram
channel and no noise. We can therefore say that an increase in the energy channels
in combination with an LDOS(!) channel solves our inverse problem with su�cient
accuracy. Since each additional energy channel requires additional e↵ort in the gen-
eration of STM images, especially in the experimental case, it would be interesting to
know whether a single scaleogram channel is already su�cient for precise results.

42

6 ML results

(a)
(b)

Figure 6.9: Figure (a) shows the LDOS(!) at a fixed lattice point. The plot was generated
with ⌘ = 0.1, a fixed configuration of the nematic parameters and director and 100 k-
vectors. The amount of k-vectors was drastically reduced to increase the speed of numerical
calculations. Figure (b) shows the corresponding scaleogram. The transformation was done
with a continous wavelet transform, where the mother wavelet function has the real Morlet
form and the scale was chosen to match the size of the STM images.

6.5 Only LDOS at a single point

In order to illustrate the enormous influence of the LDOS(!), the network is now
trained again, but only with a single scaleogram channel. The scaleograms remain the
same from the previous task, hence with an underlying Gaussian noise. In figure 6.14
it can be clearly seen that the scaleogram channel alone is su�cient to produce good
results for the network. Although the STM images contribute to further improvement,
they are not nearly as important as the scaleograms. Hence when deciding whether
to increase accuracy with additional energy channels or a scaleogram channel, these
results strongly suggest that the LDOS(!) channel takes precedence. With available
resources and time, the accuracy can then be improved by adding energy channels.

43

6 ML results

Figure 6.10: The plots show the true values of the nematic parameters plotted against the
predictions from the network. A combination of energy channels with one LDOS(!) channel
leads to nearly perfect predictions of the network. The coloring of the datapoints simply
corresponds to the error of every single point.

Figure 6.11: LDOS(!) at a fixed lattice point with randomly sampled nematic parameters
and director value without (left) and with Gaussian noise (right) with a standard deviation
of 0.05.

44

6 ML results

Figure 6.12: A STM plot overlayed with Gaussian noise with a standard deviation of 0.05.

Figure 6.13: The plots show the true values of the nematic parameters plotted against the
predictions from the network. Even with a Gaussian noise added to the STM plots and
to the LDOS(!) plots the predictions remain at a high accuracy level. The coloring of the
datapoints simply corresponds to the error of every single point.

45

6 ML results

Figure 6.14: The plots show the true values of the nematic parameters plotted against the
predictions from the network. A single scaleogram channel of the LDOS(!) plots is su�cient
to yield very good predictions, even in the case of underlying Gaussian noise. The coloring
of the datapoints simply corresponds to the error of every single point.

46

7 Conclusion and outlook

We studied the ability of deep neural networks to analyze artificial STM images in
search for the underlying parameters of the e↵ective Hamiltonian. As it turns out the
accuracy of this task depends on the variety of images feeded to the network. A single
channel of STM images generated at one energy isn’t su�cient to solve for the nematic
parameters, however a combination of multiple energy channels with one scaleogram
channel of the LDOS leads to satisfying results of the networks predictions.
We showed this by starting the thesis with a review of the current theory for mono-

layer graphene which in turn created a foundation for the description of twisted bilayer
graphene. The most important properties for TBG were presented and a description
of the symmetries was given, which then allowed us to better understand the model
proposed by my supervisor. On the basis of this model and the connection of an
STM image to the density of states of the material, we were then able to successfully
produce STM images on the computer. These images were then examined by neural
networks in the main part of my work. It could be shown that the task of predict-
ing the nematic director with only discrete values is feasible for a simple ANN with
only one hidden layer. The introduction of convolutional layers then also makes it
possible to determine continuous director values, which is no longer an easy task for
the human eye. This network architecture is then used to determine the values of the
nematic parameters. As it turns out, this is not easily possible for samples at one
energy and alternatives must be considered. One of them is to introduce additional
energy channels and indeed this shows a significant improvement in the results. But
the best idea seems to be to introduce an additional channel that measures the LDOS
at a single lattice point and is fed into the network as a scaleogram via a continuous
wavelet transform. Very accurate results can be produced with this methodology and
the additional energy channels can even be dispensed with.
The next natural step would now be to apply the network architectures and method-

ology we have been working on to experimental STM images, in the best case even
for TDBG. This is not possible with the model we used, since it is a minimal tight-
binding model, but the entire physics can only be mapped with a continuum model.
In the case of a continuum model for TDBG, particular attention must be paid to
the fact that the nematicity can be broken on di↵erent scales. It has been argued in
Ref. [40] that a breaking of the C3 symmetry can happen either on the atomic scale
of the graphene layers, which is called graphene nematicity, or on the scale of the
superlattice, which is called moiré nematicity. These two cases are di↵erentiated in
order to clarify whether the nematic phase is actually tied to the correlated electron
physics in the flat bands or due to an instability of the underlying bilayer graphene.

47

7 Conclusion and outlook

This distinction has important consequences for the formulation of the respective in-
verse problem, since the nematic parameters have to be formulated in di↵erent ways.
As example in the case of intravalley graphene nematicity the number of nematic
parameters increases to 10, while a description for moiré nematicity even gets by with
only 2 parameters. In order to train a network for the form of nematicity or the ne-
matic director under this large number of parameters, it is necessary to set reasonable
values for the other parameters. Hence it will not be easy to find values that are also
suitable for a generalization to experimental data. It must also be clarified which of
the parameters are to be trained at all and for which parameters constant values can
be assumed. Additionally when more parameters are randomly sampled at the image
generation it will be more di�cult for a network to provide meaningful predictions for
all of them. If these issues can be answered and the methodology from this work can
be successfully applied to a continuum model for TDBG, applying a trained model to
experimental data will be the next complicated task. An important point here will
definitely be the selection of the STM image area feeded into the network. Cropping
experimental STM images to match the artificial STM images or vice versa in a way
that the network can properly work is certainly not easy.
There are undoubtedly new challenges with a generalization to TDBG, however it

isn’t bold to expect a positive outcome of it. We have seen that deep neural networks
are able to solve highly complex problems, often in an astonishing good way. I think
there is no reason why the methodology presented here should not overcome even
higher barriers, again leading to positive surprises.

48

Bibliography

[1] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld,
Naftali Tishby, Leslie Vogt-Maranto, and Lenka Zdeborová. Machine learning
and the physical sciences. Rev. Mod. Phys., 91:045002, Dec 2019.

[2] Edwin Bedolla, Luis Carlos Padierna, and Ramón Castañeda-Priego. Machine
learning for condensed matter physics. Journal of Physics: Condensed Matter,
33(5):053001, nov 2020.

[3] Juan Carrasquilla. Machine learning for quantum matter. Advances in Physics:
X, 5(1):1797528, jan 2020.

[4] Ce Wang, Haiwei Li, Zhenqi Hao, Xintong Li, Changwei Zou, Peng Cai, Yayu
Wang, Yi-Zhuang You, and Hui Zhai. Machine learning identification of impuri-
ties in the STM images. Chinese Physics B, 29(11):116805, nov 2020.

[5] Jeremy B. Goetz, Yi Zhang, and Michael Lawler. Detecting nematic order in
STM/STS data with artificial intelligence. SciPost Physics, 8(6), jun 2020.

[6] William Taranto, Samuel Lederer, Youngjoon Choi, Pavel Izmailov, Andrew Gor-
don Wilson, Stevan Nadj-Perge, and Eun-Ah Kim. Unsupervised learning of
two-component nematicity from stm data on magic angle bilayer graphene, 2022.

[7] Frédéric Joucken, John L. Davenport, Zhehao Ge, Eberth A. Quezada-Lopez,
Takashi Taniguchi, Kenji Watanabe, Jairo Velasco, Jérôme Lagoute, and
Robert A. Kaindl. Denoising scanning tunneling microscopy images with ma-
chine learning, 2022.

[8] Mani Valleti, Qiang Zou, Rui Xue, Lukas Vlcek, Maxim Ziatdinov, Rama Va-
sudevan, Mingming Fu, Jiaqiang Yan, David Mandrus, Zheng Gai, and Sergei V.
Kalinin. Bayesian learning of adatom interactions from atomically-resolved imag-
ing data, 2020.

[9] Yuhang Jiang, Xinyuan Lai, Kenji Watanabe, Takashi Taniguchi, Kristjan Haule,
Jinhai Mao, and Eva Y. Andrei. Charge order and broken rotational symmetry
in magic-angle twisted bilayer graphene. Nature, 573(7772):91–95, jul 2019.

[10] Noah F. Berthusen, Yuriy Sizyuk, Mathias S. Scheurer, and Peter P. Orth. Learn-
ing crystal field parameters using convolutional neural networks. SciPost Phys.,
11:011, 2021.

49

Bibliography

[11] Yi Hong Teoh, Marina Drygala, Roger G Melko, and Rajibul Islam. Machine
learning design of a trapped-ion quantum spin simulator. Quantum Science and
Technology, 5(2):024001, jan 2020.

[12] Saientan Bag and Rituparno Mandal. Interaction from structure using machine
learning: in and out of equilibrium. Soft Matter, 17:8322–8330, 2021.

[13] Xiao-Han Wang, Pei Shi, Bin Xi, Jie Hu, and Shi-Ju Ran. Deep machine learning
reconstructing lattice topology with strong thermal fluctuations, 2022.

[14] Simiao Ren, Ashwin Mahendra, Omar Khatib, Yang Deng, Willie J. Padilla, and
Jordan M. Malof. Inverse deep learning methods and benchmarks for artificial
electromagnetic material design, 2021.

[15] A.V. Rozhkov, A.O. Sboychakov, A.L. Rakhmanov, and Franco Nori. Electronic
properties of graphene-based bilayer systems. Physics Reports, 648:1–104, aug
2016.

[16] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim.
The electronic properties of graphene. Rev. Mod. Phys., 81:109–162, Jan 2009.

[17] P. R. Wallace. The band theory of graphite. Phys. Rev., 71:622–634, May 1947.

[18] Gonçalo Catarina, Bruno Amorim, Eduardo V. Castro, Eduardo V. Castro, Ed-
uardo V. Castro, João M. V. P. Lopes, João M. V. P. Lopes, and Nuno Peres.
Twisted bilayer graphene: Low-energy physics, electronic and optical properties,
jun 2019.

[19] Eva Y. Andrei and Allan H. MacDonald. Graphene bilayers with a twist. Nature
Materials, 19(12):1265–1275, nov 2020.

[20] Jérôme Cayssol. Introduction to dirac materials and topological insulators.
Comptes Rendus Physique, 14(9-10):760–778, nov 2013.

[21] F. D. M. Haldane. Model for a quantum hall e↵ect without landau levels:
Condensed-matter realization of the ”parity anomaly”. Phys. Rev. Lett., 61:2015–
2018, Oct 1988.

[22] Doru Sticlet and Frédéric Piéchon. Distant-neighbor hopping in graphene and
haldane models. Physical Review B, 87(11), mar 2013.

[23] J. L. Mañes, F. Guinea, and Maŕıa A. H. Vozmediano. Existence and topological
stability of fermi points in multilayered graphene. Physical Review B, 75(15), apr
2007.

[24] Jonathan Atteia. Topology and electronic transport in Dirac systems under irra-
diation. Theses, Université de Bordeaux, December 2018.

50

Bibliography

[25] Rafi Bistritzer and Allan H. MacDonald. Moiré bands in twisted double-layer
graphene. Proceedings of the National Academy of Sciences, 108(30):12233–
12237, jul 2011.

[26] Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi,
Efthimios Kaxiras, and Pablo Jarillo-Herrero. Unconventional superconductivity
in magic-angle graphene superlattices. Nature, 556(7699):43–50, mar 2018.

[27] Yuan Cao, Valla Fatemi, Ahmet Demir, Shiang Fang, Spencer L. Tomarken, Ja-
son Y. Luo, Javier D. Sanchez-Yamagishi, Kenji Watanabe, Takashi Taniguchi,
Efthimios Kaxiras, Ray C. Ashoori, and Pablo Jarillo-Herrero. Correlated in-
sulator behaviour at half-filling in magic-angle graphene superlattices. Nature,
556(7699):80–84, mar 2018.

[28] Allan H. MacDonald. Bilayer Graphene’s Wicked, Twisted Road. Physics Online
Journal, 12:12, May 2019.

[29] Liujun Zou, Hoi Chun Po, Ashvin Vishwanath, and T. Senthil. Band structure
of twisted bilayer graphene: Emergent symmetries, commensurate approximants,
and wannier obstructions. Phys. Rev. B, 98:085435, Aug 2018.

[30] Pilkyung Moon and Mikito Koshino. Optical absorption in twisted bilayer
graphene. Phys. Rev. B, 87:205404, May 2013.

[31] Xiao Chen, Shuanglong Liu, James N Fry, and Hai-Ping Cheng. First-
principles calculation of gate-tunable ferromagnetism in magic-angle twisted bi-
layer graphene under pressure, 2020.

[32] G. Trambly de Laissardière, D. Mayou, and L. Magaud. Localization of dirac
electrons in rotated graphene bilayers. Nano Letters, 10(3):804–808, feb 2010.

[33] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto. Continuum
model of the twisted graphene bilayer. Physical Review B, 86(15), oct 2012.

[34] Lede Xian, Salvador Barraza-Lopez, and M. Y. Chou. E↵ects of electrostatic
fields and charge doping on the linear bands in twisted graphene bilayers. Phys.
Rev. B, 84:075425, Aug 2011.

[35] Mikito Koshino, Noah F. Q. Yuan, Takashi Koretsune, Masayuki Ochi, Kazuhiko
Kuroki, and Liang Fu. Maximally localized wannier orbitals and the extended
hubbard model for twisted bilayer graphene. Phys. Rev. X, 8:031087, Sep 2018.

[36] Hoi Chun Po, Liujun Zou, T. Senthil, and Ashvin Vishwanath. Faithful tight-
binding models and fragile topology of magic-angle bilayer graphene. Physical
Review B, 99(19), may 2019.

51

Bibliography

[37] Rafael M. Fernandes and Jörn W. F. Venderbos. Nematicity with a twist:
Rotational symmetry breaking in a moiré superlattice. Science Advances,
6(32):eaba8834, 2020.

[38] Minhao He, Yuhao Li, Jiaqi Cai, Yang Liu, K. Watanabe, T. Taniguchi, Xi-
aodong Xu, and Matthew Yankowitz. Symmetry breaking in twisted double
bilayer graphene. Nature Physics, 17(1):26–30, sep 2020.

[39] Cheng Shen, Yanbang Chu, QuanSheng Wu, Na Li, Shuopei Wang, Yanchong
Zhao, Jian Tang, Jieying Liu, Jinpeng Tian, Kenji Watanabe, Takashi Taniguchi,
Rong Yang, Zi Yang Meng, Dongxia Shi, Oleg V. Yazyev, and Guangyu Zhang.
Correlated states in twisted double bilayer graphene. Nature Physics, 16(5):520–
525, mar 2020.

[40] Rhine Samajdar, Mathias S Scheurer, Simon Turkel, Carmen Rubio-Verdú, Ab-
hay N Pasupathy, Jörn W F Venderbos, and Rafael M Fernandes. Electric-
field-tunable electronic nematic order in twisted double-bilayer graphene. 2D
Materials, 8(3):034005, may 2021.

[41] H. Bruus, K. Flensberg, and Ø.R.L.N.B.I.K. Flensberg. Many-Body Quantum
Theory in Condensed Matter Physics: An Introduction. Oxford Graduate Texts.
OUP Oxford, 2004.

[42] Mathias Scheurer. Spectroscopy of graphene with a magic twist. Nature, 572:40–
41, 08 2019.

[43] Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press,
2015.

[44] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and Ten-
sorFlow, 2nd Edition. O’Reilly Media, Inc., 2019.

[45] Frederic B. Fitch. Warren s. mcculloch and walter pitts. a logical calculus of the
ideas immanent in nervous activity. bulletin of mathematical biophysics, vol. 5
(1943), pp. 115–133. Journal of Symbolic Logic, 9(2):49–50, 1944.

[46] Boris Polyak. Some methods of speeding up the convergence of iteration methods.
Ussr Computational Mathematics and Mathematical Physics, 4:1–17, 12 1964.

[47] Ning Qian. On the momentum term in gradient descent learning algorithms.
Neural Networks, 12(1):145–151, 1999.

[48] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. J. Mach. Learn. Res.,
12(null):2121–2159, jul 2011.

52

Bibliography

[49] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2014.

[50] François Chollet. Keras. https://github.com/fchollet/keras, 2015.

[51] Tensorflow documentation. https://www.tensorflow.org/.

[52] Keras documentation. https://keras.io/.

53

https://github.com/fchollet/keras
https://www.tensorflow.org/
https://keras.io/

	Introduction
	Twisted multi-layer graphene
	Single-layer graphene
	Geometry
	Tight-binding model
	Dirac-like fermions
	Symmetries and distant-neighbor hopping

	Twisted bilayer graphene
	Geometry
	Symmetries
	Nematicity

	Twisted double bilayer graphene

	Scanning tunneling microscope
	Many-body Green's function
	STM

	Machine learning
	Artifical neural networks
	How training works
	Gradient Descent
	Backpropagation
	Better optimizers

	Convolutional neural networks
	Tensorflow

	Generating the STM images
	A minimal tight-bind model for TBG
	Nematic order parameter
	Computing the STM response

	ML results
	Orientation of nematic director
	Discrete director values
	Continous director values

	Form of nematicity
	All nematic parameters
	Only two nematic parameters

	Adding more energy channels
	Only two nematic parameters
	All nematic parameters

	Adding LDOS at a single point
	Only LDOS at a single point

	Conclusion and outlook

