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Problem 1: The classical complex Klein-Gordon field (Written, 6 points)

Learning objective

In the lecture we studied the real Klein-Gordon theory. Here we consider its complex version
as a classical field theory. Its Lagrangian density features a new continuous symmetry. The
purpose of this problem is to derive the corresponding Noether current and the conserved charge.
Furthermore, you construct the Hamiltonian as preparation for the quantization in Problem 2.

The classical field theory of a free complex scalar field φ with mass m ≥ 0 is defined by the
Minkowski action

S[φ] =

∫
d4xL(φ, ∂µφ, φ∗, ∂µφ

∗) =

∫
d4x

(
∂µφ

∗∂µφ−m2φ∗φ
)
. (1)

Here, φ(x) ∈ C is a complex number and φ∗(x) denotes its complex conjugate; x is a
Minkowski four-vector.

a) Write φ = u+ iv and φ∗ = u− iv with real-valued fields u(x), v(x) ∈ R. Transform the
Lagrangian density into the new fields u and v,

L(φ, ∂µφ, φ∗, ∂µφ
∗) = L̃(u, ∂µu, v, ∂µv) , (2)

and show that the equations of motion

∂µ

(
∂L̃

∂(∂µu)

)
− ∂L̃

∂u
= 0 and ∂µ

(
∂L̃

∂(∂µv)

)
− ∂L̃

∂v
= 0 (3)

derived from the real fields are equivalent to the equations of motion

∂µ

(
∂L

∂(∂µφ)

)
− ∂L

∂φ
= 0 and ∂µ

(
∂L

∂(∂µφ∗)

)
− ∂L

∂φ∗ = 0 (4)

derived from the complex fields when φ and φ∗ are treated as independent variables. Thus
it is legit (and convenient) to start from (1) and treat φ and φ∗ as independent fields in the
following.

What is the equation of motion that governs the time evolution of the fields φ, φ∗, u, and
v?

Page 1/4



QUANTUM FIELD THEORY Problem Set 2

b) Calculate the conjugate momenta π and π∗ of φ and φ∗. Perform the Legendre transfor-
mation and show that the Hamiltonian is given by

H =

∫
d3x

(
π∗π +∇φ∗∇φ+m2φ∗φ

)
. (5)

c) The Lagrangian L(φ, ∂µφ, φ∗, ∂µφ
∗) is invariant under the continuous transformation

φ(x) = eieθφ(x) and φ
∗
(x) = e−ieθφ∗(x) . (6)

Here, θ ∈ R is a continuous parameter and e ∈ R is an arbitrary but fixed constant. We
say that L features a global U(1) symmetry with charge e.

Determine its infinitesimal generators ∆φ and ∆φ∗ and show that the conserved Noether
current reads

jµ(x) = ie [(∂µφ∗)φ− φ∗(∂µφ)] . (7)

Calculate the conserved charge Q =
∫
d3x j0(t,x).
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Problem 2: The quantized complex Klein-Gordon field (Oral)

Learning objective

Here we quantize the complex Klein-Gordon theory along the lines of the real theory shown in
the lecture. The most important difference is that the complex Klein-Gordon field gives rise to
two types of particles with opposite Noether charge: particles and antiparticles.

a) We quantize the classical Hamiltonian (5) by raising the complex fields φ and π to operators
with the momentum mode expansions

φ(x) =
∫

d3p
(2π)3

1√
2Ep

(
ape

ipx + b†pe
−ipx) , (8a)

π(x) = (−i)

∫
d3p
(2π)3

√
Ep

2

(
bpe

ipx − a†pe
−ipx) . (8b)

The complex conjugate fields are identified with adjoint operators: φ∗ → φ† and π∗ → π†.
Here, Ep =

√
p2 +m2 and the momentum modes obey the usual commutation relations,

[
ap, a

†
q
]
= (2π)3 δ(3)(p− q) and

[
bp, b

†
q
]
= (2π)3 δ(3)(p− q) ; (9)

all other commutators vanish. The quantized Hamiltonian of the complex Klein-Gordon
field follows from (5) and reads

H =

∫
d3x :π†π +∇φ†∇φ+m2φ†φ: (10)

where :a†pap : = a†pap and :apa
†
p : = a†pap denotes normal ordering (the same holds for bp),

that is, :•: reorders products • of mode operators such that creation operators are on the
left.

First, check the canonical commutation relations

[φ(x), π(y)] = iδ(3)(x− y) and [φ(x), φ(y)] = 0 = [π(x), π(y)] . (11)

What is the difference between the “real” and the “complex” Klein-Gordon field operators?

Diagonalize the quantized Hamiltonian H in terms of momentum modes ap and bp. What
happens if the normal ordering in (10) is omitted, and is the quantization well-defined
without it? Compare your result with the real Klein-Gordon theory.

b) Calculate the time-dependent field operators φ(x) = φ(t,x) and π(x) = π(t,x).

Hint: Show that in the Heisenberg picture aHp (t) = e−iEpt ap (and similarly for bp).

Use your results to show that π(x) = ∂0φ
†(x) and that φ(x) satisfies the Klein-Gordon

equation. How does this relate to the classical results in Problem 1?
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c) Quantize the conserved charge Q from Problem 1 c) and show that it takes the form

Q = ie

∫
d3x :πφ− φ†π† : = −e

∫
d3p
(2π)3

(
a†pap − b†pbp

)
. (12)

Prove that Q is conserved, i.e., show that [Q,H] = 0.

Explain why normal ordering (:•:) is again necessary for Q to be well-defined as a
quantum operator. Why is it reasonable to call a†p particles and b†p antiparticles? What is
the interpretation of e?
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