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Problem 1: The relativistic hydrogen atom (Written, 6+1 points)

Learning objective

From your quantum mechanics course, you know how to solve the non-relativistic Schrödinger equation
for the hydrogen atom. Here we describe the electron of the hydrogen atom by the relativistic Dirac
equation instead. We will see that corrections that had to be put in by hand in the non-relativistic
description now emerge naturally (notably, the fine structue).

To describe the electron in the hydrogen atom by the Dirac equation, we incorporate the coupling to
an external (classical) electromagnetic field—described by the gauge field Aµ—via minimal coupling

∂µ 7→ Dµ = ∂µ + ieAµ , (1)

where e < 0 is the electric charge of the electron. The Dirac equation now reads

(i /D −m)ψ = (i/∂ − e /A−m)ψ = 0 , (2)

where /A = γµAµ as usual.

The elementary charge |e| is dimensionless in natural units (ε0 = c = ~ = 1); it is the coupling
constant of quantum electrodynamics and describes the strength of the coupling between charged
particles and the electromagnetic field. It is related to the fine-structure constant by α = e2

4π
≈ 1

137
.

a) Show that Eq. (2) is invariant under the gauge transformation

Aµ(x) 7→ Aµ(x)− ∂µλ(x) (3a)
ψ(x) 7→ eieλ(x)ψ(x) (3b)

for arbitrary λ(x).

b) Multiply the Dirac equation (2) by (i/∂ − e /A+m) and bring your result into the form[
(i∂µ − eAµ)

2 − eSµνFµν −m2
]
ψ = 0 , (4)

with the generators of the Lorentz algebra

Sµν =
i

4
[γµ, γν ] (5)

and the electric field tensor Fµν = ∂µAν − ∂νAµ.

Using the gauge invariance of the Dirac equation, we choose for the four-potential

A0 = − Ze

4πr
and Ai = 0 (6)
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to describe the Coulomb potential of a nucleus with Z protons.
Use this to show that

eSµνFµν = i
Zα

r2

(
σ · r̂ 0
0 −σ · r̂

)
(7)

with r̂ = r/r.
Note: Use the Weyl representation of the gamma matrices from Peskin & Schroeder.
Thus (4) is block-diagonal and we can make the ansatz ψ(x) = e−iEt (φ+(r), φ−(r))T with
two-component spinors φ± to derive the spectrum E.
Show that Eq. (4) reduces to[

−
(
∂2r +

2

r
∂r

)
+
L2 − Z2α2 ± iZασ · r̂

r2
− 2ZαE

r
− (E2 −m2)

]
φ± = 0 , (8)

where L is the (orbital) angular momentum operator.
Hint: Recall that

∆ = −∂i∂i = ∂2r +
2

r
∂r −

L2

r2
(9)

in spherical coordinates.
c) To solve the differential equation (8), we introduce the total angular momentum operator J =

L+ 1
2
σ.

Explain why J commutes with the differential operator in (8) and with L2.
d) Consider now the subspace where J2 = j(j + 1), Jz = mj (for j = 1

2
, 3
2
, . . . and −j ≤ mj ≤ j)

and L2 = l(l + 1). For given j and mj , only two values l± = j ± 1
2
for l are possible. Thus an

arbitrary state |j,mj〉 = a+
∣∣j,mj, l+, s =

1
2

〉
+ a−

∣∣j,mj, l−, s =
1
2

〉
can be decomposed into

the orthogonal states |l±〉 ≡
∣∣j,mj, l±, s =

1
2

〉
.

Show that in the two-dimensional subspace spanned by |l±〉, we can write

L2 − Z2α2 ± iZασ · r̂ =
(
(j + 1

2
)(j + 3

2
)− Z2α2 ±iZα

±iZα (j − 1
2
)(j + 1

2
)− Z2α2

)
. (10)

Hint: Use the matrix elements 〈l±|σ · r̂ |l±〉 = 0 and 〈l∓|σ · r̂ |l±〉 = 1.
Write the two eigenvalues of (10) in the form λk(λk + 1) and show that

λ1 =

(
j +

1

2

)
− δj and λ2 =

(
j − 1

2

)
− δj (11)

with

δj = j +
1

2
−

√(
j +

1

2

)2

− Z2α2 . (12)

e) Optional (+1 point): Prove the previous hint.
That is, show that 〈l±|σ · r̂ |l±〉 = 0 and 〈l∓|σ · r̂ |l±〉 = 1.
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f) In the corresponding eigenbasis, Eq. (8) takes the form[
−
(
∂2r +

2

r
∂r

)
+
λk(λk + 1)

r2
− 2ZαE

r
− (E2 −m2)

]
ϕ = 0 (13)

where ϕ = ϕ(r) describes only the radial part of φ±(r).
Note: ϕ(r) is a scalar function without angular dependence of its argument whereas φ±(r) is a
(two-component) spinor field with angular dependence of its argument.

Make the substitutions

α̃ =
αE

m
and Ẽ =

E2 −m2

2m
(14)

and show that Eq. (13) takes the form of the Hamiltonian for the non-relativistic hydrogen atom:[
−
(
∂2r +

2

r
∂r

)
+
λk(λk + 1)

r2
− 2Zmα̃

r
− 2mẼ

]
ϕ = 0 . (15)

Use your knowledge from your quantum mechanics course to derive the eigenenergies E = Enj

and show that the spectrum is given by

Enj =
m√

1 + Z2α2

(n−δj)2

, (16)

where n = 1, 2, . . . and j = 1
2
, 3
2
, . . . , n− 1

2
.

Hint: To determine the spectrum Ẽ in Eq. (15), use the substitution ϕ(r) = u(r)
r

and that the
spectrum ε2 of the differential equation[

∂2ρ −
l(l + 1)

ρ2
+

2

ρ
− ε2

]
u(ρ) = 0 (17)

is given by ε2 = (l + 1 + ν)−2 with ν = 0, 1, 2, . . . .

What is the difference between l and λk?

g) Expand the energy Enj up to fourth order in α.

What are the differences to the non-relativistic spectrum?

How is the j-dependence of Enj called?
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Problem 2: Parity transformation of Dirac spinors (Oral)

Learning objective

The Dirac equation is Lorentz-covariant under proper, orthochronous Lorentz transformations (which
continuously connect to the identity). Spatial inversion (parity) is a discrete generator of the complete
Lorentz group that allows for “improper” Lorentz transformations. Here we study the representation of
this symmetry on the spinor fields of the Dirac theory. We will find that the Dirac Lagrangian is invariant
under parity transformations.

In addition to the continuous (proper and orthochronous) Lorentz transformations (that is, rotations
and boosts), there are three discrete symmetries acting on the spinor fields: Parity (P ), time reversal
(T ) and charge conjugation (C).
Here we focus on the transformation of parity P which inverts all spatial coordinates

P : R1,3 → R1,3 , (t,x) 7→ (t,−x) (18)

and thereby the three-momentum of a particle without flipping its spin: p 7→ −p and s 7→ s [motivate
this from Eq. (18)].
Mathematically, this means that P should be represented by a unitary operator acting on the Hilbert
space of the Dirac theory. For example, P transforms single-particle states asp |0〉 into as−p |0〉. Thus
we define on the mode algebra

PaspP = ηaa
s
−p , P bspP = ηbb

s
−p , (19)

where ηa and ηb are possible phases.

a) We make two observations:
• Two applications of the parity operator should “do nothing”, i.e., arbitrary observables
commute with P 2.

• Physical observables are built from an even number of fermion operators (this is known as a
superselection rule).

What are the allowed values for ηa and ηb?
b) We proceed with the quantized Dirac fields (here x is a four-vector x = (t,x)):

ψ(x) =

∫
d3p
(2π)3

1√
2Ep

∑
s

(aspu
s(p)e−ipx + bs†p v

s(p)eipx) , (20a)

ψ̄(x) =

∫
d3p
(2π)3

1√
2Ep

∑
s

(bspv̄
s(p)e−ipx + as†p ū

s(p)eipx) . (20b)

Show that the fields transform as follows:

Pψ(t,x)P = ηaγ
0ψ(t,−x) , and Pψ̄(t,x)P = η∗aψ̄(t,−x)γ0 . (21)

c) Using the transformation of the fields, evaluate the fermion bilinears

Pψ̄ψP , Pψ̄γµψP , P ψ̄[γµ, γν ]ψP , P ψ̄γµγ5ψP , and Pψ̄γ5ψP . (22)

d) Finally, show that the Dirac Lagrangian LD = ψ̄
(
i/∂ −m

)
ψ is invariant under parity transfor-

mations.
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