QUANTUM FIELD THEORY Problem Set 6

Prof. Dr. Hans Peter Biichler May 18th, 2018
Institute for Theoretical Physics Ill, University of Stuttgart SS 2018

Problem 1: Feynman diagrams for ¢*-theory (Written, 4+1 points)

Learning objective

The purpose of this problem is to become familiar with Feynman diagrams and their corresponding
perturbative expressions. To this end, we use the interacting ¢*-theory and focus on its four-point
correlator to apply the machinery of real- and momentum-space Feynman diagrams.

We consider the ¢*-theory

"= % / d'x {ﬂ(x) + (VX)) + m2e2(x) + 2 %¢4(x) 1)

with interacting fields ¢(z) = e*#t¢(x)e~"!! and vacuum |2).

a)

Draw all relevant Feynman diagrams (i.e., without vacuum bubbles) for the perturbative expansion
of the four-point function

(T p(1)P(x2)d(23)p(24) 12) (2)

up to second order (\?).
Draw two relevant diagrams of third order (\®): one connected and one disconnected.

Hint: Ignore symmetry factors and permutations of external points. Use that four-point diagrams
are either fully connected or decompose into products of disjoint two-point diagrams. Up to
permutations, there are 3 connected diagrams and 6 additional disconnected diagrams up to
second order.

Optional (+1 point): Draw all diagrams of third order. How many are connected and disconnec-
ted, respectively (again up to permutations)?

Using the real-space Feynman rules, write down the term described by the Feynman diagram

x T3

X2 Ty

Label the Feynman diagram above with directed momenta and write down the corresponding
expression as prescribed by the momentum-space Feynman rules.
Use the Fourier expansion of the Feynman propagator

44 ; o—ip-(z—y)
DF(:v—y>=/< po_ie 3)

2m)% p?2 —m? + ie

to show that the expressions of c) and d) are equivalent.
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Problem 2: Feynman rules for the interacting complex Klein-Gordon field (Oral)

Learning objective

Here you derive the Feynman rules for the complex Klein-Gordon field with an arbitrary interaction
potential. Generically, this interaction violates causality and the resulting theory is no longer a relativistic
quantum field theory. However, in condensed matter physics such theories can be used to describe the
low-energy physics of interacting models that are otherwise hard to tackle analytically. This demonstrates
that diagrammatic methods for perturbation theory are not restricted to relativistic high-energy physics.

Recall the (free) complex Klein-Gordon field (Problem Set 2) with Hamiltonian
Hy = / &Ex (7'7 4+ Vo'Ve +m?¢lo) (4)

and fields that satisfy the canonical commutation relations [¢(x), 7(y)] = i0® (x — y).

Let V : R® — R be a symmetric [V (r) = V(—r)] but otherwise arbitrary (well-behaved) potential.
Here we consider the interacting theory

H=t+5 [ & [ Eyvix-y) o mdpeme ©)

with small parameter \.

At an arbitrary time ¢y, we can expand the interacting field ¢(to, x) into modes,

¢(t ) . d3P ; ( ipx + bT —ipx) (6)
0X)= (2m)3 \/2F, “r€ P ’
with the mode algebra
[ap.af] = (27)* 6@ (p —q) and  [b,b]] = (21)* 6@ (p — q) ()
(all other commutators vanish). In the interaction picture, we then have
¢1(96) — eiHo(tfto)(b(tO X)efiHo(tfto) _ / d3p ; (a efipx + bTeipa:) (8)
’ (2m)3 /2 E, P P

with 29 = ¢ — t,. Note that this is just the the time evolution of the free theory Hj that you derived
in Problem 2 b) of Problem Set 2.

a) Let the contraction be defined as difference between time ordering and normal ordering:

—
AB=T{AB} —:AB: 9)

where A, B € {¢I7¢J1[}'

Use the decomposition ¢; = ¢ + ¢, and gzﬁ = ¢, + ¢, into positive- and negative-frequency
parts (and your knowledge from the real Klein-Gordon field) to show that

1 1
¢1(2)1(y) = ¢} (x)d}(y) =0 (10a)
— — dip e )

8 (@)61(y) = 61(2)6}(y) = Dr(w — ) = / T

(10b)
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b) Prove Wick’s theorem for the free complex scalar field. That is, show that
T{ABC ...} =:ABC...: + :{all contractions between pairs of ¢ and ¢'}: (11)

for A, B,C,--- € {¢r1, 6} }.
Hint: Use induction (as in Peskin & Schroeder) with the decomposition of ¢ and ¢! from above.

As shown in the lecture (or in Problem 1 of Problem Set 5), time-ordered correlation functions can be
rewritten in terms of interaction picture fields via

(0| T{ABC... exp <—¢ Tt Hl(t)>} 10)
(QT{ABC ...} Q)= lim =
Tvoo(1-i2) (0] T exp <_7; It Hj(t)> 10)

(12)

for A,B,C,--- € {¢y, ¢}} Here |Q2) is the interacting vacuum and the interaction picture Hamilto-
nian is given by

A
mi =5 [ @x [ Eyve-yel@slwe@om . (13
c) Use this prescription in combination with Wick’s theorem to evaluate the two-point correlator

(QT ()¢ (y) 1) (14)

up to first order in .
Compare your result to the ¢*-theory.
d) Use the dictionary

—
y—>—a = ¢r(x)¢}(y) = Dp(z —y) (152)
U------- w = V(u—w)i(u’ —u?) (15b)

to recast the summands found in c) as Feynman diagrams.

Generalize your result to the Feynman rules of the interacting theory of a complex scalar field
with interaction potential V.

Page 3/3



