QUANTUM FIELD THEORY Problem Set 7

Prof. Dr. Hans Peter Biichler June 1st, 2018
Institute for Theoretical Physics Ill, University of Stuttgart SS 2018

Problem 1: Cross section of two scattering particles (Written, 4 points)

Learning objective

In this problem, we will study the cross section of two scattering particles within the ¢*-theory. It serves
as an example of the use of Feynman diagrams to calculate scattering cross sections.

From the lecture, you know the relation between S-matrix elements and cross sections which is
given by
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where we chose the reference frame such that the particles collide along the z-axis.

Specialize now to the case of two particles, with the same mass m, interacting with the Hamiltonian
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a) Transform into the center-of-mass frame and integrate over the final momenta. Show that to
lowest order the differential cross section is given by
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where F., is the total initial energy.
Hint: In general, the invariant matrix element M is defined by
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with the asymptotic incoming and outgoing states |pip},), and [pip2 - - - ), respectively.

b) Calculate the total cross section of the scattering process.
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Problem 2: Rutherford scattering (Oral)

Learning objective

Here, you will derive the famous Rutherford formula for the differential cross section for the elastic
scattering of non-relativistic charged particles interacting via the Coulomb interaction.

The cross section for the scattering of an electron by the Coulomb field of a nucleus can be computed,
to lowest order, without quantizing the electromagnetic field. Instead, treat the field as a given,
classical potential A, (x). The interaction Hamiltonian is

H, - / el A,, (6)

where () is the usual quantized Dirac field.

a) Show that the T-matrix element for electron scattering off a localized classical potential is, to
lowest order,

W4T |p) = —iea(p' )y u(p) A (0 — p), (7)

where gﬂ(q) = [d*z e A, (x).

b) If A,(z) is time independent, its Fourier transform contains a §-function of energy. It is then
natural to define

(P41 |p) = —iM - (2m)6(Ey — Ej), (8)

where IJ; and Fy are the initial and final energies of the particle, and to adopt a new Feynman
rule for computing M:
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where A(q) is the three-dimensional Fourier transform of A,,(z). Given this definition of M,
show that the cross section for scattering off a time-dependent localized potential is
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where v; is the particle’s initial velocity. Integrate over |p| to find a simple expression for do /df2.

Hints:

« Start by considering a wave packet
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where b is the impact parameter accounting for the transverse displacement of the incoming
wave packet and assume ¢(p) to be narrowly peaked around p = (0,0, p).
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« Calculate the probability to scatter the incoming state into a final state whose momentum
lies in a small region d3p’. Take care of the proper normalization.

« In order to calculate the differential cross section, integrate this probability over the impact
parameter b.

c) Specialize to the case of electron scattering from a Coulomb potential (A° = Ze/47r). Working
in the non-relativistic limit, derive the Rutherford formula,
do a?Z?
dQ  4m2visint(0/2)

(11)

where 6 is the angle between initial and final momentum.
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