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Problem 1: Infrared divergence of the electron vertex function (Written, 4 points)

Learning objective

The calculation of the one-loop correction of the electron vertex function is riddled with both an ultraviolet
and an infrared divergence—caused by the momentum integration of the loop. While the ultraviolet
divergence is controlled by Pauli-Villars regularization, the infrared divergence can be parametrized by
introducing a small, artificial photon mass µ > 0. It is important to extract the asymptotic behaviour of
this divergence for µ → 0 to prepare its cancellation with a similar term found for soft bremsstrahlung.
Here you work out the details of this asymptotic behaviour.

As shown in the lecture, the regularized form factor F1 of the electron vertex in QED up to one-loop
order reads

F1(q
2) = 1 +

α

2π

1∫
0

dx dy dz δ(x+ y + z − 1)

[
log

(
m2(1− z)2

m2(1− z)2 − q2xy

)

+
m2(1− 4z + z2) + q2(1− x)(1− y)

m2(1− z)2 − q2xy + µ2z
− m2(1− 4z + z2)

m2(1− z)2 + µ2z

]
+O(α2) .

(1)

Here, x, y, z are Feynman parameters, m is the electron mass, q = p′ − p the momentum transfer
and µ the artificial photon mass to regularize the integral; α is the fine structure constant.

We are interested in the (physical) limit of vanishing photon mass (µ → 0) where Eq. (1) diverges.

a) Show that the dominant terms of Eq. (1) in this limit read

F
(1)
1 (q2) :=

α

2π

1∫
0

dx dy dz δ(x+ y + z − 1)

×
[
m2(1− 4z + z2) + q2(1− x)(1− y)

m2(1− z)2 − q2xy + µ2z
− m2(1− 4z + z2)

m2(1− z)2 + µ2z

]
.

(2)

Hint: Show that the virtual photon is spacelike, i.e., show that q2 < 0; then show that the
argument of the logarithm is bounded in the relevant region.

b) Using the previous result, show that the asymptotic behaviour of F1 is captured by the simpler
expression

F
(2)
1 (q2) :=

α

2π

1∫
0

dz

1−z∫
0

dy

[
−2m2 + q2

m2(1− z)2 − q2(1− z − y)y + µ2
− −2m2

m2(1− z)2 + µ2

]
. (3)
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c) Use the substitution y = (1− z)ξ and w = 1− z to show that

F
(3)
1 (q2) :=

α

4π

1∫
0

dξ

[
−2m2 + q2

m2 − q2ξ(1− ξ)
log

(
m2 − q2ξ(1− ξ)

µ2

)
+ 2 log

(
m2

µ2

)]
. (4)

d) Finally, show that the asymptotics of F1 is given by F1(q
2) ≈ 1 + F

(4)
1 (q2) +O(α2) with

F
(4)
1 (q2) := − α

2π
fIR(q

2) log
(
A

µ2

)
(5)

where the function fIR(q
2) has to be determined and both choices A ∈ {−q2,m2} give rise to

valid expressions.

Hint: Use that adding constants (with respect to µ) to F
(3)
1 does not change its asymptotic

behaviour for µ → 0.

What is the sign of fIR(q2)?

This expression can now be used to cancel the infrared divergence of the electron vertex func-
tion with the corresponding divergence found for soft bremsstrahlung to obtain a finite result
independent of µ (see lecture).
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Problem 2: Dimensional regularization (Oral)

Learning objective

In this exercise we will work on the technical details of dimensional regularization (due to ’t Hooft and
Veltman). Dimensional regularization preserves the symmetries of QED and a broader class of more
general theories. The idea of dimensional regularization is to extend the definition of d-dimensional
volume integrals to arbitrary d ∈ R. If the divergences of integrals from Feynman diagrams vanish for
d < 4, they can be regularized if the limit d → 4 is taken after evaluating physical quantities.

Let us consider spacetime to have one time dimension and (d− 1) space dimensions (d = 2, 3, 4, . . . ).
We are interested in solving integrals of the form∫

dd`E
(2π)d

1

(`2E +∆)2
=

∫
dΩd

(2π)d

∫
d`

`d−1

(`2 +∆)2
(6)

where we have Wick-rotated the time dimension so that dd`E is the volume element of d-dimensional
Euclidean space; dΩd denotes the angular part of the integral in d-dimensional spherical coordinates.

a) The first factor in Eq. (6) contains the area of a unit sphere in d dimensions. Show that∫
dΩd =

2 πd/2

Γ(d/2)
. (7)

Use
∫
dx e−x2

=
√
π and the definition of the Gamma function Γ(t) :=

∫∞
0

dx xt−1e−x.
b) With the result from a), show that Eq. (6) evaluates to∫

dd`E
(2π)d

1

(`2E +∆)2
=

1

(4π)d/2
Γ(2− d

2
)

Γ(2)

(
1

∆

)2− d
2

. (8)

To this end, use the substitution x = ∆/(`2 +∆) and the definition of the beta function

B(α, β) :=

∫ 1

0

dx xα−1(1− x)β−1 =
Γ(α)Γ(β)

Γ(α + β)
. (9)

The expression Eq. (8) can now be used to define the left-hand side for d ∈ R.
Where are the poles of this generalized integral in d “dimensions”?

c) Define ε = 4− d and use the infinite product representation

1

Γ(x)
= xeγx

∞∏
n=1

(
1 +

x

n

)
e−x/n (10)

(γ is the Euler-Mascheroni constant) to expand Γ(2− d
2
) to first order in ε.

d) Show that the integral (8) takes the asymptotic form∫
dd`E
(2π)d

1

(`2E +∆)2
d→4−−→ 1

(4π)2

[
2

ε
+ log

4π

∆
− γ +O(ε)

]
. (11)

This expression extracts the diverging part of the integral for d → 4 and allows for the controlled
treatment of such integrals.
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e) Following the previous steps, verify the more general expressions∫
dd`E
(2π)d

1

(`2E +∆)n
=

1

(4π)d/2
Γ
(
n− d

2

)
Γ(n)

(
1

∆

)n− d
2

, (12a)∫
dd`E
(2π)d

`2E
(`2E +∆)n

=
1

(4π)d/2
d

2

Γ
(
n− d

2
− 1

)
Γ(n)

(
1

∆

)n− d
2
−1

. (12b)

These integrals are useful for the renormalization of the electric charge (see lecture).
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