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Problem 1: The electron self-energy (Written, 3 points)

Learning objective

The mass-energy equivalence inherent to any relativistic theory implies for quantum field theories that
fluctuations of fields around particles with “bare” mass m0 shift the latter to a larger, observable mass m.
In QED, virtual photons that couple to the charged electron make up for its self-energy which, in turn,
contributes to its mass m; we say that the mass is renormalized. Here you work out the details of the
one-loop correction discussed in the lecture. As a result, we find thatm0 and m differ by an infininity.

The electron two-point function is given by the sum of diagrams

〈Ω| T Ψ(x)Ψ̄(y) |Ω〉 = x y + x y + . . . (1)

where the first diagram is just the free-field propagator,

=
i(/p+m0)

p2 −m2
0 + iε

, (2)

and the second diagram (the electron self-energy) yields the expression

p

k − p

k p

=
i(/p+m0)

p2 −m2
0

[−iΣ2(p)]
i(/p+m0)

p2 −m2
0

(3)

according to the Feynman rules of QED (for the sake of simplicity, we omit the term e−ip(x−y) and
the integral

∫
d4p/(2π)4 for the external points). Here

−iΣ2(p) = (−ie)2
∫

d4k

(2π)4
γµ i(/k +m0)

k2 −m2
0 + iε

γµ
−i

(p− k)2 − µ2 + iε
(4)

contains the two loop propators with their two vertices. m0 is the bare mass of the electron and
µ > 0 is a small photon mass to regulate the infrared divergence of the integral.

a) Using Feynman parameters, show that the second-order self-energy −iΣ2(p) takes the form

−iΣ2(p) = −e2
∫ 1

0

dx

∫
d4`

(2π)4
−2x/p+ 4m0

[`2 −∆µ + iε]2
, (5)

where ∆µ has to be determined.
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b) To control the ultraviolet divergence of the integral (5), use the Pauli-Villars regularization

1

(p− k)2 − µ2 + iε
→ 1

(p− k)2 − µ2 + iε
− 1

(p− k)2 − Λ2 + iε
(6)

for Λ → ∞ and show that

Σ2(p) =
α

2π

∫ 1

0

dx (2m0 − x/p) log
[

xΛ2

(1− x)m2
0 + xµ2 − x(1− x)p2

]
(7)

in this limit.

c) Using the expression for the second-order self-energy obtained in b), calculate the mass shift

δm = m−m0 = Σ2(/p = m) ≈ Σ2(/p = m0) (8)

in first order of α.

Show that the bare massm0 and the measurable massm differ by a diverging quantity.
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Problem 2: Thomas-Fermi screening (Oral)

Learning objective

As already demonstrated in previous tasks, the machinery of quantum field theory is not restricted to
high-energy physics and fundamental theories like QED; its application to condensed matter physics
provides one of the most powerful tools to study strongly correlated quantum matter. In this exercise, we
will study the so calledThomas-Fermi screening of electrons in a degenerate electron gas of density n at
zero temperature.

a) Similar to the lecture, define Π(q) to be the sum of all one-particle-irreducible diagrams contribu-
ting to the photon self-energy. Show by diagrammatically expanding the full photon propagator
Dph(q) that

Dph(q) =
D0

ph(q)

1−D0
ph(q)Π(q)

, (9)

where D0
ph(q) is the bare photon propagator.

This approach is related to the so called Lindhard theory in condensed matter theory used for
calculating the effects of electric field screening by electrons.

b) In condensed matter theory, the bare photon propagator in momentum space is simply given by
the Fourier transformU(q) of the (time-independent) interaction potential.Then, the denominator
in (9) can be seen as a dielectric function given (in the static limit) as

ε(q) = 1− U(q)Π(q) . (10)

Show that the bare Coulomb interaction in momentum space, U(q) = e2/q2, is now modified to
an effective interaction due to the screening of the electron gas in the long wavelength limit (i.e.,
Π is evaluated at q = 0):

Ueff(q) =
e2

q2 + λ−2
TF

, (11)

where λ−1
TF is the Thomas-Fermi wave vector.

c) Calculate the Fourier transform Ueff(x) of the effective potential (11) and discuss your result.
d) Optional (+1 point):

Calculate theThomas-Fermi wave vector in the long wavelength limit (q → 0) and in the so-called
random-phase approximation, where Π(q) consists only of the particle-hole(=antiparticle) loop
(neglecting the in- and outgoing lines):

q

k + q

k

q
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According to the Feynman rules in condensed matter theory, Π(q) is given by

Π(q) = −2i

∫
d3k

(2π)3

∫
dω

2π
G0(ω,k)G0(ω,k+ q) , (12)

where the propagator/Green’s function reads

G0(ω,k) =
1

ω − ξ(k) + iδ sgn(ξ(k))
(13)

with ξ(k) = k2

2m
− EF and EF the Fermi energy. δ is to be taken positive but small (i.e. δ → 0+)

and sgn(x) refers to the signum function, which gives the sign of x and sgn(0) = 0.

Hint: In 3D, the Fermi energy is given by EF = (3π2n)2/3/(2m) with electron density n and
mass m.
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