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It turned out that for a few exercises, some students have access to master solutions. However, we

strongly encourage you to not copy solutions as this undermines the main purpose of the tutorials.

For the purpose of learning and preparing for the exam, it is essential to follow up with the exercises.

The tutors are happy to assist and give advice on the exercises. However, if it turns out that a solution

has been copied and a student is not able to explain the handed-in solution, it will be considered as

a fraud attempt with the corresponding consequences.

Problem 1: Potential of an infinitely long cylinder (Written)

Learning objective

Here, we solve Laplace’s equation in cylindrical coordinates with Dirichlet boundary conditions.

We consider an infinitely long, hollow, conducting cylinder of radius R. Using Laplace’s equation in

cylindrical coordinates, we determine the electric potential inside and outside of the cylinder, given

the value of the potential on the boundary of the cylinder.

a) The potential on the boundary of the cylinder is

φ(z, ϕ, % = R) = φ0 + φ1 cosϕ , (1)

where z is the axial coordinate, ϕ is the polar angle, and % the radial distance in cylindrical

coordinates. Think about the geometry of the problem and calculate the potential inside and

outside of the cylinder.

b) The potential on the boundary of the cylinder is

φ(z, ϕ, % = R) = cos(kz) (φ0 + φ1 cosϕ) , (2)

with k 6= 0. Calculate the potential and determine its value in the limit % → ∞ (for taking this

limit, it is helpful to look up the asymptotic behavior of the Bessel function e.g. on Wikipedia).

Problem 2: Electric field of a dipole (Written)

Learning objective

In the first part of the problem, we calculate the electric field for a dipole. The resulting expression

contains a δ-function term, whose physical importance is discussed in the second part of the problem.

a) Recall the important result ∇2 1
|r| = −4πδ3(r) from Ex. 2.1 and generalize it to

∂α∂β
1

|r|
= −δαβ

|r|3
+ 3

xαxβ

|r|5
− 4π

3
δαβ δ

3(r). (3)

Hint: Use a symmetry argument and the result from exercise 2.1 to derive the last term in

equation (3).
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b) In the lecture, it was demonstrated that the electric potential for a dipole p is given by φ(r) =
p·r

4πε0|r|3 = −(p · ∇) 1
4πε0|r| . Using relation (3), show that the electric field of the dipole can be

written as (r̂ = r/|r|):

E(r) =
1

4πε0

[
3(r̂ · p) r̂− p

|r|3
− 4π

3
p δ3(r)

]
. (4)

The δ-function term in equation (4) is a correction for r = 0. In the following, we are going to

re-derive it in a different way to understand its physical origin.

Prove the following Theorem: The average electric field over a spherical volume of radius R, due to

an arbitrary charge distribution within the sphere, is given by

E = − 1

4πε0

p

R3
, (5)

where p is the total dipole moment with respect to the center of the sphere.

c) To do this, first calculate the average electric field due to a single charge q at position rq within
the sphere (with volume V ):

Eq =
1

V

∫
V

d3r Eq(r) =
1

4πε0

q

V

∫
V

d3r
r− rq

|r− rq|3
. (6)

Realize that this expression can also be considered as the electric field at the position rq , that is

generated by a (fictional) sphere with a uniform charge density ρ = q/V . Use this analogy to

calculate Eq via Gauss’s law.

d) Use the superposition principle to generalize the result for the point charge q to arbitrary charge
distributions and prove equation (5).

e) Explicitly calculate the average electric field that is generated by a point-like dipole, by integrating

the electric field from equation (4) over a sphere. In your integration, start by excluding a small

region around the origin.

f) Finally, show that the δ-function term in equation (5) is essential to satisfy the average-value

theorem.

Remark: Another approach is to calculate the electric field of a homogeneously polarized sphere of

radius a. Outside of the sphere, the field is exactly given by equation (4). Inside the sphere, the field

has a constant value Ein = −1/4πε0 · p/a3, where p is the dipole moment of the sphere. As the size

of the sphere goes to zero, the field strength goes to infinity in such a way that the integral over the

sphere remains constant, giving the prefactor of the δ-function: −p/3ε0.
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Problem 3: Spherical multipole moment (Written)

Learning objective

The goal of this problem is to calculate the spherical multipole moments qlm for different charge distribu-

tions and to study when a quadrupole moment occurs.

We perform the calculations for the following distributions of charges.

Figure 1: Two charge distributions (A) and (B) with four charges in the xy plane, placed at a distance
a from the origin.

a) Write down the charge distribution ρ(r) in spherical coordinates. The relation between the

charge distribution in Cartesian coordinates and spherical coordinates is given by (why?):

ρ(r, θ, φ) =
ρ(x, y, z)

r2 sin θ
(7)

b) Compute the spherical monopole, dipole and quadrupole moments for both arrangements.
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