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Problem 1: Hall effect (Written)

Learning objective

TheHall effect describes the physics of moving charged particles in materials when exposed to an external

magnetic field. In the first part of the problem, we will calculate the Hall voltage and derive the Drude

model for transport in materials. In the last part, we will calculate the conductance tensor as well as the

Hall coefficient and learn about the importance of the Hall coefficients.

Consider an infinitely long conductor in x-direction with finite extent a in y- and z-direction. An
electric field E0 = Exex in x-direction is applied to the conductor, leading to a current density jx. An

additional magnetic field B = Bzez in z-direction will deflect charge carriers (electrons with charge

−e) through the Lorentz force. This leads to an accumulation of charges on the sides of the material,

resulting in an electric field EH = Ey ey along the y-direction. This phenomenon is called Hall effect.

a) Consider the stationary case (jy = vy = 0) and calculate the Hall field EH as well as the potential

difference UH between both sides in terms of the current density jx. In which direction does EH

point?

Hint: The current density is given by j = −env, where n is the electron density and v their

velocity. In the stationary case, there is no net force on the carriers in y-direction.

b) The Drude model for transport in metals assumes the following equation of motion for the

charge carriers:

d

dt
p = −e

(
E+

1

m
p× B

)
− p

τ
. (1)

Here, p is the momentum of the electrons,m is the electron mass and τ is the relaxation time

(scattering time). Motivate/derive this equation.

Hint: The Drude model assumes that electrons undergo a scattering event with probability dt/τ
within an infinitesimal short time span dt.

c) Determine the conductance tensor σkl, which is defined via: (Einstein convention)

jk = σklEl, k, l ∈ {x, y} (2)

as well as the resistance tensor ρ = σ−1 within the Drude model.

Hint: Consider the stationary case (ṗ = 0). Adopt the notation σ0 = ne2τ/m for the Drude DC

conductance and ωc = eB/m for the cyclotron frequency.
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d) Calculate the Hall coefficient RH = Ey/(jxBz) for the stationary case within the Drude model.

What is the sign of RH? Is it possible to use the Hall effect to determine the charge of (unknown)

particles/carriers of the electric current?

Problem 2: Gauge invariance of the classical equations of motion (Written)

Learning objective

In this problem, we show the gauge invariance of the equations of motion for a charged particle. From

the Lagrangian we will derive the Hamiltonian by computing the canonical momentum.

The Lagrange function for a (non-relativistic) charged particle in an electromagnetic field is given by

L(r, ṙ, t) = 1

2
mṙ2 − q φ(r, t) + q ṙ·A(r, t). (3)

Derive the equations of motion and show that they are gauge invariant (eichinvariant). Calculate

the canonical momentum p = ∂L/∂ṙ. Is it gauge invariant? What is the relation between the

mechanical and the canonical momentum? Show that the Hamiltonian is given by

H(r,p, t) =
1

2m
(p− qA(r, t))2 + qφ(r, t). (4)

Problem 3: Demagnetization (Bonus)

Learning objective

In this problem we study the effect of demagnetization by placing non-spherical objects into an external

magnetic field. We are interested in a cigar shaped and a discus shaped object to investigate the influence

of the geometry on the solution.
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Figure 1: Sketches of the two cases a) prolate (cigar shaped) b) oblate (discus shaped) object, within

a magnetic field.
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The rotation axis is the z-axis, the longer (shorter) axis is a (b), see figure. The magnetic field B

is parallel to the z-axis. In this scenario we consider the system without currents present, thus

rotH = 0 and divH = 0. In addition, we are interested in a linear medium, i.e. B = µH. Hence, we

can write H = −∇Φ. We label the fields inside the object with Hin and outside with Hout.

a) Give the boundary conditions for Bi, Hi and Φi. Write down the general equations for the

surfaces of the given ellipsoids of rotation.

b) Prolate Case:

In order to tackle this problem, we need a handy coordinate system. Here, we choose hyperbolic

coordinates with

x = c sinhu sin v cosφ

y = c sinhu sin v sinφ

z = c coshu cos v. (5)

• What is c? Which values can u, v, φ take? How are a and b related to u, v and φ on the

surface of the ellipsoid.

• Write down the general expression for the Laplace operator ∆ in arbitrary orthogonal

coordinates.

• Transform the Laplace operator into hyperbolic coordinates.

• Make a separation ansatz in order to solve the Laplace problem ∆Φ = 0. What are the

possible solutions?

• Next, find the solutions for Φin and Φout and use the boundary conditions to determine the

constants within the ansatz.

• Derive a relation between the fields Hin and Hout.

The demagnetization factor is defined through

Hout = (1− (1− µ)n)Hin , (6)

where µ = µin/µout.

• Determine n.

• Rearrange this expression to obtain n = n(ε), where ε is the eccentricity with ε = c
a
=

√
a2−b2

a
.

• Investigate n(ε) in the limits ε → 0 and ε → 1. For the latter limit use ε =
√
1− η2 and

consider η → 0.

c) Oblate Case:

We turn our attention to the oblate case and use the coordinates

x = c coshu sin v cosφ

y = c coshu sin v sinφ

z = c sinhu cos v. (7)

Repeat all steps from the previous task for the oblate case and determine n and its limits.

d) Why is n small for a cigar and large for a discus? Give the reasons graphically. Why is the

demagnetization factor called like this?

Hint: Everything can be related to Legendre functions.
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