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Problem 1: Green’s function for the wave equation (Written)

Learning objective

In the first exercise you will calculate the Green’s function of the wave equation. In frequency and

momentum space this Green’s function possesses poles, whose location have physical relevance for

causality.

In the lecture, we have seen that the vector potential A(r, t) satisfies the following wave equation

within Coulomb gauge (Coulomb-Eichung):[
∇2 − 1

c2
∂2

∂t2

]
A(r, t) = −µ0 jt(r, t). (1)

Here, jt = j(r, t)− ε0∇∂tφ(r, t) is the transversal part of the current density: We are going to solve

equation (1) with the Green’s function method. Let G(r, t; r′, t′) be the Green’s function for the

operator � = 1
c2

∂2

∂t2
−∇2, i.e.

�G(r, t; r′, t′) = 4πδ3(r− r′)δ(t− t′). (2)

a) Write the general solution of Eq. (1) in terms of the Green’s function.

b) Show that the Fourier transform of the Green’s function, for r′ = 0 and t′ = 0, is given by

G(k, ω) =
4π

k2 − ω2/c2
. (3)

c) The Fourier transformed G(k, ω) has poles at k = |k| = ±ω/c. Calculate the Green’s function
Gr,a(r, t; r′, t′) by inverse Fourier transformation. The indices ‘r’ and ‘a’ stand for the retarded

and the advanced Green’s function, respectively. The two functions are distinguished by the

way the two poles are handled.

Transform from k-space to real-space first. Use spherical coordinates and rewrite the integral

over k ∈ [0,∞) into an integral over k ∈ (−∞,∞). In which way can you close the integration

contour in the complex k plane? Shift the poles infinitesimally from the real axis by setting

ω/c −→ ω/c± iε (how does this affect the position of the poles?). Then, use the residue theorem

to solve the k integration. Finally, perform the transformation from the frequency domain back

to the time domain.

The Green’s function is called retarded (advanced) if both poles of G(k, ω) as a function of ω lie

in the lower (upper) half plane.
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Problem 2: Wave in a medium (Written)

Learning objective

In this exercise you will familiarize yourself with electromagnetic waves in the presence of dielectric

media. Especially, you will once again see that the interior of a perfect conductor is free of electrical

fields.

Consider a plane wave in a non-conductive medium (in which the conductivity σ disappears and ε
and µ are constant).

a) Derive the wave equation for the electromagnetic field directly from the Maxwell equations.

Show that the plane wave (
E(x, t)
B(x, t)

)
=

(
E0

B0

)
ei(k·x−ωt) (4)

is a solution of these equations and determine the dispersion relation. At what speed does the

wave propagate in the medium and at what speed in the vacuum?

Next, we analyze the propagation of light in a metal.

b) Derive the dielectric function ε(ω) (also called dielectric permittivity) of a conductor in SI units:

ε(ω) = ε0 +
iσ(ω)

ω
, (5)

where the conductivity has the form

σ(ω) =
σ0

1− iωτ
. (6)

c) How does the wave equation for the electromagnetic field look like? Show that the plane

wave which penetrates the conductive material is attenuated (abgeschwächt). Calculate the

penetration depth δ for a monochromatic wave in the limit of low frequencies. What conclusions

can be drawn from this result?

Hint: The penetration depth δ is defined as the distance at which the initial wave is attenuated

by e−1.

Problem 3: Interplanetary sailing (Written)

Learning objective

A solar sail is a hypothetical propulsion system for space travel. A solar sail uses the light pressure of

the sun to gain acceleration. In this exercise we study the feasibility of solar sail for accelerating a probe

in earth’s orbit.

A planar electromagnetic wave, which spreads in the vacuum, reaches a perfectly conducting flat

screen (later called “solar sail”) perpendicularly. The energy flux density (energy per unit area, per

unit time) transported by the electromagnetic fields is given by the Poynting vector

S =
1

µ0

(E× B), (7)
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whereas the momentum density P, stored in the fields, is P = S/c2.

a) Using the conservation of momentum, show that the pressure P applied to the screen (the

so-called radiation pressure) is equal to the energy density of the wave. For this purpose, time

average the Poynting vector. Comment on why such an averaging is physically justified?

b) In the earth’s neighborhood the electromagnetic energy flow (originating from the sun) is

about 0.13W/cm2. What would be the acceleration (caused by the solar radiation pressure) of

the spacecraft consisting of a capsule with mass 105 kg and a “solar sail” with surface density

10−4 g/cm2 and dimensions 10 km · 10 km?
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