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Problem 1: Structure factor (Written)

Learning objective

We will investigate how light is scattered on a crystal and how its diffraction pattern can give insight on

the structure of the crystal.

We model a simple crystal by identical little dielectric spheres of the size of an atom (radius ∝ 1
◦
A =

10−10m) placed in a regular fashion on the points of a lattice. An incident monochromatic plane

wave gets scattered on the crystal. We want to compute the differential scattering cross section

of the scattered radiation. Of paramount importance is the structure factor for the distribution of

scatterers. For a crystalline arrangement, a characteristic pattern of diffraction angles (points of

scattered light on a screen) is obtained. This is the Laue diffraction pattern, which allows to determine

the crystal structure.

a) Compute the differential scattering cross section for a simple cubic (sc) crystal of edge length

Na where a is the distance between two atoms. Assume that the incident electric field induces
dipole moments pj andmj in the atom at lattice point xj . The plane wave is at normal incidence

to one of the surfaces of the crystal (xy-plane) and has the wave vector kin.

b) Compute the structure factor S(q) = |
∑

x∈Γ e
iq·x|2, where Γ denotes the set of lattice points.

The scattering vector q = kin − |kin|r̂ depends on the position of the observer; r̂ is a unit vector
pointing towards the observer. In which direction will the observer see maxima of diffracted

intensity ? Use spherical coordinates (θ, φ).

c) Take the limit N → ∞ for the structure factor S(q).

d) Now compute the structure factor for a body centered cubic (bcc) crystal, which is a cubic crystal

where an additional atom is placed in the center of each cubic unit cell. Which scattering peaks

appear or disappear compared to the simple cubic lattice ?

Problem 2: Fraunhofer diffraction from a circular aperture (Written)

Learning objective

After showing that the Bessel functions obey a recurrence relation in the first part, the second part will

make use of this property to calculate the diffracted intensity of a circular aperture in the Fraunhofer

limit.

a) The ordinary Bessel function Jn(x) is a solution to the second order differential equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0. (1)
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Show that if Jn+1(x) is a solution of the Bessel equation of order n+ 1, then

Jn = x−(n+1) d

dx

[
xn+1Jn+1(x)

]
(2)

is a solution of order n. Conclude that∫ x

0

x′J0(x
′) = xJ1(x). (3)

b) In the Fraunhofer limit the diffracted scalar amplitude u(p, q) is the 2D Fourier transform of the

characteristic function C(ξ, η) of the aperture,

u(p, q) =

√
I0

SA

∫
C(ξ, η)e−ik(pξ+qη) dξ dη, (4)

with wave vector k ≡ 2π
λ
and p ≡ α − α0, q ≡ β − β0 denoting the difference of directional

cosines (see lecture notes). SA is the surface area of the aperture and I0 = |u(0, 0)|2. Consider a
circular aperture of radius a whose characteristic function is

C(ξ, η) =

{
1 for

√
ξ2 + η2 ≤ a

0 otherwise
(5)

and compute the diffracted intensity I(p, q) = |u(p, q)|2 in the Fraunhofer limit. Go to cylindrical
coordinates and use the integral representation of the Bessel function

Jn(x) =
1

2πin

∫ 2π

0

eix cosφeinφdφ. (6)

Make use of the results from a).

Problem 3: Fourier optics (Bonus)

Learning objective

In this exercise we are going to use the properties of Fourier transforms to obtain the Fraunhofer

diffraction pattern of more complicated structures in a systematic way. The points for this exercise do

not count to the total number of points of which 80% are required to obtain the “Schein”. Students who

are short on points should see this exercise as an opportunity to improve their score in order to fulfill the

Schein criteria.

a) Show that an aperture consisting of two circular holes of radius a with their centers located
at (η, ξ) = (−d

2
, 0) and (η, ξ) = (+d

2
, 0), respectively, can be written as a convolution of one

circular hole with two delta functions located at (η, ξ) = (−d
2
, 0) and (η, ξ) = (+d

2
, 0). Write

down the Fraunhofer diffraction pattern of this aperture using the convolution theorem for

Fourier transforms.

Remark: An arbitrarily shaped aperture A(r = (η, ξ)) can be replicated at positions {ri} by a
convolution operation with an array of delta functions Ωδ =

∑
i δ(r

′ − ri). Schematically:

Tiling of apertures A = (Ωδ ∗A)(r) ≡
∫ ∑

i

δ(r′ − ri)A(r− r′)d2r′ =
∑
i

A(r− ri). (7)
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b) Let A1 and A2 be two apertures such that the extension of A2 in a particular direction, e.g. in

ξ-direction, is µ times that of A1. Show by a suitable change of integration variables from (ξ, η)
to (ξ′, η′) in the Fraunhofer integral that the diffracted amplitudes obey

u2(p, q) = µu1(µp, q). (8)

Using this result, write down the Fraunhofer diffraction pattern of an aperture which has the

shape of an ellipse.

c) Using the results of a) and b), write down the Fraunhofer diffraction pattern of the aperture

shown in the figure below on the left, which consists of three elliptical holes placed at the vertices

of an equilateral triangle.

d) Write down the Fraunhofer diffraction pattern for the aperture shown in the figure below on

the right. There, the three holes have been replicated on a 4× 4 square grid to give a regular
arrangement of holes.

cc

c

2a

2b

ξ

η

dd

d

Problem 4: Lorentz Group (Written)

Learning objective

This exercise serves to become familiar with groups and their properties. Groups play a fundamental

role in all fields of physics and can tremendously simplify otherwise very challenging problems. In

this exercise we will explicitly show that Lorentz transformations form a group and further analyze the

properties of this group. Since the group elements are matrices here, this is a good example to understand

the abstract properties of groups in an easy way.

First, let us revise the definition of a group.

Definition: A group is a set G together with an operation • (called the group law of G) that combines
any two elements a and b to form another element, denoted by a • b. To qualify as a group, the set
and the operation, (G, •), must satisfy four requirements known as the group axioms:
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1) Closure: For all a, b ∈ G, the result of the operation a • b is also an element of G.
2) Associativity: For all a, b, c ∈ G the following relation is satisfied (a • b) • c = a • (b • c).
3) Identity element: There exists an element e ∈ G, such that for every element a ∈ G, the

equality e • a = a • e = a holds. Such an element is unique, and thus called the identity element.

4) Inverse element: For each a ∈ G, there exists an element b ∈ G such that a • b = b • a = e,
where e is the identity element.

For Lorentz transformations, we define G as the set of matrices characterized by the invariance of

the metric tensor g of Minkowski spacetime, i.e.

G := {Λ ∈ R4×4 | ΛtgΛ = g} , (9)

and the group operation • as the multiplication of matrices.
a) Show that the Lorentz group is a group.

b) Depending on det(Λ) and sign(Λ0
0) the Lorentz group can be divided into four components.

Show that proper orthochronous Lorentz transformations, i.e. det(Λ) = 1 and sign(Λ0
0) = 1,

form a group.

c) Next, proof that the other three components do not form a group on their own. Give an example

of a combination of two components which again gives a proper group.
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