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Problem 1: Perturbation expansion of correlation functions (Written, 5 points)

Learning objective

Thepurpose of this problem is to study the time evolution operator which relates the two-point correlation

function of an interacting quantum field theory to a correlation function of the corresponding non-

interacting theory. This correlation function then can be evaluated by means of perturbation theory

leading to Feynman diagrams.

We start by considering a generic Hamiltonian

H = H0 +Hint(λ) , (1)

where H0 is the Hamiltonian of some exactly solvable, non-interacting quantum field theory and

Hint(λ) is some perturbation depending on the (small) parameter λ. For the moment, you might think

of them asH0 being the Hamiltonian of the free, real Klein-Gordon field andHint as the Hamiltonian

of the φ4-theory. In the end, we are interested in the two-point correlation function

〈Ω| T φ(x)φ(y) |Ω〉 , (2)

where |Ω〉 is the vacuum of the full Hamiltonian H and T denotes the time-ordering operator. The

influence of the interaction part of the Hamiltonian is encoded in the field φ as well as in the vacuum

|Ω〉 and the goal of this problem is to study its relation to the operators of the free field as well as

the vacuum of the non-interacting theory, |0〉 with H0 |0〉 = 0.

First, recall that in the Heisenberg picture the field operator for some time t 6= t0 takes the form

φ(t,x) = eiH(t−t0)φ(t0,x)e
−iH(t−t0) (3)

with φ(t0,x) being the field operator in the Schrödinger picture.

In the interaction picture, the field takes the form

φI(t,x) = eiH0(t−t0)φ(t0,x)e
−iH0(t−t0) . (4)

Defining the time evolution operator

U(t, t0) = eiH0(t−t0)e−iH(t−t0) , (5)

we can relate the field operator in the Heisenberg picture to the field operator in the interaction

picture by

φ(t,x) = U †(t, t0)φI(t,x)U(t, t0) . (6)
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a) Show that the time evolution operator (5) satisfies the differential equation

i∂tU(t, t0) = HI(t)U(t, t0) , (7)

where HI(t) refers to Hint in the interaction picture.

b) Show that the solution of this differential equation is given by

U(t, t0) = 1 + (−i)

t∫
t0

dt′ HI(t
′) + (−i)2

t∫
t0

dt′
t′∫

t0

dt′′ HI(t
′)HI(t

′′)

+ (−i)3
t∫

t0

dt′
t′∫

t0

dt′′
t′′∫

t0

dt′′′ HI(t
′)HI(t

′′)HI(t
′′′) + · · · (8)

and that this can be written in the form

U(t, t0) = T exp

−i

t∫
t0

dt′ HI(t
′)

 . (9)

c) Show that the time evolution operator U(t, t′) satisfies the following properties:

U−1(t, t′) = U †(t, t′) (10a)

U(t1, t2)U(t2, t3) = U(t1, t3) . (10b)

d) Now study the ground state |Ω〉 of the full, interacting theory. Isolate the ground state |Ω〉 by
evolving the state |0〉 with the full Hamiltonian H to some time T and show that

|Ω〉 = lim
T→∞(1−iε)

(
e−iE0(t0+T ) 〈Ω|0〉

)−1
U(t0,−T ) |0〉 , (11)

where E0 = 〈Ω|H |Ω〉, t0 is a small constant and we assume that 〈Ω|0〉 6= 0.

Hint: Expand |0〉 into eigenstates |n〉 of the full Hamiltonian and project out the interacting

ground state by pushing the time into a slightly imaginary direction, T → ∞(1− iε).

e) Consider first the case x0 > y0 and show that the two-point correlation function (2) can be

written in terms of the non-interacting vacuum as

〈Ω|φ(x)φ(y) |Ω〉 = lim
T→∞(1−iε)

〈0|U(T, x0)φI(x)U(x0, y0)φI(y)U(y0,−T ) |0〉
〈0|U(T,−T ) |0〉

. (12)

Show that this generalizes to

〈Ω| T φ(x)φ(y) |Ω〉 = lim
T→∞(1−iε)

〈0| T φI(x)φI(y) exp

(
−i

T∫
−T

dtHI(t)

)
|0〉

〈0| T exp

(
−i

T∫
−T

dtHI(t)

)
|0〉

. (13)
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Problem 2: Wick’s theorem (Written, 5 points)

Learning objective

In this problem, you will prove Wick’s theorem by constructing a generating functional. Wick’s theorem

allows to reorder a time-ordered product of operators, as those appearing in the two-point correlation

function studied in Problem 1, into a normal form which is more convenient for the actual computation

in Fock space.

In the following, we only deal with free fields and assume that all fields are in the interaction picture

and therefore drop the subscript I . Further, we restrict ourselves to the real Klein-Gordon field

which is bosonic, noting that Wick’s theorem can be derived similarly for fermionic fields. In order

to derive the generating functional, we use the Hamiltonian

HI(t) =

∫
d3x j(t,x)φ(t,x) (14)

where the real scalar field φ is coupled to the source term j(x).

a) First, consider two operators A and B with [A, [A,B]] = [B, [A,B]] = 0. Prove the Baker-

Campbell-Hausdorff formula

eAeB = eA+B+ 1
2
[A,B] . (15)

Hint: Start with f(t) = etAetB and derive a differential equation for f(t) which you can solve.

For t = 1, you will recover (15).

b) Now, look at the operator

S = U(∞,−∞) = T exp

(
−i

∫
dtHI(t)

)
= lim

ti→−∞
tf→∞

T exp

−i

tf∫
ti

dtHI(t)

 . (16)

Show that the commutator [HI(t), HI(t
′)] is a complex number and show that the operator S

can be rewritten as

S = exp

(
−i

∫
dtHI(t)

)
exp

(
−1

2

∫
dt dt′ θ(t− t′)[HI(t), HI(t

′)]

)
, (17)

where θ(t) is the Heaviside function.

Hint: Discretize the interval [ti, tf ] and rewrite the time-ordered exponential as a product of

exponentials.

c) Expand the scalar field φ into its positive- and negative-frequency part, φ(x) = φ(+)(x)+φ(−)(x),
and show that

S =:exp

(
−i

∫
d4xφ(x)j(x)

)
:

× exp

(
1

2

∫
d4x d4y j(x)

(
[φ(−)(x), φ(+)(y)]− θ(x0 − y0)[φ(x), φ(y)]

)
j(y)

)
.

(18)

Hint: :ea+a† : = ea
†
ea

Page 3 of 4



QUANTUM FIELD THEORY Problem Set 5

d) Using the fact that the commutator for free fields is just a complex number, show that (18) can

be further simplified to

S = :exp

(
−i

∫
d4x j(x)φ(x)

)
: exp

(
−1

2

∫
d4x d4y j(x)j(y) 〈0| T φ(x)φ(y) |0〉

)
. (19)

e) Finally, use (19) to prove Wick’s theorem

T φ(x1)φ(x2) · · ·φ(xm) = :φ(x1)φ(x2) · · ·φ(xm) + all possible contractions: . (20)

The contraction of two fields is defined as

φ(x)φ(y) =

{
[φ(+)(x), φ(−)(y)] forx0 > y0 ,

[φ(+)(y), φ(−)(x)] for y0 > x0
(21)

and it is

φ(x)φ(y) = DF (x− y) (22)

with the Feynman propagator DF (x− y).
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