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Problem 1: Feynman diagrams for φ4-theory (Written, 4+1 points)

Learning objective

The purpose of this problem is to become familiar with Feynman diagrams and their corresponding

perturbative expressions. To this end, we use the interacting φ4-theory and focus on its four-point

correlator to apply the machinery of real- and momentum-space Feynman diagrams.

We consider the φ4-theory

H =
1

2

∫
d3x

[
π2(x) + (∇φ(x))2 +m2φ2(x) + 2

λ

4!
φ4(x)

]
(1)

with interacting fields φ(x) = eiHtφ(x)e−iHt and vacuum |Ω〉.

a) Draw all relevant Feynman diagrams (i.e., without vacuum bubbles) for the perturbative expan-

sion of the four-point function

〈Ω| T φ(x1)φ(x2)φ(x3)φ(x4) |Ω〉 (2)

up to second order (λ2).

Draw two relevant diagrams of third order (λ3): one connected and one disconnected.

Hint: Ignore symmetry factors and permutations of external points. Use that four-point dia-

grams are either fully connected or decompose into products of disjoint two-point diagrams. Up

to permutations, there are 3 connected diagrams and 6 additional disconnected diagrams up to

second order.

b) Optional (+1 point): Draw all diagrams of third order. How many are connected and discon-

nected, respectively (again up to permutations)?

c) Using the real-space Feynman rules, write down the term described by the Feynman diagram

x1

x2

x3

x4

d) Label the Feynman diagram above with directed momenta and write down the corresponding

expression as prescribed by the momentum-space Feynman rules.

e) Use the Fourier expansion of the Feynman propagator

DF (x− y) =

∫
d4p

(2π)4
i e−ip·(x−y)

p2 −m2 + iε
(3)

to show that the expressions of c) and d) are equivalent.
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Problem 2: Feynman rules for the interacting complex Klein-Gordon field (Written, 4 points)

Learning objective

Here you derive the Feynman rules for the complex Klein-Gordon field with an arbitrary interaction

potential. Generically, this interaction violates causality and the resulting theory is no longer a relativistic

quantum field theory. However, in condensed matter physics such theories can be used to describe the

low-energy physics of interacting models that are otherwise hard to tackle analytically. This demonstrates

that diagrammatic methods for perturbation theory are not restricted to relativistic high-energy physics.

Recall the (free) complex Klein-Gordon field (Problem Set 2) with Hamiltonian

H0 =

∫
d3x

(
π†π +∇φ†∇φ+m2φ†φ

)
(4)

and fields that satisfy the canonical commutation relations [φ(x), π(y)] = iδ(3)(x− y).

Let V : R3 → R be a symmetric [V (r) = V (−r)] but otherwise arbitrary (well-behaved) potential.

Here we consider the interacting theory

H = H0 +
λ

2

∫
d3x

∫
d3yV (x− y)φ†(x)φ†(y)φ(x)φ(y) (5)

with small parameter λ.

At an arbitrary time t0, we can expand the interacting field φ(t0,x) into modes,

φ(t0,x) =

∫
d3p

(2π)3
1√
2Ep

(
ape

ipx + b†pe
−ipx

)
, (6)

with the mode algebra[
ap, a

†
q

]
= (2π)3 δ(3)(p− q) and

[
bp, b

†
q

]
= (2π)3 δ(3)(p− q) (7)

(all other commutators vanish). In the interaction picture, we then have

φI(x) = eiH0(t−t0)φ(t0,x)e
−iH0(t−t0) =

∫
d3p

(2π)3
1√
2Ep

(
ape

−ipx + b†pe
ipx

)
(8)

with x0 = t− t0. Note that this is just the the time evolution of the free theory H0 that you derived

in Problem 2 b) of Problem Set 2.

a) Let the contraction be defined as difference between time ordering and normal ordering:

AB ≡ T {AB} − :AB : (9)

where A,B ∈ {φI , φ
†
I}.

Use the decomposition φI = φ+
a + φ−

b and φ†
I = φ−

a + φ+
b into positive- and negative-frequency

parts (and your knowledge from the real Klein-Gordon field) to show that

φI(x)φI(y) = φ†
I(x)φ

†
I(y) = 0 (10a)

φ†
I(x)φI(y) = φI(x)φ

†
I(y) = DF (x− y) =

∫
d4p

(2π)4
i e−ip·(x−y)

p2 −m2 + iε
. (10b)
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b) Prove Wick’s theorem for the free complex scalar field. That is, show that

T {ABC . . . } = :ABC . . .: + :{all contractions between pairs of φ and φ†}: (11)

for A,B,C, · · · ∈ {φI , φ
†
I}.

Hint: Use induction (as in Peskin & Schroeder) with the decomposition of φ and φ† from above.

As shown in the lecture (or in Problem 1 of Problem Set 5), time-ordered correlation functions can

be rewritten in terms of interaction picture fields via

〈Ω| T {ABC . . . } |Ω〉 = lim
T→∞(1−iε)

〈0| T {AIBICI . . . exp
(
−i

∫ T

−T
dtHI(t)

)
} |0〉

〈0| T exp
(
−i

∫ T

−T
dtHI(t)

)
|0〉

(12)

for A,B,C, · · · ∈ {φ, φ†}. Here |Ω〉 is the interacting vacuum and the interaction picture Hamilto-

nian is given by

HI(t) =
λ

2

∫
d3x

∫
d3yV (x− y)φ†

I(x)φ
†
I(y)φI(x)φI(y) . (13)

c) Use this prescription in combination with Wick’s theorem to evaluate the two-point correlator

〈Ω| T φ(x)φ†(y) |Ω〉 (14)

up to first order in λ.

Compare your result to the φ4-theory.

d) Use the dictionary

y x = φI(x)φ
†
I(y) = DF (x− y) (15a)

u w = V (u−w) δ(u0 − w0) (15b)

to recast the summands found in c) as Feynman diagrams.

Generalize your result to the Feynman rules of the interacting theory of a complex scalar field

with interaction potential V .
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