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Dr. Nicolai Lang May 15, 2020
Institute for Theoretical Physics Ill, University of Stuttgart SS 2020

Problem 1: Feynman diagrams for ¢*-theory (Written, 4+1 points)

Learning objective

The purpose of this problem is to become familiar with Feynman diagrams and their corresponding
perturbative expressions. To this end, we use the interacting ¢*-theory and focus on its four-point
correlator to apply the machinery of real- and momentum-space Feynman diagrams.

We consider the ¢*-theory

"= % / d'x {ﬂ(x) (VX)) + m262(x) + 2 %¢4(x) (1)

with interacting fields ¢(z) = e’ (x)e~"* and vacuum |(2).

a)

Draw all relevant Feynman diagrams (i.e., without vacuum bubbles) for the perturbative expan-
sion of the four-point function

(Q T (1) (22)P(w3)P(24) [2) (2)

up to second order (\?).
Draw two relevant diagrams of third order (\®): one connected and one disconnected.

Hint: Ignore symmetry factors and permutations of external points. Use that four-point dia-
grams are either fully connected or decompose into products of disjoint two-point diagrams. Up
to permutations, there are 3 connected diagrams and 6 additional disconnected diagrams up to
second order.

Optional (+1 point): Draw all diagrams of third order. How many are connected and discon-
nected, respectively (again up to permutations)?

Using the real-space Feynman rules, write down the term described by the Feynman diagram

€ xs3

L2 L4
Label the Feynman diagram above with directed momenta and write down the corresponding
expression as prescribed by the momentum-space Feynman rules.
Use the Fourier expansion of the Feynman propagator

d*p ieir(@-y)
Dr(z=y) = / (2m)4 p? — m? + i€ ®)

to show that the expressions of c¢) and d) are equivalent.
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Problem 2: Feynman rules for the interacting complex Klein-Gordon field (Written, 4 points)

Learning objective

Here you derive the Feynman rules for the complex Klein-Gordon field with an arbitrary interaction
potential. Generically, this interaction violates causality and the resulting theory is no longer a relativistic
quantum field theory. However, in condensed matter physics such theories can be used to describe the
low-energy physics of interacting models that are otherwise hard to tackle analytically. This demonstrates
that diagrammatic methods for perturbation theory are not restricted to relativistic high-energy physics.

Recall the (free) complex Klein-Gordon field (Problem Set 2) with Hamiltonian
Hy = / &x (r'7 4+ Vo'V +m?¢'o) (4)

and fields that satisfy the canonical commutation relations [¢(x), 7(y)] = i6®)(x — y).

Let V : R® — R be a symmetric [V (r) = V(—r)] but otherwise arbitrary (well-behaved) potential.
Here we consider the interacting theory

H=t+5 [ & [ EyVix-y) o mdpexe ©)

with small parameter .

At an arbitrary time t(, we can expand the interacting field ¢(¢(, x) into modes,

d3p 1 1px —1ipx
¢(t0,X) :/ (27]')3 T_Ep (@pep + bi,e p ) s (6)

with the mode algebra

[ap, af] = (2m)* 8% (p —q) and  [by,b}] = (27)* 6P (p — q) (7)
(all other commutators vanish). In the interaction picture, we then have
iHO(t*tQ) 7’iH0(t7t0) d3p ]‘ —1ipx T _ipx
or(z) =e ¢(to, x)e = (27)3 - PE. (ape + bye ) (®)
P

with 29 = ¢ — t,. Note that this is just the the time evolution of the free theory Hj that you derived
in Problem 2 b) of Problem Set 2.

a) Let the contraction be defined as difference between time ordering and normal ordering:

—
AB =T{AB} —:AB: 9)

where A, B € {¢I7¢§}

Use the decomposition ¢; = ¢ + ¢, and qb; = ¢, + ¢, into positive- and negative-frequency
parts (and your knowledge from the real Klein-Gordon field) to show that

1 —
o1(2)d1(y) = o) (x)o}(y) = 0 (102)
— 1 d*p e w(v)

G1@)onl) = nl0)d} (o) = Dt — ) = [ b S

(10b)
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b) Prove Wick’s theorem for the free complex scalar field. That is, show that
T{ABC ...} =:ABC...: + :{all contractions between pairs of ¢ and ¢'}: (11)

for A,B,C,--- € {Cblaﬁb}}'

Hint: Use induction (as in Peskin & Schroeder) with the decomposition of ¢ and ¢' from above.

As shown in the lecture (or in Problem 1 of Problem Set 5), time-ordered correlation functions can
be rewritten in terms of interaction picture fields via

O T{ABCr ... exp (—z' Tt Hl(t)>} 10)
(QT{ABC ...} Q)= lim =
Tso0(1-ie) (0] T exp (_z Tt Hl(t)> 10)

(12)

for A, B,C,--- € {¢,¢'}. Here |Q) is the interacting vacuum and the interaction picture Hamilto-
nian is given by

A
m =5 [ @x [ @yvix-y)ol@elwo@eonm. (13
c¢) Use this prescription in combination with Wick’s theorem to evaluate the two-point correlator

(Q To(2)o! (y) |2) (14)

up to first order in \.
Compare your result to the ¢*-theory.
d) Use the dictionary

—
y—>—=a = di(2)d)(y) = Dr(z —y) (152)
Y-m----- w = V(a—w)ou’ —uw’) (15b)

to recast the summands found in c) as Feynman diagrams.

Generalize your result to the Feynman rules of the interacting theory of a complex scalar field
with interaction potential V.
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