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Problem 1: Dimensional regularization (Written, 5 points)

Learning objective

In this exercise we will work on the technical details of dimensional regularization (due to ’t Hooft and

Veltman). Dimensional regularization preserves the symmetries of QED and a broader class of more

general theories. The idea of dimensional regularization is to extend the definition of d-dimensional
volume integrals to arbitrary d ∈ R. If the divergences of integrals from Feynman diagrams vanish for

d < 4, they can be regularized if the limit d → 4 is taken after evaluating physical quantities.

Let us consider spacetime to have one time dimension and (d−1) space dimensions (d = 2, 3, 4, . . . ).

We are interested in solving integrals of the form∫
dd`E
(2π)d

1

(`2E +∆)2
=

∫
dΩd

(2π)d

∫
d`

`d−1

(`2 +∆)2
(1)

where we haveWick-rotated the time dimension so that dd`E is the volume element of d-dimensional
Euclidean space; dΩd denotes the angular part of the integral in d-dimensional spherical coordinates.

a) The first factor in Eq. (1) contains the area of a unit sphere in d dimensions. Show that∫
dΩd =

2πd/2

Γ(d/2)
. (2)

Use
∫
dx e−x2

=
√
π and the definition of the Gamma function Γ(t) :=

∫∞
0

dx xt−1e−x.

b) With the result from a), show that Eq. (1) evaluates to∫
dd`E
(2π)d

1

(`2E +∆)2
=

1

(4π)d/2
Γ(2− d

2
)

Γ(2)

(
1

∆

)2− d
2

. (3)

To this end, use the substitution x = ∆/(`2 +∆) and the definition of the beta function

B(α, β) :=

∫ 1

0

dx xα−1(1− x)β−1 =
Γ(α)Γ(β)

Γ(α + β)
. (4)

The expression Eq. (3) can now be used to define the left-hand side for d ∈ R.
Where are the poles of this generalized integral in d “dimensions”?

c) Define ε = 4− d and use the infinite product representation

1

Γ(x)
= xeγx

∞∏
n=1

(
1 +

x

n

)
e−x/n (5)

(γ is the Euler-Mascheroni constant) to expand Γ(2− d
2
) to first order in ε.
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d) Show that the integral (3) takes the asymptotic form∫
dd`E
(2π)d

1

(`2E +∆)2
d→4−−→ 1

(4π)2

[
2

ε
+ log

4π

∆
− γ +O(ε)

]
. (6)

This expression extracts the diverging part of the integral for d → 4 and allows for the controlled
treatment of such integrals.

e) Following the previous steps, verify the more general expressions∫
dd`E
(2π)d

1

(`2E +∆)n
=

1

(4π)d/2
Γ
(
n− d

2

)
Γ(n)

(
1

∆

)n− d
2

, (7a)∫
dd`E
(2π)d

`2E
(`2E +∆)n

=
1

(4π)d/2
d

2

Γ
(
n− d

2
− 1

)
Γ(n)

(
1

∆

)n− d
2
−1

. (7b)

These integrals are useful for the renormalization of the electric charge (see lecture).

Problem 2: Thomas-Fermi screening (Written, 3+1 points)

Learning objective

As already demonstrated in previous tasks, the machinery of quantum field theory is not restricted to

high-energy physics and fundamental theories like QED; its application to condensed matter physics

provides one of the most powerful tools to study strongly correlated quantum matter. In this exercise,

we will study the so calledThomas-Fermi screening of electrons in a degenerate electron gas of density n
at zero temperature.

a) Similar to the lecture, define Π(q) to be the sum of all one-particle-irreducible diagrams contribut-

ing to the photon self-energy. Show by diagrammatically expanding the full photon propagator

Dph(q) that

Dph(q) =
D0

ph(q)

1−D0
ph(q)Π(q)

, (8)

where D0
ph(q) is the bare photon propagator.

This approach is related to the so called Lindhard theory in condensed matter theory used for

calculating the effects of electric field screening by electrons.

b) In condensed matter theory, the bare photon propagator in momentum space is simply given by

the Fourier transform U(q) of the (time-independent) interaction potential. Then, the denomi-

nator in (8) can be seen as a dielectric function given (in the static limit) as

ε(q) = 1− U(q)Π(q) . (9)

Show that the bare Coulomb interaction in momentum space, U(q) = e2/q2, is now modified to

an effective interaction due to the screening of the electron gas in the long wavelength limit (i.e.,

Π is evaluated at q = 0):

Ueff(q) =
e2

q2 + λ−2
TF

, (10)

where λ−1
TF is theThomas-Fermi wave vector.
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c) Calculate the Fourier transform Ueff(x) of the effective potential (10) and discuss your result.

d) Optional:

Calculate the Thomas-Fermi wave vector in the long wavelength limit (q → 0) and in the so-

called random-phase approximation, where Π(q) consists only of the particle-hole(=antiparticle)
loop (neglecting the in- and outgoing lines):

q

k + q

k

q

According to the Feynman rules in condensed matter theory, Π(q) is given by

Π(q) = −2i

∫
d3k

(2π)3

∫
dω

2π
G0(ω,k)G0(ω,k+ q) , (11)

where the propagator/Green’s function reads

G0(ω,k) =
1

ω − ξ(k) + iδ sgn(ξ(k))
(12)

with ξ(k) = k2

2m
− EF and EF the Fermi energy. δ is to be taken positive but small (i.e. δ → 0+)

and sgn(x) refers to the signum function, which gives the sign of x and sgn(0) = 0.

Hint: In 3D, the Fermi energy is given by EF = (3π2n)2/3/(2m) with electron density n and

massm.
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