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Problem 1: Infrared divergence of the electron vertex function (Written, 4 points)

Learning objective

The calculation of the one-loop correction of the electron vertex function is riddled with both an ultraviolet

and an infrared divergence—caused by the momentum integration of the loop. While the ultraviolet

divergence is controlled by Pauli-Villars regularization, the infrared divergence can be parametrized by

introducing a small, artificial photon mass µ > 0. It is important to extract the asymptotic behaviour of

this divergence for µ → 0 to prepare its cancellation with a similar term found for soft bremsstrahlung.

Here you work out the details of this asymptotic behaviour.

As shown in the lecture, the regularized form factor F1 of the electron vertex in QED up to one-loop

order reads

F1(q
2) = 1 +

α

2π

1∫
0

dx dy dz δ(x+ y + z − 1)

[
log

(
m2(1− z)2

m2(1− z)2 − q2xy

)

+
m2(1− 4z + z2) + q2(1− x)(1− y)

m2(1− z)2 − q2xy + µ2z
− m2(1− 4z + z2)

m2(1− z)2 + µ2z

]
+O(α2) .

(1)

Here, x, y, z are Feynman parameters,m is the electron mass, q = p′ − p the momentum transfer

and µ the artificial photon mass to regularize the integral; α is the fine structure constant.

We are interested in the (physical) limit of vanishing photon mass (µ → 0) where Eq. (1) diverges.

a) Show that the dominant terms of Eq. (1) in this limit read

F
(1)
1 (q2) :=

α

2π

1∫
0

dx dy dz δ(x+ y + z − 1)

×
[
m2(1− 4z + z2) + q2(1− x)(1− y)

m2(1− z)2 − q2xy + µ2z
− m2(1− 4z + z2)

m2(1− z)2 + µ2z

]
.

(2)

Hint: Show that the virtual photon is spacelike, i.e., show that q2 < 0; then show that the

argument of the logarithm is bounded in the relevant region.

b) Using the previous result, show that the asymptotic behaviour of F1 is captured by the simpler

expression

F
(2)
1 (q2) :=

α

2π

1∫
0

dz

1−z∫
0

dy

[
−2m2 + q2

m2(1− z)2 − q2(1− z − y)y + µ2
− −2m2

m2(1− z)2 + µ2

]
. (3)
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c) Use the substitution y = (1− z)ξ and w = 1− z to show that

F
(3)
1 (q2) :=

α

4π

1∫
0

dξ

[
−2m2 + q2

m2 − q2ξ(1− ξ)
log

(
m2 − q2ξ(1− ξ)

µ2

)
+ 2 log

(
m2

µ2

)]
. (4)

d) Finally, show that the asymptotics of F1 is given by F1(q
2) ≈ 1 + F

(4)
1 (q2) +O(α2) with

F
(4)
1 (q2) := − α

2π
fIR(q

2) log

(
A

µ2

)
(5)

where the function fIR(q
2) has to be determined and both choices A ∈ {−q2,m2} give rise to

valid expressions.

Hint: Use that adding constants (with respect to µ) to F
(3)
1 does not change its asymptotic

behaviour for µ → 0.

What is the sign of fIR(q
2)?

This expression can now be used to cancel the infrared divergence of the electron vertex func-

tion with the corresponding divergence found for soft bremsstrahlung to obtain a finite result

independent of µ (see lecture).

Problem 2: The electron self-energy (Written, 3 points)

Learning objective

The mass-energy equivalence inherent to any relativistic theory implies for quantum field theories that

fluctuations of fields around particles with “bare” mass m0 shift the latter to a larger, observable mass m.

In QED, virtual photons that couple to the charged electron make up for its self-energy which, in turn,

contributes to its mass m; we say that the mass is renormalized. Here you work out the details of the

one-loop correction discussed in the lecture. As a result, we find that m0 and m differ by an infininity.

The electron two-point function is given by the sum of diagrams

〈Ω| T Ψ(x)Ψ̄(y) |Ω〉 = x y + x y + . . . (6)

where the first diagram is just the free-field propagator,

=
i(/p+m0)

p2 −m2
0 + iε

, (7)

and the second diagram (the electron self-energy) yields the expression

p

k − p

k p

=
i(/p+m0)

p2 −m2
0

[−iΣ2(p)]
i(/p+m0)

p2 −m2
0

(8)
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according to the Feynman rules of QED (for the sake of simplicity, we omit the term e−ip(x−y) and

the integral
∫
d4p/(2π)4 for the external points). Here

−iΣ2(p) = (−ie)2
∫

d4k

(2π)4
γµ i(/k +m0)

k2 −m2
0 + iε

γµ
−i

(p− k)2 − µ2 + iε
(9)

contains the two loop propators with their two vertices. m0 is the bare mass of the electron and

µ > 0 is a small photon mass to regulate the infrared divergence of the integral.

a) Using Feynman parameters, show that the second-order self-energy −iΣ2(p) takes the form

−iΣ2(p) = −e2
∫ 1

0

dx

∫
d4`

(2π)4
−2x/p+ 4m0

[`2 −∆µ + iε]2
, (10)

where ∆µ has to be determined.

b) To control the ultraviolet divergence of the integral (10), use the Pauli-Villars regularization

1

(p− k)2 − µ2 + iε
→ 1

(p− k)2 − µ2 + iε
− 1

(p− k)2 − Λ2 + iε
(11)

for Λ → ∞ and show that

Σ2(p) =
α

2π

∫ 1

0

dx (2m0 − x/p) log

[
xΛ2

(1− x)m2
0 + xµ2 − x(1− x)p2

]
(12)

in this limit.

c) Using the expression for the second-order self-energy obtained in b), calculate the mass shift

δm = m−m0 = Σ2(/p = m) ≈ Σ2(/p = m0) (13)

in first order of α.

Show that the bare mass m0 and the measurable mass m differ by a diverging quantity.

Page 3 of 3


