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Problem 1: Gauge-invariant computation of the Berry phase

Learning objective

In the lecture we introduced the Berry phase and provided an expression in terms of the Berry curvature

that depends on derivatives of the parameter-dependent eigenstates. This restricts the gauges to be

continuous in the parameters—a condition that is often impossible to satisfy in numerical studies. Here

you derive an equivalent expression that is manifestly gauge-invariant and therefore useful for numerical

computations of Berry phases and Chern numbers.

Consider a HamiltonianH(Γ)with instantaneous (non-degenerate) eigenbasis {|n(Γ)〉} and eigenen-
ergies En(Γ); in the following we focus on one of the eigenstates and denote it as |v(Γ)〉. In the

lecture, the Berry phase on the subspace spanned by |v(Γ)〉 along a closed path Γ was defined as

the contour integral

γ(Γ) = i

∮
Γ

〈v(Γ)| ∂Γ |v(Γ)〉 dΓ . (1)

The basis can be changed by gauge transformations |v(Γ)〉 7→ eiξ(Γ) |v(Γ)〉 but the gauges in Eq. (1)

are not arbitrary: they must be sufficiently smooth since ∂Γ |v(Γ)〉 needs to be well-defined on the

contour.

In numerical studies one often determines the instantaneous eigenbasis for different parameters

Γ independently. Since each computation can pick an arbitrary phase for the basis states, it is

typically not guaranteed that the resulting gauge is continuous. In the following, you will derive an

equivalent expression that circumvents this problem by removing the derivative from the states.

Here we will focus on the case of a three-dimensional parameter space Γ ∈ R3 so that Stoke’s

theorem takes its “usual” form.

a) Use Stoke’s theorem to show that

γ(Γ) = i

∫
Σ

εijk
〈
∂Γj

v(Γ)
∣∣∂Γk

v(Γ)
〉
dσi (2)

where Σ is a 2D submanifold in the parameter space such that ∂Σ = Γ; dσ is the oriented

surface element on Σ and summation over repeated indices is implied.

b) Use the completeness of the instantaneous eigenstates to derive

γ(Γ) = i
∑
n6=v

∫
Σ

εijk
〈
∂Γj

v(Γ)
∣∣n(Γ)〉 〈n(Γ)|∂Γk

v(Γ)〉 dσi . (3)

(Hint: Use that ∂Γi
〈n(Γ)|n(Γ)〉 = 0.)
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c) Now show that

〈n(Γ)|∂Γk
v(Γ)〉 = 〈n(Γ)| [∂Γk

H(Γ)] |v(Γ)〉
Ev(Γ)− En(Γ)

(4)

to derive the final expression

γ(Γ) = i
∑
n6=v

∫
Σ

〈v(Γ)| [∂ΓH(Γ)] |n(Γ)〉 × 〈n(Γ)| [∂ΓH(Γ)] |v(Γ)〉
(Ev(Γ)− En(Γ))

2 dσ . (5)

Note that the choice of a continuous gauge is no longer a requirement to evaluate this expression

as it is manifestly gauge invariant. However, there is an ambiguity in choosing Σ for a given

path Γ if the gap closes at some point(s) in parameter space because Σ must not cross these

points (denominator!); the choice of Σ then determines the outcome of the integral.

Problem 2: Spin in a magnetic field revisited

Learning objective

In a previous problem you studied the Berry phase that is collected by a spin-12 that adiabatically follows

a varying magnetic field. Here you will redo this calculation using the gauge-invariant method derived

in Problem 1 for arbitrary spins S. You will find that integer and half-integer spins behave differently.

Consider a single spin S ∈ {0, 1
2
, 1, 3

2
, . . . } in the magnetic fieldB described by the spin operator S

and the Hamiltonian

H(B) = B · S (6)

where again B plays the role of slowly varying parameters.

a) Derive the instantaneous (formal) eigenstates and eigenenergies of Eq. (6).

How does B = |B| affect potential degeneracies?
b) Fix one of the non-degenerate manifolds of eigenstates, say |m∗(B)〉 with m∗ ∈ {−S,−S +

1, . . . , S− 1, S}, and consider a closed loop Γ : t 7→ B in the parameter space of magnetic fields

that does not touch the origin, B(t) 6= 0 for all t ∈ [0, T ].

Show that the Berry phase can be computed as

γ(Γ) = i
∑

m6=m∗

∫
Σ

〈m∗(B)|S |m(B)〉 × 〈m(B)|S |m∗(B)〉
B2(m∗ −m)2

dσ . (7)

(Hint: Use the results of Problem 1.)

c) Use the eigenbasis for B = Bez to evaluate Eq. (7) and show that

γ(Γ) = −
∫
Σ

m∗

B3
B · dσ = −m∗ΩΣ (8)

with the solid angle ΩΣ defined by the projection of Σ onto the unit sphere.

(Hint: Use S± = Sx ± iSy and that S is a vector operator.)

d) Let Γ trace out a great circle and compare the Berry phase collected by half-integer and integer

spins when adiabatically rotated once around an arbitrary axis orthogonal to their quantization

axis.
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Problem 3: Sum of Chern numbers

Learning objective

It is a well-known (and useful) fact that the sum of Chern numbers over all bands of a lattice model

vanishes identically. Here you show this statement.

For a lattice model with M bands and Bloch functions |unk〉, we introduced the Berry curvature on

the Brillouin zone as (∂̃i = ∂ki , i = x, y)

F [n]
ij (k) = ∂̃jA[n]

i − ∂̃iA[n]
j = −i

〈
∂̃junk

∣∣∣∂̃iunk

〉
+ i

〈
∂̃iunk

∣∣∣∂̃junk

〉
(9)

and the Chern number of band n = 1, . . . ,M as

C [n] = − 1

2π

∫
T 2

F [n]
xy d2k . (10)

Show that

M∑
n=1

C [n] = 0 (11)

by showing that the total Berry curvature of all bands
∑M

n=1F
[n]
ij (k) vanishes for every k.

(Hint: Use the completeness of the Bloch functions for fixed k.)
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